DeclCXX.h revision 4f1d1551ed48e2ac52f5614ba8f94e2931546b51
1//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the C++ Decl subclasses, other than those for
11//  templates (in DeclTemplate.h) and friends (in DeclFriend.h).
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_DECLCXX_H
16#define LLVM_CLANG_AST_DECLCXX_H
17
18#include "clang/AST/ASTUnresolvedSet.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/TypeLoc.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/Support/Compiler.h"
27
28namespace clang {
29
30class ClassTemplateDecl;
31class ClassTemplateSpecializationDecl;
32class CXXBasePath;
33class CXXBasePaths;
34class CXXConstructorDecl;
35class CXXConversionDecl;
36class CXXDestructorDecl;
37class CXXMethodDecl;
38class CXXRecordDecl;
39class CXXMemberLookupCriteria;
40class CXXFinalOverriderMap;
41class CXXIndirectPrimaryBaseSet;
42class FriendDecl;
43class LambdaExpr;
44class UsingDecl;
45
46/// \brief Represents any kind of function declaration, whether it is a
47/// concrete function or a function template.
48class AnyFunctionDecl {
49  NamedDecl *Function;
50
51  AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
52
53public:
54  AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
55  AnyFunctionDecl(FunctionTemplateDecl *FTD);
56
57  /// \brief Implicily converts any function or function template into a
58  /// named declaration.
59  operator NamedDecl *() const { return Function; }
60
61  /// \brief Retrieve the underlying function or function template.
62  NamedDecl *get() const { return Function; }
63
64  static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
65    return AnyFunctionDecl(ND);
66  }
67};
68
69} // end namespace clang
70
71namespace llvm {
72  // Provide PointerLikeTypeTraits for non-cvr pointers.
73  template<>
74  class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
75  public:
76    static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
77      return F.get();
78    }
79    static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
80      return ::clang::AnyFunctionDecl::getFromNamedDecl(
81                                      static_cast< ::clang::NamedDecl*>(P));
82    }
83
84    enum { NumLowBitsAvailable = 2 };
85  };
86
87} // end namespace llvm
88
89namespace clang {
90
91/// @brief Represents an access specifier followed by colon ':'.
92///
93/// An objects of this class represents sugar for the syntactic occurrence
94/// of an access specifier followed by a colon in the list of member
95/// specifiers of a C++ class definition.
96///
97/// Note that they do not represent other uses of access specifiers,
98/// such as those occurring in a list of base specifiers.
99/// Also note that this class has nothing to do with so-called
100/// "access declarations" (C++98 11.3 [class.access.dcl]).
101class AccessSpecDecl : public Decl {
102  virtual void anchor();
103  /// \brief The location of the ':'.
104  SourceLocation ColonLoc;
105
106  AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
107                 SourceLocation ASLoc, SourceLocation ColonLoc)
108    : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
109    setAccess(AS);
110  }
111  AccessSpecDecl(EmptyShell Empty)
112    : Decl(AccessSpec, Empty) { }
113public:
114  /// \brief The location of the access specifier.
115  SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
116  /// \brief Sets the location of the access specifier.
117  void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
118
119  /// \brief The location of the colon following the access specifier.
120  SourceLocation getColonLoc() const { return ColonLoc; }
121  /// \brief Sets the location of the colon.
122  void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
123
124  SourceRange getSourceRange() const LLVM_READONLY {
125    return SourceRange(getAccessSpecifierLoc(), getColonLoc());
126  }
127
128  static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
129                                DeclContext *DC, SourceLocation ASLoc,
130                                SourceLocation ColonLoc) {
131    return new (C) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
132  }
133  static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
134
135  // Implement isa/cast/dyncast/etc.
136  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
137  static bool classofKind(Kind K) { return K == AccessSpec; }
138};
139
140
141/// \brief Represents a base class of a C++ class.
142///
143/// Each CXXBaseSpecifier represents a single, direct base class (or
144/// struct) of a C++ class (or struct). It specifies the type of that
145/// base class, whether it is a virtual or non-virtual base, and what
146/// level of access (public, protected, private) is used for the
147/// derivation. For example:
148///
149/// @code
150///   class A { };
151///   class B { };
152///   class C : public virtual A, protected B { };
153/// @endcode
154///
155/// In this code, C will have two CXXBaseSpecifiers, one for "public
156/// virtual A" and the other for "protected B".
157class CXXBaseSpecifier {
158  /// Range - The source code range that covers the full base
159  /// specifier, including the "virtual" (if present) and access
160  /// specifier (if present).
161  SourceRange Range;
162
163  /// \brief The source location of the ellipsis, if this is a pack
164  /// expansion.
165  SourceLocation EllipsisLoc;
166
167  /// \brief Whether this is a virtual base class or not.
168  bool Virtual : 1;
169
170  /// BaseOfClass - Whether this is the base of a class (true) or of a
171  /// struct (false). This determines the mapping from the access
172  /// specifier as written in the source code to the access specifier
173  /// used for semantic analysis.
174  bool BaseOfClass : 1;
175
176  /// Access - Access specifier as written in the source code (which
177  /// may be AS_none). The actual type of data stored here is an
178  /// AccessSpecifier, but we use "unsigned" here to work around a
179  /// VC++ bug.
180  unsigned Access : 2;
181
182  /// InheritConstructors - Whether the class contains a using declaration
183  /// to inherit the named class's constructors.
184  bool InheritConstructors : 1;
185
186  /// BaseTypeInfo - The type of the base class. This will be a class or struct
187  /// (or a typedef of such). The source code range does not include the
188  /// "virtual" or access specifier.
189  TypeSourceInfo *BaseTypeInfo;
190
191public:
192  CXXBaseSpecifier() { }
193
194  CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
195                   TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
196    : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
197      Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
198
199  /// getSourceRange - Retrieves the source range that contains the
200  /// entire base specifier.
201  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
202  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
203  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
204
205  /// isVirtual - Determines whether the base class is a virtual base
206  /// class (or not).
207  bool isVirtual() const { return Virtual; }
208
209  /// \brief Determine whether this base class is a base of a class declared
210  /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
211  bool isBaseOfClass() const { return BaseOfClass; }
212
213  /// \brief Determine whether this base specifier is a pack expansion.
214  bool isPackExpansion() const { return EllipsisLoc.isValid(); }
215
216  /// \brief Determine whether this base class's constructors get inherited.
217  bool getInheritConstructors() const { return InheritConstructors; }
218
219  /// \brief Set that this base class's constructors should be inherited.
220  void setInheritConstructors(bool Inherit = true) {
221    InheritConstructors = Inherit;
222  }
223
224  /// \brief For a pack expansion, determine the location of the ellipsis.
225  SourceLocation getEllipsisLoc() const {
226    return EllipsisLoc;
227  }
228
229  /// getAccessSpecifier - Returns the access specifier for this base
230  /// specifier. This is the actual base specifier as used for
231  /// semantic analysis, so the result can never be AS_none. To
232  /// retrieve the access specifier as written in the source code, use
233  /// getAccessSpecifierAsWritten().
234  AccessSpecifier getAccessSpecifier() const {
235    if ((AccessSpecifier)Access == AS_none)
236      return BaseOfClass? AS_private : AS_public;
237    else
238      return (AccessSpecifier)Access;
239  }
240
241  /// getAccessSpecifierAsWritten - Retrieves the access specifier as
242  /// written in the source code (which may mean that no access
243  /// specifier was explicitly written). Use getAccessSpecifier() to
244  /// retrieve the access specifier for use in semantic analysis.
245  AccessSpecifier getAccessSpecifierAsWritten() const {
246    return (AccessSpecifier)Access;
247  }
248
249  /// getType - Retrieves the type of the base class. This type will
250  /// always be an unqualified class type.
251  QualType getType() const { return BaseTypeInfo->getType(); }
252
253  /// getTypeLoc - Retrieves the type and source location of the base class.
254  TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
255};
256
257/// The inheritance model to use for member pointers of a given CXXRecordDecl.
258enum MSInheritanceModel {
259  MSIM_Single,
260  MSIM_SinglePolymorphic,
261  MSIM_Multiple,
262  MSIM_MultiplePolymorphic,
263  MSIM_Virtual,
264  MSIM_Unspecified
265};
266
267/// CXXRecordDecl - Represents a C++ struct/union/class.
268/// FIXME: This class will disappear once we've properly taught RecordDecl
269/// to deal with C++-specific things.
270class CXXRecordDecl : public RecordDecl {
271
272  friend void TagDecl::startDefinition();
273
274  /// Values used in DefinitionData fields to represent special members.
275  enum SpecialMemberFlags {
276    SMF_DefaultConstructor = 0x1,
277    SMF_CopyConstructor = 0x2,
278    SMF_MoveConstructor = 0x4,
279    SMF_CopyAssignment = 0x8,
280    SMF_MoveAssignment = 0x10,
281    SMF_Destructor = 0x20,
282    SMF_All = 0x3f
283  };
284
285  struct DefinitionData {
286    DefinitionData(CXXRecordDecl *D);
287
288    /// \brief True if this class has any user-declared constructors.
289    bool UserDeclaredConstructor : 1;
290
291    /// The user-declared special members which this class has.
292    unsigned UserDeclaredSpecialMembers : 6;
293
294    /// Aggregate - True when this class is an aggregate.
295    bool Aggregate : 1;
296
297    /// PlainOldData - True when this class is a POD-type.
298    bool PlainOldData : 1;
299
300    /// Empty - true when this class is empty for traits purposes,
301    /// i.e. has no data members other than 0-width bit-fields, has no
302    /// virtual function/base, and doesn't inherit from a non-empty
303    /// class. Doesn't take union-ness into account.
304    bool Empty : 1;
305
306    /// Polymorphic - True when this class is polymorphic, i.e. has at
307    /// least one virtual member or derives from a polymorphic class.
308    bool Polymorphic : 1;
309
310    /// Abstract - True when this class is abstract, i.e. has at least
311    /// one pure virtual function, (that can come from a base class).
312    bool Abstract : 1;
313
314    /// IsStandardLayout - True when this class has standard layout.
315    ///
316    /// C++0x [class]p7.  A standard-layout class is a class that:
317    /// * has no non-static data members of type non-standard-layout class (or
318    ///   array of such types) or reference,
319    /// * has no virtual functions (10.3) and no virtual base classes (10.1),
320    /// * has the same access control (Clause 11) for all non-static data
321    ///   members
322    /// * has no non-standard-layout base classes,
323    /// * either has no non-static data members in the most derived class and at
324    ///   most one base class with non-static data members, or has no base
325    ///   classes with non-static data members, and
326    /// * has no base classes of the same type as the first non-static data
327    ///   member.
328    bool IsStandardLayout : 1;
329
330    /// HasNoNonEmptyBases - True when there are no non-empty base classes.
331    ///
332    /// This is a helper bit of state used to implement IsStandardLayout more
333    /// efficiently.
334    bool HasNoNonEmptyBases : 1;
335
336    /// HasPrivateFields - True when there are private non-static data members.
337    bool HasPrivateFields : 1;
338
339    /// HasProtectedFields - True when there are protected non-static data
340    /// members.
341    bool HasProtectedFields : 1;
342
343    /// HasPublicFields - True when there are private non-static data members.
344    bool HasPublicFields : 1;
345
346    /// \brief True if this class (or any subobject) has mutable fields.
347    bool HasMutableFields : 1;
348
349    /// \brief True if there no non-field members declared by the user.
350    bool HasOnlyCMembers : 1;
351
352    /// \brief True if any field has an in-class initializer.
353    bool HasInClassInitializer : 1;
354
355    /// \brief True if any field is of reference type, and does not have an
356    /// in-class initializer. In this case, value-initialization of this class
357    /// is illegal in C++98 even if the class has a trivial default constructor.
358    bool HasUninitializedReferenceMember : 1;
359
360    /// \brief These flags are \c true if a defaulted corresponding special
361    /// member can't be fully analyzed without performing overload resolution.
362    /// @{
363    bool NeedOverloadResolutionForMoveConstructor : 1;
364    bool NeedOverloadResolutionForMoveAssignment : 1;
365    bool NeedOverloadResolutionForDestructor : 1;
366    /// @}
367
368    /// \brief These flags are \c true if an implicit defaulted corresponding
369    /// special member would be defined as deleted.
370    /// @{
371    bool DefaultedMoveConstructorIsDeleted : 1;
372    bool DefaultedMoveAssignmentIsDeleted : 1;
373    bool DefaultedDestructorIsDeleted : 1;
374    /// @}
375
376    /// \brief The trivial special members which this class has, per
377    /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
378    /// C++11 [class.dtor]p5, or would have if the member were not suppressed.
379    ///
380    /// This excludes any user-declared but not user-provided special members
381    /// which have been declared but not yet defined.
382    unsigned HasTrivialSpecialMembers : 6;
383
384    /// \brief The declared special members of this class which are known to be
385    /// non-trivial.
386    ///
387    /// This excludes any user-declared but not user-provided special members
388    /// which have been declared but not yet defined, and any implicit special
389    /// members which have not yet been declared.
390    unsigned DeclaredNonTrivialSpecialMembers : 6;
391
392    /// HasIrrelevantDestructor - True when this class has a destructor with no
393    /// semantic effect.
394    bool HasIrrelevantDestructor : 1;
395
396    /// HasConstexprNonCopyMoveConstructor - True when this class has at least
397    /// one user-declared constexpr constructor which is neither the copy nor
398    /// move constructor.
399    bool HasConstexprNonCopyMoveConstructor : 1;
400
401    /// DefaultedDefaultConstructorIsConstexpr - True if a defaulted default
402    /// constructor for this class would be constexpr.
403    bool DefaultedDefaultConstructorIsConstexpr : 1;
404
405    /// HasConstexprDefaultConstructor - True if this class has a constexpr
406    /// default constructor (either user-declared or implicitly declared).
407    bool HasConstexprDefaultConstructor : 1;
408
409    /// HasNonLiteralTypeFieldsOrBases - True when this class contains at least
410    /// one non-static data member or base class of non-literal or volatile
411    /// type.
412    bool HasNonLiteralTypeFieldsOrBases : 1;
413
414    /// ComputedVisibleConversions - True when visible conversion functions are
415    /// already computed and are available.
416    bool ComputedVisibleConversions : 1;
417
418    /// \brief Whether we have a C++11 user-provided default constructor (not
419    /// explicitly deleted or defaulted).
420    bool UserProvidedDefaultConstructor : 1;
421
422    /// \brief The special members which have been declared for this class,
423    /// either by the user or implicitly.
424    unsigned DeclaredSpecialMembers : 6;
425
426    /// \brief Whether an implicit copy constructor would have a const-qualified
427    /// parameter.
428    bool ImplicitCopyConstructorHasConstParam : 1;
429
430    /// \brief Whether an implicit copy assignment operator would have a
431    /// const-qualified parameter.
432    bool ImplicitCopyAssignmentHasConstParam : 1;
433
434    /// \brief Whether any declared copy constructor has a const-qualified
435    /// parameter.
436    bool HasDeclaredCopyConstructorWithConstParam : 1;
437
438    /// \brief Whether any declared copy assignment operator has either a
439    /// const-qualified reference parameter or a non-reference parameter.
440    bool HasDeclaredCopyAssignmentWithConstParam : 1;
441
442    /// \brief Whether an implicit move constructor was attempted to be declared
443    /// but would have been deleted.
444    bool FailedImplicitMoveConstructor : 1;
445
446    /// \brief Whether an implicit move assignment operator was attempted to be
447    /// declared but would have been deleted.
448    bool FailedImplicitMoveAssignment : 1;
449
450    /// \brief Whether this class describes a C++ lambda.
451    bool IsLambda : 1;
452
453    /// NumBases - The number of base class specifiers in Bases.
454    unsigned NumBases;
455
456    /// NumVBases - The number of virtual base class specifiers in VBases.
457    unsigned NumVBases;
458
459    /// Bases - Base classes of this class.
460    /// FIXME: This is wasted space for a union.
461    LazyCXXBaseSpecifiersPtr Bases;
462
463    /// VBases - direct and indirect virtual base classes of this class.
464    LazyCXXBaseSpecifiersPtr VBases;
465
466    /// Conversions - Overload set containing the conversion functions
467    /// of this C++ class (but not its inherited conversion
468    /// functions). Each of the entries in this overload set is a
469    /// CXXConversionDecl.
470    ASTUnresolvedSet Conversions;
471
472    /// VisibleConversions - Overload set containing the conversion
473    /// functions of this C++ class and all those inherited conversion
474    /// functions that are visible in this class. Each of the entries
475    /// in this overload set is a CXXConversionDecl or a
476    /// FunctionTemplateDecl.
477    ASTUnresolvedSet VisibleConversions;
478
479    /// Definition - The declaration which defines this record.
480    CXXRecordDecl *Definition;
481
482    /// FirstFriend - The first friend declaration in this class, or
483    /// null if there aren't any.  This is actually currently stored
484    /// in reverse order.
485    FriendDecl *FirstFriend;
486
487    /// \brief Retrieve the set of direct base classes.
488    CXXBaseSpecifier *getBases() const {
489      if (!Bases.isOffset())
490        return Bases.get(0);
491      return getBasesSlowCase();
492    }
493
494    /// \brief Retrieve the set of virtual base classes.
495    CXXBaseSpecifier *getVBases() const {
496      if (!VBases.isOffset())
497        return VBases.get(0);
498      return getVBasesSlowCase();
499    }
500
501  private:
502    CXXBaseSpecifier *getBasesSlowCase() const;
503    CXXBaseSpecifier *getVBasesSlowCase() const;
504  } *DefinitionData;
505
506  /// \brief Describes a C++ closure type (generated by a lambda expression).
507  struct LambdaDefinitionData : public DefinitionData {
508    typedef LambdaExpr::Capture Capture;
509
510    LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent)
511      : DefinitionData(D), Dependent(Dependent), NumCaptures(0),
512        NumExplicitCaptures(0), ManglingNumber(0), ContextDecl(0), Captures(0),
513        MethodTyInfo(Info)
514    {
515      IsLambda = true;
516    }
517
518    /// \brief Whether this lambda is known to be dependent, even if its
519    /// context isn't dependent.
520    ///
521    /// A lambda with a non-dependent context can be dependent if it occurs
522    /// within the default argument of a function template, because the
523    /// lambda will have been created with the enclosing context as its
524    /// declaration context, rather than function. This is an unfortunate
525    /// artifact of having to parse the default arguments before
526    unsigned Dependent : 1;
527
528    /// \brief The number of captures in this lambda.
529    unsigned NumCaptures : 16;
530
531    /// \brief The number of explicit captures in this lambda.
532    unsigned NumExplicitCaptures : 15;
533
534    /// \brief The number used to indicate this lambda expression for name
535    /// mangling in the Itanium C++ ABI.
536    unsigned ManglingNumber;
537
538    /// \brief The declaration that provides context for this lambda, if the
539    /// actual DeclContext does not suffice. This is used for lambdas that
540    /// occur within default arguments of function parameters within the class
541    /// or within a data member initializer.
542    Decl *ContextDecl;
543
544    /// \brief The list of captures, both explicit and implicit, for this
545    /// lambda.
546    Capture *Captures;
547
548    /// \brief The type of the call method.
549    TypeSourceInfo *MethodTyInfo;
550  };
551
552  struct DefinitionData &data() {
553    assert(DefinitionData && "queried property of class with no definition");
554    return *DefinitionData;
555  }
556
557  const struct DefinitionData &data() const {
558    assert(DefinitionData && "queried property of class with no definition");
559    return *DefinitionData;
560  }
561
562  struct LambdaDefinitionData &getLambdaData() const {
563    assert(DefinitionData && "queried property of lambda with no definition");
564    assert(DefinitionData->IsLambda &&
565           "queried lambda property of non-lambda class");
566    return static_cast<LambdaDefinitionData &>(*DefinitionData);
567  }
568
569  /// \brief The template or declaration that this declaration
570  /// describes or was instantiated from, respectively.
571  ///
572  /// For non-templates, this value will be NULL. For record
573  /// declarations that describe a class template, this will be a
574  /// pointer to a ClassTemplateDecl. For member
575  /// classes of class template specializations, this will be the
576  /// MemberSpecializationInfo referring to the member class that was
577  /// instantiated or specialized.
578  llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
579    TemplateOrInstantiation;
580
581  friend class DeclContext;
582  friend class LambdaExpr;
583
584  /// \brief Called from setBases and addedMember to notify the class that a
585  /// direct or virtual base class or a member of class type has been added.
586  void addedClassSubobject(CXXRecordDecl *Base);
587
588  /// \brief Notify the class that member has been added.
589  ///
590  /// This routine helps maintain information about the class based on which
591  /// members have been added. It will be invoked by DeclContext::addDecl()
592  /// whenever a member is added to this record.
593  void addedMember(Decl *D);
594
595  void markedVirtualFunctionPure();
596  friend void FunctionDecl::setPure(bool);
597
598  friend class ASTNodeImporter;
599
600protected:
601  CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
602                SourceLocation StartLoc, SourceLocation IdLoc,
603                IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
604
605public:
606  /// base_class_iterator - Iterator that traverses the base classes
607  /// of a class.
608  typedef CXXBaseSpecifier*       base_class_iterator;
609
610  /// base_class_const_iterator - Iterator that traverses the base
611  /// classes of a class.
612  typedef const CXXBaseSpecifier* base_class_const_iterator;
613
614  /// reverse_base_class_iterator = Iterator that traverses the base classes
615  /// of a class in reverse order.
616  typedef std::reverse_iterator<base_class_iterator>
617    reverse_base_class_iterator;
618
619  /// reverse_base_class_iterator = Iterator that traverses the base classes
620  /// of a class in reverse order.
621  typedef std::reverse_iterator<base_class_const_iterator>
622    reverse_base_class_const_iterator;
623
624  virtual CXXRecordDecl *getCanonicalDecl() {
625    return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
626  }
627  virtual const CXXRecordDecl *getCanonicalDecl() const {
628    return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
629  }
630
631  const CXXRecordDecl *getPreviousDecl() const {
632    return cast_or_null<CXXRecordDecl>(RecordDecl::getPreviousDecl());
633  }
634  CXXRecordDecl *getPreviousDecl() {
635    return cast_or_null<CXXRecordDecl>(RecordDecl::getPreviousDecl());
636  }
637
638  const CXXRecordDecl *getMostRecentDecl() const {
639    return cast_or_null<CXXRecordDecl>(RecordDecl::getMostRecentDecl());
640  }
641  CXXRecordDecl *getMostRecentDecl() {
642    return cast_or_null<CXXRecordDecl>(RecordDecl::getMostRecentDecl());
643  }
644
645  CXXRecordDecl *getDefinition() const {
646    if (!DefinitionData) return 0;
647    return data().Definition;
648  }
649
650  bool hasDefinition() const { return DefinitionData != 0; }
651
652  static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
653                               SourceLocation StartLoc, SourceLocation IdLoc,
654                               IdentifierInfo *Id, CXXRecordDecl* PrevDecl=0,
655                               bool DelayTypeCreation = false);
656  static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
657                                     TypeSourceInfo *Info, SourceLocation Loc,
658                                     bool DependentLambda);
659  static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
660
661  bool isDynamicClass() const {
662    return data().Polymorphic || data().NumVBases != 0;
663  }
664
665  /// setBases - Sets the base classes of this struct or class.
666  void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
667
668  /// getNumBases - Retrieves the number of base classes of this
669  /// class.
670  unsigned getNumBases() const { return data().NumBases; }
671
672  base_class_iterator bases_begin() { return data().getBases(); }
673  base_class_const_iterator bases_begin() const { return data().getBases(); }
674  base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
675  base_class_const_iterator bases_end() const {
676    return bases_begin() + data().NumBases;
677  }
678  reverse_base_class_iterator       bases_rbegin() {
679    return reverse_base_class_iterator(bases_end());
680  }
681  reverse_base_class_const_iterator bases_rbegin() const {
682    return reverse_base_class_const_iterator(bases_end());
683  }
684  reverse_base_class_iterator bases_rend() {
685    return reverse_base_class_iterator(bases_begin());
686  }
687  reverse_base_class_const_iterator bases_rend() const {
688    return reverse_base_class_const_iterator(bases_begin());
689  }
690
691  /// getNumVBases - Retrieves the number of virtual base classes of this
692  /// class.
693  unsigned getNumVBases() const { return data().NumVBases; }
694
695  base_class_iterator vbases_begin() { return data().getVBases(); }
696  base_class_const_iterator vbases_begin() const { return data().getVBases(); }
697  base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
698  base_class_const_iterator vbases_end() const {
699    return vbases_begin() + data().NumVBases;
700  }
701  reverse_base_class_iterator vbases_rbegin() {
702    return reverse_base_class_iterator(vbases_end());
703  }
704  reverse_base_class_const_iterator vbases_rbegin() const {
705    return reverse_base_class_const_iterator(vbases_end());
706  }
707  reverse_base_class_iterator vbases_rend() {
708    return reverse_base_class_iterator(vbases_begin());
709  }
710  reverse_base_class_const_iterator vbases_rend() const {
711    return reverse_base_class_const_iterator(vbases_begin());
712 }
713
714  /// \brief Determine whether this class has any dependent base classes which
715  /// are not the current instantiation.
716  bool hasAnyDependentBases() const;
717
718  /// Iterator access to method members.  The method iterator visits
719  /// all method members of the class, including non-instance methods,
720  /// special methods, etc.
721  typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
722
723  /// method_begin - Method begin iterator.  Iterates in the order the methods
724  /// were declared.
725  method_iterator method_begin() const {
726    return method_iterator(decls_begin());
727  }
728  /// method_end - Method end iterator.
729  method_iterator method_end() const {
730    return method_iterator(decls_end());
731  }
732
733  /// Iterator access to constructor members.
734  typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
735
736  ctor_iterator ctor_begin() const {
737    return ctor_iterator(decls_begin());
738  }
739  ctor_iterator ctor_end() const {
740    return ctor_iterator(decls_end());
741  }
742
743  /// An iterator over friend declarations.  All of these are defined
744  /// in DeclFriend.h.
745  class friend_iterator;
746  friend_iterator friend_begin() const;
747  friend_iterator friend_end() const;
748  void pushFriendDecl(FriendDecl *FD);
749
750  /// Determines whether this record has any friends.
751  bool hasFriends() const {
752    return data().FirstFriend != 0;
753  }
754
755  /// \brief \c true if we know for sure that this class has a single,
756  /// accessible, unambiguous move constructor that is not deleted.
757  bool hasSimpleMoveConstructor() const {
758    return !hasUserDeclaredMoveConstructor() && hasMoveConstructor();
759  }
760  /// \brief \c true if we know for sure that this class has a single,
761  /// accessible, unambiguous move assignment operator that is not deleted.
762  bool hasSimpleMoveAssignment() const {
763    return !hasUserDeclaredMoveAssignment() && hasMoveAssignment();
764  }
765  /// \brief \c true if we know for sure that this class has an accessible
766  /// destructor that is not deleted.
767  bool hasSimpleDestructor() const {
768    return !hasUserDeclaredDestructor() &&
769           !data().DefaultedDestructorIsDeleted;
770  }
771
772  /// \brief Determine whether this class has any default constructors.
773  bool hasDefaultConstructor() const {
774    return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
775           needsImplicitDefaultConstructor();
776  }
777
778  /// \brief Determine if we need to declare a default constructor for
779  /// this class.
780  ///
781  /// This value is used for lazy creation of default constructors.
782  bool needsImplicitDefaultConstructor() const {
783    return !data().UserDeclaredConstructor &&
784           !(data().DeclaredSpecialMembers & SMF_DefaultConstructor);
785  }
786
787  /// hasUserDeclaredConstructor - Whether this class has any
788  /// user-declared constructors. When true, a default constructor
789  /// will not be implicitly declared.
790  bool hasUserDeclaredConstructor() const {
791    return data().UserDeclaredConstructor;
792  }
793
794  /// hasUserProvidedDefaultconstructor - Whether this class has a
795  /// user-provided default constructor per C++0x.
796  bool hasUserProvidedDefaultConstructor() const {
797    return data().UserProvidedDefaultConstructor;
798  }
799
800  /// hasUserDeclaredCopyConstructor - Whether this class has a
801  /// user-declared copy constructor. When false, a copy constructor
802  /// will be implicitly declared.
803  bool hasUserDeclaredCopyConstructor() const {
804    return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
805  }
806
807  /// \brief Determine whether this class needs an implicit copy
808  /// constructor to be lazily declared.
809  bool needsImplicitCopyConstructor() const {
810    return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
811  }
812
813  /// \brief Determine whether we need to eagerly declare a defaulted copy
814  /// constructor for this class.
815  bool needsOverloadResolutionForCopyConstructor() const {
816    return data().HasMutableFields;
817  }
818
819  /// \brief Determine whether an implicit copy constructor for this type
820  /// would have a parameter with a const-qualified reference type.
821  bool implicitCopyConstructorHasConstParam() const {
822    return data().ImplicitCopyConstructorHasConstParam;
823  }
824
825  /// \brief Determine whether this class has a copy constructor with
826  /// a parameter type which is a reference to a const-qualified type.
827  bool hasCopyConstructorWithConstParam() const {
828    return data().HasDeclaredCopyConstructorWithConstParam ||
829           (needsImplicitCopyConstructor() &&
830            implicitCopyConstructorHasConstParam());
831  }
832
833  /// hasUserDeclaredMoveOperation - Whether this class has a user-
834  /// declared move constructor or assignment operator. When false, a
835  /// move constructor and assignment operator may be implicitly declared.
836  bool hasUserDeclaredMoveOperation() const {
837    return data().UserDeclaredSpecialMembers &
838             (SMF_MoveConstructor | SMF_MoveAssignment);
839  }
840
841  /// \brief Determine whether this class has had a move constructor
842  /// declared by the user.
843  bool hasUserDeclaredMoveConstructor() const {
844    return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
845  }
846
847  /// \brief Determine whether this class has a move constructor.
848  bool hasMoveConstructor() const {
849    return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
850           needsImplicitMoveConstructor();
851  }
852
853  /// \brief Determine whether implicit move constructor generation for this
854  /// class has failed before.
855  bool hasFailedImplicitMoveConstructor() const {
856    return data().FailedImplicitMoveConstructor;
857  }
858
859  /// \brief Set whether implicit move constructor generation for this class
860  /// has failed before.
861  void setFailedImplicitMoveConstructor(bool Failed = true) {
862    data().FailedImplicitMoveConstructor = Failed;
863  }
864
865  /// \brief Determine whether this class should get an implicit move
866  /// constructor or if any existing special member function inhibits this.
867  bool needsImplicitMoveConstructor() const {
868    return !hasFailedImplicitMoveConstructor() &&
869           !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
870           !hasUserDeclaredCopyConstructor() &&
871           !hasUserDeclaredCopyAssignment() &&
872           !hasUserDeclaredMoveAssignment() &&
873           !hasUserDeclaredDestructor() &&
874           !data().DefaultedMoveConstructorIsDeleted;
875  }
876
877  /// \brief Determine whether we need to eagerly declare a defaulted move
878  /// constructor for this class.
879  bool needsOverloadResolutionForMoveConstructor() const {
880    return data().NeedOverloadResolutionForMoveConstructor;
881  }
882
883  /// hasUserDeclaredCopyAssignment - Whether this class has a
884  /// user-declared copy assignment operator. When false, a copy
885  /// assigment operator will be implicitly declared.
886  bool hasUserDeclaredCopyAssignment() const {
887    return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
888  }
889
890  /// \brief Determine whether this class needs an implicit copy
891  /// assignment operator to be lazily declared.
892  bool needsImplicitCopyAssignment() const {
893    return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
894  }
895
896  /// \brief Determine whether we need to eagerly declare a defaulted copy
897  /// assignment operator for this class.
898  bool needsOverloadResolutionForCopyAssignment() const {
899    return data().HasMutableFields;
900  }
901
902  /// \brief Determine whether an implicit copy assignment operator for this
903  /// type would have a parameter with a const-qualified reference type.
904  bool implicitCopyAssignmentHasConstParam() const {
905    return data().ImplicitCopyAssignmentHasConstParam;
906  }
907
908  /// \brief Determine whether this class has a copy assignment operator with
909  /// a parameter type which is a reference to a const-qualified type or is not
910  /// a reference..
911  bool hasCopyAssignmentWithConstParam() const {
912    return data().HasDeclaredCopyAssignmentWithConstParam ||
913           (needsImplicitCopyAssignment() &&
914            implicitCopyAssignmentHasConstParam());
915  }
916
917  /// \brief Determine whether this class has had a move assignment
918  /// declared by the user.
919  bool hasUserDeclaredMoveAssignment() const {
920    return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
921  }
922
923  /// \brief Determine whether this class has a move assignment operator.
924  bool hasMoveAssignment() const {
925    return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
926           needsImplicitMoveAssignment();
927  }
928
929  /// \brief Determine whether implicit move assignment generation for this
930  /// class has failed before.
931  bool hasFailedImplicitMoveAssignment() const {
932    return data().FailedImplicitMoveAssignment;
933  }
934
935  /// \brief Set whether implicit move assignment generation for this class
936  /// has failed before.
937  void setFailedImplicitMoveAssignment(bool Failed = true) {
938    data().FailedImplicitMoveAssignment = Failed;
939  }
940
941  /// \brief Determine whether this class should get an implicit move
942  /// assignment operator or if any existing special member function inhibits
943  /// this.
944  bool needsImplicitMoveAssignment() const {
945    return !hasFailedImplicitMoveAssignment() &&
946           !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
947           !hasUserDeclaredCopyConstructor() &&
948           !hasUserDeclaredCopyAssignment() &&
949           !hasUserDeclaredMoveConstructor() &&
950           !hasUserDeclaredDestructor() &&
951           !data().DefaultedMoveAssignmentIsDeleted;
952  }
953
954  /// \brief Determine whether we need to eagerly declare a move assignment
955  /// operator for this class.
956  bool needsOverloadResolutionForMoveAssignment() const {
957    return data().NeedOverloadResolutionForMoveAssignment;
958  }
959
960  /// hasUserDeclaredDestructor - Whether this class has a
961  /// user-declared destructor. When false, a destructor will be
962  /// implicitly declared.
963  bool hasUserDeclaredDestructor() const {
964    return data().UserDeclaredSpecialMembers & SMF_Destructor;
965  }
966
967  /// \brief Determine whether this class needs an implicit destructor to
968  /// be lazily declared.
969  bool needsImplicitDestructor() const {
970    return !(data().DeclaredSpecialMembers & SMF_Destructor);
971  }
972
973  /// \brief Determine whether we need to eagerly declare a destructor for this
974  /// class.
975  bool needsOverloadResolutionForDestructor() const {
976    return data().NeedOverloadResolutionForDestructor;
977  }
978
979  /// \brief Determine whether this class describes a lambda function object.
980  bool isLambda() const { return hasDefinition() && data().IsLambda; }
981
982  /// \brief For a closure type, retrieve the mapping from captured
983  /// variables and this to the non-static data members that store the
984  /// values or references of the captures.
985  ///
986  /// \param Captures Will be populated with the mapping from captured
987  /// variables to the corresponding fields.
988  ///
989  /// \param ThisCapture Will be set to the field declaration for the
990  /// 'this' capture.
991  void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
992                        FieldDecl *&ThisCapture) const;
993
994  typedef const LambdaExpr::Capture* capture_const_iterator;
995  capture_const_iterator captures_begin() const {
996    return isLambda() ? getLambdaData().Captures : NULL;
997  }
998  capture_const_iterator captures_end() const {
999    return isLambda() ? captures_begin() + getLambdaData().NumCaptures : NULL;
1000  }
1001
1002  typedef UnresolvedSetIterator conversion_iterator;
1003  conversion_iterator conversion_begin() const {
1004    return data().Conversions.begin();
1005  }
1006  conversion_iterator conversion_end() const {
1007    return data().Conversions.end();
1008  }
1009
1010  /// Removes a conversion function from this class.  The conversion
1011  /// function must currently be a member of this class.  Furthermore,
1012  /// this class must currently be in the process of being defined.
1013  void removeConversion(const NamedDecl *Old);
1014
1015  /// getVisibleConversionFunctions - get all conversion functions visible
1016  /// in current class; including conversion function templates.
1017  std::pair<conversion_iterator, conversion_iterator>
1018    getVisibleConversionFunctions();
1019
1020  /// isAggregate - Whether this class is an aggregate (C++
1021  /// [dcl.init.aggr]), which is a class with no user-declared
1022  /// constructors, no private or protected non-static data members,
1023  /// no base classes, and no virtual functions (C++ [dcl.init.aggr]p1).
1024  bool isAggregate() const { return data().Aggregate; }
1025
1026  /// hasInClassInitializer - Whether this class has any in-class initializers
1027  /// for non-static data members.
1028  bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1029
1030  /// \brief Whether this class or any of its subobjects has any members of
1031  /// reference type which would make value-initialization ill-formed, per
1032  /// C++03 [dcl.init]p5:
1033  ///  -- if T is a non-union class type without a user-declared constructor,
1034  ///     then every non-static data member and base-class component of T is
1035  ///     value-initialized
1036  /// [...]
1037  /// A program that calls for [...] value-initialization of an entity of
1038  /// reference type is ill-formed.
1039  bool hasUninitializedReferenceMember() const {
1040    return !isUnion() && !hasUserDeclaredConstructor() &&
1041           data().HasUninitializedReferenceMember;
1042  }
1043
1044  /// isPOD - Whether this class is a POD-type (C++ [class]p4), which is a class
1045  /// that is an aggregate that has no non-static non-POD data members, no
1046  /// reference data members, no user-defined copy assignment operator and no
1047  /// user-defined destructor.
1048  ///
1049  /// Note that this is the C++ TR1 definition of POD.
1050  bool isPOD() const { return data().PlainOldData; }
1051
1052  /// \brief True if this class is C-like, without C++-specific features, e.g.
1053  /// it contains only public fields, no bases, tag kind is not 'class', etc.
1054  bool isCLike() const;
1055
1056  /// isEmpty - Whether this class is empty (C++0x [meta.unary.prop]), which
1057  /// means it has a virtual function, virtual base, data member (other than
1058  /// 0-width bit-field) or inherits from a non-empty class. Does NOT include
1059  /// a check for union-ness.
1060  bool isEmpty() const { return data().Empty; }
1061
1062  /// isPolymorphic - Whether this class is polymorphic (C++ [class.virtual]),
1063  /// which means that the class contains or inherits a virtual function.
1064  bool isPolymorphic() const { return data().Polymorphic; }
1065
1066  /// isAbstract - Whether this class is abstract (C++ [class.abstract]),
1067  /// which means that the class contains or inherits a pure virtual function.
1068  bool isAbstract() const { return data().Abstract; }
1069
1070  /// isStandardLayout - Whether this class has standard layout
1071  /// (C++ [class]p7)
1072  bool isStandardLayout() const { return data().IsStandardLayout; }
1073
1074  /// \brief Whether this class, or any of its class subobjects, contains a
1075  /// mutable field.
1076  bool hasMutableFields() const { return data().HasMutableFields; }
1077
1078  /// \brief Determine whether this class has a trivial default constructor
1079  /// (C++11 [class.ctor]p5).
1080  bool hasTrivialDefaultConstructor() const {
1081    return hasDefaultConstructor() &&
1082           (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1083  }
1084
1085  /// \brief Determine whether this class has a non-trivial default constructor
1086  /// (C++11 [class.ctor]p5).
1087  bool hasNonTrivialDefaultConstructor() const {
1088    return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1089           (needsImplicitDefaultConstructor() &&
1090            !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1091  }
1092
1093  /// \brief Determine whether this class has at least one constexpr constructor
1094  /// other than the copy or move constructors.
1095  bool hasConstexprNonCopyMoveConstructor() const {
1096    return data().HasConstexprNonCopyMoveConstructor ||
1097           (needsImplicitDefaultConstructor() &&
1098            defaultedDefaultConstructorIsConstexpr());
1099  }
1100
1101  /// \brief Determine whether a defaulted default constructor for this class
1102  /// would be constexpr.
1103  bool defaultedDefaultConstructorIsConstexpr() const {
1104    return data().DefaultedDefaultConstructorIsConstexpr &&
1105           (!isUnion() || hasInClassInitializer());
1106  }
1107
1108  /// \brief Determine whether this class has a constexpr default constructor.
1109  bool hasConstexprDefaultConstructor() const {
1110    return data().HasConstexprDefaultConstructor ||
1111           (needsImplicitDefaultConstructor() &&
1112            defaultedDefaultConstructorIsConstexpr());
1113  }
1114
1115  /// \brief Determine whether this class has a trivial copy constructor
1116  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1117  bool hasTrivialCopyConstructor() const {
1118    return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1119  }
1120
1121  /// \brief Determine whether this class has a non-trivial copy constructor
1122  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1123  bool hasNonTrivialCopyConstructor() const {
1124    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1125           !hasTrivialCopyConstructor();
1126  }
1127
1128  /// \brief Determine whether this class has a trivial move constructor
1129  /// (C++11 [class.copy]p12)
1130  bool hasTrivialMoveConstructor() const {
1131    return hasMoveConstructor() &&
1132           (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1133  }
1134
1135  /// \brief Determine whether this class has a non-trivial move constructor
1136  /// (C++11 [class.copy]p12)
1137  bool hasNonTrivialMoveConstructor() const {
1138    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1139           (needsImplicitMoveConstructor() &&
1140            !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1141  }
1142
1143  /// \brief Determine whether this class has a trivial copy assignment operator
1144  /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1145  bool hasTrivialCopyAssignment() const {
1146    return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1147  }
1148
1149  /// \brief Determine whether this class has a non-trivial copy assignment
1150  /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1151  bool hasNonTrivialCopyAssignment() const {
1152    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1153           !hasTrivialCopyAssignment();
1154  }
1155
1156  /// \brief Determine whether this class has a trivial move assignment operator
1157  /// (C++11 [class.copy]p25)
1158  bool hasTrivialMoveAssignment() const {
1159    return hasMoveAssignment() &&
1160           (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1161  }
1162
1163  /// \brief Determine whether this class has a non-trivial move assignment
1164  /// operator (C++11 [class.copy]p25)
1165  bool hasNonTrivialMoveAssignment() const {
1166    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1167           (needsImplicitMoveAssignment() &&
1168            !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1169  }
1170
1171  /// \brief Determine whether this class has a trivial destructor
1172  /// (C++ [class.dtor]p3)
1173  bool hasTrivialDestructor() const {
1174    return data().HasTrivialSpecialMembers & SMF_Destructor;
1175  }
1176
1177  /// \brief Determine whether this class has a non-trivial destructor
1178  /// (C++ [class.dtor]p3)
1179  bool hasNonTrivialDestructor() const {
1180    return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1181  }
1182
1183  // hasIrrelevantDestructor - Whether this class has a destructor which has no
1184  // semantic effect. Any such destructor will be trivial, public, defaulted
1185  // and not deleted, and will call only irrelevant destructors.
1186  bool hasIrrelevantDestructor() const {
1187    return data().HasIrrelevantDestructor;
1188  }
1189
1190  // hasNonLiteralTypeFieldsOrBases - Whether this class has a non-literal or
1191  // volatile type non-static data member or base class.
1192  bool hasNonLiteralTypeFieldsOrBases() const {
1193    return data().HasNonLiteralTypeFieldsOrBases;
1194  }
1195
1196  // isTriviallyCopyable - Whether this class is considered trivially copyable
1197  // (C++0x [class]p6).
1198  bool isTriviallyCopyable() const;
1199
1200  // isTrivial - Whether this class is considered trivial
1201  //
1202  // C++0x [class]p6
1203  //    A trivial class is a class that has a trivial default constructor and
1204  //    is trivially copiable.
1205  bool isTrivial() const {
1206    return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1207  }
1208
1209  // isLiteral - Whether this class is a literal type.
1210  //
1211  // C++11 [basic.types]p10
1212  //   A class type that has all the following properties:
1213  //     -- it has a trivial destructor
1214  //     -- every constructor call and full-expression in the
1215  //        brace-or-equal-intializers for non-static data members (if any) is
1216  //        a constant expression.
1217  //     -- it is an aggregate type or has at least one constexpr constructor or
1218  //        constructor template that is not a copy or move constructor, and
1219  //     -- all of its non-static data members and base classes are of literal
1220  //        types
1221  //
1222  // We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1223  // treating types with trivial default constructors as literal types.
1224  bool isLiteral() const {
1225    return hasTrivialDestructor() &&
1226           (isAggregate() || hasConstexprNonCopyMoveConstructor() ||
1227            hasTrivialDefaultConstructor()) &&
1228           !hasNonLiteralTypeFieldsOrBases();
1229  }
1230
1231  /// \brief If this record is an instantiation of a member class,
1232  /// retrieves the member class from which it was instantiated.
1233  ///
1234  /// This routine will return non-NULL for (non-templated) member
1235  /// classes of class templates. For example, given:
1236  ///
1237  /// @code
1238  /// template<typename T>
1239  /// struct X {
1240  ///   struct A { };
1241  /// };
1242  /// @endcode
1243  ///
1244  /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1245  /// whose parent is the class template specialization X<int>. For
1246  /// this declaration, getInstantiatedFromMemberClass() will return
1247  /// the CXXRecordDecl X<T>::A. When a complete definition of
1248  /// X<int>::A is required, it will be instantiated from the
1249  /// declaration returned by getInstantiatedFromMemberClass().
1250  CXXRecordDecl *getInstantiatedFromMemberClass() const;
1251
1252  /// \brief If this class is an instantiation of a member class of a
1253  /// class template specialization, retrieves the member specialization
1254  /// information.
1255  MemberSpecializationInfo *getMemberSpecializationInfo() const {
1256    return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1257  }
1258
1259  /// \brief Specify that this record is an instantiation of the
1260  /// member class RD.
1261  void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1262                                     TemplateSpecializationKind TSK);
1263
1264  /// \brief Retrieves the class template that is described by this
1265  /// class declaration.
1266  ///
1267  /// Every class template is represented as a ClassTemplateDecl and a
1268  /// CXXRecordDecl. The former contains template properties (such as
1269  /// the template parameter lists) while the latter contains the
1270  /// actual description of the template's
1271  /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1272  /// CXXRecordDecl that from a ClassTemplateDecl, while
1273  /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1274  /// a CXXRecordDecl.
1275  ClassTemplateDecl *getDescribedClassTemplate() const {
1276    return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
1277  }
1278
1279  void setDescribedClassTemplate(ClassTemplateDecl *Template) {
1280    TemplateOrInstantiation = Template;
1281  }
1282
1283  /// \brief Determine whether this particular class is a specialization or
1284  /// instantiation of a class template or member class of a class template,
1285  /// and how it was instantiated or specialized.
1286  TemplateSpecializationKind getTemplateSpecializationKind() const;
1287
1288  /// \brief Set the kind of specialization or template instantiation this is.
1289  void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1290
1291  /// getDestructor - Returns the destructor decl for this class.
1292  CXXDestructorDecl *getDestructor() const;
1293
1294  /// isLocalClass - If the class is a local class [class.local], returns
1295  /// the enclosing function declaration.
1296  const FunctionDecl *isLocalClass() const {
1297    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1298      return RD->isLocalClass();
1299
1300    return dyn_cast<FunctionDecl>(getDeclContext());
1301  }
1302
1303  /// \brief Determine whether this dependent class is a current instantiation,
1304  /// when viewed from within the given context.
1305  bool isCurrentInstantiation(const DeclContext *CurContext) const;
1306
1307  /// \brief Determine whether this class is derived from the class \p Base.
1308  ///
1309  /// This routine only determines whether this class is derived from \p Base,
1310  /// but does not account for factors that may make a Derived -> Base class
1311  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1312  /// base class subobjects.
1313  ///
1314  /// \param Base the base class we are searching for.
1315  ///
1316  /// \returns true if this class is derived from Base, false otherwise.
1317  bool isDerivedFrom(const CXXRecordDecl *Base) const;
1318
1319  /// \brief Determine whether this class is derived from the type \p Base.
1320  ///
1321  /// This routine only determines whether this class is derived from \p Base,
1322  /// but does not account for factors that may make a Derived -> Base class
1323  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1324  /// base class subobjects.
1325  ///
1326  /// \param Base the base class we are searching for.
1327  ///
1328  /// \param Paths will contain the paths taken from the current class to the
1329  /// given \p Base class.
1330  ///
1331  /// \returns true if this class is derived from Base, false otherwise.
1332  ///
1333  /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than
1334  /// tangling input and output in \p Paths
1335  bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1336
1337  /// \brief Determine whether this class is virtually derived from
1338  /// the class \p Base.
1339  ///
1340  /// This routine only determines whether this class is virtually
1341  /// derived from \p Base, but does not account for factors that may
1342  /// make a Derived -> Base class ill-formed, such as
1343  /// private/protected inheritance or multiple, ambiguous base class
1344  /// subobjects.
1345  ///
1346  /// \param Base the base class we are searching for.
1347  ///
1348  /// \returns true if this class is virtually derived from Base,
1349  /// false otherwise.
1350  bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1351
1352  /// \brief Determine whether this class is provably not derived from
1353  /// the type \p Base.
1354  bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1355
1356  /// \brief Function type used by forallBases() as a callback.
1357  ///
1358  /// \param BaseDefinition the definition of the base class
1359  ///
1360  /// \returns true if this base matched the search criteria
1361  typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition,
1362                                   void *UserData);
1363
1364  /// \brief Determines if the given callback holds for all the direct
1365  /// or indirect base classes of this type.
1366  ///
1367  /// The class itself does not count as a base class.  This routine
1368  /// returns false if the class has non-computable base classes.
1369  ///
1370  /// \param AllowShortCircuit if false, forces the callback to be called
1371  /// for every base class, even if a dependent or non-matching base was
1372  /// found.
1373  bool forallBases(ForallBasesCallback *BaseMatches, void *UserData,
1374                   bool AllowShortCircuit = true) const;
1375
1376  /// \brief Function type used by lookupInBases() to determine whether a
1377  /// specific base class subobject matches the lookup criteria.
1378  ///
1379  /// \param Specifier the base-class specifier that describes the inheritance
1380  /// from the base class we are trying to match.
1381  ///
1382  /// \param Path the current path, from the most-derived class down to the
1383  /// base named by the \p Specifier.
1384  ///
1385  /// \param UserData a single pointer to user-specified data, provided to
1386  /// lookupInBases().
1387  ///
1388  /// \returns true if this base matched the search criteria, false otherwise.
1389  typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier,
1390                                   CXXBasePath &Path,
1391                                   void *UserData);
1392
1393  /// \brief Look for entities within the base classes of this C++ class,
1394  /// transitively searching all base class subobjects.
1395  ///
1396  /// This routine uses the callback function \p BaseMatches to find base
1397  /// classes meeting some search criteria, walking all base class subobjects
1398  /// and populating the given \p Paths structure with the paths through the
1399  /// inheritance hierarchy that resulted in a match. On a successful search,
1400  /// the \p Paths structure can be queried to retrieve the matching paths and
1401  /// to determine if there were any ambiguities.
1402  ///
1403  /// \param BaseMatches callback function used to determine whether a given
1404  /// base matches the user-defined search criteria.
1405  ///
1406  /// \param UserData user data pointer that will be provided to \p BaseMatches.
1407  ///
1408  /// \param Paths used to record the paths from this class to its base class
1409  /// subobjects that match the search criteria.
1410  ///
1411  /// \returns true if there exists any path from this class to a base class
1412  /// subobject that matches the search criteria.
1413  bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData,
1414                     CXXBasePaths &Paths) const;
1415
1416  /// \brief Base-class lookup callback that determines whether the given
1417  /// base class specifier refers to a specific class declaration.
1418  ///
1419  /// This callback can be used with \c lookupInBases() to determine whether
1420  /// a given derived class has is a base class subobject of a particular type.
1421  /// The user data pointer should refer to the canonical CXXRecordDecl of the
1422  /// base class that we are searching for.
1423  static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1424                            CXXBasePath &Path, void *BaseRecord);
1425
1426  /// \brief Base-class lookup callback that determines whether the
1427  /// given base class specifier refers to a specific class
1428  /// declaration and describes virtual derivation.
1429  ///
1430  /// This callback can be used with \c lookupInBases() to determine
1431  /// whether a given derived class has is a virtual base class
1432  /// subobject of a particular type.  The user data pointer should
1433  /// refer to the canonical CXXRecordDecl of the base class that we
1434  /// are searching for.
1435  static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1436                                   CXXBasePath &Path, void *BaseRecord);
1437
1438  /// \brief Base-class lookup callback that determines whether there exists
1439  /// a tag with the given name.
1440  ///
1441  /// This callback can be used with \c lookupInBases() to find tag members
1442  /// of the given name within a C++ class hierarchy. The user data pointer
1443  /// is an opaque \c DeclarationName pointer.
1444  static bool FindTagMember(const CXXBaseSpecifier *Specifier,
1445                            CXXBasePath &Path, void *Name);
1446
1447  /// \brief Base-class lookup callback that determines whether there exists
1448  /// a member with the given name.
1449  ///
1450  /// This callback can be used with \c lookupInBases() to find members
1451  /// of the given name within a C++ class hierarchy. The user data pointer
1452  /// is an opaque \c DeclarationName pointer.
1453  static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
1454                                 CXXBasePath &Path, void *Name);
1455
1456  /// \brief Base-class lookup callback that determines whether there exists
1457  /// a member with the given name that can be used in a nested-name-specifier.
1458  ///
1459  /// This callback can be used with \c lookupInBases() to find membes of
1460  /// the given name within a C++ class hierarchy that can occur within
1461  /// nested-name-specifiers.
1462  static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
1463                                            CXXBasePath &Path,
1464                                            void *UserData);
1465
1466  /// \brief Retrieve the final overriders for each virtual member
1467  /// function in the class hierarchy where this class is the
1468  /// most-derived class in the class hierarchy.
1469  void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1470
1471  /// \brief Get the indirect primary bases for this class.
1472  void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1473
1474  /// viewInheritance - Renders and displays an inheritance diagram
1475  /// for this C++ class and all of its base classes (transitively) using
1476  /// GraphViz.
1477  void viewInheritance(ASTContext& Context) const;
1478
1479  /// MergeAccess - Calculates the access of a decl that is reached
1480  /// along a path.
1481  static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1482                                     AccessSpecifier DeclAccess) {
1483    assert(DeclAccess != AS_none);
1484    if (DeclAccess == AS_private) return AS_none;
1485    return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1486  }
1487
1488  /// \brief Indicates that the declaration of a defaulted or deleted special
1489  /// member function is now complete.
1490  void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1491
1492  /// \brief Indicates that the definition of this class is now complete.
1493  virtual void completeDefinition();
1494
1495  /// \brief Indicates that the definition of this class is now complete,
1496  /// and provides a final overrider map to help determine
1497  ///
1498  /// \param FinalOverriders The final overrider map for this class, which can
1499  /// be provided as an optimization for abstract-class checking. If NULL,
1500  /// final overriders will be computed if they are needed to complete the
1501  /// definition.
1502  void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1503
1504  /// \brief Determine whether this class may end up being abstract, even though
1505  /// it is not yet known to be abstract.
1506  ///
1507  /// \returns true if this class is not known to be abstract but has any
1508  /// base classes that are abstract. In this case, \c completeDefinition()
1509  /// will need to compute final overriders to determine whether the class is
1510  /// actually abstract.
1511  bool mayBeAbstract() const;
1512
1513  /// \brief If this is the closure type of a lambda expression, retrieve the
1514  /// number to be used for name mangling in the Itanium C++ ABI.
1515  ///
1516  /// Zero indicates that this closure type has internal linkage, so the
1517  /// mangling number does not matter, while a non-zero value indicates which
1518  /// lambda expression this is in this particular context.
1519  unsigned getLambdaManglingNumber() const {
1520    assert(isLambda() && "Not a lambda closure type!");
1521    return getLambdaData().ManglingNumber;
1522  }
1523
1524  /// \brief Retrieve the declaration that provides additional context for a
1525  /// lambda, when the normal declaration context is not specific enough.
1526  ///
1527  /// Certain contexts (default arguments of in-class function parameters and
1528  /// the initializers of data members) have separate name mangling rules for
1529  /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1530  /// the declaration in which the lambda occurs, e.g., the function parameter
1531  /// or the non-static data member. Otherwise, it returns NULL to imply that
1532  /// the declaration context suffices.
1533  Decl *getLambdaContextDecl() const {
1534    assert(isLambda() && "Not a lambda closure type!");
1535    return getLambdaData().ContextDecl;
1536  }
1537
1538  /// \brief Set the mangling number and context declaration for a lambda
1539  /// class.
1540  void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
1541    getLambdaData().ManglingNumber = ManglingNumber;
1542    getLambdaData().ContextDecl = ContextDecl;
1543  }
1544
1545  /// \brief Returns the inheritance model used for this record.
1546  MSInheritanceModel getMSInheritanceModel() const;
1547
1548  /// \brief Determine whether this lambda expression was known to be dependent
1549  /// at the time it was created, even if its context does not appear to be
1550  /// dependent.
1551  ///
1552  /// This flag is a workaround for an issue with parsing, where default
1553  /// arguments are parsed before their enclosing function declarations have
1554  /// been created. This means that any lambda expressions within those
1555  /// default arguments will have as their DeclContext the context enclosing
1556  /// the function declaration, which may be non-dependent even when the
1557  /// function declaration itself is dependent. This flag indicates when we
1558  /// know that the lambda is dependent despite that.
1559  bool isDependentLambda() const {
1560    return isLambda() && getLambdaData().Dependent;
1561  }
1562
1563  TypeSourceInfo *getLambdaTypeInfo() const {
1564    return getLambdaData().MethodTyInfo;
1565  }
1566
1567  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1568  static bool classofKind(Kind K) {
1569    return K >= firstCXXRecord && K <= lastCXXRecord;
1570  }
1571
1572  friend class ASTDeclReader;
1573  friend class ASTDeclWriter;
1574  friend class ASTReader;
1575  friend class ASTWriter;
1576};
1577
1578/// CXXMethodDecl - Represents a static or instance method of a
1579/// struct/union/class.
1580class CXXMethodDecl : public FunctionDecl {
1581  virtual void anchor();
1582protected:
1583  CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation StartLoc,
1584                const DeclarationNameInfo &NameInfo,
1585                QualType T, TypeSourceInfo *TInfo,
1586                StorageClass SC, bool isInline,
1587                bool isConstexpr, SourceLocation EndLocation)
1588    : FunctionDecl(DK, RD, StartLoc, NameInfo, T, TInfo,
1589                   SC, isInline, isConstexpr) {
1590    if (EndLocation.isValid())
1591      setRangeEnd(EndLocation);
1592  }
1593
1594public:
1595  static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
1596                               SourceLocation StartLoc,
1597                               const DeclarationNameInfo &NameInfo,
1598                               QualType T, TypeSourceInfo *TInfo,
1599                               StorageClass SC,
1600                               bool isInline,
1601                               bool isConstexpr,
1602                               SourceLocation EndLocation);
1603
1604  static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1605
1606  bool isStatic() const;
1607  bool isInstance() const { return !isStatic(); }
1608
1609  bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
1610  bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
1611
1612  bool isVirtual() const {
1613    CXXMethodDecl *CD =
1614      cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
1615
1616    // Methods declared in interfaces are automatically (pure) virtual.
1617    if (CD->isVirtualAsWritten() ||
1618          (CD->getParent()->isInterface() && CD->isUserProvided()))
1619      return true;
1620
1621    return (CD->begin_overridden_methods() != CD->end_overridden_methods());
1622  }
1623
1624  /// \brief Determine whether this is a usual deallocation function
1625  /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
1626  /// delete or delete[] operator with a particular signature.
1627  bool isUsualDeallocationFunction() const;
1628
1629  /// \brief Determine whether this is a copy-assignment operator, regardless
1630  /// of whether it was declared implicitly or explicitly.
1631  bool isCopyAssignmentOperator() const;
1632
1633  /// \brief Determine whether this is a move assignment operator.
1634  bool isMoveAssignmentOperator() const;
1635
1636  const CXXMethodDecl *getCanonicalDecl() const {
1637    return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
1638  }
1639  CXXMethodDecl *getCanonicalDecl() {
1640    return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
1641  }
1642
1643  /// isUserProvided - True if this method is user-declared and was not
1644  /// deleted or defaulted on its first declaration.
1645  bool isUserProvided() const {
1646    return !(isDeleted() || getCanonicalDecl()->isDefaulted());
1647  }
1648
1649  ///
1650  void addOverriddenMethod(const CXXMethodDecl *MD);
1651
1652  typedef const CXXMethodDecl *const* method_iterator;
1653
1654  method_iterator begin_overridden_methods() const;
1655  method_iterator end_overridden_methods() const;
1656  unsigned size_overridden_methods() const;
1657
1658  /// getParent - Returns the parent of this method declaration, which
1659  /// is the class in which this method is defined.
1660  const CXXRecordDecl *getParent() const {
1661    return cast<CXXRecordDecl>(FunctionDecl::getParent());
1662  }
1663
1664  /// getParent - Returns the parent of this method declaration, which
1665  /// is the class in which this method is defined.
1666  CXXRecordDecl *getParent() {
1667    return const_cast<CXXRecordDecl *>(
1668             cast<CXXRecordDecl>(FunctionDecl::getParent()));
1669  }
1670
1671  /// getThisType - Returns the type of 'this' pointer.
1672  /// Should only be called for instance methods.
1673  QualType getThisType(ASTContext &C) const;
1674
1675  unsigned getTypeQualifiers() const {
1676    return getType()->getAs<FunctionProtoType>()->getTypeQuals();
1677  }
1678
1679  /// \brief Retrieve the ref-qualifier associated with this method.
1680  ///
1681  /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
1682  /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
1683  /// @code
1684  /// struct X {
1685  ///   void f() &;
1686  ///   void g() &&;
1687  ///   void h();
1688  /// };
1689  /// @endcode
1690  RefQualifierKind getRefQualifier() const {
1691    return getType()->getAs<FunctionProtoType>()->getRefQualifier();
1692  }
1693
1694  bool hasInlineBody() const;
1695
1696  /// \brief Determine whether this is a lambda closure type's static member
1697  /// function that is used for the result of the lambda's conversion to
1698  /// function pointer (for a lambda with no captures).
1699  ///
1700  /// The function itself, if used, will have a placeholder body that will be
1701  /// supplied by IR generation to either forward to the function call operator
1702  /// or clone the function call operator.
1703  bool isLambdaStaticInvoker() const;
1704
1705  /// \brief Find the method in RD that corresponds to this one.
1706  ///
1707  /// Find if RD or one of the classes it inherits from override this method.
1708  /// If so, return it. RD is assumed to be a subclass of the class defining
1709  /// this method (or be the class itself), unless MayBeBase is set to true.
1710  CXXMethodDecl *
1711  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1712                                bool MayBeBase = false);
1713
1714  const CXXMethodDecl *
1715  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1716                                bool MayBeBase = false) const {
1717    return const_cast<CXXMethodDecl *>(this)
1718              ->getCorrespondingMethodInClass(RD, MayBeBase);
1719  }
1720
1721  // Implement isa/cast/dyncast/etc.
1722  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1723  static bool classofKind(Kind K) {
1724    return K >= firstCXXMethod && K <= lastCXXMethod;
1725  }
1726};
1727
1728/// CXXCtorInitializer - Represents a C++ base or member
1729/// initializer, which is part of a constructor initializer that
1730/// initializes one non-static member variable or one base class. For
1731/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
1732/// initializers:
1733///
1734/// @code
1735/// class A { };
1736/// class B : public A {
1737///   float f;
1738/// public:
1739///   B(A& a) : A(a), f(3.14159) { }
1740/// };
1741/// @endcode
1742class CXXCtorInitializer {
1743  /// \brief Either the base class name/delegating constructor type (stored as
1744  /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
1745  /// (IndirectFieldDecl*) being initialized.
1746  llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
1747    Initializee;
1748
1749  /// \brief The source location for the field name or, for a base initializer
1750  /// pack expansion, the location of the ellipsis. In the case of a delegating
1751  /// constructor, it will still include the type's source location as the
1752  /// Initializee points to the CXXConstructorDecl (to allow loop detection).
1753  SourceLocation MemberOrEllipsisLocation;
1754
1755  /// \brief The argument used to initialize the base or member, which may
1756  /// end up constructing an object (when multiple arguments are involved).
1757  Stmt *Init;
1758
1759  /// LParenLoc - Location of the left paren of the ctor-initializer.
1760  SourceLocation LParenLoc;
1761
1762  /// RParenLoc - Location of the right paren of the ctor-initializer.
1763  SourceLocation RParenLoc;
1764
1765  /// \brief If the initializee is a type, whether that type makes this
1766  /// a delegating initialization.
1767  bool IsDelegating : 1;
1768
1769  /// IsVirtual - If the initializer is a base initializer, this keeps track
1770  /// of whether the base is virtual or not.
1771  bool IsVirtual : 1;
1772
1773  /// IsWritten - Whether or not the initializer is explicitly written
1774  /// in the sources.
1775  bool IsWritten : 1;
1776
1777  /// SourceOrderOrNumArrayIndices - If IsWritten is true, then this
1778  /// number keeps track of the textual order of this initializer in the
1779  /// original sources, counting from 0; otherwise, if IsWritten is false,
1780  /// it stores the number of array index variables stored after this
1781  /// object in memory.
1782  unsigned SourceOrderOrNumArrayIndices : 13;
1783
1784  CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
1785                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1786                     SourceLocation R, VarDecl **Indices, unsigned NumIndices);
1787
1788public:
1789  /// CXXCtorInitializer - Creates a new base-class initializer.
1790  explicit
1791  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
1792                     SourceLocation L, Expr *Init, SourceLocation R,
1793                     SourceLocation EllipsisLoc);
1794
1795  /// CXXCtorInitializer - Creates a new member initializer.
1796  explicit
1797  CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
1798                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1799                     SourceLocation R);
1800
1801  /// CXXCtorInitializer - Creates a new anonymous field initializer.
1802  explicit
1803  CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
1804                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1805                     SourceLocation R);
1806
1807  /// CXXCtorInitializer - Creates a new delegating Initializer.
1808  explicit
1809  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
1810                     SourceLocation L, Expr *Init, SourceLocation R);
1811
1812  /// \brief Creates a new member initializer that optionally contains
1813  /// array indices used to describe an elementwise initialization.
1814  static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member,
1815                                    SourceLocation MemberLoc, SourceLocation L,
1816                                    Expr *Init, SourceLocation R,
1817                                    VarDecl **Indices, unsigned NumIndices);
1818
1819  /// isBaseInitializer - Returns true when this initializer is
1820  /// initializing a base class.
1821  bool isBaseInitializer() const {
1822    return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
1823  }
1824
1825  /// isMemberInitializer - Returns true when this initializer is
1826  /// initializing a non-static data member.
1827  bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
1828
1829  bool isAnyMemberInitializer() const {
1830    return isMemberInitializer() || isIndirectMemberInitializer();
1831  }
1832
1833  bool isIndirectMemberInitializer() const {
1834    return Initializee.is<IndirectFieldDecl*>();
1835  }
1836
1837  /// isInClassMemberInitializer - Returns true when this initializer is an
1838  /// implicit ctor initializer generated for a field with an initializer
1839  /// defined on the member declaration.
1840  bool isInClassMemberInitializer() const {
1841    return isa<CXXDefaultInitExpr>(Init);
1842  }
1843
1844  /// isDelegatingInitializer - Returns true when this initializer is creating
1845  /// a delegating constructor.
1846  bool isDelegatingInitializer() const {
1847    return Initializee.is<TypeSourceInfo*>() && IsDelegating;
1848  }
1849
1850  /// \brief Determine whether this initializer is a pack expansion.
1851  bool isPackExpansion() const {
1852    return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
1853  }
1854
1855  // \brief For a pack expansion, returns the location of the ellipsis.
1856  SourceLocation getEllipsisLoc() const {
1857    assert(isPackExpansion() && "Initializer is not a pack expansion");
1858    return MemberOrEllipsisLocation;
1859  }
1860
1861  /// If this is a base class initializer, returns the type of the
1862  /// base class with location information. Otherwise, returns an NULL
1863  /// type location.
1864  TypeLoc getBaseClassLoc() const;
1865
1866  /// If this is a base class initializer, returns the type of the base class.
1867  /// Otherwise, returns NULL.
1868  const Type *getBaseClass() const;
1869
1870  /// Returns whether the base is virtual or not.
1871  bool isBaseVirtual() const {
1872    assert(isBaseInitializer() && "Must call this on base initializer!");
1873
1874    return IsVirtual;
1875  }
1876
1877  /// \brief Returns the declarator information for a base class or delegating
1878  /// initializer.
1879  TypeSourceInfo *getTypeSourceInfo() const {
1880    return Initializee.dyn_cast<TypeSourceInfo *>();
1881  }
1882
1883  /// getMember - If this is a member initializer, returns the
1884  /// declaration of the non-static data member being
1885  /// initialized. Otherwise, returns NULL.
1886  FieldDecl *getMember() const {
1887    if (isMemberInitializer())
1888      return Initializee.get<FieldDecl*>();
1889    return 0;
1890  }
1891  FieldDecl *getAnyMember() const {
1892    if (isMemberInitializer())
1893      return Initializee.get<FieldDecl*>();
1894    if (isIndirectMemberInitializer())
1895      return Initializee.get<IndirectFieldDecl*>()->getAnonField();
1896    return 0;
1897  }
1898
1899  IndirectFieldDecl *getIndirectMember() const {
1900    if (isIndirectMemberInitializer())
1901      return Initializee.get<IndirectFieldDecl*>();
1902    return 0;
1903  }
1904
1905  SourceLocation getMemberLocation() const {
1906    return MemberOrEllipsisLocation;
1907  }
1908
1909  /// \brief Determine the source location of the initializer.
1910  SourceLocation getSourceLocation() const;
1911
1912  /// \brief Determine the source range covering the entire initializer.
1913  SourceRange getSourceRange() const LLVM_READONLY;
1914
1915  /// isWritten - Returns true if this initializer is explicitly written
1916  /// in the source code.
1917  bool isWritten() const { return IsWritten; }
1918
1919  /// \brief Return the source position of the initializer, counting from 0.
1920  /// If the initializer was implicit, -1 is returned.
1921  int getSourceOrder() const {
1922    return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1;
1923  }
1924
1925  /// \brief Set the source order of this initializer. This method can only
1926  /// be called once for each initializer; it cannot be called on an
1927  /// initializer having a positive number of (implicit) array indices.
1928  void setSourceOrder(int pos) {
1929    assert(!IsWritten &&
1930           "calling twice setSourceOrder() on the same initializer");
1931    assert(SourceOrderOrNumArrayIndices == 0 &&
1932           "setSourceOrder() used when there are implicit array indices");
1933    assert(pos >= 0 &&
1934           "setSourceOrder() used to make an initializer implicit");
1935    IsWritten = true;
1936    SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos);
1937  }
1938
1939  SourceLocation getLParenLoc() const { return LParenLoc; }
1940  SourceLocation getRParenLoc() const { return RParenLoc; }
1941
1942  /// \brief Determine the number of implicit array indices used while
1943  /// described an array member initialization.
1944  unsigned getNumArrayIndices() const {
1945    return IsWritten ? 0 : SourceOrderOrNumArrayIndices;
1946  }
1947
1948  /// \brief Retrieve a particular array index variable used to
1949  /// describe an array member initialization.
1950  VarDecl *getArrayIndex(unsigned I) {
1951    assert(I < getNumArrayIndices() && "Out of bounds member array index");
1952    return reinterpret_cast<VarDecl **>(this + 1)[I];
1953  }
1954  const VarDecl *getArrayIndex(unsigned I) const {
1955    assert(I < getNumArrayIndices() && "Out of bounds member array index");
1956    return reinterpret_cast<const VarDecl * const *>(this + 1)[I];
1957  }
1958  void setArrayIndex(unsigned I, VarDecl *Index) {
1959    assert(I < getNumArrayIndices() && "Out of bounds member array index");
1960    reinterpret_cast<VarDecl **>(this + 1)[I] = Index;
1961  }
1962  ArrayRef<VarDecl *> getArrayIndexes() {
1963    assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init");
1964    return ArrayRef<VarDecl *>(reinterpret_cast<VarDecl **>(this + 1),
1965                               getNumArrayIndices());
1966  }
1967
1968  /// \brief Get the initializer.
1969  Expr *getInit() const { return static_cast<Expr*>(Init); }
1970};
1971
1972/// CXXConstructorDecl - Represents a C++ constructor within a
1973/// class. For example:
1974///
1975/// @code
1976/// class X {
1977/// public:
1978///   explicit X(int); // represented by a CXXConstructorDecl.
1979/// };
1980/// @endcode
1981class CXXConstructorDecl : public CXXMethodDecl {
1982  virtual void anchor();
1983  /// IsExplicitSpecified - Whether this constructor declaration has the
1984  /// 'explicit' keyword specified.
1985  bool IsExplicitSpecified : 1;
1986
1987  /// ImplicitlyDefined - Whether this constructor was implicitly
1988  /// defined by the compiler. When false, the constructor was defined
1989  /// by the user. In C++03, this flag will have the same value as
1990  /// Implicit. In C++0x, however, a constructor that is
1991  /// explicitly defaulted (i.e., defined with " = default") will have
1992  /// @c !Implicit && ImplicitlyDefined.
1993  bool ImplicitlyDefined : 1;
1994
1995  /// Support for base and member initializers.
1996  /// CtorInitializers - The arguments used to initialize the base
1997  /// or member.
1998  CXXCtorInitializer **CtorInitializers;
1999  unsigned NumCtorInitializers;
2000
2001  CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2002                     const DeclarationNameInfo &NameInfo,
2003                     QualType T, TypeSourceInfo *TInfo,
2004                     bool isExplicitSpecified, bool isInline,
2005                     bool isImplicitlyDeclared, bool isConstexpr)
2006    : CXXMethodDecl(CXXConstructor, RD, StartLoc, NameInfo, T, TInfo,
2007                    SC_None, isInline, isConstexpr, SourceLocation()),
2008      IsExplicitSpecified(isExplicitSpecified), ImplicitlyDefined(false),
2009      CtorInitializers(0), NumCtorInitializers(0) {
2010    setImplicit(isImplicitlyDeclared);
2011  }
2012
2013public:
2014  static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2015  static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2016                                    SourceLocation StartLoc,
2017                                    const DeclarationNameInfo &NameInfo,
2018                                    QualType T, TypeSourceInfo *TInfo,
2019                                    bool isExplicit,
2020                                    bool isInline, bool isImplicitlyDeclared,
2021                                    bool isConstexpr);
2022
2023  /// isExplicitSpecified - Whether this constructor declaration has the
2024  /// 'explicit' keyword specified.
2025  bool isExplicitSpecified() const { return IsExplicitSpecified; }
2026
2027  /// isExplicit - Whether this constructor was marked "explicit" or not.
2028  bool isExplicit() const {
2029    return cast<CXXConstructorDecl>(getFirstDeclaration())
2030      ->isExplicitSpecified();
2031  }
2032
2033  /// isImplicitlyDefined - Whether this constructor was implicitly
2034  /// defined. If false, then this constructor was defined by the
2035  /// user. This operation can only be invoked if the constructor has
2036  /// already been defined.
2037  bool isImplicitlyDefined() const {
2038    assert(isThisDeclarationADefinition() &&
2039           "Can only get the implicit-definition flag once the "
2040           "constructor has been defined");
2041    return ImplicitlyDefined;
2042  }
2043
2044  /// setImplicitlyDefined - Set whether this constructor was
2045  /// implicitly defined or not.
2046  void setImplicitlyDefined(bool ID) {
2047    assert(isThisDeclarationADefinition() &&
2048           "Can only set the implicit-definition flag once the constructor "
2049           "has been defined");
2050    ImplicitlyDefined = ID;
2051  }
2052
2053  /// init_iterator - Iterates through the member/base initializer list.
2054  typedef CXXCtorInitializer **init_iterator;
2055
2056  /// init_const_iterator - Iterates through the memberbase initializer list.
2057  typedef CXXCtorInitializer * const * init_const_iterator;
2058
2059  /// init_begin() - Retrieve an iterator to the first initializer.
2060  init_iterator       init_begin()       { return CtorInitializers; }
2061  /// begin() - Retrieve an iterator to the first initializer.
2062  init_const_iterator init_begin() const { return CtorInitializers; }
2063
2064  /// init_end() - Retrieve an iterator past the last initializer.
2065  init_iterator       init_end()       {
2066    return CtorInitializers + NumCtorInitializers;
2067  }
2068  /// end() - Retrieve an iterator past the last initializer.
2069  init_const_iterator init_end() const {
2070    return CtorInitializers + NumCtorInitializers;
2071  }
2072
2073  typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
2074  typedef std::reverse_iterator<init_const_iterator>
2075          init_const_reverse_iterator;
2076
2077  init_reverse_iterator init_rbegin() {
2078    return init_reverse_iterator(init_end());
2079  }
2080  init_const_reverse_iterator init_rbegin() const {
2081    return init_const_reverse_iterator(init_end());
2082  }
2083
2084  init_reverse_iterator init_rend() {
2085    return init_reverse_iterator(init_begin());
2086  }
2087  init_const_reverse_iterator init_rend() const {
2088    return init_const_reverse_iterator(init_begin());
2089  }
2090
2091  /// getNumArgs - Determine the number of arguments used to
2092  /// initialize the member or base.
2093  unsigned getNumCtorInitializers() const {
2094      return NumCtorInitializers;
2095  }
2096
2097  void setNumCtorInitializers(unsigned numCtorInitializers) {
2098    NumCtorInitializers = numCtorInitializers;
2099  }
2100
2101  void setCtorInitializers(CXXCtorInitializer ** initializers) {
2102    CtorInitializers = initializers;
2103  }
2104
2105  /// isDelegatingConstructor - Whether this constructor is a
2106  /// delegating constructor
2107  bool isDelegatingConstructor() const {
2108    return (getNumCtorInitializers() == 1) &&
2109      CtorInitializers[0]->isDelegatingInitializer();
2110  }
2111
2112  /// getTargetConstructor - When this constructor delegates to
2113  /// another, retrieve the target
2114  CXXConstructorDecl *getTargetConstructor() const;
2115
2116  /// isDefaultConstructor - Whether this constructor is a default
2117  /// constructor (C++ [class.ctor]p5), which can be used to
2118  /// default-initialize a class of this type.
2119  bool isDefaultConstructor() const;
2120
2121  /// isCopyConstructor - Whether this constructor is a copy
2122  /// constructor (C++ [class.copy]p2, which can be used to copy the
2123  /// class. @p TypeQuals will be set to the qualifiers on the
2124  /// argument type. For example, @p TypeQuals would be set to @c
2125  /// Qualifiers::Const for the following copy constructor:
2126  ///
2127  /// @code
2128  /// class X {
2129  /// public:
2130  ///   X(const X&);
2131  /// };
2132  /// @endcode
2133  bool isCopyConstructor(unsigned &TypeQuals) const;
2134
2135  /// isCopyConstructor - Whether this constructor is a copy
2136  /// constructor (C++ [class.copy]p2, which can be used to copy the
2137  /// class.
2138  bool isCopyConstructor() const {
2139    unsigned TypeQuals = 0;
2140    return isCopyConstructor(TypeQuals);
2141  }
2142
2143  /// \brief Determine whether this constructor is a move constructor
2144  /// (C++0x [class.copy]p3), which can be used to move values of the class.
2145  ///
2146  /// \param TypeQuals If this constructor is a move constructor, will be set
2147  /// to the type qualifiers on the referent of the first parameter's type.
2148  bool isMoveConstructor(unsigned &TypeQuals) const;
2149
2150  /// \brief Determine whether this constructor is a move constructor
2151  /// (C++0x [class.copy]p3), which can be used to move values of the class.
2152  bool isMoveConstructor() const {
2153    unsigned TypeQuals = 0;
2154    return isMoveConstructor(TypeQuals);
2155  }
2156
2157  /// \brief Determine whether this is a copy or move constructor.
2158  ///
2159  /// \param TypeQuals Will be set to the type qualifiers on the reference
2160  /// parameter, if in fact this is a copy or move constructor.
2161  bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2162
2163  /// \brief Determine whether this a copy or move constructor.
2164  bool isCopyOrMoveConstructor() const {
2165    unsigned Quals;
2166    return isCopyOrMoveConstructor(Quals);
2167  }
2168
2169  /// isConvertingConstructor - Whether this constructor is a
2170  /// converting constructor (C++ [class.conv.ctor]), which can be
2171  /// used for user-defined conversions.
2172  bool isConvertingConstructor(bool AllowExplicit) const;
2173
2174  /// \brief Determine whether this is a member template specialization that
2175  /// would copy the object to itself. Such constructors are never used to copy
2176  /// an object.
2177  bool isSpecializationCopyingObject() const;
2178
2179  /// \brief Get the constructor that this inheriting constructor is based on.
2180  const CXXConstructorDecl *getInheritedConstructor() const;
2181
2182  /// \brief Set the constructor that this inheriting constructor is based on.
2183  void setInheritedConstructor(const CXXConstructorDecl *BaseCtor);
2184
2185  const CXXConstructorDecl *getCanonicalDecl() const {
2186    return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2187  }
2188  CXXConstructorDecl *getCanonicalDecl() {
2189    return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2190  }
2191
2192  // Implement isa/cast/dyncast/etc.
2193  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2194  static bool classofKind(Kind K) { return K == CXXConstructor; }
2195
2196  friend class ASTDeclReader;
2197  friend class ASTDeclWriter;
2198};
2199
2200/// CXXDestructorDecl - Represents a C++ destructor within a
2201/// class. For example:
2202///
2203/// @code
2204/// class X {
2205/// public:
2206///   ~X(); // represented by a CXXDestructorDecl.
2207/// };
2208/// @endcode
2209class CXXDestructorDecl : public CXXMethodDecl {
2210  virtual void anchor();
2211  /// ImplicitlyDefined - Whether this destructor was implicitly
2212  /// defined by the compiler. When false, the destructor was defined
2213  /// by the user. In C++03, this flag will have the same value as
2214  /// Implicit. In C++0x, however, a destructor that is
2215  /// explicitly defaulted (i.e., defined with " = default") will have
2216  /// @c !Implicit && ImplicitlyDefined.
2217  bool ImplicitlyDefined : 1;
2218
2219  FunctionDecl *OperatorDelete;
2220
2221  CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2222                    const DeclarationNameInfo &NameInfo,
2223                    QualType T, TypeSourceInfo *TInfo,
2224                    bool isInline, bool isImplicitlyDeclared)
2225    : CXXMethodDecl(CXXDestructor, RD, StartLoc, NameInfo, T, TInfo,
2226                    SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
2227      ImplicitlyDefined(false), OperatorDelete(0) {
2228    setImplicit(isImplicitlyDeclared);
2229  }
2230
2231public:
2232  static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2233                                   SourceLocation StartLoc,
2234                                   const DeclarationNameInfo &NameInfo,
2235                                   QualType T, TypeSourceInfo* TInfo,
2236                                   bool isInline,
2237                                   bool isImplicitlyDeclared);
2238  static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2239
2240  /// isImplicitlyDefined - Whether this destructor was implicitly
2241  /// defined. If false, then this destructor was defined by the
2242  /// user. This operation can only be invoked if the destructor has
2243  /// already been defined.
2244  bool isImplicitlyDefined() const {
2245    assert(isThisDeclarationADefinition() &&
2246           "Can only get the implicit-definition flag once the destructor has "
2247           "been defined");
2248    return ImplicitlyDefined;
2249  }
2250
2251  /// setImplicitlyDefined - Set whether this destructor was
2252  /// implicitly defined or not.
2253  void setImplicitlyDefined(bool ID) {
2254    assert(isThisDeclarationADefinition() &&
2255           "Can only set the implicit-definition flag once the destructor has "
2256           "been defined");
2257    ImplicitlyDefined = ID;
2258  }
2259
2260  void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; }
2261  const FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2262
2263  // Implement isa/cast/dyncast/etc.
2264  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2265  static bool classofKind(Kind K) { return K == CXXDestructor; }
2266
2267  friend class ASTDeclReader;
2268  friend class ASTDeclWriter;
2269};
2270
2271/// CXXConversionDecl - Represents a C++ conversion function within a
2272/// class. For example:
2273///
2274/// @code
2275/// class X {
2276/// public:
2277///   operator bool();
2278/// };
2279/// @endcode
2280class CXXConversionDecl : public CXXMethodDecl {
2281  virtual void anchor();
2282  /// IsExplicitSpecified - Whether this conversion function declaration is
2283  /// marked "explicit", meaning that it can only be applied when the user
2284  /// explicitly wrote a cast. This is a C++0x feature.
2285  bool IsExplicitSpecified : 1;
2286
2287  CXXConversionDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
2288                    const DeclarationNameInfo &NameInfo,
2289                    QualType T, TypeSourceInfo *TInfo,
2290                    bool isInline, bool isExplicitSpecified,
2291                    bool isConstexpr, SourceLocation EndLocation)
2292    : CXXMethodDecl(CXXConversion, RD, StartLoc, NameInfo, T, TInfo,
2293                    SC_None, isInline, isConstexpr, EndLocation),
2294      IsExplicitSpecified(isExplicitSpecified) { }
2295
2296public:
2297  static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2298                                   SourceLocation StartLoc,
2299                                   const DeclarationNameInfo &NameInfo,
2300                                   QualType T, TypeSourceInfo *TInfo,
2301                                   bool isInline, bool isExplicit,
2302                                   bool isConstexpr,
2303                                   SourceLocation EndLocation);
2304  static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2305
2306  /// IsExplicitSpecified - Whether this conversion function declaration is
2307  /// marked "explicit", meaning that it can only be applied when the user
2308  /// explicitly wrote a cast. This is a C++0x feature.
2309  bool isExplicitSpecified() const { return IsExplicitSpecified; }
2310
2311  /// isExplicit - Whether this is an explicit conversion operator
2312  /// (C++0x only). Explicit conversion operators are only considered
2313  /// when the user has explicitly written a cast.
2314  bool isExplicit() const {
2315    return cast<CXXConversionDecl>(getFirstDeclaration())
2316      ->isExplicitSpecified();
2317  }
2318
2319  /// getConversionType - Returns the type that this conversion
2320  /// function is converting to.
2321  QualType getConversionType() const {
2322    return getType()->getAs<FunctionType>()->getResultType();
2323  }
2324
2325  /// \brief Determine whether this conversion function is a conversion from
2326  /// a lambda closure type to a block pointer.
2327  bool isLambdaToBlockPointerConversion() const;
2328
2329  // Implement isa/cast/dyncast/etc.
2330  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2331  static bool classofKind(Kind K) { return K == CXXConversion; }
2332
2333  friend class ASTDeclReader;
2334  friend class ASTDeclWriter;
2335};
2336
2337/// LinkageSpecDecl - This represents a linkage specification.  For example:
2338///   extern "C" void foo();
2339///
2340class LinkageSpecDecl : public Decl, public DeclContext {
2341  virtual void anchor();
2342public:
2343  /// LanguageIDs - Used to represent the language in a linkage
2344  /// specification.  The values are part of the serialization abi for
2345  /// ASTs and cannot be changed without altering that abi.  To help
2346  /// ensure a stable abi for this, we choose the DW_LANG_ encodings
2347  /// from the dwarf standard.
2348  enum LanguageIDs {
2349    lang_c = /* DW_LANG_C */ 0x0002,
2350    lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
2351  };
2352private:
2353  /// Language - The language for this linkage specification.
2354  unsigned Language : 3;
2355  /// True if this linkage spec has brances. This is needed so that hasBraces()
2356  /// returns the correct result while the linkage spec body is being parsed.
2357  /// Once RBraceLoc has been set this is not used, so it doesn't need to be
2358  /// serialized.
2359  unsigned HasBraces : 1;
2360  /// ExternLoc - The source location for the extern keyword.
2361  SourceLocation ExternLoc;
2362  /// RBraceLoc - The source location for the right brace (if valid).
2363  SourceLocation RBraceLoc;
2364
2365  LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2366                  SourceLocation LangLoc, LanguageIDs lang, bool HasBraces)
2367    : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2368      Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc),
2369      RBraceLoc(SourceLocation()) { }
2370
2371public:
2372  static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2373                                 SourceLocation ExternLoc,
2374                                 SourceLocation LangLoc, LanguageIDs Lang,
2375                                 bool HasBraces);
2376  static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2377
2378  /// \brief Return the language specified by this linkage specification.
2379  LanguageIDs getLanguage() const { return LanguageIDs(Language); }
2380  /// \brief Set the language specified by this linkage specification.
2381  void setLanguage(LanguageIDs L) { Language = L; }
2382
2383  /// \brief Determines whether this linkage specification had braces in
2384  /// its syntactic form.
2385  bool hasBraces() const {
2386    assert(!RBraceLoc.isValid() || HasBraces);
2387    return HasBraces;
2388  }
2389
2390  SourceLocation getExternLoc() const { return ExternLoc; }
2391  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2392  void setExternLoc(SourceLocation L) { ExternLoc = L; }
2393  void setRBraceLoc(SourceLocation L) {
2394    RBraceLoc = L;
2395    HasBraces = RBraceLoc.isValid();
2396  }
2397
2398  SourceLocation getLocEnd() const LLVM_READONLY {
2399    if (hasBraces())
2400      return getRBraceLoc();
2401    // No braces: get the end location of the (only) declaration in context
2402    // (if present).
2403    return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
2404  }
2405
2406  SourceRange getSourceRange() const LLVM_READONLY {
2407    return SourceRange(ExternLoc, getLocEnd());
2408  }
2409
2410  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2411  static bool classofKind(Kind K) { return K == LinkageSpec; }
2412  static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2413    return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2414  }
2415  static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2416    return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2417  }
2418};
2419
2420/// UsingDirectiveDecl - Represents C++ using-directive. For example:
2421///
2422///    using namespace std;
2423///
2424// NB: UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2425// artificial names for all using-directives in order to store
2426// them in DeclContext effectively.
2427class UsingDirectiveDecl : public NamedDecl {
2428  virtual void anchor();
2429  /// \brief The location of the "using" keyword.
2430  SourceLocation UsingLoc;
2431
2432  /// SourceLocation - Location of 'namespace' token.
2433  SourceLocation NamespaceLoc;
2434
2435  /// \brief The nested-name-specifier that precedes the namespace.
2436  NestedNameSpecifierLoc QualifierLoc;
2437
2438  /// NominatedNamespace - Namespace nominated by using-directive.
2439  NamedDecl *NominatedNamespace;
2440
2441  /// Enclosing context containing both using-directive and nominated
2442  /// namespace.
2443  DeclContext *CommonAncestor;
2444
2445  /// getUsingDirectiveName - Returns special DeclarationName used by
2446  /// using-directives. This is only used by DeclContext for storing
2447  /// UsingDirectiveDecls in its lookup structure.
2448  static DeclarationName getName() {
2449    return DeclarationName::getUsingDirectiveName();
2450  }
2451
2452  UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2453                     SourceLocation NamespcLoc,
2454                     NestedNameSpecifierLoc QualifierLoc,
2455                     SourceLocation IdentLoc,
2456                     NamedDecl *Nominated,
2457                     DeclContext *CommonAncestor)
2458    : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2459      NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2460      NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
2461
2462public:
2463  /// \brief Retrieve the nested-name-specifier that qualifies the
2464  /// name of the namespace, with source-location information.
2465  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2466
2467  /// \brief Retrieve the nested-name-specifier that qualifies the
2468  /// name of the namespace.
2469  NestedNameSpecifier *getQualifier() const {
2470    return QualifierLoc.getNestedNameSpecifier();
2471  }
2472
2473  NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
2474  const NamedDecl *getNominatedNamespaceAsWritten() const {
2475    return NominatedNamespace;
2476  }
2477
2478  /// getNominatedNamespace - Returns namespace nominated by using-directive.
2479  NamespaceDecl *getNominatedNamespace();
2480
2481  const NamespaceDecl *getNominatedNamespace() const {
2482    return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
2483  }
2484
2485  /// \brief Returns the common ancestor context of this using-directive and
2486  /// its nominated namespace.
2487  DeclContext *getCommonAncestor() { return CommonAncestor; }
2488  const DeclContext *getCommonAncestor() const { return CommonAncestor; }
2489
2490  /// \brief Return the location of the "using" keyword.
2491  SourceLocation getUsingLoc() const { return UsingLoc; }
2492
2493  // FIXME: Could omit 'Key' in name.
2494  /// getNamespaceKeyLocation - Returns location of namespace keyword.
2495  SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
2496
2497  /// getIdentLocation - Returns location of identifier.
2498  SourceLocation getIdentLocation() const { return getLocation(); }
2499
2500  static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
2501                                    SourceLocation UsingLoc,
2502                                    SourceLocation NamespaceLoc,
2503                                    NestedNameSpecifierLoc QualifierLoc,
2504                                    SourceLocation IdentLoc,
2505                                    NamedDecl *Nominated,
2506                                    DeclContext *CommonAncestor);
2507  static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2508
2509  SourceRange getSourceRange() const LLVM_READONLY {
2510    return SourceRange(UsingLoc, getLocation());
2511  }
2512
2513  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2514  static bool classofKind(Kind K) { return K == UsingDirective; }
2515
2516  // Friend for getUsingDirectiveName.
2517  friend class DeclContext;
2518
2519  friend class ASTDeclReader;
2520};
2521
2522/// \brief Represents a C++ namespace alias.
2523///
2524/// For example:
2525///
2526/// @code
2527/// namespace Foo = Bar;
2528/// @endcode
2529class NamespaceAliasDecl : public NamedDecl {
2530  virtual void anchor();
2531
2532  /// \brief The location of the "namespace" keyword.
2533  SourceLocation NamespaceLoc;
2534
2535  /// IdentLoc - Location of namespace identifier. Accessed by TargetNameLoc.
2536  SourceLocation IdentLoc;
2537
2538  /// \brief The nested-name-specifier that precedes the namespace.
2539  NestedNameSpecifierLoc QualifierLoc;
2540
2541  /// Namespace - The Decl that this alias points to. Can either be a
2542  /// NamespaceDecl or a NamespaceAliasDecl.
2543  NamedDecl *Namespace;
2544
2545  NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc,
2546                     SourceLocation AliasLoc, IdentifierInfo *Alias,
2547                     NestedNameSpecifierLoc QualifierLoc,
2548                     SourceLocation IdentLoc, NamedDecl *Namespace)
2549    : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias),
2550      NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
2551      QualifierLoc(QualifierLoc), Namespace(Namespace) { }
2552
2553  friend class ASTDeclReader;
2554
2555public:
2556  /// \brief Retrieve the nested-name-specifier that qualifies the
2557  /// name of the namespace, with source-location information.
2558  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2559
2560  /// \brief Retrieve the nested-name-specifier that qualifies the
2561  /// name of the namespace.
2562  NestedNameSpecifier *getQualifier() const {
2563    return QualifierLoc.getNestedNameSpecifier();
2564  }
2565
2566  /// \brief Retrieve the namespace declaration aliased by this directive.
2567  NamespaceDecl *getNamespace() {
2568    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
2569      return AD->getNamespace();
2570
2571    return cast<NamespaceDecl>(Namespace);
2572  }
2573
2574  const NamespaceDecl *getNamespace() const {
2575    return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
2576  }
2577
2578  /// Returns the location of the alias name, i.e. 'foo' in
2579  /// "namespace foo = ns::bar;".
2580  SourceLocation getAliasLoc() const { return getLocation(); }
2581
2582  /// Returns the location of the 'namespace' keyword.
2583  SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
2584
2585  /// Returns the location of the identifier in the named namespace.
2586  SourceLocation getTargetNameLoc() const { return IdentLoc; }
2587
2588  /// \brief Retrieve the namespace that this alias refers to, which
2589  /// may either be a NamespaceDecl or a NamespaceAliasDecl.
2590  NamedDecl *getAliasedNamespace() const { return Namespace; }
2591
2592  static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
2593                                    SourceLocation NamespaceLoc,
2594                                    SourceLocation AliasLoc,
2595                                    IdentifierInfo *Alias,
2596                                    NestedNameSpecifierLoc QualifierLoc,
2597                                    SourceLocation IdentLoc,
2598                                    NamedDecl *Namespace);
2599
2600  static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2601
2602  virtual SourceRange getSourceRange() const LLVM_READONLY {
2603    return SourceRange(NamespaceLoc, IdentLoc);
2604  }
2605
2606  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2607  static bool classofKind(Kind K) { return K == NamespaceAlias; }
2608};
2609
2610/// \brief Represents a shadow declaration introduced into a scope by a
2611/// (resolved) using declaration.
2612///
2613/// For example,
2614/// @code
2615/// namespace A {
2616///   void foo();
2617/// }
2618/// namespace B {
2619///   using A::foo; // <- a UsingDecl
2620///                 // Also creates a UsingShadowDecl for A::foo() in B
2621/// }
2622/// @endcode
2623class UsingShadowDecl : public NamedDecl {
2624  virtual void anchor();
2625
2626  /// The referenced declaration.
2627  NamedDecl *Underlying;
2628
2629  /// \brief The using declaration which introduced this decl or the next using
2630  /// shadow declaration contained in the aforementioned using declaration.
2631  NamedDecl *UsingOrNextShadow;
2632  friend class UsingDecl;
2633
2634  UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using,
2635                  NamedDecl *Target)
2636    : NamedDecl(UsingShadow, DC, Loc, DeclarationName()),
2637      Underlying(Target),
2638      UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) {
2639    if (Target) {
2640      setDeclName(Target->getDeclName());
2641      IdentifierNamespace = Target->getIdentifierNamespace();
2642    }
2643    setImplicit();
2644  }
2645
2646public:
2647  static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
2648                                 SourceLocation Loc, UsingDecl *Using,
2649                                 NamedDecl *Target) {
2650    return new (C) UsingShadowDecl(DC, Loc, Using, Target);
2651  }
2652
2653  static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2654
2655  /// \brief Gets the underlying declaration which has been brought into the
2656  /// local scope.
2657  NamedDecl *getTargetDecl() const { return Underlying; }
2658
2659  /// \brief Sets the underlying declaration which has been brought into the
2660  /// local scope.
2661  void setTargetDecl(NamedDecl* ND) {
2662    assert(ND && "Target decl is null!");
2663    Underlying = ND;
2664    IdentifierNamespace = ND->getIdentifierNamespace();
2665  }
2666
2667  /// \brief Gets the using declaration to which this declaration is tied.
2668  UsingDecl *getUsingDecl() const;
2669
2670  /// \brief The next using shadow declaration contained in the shadow decl
2671  /// chain of the using declaration which introduced this decl.
2672  UsingShadowDecl *getNextUsingShadowDecl() const {
2673    return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
2674  }
2675
2676  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2677  static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
2678
2679  friend class ASTDeclReader;
2680  friend class ASTDeclWriter;
2681};
2682
2683/// \brief Represents a C++ using-declaration.
2684///
2685/// For example:
2686/// @code
2687///    using someNameSpace::someIdentifier;
2688/// @endcode
2689class UsingDecl : public NamedDecl {
2690  virtual void anchor();
2691
2692  /// \brief The source location of the "using" location itself.
2693  SourceLocation UsingLocation;
2694
2695  /// \brief The nested-name-specifier that precedes the name.
2696  NestedNameSpecifierLoc QualifierLoc;
2697
2698  /// DNLoc - Provides source/type location info for the
2699  /// declaration name embedded in the ValueDecl base class.
2700  DeclarationNameLoc DNLoc;
2701
2702  /// \brief The first shadow declaration of the shadow decl chain associated
2703  /// with this using declaration.
2704  ///
2705  /// The bool member of the pair store whether this decl has the \c typename
2706  /// keyword.
2707  llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
2708
2709  UsingDecl(DeclContext *DC, SourceLocation UL,
2710            NestedNameSpecifierLoc QualifierLoc,
2711            const DeclarationNameInfo &NameInfo, bool IsTypeNameArg)
2712    : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
2713      UsingLocation(UL), QualifierLoc(QualifierLoc),
2714      DNLoc(NameInfo.getInfo()), FirstUsingShadow(0, IsTypeNameArg) {
2715  }
2716
2717public:
2718  /// \brief Returns the source location of the "using" keyword.
2719  SourceLocation getUsingLocation() const { return UsingLocation; }
2720
2721  /// \brief Set the source location of the 'using' keyword.
2722  void setUsingLocation(SourceLocation L) { UsingLocation = L; }
2723
2724  /// \brief Retrieve the nested-name-specifier that qualifies the name,
2725  /// with source-location information.
2726  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2727
2728  /// \brief Retrieve the nested-name-specifier that qualifies the name.
2729  NestedNameSpecifier *getQualifier() const {
2730    return QualifierLoc.getNestedNameSpecifier();
2731  }
2732
2733  DeclarationNameInfo getNameInfo() const {
2734    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2735  }
2736
2737  /// \brief Return true if the using declaration has 'typename'.
2738  bool isTypeName() const { return FirstUsingShadow.getInt(); }
2739
2740  /// \brief Sets whether the using declaration has 'typename'.
2741  void setTypeName(bool TN) { FirstUsingShadow.setInt(TN); }
2742
2743  /// \brief Iterates through the using shadow declarations assosiated with
2744  /// this using declaration.
2745  class shadow_iterator {
2746    /// \brief The current using shadow declaration.
2747    UsingShadowDecl *Current;
2748
2749  public:
2750    typedef UsingShadowDecl*          value_type;
2751    typedef UsingShadowDecl*          reference;
2752    typedef UsingShadowDecl*          pointer;
2753    typedef std::forward_iterator_tag iterator_category;
2754    typedef std::ptrdiff_t            difference_type;
2755
2756    shadow_iterator() : Current(0) { }
2757    explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
2758
2759    reference operator*() const { return Current; }
2760    pointer operator->() const { return Current; }
2761
2762    shadow_iterator& operator++() {
2763      Current = Current->getNextUsingShadowDecl();
2764      return *this;
2765    }
2766
2767    shadow_iterator operator++(int) {
2768      shadow_iterator tmp(*this);
2769      ++(*this);
2770      return tmp;
2771    }
2772
2773    friend bool operator==(shadow_iterator x, shadow_iterator y) {
2774      return x.Current == y.Current;
2775    }
2776    friend bool operator!=(shadow_iterator x, shadow_iterator y) {
2777      return x.Current != y.Current;
2778    }
2779  };
2780
2781  shadow_iterator shadow_begin() const {
2782    return shadow_iterator(FirstUsingShadow.getPointer());
2783  }
2784  shadow_iterator shadow_end() const { return shadow_iterator(); }
2785
2786  /// \brief Return the number of shadowed declarations associated with this
2787  /// using declaration.
2788  unsigned shadow_size() const {
2789    return std::distance(shadow_begin(), shadow_end());
2790  }
2791
2792  void addShadowDecl(UsingShadowDecl *S);
2793  void removeShadowDecl(UsingShadowDecl *S);
2794
2795  static UsingDecl *Create(ASTContext &C, DeclContext *DC,
2796                           SourceLocation UsingL,
2797                           NestedNameSpecifierLoc QualifierLoc,
2798                           const DeclarationNameInfo &NameInfo,
2799                           bool IsTypeNameArg);
2800
2801  static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2802
2803  SourceRange getSourceRange() const LLVM_READONLY {
2804    return SourceRange(UsingLocation, getNameInfo().getEndLoc());
2805  }
2806
2807  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2808  static bool classofKind(Kind K) { return K == Using; }
2809
2810  friend class ASTDeclReader;
2811  friend class ASTDeclWriter;
2812};
2813
2814/// \brief Represents a dependent using declaration which was not marked with
2815/// \c typename.
2816///
2817/// Unlike non-dependent using declarations, these *only* bring through
2818/// non-types; otherwise they would break two-phase lookup.
2819///
2820/// @code
2821/// template \<class T> class A : public Base<T> {
2822///   using Base<T>::foo;
2823/// };
2824/// @endcode
2825class UnresolvedUsingValueDecl : public ValueDecl {
2826  virtual void anchor();
2827
2828  /// \brief The source location of the 'using' keyword
2829  SourceLocation UsingLocation;
2830
2831  /// \brief The nested-name-specifier that precedes the name.
2832  NestedNameSpecifierLoc QualifierLoc;
2833
2834  /// DNLoc - Provides source/type location info for the
2835  /// declaration name embedded in the ValueDecl base class.
2836  DeclarationNameLoc DNLoc;
2837
2838  UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
2839                           SourceLocation UsingLoc,
2840                           NestedNameSpecifierLoc QualifierLoc,
2841                           const DeclarationNameInfo &NameInfo)
2842    : ValueDecl(UnresolvedUsingValue, DC,
2843                NameInfo.getLoc(), NameInfo.getName(), Ty),
2844      UsingLocation(UsingLoc), QualifierLoc(QualifierLoc),
2845      DNLoc(NameInfo.getInfo())
2846  { }
2847
2848public:
2849  /// \brief Returns the source location of the 'using' keyword.
2850  SourceLocation getUsingLoc() const { return UsingLocation; }
2851
2852  /// \brief Set the source location of the 'using' keyword.
2853  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
2854
2855  /// \brief Retrieve the nested-name-specifier that qualifies the name,
2856  /// with source-location information.
2857  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2858
2859  /// \brief Retrieve the nested-name-specifier that qualifies the name.
2860  NestedNameSpecifier *getQualifier() const {
2861    return QualifierLoc.getNestedNameSpecifier();
2862  }
2863
2864  DeclarationNameInfo getNameInfo() const {
2865    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2866  }
2867
2868  static UnresolvedUsingValueDecl *
2869    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
2870           NestedNameSpecifierLoc QualifierLoc,
2871           const DeclarationNameInfo &NameInfo);
2872
2873  static UnresolvedUsingValueDecl *
2874  CreateDeserialized(ASTContext &C, unsigned ID);
2875
2876  SourceRange getSourceRange() const LLVM_READONLY {
2877    return SourceRange(UsingLocation, getNameInfo().getEndLoc());
2878  }
2879
2880  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2881  static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
2882
2883  friend class ASTDeclReader;
2884  friend class ASTDeclWriter;
2885};
2886
2887/// @brief Represents a dependent using declaration which was marked with
2888/// \c typename.
2889///
2890/// @code
2891/// template \<class T> class A : public Base<T> {
2892///   using typename Base<T>::foo;
2893/// };
2894/// @endcode
2895///
2896/// The type associated with an unresolved using typename decl is
2897/// currently always a typename type.
2898class UnresolvedUsingTypenameDecl : public TypeDecl {
2899  virtual void anchor();
2900
2901  /// \brief The source location of the 'using' keyword
2902  SourceLocation UsingLocation;
2903
2904  /// \brief The source location of the 'typename' keyword
2905  SourceLocation TypenameLocation;
2906
2907  /// \brief The nested-name-specifier that precedes the name.
2908  NestedNameSpecifierLoc QualifierLoc;
2909
2910  UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
2911                              SourceLocation TypenameLoc,
2912                              NestedNameSpecifierLoc QualifierLoc,
2913                              SourceLocation TargetNameLoc,
2914                              IdentifierInfo *TargetName)
2915    : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
2916               UsingLoc),
2917      TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { }
2918
2919  friend class ASTDeclReader;
2920
2921public:
2922  /// \brief Returns the source location of the 'using' keyword.
2923  SourceLocation getUsingLoc() const { return getLocStart(); }
2924
2925  /// \brief Returns the source location of the 'typename' keyword.
2926  SourceLocation getTypenameLoc() const { return TypenameLocation; }
2927
2928  /// \brief Retrieve the nested-name-specifier that qualifies the name,
2929  /// with source-location information.
2930  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2931
2932  /// \brief Retrieve the nested-name-specifier that qualifies the name.
2933  NestedNameSpecifier *getQualifier() const {
2934    return QualifierLoc.getNestedNameSpecifier();
2935  }
2936
2937  static UnresolvedUsingTypenameDecl *
2938    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
2939           SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
2940           SourceLocation TargetNameLoc, DeclarationName TargetName);
2941
2942  static UnresolvedUsingTypenameDecl *
2943  CreateDeserialized(ASTContext &C, unsigned ID);
2944
2945  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2946  static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
2947};
2948
2949/// \brief Represents a C++11 static_assert declaration.
2950class StaticAssertDecl : public Decl {
2951  virtual void anchor();
2952  llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
2953  StringLiteral *Message;
2954  SourceLocation RParenLoc;
2955
2956  StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
2957                   Expr *AssertExpr, StringLiteral *Message,
2958                   SourceLocation RParenLoc, bool Failed)
2959    : Decl(StaticAssert, DC, StaticAssertLoc),
2960      AssertExprAndFailed(AssertExpr, Failed), Message(Message),
2961      RParenLoc(RParenLoc) { }
2962
2963public:
2964  static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
2965                                  SourceLocation StaticAssertLoc,
2966                                  Expr *AssertExpr, StringLiteral *Message,
2967                                  SourceLocation RParenLoc, bool Failed);
2968  static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2969
2970  Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
2971  const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
2972
2973  StringLiteral *getMessage() { return Message; }
2974  const StringLiteral *getMessage() const { return Message; }
2975
2976  bool isFailed() const { return AssertExprAndFailed.getInt(); }
2977
2978  SourceLocation getRParenLoc() const { return RParenLoc; }
2979
2980  SourceRange getSourceRange() const LLVM_READONLY {
2981    return SourceRange(getLocation(), getRParenLoc());
2982  }
2983
2984  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2985  static bool classofKind(Kind K) { return K == StaticAssert; }
2986
2987  friend class ASTDeclReader;
2988};
2989
2990/// An instance of this class represents the declaration of a property
2991/// member.  This is a Microsoft extension to C++, first introduced in
2992/// Visual Studio .NET 2003 as a parallel to similar features in C#
2993/// and Managed C++.
2994///
2995/// A property must always be a non-static class member.
2996///
2997/// A property member superficially resembles a non-static data
2998/// member, except preceded by a property attribute:
2999///   __declspec(property(get=GetX, put=PutX)) int x;
3000/// Either (but not both) of the 'get' and 'put' names may be omitted.
3001///
3002/// A reference to a property is always an lvalue.  If the lvalue
3003/// undergoes lvalue-to-rvalue conversion, then a getter name is
3004/// required, and that member is called with no arguments.
3005/// If the lvalue is assigned into, then a setter name is required,
3006/// and that member is called with one argument, the value assigned.
3007/// Both operations are potentially overloaded.  Compound assignments
3008/// are permitted, as are the increment and decrement operators.
3009///
3010/// The getter and putter methods are permitted to be overloaded,
3011/// although their return and parameter types are subject to certain
3012/// restrictions according to the type of the property.
3013///
3014/// A property declared using an incomplete array type may
3015/// additionally be subscripted, adding extra parameters to the getter
3016/// and putter methods.
3017class MSPropertyDecl : public DeclaratorDecl {
3018  IdentifierInfo *GetterId, *SetterId;
3019
3020public:
3021  MSPropertyDecl(DeclContext *DC, SourceLocation L,
3022                 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
3023                 SourceLocation StartL, IdentifierInfo *Getter,
3024                 IdentifierInfo *Setter):
3025  DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL), GetterId(Getter),
3026  SetterId(Setter) {}
3027
3028  static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3029
3030  static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
3031
3032  bool hasGetter() const { return GetterId != NULL; }
3033  IdentifierInfo* getGetterId() const { return GetterId; }
3034  bool hasSetter() const { return SetterId != NULL; }
3035  IdentifierInfo* getSetterId() const { return SetterId; }
3036
3037  friend class ASTDeclReader;
3038};
3039
3040/// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
3041/// into a diagnostic with <<.
3042const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3043                                    AccessSpecifier AS);
3044
3045const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
3046                                    AccessSpecifier AS);
3047
3048} // end namespace clang
3049
3050#endif
3051