Expr.h revision 0004329758b99d2b92096b353e35c427ebbee622
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTVector.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/CharInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/APSInt.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/Support/Compiler.h"
32
33namespace clang {
34  class APValue;
35  class ASTContext;
36  class BlockDecl;
37  class CXXBaseSpecifier;
38  class CXXMemberCallExpr;
39  class CXXOperatorCallExpr;
40  class CastExpr;
41  class Decl;
42  class IdentifierInfo;
43  class MaterializeTemporaryExpr;
44  class NamedDecl;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47  class ParmVarDecl;
48  class TargetInfo;
49  class ValueDecl;
50
51/// \brief A simple array of base specifiers.
52typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
53
54/// \brief An adjustment to be made to the temporary created when emitting a
55/// reference binding, which accesses a particular subobject of that temporary.
56struct SubobjectAdjustment {
57  enum {
58    DerivedToBaseAdjustment,
59    FieldAdjustment,
60    MemberPointerAdjustment
61  } Kind;
62
63
64  struct DTB {
65    const CastExpr *BasePath;
66    const CXXRecordDecl *DerivedClass;
67  };
68
69  struct P {
70    const MemberPointerType *MPT;
71    Expr *RHS;
72  };
73
74  union {
75    struct DTB DerivedToBase;
76    FieldDecl *Field;
77    struct P Ptr;
78  };
79
80  SubobjectAdjustment(const CastExpr *BasePath,
81                      const CXXRecordDecl *DerivedClass)
82    : Kind(DerivedToBaseAdjustment) {
83    DerivedToBase.BasePath = BasePath;
84    DerivedToBase.DerivedClass = DerivedClass;
85  }
86
87  SubobjectAdjustment(FieldDecl *Field)
88    : Kind(FieldAdjustment) {
89    this->Field = Field;
90  }
91
92  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
93    : Kind(MemberPointerAdjustment) {
94    this->Ptr.MPT = MPT;
95    this->Ptr.RHS = RHS;
96  }
97};
98
99/// Expr - This represents one expression.  Note that Expr's are subclasses of
100/// Stmt.  This allows an expression to be transparently used any place a Stmt
101/// is required.
102///
103class Expr : public Stmt {
104  QualType TR;
105
106protected:
107  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
108       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
109    : Stmt(SC)
110  {
111    ExprBits.TypeDependent = TD;
112    ExprBits.ValueDependent = VD;
113    ExprBits.InstantiationDependent = ID;
114    ExprBits.ValueKind = VK;
115    ExprBits.ObjectKind = OK;
116    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
117    setType(T);
118  }
119
120  /// \brief Construct an empty expression.
121  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
122
123public:
124  QualType getType() const { return TR; }
125  void setType(QualType t) {
126    // In C++, the type of an expression is always adjusted so that it
127    // will not have reference type an expression will never have
128    // reference type (C++ [expr]p6). Use
129    // QualType::getNonReferenceType() to retrieve the non-reference
130    // type. Additionally, inspect Expr::isLvalue to determine whether
131    // an expression that is adjusted in this manner should be
132    // considered an lvalue.
133    assert((t.isNull() || !t->isReferenceType()) &&
134           "Expressions can't have reference type");
135
136    TR = t;
137  }
138
139  /// isValueDependent - Determines whether this expression is
140  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
141  /// array bound of "Chars" in the following example is
142  /// value-dependent.
143  /// @code
144  /// template<int Size, char (&Chars)[Size]> struct meta_string;
145  /// @endcode
146  bool isValueDependent() const { return ExprBits.ValueDependent; }
147
148  /// \brief Set whether this expression is value-dependent or not.
149  void setValueDependent(bool VD) {
150    ExprBits.ValueDependent = VD;
151    if (VD)
152      ExprBits.InstantiationDependent = true;
153  }
154
155  /// isTypeDependent - Determines whether this expression is
156  /// type-dependent (C++ [temp.dep.expr]), which means that its type
157  /// could change from one template instantiation to the next. For
158  /// example, the expressions "x" and "x + y" are type-dependent in
159  /// the following code, but "y" is not type-dependent:
160  /// @code
161  /// template<typename T>
162  /// void add(T x, int y) {
163  ///   x + y;
164  /// }
165  /// @endcode
166  bool isTypeDependent() const { return ExprBits.TypeDependent; }
167
168  /// \brief Set whether this expression is type-dependent or not.
169  void setTypeDependent(bool TD) {
170    ExprBits.TypeDependent = TD;
171    if (TD)
172      ExprBits.InstantiationDependent = true;
173  }
174
175  /// \brief Whether this expression is instantiation-dependent, meaning that
176  /// it depends in some way on a template parameter, even if neither its type
177  /// nor (constant) value can change due to the template instantiation.
178  ///
179  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
180  /// instantiation-dependent (since it involves a template parameter \c T), but
181  /// is neither type- nor value-dependent, since the type of the inner
182  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
183  /// \c sizeof is known.
184  ///
185  /// \code
186  /// template<typename T>
187  /// void f(T x, T y) {
188  ///   sizeof(sizeof(T() + T());
189  /// }
190  /// \endcode
191  ///
192  bool isInstantiationDependent() const {
193    return ExprBits.InstantiationDependent;
194  }
195
196  /// \brief Set whether this expression is instantiation-dependent or not.
197  void setInstantiationDependent(bool ID) {
198    ExprBits.InstantiationDependent = ID;
199  }
200
201  /// \brief Whether this expression contains an unexpanded parameter
202  /// pack (for C++11 variadic templates).
203  ///
204  /// Given the following function template:
205  ///
206  /// \code
207  /// template<typename F, typename ...Types>
208  /// void forward(const F &f, Types &&...args) {
209  ///   f(static_cast<Types&&>(args)...);
210  /// }
211  /// \endcode
212  ///
213  /// The expressions \c args and \c static_cast<Types&&>(args) both
214  /// contain parameter packs.
215  bool containsUnexpandedParameterPack() const {
216    return ExprBits.ContainsUnexpandedParameterPack;
217  }
218
219  /// \brief Set the bit that describes whether this expression
220  /// contains an unexpanded parameter pack.
221  void setContainsUnexpandedParameterPack(bool PP = true) {
222    ExprBits.ContainsUnexpandedParameterPack = PP;
223  }
224
225  /// getExprLoc - Return the preferred location for the arrow when diagnosing
226  /// a problem with a generic expression.
227  SourceLocation getExprLoc() const LLVM_READONLY;
228
229  /// isUnusedResultAWarning - Return true if this immediate expression should
230  /// be warned about if the result is unused.  If so, fill in expr, location,
231  /// and ranges with expr to warn on and source locations/ranges appropriate
232  /// for a warning.
233  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
234                              SourceRange &R1, SourceRange &R2,
235                              ASTContext &Ctx) const;
236
237  /// isLValue - True if this expression is an "l-value" according to
238  /// the rules of the current language.  C and C++ give somewhat
239  /// different rules for this concept, but in general, the result of
240  /// an l-value expression identifies a specific object whereas the
241  /// result of an r-value expression is a value detached from any
242  /// specific storage.
243  ///
244  /// C++11 divides the concept of "r-value" into pure r-values
245  /// ("pr-values") and so-called expiring values ("x-values"), which
246  /// identify specific objects that can be safely cannibalized for
247  /// their resources.  This is an unfortunate abuse of terminology on
248  /// the part of the C++ committee.  In Clang, when we say "r-value",
249  /// we generally mean a pr-value.
250  bool isLValue() const { return getValueKind() == VK_LValue; }
251  bool isRValue() const { return getValueKind() == VK_RValue; }
252  bool isXValue() const { return getValueKind() == VK_XValue; }
253  bool isGLValue() const { return getValueKind() != VK_RValue; }
254
255  enum LValueClassification {
256    LV_Valid,
257    LV_NotObjectType,
258    LV_IncompleteVoidType,
259    LV_DuplicateVectorComponents,
260    LV_InvalidExpression,
261    LV_InvalidMessageExpression,
262    LV_MemberFunction,
263    LV_SubObjCPropertySetting,
264    LV_ClassTemporary,
265    LV_ArrayTemporary
266  };
267  /// Reasons why an expression might not be an l-value.
268  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
269
270  enum isModifiableLvalueResult {
271    MLV_Valid,
272    MLV_NotObjectType,
273    MLV_IncompleteVoidType,
274    MLV_DuplicateVectorComponents,
275    MLV_InvalidExpression,
276    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
277    MLV_IncompleteType,
278    MLV_ConstQualified,
279    MLV_ArrayType,
280    MLV_NoSetterProperty,
281    MLV_MemberFunction,
282    MLV_SubObjCPropertySetting,
283    MLV_InvalidMessageExpression,
284    MLV_ClassTemporary,
285    MLV_ArrayTemporary
286  };
287  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
288  /// does not have an incomplete type, does not have a const-qualified type,
289  /// and if it is a structure or union, does not have any member (including,
290  /// recursively, any member or element of all contained aggregates or unions)
291  /// with a const-qualified type.
292  ///
293  /// \param Loc [in,out] - A source location which *may* be filled
294  /// in with the location of the expression making this a
295  /// non-modifiable lvalue, if specified.
296  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
297                                              SourceLocation *Loc = 0) const;
298
299  /// \brief The return type of classify(). Represents the C++11 expression
300  ///        taxonomy.
301  class Classification {
302  public:
303    /// \brief The various classification results. Most of these mean prvalue.
304    enum Kinds {
305      CL_LValue,
306      CL_XValue,
307      CL_Function, // Functions cannot be lvalues in C.
308      CL_Void, // Void cannot be an lvalue in C.
309      CL_AddressableVoid, // Void expression whose address can be taken in C.
310      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
311      CL_MemberFunction, // An expression referring to a member function
312      CL_SubObjCPropertySetting,
313      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
314      CL_ArrayTemporary, // A temporary of array type.
315      CL_ObjCMessageRValue, // ObjC message is an rvalue
316      CL_PRValue // A prvalue for any other reason, of any other type
317    };
318    /// \brief The results of modification testing.
319    enum ModifiableType {
320      CM_Untested, // testModifiable was false.
321      CM_Modifiable,
322      CM_RValue, // Not modifiable because it's an rvalue
323      CM_Function, // Not modifiable because it's a function; C++ only
324      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
325      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
326      CM_ConstQualified,
327      CM_ArrayType,
328      CM_IncompleteType
329    };
330
331  private:
332    friend class Expr;
333
334    unsigned short Kind;
335    unsigned short Modifiable;
336
337    explicit Classification(Kinds k, ModifiableType m)
338      : Kind(k), Modifiable(m)
339    {}
340
341  public:
342    Classification() {}
343
344    Kinds getKind() const { return static_cast<Kinds>(Kind); }
345    ModifiableType getModifiable() const {
346      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
347      return static_cast<ModifiableType>(Modifiable);
348    }
349    bool isLValue() const { return Kind == CL_LValue; }
350    bool isXValue() const { return Kind == CL_XValue; }
351    bool isGLValue() const { return Kind <= CL_XValue; }
352    bool isPRValue() const { return Kind >= CL_Function; }
353    bool isRValue() const { return Kind >= CL_XValue; }
354    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
355
356    /// \brief Create a simple, modifiably lvalue
357    static Classification makeSimpleLValue() {
358      return Classification(CL_LValue, CM_Modifiable);
359    }
360
361  };
362  /// \brief Classify - Classify this expression according to the C++11
363  ///        expression taxonomy.
364  ///
365  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
366  /// old lvalue vs rvalue. This function determines the type of expression this
367  /// is. There are three expression types:
368  /// - lvalues are classical lvalues as in C++03.
369  /// - prvalues are equivalent to rvalues in C++03.
370  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
371  ///   function returning an rvalue reference.
372  /// lvalues and xvalues are collectively referred to as glvalues, while
373  /// prvalues and xvalues together form rvalues.
374  Classification Classify(ASTContext &Ctx) const {
375    return ClassifyImpl(Ctx, 0);
376  }
377
378  /// \brief ClassifyModifiable - Classify this expression according to the
379  ///        C++11 expression taxonomy, and see if it is valid on the left side
380  ///        of an assignment.
381  ///
382  /// This function extends classify in that it also tests whether the
383  /// expression is modifiable (C99 6.3.2.1p1).
384  /// \param Loc A source location that might be filled with a relevant location
385  ///            if the expression is not modifiable.
386  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
387    return ClassifyImpl(Ctx, &Loc);
388  }
389
390  /// getValueKindForType - Given a formal return or parameter type,
391  /// give its value kind.
392  static ExprValueKind getValueKindForType(QualType T) {
393    if (const ReferenceType *RT = T->getAs<ReferenceType>())
394      return (isa<LValueReferenceType>(RT)
395                ? VK_LValue
396                : (RT->getPointeeType()->isFunctionType()
397                     ? VK_LValue : VK_XValue));
398    return VK_RValue;
399  }
400
401  /// getValueKind - The value kind that this expression produces.
402  ExprValueKind getValueKind() const {
403    return static_cast<ExprValueKind>(ExprBits.ValueKind);
404  }
405
406  /// getObjectKind - The object kind that this expression produces.
407  /// Object kinds are meaningful only for expressions that yield an
408  /// l-value or x-value.
409  ExprObjectKind getObjectKind() const {
410    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
411  }
412
413  bool isOrdinaryOrBitFieldObject() const {
414    ExprObjectKind OK = getObjectKind();
415    return (OK == OK_Ordinary || OK == OK_BitField);
416  }
417
418  /// setValueKind - Set the value kind produced by this expression.
419  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
420
421  /// setObjectKind - Set the object kind produced by this expression.
422  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
423
424private:
425  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
426
427public:
428
429  /// \brief Returns true if this expression is a gl-value that
430  /// potentially refers to a bit-field.
431  ///
432  /// In C++, whether a gl-value refers to a bitfield is essentially
433  /// an aspect of the value-kind type system.
434  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
435
436  /// \brief If this expression refers to a bit-field, retrieve the
437  /// declaration of that bit-field.
438  ///
439  /// Note that this returns a non-null pointer in subtly different
440  /// places than refersToBitField returns true.  In particular, this can
441  /// return a non-null pointer even for r-values loaded from
442  /// bit-fields, but it will return null for a conditional bit-field.
443  FieldDecl *getSourceBitField();
444
445  const FieldDecl *getSourceBitField() const {
446    return const_cast<Expr*>(this)->getSourceBitField();
447  }
448
449  /// \brief If this expression is an l-value for an Objective C
450  /// property, find the underlying property reference expression.
451  const ObjCPropertyRefExpr *getObjCProperty() const;
452
453  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
454  bool isObjCSelfExpr() const;
455
456  /// \brief Returns whether this expression refers to a vector element.
457  bool refersToVectorElement() const;
458
459  /// \brief Returns whether this expression has a placeholder type.
460  bool hasPlaceholderType() const {
461    return getType()->isPlaceholderType();
462  }
463
464  /// \brief Returns whether this expression has a specific placeholder type.
465  bool hasPlaceholderType(BuiltinType::Kind K) const {
466    assert(BuiltinType::isPlaceholderTypeKind(K));
467    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
468      return BT->getKind() == K;
469    return false;
470  }
471
472  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
473  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
474  /// but also int expressions which are produced by things like comparisons in
475  /// C.
476  bool isKnownToHaveBooleanValue() const;
477
478  /// isIntegerConstantExpr - Return true if this expression is a valid integer
479  /// constant expression, and, if so, return its value in Result.  If not a
480  /// valid i-c-e, return false and fill in Loc (if specified) with the location
481  /// of the invalid expression.
482  ///
483  /// Note: This does not perform the implicit conversions required by C++11
484  /// [expr.const]p5.
485  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
486                             SourceLocation *Loc = 0,
487                             bool isEvaluated = true) const;
488  bool isIntegerConstantExpr(const ASTContext &Ctx,
489                             SourceLocation *Loc = 0) const;
490
491  /// isCXX98IntegralConstantExpr - Return true if this expression is an
492  /// integral constant expression in C++98. Can only be used in C++.
493  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
494
495  /// isCXX11ConstantExpr - Return true if this expression is a constant
496  /// expression in C++11. Can only be used in C++.
497  ///
498  /// Note: This does not perform the implicit conversions required by C++11
499  /// [expr.const]p5.
500  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = 0,
501                           SourceLocation *Loc = 0) const;
502
503  /// isPotentialConstantExpr - Return true if this function's definition
504  /// might be usable in a constant expression in C++11, if it were marked
505  /// constexpr. Return false if the function can never produce a constant
506  /// expression, along with diagnostics describing why not.
507  static bool isPotentialConstantExpr(const FunctionDecl *FD,
508                                      SmallVectorImpl<
509                                        PartialDiagnosticAt> &Diags);
510
511  /// isConstantInitializer - Returns true if this expression can be emitted to
512  /// IR as a constant, and thus can be used as a constant initializer in C.
513  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
514
515  /// EvalStatus is a struct with detailed info about an evaluation in progress.
516  struct EvalStatus {
517    /// HasSideEffects - Whether the evaluated expression has side effects.
518    /// For example, (f() && 0) can be folded, but it still has side effects.
519    bool HasSideEffects;
520
521    /// Diag - If this is non-null, it will be filled in with a stack of notes
522    /// indicating why evaluation failed (or why it failed to produce a constant
523    /// expression).
524    /// If the expression is unfoldable, the notes will indicate why it's not
525    /// foldable. If the expression is foldable, but not a constant expression,
526    /// the notes will describes why it isn't a constant expression. If the
527    /// expression *is* a constant expression, no notes will be produced.
528    SmallVectorImpl<PartialDiagnosticAt> *Diag;
529
530    EvalStatus() : HasSideEffects(false), Diag(0) {}
531
532    // hasSideEffects - Return true if the evaluated expression has
533    // side effects.
534    bool hasSideEffects() const {
535      return HasSideEffects;
536    }
537  };
538
539  /// EvalResult is a struct with detailed info about an evaluated expression.
540  struct EvalResult : EvalStatus {
541    /// Val - This is the value the expression can be folded to.
542    APValue Val;
543
544    // isGlobalLValue - Return true if the evaluated lvalue expression
545    // is global.
546    bool isGlobalLValue() const;
547  };
548
549  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
550  /// an rvalue using any crazy technique (that has nothing to do with language
551  /// standards) that we want to, even if the expression has side-effects. If
552  /// this function returns true, it returns the folded constant in Result. If
553  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
554  /// applied.
555  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
556
557  /// EvaluateAsBooleanCondition - Return true if this is a constant
558  /// which we we can fold and convert to a boolean condition using
559  /// any crazy technique that we want to, even if the expression has
560  /// side-effects.
561  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
562
563  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
564
565  /// EvaluateAsInt - Return true if this is a constant which we can fold and
566  /// convert to an integer, using any crazy technique that we want to.
567  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
568                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
569
570  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
571  /// constant folded without side-effects, but discard the result.
572  bool isEvaluatable(const ASTContext &Ctx) const;
573
574  /// HasSideEffects - This routine returns true for all those expressions
575  /// which have any effect other than producing a value. Example is a function
576  /// call, volatile variable read, or throwing an exception.
577  bool HasSideEffects(const ASTContext &Ctx) const;
578
579  /// \brief Determine whether this expression involves a call to any function
580  /// that is not trivial.
581  bool hasNonTrivialCall(ASTContext &Ctx);
582
583  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
584  /// integer. This must be called on an expression that constant folds to an
585  /// integer.
586  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
587                          SmallVectorImpl<PartialDiagnosticAt> *Diag=0) const;
588
589  void EvaluateForOverflow(const ASTContext &Ctx) const;
590
591  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
592  /// lvalue with link time known address, with no side-effects.
593  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
594
595  /// EvaluateAsInitializer - Evaluate an expression as if it were the
596  /// initializer of the given declaration. Returns true if the initializer
597  /// can be folded to a constant, and produces any relevant notes. In C++11,
598  /// notes will be produced if the expression is not a constant expression.
599  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
600                             const VarDecl *VD,
601                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
602
603  /// \brief Enumeration used to describe the kind of Null pointer constant
604  /// returned from \c isNullPointerConstant().
605  enum NullPointerConstantKind {
606    /// \brief Expression is not a Null pointer constant.
607    NPCK_NotNull = 0,
608
609    /// \brief Expression is a Null pointer constant built from a zero integer
610    /// expression that is not a simple, possibly parenthesized, zero literal.
611    /// C++ Core Issue 903 will classify these expressions as "not pointers"
612    /// once it is adopted.
613    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
614    NPCK_ZeroExpression,
615
616    /// \brief Expression is a Null pointer constant built from a literal zero.
617    NPCK_ZeroLiteral,
618
619    /// \brief Expression is a C++11 nullptr.
620    NPCK_CXX11_nullptr,
621
622    /// \brief Expression is a GNU-style __null constant.
623    NPCK_GNUNull
624  };
625
626  /// \brief Enumeration used to describe how \c isNullPointerConstant()
627  /// should cope with value-dependent expressions.
628  enum NullPointerConstantValueDependence {
629    /// \brief Specifies that the expression should never be value-dependent.
630    NPC_NeverValueDependent = 0,
631
632    /// \brief Specifies that a value-dependent expression of integral or
633    /// dependent type should be considered a null pointer constant.
634    NPC_ValueDependentIsNull,
635
636    /// \brief Specifies that a value-dependent expression should be considered
637    /// to never be a null pointer constant.
638    NPC_ValueDependentIsNotNull
639  };
640
641  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
642  /// a Null pointer constant. The return value can further distinguish the
643  /// kind of NULL pointer constant that was detected.
644  NullPointerConstantKind isNullPointerConstant(
645      ASTContext &Ctx,
646      NullPointerConstantValueDependence NPC) const;
647
648  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
649  /// write barrier.
650  bool isOBJCGCCandidate(ASTContext &Ctx) const;
651
652  /// \brief Returns true if this expression is a bound member function.
653  bool isBoundMemberFunction(ASTContext &Ctx) const;
654
655  /// \brief Given an expression of bound-member type, find the type
656  /// of the member.  Returns null if this is an *overloaded* bound
657  /// member expression.
658  static QualType findBoundMemberType(const Expr *expr);
659
660  /// IgnoreImpCasts - Skip past any implicit casts which might
661  /// surround this expression.  Only skips ImplicitCastExprs.
662  Expr *IgnoreImpCasts() LLVM_READONLY;
663
664  /// IgnoreImplicit - Skip past any implicit AST nodes which might
665  /// surround this expression.
666  Expr *IgnoreImplicit() LLVM_READONLY {
667    return cast<Expr>(Stmt::IgnoreImplicit());
668  }
669
670  const Expr *IgnoreImplicit() const LLVM_READONLY {
671    return const_cast<Expr*>(this)->IgnoreImplicit();
672  }
673
674  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
675  ///  its subexpression.  If that subexpression is also a ParenExpr,
676  ///  then this method recursively returns its subexpression, and so forth.
677  ///  Otherwise, the method returns the current Expr.
678  Expr *IgnoreParens() LLVM_READONLY;
679
680  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
681  /// or CastExprs, returning their operand.
682  Expr *IgnoreParenCasts() LLVM_READONLY;
683
684  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
685  /// any ParenExpr or ImplicitCastExprs, returning their operand.
686  Expr *IgnoreParenImpCasts() LLVM_READONLY;
687
688  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
689  /// call to a conversion operator, return the argument.
690  Expr *IgnoreConversionOperator() LLVM_READONLY;
691
692  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
693    return const_cast<Expr*>(this)->IgnoreConversionOperator();
694  }
695
696  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
697    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
698  }
699
700  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
701  /// CastExprs that represent lvalue casts, returning their operand.
702  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
703
704  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
705    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
706  }
707
708  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
709  /// value (including ptr->int casts of the same size).  Strip off any
710  /// ParenExpr or CastExprs, returning their operand.
711  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
712
713  /// Ignore parentheses and derived-to-base casts.
714  Expr *ignoreParenBaseCasts() LLVM_READONLY;
715
716  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
717    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
718  }
719
720  /// \brief Determine whether this expression is a default function argument.
721  ///
722  /// Default arguments are implicitly generated in the abstract syntax tree
723  /// by semantic analysis for function calls, object constructions, etc. in
724  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
725  /// this routine also looks through any implicit casts to determine whether
726  /// the expression is a default argument.
727  bool isDefaultArgument() const;
728
729  /// \brief Determine whether the result of this expression is a
730  /// temporary object of the given class type.
731  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
732
733  /// \brief Whether this expression is an implicit reference to 'this' in C++.
734  bool isImplicitCXXThis() const;
735
736  const Expr *IgnoreImpCasts() const LLVM_READONLY {
737    return const_cast<Expr*>(this)->IgnoreImpCasts();
738  }
739  const Expr *IgnoreParens() const LLVM_READONLY {
740    return const_cast<Expr*>(this)->IgnoreParens();
741  }
742  const Expr *IgnoreParenCasts() const LLVM_READONLY {
743    return const_cast<Expr*>(this)->IgnoreParenCasts();
744  }
745  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
746    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
747  }
748
749  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
750
751  /// \brief For an expression of class type or pointer to class type,
752  /// return the most derived class decl the expression is known to refer to.
753  ///
754  /// If this expression is a cast, this method looks through it to find the
755  /// most derived decl that can be inferred from the expression.
756  /// This is valid because derived-to-base conversions have undefined
757  /// behavior if the object isn't dynamically of the derived type.
758  const CXXRecordDecl *getBestDynamicClassType() const;
759
760  /// Walk outwards from an expression we want to bind a reference to and
761  /// find the expression whose lifetime needs to be extended. Record
762  /// the LHSs of comma expressions and adjustments needed along the path.
763  const Expr *skipRValueSubobjectAdjustments(
764      SmallVectorImpl<const Expr *> &CommaLHS,
765      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
766
767  /// Skip irrelevant expressions to find what should be materialize for
768  /// binding with a reference.
769  const Expr *
770  findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const;
771
772  static bool classof(const Stmt *T) {
773    return T->getStmtClass() >= firstExprConstant &&
774           T->getStmtClass() <= lastExprConstant;
775  }
776};
777
778
779//===----------------------------------------------------------------------===//
780// Primary Expressions.
781//===----------------------------------------------------------------------===//
782
783/// OpaqueValueExpr - An expression referring to an opaque object of a
784/// fixed type and value class.  These don't correspond to concrete
785/// syntax; instead they're used to express operations (usually copy
786/// operations) on values whose source is generally obvious from
787/// context.
788class OpaqueValueExpr : public Expr {
789  friend class ASTStmtReader;
790  Expr *SourceExpr;
791  SourceLocation Loc;
792
793public:
794  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
795                  ExprObjectKind OK = OK_Ordinary,
796                  Expr *SourceExpr = 0)
797    : Expr(OpaqueValueExprClass, T, VK, OK,
798           T->isDependentType(),
799           T->isDependentType() ||
800           (SourceExpr && SourceExpr->isValueDependent()),
801           T->isInstantiationDependentType(),
802           false),
803      SourceExpr(SourceExpr), Loc(Loc) {
804  }
805
806  /// Given an expression which invokes a copy constructor --- i.e.  a
807  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
808  /// find the OpaqueValueExpr that's the source of the construction.
809  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
810
811  explicit OpaqueValueExpr(EmptyShell Empty)
812    : Expr(OpaqueValueExprClass, Empty) { }
813
814  /// \brief Retrieve the location of this expression.
815  SourceLocation getLocation() const { return Loc; }
816
817  SourceLocation getLocStart() const LLVM_READONLY {
818    return SourceExpr ? SourceExpr->getLocStart() : Loc;
819  }
820  SourceLocation getLocEnd() const LLVM_READONLY {
821    return SourceExpr ? SourceExpr->getLocEnd() : Loc;
822  }
823  SourceLocation getExprLoc() const LLVM_READONLY {
824    if (SourceExpr) return SourceExpr->getExprLoc();
825    return Loc;
826  }
827
828  child_range children() { return child_range(); }
829
830  /// The source expression of an opaque value expression is the
831  /// expression which originally generated the value.  This is
832  /// provided as a convenience for analyses that don't wish to
833  /// precisely model the execution behavior of the program.
834  ///
835  /// The source expression is typically set when building the
836  /// expression which binds the opaque value expression in the first
837  /// place.
838  Expr *getSourceExpr() const { return SourceExpr; }
839
840  static bool classof(const Stmt *T) {
841    return T->getStmtClass() == OpaqueValueExprClass;
842  }
843};
844
845/// \brief A reference to a declared variable, function, enum, etc.
846/// [C99 6.5.1p2]
847///
848/// This encodes all the information about how a declaration is referenced
849/// within an expression.
850///
851/// There are several optional constructs attached to DeclRefExprs only when
852/// they apply in order to conserve memory. These are laid out past the end of
853/// the object, and flags in the DeclRefExprBitfield track whether they exist:
854///
855///   DeclRefExprBits.HasQualifier:
856///       Specifies when this declaration reference expression has a C++
857///       nested-name-specifier.
858///   DeclRefExprBits.HasFoundDecl:
859///       Specifies when this declaration reference expression has a record of
860///       a NamedDecl (different from the referenced ValueDecl) which was found
861///       during name lookup and/or overload resolution.
862///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
863///       Specifies when this declaration reference expression has an explicit
864///       C++ template keyword and/or template argument list.
865///   DeclRefExprBits.RefersToEnclosingLocal
866///       Specifies when this declaration reference expression (validly)
867///       refers to a local variable from a different function.
868class DeclRefExpr : public Expr {
869  /// \brief The declaration that we are referencing.
870  ValueDecl *D;
871
872  /// \brief The location of the declaration name itself.
873  SourceLocation Loc;
874
875  /// \brief Provides source/type location info for the declaration name
876  /// embedded in D.
877  DeclarationNameLoc DNLoc;
878
879  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
880  NestedNameSpecifierLoc &getInternalQualifierLoc() {
881    assert(hasQualifier());
882    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
883  }
884
885  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
886  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
887    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
888  }
889
890  /// \brief Test whether there is a distinct FoundDecl attached to the end of
891  /// this DRE.
892  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
893
894  /// \brief Helper to retrieve the optional NamedDecl through which this
895  /// reference occurred.
896  NamedDecl *&getInternalFoundDecl() {
897    assert(hasFoundDecl());
898    if (hasQualifier())
899      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
900    return *reinterpret_cast<NamedDecl **>(this + 1);
901  }
902
903  /// \brief Helper to retrieve the optional NamedDecl through which this
904  /// reference occurred.
905  NamedDecl *getInternalFoundDecl() const {
906    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
907  }
908
909  DeclRefExpr(const ASTContext &Ctx,
910              NestedNameSpecifierLoc QualifierLoc,
911              SourceLocation TemplateKWLoc,
912              ValueDecl *D, bool refersToEnclosingLocal,
913              const DeclarationNameInfo &NameInfo,
914              NamedDecl *FoundD,
915              const TemplateArgumentListInfo *TemplateArgs,
916              QualType T, ExprValueKind VK);
917
918  /// \brief Construct an empty declaration reference expression.
919  explicit DeclRefExpr(EmptyShell Empty)
920    : Expr(DeclRefExprClass, Empty) { }
921
922  /// \brief Computes the type- and value-dependence flags for this
923  /// declaration reference expression.
924  void computeDependence(const ASTContext &C);
925
926public:
927  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
928              ExprValueKind VK, SourceLocation L,
929              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
930    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
931      D(D), Loc(L), DNLoc(LocInfo) {
932    DeclRefExprBits.HasQualifier = 0;
933    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
934    DeclRefExprBits.HasFoundDecl = 0;
935    DeclRefExprBits.HadMultipleCandidates = 0;
936    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
937    computeDependence(D->getASTContext());
938  }
939
940  static DeclRefExpr *Create(const ASTContext &Context,
941                             NestedNameSpecifierLoc QualifierLoc,
942                             SourceLocation TemplateKWLoc,
943                             ValueDecl *D,
944                             bool isEnclosingLocal,
945                             SourceLocation NameLoc,
946                             QualType T, ExprValueKind VK,
947                             NamedDecl *FoundD = 0,
948                             const TemplateArgumentListInfo *TemplateArgs = 0);
949
950  static DeclRefExpr *Create(const ASTContext &Context,
951                             NestedNameSpecifierLoc QualifierLoc,
952                             SourceLocation TemplateKWLoc,
953                             ValueDecl *D,
954                             bool isEnclosingLocal,
955                             const DeclarationNameInfo &NameInfo,
956                             QualType T, ExprValueKind VK,
957                             NamedDecl *FoundD = 0,
958                             const TemplateArgumentListInfo *TemplateArgs = 0);
959
960  /// \brief Construct an empty declaration reference expression.
961  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
962                                  bool HasQualifier,
963                                  bool HasFoundDecl,
964                                  bool HasTemplateKWAndArgsInfo,
965                                  unsigned NumTemplateArgs);
966
967  ValueDecl *getDecl() { return D; }
968  const ValueDecl *getDecl() const { return D; }
969  void setDecl(ValueDecl *NewD) { D = NewD; }
970
971  DeclarationNameInfo getNameInfo() const {
972    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
973  }
974
975  SourceLocation getLocation() const { return Loc; }
976  void setLocation(SourceLocation L) { Loc = L; }
977  SourceLocation getLocStart() const LLVM_READONLY;
978  SourceLocation getLocEnd() const LLVM_READONLY;
979
980  /// \brief Determine whether this declaration reference was preceded by a
981  /// C++ nested-name-specifier, e.g., \c N::foo.
982  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
983
984  /// \brief If the name was qualified, retrieves the nested-name-specifier
985  /// that precedes the name. Otherwise, returns NULL.
986  NestedNameSpecifier *getQualifier() const {
987    if (!hasQualifier())
988      return 0;
989
990    return getInternalQualifierLoc().getNestedNameSpecifier();
991  }
992
993  /// \brief If the name was qualified, retrieves the nested-name-specifier
994  /// that precedes the name, with source-location information.
995  NestedNameSpecifierLoc getQualifierLoc() const {
996    if (!hasQualifier())
997      return NestedNameSpecifierLoc();
998
999    return getInternalQualifierLoc();
1000  }
1001
1002  /// \brief Get the NamedDecl through which this reference occurred.
1003  ///
1004  /// This Decl may be different from the ValueDecl actually referred to in the
1005  /// presence of using declarations, etc. It always returns non-NULL, and may
1006  /// simple return the ValueDecl when appropriate.
1007  NamedDecl *getFoundDecl() {
1008    return hasFoundDecl() ? getInternalFoundDecl() : D;
1009  }
1010
1011  /// \brief Get the NamedDecl through which this reference occurred.
1012  /// See non-const variant.
1013  const NamedDecl *getFoundDecl() const {
1014    return hasFoundDecl() ? getInternalFoundDecl() : D;
1015  }
1016
1017  bool hasTemplateKWAndArgsInfo() const {
1018    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1019  }
1020
1021  /// \brief Return the optional template keyword and arguments info.
1022  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
1023    if (!hasTemplateKWAndArgsInfo())
1024      return 0;
1025
1026    if (hasFoundDecl())
1027      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1028        &getInternalFoundDecl() + 1);
1029
1030    if (hasQualifier())
1031      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1032        &getInternalQualifierLoc() + 1);
1033
1034    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
1035  }
1036
1037  /// \brief Return the optional template keyword and arguments info.
1038  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
1039    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
1040  }
1041
1042  /// \brief Retrieve the location of the template keyword preceding
1043  /// this name, if any.
1044  SourceLocation getTemplateKeywordLoc() const {
1045    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1046    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
1047  }
1048
1049  /// \brief Retrieve the location of the left angle bracket starting the
1050  /// explicit template argument list following the name, if any.
1051  SourceLocation getLAngleLoc() const {
1052    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1053    return getTemplateKWAndArgsInfo()->LAngleLoc;
1054  }
1055
1056  /// \brief Retrieve the location of the right angle bracket ending the
1057  /// explicit template argument list following the name, if any.
1058  SourceLocation getRAngleLoc() const {
1059    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1060    return getTemplateKWAndArgsInfo()->RAngleLoc;
1061  }
1062
1063  /// \brief Determines whether the name in this declaration reference
1064  /// was preceded by the template keyword.
1065  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1066
1067  /// \brief Determines whether this declaration reference was followed by an
1068  /// explicit template argument list.
1069  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1070
1071  /// \brief Retrieve the explicit template argument list that followed the
1072  /// member template name.
1073  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1074    assert(hasExplicitTemplateArgs());
1075    return *getTemplateKWAndArgsInfo();
1076  }
1077
1078  /// \brief Retrieve the explicit template argument list that followed the
1079  /// member template name.
1080  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1081    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1082  }
1083
1084  /// \brief Retrieves the optional explicit template arguments.
1085  /// This points to the same data as getExplicitTemplateArgs(), but
1086  /// returns null if there are no explicit template arguments.
1087  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1088    if (!hasExplicitTemplateArgs()) return 0;
1089    return &getExplicitTemplateArgs();
1090  }
1091
1092  /// \brief Copies the template arguments (if present) into the given
1093  /// structure.
1094  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1095    if (hasExplicitTemplateArgs())
1096      getExplicitTemplateArgs().copyInto(List);
1097  }
1098
1099  /// \brief Retrieve the template arguments provided as part of this
1100  /// template-id.
1101  const TemplateArgumentLoc *getTemplateArgs() const {
1102    if (!hasExplicitTemplateArgs())
1103      return 0;
1104
1105    return getExplicitTemplateArgs().getTemplateArgs();
1106  }
1107
1108  /// \brief Retrieve the number of template arguments provided as part of this
1109  /// template-id.
1110  unsigned getNumTemplateArgs() const {
1111    if (!hasExplicitTemplateArgs())
1112      return 0;
1113
1114    return getExplicitTemplateArgs().NumTemplateArgs;
1115  }
1116
1117  /// \brief Returns true if this expression refers to a function that
1118  /// was resolved from an overloaded set having size greater than 1.
1119  bool hadMultipleCandidates() const {
1120    return DeclRefExprBits.HadMultipleCandidates;
1121  }
1122  /// \brief Sets the flag telling whether this expression refers to
1123  /// a function that was resolved from an overloaded set having size
1124  /// greater than 1.
1125  void setHadMultipleCandidates(bool V = true) {
1126    DeclRefExprBits.HadMultipleCandidates = V;
1127  }
1128
1129  /// Does this DeclRefExpr refer to a local declaration from an
1130  /// enclosing function scope?
1131  bool refersToEnclosingLocal() const {
1132    return DeclRefExprBits.RefersToEnclosingLocal;
1133  }
1134
1135  static bool classof(const Stmt *T) {
1136    return T->getStmtClass() == DeclRefExprClass;
1137  }
1138
1139  // Iterators
1140  child_range children() { return child_range(); }
1141
1142  friend class ASTStmtReader;
1143  friend class ASTStmtWriter;
1144};
1145
1146/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1147class PredefinedExpr : public Expr {
1148public:
1149  enum IdentType {
1150    Func,
1151    Function,
1152    LFunction,  // Same as Function, but as wide string.
1153    PrettyFunction,
1154    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1155    /// 'virtual' keyword is omitted for virtual member functions.
1156    PrettyFunctionNoVirtual
1157  };
1158
1159private:
1160  SourceLocation Loc;
1161  IdentType Type;
1162public:
1163  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1164    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1165           type->isDependentType(), type->isDependentType(),
1166           type->isInstantiationDependentType(),
1167           /*ContainsUnexpandedParameterPack=*/false),
1168      Loc(l), Type(IT) {}
1169
1170  /// \brief Construct an empty predefined expression.
1171  explicit PredefinedExpr(EmptyShell Empty)
1172    : Expr(PredefinedExprClass, Empty) { }
1173
1174  IdentType getIdentType() const { return Type; }
1175  void setIdentType(IdentType IT) { Type = IT; }
1176
1177  SourceLocation getLocation() const { return Loc; }
1178  void setLocation(SourceLocation L) { Loc = L; }
1179
1180  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1181
1182  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1183  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1184
1185  static bool classof(const Stmt *T) {
1186    return T->getStmtClass() == PredefinedExprClass;
1187  }
1188
1189  // Iterators
1190  child_range children() { return child_range(); }
1191};
1192
1193/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1194/// leaking memory.
1195///
1196/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1197/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1198/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1199/// the APFloat/APInt values will never get freed. APNumericStorage uses
1200/// ASTContext's allocator for memory allocation.
1201class APNumericStorage {
1202  union {
1203    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1204    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1205  };
1206  unsigned BitWidth;
1207
1208  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1209
1210  APNumericStorage(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1211  void operator=(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1212
1213protected:
1214  APNumericStorage() : VAL(0), BitWidth(0) { }
1215
1216  llvm::APInt getIntValue() const {
1217    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1218    if (NumWords > 1)
1219      return llvm::APInt(BitWidth, NumWords, pVal);
1220    else
1221      return llvm::APInt(BitWidth, VAL);
1222  }
1223  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1224};
1225
1226class APIntStorage : private APNumericStorage {
1227public:
1228  llvm::APInt getValue() const { return getIntValue(); }
1229  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1230    setIntValue(C, Val);
1231  }
1232};
1233
1234class APFloatStorage : private APNumericStorage {
1235public:
1236  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1237    return llvm::APFloat(Semantics, getIntValue());
1238  }
1239  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1240    setIntValue(C, Val.bitcastToAPInt());
1241  }
1242};
1243
1244class IntegerLiteral : public Expr, public APIntStorage {
1245  SourceLocation Loc;
1246
1247  /// \brief Construct an empty integer literal.
1248  explicit IntegerLiteral(EmptyShell Empty)
1249    : Expr(IntegerLiteralClass, Empty) { }
1250
1251public:
1252  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1253  // or UnsignedLongLongTy
1254  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1255                 SourceLocation l);
1256
1257  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1258  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1259  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1260  /// \param V - the value that the returned integer literal contains.
1261  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1262                                QualType type, SourceLocation l);
1263  /// \brief Returns a new empty integer literal.
1264  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1265
1266  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1267  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1268
1269  /// \brief Retrieve the location of the literal.
1270  SourceLocation getLocation() const { return Loc; }
1271
1272  void setLocation(SourceLocation Location) { Loc = Location; }
1273
1274  static bool classof(const Stmt *T) {
1275    return T->getStmtClass() == IntegerLiteralClass;
1276  }
1277
1278  // Iterators
1279  child_range children() { return child_range(); }
1280};
1281
1282class CharacterLiteral : public Expr {
1283public:
1284  enum CharacterKind {
1285    Ascii,
1286    Wide,
1287    UTF16,
1288    UTF32
1289  };
1290
1291private:
1292  unsigned Value;
1293  SourceLocation Loc;
1294public:
1295  // type should be IntTy
1296  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1297                   SourceLocation l)
1298    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1299           false, false),
1300      Value(value), Loc(l) {
1301    CharacterLiteralBits.Kind = kind;
1302  }
1303
1304  /// \brief Construct an empty character literal.
1305  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1306
1307  SourceLocation getLocation() const { return Loc; }
1308  CharacterKind getKind() const {
1309    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1310  }
1311
1312  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1313  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1314
1315  unsigned getValue() const { return Value; }
1316
1317  void setLocation(SourceLocation Location) { Loc = Location; }
1318  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1319  void setValue(unsigned Val) { Value = Val; }
1320
1321  static bool classof(const Stmt *T) {
1322    return T->getStmtClass() == CharacterLiteralClass;
1323  }
1324
1325  // Iterators
1326  child_range children() { return child_range(); }
1327};
1328
1329class FloatingLiteral : public Expr, private APFloatStorage {
1330  SourceLocation Loc;
1331
1332  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1333                  QualType Type, SourceLocation L);
1334
1335  /// \brief Construct an empty floating-point literal.
1336  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1337
1338public:
1339  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1340                                 bool isexact, QualType Type, SourceLocation L);
1341  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1342
1343  llvm::APFloat getValue() const {
1344    return APFloatStorage::getValue(getSemantics());
1345  }
1346  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1347    assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1348    APFloatStorage::setValue(C, Val);
1349  }
1350
1351  /// Get a raw enumeration value representing the floating-point semantics of
1352  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1353  APFloatSemantics getRawSemantics() const {
1354    return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1355  }
1356
1357  /// Set the raw enumeration value representing the floating-point semantics of
1358  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1359  void setRawSemantics(APFloatSemantics Sem) {
1360    FloatingLiteralBits.Semantics = Sem;
1361  }
1362
1363  /// Return the APFloat semantics this literal uses.
1364  const llvm::fltSemantics &getSemantics() const;
1365
1366  /// Set the APFloat semantics this literal uses.
1367  void setSemantics(const llvm::fltSemantics &Sem);
1368
1369  bool isExact() const { return FloatingLiteralBits.IsExact; }
1370  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1371
1372  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1373  /// double.  Note that this may cause loss of precision, but is useful for
1374  /// debugging dumps, etc.
1375  double getValueAsApproximateDouble() const;
1376
1377  SourceLocation getLocation() const { return Loc; }
1378  void setLocation(SourceLocation L) { Loc = L; }
1379
1380  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1381  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1382
1383  static bool classof(const Stmt *T) {
1384    return T->getStmtClass() == FloatingLiteralClass;
1385  }
1386
1387  // Iterators
1388  child_range children() { return child_range(); }
1389};
1390
1391/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1392/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1393/// IntegerLiteral classes.  Instances of this class always have a Complex type
1394/// whose element type matches the subexpression.
1395///
1396class ImaginaryLiteral : public Expr {
1397  Stmt *Val;
1398public:
1399  ImaginaryLiteral(Expr *val, QualType Ty)
1400    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1401           false, false),
1402      Val(val) {}
1403
1404  /// \brief Build an empty imaginary literal.
1405  explicit ImaginaryLiteral(EmptyShell Empty)
1406    : Expr(ImaginaryLiteralClass, Empty) { }
1407
1408  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1409  Expr *getSubExpr() { return cast<Expr>(Val); }
1410  void setSubExpr(Expr *E) { Val = E; }
1411
1412  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1413  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1414
1415  static bool classof(const Stmt *T) {
1416    return T->getStmtClass() == ImaginaryLiteralClass;
1417  }
1418
1419  // Iterators
1420  child_range children() { return child_range(&Val, &Val+1); }
1421};
1422
1423/// StringLiteral - This represents a string literal expression, e.g. "foo"
1424/// or L"bar" (wide strings).  The actual string is returned by getBytes()
1425/// is NOT null-terminated, and the length of the string is determined by
1426/// calling getByteLength().  The C type for a string is always a
1427/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1428/// not.
1429///
1430/// Note that strings in C can be formed by concatenation of multiple string
1431/// literal pptokens in translation phase #6.  This keeps track of the locations
1432/// of each of these pieces.
1433///
1434/// Strings in C can also be truncated and extended by assigning into arrays,
1435/// e.g. with constructs like:
1436///   char X[2] = "foobar";
1437/// In this case, getByteLength() will return 6, but the string literal will
1438/// have type "char[2]".
1439class StringLiteral : public Expr {
1440public:
1441  enum StringKind {
1442    Ascii,
1443    Wide,
1444    UTF8,
1445    UTF16,
1446    UTF32
1447  };
1448
1449private:
1450  friend class ASTStmtReader;
1451
1452  union {
1453    const char *asChar;
1454    const uint16_t *asUInt16;
1455    const uint32_t *asUInt32;
1456  } StrData;
1457  unsigned Length;
1458  unsigned CharByteWidth : 4;
1459  unsigned Kind : 3;
1460  unsigned IsPascal : 1;
1461  unsigned NumConcatenated;
1462  SourceLocation TokLocs[1];
1463
1464  StringLiteral(QualType Ty) :
1465    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1466         false) {}
1467
1468  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1469
1470public:
1471  /// This is the "fully general" constructor that allows representation of
1472  /// strings formed from multiple concatenated tokens.
1473  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1474                               StringKind Kind, bool Pascal, QualType Ty,
1475                               const SourceLocation *Loc, unsigned NumStrs);
1476
1477  /// Simple constructor for string literals made from one token.
1478  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1479                               StringKind Kind, bool Pascal, QualType Ty,
1480                               SourceLocation Loc) {
1481    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1482  }
1483
1484  /// \brief Construct an empty string literal.
1485  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1486
1487  StringRef getString() const {
1488    assert(CharByteWidth==1
1489           && "This function is used in places that assume strings use char");
1490    return StringRef(StrData.asChar, getByteLength());
1491  }
1492
1493  /// Allow access to clients that need the byte representation, such as
1494  /// ASTWriterStmt::VisitStringLiteral().
1495  StringRef getBytes() const {
1496    // FIXME: StringRef may not be the right type to use as a result for this.
1497    if (CharByteWidth == 1)
1498      return StringRef(StrData.asChar, getByteLength());
1499    if (CharByteWidth == 4)
1500      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1501                       getByteLength());
1502    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1503    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1504                     getByteLength());
1505  }
1506
1507  void outputString(raw_ostream &OS) const;
1508
1509  uint32_t getCodeUnit(size_t i) const {
1510    assert(i < Length && "out of bounds access");
1511    if (CharByteWidth == 1)
1512      return static_cast<unsigned char>(StrData.asChar[i]);
1513    if (CharByteWidth == 4)
1514      return StrData.asUInt32[i];
1515    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1516    return StrData.asUInt16[i];
1517  }
1518
1519  unsigned getByteLength() const { return CharByteWidth*Length; }
1520  unsigned getLength() const { return Length; }
1521  unsigned getCharByteWidth() const { return CharByteWidth; }
1522
1523  /// \brief Sets the string data to the given string data.
1524  void setString(const ASTContext &C, StringRef Str,
1525                 StringKind Kind, bool IsPascal);
1526
1527  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1528
1529
1530  bool isAscii() const { return Kind == Ascii; }
1531  bool isWide() const { return Kind == Wide; }
1532  bool isUTF8() const { return Kind == UTF8; }
1533  bool isUTF16() const { return Kind == UTF16; }
1534  bool isUTF32() const { return Kind == UTF32; }
1535  bool isPascal() const { return IsPascal; }
1536
1537  bool containsNonAsciiOrNull() const {
1538    StringRef Str = getString();
1539    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1540      if (!isASCII(Str[i]) || !Str[i])
1541        return true;
1542    return false;
1543  }
1544
1545  /// getNumConcatenated - Get the number of string literal tokens that were
1546  /// concatenated in translation phase #6 to form this string literal.
1547  unsigned getNumConcatenated() const { return NumConcatenated; }
1548
1549  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1550    assert(TokNum < NumConcatenated && "Invalid tok number");
1551    return TokLocs[TokNum];
1552  }
1553  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1554    assert(TokNum < NumConcatenated && "Invalid tok number");
1555    TokLocs[TokNum] = L;
1556  }
1557
1558  /// getLocationOfByte - Return a source location that points to the specified
1559  /// byte of this string literal.
1560  ///
1561  /// Strings are amazingly complex.  They can be formed from multiple tokens
1562  /// and can have escape sequences in them in addition to the usual trigraph
1563  /// and escaped newline business.  This routine handles this complexity.
1564  ///
1565  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1566                                   const LangOptions &Features,
1567                                   const TargetInfo &Target) const;
1568
1569  typedef const SourceLocation *tokloc_iterator;
1570  tokloc_iterator tokloc_begin() const { return TokLocs; }
1571  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1572
1573  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1574  SourceLocation getLocEnd() const LLVM_READONLY {
1575    return TokLocs[NumConcatenated - 1];
1576  }
1577
1578  static bool classof(const Stmt *T) {
1579    return T->getStmtClass() == StringLiteralClass;
1580  }
1581
1582  // Iterators
1583  child_range children() { return child_range(); }
1584};
1585
1586/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1587/// AST node is only formed if full location information is requested.
1588class ParenExpr : public Expr {
1589  SourceLocation L, R;
1590  Stmt *Val;
1591public:
1592  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1593    : Expr(ParenExprClass, val->getType(),
1594           val->getValueKind(), val->getObjectKind(),
1595           val->isTypeDependent(), val->isValueDependent(),
1596           val->isInstantiationDependent(),
1597           val->containsUnexpandedParameterPack()),
1598      L(l), R(r), Val(val) {}
1599
1600  /// \brief Construct an empty parenthesized expression.
1601  explicit ParenExpr(EmptyShell Empty)
1602    : Expr(ParenExprClass, Empty) { }
1603
1604  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1605  Expr *getSubExpr() { return cast<Expr>(Val); }
1606  void setSubExpr(Expr *E) { Val = E; }
1607
1608  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1609  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1610
1611  /// \brief Get the location of the left parentheses '('.
1612  SourceLocation getLParen() const { return L; }
1613  void setLParen(SourceLocation Loc) { L = Loc; }
1614
1615  /// \brief Get the location of the right parentheses ')'.
1616  SourceLocation getRParen() const { return R; }
1617  void setRParen(SourceLocation Loc) { R = Loc; }
1618
1619  static bool classof(const Stmt *T) {
1620    return T->getStmtClass() == ParenExprClass;
1621  }
1622
1623  // Iterators
1624  child_range children() { return child_range(&Val, &Val+1); }
1625};
1626
1627
1628/// UnaryOperator - This represents the unary-expression's (except sizeof and
1629/// alignof), the postinc/postdec operators from postfix-expression, and various
1630/// extensions.
1631///
1632/// Notes on various nodes:
1633///
1634/// Real/Imag - These return the real/imag part of a complex operand.  If
1635///   applied to a non-complex value, the former returns its operand and the
1636///   later returns zero in the type of the operand.
1637///
1638class UnaryOperator : public Expr {
1639public:
1640  typedef UnaryOperatorKind Opcode;
1641
1642private:
1643  unsigned Opc : 5;
1644  SourceLocation Loc;
1645  Stmt *Val;
1646public:
1647
1648  UnaryOperator(Expr *input, Opcode opc, QualType type,
1649                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1650    : Expr(UnaryOperatorClass, type, VK, OK,
1651           input->isTypeDependent() || type->isDependentType(),
1652           input->isValueDependent(),
1653           (input->isInstantiationDependent() ||
1654            type->isInstantiationDependentType()),
1655           input->containsUnexpandedParameterPack()),
1656      Opc(opc), Loc(l), Val(input) {}
1657
1658  /// \brief Build an empty unary operator.
1659  explicit UnaryOperator(EmptyShell Empty)
1660    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1661
1662  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1663  void setOpcode(Opcode O) { Opc = O; }
1664
1665  Expr *getSubExpr() const { return cast<Expr>(Val); }
1666  void setSubExpr(Expr *E) { Val = E; }
1667
1668  /// getOperatorLoc - Return the location of the operator.
1669  SourceLocation getOperatorLoc() const { return Loc; }
1670  void setOperatorLoc(SourceLocation L) { Loc = L; }
1671
1672  /// isPostfix - Return true if this is a postfix operation, like x++.
1673  static bool isPostfix(Opcode Op) {
1674    return Op == UO_PostInc || Op == UO_PostDec;
1675  }
1676
1677  /// isPrefix - Return true if this is a prefix operation, like --x.
1678  static bool isPrefix(Opcode Op) {
1679    return Op == UO_PreInc || Op == UO_PreDec;
1680  }
1681
1682  bool isPrefix() const { return isPrefix(getOpcode()); }
1683  bool isPostfix() const { return isPostfix(getOpcode()); }
1684
1685  static bool isIncrementOp(Opcode Op) {
1686    return Op == UO_PreInc || Op == UO_PostInc;
1687  }
1688  bool isIncrementOp() const {
1689    return isIncrementOp(getOpcode());
1690  }
1691
1692  static bool isDecrementOp(Opcode Op) {
1693    return Op == UO_PreDec || Op == UO_PostDec;
1694  }
1695  bool isDecrementOp() const {
1696    return isDecrementOp(getOpcode());
1697  }
1698
1699  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1700  bool isIncrementDecrementOp() const {
1701    return isIncrementDecrementOp(getOpcode());
1702  }
1703
1704  static bool isArithmeticOp(Opcode Op) {
1705    return Op >= UO_Plus && Op <= UO_LNot;
1706  }
1707  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1708
1709  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1710  /// corresponds to, e.g. "sizeof" or "[pre]++"
1711  static StringRef getOpcodeStr(Opcode Op);
1712
1713  /// \brief Retrieve the unary opcode that corresponds to the given
1714  /// overloaded operator.
1715  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1716
1717  /// \brief Retrieve the overloaded operator kind that corresponds to
1718  /// the given unary opcode.
1719  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1720
1721  SourceLocation getLocStart() const LLVM_READONLY {
1722    return isPostfix() ? Val->getLocStart() : Loc;
1723  }
1724  SourceLocation getLocEnd() const LLVM_READONLY {
1725    return isPostfix() ? Loc : Val->getLocEnd();
1726  }
1727  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1728
1729  static bool classof(const Stmt *T) {
1730    return T->getStmtClass() == UnaryOperatorClass;
1731  }
1732
1733  // Iterators
1734  child_range children() { return child_range(&Val, &Val+1); }
1735};
1736
1737/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1738/// offsetof(record-type, member-designator). For example, given:
1739/// @code
1740/// struct S {
1741///   float f;
1742///   double d;
1743/// };
1744/// struct T {
1745///   int i;
1746///   struct S s[10];
1747/// };
1748/// @endcode
1749/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1750
1751class OffsetOfExpr : public Expr {
1752public:
1753  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1754  class OffsetOfNode {
1755  public:
1756    /// \brief The kind of offsetof node we have.
1757    enum Kind {
1758      /// \brief An index into an array.
1759      Array = 0x00,
1760      /// \brief A field.
1761      Field = 0x01,
1762      /// \brief A field in a dependent type, known only by its name.
1763      Identifier = 0x02,
1764      /// \brief An implicit indirection through a C++ base class, when the
1765      /// field found is in a base class.
1766      Base = 0x03
1767    };
1768
1769  private:
1770    enum { MaskBits = 2, Mask = 0x03 };
1771
1772    /// \brief The source range that covers this part of the designator.
1773    SourceRange Range;
1774
1775    /// \brief The data describing the designator, which comes in three
1776    /// different forms, depending on the lower two bits.
1777    ///   - An unsigned index into the array of Expr*'s stored after this node
1778    ///     in memory, for [constant-expression] designators.
1779    ///   - A FieldDecl*, for references to a known field.
1780    ///   - An IdentifierInfo*, for references to a field with a given name
1781    ///     when the class type is dependent.
1782    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1783    ///     base class.
1784    uintptr_t Data;
1785
1786  public:
1787    /// \brief Create an offsetof node that refers to an array element.
1788    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1789                 SourceLocation RBracketLoc)
1790      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1791
1792    /// \brief Create an offsetof node that refers to a field.
1793    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1794                 SourceLocation NameLoc)
1795      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1796        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1797
1798    /// \brief Create an offsetof node that refers to an identifier.
1799    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1800                 SourceLocation NameLoc)
1801      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1802        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1803
1804    /// \brief Create an offsetof node that refers into a C++ base class.
1805    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1806      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1807
1808    /// \brief Determine what kind of offsetof node this is.
1809    Kind getKind() const {
1810      return static_cast<Kind>(Data & Mask);
1811    }
1812
1813    /// \brief For an array element node, returns the index into the array
1814    /// of expressions.
1815    unsigned getArrayExprIndex() const {
1816      assert(getKind() == Array);
1817      return Data >> 2;
1818    }
1819
1820    /// \brief For a field offsetof node, returns the field.
1821    FieldDecl *getField() const {
1822      assert(getKind() == Field);
1823      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1824    }
1825
1826    /// \brief For a field or identifier offsetof node, returns the name of
1827    /// the field.
1828    IdentifierInfo *getFieldName() const;
1829
1830    /// \brief For a base class node, returns the base specifier.
1831    CXXBaseSpecifier *getBase() const {
1832      assert(getKind() == Base);
1833      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1834    }
1835
1836    /// \brief Retrieve the source range that covers this offsetof node.
1837    ///
1838    /// For an array element node, the source range contains the locations of
1839    /// the square brackets. For a field or identifier node, the source range
1840    /// contains the location of the period (if there is one) and the
1841    /// identifier.
1842    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1843    SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1844    SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1845  };
1846
1847private:
1848
1849  SourceLocation OperatorLoc, RParenLoc;
1850  // Base type;
1851  TypeSourceInfo *TSInfo;
1852  // Number of sub-components (i.e. instances of OffsetOfNode).
1853  unsigned NumComps;
1854  // Number of sub-expressions (i.e. array subscript expressions).
1855  unsigned NumExprs;
1856
1857  OffsetOfExpr(const ASTContext &C, QualType type,
1858               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1859               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1860               SourceLocation RParenLoc);
1861
1862  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1863    : Expr(OffsetOfExprClass, EmptyShell()),
1864      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1865
1866public:
1867
1868  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1869                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1870                              ArrayRef<OffsetOfNode> comps,
1871                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1872
1873  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1874                                   unsigned NumComps, unsigned NumExprs);
1875
1876  /// getOperatorLoc - Return the location of the operator.
1877  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1878  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1879
1880  /// \brief Return the location of the right parentheses.
1881  SourceLocation getRParenLoc() const { return RParenLoc; }
1882  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1883
1884  TypeSourceInfo *getTypeSourceInfo() const {
1885    return TSInfo;
1886  }
1887  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1888    TSInfo = tsi;
1889  }
1890
1891  const OffsetOfNode &getComponent(unsigned Idx) const {
1892    assert(Idx < NumComps && "Subscript out of range");
1893    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1894  }
1895
1896  void setComponent(unsigned Idx, OffsetOfNode ON) {
1897    assert(Idx < NumComps && "Subscript out of range");
1898    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1899  }
1900
1901  unsigned getNumComponents() const {
1902    return NumComps;
1903  }
1904
1905  Expr* getIndexExpr(unsigned Idx) {
1906    assert(Idx < NumExprs && "Subscript out of range");
1907    return reinterpret_cast<Expr **>(
1908                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1909  }
1910  const Expr *getIndexExpr(unsigned Idx) const {
1911    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1912  }
1913
1914  void setIndexExpr(unsigned Idx, Expr* E) {
1915    assert(Idx < NumComps && "Subscript out of range");
1916    reinterpret_cast<Expr **>(
1917                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1918  }
1919
1920  unsigned getNumExpressions() const {
1921    return NumExprs;
1922  }
1923
1924  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
1925  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1926
1927  static bool classof(const Stmt *T) {
1928    return T->getStmtClass() == OffsetOfExprClass;
1929  }
1930
1931  // Iterators
1932  child_range children() {
1933    Stmt **begin =
1934      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1935                               + NumComps);
1936    return child_range(begin, begin + NumExprs);
1937  }
1938};
1939
1940/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1941/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1942/// vec_step (OpenCL 1.1 6.11.12).
1943class UnaryExprOrTypeTraitExpr : public Expr {
1944  union {
1945    TypeSourceInfo *Ty;
1946    Stmt *Ex;
1947  } Argument;
1948  SourceLocation OpLoc, RParenLoc;
1949
1950public:
1951  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1952                           QualType resultType, SourceLocation op,
1953                           SourceLocation rp) :
1954      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1955           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1956           // Value-dependent if the argument is type-dependent.
1957           TInfo->getType()->isDependentType(),
1958           TInfo->getType()->isInstantiationDependentType(),
1959           TInfo->getType()->containsUnexpandedParameterPack()),
1960      OpLoc(op), RParenLoc(rp) {
1961    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1962    UnaryExprOrTypeTraitExprBits.IsType = true;
1963    Argument.Ty = TInfo;
1964  }
1965
1966  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1967                           QualType resultType, SourceLocation op,
1968                           SourceLocation rp) :
1969      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1970           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1971           // Value-dependent if the argument is type-dependent.
1972           E->isTypeDependent(),
1973           E->isInstantiationDependent(),
1974           E->containsUnexpandedParameterPack()),
1975      OpLoc(op), RParenLoc(rp) {
1976    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1977    UnaryExprOrTypeTraitExprBits.IsType = false;
1978    Argument.Ex = E;
1979  }
1980
1981  /// \brief Construct an empty sizeof/alignof expression.
1982  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1983    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1984
1985  UnaryExprOrTypeTrait getKind() const {
1986    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1987  }
1988  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1989
1990  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1991  QualType getArgumentType() const {
1992    return getArgumentTypeInfo()->getType();
1993  }
1994  TypeSourceInfo *getArgumentTypeInfo() const {
1995    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1996    return Argument.Ty;
1997  }
1998  Expr *getArgumentExpr() {
1999    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2000    return static_cast<Expr*>(Argument.Ex);
2001  }
2002  const Expr *getArgumentExpr() const {
2003    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2004  }
2005
2006  void setArgument(Expr *E) {
2007    Argument.Ex = E;
2008    UnaryExprOrTypeTraitExprBits.IsType = false;
2009  }
2010  void setArgument(TypeSourceInfo *TInfo) {
2011    Argument.Ty = TInfo;
2012    UnaryExprOrTypeTraitExprBits.IsType = true;
2013  }
2014
2015  /// Gets the argument type, or the type of the argument expression, whichever
2016  /// is appropriate.
2017  QualType getTypeOfArgument() const {
2018    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2019  }
2020
2021  SourceLocation getOperatorLoc() const { return OpLoc; }
2022  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2023
2024  SourceLocation getRParenLoc() const { return RParenLoc; }
2025  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2026
2027  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2028  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2029
2030  static bool classof(const Stmt *T) {
2031    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2032  }
2033
2034  // Iterators
2035  child_range children();
2036};
2037
2038//===----------------------------------------------------------------------===//
2039// Postfix Operators.
2040//===----------------------------------------------------------------------===//
2041
2042/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2043class ArraySubscriptExpr : public Expr {
2044  enum { LHS, RHS, END_EXPR=2 };
2045  Stmt* SubExprs[END_EXPR];
2046  SourceLocation RBracketLoc;
2047public:
2048  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2049                     ExprValueKind VK, ExprObjectKind OK,
2050                     SourceLocation rbracketloc)
2051  : Expr(ArraySubscriptExprClass, t, VK, OK,
2052         lhs->isTypeDependent() || rhs->isTypeDependent(),
2053         lhs->isValueDependent() || rhs->isValueDependent(),
2054         (lhs->isInstantiationDependent() ||
2055          rhs->isInstantiationDependent()),
2056         (lhs->containsUnexpandedParameterPack() ||
2057          rhs->containsUnexpandedParameterPack())),
2058    RBracketLoc(rbracketloc) {
2059    SubExprs[LHS] = lhs;
2060    SubExprs[RHS] = rhs;
2061  }
2062
2063  /// \brief Create an empty array subscript expression.
2064  explicit ArraySubscriptExpr(EmptyShell Shell)
2065    : Expr(ArraySubscriptExprClass, Shell) { }
2066
2067  /// An array access can be written A[4] or 4[A] (both are equivalent).
2068  /// - getBase() and getIdx() always present the normalized view: A[4].
2069  ///    In this case getBase() returns "A" and getIdx() returns "4".
2070  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2071  ///    4[A] getLHS() returns "4".
2072  /// Note: Because vector element access is also written A[4] we must
2073  /// predicate the format conversion in getBase and getIdx only on the
2074  /// the type of the RHS, as it is possible for the LHS to be a vector of
2075  /// integer type
2076  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2077  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2078  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2079
2080  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2081  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2082  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2083
2084  Expr *getBase() {
2085    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2086  }
2087
2088  const Expr *getBase() const {
2089    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2090  }
2091
2092  Expr *getIdx() {
2093    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2094  }
2095
2096  const Expr *getIdx() const {
2097    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2098  }
2099
2100  SourceLocation getLocStart() const LLVM_READONLY {
2101    return getLHS()->getLocStart();
2102  }
2103  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2104
2105  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2106  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2107
2108  SourceLocation getExprLoc() const LLVM_READONLY {
2109    return getBase()->getExprLoc();
2110  }
2111
2112  static bool classof(const Stmt *T) {
2113    return T->getStmtClass() == ArraySubscriptExprClass;
2114  }
2115
2116  // Iterators
2117  child_range children() {
2118    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2119  }
2120};
2121
2122
2123/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2124/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2125/// while its subclasses may represent alternative syntax that (semantically)
2126/// results in a function call. For example, CXXOperatorCallExpr is
2127/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2128/// "str1 + str2" to resolve to a function call.
2129class CallExpr : public Expr {
2130  enum { FN=0, PREARGS_START=1 };
2131  Stmt **SubExprs;
2132  unsigned NumArgs;
2133  SourceLocation RParenLoc;
2134
2135protected:
2136  // These versions of the constructor are for derived classes.
2137  CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2138           ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2139           SourceLocation rparenloc);
2140  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2141           EmptyShell Empty);
2142
2143  Stmt *getPreArg(unsigned i) {
2144    assert(i < getNumPreArgs() && "Prearg access out of range!");
2145    return SubExprs[PREARGS_START+i];
2146  }
2147  const Stmt *getPreArg(unsigned i) const {
2148    assert(i < getNumPreArgs() && "Prearg access out of range!");
2149    return SubExprs[PREARGS_START+i];
2150  }
2151  void setPreArg(unsigned i, Stmt *PreArg) {
2152    assert(i < getNumPreArgs() && "Prearg access out of range!");
2153    SubExprs[PREARGS_START+i] = PreArg;
2154  }
2155
2156  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2157
2158public:
2159  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2160           ExprValueKind VK, SourceLocation rparenloc);
2161
2162  /// \brief Build an empty call expression.
2163  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2164
2165  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2166  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2167  void setCallee(Expr *F) { SubExprs[FN] = F; }
2168
2169  Decl *getCalleeDecl();
2170  const Decl *getCalleeDecl() const {
2171    return const_cast<CallExpr*>(this)->getCalleeDecl();
2172  }
2173
2174  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2175  FunctionDecl *getDirectCallee();
2176  const FunctionDecl *getDirectCallee() const {
2177    return const_cast<CallExpr*>(this)->getDirectCallee();
2178  }
2179
2180  /// getNumArgs - Return the number of actual arguments to this call.
2181  ///
2182  unsigned getNumArgs() const { return NumArgs; }
2183
2184  /// \brief Retrieve the call arguments.
2185  Expr **getArgs() {
2186    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2187  }
2188  const Expr *const *getArgs() const {
2189    return const_cast<CallExpr*>(this)->getArgs();
2190  }
2191
2192  /// getArg - Return the specified argument.
2193  Expr *getArg(unsigned Arg) {
2194    assert(Arg < NumArgs && "Arg access out of range!");
2195    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2196  }
2197  const Expr *getArg(unsigned Arg) const {
2198    assert(Arg < NumArgs && "Arg access out of range!");
2199    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2200  }
2201
2202  /// setArg - Set the specified argument.
2203  void setArg(unsigned Arg, Expr *ArgExpr) {
2204    assert(Arg < NumArgs && "Arg access out of range!");
2205    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2206  }
2207
2208  /// setNumArgs - This changes the number of arguments present in this call.
2209  /// Any orphaned expressions are deleted by this, and any new operands are set
2210  /// to null.
2211  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2212
2213  typedef ExprIterator arg_iterator;
2214  typedef ConstExprIterator const_arg_iterator;
2215
2216  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2217  arg_iterator arg_end() {
2218    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2219  }
2220  const_arg_iterator arg_begin() const {
2221    return SubExprs+PREARGS_START+getNumPreArgs();
2222  }
2223  const_arg_iterator arg_end() const {
2224    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2225  }
2226
2227  /// This method provides fast access to all the subexpressions of
2228  /// a CallExpr without going through the slower virtual child_iterator
2229  /// interface.  This provides efficient reverse iteration of the
2230  /// subexpressions.  This is currently used for CFG construction.
2231  ArrayRef<Stmt*> getRawSubExprs() {
2232    return ArrayRef<Stmt*>(SubExprs,
2233                           getNumPreArgs() + PREARGS_START + getNumArgs());
2234  }
2235
2236  /// getNumCommas - Return the number of commas that must have been present in
2237  /// this function call.
2238  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2239
2240  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2241  /// not, return 0.
2242  unsigned isBuiltinCall() const;
2243
2244  /// \brief Returns \c true if this is a call to a builtin which does not
2245  /// evaluate side-effects within its arguments.
2246  bool isUnevaluatedBuiltinCall(ASTContext &Ctx) const;
2247
2248  /// getCallReturnType - Get the return type of the call expr. This is not
2249  /// always the type of the expr itself, if the return type is a reference
2250  /// type.
2251  QualType getCallReturnType() const;
2252
2253  SourceLocation getRParenLoc() const { return RParenLoc; }
2254  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2255
2256  SourceLocation getLocStart() const LLVM_READONLY;
2257  SourceLocation getLocEnd() const LLVM_READONLY;
2258
2259  static bool classof(const Stmt *T) {
2260    return T->getStmtClass() >= firstCallExprConstant &&
2261           T->getStmtClass() <= lastCallExprConstant;
2262  }
2263
2264  // Iterators
2265  child_range children() {
2266    return child_range(&SubExprs[0],
2267                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2268  }
2269};
2270
2271/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2272///
2273class MemberExpr : public Expr {
2274  /// Extra data stored in some member expressions.
2275  struct MemberNameQualifier {
2276    /// \brief The nested-name-specifier that qualifies the name, including
2277    /// source-location information.
2278    NestedNameSpecifierLoc QualifierLoc;
2279
2280    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2281    /// name qualifiers.
2282    DeclAccessPair FoundDecl;
2283  };
2284
2285  /// Base - the expression for the base pointer or structure references.  In
2286  /// X.F, this is "X".
2287  Stmt *Base;
2288
2289  /// MemberDecl - This is the decl being referenced by the field/member name.
2290  /// In X.F, this is the decl referenced by F.
2291  ValueDecl *MemberDecl;
2292
2293  /// MemberDNLoc - Provides source/type location info for the
2294  /// declaration name embedded in MemberDecl.
2295  DeclarationNameLoc MemberDNLoc;
2296
2297  /// MemberLoc - This is the location of the member name.
2298  SourceLocation MemberLoc;
2299
2300  /// IsArrow - True if this is "X->F", false if this is "X.F".
2301  bool IsArrow : 1;
2302
2303  /// \brief True if this member expression used a nested-name-specifier to
2304  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2305  /// declaration.  When true, a MemberNameQualifier
2306  /// structure is allocated immediately after the MemberExpr.
2307  bool HasQualifierOrFoundDecl : 1;
2308
2309  /// \brief True if this member expression specified a template keyword
2310  /// and/or a template argument list explicitly, e.g., x->f<int>,
2311  /// x->template f, x->template f<int>.
2312  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2313  /// TemplateArguments (if any) are allocated immediately after
2314  /// the MemberExpr or, if the member expression also has a qualifier,
2315  /// after the MemberNameQualifier structure.
2316  bool HasTemplateKWAndArgsInfo : 1;
2317
2318  /// \brief True if this member expression refers to a method that
2319  /// was resolved from an overloaded set having size greater than 1.
2320  bool HadMultipleCandidates : 1;
2321
2322  /// \brief Retrieve the qualifier that preceded the member name, if any.
2323  MemberNameQualifier *getMemberQualifier() {
2324    assert(HasQualifierOrFoundDecl);
2325    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2326  }
2327
2328  /// \brief Retrieve the qualifier that preceded the member name, if any.
2329  const MemberNameQualifier *getMemberQualifier() const {
2330    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2331  }
2332
2333public:
2334  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2335             const DeclarationNameInfo &NameInfo, QualType ty,
2336             ExprValueKind VK, ExprObjectKind OK)
2337    : Expr(MemberExprClass, ty, VK, OK,
2338           base->isTypeDependent(),
2339           base->isValueDependent(),
2340           base->isInstantiationDependent(),
2341           base->containsUnexpandedParameterPack()),
2342      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2343      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2344      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2345      HadMultipleCandidates(false) {
2346    assert(memberdecl->getDeclName() == NameInfo.getName());
2347  }
2348
2349  // NOTE: this constructor should be used only when it is known that
2350  // the member name can not provide additional syntactic info
2351  // (i.e., source locations for C++ operator names or type source info
2352  // for constructors, destructors and conversion operators).
2353  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2354             SourceLocation l, QualType ty,
2355             ExprValueKind VK, ExprObjectKind OK)
2356    : Expr(MemberExprClass, ty, VK, OK,
2357           base->isTypeDependent(), base->isValueDependent(),
2358           base->isInstantiationDependent(),
2359           base->containsUnexpandedParameterPack()),
2360      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2361      IsArrow(isarrow),
2362      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2363      HadMultipleCandidates(false) {}
2364
2365  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2366                            NestedNameSpecifierLoc QualifierLoc,
2367                            SourceLocation TemplateKWLoc,
2368                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2369                            DeclarationNameInfo MemberNameInfo,
2370                            const TemplateArgumentListInfo *targs,
2371                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2372
2373  void setBase(Expr *E) { Base = E; }
2374  Expr *getBase() const { return cast<Expr>(Base); }
2375
2376  /// \brief Retrieve the member declaration to which this expression refers.
2377  ///
2378  /// The returned declaration will either be a FieldDecl or (in C++)
2379  /// a CXXMethodDecl.
2380  ValueDecl *getMemberDecl() const { return MemberDecl; }
2381  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2382
2383  /// \brief Retrieves the declaration found by lookup.
2384  DeclAccessPair getFoundDecl() const {
2385    if (!HasQualifierOrFoundDecl)
2386      return DeclAccessPair::make(getMemberDecl(),
2387                                  getMemberDecl()->getAccess());
2388    return getMemberQualifier()->FoundDecl;
2389  }
2390
2391  /// \brief Determines whether this member expression actually had
2392  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2393  /// x->Base::foo.
2394  bool hasQualifier() const { return getQualifier() != 0; }
2395
2396  /// \brief If the member name was qualified, retrieves the
2397  /// nested-name-specifier that precedes the member name. Otherwise, returns
2398  /// NULL.
2399  NestedNameSpecifier *getQualifier() const {
2400    if (!HasQualifierOrFoundDecl)
2401      return 0;
2402
2403    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2404  }
2405
2406  /// \brief If the member name was qualified, retrieves the
2407  /// nested-name-specifier that precedes the member name, with source-location
2408  /// information.
2409  NestedNameSpecifierLoc getQualifierLoc() const {
2410    if (!hasQualifier())
2411      return NestedNameSpecifierLoc();
2412
2413    return getMemberQualifier()->QualifierLoc;
2414  }
2415
2416  /// \brief Return the optional template keyword and arguments info.
2417  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2418    if (!HasTemplateKWAndArgsInfo)
2419      return 0;
2420
2421    if (!HasQualifierOrFoundDecl)
2422      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2423
2424    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2425                                                      getMemberQualifier() + 1);
2426  }
2427
2428  /// \brief Return the optional template keyword and arguments info.
2429  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2430    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2431  }
2432
2433  /// \brief Retrieve the location of the template keyword preceding
2434  /// the member name, if any.
2435  SourceLocation getTemplateKeywordLoc() const {
2436    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2437    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2438  }
2439
2440  /// \brief Retrieve the location of the left angle bracket starting the
2441  /// explicit template argument list following the member name, if any.
2442  SourceLocation getLAngleLoc() const {
2443    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2444    return getTemplateKWAndArgsInfo()->LAngleLoc;
2445  }
2446
2447  /// \brief Retrieve the location of the right angle bracket ending the
2448  /// explicit template argument list following the member name, if any.
2449  SourceLocation getRAngleLoc() const {
2450    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2451    return getTemplateKWAndArgsInfo()->RAngleLoc;
2452  }
2453
2454  /// Determines whether the member name was preceded by the template keyword.
2455  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2456
2457  /// \brief Determines whether the member name was followed by an
2458  /// explicit template argument list.
2459  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2460
2461  /// \brief Copies the template arguments (if present) into the given
2462  /// structure.
2463  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2464    if (hasExplicitTemplateArgs())
2465      getExplicitTemplateArgs().copyInto(List);
2466  }
2467
2468  /// \brief Retrieve the explicit template argument list that
2469  /// follow the member template name.  This must only be called on an
2470  /// expression with explicit template arguments.
2471  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2472    assert(hasExplicitTemplateArgs());
2473    return *getTemplateKWAndArgsInfo();
2474  }
2475
2476  /// \brief Retrieve the explicit template argument list that
2477  /// followed the member template name.  This must only be called on
2478  /// an expression with explicit template arguments.
2479  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2480    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2481  }
2482
2483  /// \brief Retrieves the optional explicit template arguments.
2484  /// This points to the same data as getExplicitTemplateArgs(), but
2485  /// returns null if there are no explicit template arguments.
2486  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2487    if (!hasExplicitTemplateArgs()) return 0;
2488    return &getExplicitTemplateArgs();
2489  }
2490
2491  /// \brief Retrieve the template arguments provided as part of this
2492  /// template-id.
2493  const TemplateArgumentLoc *getTemplateArgs() const {
2494    if (!hasExplicitTemplateArgs())
2495      return 0;
2496
2497    return getExplicitTemplateArgs().getTemplateArgs();
2498  }
2499
2500  /// \brief Retrieve the number of template arguments provided as part of this
2501  /// template-id.
2502  unsigned getNumTemplateArgs() const {
2503    if (!hasExplicitTemplateArgs())
2504      return 0;
2505
2506    return getExplicitTemplateArgs().NumTemplateArgs;
2507  }
2508
2509  /// \brief Retrieve the member declaration name info.
2510  DeclarationNameInfo getMemberNameInfo() const {
2511    return DeclarationNameInfo(MemberDecl->getDeclName(),
2512                               MemberLoc, MemberDNLoc);
2513  }
2514
2515  bool isArrow() const { return IsArrow; }
2516  void setArrow(bool A) { IsArrow = A; }
2517
2518  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2519  /// location of 'F'.
2520  SourceLocation getMemberLoc() const { return MemberLoc; }
2521  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2522
2523  SourceLocation getLocStart() const LLVM_READONLY;
2524  SourceLocation getLocEnd() const LLVM_READONLY;
2525
2526  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2527
2528  /// \brief Determine whether the base of this explicit is implicit.
2529  bool isImplicitAccess() const {
2530    return getBase() && getBase()->isImplicitCXXThis();
2531  }
2532
2533  /// \brief Returns true if this member expression refers to a method that
2534  /// was resolved from an overloaded set having size greater than 1.
2535  bool hadMultipleCandidates() const {
2536    return HadMultipleCandidates;
2537  }
2538  /// \brief Sets the flag telling whether this expression refers to
2539  /// a method that was resolved from an overloaded set having size
2540  /// greater than 1.
2541  void setHadMultipleCandidates(bool V = true) {
2542    HadMultipleCandidates = V;
2543  }
2544
2545  static bool classof(const Stmt *T) {
2546    return T->getStmtClass() == MemberExprClass;
2547  }
2548
2549  // Iterators
2550  child_range children() { return child_range(&Base, &Base+1); }
2551
2552  friend class ASTReader;
2553  friend class ASTStmtWriter;
2554};
2555
2556/// CompoundLiteralExpr - [C99 6.5.2.5]
2557///
2558class CompoundLiteralExpr : public Expr {
2559  /// LParenLoc - If non-null, this is the location of the left paren in a
2560  /// compound literal like "(int){4}".  This can be null if this is a
2561  /// synthesized compound expression.
2562  SourceLocation LParenLoc;
2563
2564  /// The type as written.  This can be an incomplete array type, in
2565  /// which case the actual expression type will be different.
2566  /// The int part of the pair stores whether this expr is file scope.
2567  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2568  Stmt *Init;
2569public:
2570  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2571                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2572    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2573           tinfo->getType()->isDependentType(),
2574           init->isValueDependent(),
2575           (init->isInstantiationDependent() ||
2576            tinfo->getType()->isInstantiationDependentType()),
2577           init->containsUnexpandedParameterPack()),
2578      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2579
2580  /// \brief Construct an empty compound literal.
2581  explicit CompoundLiteralExpr(EmptyShell Empty)
2582    : Expr(CompoundLiteralExprClass, Empty) { }
2583
2584  const Expr *getInitializer() const { return cast<Expr>(Init); }
2585  Expr *getInitializer() { return cast<Expr>(Init); }
2586  void setInitializer(Expr *E) { Init = E; }
2587
2588  bool isFileScope() const { return TInfoAndScope.getInt(); }
2589  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2590
2591  SourceLocation getLParenLoc() const { return LParenLoc; }
2592  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2593
2594  TypeSourceInfo *getTypeSourceInfo() const {
2595    return TInfoAndScope.getPointer();
2596  }
2597  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2598    TInfoAndScope.setPointer(tinfo);
2599  }
2600
2601  SourceLocation getLocStart() const LLVM_READONLY {
2602    // FIXME: Init should never be null.
2603    if (!Init)
2604      return SourceLocation();
2605    if (LParenLoc.isInvalid())
2606      return Init->getLocStart();
2607    return LParenLoc;
2608  }
2609  SourceLocation getLocEnd() const LLVM_READONLY {
2610    // FIXME: Init should never be null.
2611    if (!Init)
2612      return SourceLocation();
2613    return Init->getLocEnd();
2614  }
2615
2616  static bool classof(const Stmt *T) {
2617    return T->getStmtClass() == CompoundLiteralExprClass;
2618  }
2619
2620  // Iterators
2621  child_range children() { return child_range(&Init, &Init+1); }
2622};
2623
2624/// CastExpr - Base class for type casts, including both implicit
2625/// casts (ImplicitCastExpr) and explicit casts that have some
2626/// representation in the source code (ExplicitCastExpr's derived
2627/// classes).
2628class CastExpr : public Expr {
2629public:
2630  typedef clang::CastKind CastKind;
2631
2632private:
2633  Stmt *Op;
2634
2635  void CheckCastConsistency() const;
2636
2637  const CXXBaseSpecifier * const *path_buffer() const {
2638    return const_cast<CastExpr*>(this)->path_buffer();
2639  }
2640  CXXBaseSpecifier **path_buffer();
2641
2642  void setBasePathSize(unsigned basePathSize) {
2643    CastExprBits.BasePathSize = basePathSize;
2644    assert(CastExprBits.BasePathSize == basePathSize &&
2645           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2646  }
2647
2648protected:
2649  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2650           const CastKind kind, Expr *op, unsigned BasePathSize) :
2651    Expr(SC, ty, VK, OK_Ordinary,
2652         // Cast expressions are type-dependent if the type is
2653         // dependent (C++ [temp.dep.expr]p3).
2654         ty->isDependentType(),
2655         // Cast expressions are value-dependent if the type is
2656         // dependent or if the subexpression is value-dependent.
2657         ty->isDependentType() || (op && op->isValueDependent()),
2658         (ty->isInstantiationDependentType() ||
2659          (op && op->isInstantiationDependent())),
2660         (ty->containsUnexpandedParameterPack() ||
2661          (op && op->containsUnexpandedParameterPack()))),
2662    Op(op) {
2663    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2664    CastExprBits.Kind = kind;
2665    setBasePathSize(BasePathSize);
2666#ifndef NDEBUG
2667    CheckCastConsistency();
2668#endif
2669  }
2670
2671  /// \brief Construct an empty cast.
2672  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2673    : Expr(SC, Empty) {
2674    setBasePathSize(BasePathSize);
2675  }
2676
2677public:
2678  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2679  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2680  const char *getCastKindName() const;
2681
2682  Expr *getSubExpr() { return cast<Expr>(Op); }
2683  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2684  void setSubExpr(Expr *E) { Op = E; }
2685
2686  /// \brief Retrieve the cast subexpression as it was written in the source
2687  /// code, looking through any implicit casts or other intermediate nodes
2688  /// introduced by semantic analysis.
2689  Expr *getSubExprAsWritten();
2690  const Expr *getSubExprAsWritten() const {
2691    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2692  }
2693
2694  typedef CXXBaseSpecifier **path_iterator;
2695  typedef const CXXBaseSpecifier * const *path_const_iterator;
2696  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2697  unsigned path_size() const { return CastExprBits.BasePathSize; }
2698  path_iterator path_begin() { return path_buffer(); }
2699  path_iterator path_end() { return path_buffer() + path_size(); }
2700  path_const_iterator path_begin() const { return path_buffer(); }
2701  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2702
2703  void setCastPath(const CXXCastPath &Path);
2704
2705  static bool classof(const Stmt *T) {
2706    return T->getStmtClass() >= firstCastExprConstant &&
2707           T->getStmtClass() <= lastCastExprConstant;
2708  }
2709
2710  // Iterators
2711  child_range children() { return child_range(&Op, &Op+1); }
2712};
2713
2714/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2715/// conversions, which have no direct representation in the original
2716/// source code. For example: converting T[]->T*, void f()->void
2717/// (*f)(), float->double, short->int, etc.
2718///
2719/// In C, implicit casts always produce rvalues. However, in C++, an
2720/// implicit cast whose result is being bound to a reference will be
2721/// an lvalue or xvalue. For example:
2722///
2723/// @code
2724/// class Base { };
2725/// class Derived : public Base { };
2726/// Derived &&ref();
2727/// void f(Derived d) {
2728///   Base& b = d; // initializer is an ImplicitCastExpr
2729///                // to an lvalue of type Base
2730///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2731///                     // to an xvalue of type Base
2732/// }
2733/// @endcode
2734class ImplicitCastExpr : public CastExpr {
2735private:
2736  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2737                   unsigned BasePathLength, ExprValueKind VK)
2738    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2739  }
2740
2741  /// \brief Construct an empty implicit cast.
2742  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2743    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2744
2745public:
2746  enum OnStack_t { OnStack };
2747  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2748                   ExprValueKind VK)
2749    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2750  }
2751
2752  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2753                                  CastKind Kind, Expr *Operand,
2754                                  const CXXCastPath *BasePath,
2755                                  ExprValueKind Cat);
2756
2757  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2758                                       unsigned PathSize);
2759
2760  SourceLocation getLocStart() const LLVM_READONLY {
2761    return getSubExpr()->getLocStart();
2762  }
2763  SourceLocation getLocEnd() const LLVM_READONLY {
2764    return getSubExpr()->getLocEnd();
2765  }
2766
2767  static bool classof(const Stmt *T) {
2768    return T->getStmtClass() == ImplicitCastExprClass;
2769  }
2770};
2771
2772inline Expr *Expr::IgnoreImpCasts() {
2773  Expr *e = this;
2774  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2775    e = ice->getSubExpr();
2776  return e;
2777}
2778
2779/// ExplicitCastExpr - An explicit cast written in the source
2780/// code.
2781///
2782/// This class is effectively an abstract class, because it provides
2783/// the basic representation of an explicitly-written cast without
2784/// specifying which kind of cast (C cast, functional cast, static
2785/// cast, etc.) was written; specific derived classes represent the
2786/// particular style of cast and its location information.
2787///
2788/// Unlike implicit casts, explicit cast nodes have two different
2789/// types: the type that was written into the source code, and the
2790/// actual type of the expression as determined by semantic
2791/// analysis. These types may differ slightly. For example, in C++ one
2792/// can cast to a reference type, which indicates that the resulting
2793/// expression will be an lvalue or xvalue. The reference type, however,
2794/// will not be used as the type of the expression.
2795class ExplicitCastExpr : public CastExpr {
2796  /// TInfo - Source type info for the (written) type
2797  /// this expression is casting to.
2798  TypeSourceInfo *TInfo;
2799
2800protected:
2801  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2802                   CastKind kind, Expr *op, unsigned PathSize,
2803                   TypeSourceInfo *writtenTy)
2804    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2805
2806  /// \brief Construct an empty explicit cast.
2807  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2808    : CastExpr(SC, Shell, PathSize) { }
2809
2810public:
2811  /// getTypeInfoAsWritten - Returns the type source info for the type
2812  /// that this expression is casting to.
2813  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2814  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2815
2816  /// getTypeAsWritten - Returns the type that this expression is
2817  /// casting to, as written in the source code.
2818  QualType getTypeAsWritten() const { return TInfo->getType(); }
2819
2820  static bool classof(const Stmt *T) {
2821     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2822            T->getStmtClass() <= lastExplicitCastExprConstant;
2823  }
2824};
2825
2826/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2827/// cast in C++ (C++ [expr.cast]), which uses the syntax
2828/// (Type)expr. For example: @c (int)f.
2829class CStyleCastExpr : public ExplicitCastExpr {
2830  SourceLocation LPLoc; // the location of the left paren
2831  SourceLocation RPLoc; // the location of the right paren
2832
2833  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2834                 unsigned PathSize, TypeSourceInfo *writtenTy,
2835                 SourceLocation l, SourceLocation r)
2836    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2837                       writtenTy), LPLoc(l), RPLoc(r) {}
2838
2839  /// \brief Construct an empty C-style explicit cast.
2840  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2841    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2842
2843public:
2844  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2845                                ExprValueKind VK, CastKind K,
2846                                Expr *Op, const CXXCastPath *BasePath,
2847                                TypeSourceInfo *WrittenTy, SourceLocation L,
2848                                SourceLocation R);
2849
2850  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2851                                     unsigned PathSize);
2852
2853  SourceLocation getLParenLoc() const { return LPLoc; }
2854  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2855
2856  SourceLocation getRParenLoc() const { return RPLoc; }
2857  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2858
2859  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2860  SourceLocation getLocEnd() const LLVM_READONLY {
2861    return getSubExpr()->getLocEnd();
2862  }
2863
2864  static bool classof(const Stmt *T) {
2865    return T->getStmtClass() == CStyleCastExprClass;
2866  }
2867};
2868
2869/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2870///
2871/// This expression node kind describes a builtin binary operation,
2872/// such as "x + y" for integer values "x" and "y". The operands will
2873/// already have been converted to appropriate types (e.g., by
2874/// performing promotions or conversions).
2875///
2876/// In C++, where operators may be overloaded, a different kind of
2877/// expression node (CXXOperatorCallExpr) is used to express the
2878/// invocation of an overloaded operator with operator syntax. Within
2879/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2880/// used to store an expression "x + y" depends on the subexpressions
2881/// for x and y. If neither x or y is type-dependent, and the "+"
2882/// operator resolves to a built-in operation, BinaryOperator will be
2883/// used to express the computation (x and y may still be
2884/// value-dependent). If either x or y is type-dependent, or if the
2885/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2886/// be used to express the computation.
2887class BinaryOperator : public Expr {
2888public:
2889  typedef BinaryOperatorKind Opcode;
2890
2891private:
2892  unsigned Opc : 6;
2893
2894  // Records the FP_CONTRACT pragma status at the point that this binary
2895  // operator was parsed. This bit is only meaningful for operations on
2896  // floating point types. For all other types it should default to
2897  // false.
2898  unsigned FPContractable : 1;
2899  SourceLocation OpLoc;
2900
2901  enum { LHS, RHS, END_EXPR };
2902  Stmt* SubExprs[END_EXPR];
2903public:
2904
2905  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2906                 ExprValueKind VK, ExprObjectKind OK,
2907                 SourceLocation opLoc, bool fpContractable)
2908    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2909           lhs->isTypeDependent() || rhs->isTypeDependent(),
2910           lhs->isValueDependent() || rhs->isValueDependent(),
2911           (lhs->isInstantiationDependent() ||
2912            rhs->isInstantiationDependent()),
2913           (lhs->containsUnexpandedParameterPack() ||
2914            rhs->containsUnexpandedParameterPack())),
2915      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2916    SubExprs[LHS] = lhs;
2917    SubExprs[RHS] = rhs;
2918    assert(!isCompoundAssignmentOp() &&
2919           "Use CompoundAssignOperator for compound assignments");
2920  }
2921
2922  /// \brief Construct an empty binary operator.
2923  explicit BinaryOperator(EmptyShell Empty)
2924    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2925
2926  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2927  SourceLocation getOperatorLoc() const { return OpLoc; }
2928  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2929
2930  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2931  void setOpcode(Opcode O) { Opc = O; }
2932
2933  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2934  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2935  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2936  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2937
2938  SourceLocation getLocStart() const LLVM_READONLY {
2939    return getLHS()->getLocStart();
2940  }
2941  SourceLocation getLocEnd() const LLVM_READONLY {
2942    return getRHS()->getLocEnd();
2943  }
2944
2945  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2946  /// corresponds to, e.g. "<<=".
2947  static StringRef getOpcodeStr(Opcode Op);
2948
2949  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2950
2951  /// \brief Retrieve the binary opcode that corresponds to the given
2952  /// overloaded operator.
2953  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2954
2955  /// \brief Retrieve the overloaded operator kind that corresponds to
2956  /// the given binary opcode.
2957  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2958
2959  /// predicates to categorize the respective opcodes.
2960  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2961  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2962  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2963  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2964  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2965  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2966
2967  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2968  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2969
2970  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2971  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2972
2973  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2974  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2975
2976  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2977  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2978
2979  static Opcode negateComparisonOp(Opcode Opc) {
2980    switch (Opc) {
2981    default:
2982      llvm_unreachable("Not a comparsion operator.");
2983    case BO_LT: return BO_GE;
2984    case BO_GT: return BO_LE;
2985    case BO_LE: return BO_GT;
2986    case BO_GE: return BO_LT;
2987    case BO_EQ: return BO_NE;
2988    case BO_NE: return BO_EQ;
2989    }
2990  }
2991
2992  static Opcode reverseComparisonOp(Opcode Opc) {
2993    switch (Opc) {
2994    default:
2995      llvm_unreachable("Not a comparsion operator.");
2996    case BO_LT: return BO_GT;
2997    case BO_GT: return BO_LT;
2998    case BO_LE: return BO_GE;
2999    case BO_GE: return BO_LE;
3000    case BO_EQ:
3001    case BO_NE:
3002      return Opc;
3003    }
3004  }
3005
3006  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3007  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3008
3009  static bool isAssignmentOp(Opcode Opc) {
3010    return Opc >= BO_Assign && Opc <= BO_OrAssign;
3011  }
3012  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3013
3014  static bool isCompoundAssignmentOp(Opcode Opc) {
3015    return Opc > BO_Assign && Opc <= BO_OrAssign;
3016  }
3017  bool isCompoundAssignmentOp() const {
3018    return isCompoundAssignmentOp(getOpcode());
3019  }
3020  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3021    assert(isCompoundAssignmentOp(Opc));
3022    if (Opc >= BO_AndAssign)
3023      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3024    else
3025      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3026  }
3027
3028  static bool isShiftAssignOp(Opcode Opc) {
3029    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3030  }
3031  bool isShiftAssignOp() const {
3032    return isShiftAssignOp(getOpcode());
3033  }
3034
3035  static bool classof(const Stmt *S) {
3036    return S->getStmtClass() >= firstBinaryOperatorConstant &&
3037           S->getStmtClass() <= lastBinaryOperatorConstant;
3038  }
3039
3040  // Iterators
3041  child_range children() {
3042    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3043  }
3044
3045  // Set the FP contractability status of this operator. Only meaningful for
3046  // operations on floating point types.
3047  void setFPContractable(bool FPC) { FPContractable = FPC; }
3048
3049  // Get the FP contractability status of this operator. Only meaningful for
3050  // operations on floating point types.
3051  bool isFPContractable() const { return FPContractable; }
3052
3053protected:
3054  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3055                 ExprValueKind VK, ExprObjectKind OK,
3056                 SourceLocation opLoc, bool fpContractable, bool dead2)
3057    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3058           lhs->isTypeDependent() || rhs->isTypeDependent(),
3059           lhs->isValueDependent() || rhs->isValueDependent(),
3060           (lhs->isInstantiationDependent() ||
3061            rhs->isInstantiationDependent()),
3062           (lhs->containsUnexpandedParameterPack() ||
3063            rhs->containsUnexpandedParameterPack())),
3064      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
3065    SubExprs[LHS] = lhs;
3066    SubExprs[RHS] = rhs;
3067  }
3068
3069  BinaryOperator(StmtClass SC, EmptyShell Empty)
3070    : Expr(SC, Empty), Opc(BO_MulAssign) { }
3071};
3072
3073/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3074/// track of the type the operation is performed in.  Due to the semantics of
3075/// these operators, the operands are promoted, the arithmetic performed, an
3076/// implicit conversion back to the result type done, then the assignment takes
3077/// place.  This captures the intermediate type which the computation is done
3078/// in.
3079class CompoundAssignOperator : public BinaryOperator {
3080  QualType ComputationLHSType;
3081  QualType ComputationResultType;
3082public:
3083  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3084                         ExprValueKind VK, ExprObjectKind OK,
3085                         QualType CompLHSType, QualType CompResultType,
3086                         SourceLocation OpLoc, bool fpContractable)
3087    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
3088                     true),
3089      ComputationLHSType(CompLHSType),
3090      ComputationResultType(CompResultType) {
3091    assert(isCompoundAssignmentOp() &&
3092           "Only should be used for compound assignments");
3093  }
3094
3095  /// \brief Build an empty compound assignment operator expression.
3096  explicit CompoundAssignOperator(EmptyShell Empty)
3097    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3098
3099  // The two computation types are the type the LHS is converted
3100  // to for the computation and the type of the result; the two are
3101  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3102  QualType getComputationLHSType() const { return ComputationLHSType; }
3103  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3104
3105  QualType getComputationResultType() const { return ComputationResultType; }
3106  void setComputationResultType(QualType T) { ComputationResultType = T; }
3107
3108  static bool classof(const Stmt *S) {
3109    return S->getStmtClass() == CompoundAssignOperatorClass;
3110  }
3111};
3112
3113/// AbstractConditionalOperator - An abstract base class for
3114/// ConditionalOperator and BinaryConditionalOperator.
3115class AbstractConditionalOperator : public Expr {
3116  SourceLocation QuestionLoc, ColonLoc;
3117  friend class ASTStmtReader;
3118
3119protected:
3120  AbstractConditionalOperator(StmtClass SC, QualType T,
3121                              ExprValueKind VK, ExprObjectKind OK,
3122                              bool TD, bool VD, bool ID,
3123                              bool ContainsUnexpandedParameterPack,
3124                              SourceLocation qloc,
3125                              SourceLocation cloc)
3126    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3127      QuestionLoc(qloc), ColonLoc(cloc) {}
3128
3129  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3130    : Expr(SC, Empty) { }
3131
3132public:
3133  // getCond - Return the expression representing the condition for
3134  //   the ?: operator.
3135  Expr *getCond() const;
3136
3137  // getTrueExpr - Return the subexpression representing the value of
3138  //   the expression if the condition evaluates to true.
3139  Expr *getTrueExpr() const;
3140
3141  // getFalseExpr - Return the subexpression representing the value of
3142  //   the expression if the condition evaluates to false.  This is
3143  //   the same as getRHS.
3144  Expr *getFalseExpr() const;
3145
3146  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3147  SourceLocation getColonLoc() const { return ColonLoc; }
3148
3149  static bool classof(const Stmt *T) {
3150    return T->getStmtClass() == ConditionalOperatorClass ||
3151           T->getStmtClass() == BinaryConditionalOperatorClass;
3152  }
3153};
3154
3155/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3156/// middle" extension is a BinaryConditionalOperator.
3157class ConditionalOperator : public AbstractConditionalOperator {
3158  enum { COND, LHS, RHS, END_EXPR };
3159  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3160
3161  friend class ASTStmtReader;
3162public:
3163  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3164                      SourceLocation CLoc, Expr *rhs,
3165                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3166    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3167           // FIXME: the type of the conditional operator doesn't
3168           // depend on the type of the conditional, but the standard
3169           // seems to imply that it could. File a bug!
3170           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3171           (cond->isValueDependent() || lhs->isValueDependent() ||
3172            rhs->isValueDependent()),
3173           (cond->isInstantiationDependent() ||
3174            lhs->isInstantiationDependent() ||
3175            rhs->isInstantiationDependent()),
3176           (cond->containsUnexpandedParameterPack() ||
3177            lhs->containsUnexpandedParameterPack() ||
3178            rhs->containsUnexpandedParameterPack()),
3179                                  QLoc, CLoc) {
3180    SubExprs[COND] = cond;
3181    SubExprs[LHS] = lhs;
3182    SubExprs[RHS] = rhs;
3183  }
3184
3185  /// \brief Build an empty conditional operator.
3186  explicit ConditionalOperator(EmptyShell Empty)
3187    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3188
3189  // getCond - Return the expression representing the condition for
3190  //   the ?: operator.
3191  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3192
3193  // getTrueExpr - Return the subexpression representing the value of
3194  //   the expression if the condition evaluates to true.
3195  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3196
3197  // getFalseExpr - Return the subexpression representing the value of
3198  //   the expression if the condition evaluates to false.  This is
3199  //   the same as getRHS.
3200  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3201
3202  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3203  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3204
3205  SourceLocation getLocStart() const LLVM_READONLY {
3206    return getCond()->getLocStart();
3207  }
3208  SourceLocation getLocEnd() const LLVM_READONLY {
3209    return getRHS()->getLocEnd();
3210  }
3211
3212  static bool classof(const Stmt *T) {
3213    return T->getStmtClass() == ConditionalOperatorClass;
3214  }
3215
3216  // Iterators
3217  child_range children() {
3218    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3219  }
3220};
3221
3222/// BinaryConditionalOperator - The GNU extension to the conditional
3223/// operator which allows the middle operand to be omitted.
3224///
3225/// This is a different expression kind on the assumption that almost
3226/// every client ends up needing to know that these are different.
3227class BinaryConditionalOperator : public AbstractConditionalOperator {
3228  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3229
3230  /// - the common condition/left-hand-side expression, which will be
3231  ///   evaluated as the opaque value
3232  /// - the condition, expressed in terms of the opaque value
3233  /// - the left-hand-side, expressed in terms of the opaque value
3234  /// - the right-hand-side
3235  Stmt *SubExprs[NUM_SUBEXPRS];
3236  OpaqueValueExpr *OpaqueValue;
3237
3238  friend class ASTStmtReader;
3239public:
3240  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3241                            Expr *cond, Expr *lhs, Expr *rhs,
3242                            SourceLocation qloc, SourceLocation cloc,
3243                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3244    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3245           (common->isTypeDependent() || rhs->isTypeDependent()),
3246           (common->isValueDependent() || rhs->isValueDependent()),
3247           (common->isInstantiationDependent() ||
3248            rhs->isInstantiationDependent()),
3249           (common->containsUnexpandedParameterPack() ||
3250            rhs->containsUnexpandedParameterPack()),
3251                                  qloc, cloc),
3252      OpaqueValue(opaqueValue) {
3253    SubExprs[COMMON] = common;
3254    SubExprs[COND] = cond;
3255    SubExprs[LHS] = lhs;
3256    SubExprs[RHS] = rhs;
3257    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3258  }
3259
3260  /// \brief Build an empty conditional operator.
3261  explicit BinaryConditionalOperator(EmptyShell Empty)
3262    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3263
3264  /// \brief getCommon - Return the common expression, written to the
3265  ///   left of the condition.  The opaque value will be bound to the
3266  ///   result of this expression.
3267  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3268
3269  /// \brief getOpaqueValue - Return the opaque value placeholder.
3270  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3271
3272  /// \brief getCond - Return the condition expression; this is defined
3273  ///   in terms of the opaque value.
3274  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3275
3276  /// \brief getTrueExpr - Return the subexpression which will be
3277  ///   evaluated if the condition evaluates to true;  this is defined
3278  ///   in terms of the opaque value.
3279  Expr *getTrueExpr() const {
3280    return cast<Expr>(SubExprs[LHS]);
3281  }
3282
3283  /// \brief getFalseExpr - Return the subexpression which will be
3284  ///   evaluated if the condnition evaluates to false; this is
3285  ///   defined in terms of the opaque value.
3286  Expr *getFalseExpr() const {
3287    return cast<Expr>(SubExprs[RHS]);
3288  }
3289
3290  SourceLocation getLocStart() const LLVM_READONLY {
3291    return getCommon()->getLocStart();
3292  }
3293  SourceLocation getLocEnd() const LLVM_READONLY {
3294    return getFalseExpr()->getLocEnd();
3295  }
3296
3297  static bool classof(const Stmt *T) {
3298    return T->getStmtClass() == BinaryConditionalOperatorClass;
3299  }
3300
3301  // Iterators
3302  child_range children() {
3303    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3304  }
3305};
3306
3307inline Expr *AbstractConditionalOperator::getCond() const {
3308  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3309    return co->getCond();
3310  return cast<BinaryConditionalOperator>(this)->getCond();
3311}
3312
3313inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3314  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3315    return co->getTrueExpr();
3316  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3317}
3318
3319inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3320  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3321    return co->getFalseExpr();
3322  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3323}
3324
3325/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3326class AddrLabelExpr : public Expr {
3327  SourceLocation AmpAmpLoc, LabelLoc;
3328  LabelDecl *Label;
3329public:
3330  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3331                QualType t)
3332    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3333           false),
3334      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3335
3336  /// \brief Build an empty address of a label expression.
3337  explicit AddrLabelExpr(EmptyShell Empty)
3338    : Expr(AddrLabelExprClass, Empty) { }
3339
3340  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3341  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3342  SourceLocation getLabelLoc() const { return LabelLoc; }
3343  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3344
3345  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3346  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3347
3348  LabelDecl *getLabel() const { return Label; }
3349  void setLabel(LabelDecl *L) { Label = L; }
3350
3351  static bool classof(const Stmt *T) {
3352    return T->getStmtClass() == AddrLabelExprClass;
3353  }
3354
3355  // Iterators
3356  child_range children() { return child_range(); }
3357};
3358
3359/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3360/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3361/// takes the value of the last subexpression.
3362///
3363/// A StmtExpr is always an r-value; values "returned" out of a
3364/// StmtExpr will be copied.
3365class StmtExpr : public Expr {
3366  Stmt *SubStmt;
3367  SourceLocation LParenLoc, RParenLoc;
3368public:
3369  // FIXME: Does type-dependence need to be computed differently?
3370  // FIXME: Do we need to compute instantiation instantiation-dependence for
3371  // statements? (ugh!)
3372  StmtExpr(CompoundStmt *substmt, QualType T,
3373           SourceLocation lp, SourceLocation rp) :
3374    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3375         T->isDependentType(), false, false, false),
3376    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3377
3378  /// \brief Build an empty statement expression.
3379  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3380
3381  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3382  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3383  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3384
3385  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3386  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3387
3388  SourceLocation getLParenLoc() const { return LParenLoc; }
3389  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3390  SourceLocation getRParenLoc() const { return RParenLoc; }
3391  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3392
3393  static bool classof(const Stmt *T) {
3394    return T->getStmtClass() == StmtExprClass;
3395  }
3396
3397  // Iterators
3398  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3399};
3400
3401
3402/// ShuffleVectorExpr - clang-specific builtin-in function
3403/// __builtin_shufflevector.
3404/// This AST node represents a operator that does a constant
3405/// shuffle, similar to LLVM's shufflevector instruction. It takes
3406/// two vectors and a variable number of constant indices,
3407/// and returns the appropriately shuffled vector.
3408class ShuffleVectorExpr : public Expr {
3409  SourceLocation BuiltinLoc, RParenLoc;
3410
3411  // SubExprs - the list of values passed to the __builtin_shufflevector
3412  // function. The first two are vectors, and the rest are constant
3413  // indices.  The number of values in this list is always
3414  // 2+the number of indices in the vector type.
3415  Stmt **SubExprs;
3416  unsigned NumExprs;
3417
3418public:
3419  ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3420                    SourceLocation BLoc, SourceLocation RP);
3421
3422  /// \brief Build an empty vector-shuffle expression.
3423  explicit ShuffleVectorExpr(EmptyShell Empty)
3424    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3425
3426  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3427  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3428
3429  SourceLocation getRParenLoc() const { return RParenLoc; }
3430  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3431
3432  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3433  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3434
3435  static bool classof(const Stmt *T) {
3436    return T->getStmtClass() == ShuffleVectorExprClass;
3437  }
3438
3439  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3440  /// constant expression, the actual arguments passed in, and the function
3441  /// pointers.
3442  unsigned getNumSubExprs() const { return NumExprs; }
3443
3444  /// \brief Retrieve the array of expressions.
3445  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3446
3447  /// getExpr - Return the Expr at the specified index.
3448  Expr *getExpr(unsigned Index) {
3449    assert((Index < NumExprs) && "Arg access out of range!");
3450    return cast<Expr>(SubExprs[Index]);
3451  }
3452  const Expr *getExpr(unsigned Index) const {
3453    assert((Index < NumExprs) && "Arg access out of range!");
3454    return cast<Expr>(SubExprs[Index]);
3455  }
3456
3457  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3458
3459  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3460    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3461    return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3462  }
3463
3464  // Iterators
3465  child_range children() {
3466    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3467  }
3468};
3469
3470/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3471/// This AST node provides support for converting a vector type to another
3472/// vector type of the same arity.
3473class ConvertVectorExpr : public Expr {
3474private:
3475  Stmt *SrcExpr;
3476  TypeSourceInfo *TInfo;
3477  SourceLocation BuiltinLoc, RParenLoc;
3478
3479  friend class ASTReader;
3480  friend class ASTStmtReader;
3481  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3482
3483public:
3484  ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
3485             ExprValueKind VK, ExprObjectKind OK,
3486             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3487    : Expr(ConvertVectorExprClass, DstType, VK, OK,
3488           DstType->isDependentType(),
3489           DstType->isDependentType() || SrcExpr->isValueDependent(),
3490           (DstType->isInstantiationDependentType() ||
3491            SrcExpr->isInstantiationDependent()),
3492           (DstType->containsUnexpandedParameterPack() ||
3493            SrcExpr->containsUnexpandedParameterPack())),
3494  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3495
3496  /// getSrcExpr - Return the Expr to be converted.
3497  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3498
3499  /// getTypeSourceInfo - Return the destination type.
3500  TypeSourceInfo *getTypeSourceInfo() const {
3501    return TInfo;
3502  }
3503  void setTypeSourceInfo(TypeSourceInfo *ti) {
3504    TInfo = ti;
3505  }
3506
3507  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3508  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3509
3510  /// getRParenLoc - Return the location of final right parenthesis.
3511  SourceLocation getRParenLoc() const { return RParenLoc; }
3512
3513  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3514  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3515
3516  static bool classof(const Stmt *T) {
3517    return T->getStmtClass() == ConvertVectorExprClass;
3518  }
3519
3520  // Iterators
3521  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3522};
3523
3524/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3525/// This AST node is similar to the conditional operator (?:) in C, with
3526/// the following exceptions:
3527/// - the test expression must be a integer constant expression.
3528/// - the expression returned acts like the chosen subexpression in every
3529///   visible way: the type is the same as that of the chosen subexpression,
3530///   and all predicates (whether it's an l-value, whether it's an integer
3531///   constant expression, etc.) return the same result as for the chosen
3532///   sub-expression.
3533class ChooseExpr : public Expr {
3534  enum { COND, LHS, RHS, END_EXPR };
3535  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3536  SourceLocation BuiltinLoc, RParenLoc;
3537  bool CondIsTrue;
3538public:
3539  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3540             QualType t, ExprValueKind VK, ExprObjectKind OK,
3541             SourceLocation RP, bool condIsTrue,
3542             bool TypeDependent, bool ValueDependent)
3543    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3544           (cond->isInstantiationDependent() ||
3545            lhs->isInstantiationDependent() ||
3546            rhs->isInstantiationDependent()),
3547           (cond->containsUnexpandedParameterPack() ||
3548            lhs->containsUnexpandedParameterPack() ||
3549            rhs->containsUnexpandedParameterPack())),
3550      BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3551      SubExprs[COND] = cond;
3552      SubExprs[LHS] = lhs;
3553      SubExprs[RHS] = rhs;
3554    }
3555
3556  /// \brief Build an empty __builtin_choose_expr.
3557  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3558
3559  /// isConditionTrue - Return whether the condition is true (i.e. not
3560  /// equal to zero).
3561  bool isConditionTrue() const {
3562    assert(!isConditionDependent() &&
3563           "Dependent condition isn't true or false");
3564    return CondIsTrue;
3565  }
3566  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3567
3568  bool isConditionDependent() const {
3569    return getCond()->isTypeDependent() || getCond()->isValueDependent();
3570  }
3571
3572  /// getChosenSubExpr - Return the subexpression chosen according to the
3573  /// condition.
3574  Expr *getChosenSubExpr() const {
3575    return isConditionTrue() ? getLHS() : getRHS();
3576  }
3577
3578  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3579  void setCond(Expr *E) { SubExprs[COND] = E; }
3580  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3581  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3582  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3583  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3584
3585  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3586  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3587
3588  SourceLocation getRParenLoc() const { return RParenLoc; }
3589  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3590
3591  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3592  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3593
3594  static bool classof(const Stmt *T) {
3595    return T->getStmtClass() == ChooseExprClass;
3596  }
3597
3598  // Iterators
3599  child_range children() {
3600    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3601  }
3602};
3603
3604/// GNUNullExpr - Implements the GNU __null extension, which is a name
3605/// for a null pointer constant that has integral type (e.g., int or
3606/// long) and is the same size and alignment as a pointer. The __null
3607/// extension is typically only used by system headers, which define
3608/// NULL as __null in C++ rather than using 0 (which is an integer
3609/// that may not match the size of a pointer).
3610class GNUNullExpr : public Expr {
3611  /// TokenLoc - The location of the __null keyword.
3612  SourceLocation TokenLoc;
3613
3614public:
3615  GNUNullExpr(QualType Ty, SourceLocation Loc)
3616    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3617           false),
3618      TokenLoc(Loc) { }
3619
3620  /// \brief Build an empty GNU __null expression.
3621  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3622
3623  /// getTokenLocation - The location of the __null token.
3624  SourceLocation getTokenLocation() const { return TokenLoc; }
3625  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3626
3627  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3628  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3629
3630  static bool classof(const Stmt *T) {
3631    return T->getStmtClass() == GNUNullExprClass;
3632  }
3633
3634  // Iterators
3635  child_range children() { return child_range(); }
3636};
3637
3638/// VAArgExpr, used for the builtin function __builtin_va_arg.
3639class VAArgExpr : public Expr {
3640  Stmt *Val;
3641  TypeSourceInfo *TInfo;
3642  SourceLocation BuiltinLoc, RParenLoc;
3643public:
3644  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3645            SourceLocation RPLoc, QualType t)
3646    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3647           t->isDependentType(), false,
3648           (TInfo->getType()->isInstantiationDependentType() ||
3649            e->isInstantiationDependent()),
3650           (TInfo->getType()->containsUnexpandedParameterPack() ||
3651            e->containsUnexpandedParameterPack())),
3652      Val(e), TInfo(TInfo),
3653      BuiltinLoc(BLoc),
3654      RParenLoc(RPLoc) { }
3655
3656  /// \brief Create an empty __builtin_va_arg expression.
3657  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3658
3659  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3660  Expr *getSubExpr() { return cast<Expr>(Val); }
3661  void setSubExpr(Expr *E) { Val = E; }
3662
3663  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3664  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3665
3666  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3667  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3668
3669  SourceLocation getRParenLoc() const { return RParenLoc; }
3670  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3671
3672  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3673  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3674
3675  static bool classof(const Stmt *T) {
3676    return T->getStmtClass() == VAArgExprClass;
3677  }
3678
3679  // Iterators
3680  child_range children() { return child_range(&Val, &Val+1); }
3681};
3682
3683/// @brief Describes an C or C++ initializer list.
3684///
3685/// InitListExpr describes an initializer list, which can be used to
3686/// initialize objects of different types, including
3687/// struct/class/union types, arrays, and vectors. For example:
3688///
3689/// @code
3690/// struct foo x = { 1, { 2, 3 } };
3691/// @endcode
3692///
3693/// Prior to semantic analysis, an initializer list will represent the
3694/// initializer list as written by the user, but will have the
3695/// placeholder type "void". This initializer list is called the
3696/// syntactic form of the initializer, and may contain C99 designated
3697/// initializers (represented as DesignatedInitExprs), initializations
3698/// of subobject members without explicit braces, and so on. Clients
3699/// interested in the original syntax of the initializer list should
3700/// use the syntactic form of the initializer list.
3701///
3702/// After semantic analysis, the initializer list will represent the
3703/// semantic form of the initializer, where the initializations of all
3704/// subobjects are made explicit with nested InitListExpr nodes and
3705/// C99 designators have been eliminated by placing the designated
3706/// initializations into the subobject they initialize. Additionally,
3707/// any "holes" in the initialization, where no initializer has been
3708/// specified for a particular subobject, will be replaced with
3709/// implicitly-generated ImplicitValueInitExpr expressions that
3710/// value-initialize the subobjects. Note, however, that the
3711/// initializer lists may still have fewer initializers than there are
3712/// elements to initialize within the object.
3713///
3714/// After semantic analysis has completed, given an initializer list,
3715/// method isSemanticForm() returns true if and only if this is the
3716/// semantic form of the initializer list (note: the same AST node
3717/// may at the same time be the syntactic form).
3718/// Given the semantic form of the initializer list, one can retrieve
3719/// the syntactic form of that initializer list (when different)
3720/// using method getSyntacticForm(); the method returns null if applied
3721/// to a initializer list which is already in syntactic form.
3722/// Similarly, given the syntactic form (i.e., an initializer list such
3723/// that isSemanticForm() returns false), one can retrieve the semantic
3724/// form using method getSemanticForm().
3725/// Since many initializer lists have the same syntactic and semantic forms,
3726/// getSyntacticForm() may return NULL, indicating that the current
3727/// semantic initializer list also serves as its syntactic form.
3728class InitListExpr : public Expr {
3729  // FIXME: Eliminate this vector in favor of ASTContext allocation
3730  typedef ASTVector<Stmt *> InitExprsTy;
3731  InitExprsTy InitExprs;
3732  SourceLocation LBraceLoc, RBraceLoc;
3733
3734  /// The alternative form of the initializer list (if it exists).
3735  /// The int part of the pair stores whether this initializer list is
3736  /// in semantic form. If not null, the pointer points to:
3737  ///   - the syntactic form, if this is in semantic form;
3738  ///   - the semantic form, if this is in syntactic form.
3739  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3740
3741  /// \brief Either:
3742  ///  If this initializer list initializes an array with more elements than
3743  ///  there are initializers in the list, specifies an expression to be used
3744  ///  for value initialization of the rest of the elements.
3745  /// Or
3746  ///  If this initializer list initializes a union, specifies which
3747  ///  field within the union will be initialized.
3748  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3749
3750public:
3751  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3752               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3753
3754  /// \brief Build an empty initializer list.
3755  explicit InitListExpr(EmptyShell Empty)
3756    : Expr(InitListExprClass, Empty) { }
3757
3758  unsigned getNumInits() const { return InitExprs.size(); }
3759
3760  /// \brief Retrieve the set of initializers.
3761  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3762
3763  const Expr *getInit(unsigned Init) const {
3764    assert(Init < getNumInits() && "Initializer access out of range!");
3765    return cast_or_null<Expr>(InitExprs[Init]);
3766  }
3767
3768  Expr *getInit(unsigned Init) {
3769    assert(Init < getNumInits() && "Initializer access out of range!");
3770    return cast_or_null<Expr>(InitExprs[Init]);
3771  }
3772
3773  void setInit(unsigned Init, Expr *expr) {
3774    assert(Init < getNumInits() && "Initializer access out of range!");
3775    InitExprs[Init] = expr;
3776  }
3777
3778  /// \brief Reserve space for some number of initializers.
3779  void reserveInits(const ASTContext &C, unsigned NumInits);
3780
3781  /// @brief Specify the number of initializers
3782  ///
3783  /// If there are more than @p NumInits initializers, the remaining
3784  /// initializers will be destroyed. If there are fewer than @p
3785  /// NumInits initializers, NULL expressions will be added for the
3786  /// unknown initializers.
3787  void resizeInits(const ASTContext &Context, unsigned NumInits);
3788
3789  /// @brief Updates the initializer at index @p Init with the new
3790  /// expression @p expr, and returns the old expression at that
3791  /// location.
3792  ///
3793  /// When @p Init is out of range for this initializer list, the
3794  /// initializer list will be extended with NULL expressions to
3795  /// accommodate the new entry.
3796  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3797
3798  /// \brief If this initializer list initializes an array with more elements
3799  /// than there are initializers in the list, specifies an expression to be
3800  /// used for value initialization of the rest of the elements.
3801  Expr *getArrayFiller() {
3802    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3803  }
3804  const Expr *getArrayFiller() const {
3805    return const_cast<InitListExpr *>(this)->getArrayFiller();
3806  }
3807  void setArrayFiller(Expr *filler);
3808
3809  /// \brief Return true if this is an array initializer and its array "filler"
3810  /// has been set.
3811  bool hasArrayFiller() const { return getArrayFiller(); }
3812
3813  /// \brief If this initializes a union, specifies which field in the
3814  /// union to initialize.
3815  ///
3816  /// Typically, this field is the first named field within the
3817  /// union. However, a designated initializer can specify the
3818  /// initialization of a different field within the union.
3819  FieldDecl *getInitializedFieldInUnion() {
3820    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3821  }
3822  const FieldDecl *getInitializedFieldInUnion() const {
3823    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3824  }
3825  void setInitializedFieldInUnion(FieldDecl *FD) {
3826    assert((FD == 0
3827            || getInitializedFieldInUnion() == 0
3828            || getInitializedFieldInUnion() == FD)
3829           && "Only one field of a union may be initialized at a time!");
3830    ArrayFillerOrUnionFieldInit = FD;
3831  }
3832
3833  // Explicit InitListExpr's originate from source code (and have valid source
3834  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3835  bool isExplicit() {
3836    return LBraceLoc.isValid() && RBraceLoc.isValid();
3837  }
3838
3839  // Is this an initializer for an array of characters, initialized by a string
3840  // literal or an @encode?
3841  bool isStringLiteralInit() const;
3842
3843  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3844  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3845  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3846  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3847
3848  bool isSemanticForm() const { return AltForm.getInt(); }
3849  InitListExpr *getSemanticForm() const {
3850    return isSemanticForm() ? 0 : AltForm.getPointer();
3851  }
3852  InitListExpr *getSyntacticForm() const {
3853    return isSemanticForm() ? AltForm.getPointer() : 0;
3854  }
3855
3856  void setSyntacticForm(InitListExpr *Init) {
3857    AltForm.setPointer(Init);
3858    AltForm.setInt(true);
3859    Init->AltForm.setPointer(this);
3860    Init->AltForm.setInt(false);
3861  }
3862
3863  bool hadArrayRangeDesignator() const {
3864    return InitListExprBits.HadArrayRangeDesignator != 0;
3865  }
3866  void sawArrayRangeDesignator(bool ARD = true) {
3867    InitListExprBits.HadArrayRangeDesignator = ARD;
3868  }
3869
3870  SourceLocation getLocStart() const LLVM_READONLY;
3871  SourceLocation getLocEnd() const LLVM_READONLY;
3872
3873  static bool classof(const Stmt *T) {
3874    return T->getStmtClass() == InitListExprClass;
3875  }
3876
3877  // Iterators
3878  child_range children() {
3879    if (InitExprs.empty()) return child_range();
3880    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3881  }
3882
3883  typedef InitExprsTy::iterator iterator;
3884  typedef InitExprsTy::const_iterator const_iterator;
3885  typedef InitExprsTy::reverse_iterator reverse_iterator;
3886  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3887
3888  iterator begin() { return InitExprs.begin(); }
3889  const_iterator begin() const { return InitExprs.begin(); }
3890  iterator end() { return InitExprs.end(); }
3891  const_iterator end() const { return InitExprs.end(); }
3892  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3893  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3894  reverse_iterator rend() { return InitExprs.rend(); }
3895  const_reverse_iterator rend() const { return InitExprs.rend(); }
3896
3897  friend class ASTStmtReader;
3898  friend class ASTStmtWriter;
3899};
3900
3901/// @brief Represents a C99 designated initializer expression.
3902///
3903/// A designated initializer expression (C99 6.7.8) contains one or
3904/// more designators (which can be field designators, array
3905/// designators, or GNU array-range designators) followed by an
3906/// expression that initializes the field or element(s) that the
3907/// designators refer to. For example, given:
3908///
3909/// @code
3910/// struct point {
3911///   double x;
3912///   double y;
3913/// };
3914/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3915/// @endcode
3916///
3917/// The InitListExpr contains three DesignatedInitExprs, the first of
3918/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3919/// designators, one array designator for @c [2] followed by one field
3920/// designator for @c .y. The initialization expression will be 1.0.
3921class DesignatedInitExpr : public Expr {
3922public:
3923  /// \brief Forward declaration of the Designator class.
3924  class Designator;
3925
3926private:
3927  /// The location of the '=' or ':' prior to the actual initializer
3928  /// expression.
3929  SourceLocation EqualOrColonLoc;
3930
3931  /// Whether this designated initializer used the GNU deprecated
3932  /// syntax rather than the C99 '=' syntax.
3933  bool GNUSyntax : 1;
3934
3935  /// The number of designators in this initializer expression.
3936  unsigned NumDesignators : 15;
3937
3938  /// The number of subexpressions of this initializer expression,
3939  /// which contains both the initializer and any additional
3940  /// expressions used by array and array-range designators.
3941  unsigned NumSubExprs : 16;
3942
3943  /// \brief The designators in this designated initialization
3944  /// expression.
3945  Designator *Designators;
3946
3947
3948  DesignatedInitExpr(const ASTContext &C, QualType Ty, unsigned NumDesignators,
3949                     const Designator *Designators,
3950                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3951                     ArrayRef<Expr*> IndexExprs, Expr *Init);
3952
3953  explicit DesignatedInitExpr(unsigned NumSubExprs)
3954    : Expr(DesignatedInitExprClass, EmptyShell()),
3955      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3956
3957public:
3958  /// A field designator, e.g., ".x".
3959  struct FieldDesignator {
3960    /// Refers to the field that is being initialized. The low bit
3961    /// of this field determines whether this is actually a pointer
3962    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3963    /// initially constructed, a field designator will store an
3964    /// IdentifierInfo*. After semantic analysis has resolved that
3965    /// name, the field designator will instead store a FieldDecl*.
3966    uintptr_t NameOrField;
3967
3968    /// The location of the '.' in the designated initializer.
3969    unsigned DotLoc;
3970
3971    /// The location of the field name in the designated initializer.
3972    unsigned FieldLoc;
3973  };
3974
3975  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3976  struct ArrayOrRangeDesignator {
3977    /// Location of the first index expression within the designated
3978    /// initializer expression's list of subexpressions.
3979    unsigned Index;
3980    /// The location of the '[' starting the array range designator.
3981    unsigned LBracketLoc;
3982    /// The location of the ellipsis separating the start and end
3983    /// indices. Only valid for GNU array-range designators.
3984    unsigned EllipsisLoc;
3985    /// The location of the ']' terminating the array range designator.
3986    unsigned RBracketLoc;
3987  };
3988
3989  /// @brief Represents a single C99 designator.
3990  ///
3991  /// @todo This class is infuriatingly similar to clang::Designator,
3992  /// but minor differences (storing indices vs. storing pointers)
3993  /// keep us from reusing it. Try harder, later, to rectify these
3994  /// differences.
3995  class Designator {
3996    /// @brief The kind of designator this describes.
3997    enum {
3998      FieldDesignator,
3999      ArrayDesignator,
4000      ArrayRangeDesignator
4001    } Kind;
4002
4003    union {
4004      /// A field designator, e.g., ".x".
4005      struct FieldDesignator Field;
4006      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4007      struct ArrayOrRangeDesignator ArrayOrRange;
4008    };
4009    friend class DesignatedInitExpr;
4010
4011  public:
4012    Designator() {}
4013
4014    /// @brief Initializes a field designator.
4015    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4016               SourceLocation FieldLoc)
4017      : Kind(FieldDesignator) {
4018      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4019      Field.DotLoc = DotLoc.getRawEncoding();
4020      Field.FieldLoc = FieldLoc.getRawEncoding();
4021    }
4022
4023    /// @brief Initializes an array designator.
4024    Designator(unsigned Index, SourceLocation LBracketLoc,
4025               SourceLocation RBracketLoc)
4026      : Kind(ArrayDesignator) {
4027      ArrayOrRange.Index = Index;
4028      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4029      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4030      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4031    }
4032
4033    /// @brief Initializes a GNU array-range designator.
4034    Designator(unsigned Index, SourceLocation LBracketLoc,
4035               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4036      : Kind(ArrayRangeDesignator) {
4037      ArrayOrRange.Index = Index;
4038      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4039      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4040      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4041    }
4042
4043    bool isFieldDesignator() const { return Kind == FieldDesignator; }
4044    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4045    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4046
4047    IdentifierInfo *getFieldName() const;
4048
4049    FieldDecl *getField() const {
4050      assert(Kind == FieldDesignator && "Only valid on a field designator");
4051      if (Field.NameOrField & 0x01)
4052        return 0;
4053      else
4054        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4055    }
4056
4057    void setField(FieldDecl *FD) {
4058      assert(Kind == FieldDesignator && "Only valid on a field designator");
4059      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4060    }
4061
4062    SourceLocation getDotLoc() const {
4063      assert(Kind == FieldDesignator && "Only valid on a field designator");
4064      return SourceLocation::getFromRawEncoding(Field.DotLoc);
4065    }
4066
4067    SourceLocation getFieldLoc() const {
4068      assert(Kind == FieldDesignator && "Only valid on a field designator");
4069      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4070    }
4071
4072    SourceLocation getLBracketLoc() const {
4073      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4074             "Only valid on an array or array-range designator");
4075      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4076    }
4077
4078    SourceLocation getRBracketLoc() const {
4079      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4080             "Only valid on an array or array-range designator");
4081      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4082    }
4083
4084    SourceLocation getEllipsisLoc() const {
4085      assert(Kind == ArrayRangeDesignator &&
4086             "Only valid on an array-range designator");
4087      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4088    }
4089
4090    unsigned getFirstExprIndex() const {
4091      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4092             "Only valid on an array or array-range designator");
4093      return ArrayOrRange.Index;
4094    }
4095
4096    SourceLocation getLocStart() const LLVM_READONLY {
4097      if (Kind == FieldDesignator)
4098        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4099      else
4100        return getLBracketLoc();
4101    }
4102    SourceLocation getLocEnd() const LLVM_READONLY {
4103      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4104    }
4105    SourceRange getSourceRange() const LLVM_READONLY {
4106      return SourceRange(getLocStart(), getLocEnd());
4107    }
4108  };
4109
4110  static DesignatedInitExpr *Create(const ASTContext &C,
4111                                    Designator *Designators,
4112                                    unsigned NumDesignators,
4113                                    ArrayRef<Expr*> IndexExprs,
4114                                    SourceLocation EqualOrColonLoc,
4115                                    bool GNUSyntax, Expr *Init);
4116
4117  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4118                                         unsigned NumIndexExprs);
4119
4120  /// @brief Returns the number of designators in this initializer.
4121  unsigned size() const { return NumDesignators; }
4122
4123  // Iterator access to the designators.
4124  typedef Designator *designators_iterator;
4125  designators_iterator designators_begin() { return Designators; }
4126  designators_iterator designators_end() {
4127    return Designators + NumDesignators;
4128  }
4129
4130  typedef const Designator *const_designators_iterator;
4131  const_designators_iterator designators_begin() const { return Designators; }
4132  const_designators_iterator designators_end() const {
4133    return Designators + NumDesignators;
4134  }
4135
4136  typedef std::reverse_iterator<designators_iterator>
4137          reverse_designators_iterator;
4138  reverse_designators_iterator designators_rbegin() {
4139    return reverse_designators_iterator(designators_end());
4140  }
4141  reverse_designators_iterator designators_rend() {
4142    return reverse_designators_iterator(designators_begin());
4143  }
4144
4145  typedef std::reverse_iterator<const_designators_iterator>
4146          const_reverse_designators_iterator;
4147  const_reverse_designators_iterator designators_rbegin() const {
4148    return const_reverse_designators_iterator(designators_end());
4149  }
4150  const_reverse_designators_iterator designators_rend() const {
4151    return const_reverse_designators_iterator(designators_begin());
4152  }
4153
4154  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
4155
4156  void setDesignators(const ASTContext &C, const Designator *Desigs,
4157                      unsigned NumDesigs);
4158
4159  Expr *getArrayIndex(const Designator &D) const;
4160  Expr *getArrayRangeStart(const Designator &D) const;
4161  Expr *getArrayRangeEnd(const Designator &D) const;
4162
4163  /// @brief Retrieve the location of the '=' that precedes the
4164  /// initializer value itself, if present.
4165  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4166  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4167
4168  /// @brief Determines whether this designated initializer used the
4169  /// deprecated GNU syntax for designated initializers.
4170  bool usesGNUSyntax() const { return GNUSyntax; }
4171  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4172
4173  /// @brief Retrieve the initializer value.
4174  Expr *getInit() const {
4175    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4176  }
4177
4178  void setInit(Expr *init) {
4179    *child_begin() = init;
4180  }
4181
4182  /// \brief Retrieve the total number of subexpressions in this
4183  /// designated initializer expression, including the actual
4184  /// initialized value and any expressions that occur within array
4185  /// and array-range designators.
4186  unsigned getNumSubExprs() const { return NumSubExprs; }
4187
4188  Expr *getSubExpr(unsigned Idx) {
4189    assert(Idx < NumSubExprs && "Subscript out of range");
4190    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4191    Ptr += sizeof(DesignatedInitExpr);
4192    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
4193  }
4194
4195  void setSubExpr(unsigned Idx, Expr *E) {
4196    assert(Idx < NumSubExprs && "Subscript out of range");
4197    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4198    Ptr += sizeof(DesignatedInitExpr);
4199    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
4200  }
4201
4202  /// \brief Replaces the designator at index @p Idx with the series
4203  /// of designators in [First, Last).
4204  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4205                        const Designator *First, const Designator *Last);
4206
4207  SourceRange getDesignatorsSourceRange() const;
4208
4209  SourceLocation getLocStart() const LLVM_READONLY;
4210  SourceLocation getLocEnd() const LLVM_READONLY;
4211
4212  static bool classof(const Stmt *T) {
4213    return T->getStmtClass() == DesignatedInitExprClass;
4214  }
4215
4216  // Iterators
4217  child_range children() {
4218    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
4219    return child_range(begin, begin + NumSubExprs);
4220  }
4221};
4222
4223/// \brief Represents an implicitly-generated value initialization of
4224/// an object of a given type.
4225///
4226/// Implicit value initializations occur within semantic initializer
4227/// list expressions (InitListExpr) as placeholders for subobject
4228/// initializations not explicitly specified by the user.
4229///
4230/// \see InitListExpr
4231class ImplicitValueInitExpr : public Expr {
4232public:
4233  explicit ImplicitValueInitExpr(QualType ty)
4234    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4235           false, false, ty->isInstantiationDependentType(), false) { }
4236
4237  /// \brief Construct an empty implicit value initialization.
4238  explicit ImplicitValueInitExpr(EmptyShell Empty)
4239    : Expr(ImplicitValueInitExprClass, Empty) { }
4240
4241  static bool classof(const Stmt *T) {
4242    return T->getStmtClass() == ImplicitValueInitExprClass;
4243  }
4244
4245  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4246  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4247
4248  // Iterators
4249  child_range children() { return child_range(); }
4250};
4251
4252
4253class ParenListExpr : public Expr {
4254  Stmt **Exprs;
4255  unsigned NumExprs;
4256  SourceLocation LParenLoc, RParenLoc;
4257
4258public:
4259  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4260                ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4261
4262  /// \brief Build an empty paren list.
4263  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4264
4265  unsigned getNumExprs() const { return NumExprs; }
4266
4267  const Expr* getExpr(unsigned Init) const {
4268    assert(Init < getNumExprs() && "Initializer access out of range!");
4269    return cast_or_null<Expr>(Exprs[Init]);
4270  }
4271
4272  Expr* getExpr(unsigned Init) {
4273    assert(Init < getNumExprs() && "Initializer access out of range!");
4274    return cast_or_null<Expr>(Exprs[Init]);
4275  }
4276
4277  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4278
4279  SourceLocation getLParenLoc() const { return LParenLoc; }
4280  SourceLocation getRParenLoc() const { return RParenLoc; }
4281
4282  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4283  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4284
4285  static bool classof(const Stmt *T) {
4286    return T->getStmtClass() == ParenListExprClass;
4287  }
4288
4289  // Iterators
4290  child_range children() {
4291    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4292  }
4293
4294  friend class ASTStmtReader;
4295  friend class ASTStmtWriter;
4296};
4297
4298
4299/// \brief Represents a C11 generic selection.
4300///
4301/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4302/// expression, followed by one or more generic associations.  Each generic
4303/// association specifies a type name and an expression, or "default" and an
4304/// expression (in which case it is known as a default generic association).
4305/// The type and value of the generic selection are identical to those of its
4306/// result expression, which is defined as the expression in the generic
4307/// association with a type name that is compatible with the type of the
4308/// controlling expression, or the expression in the default generic association
4309/// if no types are compatible.  For example:
4310///
4311/// @code
4312/// _Generic(X, double: 1, float: 2, default: 3)
4313/// @endcode
4314///
4315/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4316/// or 3 if "hello".
4317///
4318/// As an extension, generic selections are allowed in C++, where the following
4319/// additional semantics apply:
4320///
4321/// Any generic selection whose controlling expression is type-dependent or
4322/// which names a dependent type in its association list is result-dependent,
4323/// which means that the choice of result expression is dependent.
4324/// Result-dependent generic associations are both type- and value-dependent.
4325class GenericSelectionExpr : public Expr {
4326  enum { CONTROLLING, END_EXPR };
4327  TypeSourceInfo **AssocTypes;
4328  Stmt **SubExprs;
4329  unsigned NumAssocs, ResultIndex;
4330  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4331
4332public:
4333  GenericSelectionExpr(const ASTContext &Context,
4334                       SourceLocation GenericLoc, Expr *ControllingExpr,
4335                       ArrayRef<TypeSourceInfo*> AssocTypes,
4336                       ArrayRef<Expr*> AssocExprs,
4337                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4338                       bool ContainsUnexpandedParameterPack,
4339                       unsigned ResultIndex);
4340
4341  /// This constructor is used in the result-dependent case.
4342  GenericSelectionExpr(const ASTContext &Context,
4343                       SourceLocation GenericLoc, Expr *ControllingExpr,
4344                       ArrayRef<TypeSourceInfo*> AssocTypes,
4345                       ArrayRef<Expr*> AssocExprs,
4346                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4347                       bool ContainsUnexpandedParameterPack);
4348
4349  explicit GenericSelectionExpr(EmptyShell Empty)
4350    : Expr(GenericSelectionExprClass, Empty) { }
4351
4352  unsigned getNumAssocs() const { return NumAssocs; }
4353
4354  SourceLocation getGenericLoc() const { return GenericLoc; }
4355  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4356  SourceLocation getRParenLoc() const { return RParenLoc; }
4357
4358  const Expr *getAssocExpr(unsigned i) const {
4359    return cast<Expr>(SubExprs[END_EXPR+i]);
4360  }
4361  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4362
4363  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4364    return AssocTypes[i];
4365  }
4366  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4367
4368  QualType getAssocType(unsigned i) const {
4369    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4370      return TS->getType();
4371    else
4372      return QualType();
4373  }
4374
4375  const Expr *getControllingExpr() const {
4376    return cast<Expr>(SubExprs[CONTROLLING]);
4377  }
4378  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4379
4380  /// Whether this generic selection is result-dependent.
4381  bool isResultDependent() const { return ResultIndex == -1U; }
4382
4383  /// The zero-based index of the result expression's generic association in
4384  /// the generic selection's association list.  Defined only if the
4385  /// generic selection is not result-dependent.
4386  unsigned getResultIndex() const {
4387    assert(!isResultDependent() && "Generic selection is result-dependent");
4388    return ResultIndex;
4389  }
4390
4391  /// The generic selection's result expression.  Defined only if the
4392  /// generic selection is not result-dependent.
4393  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4394  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4395
4396  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4397  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4398
4399  static bool classof(const Stmt *T) {
4400    return T->getStmtClass() == GenericSelectionExprClass;
4401  }
4402
4403  child_range children() {
4404    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4405  }
4406
4407  friend class ASTStmtReader;
4408};
4409
4410//===----------------------------------------------------------------------===//
4411// Clang Extensions
4412//===----------------------------------------------------------------------===//
4413
4414
4415/// ExtVectorElementExpr - This represents access to specific elements of a
4416/// vector, and may occur on the left hand side or right hand side.  For example
4417/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4418///
4419/// Note that the base may have either vector or pointer to vector type, just
4420/// like a struct field reference.
4421///
4422class ExtVectorElementExpr : public Expr {
4423  Stmt *Base;
4424  IdentifierInfo *Accessor;
4425  SourceLocation AccessorLoc;
4426public:
4427  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4428                       IdentifierInfo &accessor, SourceLocation loc)
4429    : Expr(ExtVectorElementExprClass, ty, VK,
4430           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4431           base->isTypeDependent(), base->isValueDependent(),
4432           base->isInstantiationDependent(),
4433           base->containsUnexpandedParameterPack()),
4434      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4435
4436  /// \brief Build an empty vector element expression.
4437  explicit ExtVectorElementExpr(EmptyShell Empty)
4438    : Expr(ExtVectorElementExprClass, Empty) { }
4439
4440  const Expr *getBase() const { return cast<Expr>(Base); }
4441  Expr *getBase() { return cast<Expr>(Base); }
4442  void setBase(Expr *E) { Base = E; }
4443
4444  IdentifierInfo &getAccessor() const { return *Accessor; }
4445  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4446
4447  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4448  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4449
4450  /// getNumElements - Get the number of components being selected.
4451  unsigned getNumElements() const;
4452
4453  /// containsDuplicateElements - Return true if any element access is
4454  /// repeated.
4455  bool containsDuplicateElements() const;
4456
4457  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4458  /// aggregate Constant of ConstantInt(s).
4459  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4460
4461  SourceLocation getLocStart() const LLVM_READONLY {
4462    return getBase()->getLocStart();
4463  }
4464  SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4465
4466  /// isArrow - Return true if the base expression is a pointer to vector,
4467  /// return false if the base expression is a vector.
4468  bool isArrow() const;
4469
4470  static bool classof(const Stmt *T) {
4471    return T->getStmtClass() == ExtVectorElementExprClass;
4472  }
4473
4474  // Iterators
4475  child_range children() { return child_range(&Base, &Base+1); }
4476};
4477
4478
4479/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4480/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4481class BlockExpr : public Expr {
4482protected:
4483  BlockDecl *TheBlock;
4484public:
4485  BlockExpr(BlockDecl *BD, QualType ty)
4486    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4487           ty->isDependentType(), ty->isDependentType(),
4488           ty->isInstantiationDependentType() || BD->isDependentContext(),
4489           false),
4490      TheBlock(BD) {}
4491
4492  /// \brief Build an empty block expression.
4493  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4494
4495  const BlockDecl *getBlockDecl() const { return TheBlock; }
4496  BlockDecl *getBlockDecl() { return TheBlock; }
4497  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4498
4499  // Convenience functions for probing the underlying BlockDecl.
4500  SourceLocation getCaretLocation() const;
4501  const Stmt *getBody() const;
4502  Stmt *getBody();
4503
4504  SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4505  SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4506
4507  /// getFunctionType - Return the underlying function type for this block.
4508  const FunctionProtoType *getFunctionType() const;
4509
4510  static bool classof(const Stmt *T) {
4511    return T->getStmtClass() == BlockExprClass;
4512  }
4513
4514  // Iterators
4515  child_range children() { return child_range(); }
4516};
4517
4518/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4519/// This AST node provides support for reinterpreting a type to another
4520/// type of the same size.
4521class AsTypeExpr : public Expr {
4522private:
4523  Stmt *SrcExpr;
4524  SourceLocation BuiltinLoc, RParenLoc;
4525
4526  friend class ASTReader;
4527  friend class ASTStmtReader;
4528  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4529
4530public:
4531  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4532             ExprValueKind VK, ExprObjectKind OK,
4533             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4534    : Expr(AsTypeExprClass, DstType, VK, OK,
4535           DstType->isDependentType(),
4536           DstType->isDependentType() || SrcExpr->isValueDependent(),
4537           (DstType->isInstantiationDependentType() ||
4538            SrcExpr->isInstantiationDependent()),
4539           (DstType->containsUnexpandedParameterPack() ||
4540            SrcExpr->containsUnexpandedParameterPack())),
4541  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4542
4543  /// getSrcExpr - Return the Expr to be converted.
4544  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4545
4546  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4547  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4548
4549  /// getRParenLoc - Return the location of final right parenthesis.
4550  SourceLocation getRParenLoc() const { return RParenLoc; }
4551
4552  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4553  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4554
4555  static bool classof(const Stmt *T) {
4556    return T->getStmtClass() == AsTypeExprClass;
4557  }
4558
4559  // Iterators
4560  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4561};
4562
4563/// PseudoObjectExpr - An expression which accesses a pseudo-object
4564/// l-value.  A pseudo-object is an abstract object, accesses to which
4565/// are translated to calls.  The pseudo-object expression has a
4566/// syntactic form, which shows how the expression was actually
4567/// written in the source code, and a semantic form, which is a series
4568/// of expressions to be executed in order which detail how the
4569/// operation is actually evaluated.  Optionally, one of the semantic
4570/// forms may also provide a result value for the expression.
4571///
4572/// If any of the semantic-form expressions is an OpaqueValueExpr,
4573/// that OVE is required to have a source expression, and it is bound
4574/// to the result of that source expression.  Such OVEs may appear
4575/// only in subsequent semantic-form expressions and as
4576/// sub-expressions of the syntactic form.
4577///
4578/// PseudoObjectExpr should be used only when an operation can be
4579/// usefully described in terms of fairly simple rewrite rules on
4580/// objects and functions that are meant to be used by end-developers.
4581/// For example, under the Itanium ABI, dynamic casts are implemented
4582/// as a call to a runtime function called __dynamic_cast; using this
4583/// class to describe that would be inappropriate because that call is
4584/// not really part of the user-visible semantics, and instead the
4585/// cast is properly reflected in the AST and IR-generation has been
4586/// taught to generate the call as necessary.  In contrast, an
4587/// Objective-C property access is semantically defined to be
4588/// equivalent to a particular message send, and this is very much
4589/// part of the user model.  The name of this class encourages this
4590/// modelling design.
4591class PseudoObjectExpr : public Expr {
4592  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4593  // Always at least two, because the first sub-expression is the
4594  // syntactic form.
4595
4596  // PseudoObjectExprBits.ResultIndex - The index of the
4597  // sub-expression holding the result.  0 means the result is void,
4598  // which is unambiguous because it's the index of the syntactic
4599  // form.  Note that this is therefore 1 higher than the value passed
4600  // in to Create, which is an index within the semantic forms.
4601  // Note also that ASTStmtWriter assumes this encoding.
4602
4603  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4604  const Expr * const *getSubExprsBuffer() const {
4605    return reinterpret_cast<const Expr * const *>(this + 1);
4606  }
4607
4608  friend class ASTStmtReader;
4609
4610  PseudoObjectExpr(QualType type, ExprValueKind VK,
4611                   Expr *syntactic, ArrayRef<Expr*> semantic,
4612                   unsigned resultIndex);
4613
4614  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4615
4616  unsigned getNumSubExprs() const {
4617    return PseudoObjectExprBits.NumSubExprs;
4618  }
4619
4620public:
4621  /// NoResult - A value for the result index indicating that there is
4622  /// no semantic result.
4623  enum LLVM_ENUM_INT_TYPE(unsigned) { NoResult = ~0U };
4624
4625  static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
4626                                  ArrayRef<Expr*> semantic,
4627                                  unsigned resultIndex);
4628
4629  static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
4630                                  unsigned numSemanticExprs);
4631
4632  /// Return the syntactic form of this expression, i.e. the
4633  /// expression it actually looks like.  Likely to be expressed in
4634  /// terms of OpaqueValueExprs bound in the semantic form.
4635  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4636  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4637
4638  /// Return the index of the result-bearing expression into the semantics
4639  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4640  unsigned getResultExprIndex() const {
4641    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4642    return PseudoObjectExprBits.ResultIndex - 1;
4643  }
4644
4645  /// Return the result-bearing expression, or null if there is none.
4646  Expr *getResultExpr() {
4647    if (PseudoObjectExprBits.ResultIndex == 0)
4648      return 0;
4649    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4650  }
4651  const Expr *getResultExpr() const {
4652    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4653  }
4654
4655  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4656
4657  typedef Expr * const *semantics_iterator;
4658  typedef const Expr * const *const_semantics_iterator;
4659  semantics_iterator semantics_begin() {
4660    return getSubExprsBuffer() + 1;
4661  }
4662  const_semantics_iterator semantics_begin() const {
4663    return getSubExprsBuffer() + 1;
4664  }
4665  semantics_iterator semantics_end() {
4666    return getSubExprsBuffer() + getNumSubExprs();
4667  }
4668  const_semantics_iterator semantics_end() const {
4669    return getSubExprsBuffer() + getNumSubExprs();
4670  }
4671  Expr *getSemanticExpr(unsigned index) {
4672    assert(index + 1 < getNumSubExprs());
4673    return getSubExprsBuffer()[index + 1];
4674  }
4675  const Expr *getSemanticExpr(unsigned index) const {
4676    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4677  }
4678
4679  SourceLocation getExprLoc() const LLVM_READONLY {
4680    return getSyntacticForm()->getExprLoc();
4681  }
4682
4683  SourceLocation getLocStart() const LLVM_READONLY {
4684    return getSyntacticForm()->getLocStart();
4685  }
4686  SourceLocation getLocEnd() const LLVM_READONLY {
4687    return getSyntacticForm()->getLocEnd();
4688  }
4689
4690  child_range children() {
4691    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4692    return child_range(cs, cs + getNumSubExprs());
4693  }
4694
4695  static bool classof(const Stmt *T) {
4696    return T->getStmtClass() == PseudoObjectExprClass;
4697  }
4698};
4699
4700/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4701/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4702/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4703/// All of these instructions take one primary pointer and at least one memory
4704/// order.
4705class AtomicExpr : public Expr {
4706public:
4707  enum AtomicOp {
4708#define BUILTIN(ID, TYPE, ATTRS)
4709#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4710#include "clang/Basic/Builtins.def"
4711    // Avoid trailing comma
4712    BI_First = 0
4713  };
4714
4715private:
4716  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4717  Stmt* SubExprs[END_EXPR];
4718  unsigned NumSubExprs;
4719  SourceLocation BuiltinLoc, RParenLoc;
4720  AtomicOp Op;
4721
4722  friend class ASTStmtReader;
4723
4724public:
4725  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4726             AtomicOp op, SourceLocation RP);
4727
4728  /// \brief Determine the number of arguments the specified atomic builtin
4729  /// should have.
4730  static unsigned getNumSubExprs(AtomicOp Op);
4731
4732  /// \brief Build an empty AtomicExpr.
4733  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4734
4735  Expr *getPtr() const {
4736    return cast<Expr>(SubExprs[PTR]);
4737  }
4738  Expr *getOrder() const {
4739    return cast<Expr>(SubExprs[ORDER]);
4740  }
4741  Expr *getVal1() const {
4742    if (Op == AO__c11_atomic_init)
4743      return cast<Expr>(SubExprs[ORDER]);
4744    assert(NumSubExprs > VAL1);
4745    return cast<Expr>(SubExprs[VAL1]);
4746  }
4747  Expr *getOrderFail() const {
4748    assert(NumSubExprs > ORDER_FAIL);
4749    return cast<Expr>(SubExprs[ORDER_FAIL]);
4750  }
4751  Expr *getVal2() const {
4752    if (Op == AO__atomic_exchange)
4753      return cast<Expr>(SubExprs[ORDER_FAIL]);
4754    assert(NumSubExprs > VAL2);
4755    return cast<Expr>(SubExprs[VAL2]);
4756  }
4757  Expr *getWeak() const {
4758    assert(NumSubExprs > WEAK);
4759    return cast<Expr>(SubExprs[WEAK]);
4760  }
4761
4762  AtomicOp getOp() const { return Op; }
4763  unsigned getNumSubExprs() { return NumSubExprs; }
4764
4765  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4766
4767  bool isVolatile() const {
4768    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4769  }
4770
4771  bool isCmpXChg() const {
4772    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4773           getOp() == AO__c11_atomic_compare_exchange_weak ||
4774           getOp() == AO__atomic_compare_exchange ||
4775           getOp() == AO__atomic_compare_exchange_n;
4776  }
4777
4778  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4779  SourceLocation getRParenLoc() const { return RParenLoc; }
4780
4781  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4782  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4783
4784  static bool classof(const Stmt *T) {
4785    return T->getStmtClass() == AtomicExprClass;
4786  }
4787
4788  // Iterators
4789  child_range children() {
4790    return child_range(SubExprs, SubExprs+NumSubExprs);
4791  }
4792};
4793}  // end namespace clang
4794
4795#endif
4796