Expr.h revision 063daf6e196c51f162e0485478355d8e280eef5c
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
243  /// write barrier.
244  bool isOBJCGCCandidate() const;
245
246  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
247  ///  its subexpression.  If that subexpression is also a ParenExpr,
248  ///  then this method recursively returns its subexpression, and so forth.
249  ///  Otherwise, the method returns the current Expr.
250  Expr* IgnoreParens();
251
252  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
253  /// or CastExprs, returning their operand.
254  Expr *IgnoreParenCasts();
255
256  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
257  /// value (including ptr->int casts of the same size).  Strip off any
258  /// ParenExpr or CastExprs, returning their operand.
259  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
260
261  const Expr* IgnoreParens() const {
262    return const_cast<Expr*>(this)->IgnoreParens();
263  }
264  const Expr *IgnoreParenCasts() const {
265    return const_cast<Expr*>(this)->IgnoreParenCasts();
266  }
267  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
268    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
269  }
270
271  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
272  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
273
274  static bool classof(const Stmt *T) {
275    return T->getStmtClass() >= firstExprConstant &&
276           T->getStmtClass() <= lastExprConstant;
277  }
278  static bool classof(const Expr *) { return true; }
279
280  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
281    return cast<Expr>(Stmt::Create(D, C));
282  }
283};
284
285
286//===----------------------------------------------------------------------===//
287// Primary Expressions.
288//===----------------------------------------------------------------------===//
289
290/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
291/// enum, etc.
292class DeclRefExpr : public Expr {
293  NamedDecl *D;
294  SourceLocation Loc;
295
296protected:
297  // FIXME: Eventually, this constructor will go away and all subclasses
298  // will have to provide the type- and value-dependent flags.
299  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
300    Expr(SC, t), D(d), Loc(l) {}
301
302  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
303              bool VD) :
304    Expr(SC, t, TD, VD), D(d), Loc(l) {}
305
306public:
307  // FIXME: Eventually, this constructor will go away and all clients
308  // will have to provide the type- and value-dependent flags.
309  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
310    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
311
312  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
313    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
314
315  NamedDecl *getDecl() { return D; }
316  const NamedDecl *getDecl() const { return D; }
317  void setDecl(NamedDecl *NewD) { D = NewD; }
318
319  SourceLocation getLocation() const { return Loc; }
320  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
321
322  static bool classof(const Stmt *T) {
323    return T->getStmtClass() == DeclRefExprClass ||
324           T->getStmtClass() == CXXConditionDeclExprClass ||
325           T->getStmtClass() == QualifiedDeclRefExprClass;
326  }
327  static bool classof(const DeclRefExpr *) { return true; }
328
329  // Iterators
330  virtual child_iterator child_begin();
331  virtual child_iterator child_end();
332
333  virtual void EmitImpl(llvm::Serializer& S) const;
334  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
335};
336
337/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
338class PredefinedExpr : public Expr {
339public:
340  enum IdentType {
341    Func,
342    Function,
343    PrettyFunction
344  };
345
346private:
347  SourceLocation Loc;
348  IdentType Type;
349public:
350  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
351    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
352
353  IdentType getIdentType() const { return Type; }
354
355  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
356
357  static bool classof(const Stmt *T) {
358    return T->getStmtClass() == PredefinedExprClass;
359  }
360  static bool classof(const PredefinedExpr *) { return true; }
361
362  // Iterators
363  virtual child_iterator child_begin();
364  virtual child_iterator child_end();
365
366  virtual void EmitImpl(llvm::Serializer& S) const;
367  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
368};
369
370class IntegerLiteral : public Expr {
371  llvm::APInt Value;
372  SourceLocation Loc;
373public:
374  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
375  // or UnsignedLongLongTy
376  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
377    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
378    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
379  }
380  const llvm::APInt &getValue() const { return Value; }
381  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
382
383  /// \brief Retrieve the location of the literal.
384  SourceLocation getLocation() const { return Loc; }
385
386  static bool classof(const Stmt *T) {
387    return T->getStmtClass() == IntegerLiteralClass;
388  }
389  static bool classof(const IntegerLiteral *) { return true; }
390
391  // Iterators
392  virtual child_iterator child_begin();
393  virtual child_iterator child_end();
394
395  virtual void EmitImpl(llvm::Serializer& S) const;
396  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
397};
398
399class CharacterLiteral : public Expr {
400  unsigned Value;
401  SourceLocation Loc;
402  bool IsWide;
403public:
404  // type should be IntTy
405  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
406    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
407  }
408  SourceLocation getLoc() const { return Loc; }
409  bool isWide() const { return IsWide; }
410
411  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
412
413  unsigned getValue() const { return Value; }
414
415  static bool classof(const Stmt *T) {
416    return T->getStmtClass() == CharacterLiteralClass;
417  }
418  static bool classof(const CharacterLiteral *) { return true; }
419
420  // Iterators
421  virtual child_iterator child_begin();
422  virtual child_iterator child_end();
423
424  virtual void EmitImpl(llvm::Serializer& S) const;
425  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
426};
427
428class FloatingLiteral : public Expr {
429  llvm::APFloat Value;
430  bool IsExact : 1;
431  SourceLocation Loc;
432public:
433  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
434                  QualType Type, SourceLocation L)
435    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
436
437  const llvm::APFloat &getValue() const { return Value; }
438
439  bool isExact() const { return IsExact; }
440
441  /// getValueAsApproximateDouble - This returns the value as an inaccurate
442  /// double.  Note that this may cause loss of precision, but is useful for
443  /// debugging dumps, etc.
444  double getValueAsApproximateDouble() const;
445
446  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == FloatingLiteralClass;
450  }
451  static bool classof(const FloatingLiteral *) { return true; }
452
453  // Iterators
454  virtual child_iterator child_begin();
455  virtual child_iterator child_end();
456
457  virtual void EmitImpl(llvm::Serializer& S) const;
458  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
459};
460
461/// ImaginaryLiteral - We support imaginary integer and floating point literals,
462/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
463/// IntegerLiteral classes.  Instances of this class always have a Complex type
464/// whose element type matches the subexpression.
465///
466class ImaginaryLiteral : public Expr {
467  Stmt *Val;
468public:
469  ImaginaryLiteral(Expr *val, QualType Ty)
470    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
471
472  const Expr *getSubExpr() const { return cast<Expr>(Val); }
473  Expr *getSubExpr() { return cast<Expr>(Val); }
474
475  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
476  static bool classof(const Stmt *T) {
477    return T->getStmtClass() == ImaginaryLiteralClass;
478  }
479  static bool classof(const ImaginaryLiteral *) { return true; }
480
481  // Iterators
482  virtual child_iterator child_begin();
483  virtual child_iterator child_end();
484
485  virtual void EmitImpl(llvm::Serializer& S) const;
486  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
487};
488
489/// StringLiteral - This represents a string literal expression, e.g. "foo"
490/// or L"bar" (wide strings).  The actual string is returned by getStrData()
491/// is NOT null-terminated, and the length of the string is determined by
492/// calling getByteLength().  The C type for a string is always a
493/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
494/// not.
495///
496/// Note that strings in C can be formed by concatenation of multiple string
497/// literal pptokens in translation phase #6.  This keeps track of the locations
498/// of each of these pieces.
499///
500/// Strings in C can also be truncated and extended by assigning into arrays,
501/// e.g. with constructs like:
502///   char X[2] = "foobar";
503/// In this case, getByteLength() will return 6, but the string literal will
504/// have type "char[2]".
505class StringLiteral : public Expr {
506  const char *StrData;
507  unsigned ByteLength;
508  bool IsWide;
509  unsigned NumConcatenated;
510  SourceLocation TokLocs[1];
511
512  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
513public:
514  /// This is the "fully general" constructor that allows representation of
515  /// strings formed from multiple concatenated tokens.
516  static StringLiteral *Create(ASTContext &C, const char *StrData,
517                               unsigned ByteLength, bool Wide, QualType Ty,
518                               SourceLocation *Loc, unsigned NumStrs);
519
520  /// Simple constructor for string literals made from one token.
521  static StringLiteral *Create(ASTContext &C, const char *StrData,
522                               unsigned ByteLength,
523                               bool Wide, QualType Ty, SourceLocation Loc) {
524    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
525  }
526
527  void Destroy(ASTContext &C);
528
529  const char *getStrData() const { return StrData; }
530  unsigned getByteLength() const { return ByteLength; }
531  bool isWide() const { return IsWide; }
532
533  /// getNumConcatenated - Get the number of string literal tokens that were
534  /// concatenated in translation phase #6 to form this string literal.
535  unsigned getNumConcatenated() const { return NumConcatenated; }
536
537  SourceLocation getStrTokenLoc(unsigned TokNum) const {
538    assert(TokNum < NumConcatenated && "Invalid tok number");
539    return TokLocs[TokNum];
540  }
541
542  typedef const SourceLocation *tokloc_iterator;
543  tokloc_iterator tokloc_begin() const { return TokLocs; }
544  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
545
546  virtual SourceRange getSourceRange() const {
547    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
548  }
549  static bool classof(const Stmt *T) {
550    return T->getStmtClass() == StringLiteralClass;
551  }
552  static bool classof(const StringLiteral *) { return true; }
553
554  // Iterators
555  virtual child_iterator child_begin();
556  virtual child_iterator child_end();
557
558  virtual void EmitImpl(llvm::Serializer& S) const;
559  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
560};
561
562/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
563/// AST node is only formed if full location information is requested.
564class ParenExpr : public Expr {
565  SourceLocation L, R;
566  Stmt *Val;
567public:
568  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
569    : Expr(ParenExprClass, val->getType(),
570           val->isTypeDependent(), val->isValueDependent()),
571      L(l), R(r), Val(val) {}
572
573  const Expr *getSubExpr() const { return cast<Expr>(Val); }
574  Expr *getSubExpr() { return cast<Expr>(Val); }
575  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
576
577  /// \brief Get the location of the left parentheses '('.
578  SourceLocation getLParen() const { return L; }
579
580  /// \brief Get the location of the right parentheses ')'.
581  SourceLocation getRParen() const { return R; }
582
583  static bool classof(const Stmt *T) {
584    return T->getStmtClass() == ParenExprClass;
585  }
586  static bool classof(const ParenExpr *) { return true; }
587
588  // Iterators
589  virtual child_iterator child_begin();
590  virtual child_iterator child_end();
591
592  virtual void EmitImpl(llvm::Serializer& S) const;
593  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
594};
595
596
597/// UnaryOperator - This represents the unary-expression's (except sizeof and
598/// alignof), the postinc/postdec operators from postfix-expression, and various
599/// extensions.
600///
601/// Notes on various nodes:
602///
603/// Real/Imag - These return the real/imag part of a complex operand.  If
604///   applied to a non-complex value, the former returns its operand and the
605///   later returns zero in the type of the operand.
606///
607/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
608///   subexpression is a compound literal with the various MemberExpr and
609///   ArraySubscriptExpr's applied to it.
610///
611class UnaryOperator : public Expr {
612public:
613  // Note that additions to this should also update the StmtVisitor class.
614  enum Opcode {
615    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
616    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
617    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
618    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
619    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
620    Real, Imag,       // "__real expr"/"__imag expr" Extension.
621    Extension,        // __extension__ marker.
622    OffsetOf          // __builtin_offsetof
623  };
624private:
625  Stmt *Val;
626  Opcode Opc;
627  SourceLocation Loc;
628public:
629
630  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
631    : Expr(UnaryOperatorClass, type,
632           input->isTypeDependent() && opc != OffsetOf,
633           input->isValueDependent()),
634      Val(input), Opc(opc), Loc(l) {}
635
636  Opcode getOpcode() const { return Opc; }
637  Expr *getSubExpr() const { return cast<Expr>(Val); }
638
639  /// getOperatorLoc - Return the location of the operator.
640  SourceLocation getOperatorLoc() const { return Loc; }
641
642  /// isPostfix - Return true if this is a postfix operation, like x++.
643  static bool isPostfix(Opcode Op) {
644    return Op == PostInc || Op == PostDec;
645  }
646
647  /// isPostfix - Return true if this is a prefix operation, like --x.
648  static bool isPrefix(Opcode Op) {
649    return Op == PreInc || Op == PreDec;
650  }
651
652  bool isPrefix() const { return isPrefix(Opc); }
653  bool isPostfix() const { return isPostfix(Opc); }
654  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
655  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
656  bool isOffsetOfOp() const { return Opc == OffsetOf; }
657  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
658
659  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
660  /// corresponds to, e.g. "sizeof" or "[pre]++"
661  static const char *getOpcodeStr(Opcode Op);
662
663  virtual SourceRange getSourceRange() const {
664    if (isPostfix())
665      return SourceRange(Val->getLocStart(), Loc);
666    else
667      return SourceRange(Loc, Val->getLocEnd());
668  }
669  virtual SourceLocation getExprLoc() const { return Loc; }
670
671  static bool classof(const Stmt *T) {
672    return T->getStmtClass() == UnaryOperatorClass;
673  }
674  static bool classof(const UnaryOperator *) { return true; }
675
676  // Iterators
677  virtual child_iterator child_begin();
678  virtual child_iterator child_end();
679
680  virtual void EmitImpl(llvm::Serializer& S) const;
681  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
682};
683
684/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
685/// types and expressions.
686class SizeOfAlignOfExpr : public Expr {
687  bool isSizeof : 1;  // true if sizeof, false if alignof.
688  bool isType : 1;    // true if operand is a type, false if an expression
689  union {
690    void *Ty;
691    Stmt *Ex;
692  } Argument;
693  SourceLocation OpLoc, RParenLoc;
694public:
695  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
696                    QualType resultType, SourceLocation op,
697                    SourceLocation rp) :
698      Expr(SizeOfAlignOfExprClass, resultType,
699           false, // Never type-dependent.
700           // Value-dependent if the argument is type-dependent.
701           (istype ? QualType::getFromOpaquePtr(argument)->isDependentType()
702                   : static_cast<Expr*>(argument)->isTypeDependent())),
703      isSizeof(issizeof), isType(istype), OpLoc(op), RParenLoc(rp) {
704    if (isType)
705      Argument.Ty = argument;
706    else
707      // argument was an Expr*, so cast it back to that to be safe
708      Argument.Ex = static_cast<Expr*>(argument);
709  }
710
711  virtual void Destroy(ASTContext& C);
712
713  bool isSizeOf() const { return isSizeof; }
714  bool isArgumentType() const { return isType; }
715  QualType getArgumentType() const {
716    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
717    return QualType::getFromOpaquePtr(Argument.Ty);
718  }
719  Expr *getArgumentExpr() {
720    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
721    return static_cast<Expr*>(Argument.Ex);
722  }
723  const Expr *getArgumentExpr() const {
724    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
725  }
726
727  /// Gets the argument type, or the type of the argument expression, whichever
728  /// is appropriate.
729  QualType getTypeOfArgument() const {
730    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
731  }
732
733  SourceLocation getOperatorLoc() const { return OpLoc; }
734
735  virtual SourceRange getSourceRange() const {
736    return SourceRange(OpLoc, RParenLoc);
737  }
738
739  static bool classof(const Stmt *T) {
740    return T->getStmtClass() == SizeOfAlignOfExprClass;
741  }
742  static bool classof(const SizeOfAlignOfExpr *) { return true; }
743
744  // Iterators
745  virtual child_iterator child_begin();
746  virtual child_iterator child_end();
747
748  virtual void EmitImpl(llvm::Serializer& S) const;
749  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
750};
751
752//===----------------------------------------------------------------------===//
753// Postfix Operators.
754//===----------------------------------------------------------------------===//
755
756/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
757class ArraySubscriptExpr : public Expr {
758  enum { LHS, RHS, END_EXPR=2 };
759  Stmt* SubExprs[END_EXPR];
760  SourceLocation RBracketLoc;
761public:
762  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
763                     SourceLocation rbracketloc)
764  : Expr(ArraySubscriptExprClass, t,
765         lhs->isTypeDependent() || rhs->isTypeDependent(),
766         lhs->isValueDependent() || rhs->isValueDependent()),
767    RBracketLoc(rbracketloc) {
768    SubExprs[LHS] = lhs;
769    SubExprs[RHS] = rhs;
770  }
771
772  /// An array access can be written A[4] or 4[A] (both are equivalent).
773  /// - getBase() and getIdx() always present the normalized view: A[4].
774  ///    In this case getBase() returns "A" and getIdx() returns "4".
775  /// - getLHS() and getRHS() present the syntactic view. e.g. for
776  ///    4[A] getLHS() returns "4".
777  /// Note: Because vector element access is also written A[4] we must
778  /// predicate the format conversion in getBase and getIdx only on the
779  /// the type of the RHS, as it is possible for the LHS to be a vector of
780  /// integer type
781  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
782  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
783
784  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
785  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
786
787  Expr *getBase() {
788    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
789  }
790
791  const Expr *getBase() const {
792    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
793  }
794
795  Expr *getIdx() {
796    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
797  }
798
799  const Expr *getIdx() const {
800    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
801  }
802
803  virtual SourceRange getSourceRange() const {
804    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
805  }
806
807  SourceLocation getRBracketLoc() const { return RBracketLoc; }
808  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
809
810  static bool classof(const Stmt *T) {
811    return T->getStmtClass() == ArraySubscriptExprClass;
812  }
813  static bool classof(const ArraySubscriptExpr *) { return true; }
814
815  // Iterators
816  virtual child_iterator child_begin();
817  virtual child_iterator child_end();
818
819  virtual void EmitImpl(llvm::Serializer& S) const;
820  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
821};
822
823
824/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
825/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
826/// while its subclasses may represent alternative syntax that (semantically)
827/// results in a function call. For example, CXXOperatorCallExpr is
828/// a subclass for overloaded operator calls that use operator syntax, e.g.,
829/// "str1 + str2" to resolve to a function call.
830class CallExpr : public Expr {
831  enum { FN=0, ARGS_START=1 };
832  Stmt **SubExprs;
833  unsigned NumArgs;
834  SourceLocation RParenLoc;
835
836  // This version of the ctor is for deserialization.
837  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
838           SourceLocation rparenloc)
839  : Expr(SC,t), SubExprs(subexprs),
840    NumArgs(numargs), RParenLoc(rparenloc) {}
841
842protected:
843  // This version of the constructor is for derived classes.
844  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
845           QualType t, SourceLocation rparenloc);
846
847public:
848  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
849           SourceLocation rparenloc);
850
851  ~CallExpr() {}
852
853  void Destroy(ASTContext& C);
854
855  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
856  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
857  void setCallee(Expr *F) { SubExprs[FN] = F; }
858
859  /// getNumArgs - Return the number of actual arguments to this call.
860  ///
861  unsigned getNumArgs() const { return NumArgs; }
862
863  /// getArg - Return the specified argument.
864  Expr *getArg(unsigned Arg) {
865    assert(Arg < NumArgs && "Arg access out of range!");
866    return cast<Expr>(SubExprs[Arg+ARGS_START]);
867  }
868  const Expr *getArg(unsigned Arg) const {
869    assert(Arg < NumArgs && "Arg access out of range!");
870    return cast<Expr>(SubExprs[Arg+ARGS_START]);
871  }
872
873  // FIXME: Why is this needed?  Why not just create the CallExpr with the
874  // corect number of arguments?  It makes the ASTs less brittle.
875  /// setArg - Set the specified argument.
876  void setArg(unsigned Arg, Expr *ArgExpr) {
877    assert(Arg < NumArgs && "Arg access out of range!");
878    SubExprs[Arg+ARGS_START] = ArgExpr;
879  }
880
881  // FIXME: It would be great to just get rid of this.  There is only one
882  // callee of this method, and it probably could be refactored to not use
883  // this method and instead just create a CallExpr with the right number of
884  // arguments.
885  /// setNumArgs - This changes the number of arguments present in this call.
886  /// Any orphaned expressions are deleted by this, and any new operands are set
887  /// to null.
888  void setNumArgs(ASTContext& C, unsigned NumArgs);
889
890  typedef ExprIterator arg_iterator;
891  typedef ConstExprIterator const_arg_iterator;
892
893  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
894  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
895  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
896  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
897
898  /// getNumCommas - Return the number of commas that must have been present in
899  /// this function call.
900  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
901
902  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
903  /// not, return 0.
904  unsigned isBuiltinCall(ASTContext &Context) const;
905
906  SourceLocation getRParenLoc() const { return RParenLoc; }
907
908  virtual SourceRange getSourceRange() const {
909    return SourceRange(getCallee()->getLocStart(), RParenLoc);
910  }
911
912  static bool classof(const Stmt *T) {
913    return T->getStmtClass() == CallExprClass ||
914           T->getStmtClass() == CXXOperatorCallExprClass ||
915           T->getStmtClass() == CXXMemberCallExprClass;
916  }
917  static bool classof(const CallExpr *) { return true; }
918  static bool classof(const CXXOperatorCallExpr *) { return true; }
919  static bool classof(const CXXMemberCallExpr *) { return true; }
920
921  // Iterators
922  virtual child_iterator child_begin();
923  virtual child_iterator child_end();
924
925  virtual void EmitImpl(llvm::Serializer& S) const;
926  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
927                              StmtClass SC);
928};
929
930/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
931///
932class MemberExpr : public Expr {
933  /// Base - the expression for the base pointer or structure references.  In
934  /// X.F, this is "X".
935  Stmt *Base;
936
937  /// MemberDecl - This is the decl being referenced by the field/member name.
938  /// In X.F, this is the decl referenced by F.
939  NamedDecl *MemberDecl;
940
941  /// MemberLoc - This is the location of the member name.
942  SourceLocation MemberLoc;
943
944  /// IsArrow - True if this is "X->F", false if this is "X.F".
945  bool IsArrow;
946public:
947  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
948             QualType ty)
949    : Expr(MemberExprClass, ty),
950      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
951
952  void setBase(Expr *E) { Base = E; }
953  Expr *getBase() const { return cast<Expr>(Base); }
954  NamedDecl *getMemberDecl() const { return MemberDecl; }
955  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
956  bool isArrow() const { return IsArrow; }
957
958  /// getMemberLoc - Return the location of the "member", in X->F, it is the
959  /// location of 'F'.
960  SourceLocation getMemberLoc() const { return MemberLoc; }
961
962  virtual SourceRange getSourceRange() const {
963    return SourceRange(getBase()->getLocStart(), MemberLoc);
964  }
965
966  virtual SourceLocation getExprLoc() const { return MemberLoc; }
967
968  static bool classof(const Stmt *T) {
969    return T->getStmtClass() == MemberExprClass;
970  }
971  static bool classof(const MemberExpr *) { return true; }
972
973  // Iterators
974  virtual child_iterator child_begin();
975  virtual child_iterator child_end();
976
977  virtual void EmitImpl(llvm::Serializer& S) const;
978  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
979};
980
981/// CompoundLiteralExpr - [C99 6.5.2.5]
982///
983class CompoundLiteralExpr : public Expr {
984  /// LParenLoc - If non-null, this is the location of the left paren in a
985  /// compound literal like "(int){4}".  This can be null if this is a
986  /// synthesized compound expression.
987  SourceLocation LParenLoc;
988  Stmt *Init;
989  bool FileScope;
990public:
991  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
992                      bool fileScope)
993    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
994      FileScope(fileScope) {}
995
996  const Expr *getInitializer() const { return cast<Expr>(Init); }
997  Expr *getInitializer() { return cast<Expr>(Init); }
998
999  bool isFileScope() const { return FileScope; }
1000
1001  SourceLocation getLParenLoc() const { return LParenLoc; }
1002
1003  virtual SourceRange getSourceRange() const {
1004    // FIXME: Init should never be null.
1005    if (!Init)
1006      return SourceRange();
1007    if (LParenLoc.isInvalid())
1008      return Init->getSourceRange();
1009    return SourceRange(LParenLoc, Init->getLocEnd());
1010  }
1011
1012  static bool classof(const Stmt *T) {
1013    return T->getStmtClass() == CompoundLiteralExprClass;
1014  }
1015  static bool classof(const CompoundLiteralExpr *) { return true; }
1016
1017  // Iterators
1018  virtual child_iterator child_begin();
1019  virtual child_iterator child_end();
1020
1021  virtual void EmitImpl(llvm::Serializer& S) const;
1022  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1023};
1024
1025/// CastExpr - Base class for type casts, including both implicit
1026/// casts (ImplicitCastExpr) and explicit casts that have some
1027/// representation in the source code (ExplicitCastExpr's derived
1028/// classes).
1029class CastExpr : public Expr {
1030  Stmt *Op;
1031protected:
1032  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1033    Expr(SC, ty,
1034         // Cast expressions are type-dependent if the type is
1035         // dependent (C++ [temp.dep.expr]p3).
1036         ty->isDependentType(),
1037         // Cast expressions are value-dependent if the type is
1038         // dependent or if the subexpression is value-dependent.
1039         ty->isDependentType() || (op && op->isValueDependent())),
1040    Op(op) {}
1041
1042public:
1043  Expr *getSubExpr() { return cast<Expr>(Op); }
1044  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1045
1046  static bool classof(const Stmt *T) {
1047    StmtClass SC = T->getStmtClass();
1048    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1049      return true;
1050
1051    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1052      return true;
1053
1054    return false;
1055  }
1056  static bool classof(const CastExpr *) { return true; }
1057
1058  // Iterators
1059  virtual child_iterator child_begin();
1060  virtual child_iterator child_end();
1061};
1062
1063/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1064/// conversions, which have no direct representation in the original
1065/// source code. For example: converting T[]->T*, void f()->void
1066/// (*f)(), float->double, short->int, etc.
1067///
1068/// In C, implicit casts always produce rvalues. However, in C++, an
1069/// implicit cast whose result is being bound to a reference will be
1070/// an lvalue. For example:
1071///
1072/// @code
1073/// class Base { };
1074/// class Derived : public Base { };
1075/// void f(Derived d) {
1076///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1077/// }
1078/// @endcode
1079class ImplicitCastExpr : public CastExpr {
1080  /// LvalueCast - Whether this cast produces an lvalue.
1081  bool LvalueCast;
1082
1083public:
1084  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1085    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1086
1087  virtual SourceRange getSourceRange() const {
1088    return getSubExpr()->getSourceRange();
1089  }
1090
1091  /// isLvalueCast - Whether this cast produces an lvalue.
1092  bool isLvalueCast() const { return LvalueCast; }
1093
1094  /// setLvalueCast - Set whether this cast produces an lvalue.
1095  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1096
1097  static bool classof(const Stmt *T) {
1098    return T->getStmtClass() == ImplicitCastExprClass;
1099  }
1100  static bool classof(const ImplicitCastExpr *) { return true; }
1101
1102  virtual void EmitImpl(llvm::Serializer& S) const;
1103  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1104};
1105
1106/// ExplicitCastExpr - An explicit cast written in the source
1107/// code.
1108///
1109/// This class is effectively an abstract class, because it provides
1110/// the basic representation of an explicitly-written cast without
1111/// specifying which kind of cast (C cast, functional cast, static
1112/// cast, etc.) was written; specific derived classes represent the
1113/// particular style of cast and its location information.
1114///
1115/// Unlike implicit casts, explicit cast nodes have two different
1116/// types: the type that was written into the source code, and the
1117/// actual type of the expression as determined by semantic
1118/// analysis. These types may differ slightly. For example, in C++ one
1119/// can cast to a reference type, which indicates that the resulting
1120/// expression will be an lvalue. The reference type, however, will
1121/// not be used as the type of the expression.
1122class ExplicitCastExpr : public CastExpr {
1123  /// TypeAsWritten - The type that this expression is casting to, as
1124  /// written in the source code.
1125  QualType TypeAsWritten;
1126
1127protected:
1128  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1129    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1130
1131public:
1132  /// getTypeAsWritten - Returns the type that this expression is
1133  /// casting to, as written in the source code.
1134  QualType getTypeAsWritten() const { return TypeAsWritten; }
1135
1136  static bool classof(const Stmt *T) {
1137    StmtClass SC = T->getStmtClass();
1138    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1139      return true;
1140    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1141      return true;
1142
1143    return false;
1144  }
1145  static bool classof(const ExplicitCastExpr *) { return true; }
1146};
1147
1148/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1149/// cast in C++ (C++ [expr.cast]), which uses the syntax
1150/// (Type)expr. For example: @c (int)f.
1151class CStyleCastExpr : public ExplicitCastExpr {
1152  SourceLocation LPLoc; // the location of the left paren
1153  SourceLocation RPLoc; // the location of the right paren
1154public:
1155  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1156                    SourceLocation l, SourceLocation r) :
1157    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1158    LPLoc(l), RPLoc(r) {}
1159
1160  SourceLocation getLParenLoc() const { return LPLoc; }
1161  SourceLocation getRParenLoc() const { return RPLoc; }
1162
1163  virtual SourceRange getSourceRange() const {
1164    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1165  }
1166  static bool classof(const Stmt *T) {
1167    return T->getStmtClass() == CStyleCastExprClass;
1168  }
1169  static bool classof(const CStyleCastExpr *) { return true; }
1170
1171  virtual void EmitImpl(llvm::Serializer& S) const;
1172  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1173};
1174
1175/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1176///
1177/// This expression node kind describes a builtin binary operation,
1178/// such as "x + y" for integer values "x" and "y". The operands will
1179/// already have been converted to appropriate types (e.g., by
1180/// performing promotions or conversions).
1181///
1182/// In C++, where operators may be overloaded, a different kind of
1183/// expression node (CXXOperatorCallExpr) is used to express the
1184/// invocation of an overloaded operator with operator syntax. Within
1185/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1186/// used to store an expression "x + y" depends on the subexpressions
1187/// for x and y. If neither x or y is type-dependent, and the "+"
1188/// operator resolves to a built-in operation, BinaryOperator will be
1189/// used to express the computation (x and y may still be
1190/// value-dependent). If either x or y is type-dependent, or if the
1191/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1192/// be used to express the computation.
1193class BinaryOperator : public Expr {
1194public:
1195  enum Opcode {
1196    // Operators listed in order of precedence.
1197    // Note that additions to this should also update the StmtVisitor class.
1198    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1199    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1200    Add, Sub,         // [C99 6.5.6] Additive operators.
1201    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1202    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1203    EQ, NE,           // [C99 6.5.9] Equality operators.
1204    And,              // [C99 6.5.10] Bitwise AND operator.
1205    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1206    Or,               // [C99 6.5.12] Bitwise OR operator.
1207    LAnd,             // [C99 6.5.13] Logical AND operator.
1208    LOr,              // [C99 6.5.14] Logical OR operator.
1209    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1210    DivAssign, RemAssign,
1211    AddAssign, SubAssign,
1212    ShlAssign, ShrAssign,
1213    AndAssign, XorAssign,
1214    OrAssign,
1215    Comma             // [C99 6.5.17] Comma operator.
1216  };
1217private:
1218  enum { LHS, RHS, END_EXPR };
1219  Stmt* SubExprs[END_EXPR];
1220  Opcode Opc;
1221  SourceLocation OpLoc;
1222public:
1223
1224  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1225                 SourceLocation opLoc)
1226    : Expr(BinaryOperatorClass, ResTy,
1227           lhs->isTypeDependent() || rhs->isTypeDependent(),
1228           lhs->isValueDependent() || rhs->isValueDependent()),
1229      Opc(opc), OpLoc(opLoc) {
1230    SubExprs[LHS] = lhs;
1231    SubExprs[RHS] = rhs;
1232    assert(!isCompoundAssignmentOp() &&
1233           "Use ArithAssignBinaryOperator for compound assignments");
1234  }
1235
1236  SourceLocation getOperatorLoc() const { return OpLoc; }
1237  Opcode getOpcode() const { return Opc; }
1238  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1239  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1240  virtual SourceRange getSourceRange() const {
1241    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1242  }
1243
1244  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1245  /// corresponds to, e.g. "<<=".
1246  static const char *getOpcodeStr(Opcode Op);
1247
1248  /// \brief Retrieve the binary opcode that corresponds to the given
1249  /// overloaded operator.
1250  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1251
1252  /// \brief Retrieve the overloaded operator kind that corresponds to
1253  /// the given binary opcode.
1254  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1255
1256  /// predicates to categorize the respective opcodes.
1257  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1258  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1259  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1260  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1261
1262  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1263  bool isRelationalOp() const { return isRelationalOp(Opc); }
1264
1265  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1266  bool isEqualityOp() const { return isEqualityOp(Opc); }
1267
1268  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1269  bool isLogicalOp() const { return isLogicalOp(Opc); }
1270
1271  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1272  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1273  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1274
1275  static bool classof(const Stmt *S) {
1276    return S->getStmtClass() == BinaryOperatorClass ||
1277           S->getStmtClass() == CompoundAssignOperatorClass;
1278  }
1279  static bool classof(const BinaryOperator *) { return true; }
1280
1281  // Iterators
1282  virtual child_iterator child_begin();
1283  virtual child_iterator child_end();
1284
1285  virtual void EmitImpl(llvm::Serializer& S) const;
1286  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1287
1288protected:
1289  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1290                 SourceLocation oploc, bool dead)
1291    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1292    SubExprs[LHS] = lhs;
1293    SubExprs[RHS] = rhs;
1294  }
1295};
1296
1297/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1298/// track of the type the operation is performed in.  Due to the semantics of
1299/// these operators, the operands are promoted, the aritmetic performed, an
1300/// implicit conversion back to the result type done, then the assignment takes
1301/// place.  This captures the intermediate type which the computation is done
1302/// in.
1303class CompoundAssignOperator : public BinaryOperator {
1304  QualType ComputationType;
1305public:
1306  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1307                         QualType ResType, QualType CompType,
1308                         SourceLocation OpLoc)
1309    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1310      ComputationType(CompType) {
1311    assert(isCompoundAssignmentOp() &&
1312           "Only should be used for compound assignments");
1313  }
1314
1315  QualType getComputationType() const { return ComputationType; }
1316
1317  static bool classof(const CompoundAssignOperator *) { return true; }
1318  static bool classof(const Stmt *S) {
1319    return S->getStmtClass() == CompoundAssignOperatorClass;
1320  }
1321
1322  virtual void EmitImpl(llvm::Serializer& S) const;
1323  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1324                                            ASTContext& C);
1325};
1326
1327/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1328/// GNU "missing LHS" extension is in use.
1329///
1330class ConditionalOperator : public Expr {
1331  enum { COND, LHS, RHS, END_EXPR };
1332  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1333public:
1334  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1335    : Expr(ConditionalOperatorClass, t,
1336           // FIXME: the type of the conditional operator doesn't
1337           // depend on the type of the conditional, but the standard
1338           // seems to imply that it could. File a bug!
1339           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1340           (cond->isValueDependent() ||
1341            (lhs && lhs->isValueDependent()) ||
1342            (rhs && rhs->isValueDependent()))) {
1343    SubExprs[COND] = cond;
1344    SubExprs[LHS] = lhs;
1345    SubExprs[RHS] = rhs;
1346  }
1347
1348  // getCond - Return the expression representing the condition for
1349  //  the ?: operator.
1350  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1351
1352  // getTrueExpr - Return the subexpression representing the value of the ?:
1353  //  expression if the condition evaluates to true.  In most cases this value
1354  //  will be the same as getLHS() except a GCC extension allows the left
1355  //  subexpression to be omitted, and instead of the condition be returned.
1356  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1357  //  is only evaluated once.
1358  Expr *getTrueExpr() const {
1359    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1360  }
1361
1362  // getTrueExpr - Return the subexpression representing the value of the ?:
1363  // expression if the condition evaluates to false. This is the same as getRHS.
1364  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1365
1366  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1367  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1368
1369  virtual SourceRange getSourceRange() const {
1370    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1371  }
1372  static bool classof(const Stmt *T) {
1373    return T->getStmtClass() == ConditionalOperatorClass;
1374  }
1375  static bool classof(const ConditionalOperator *) { return true; }
1376
1377  // Iterators
1378  virtual child_iterator child_begin();
1379  virtual child_iterator child_end();
1380
1381  virtual void EmitImpl(llvm::Serializer& S) const;
1382  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1383};
1384
1385/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1386class AddrLabelExpr : public Expr {
1387  SourceLocation AmpAmpLoc, LabelLoc;
1388  LabelStmt *Label;
1389public:
1390  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1391                QualType t)
1392    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1393
1394  virtual SourceRange getSourceRange() const {
1395    return SourceRange(AmpAmpLoc, LabelLoc);
1396  }
1397
1398  LabelStmt *getLabel() const { return Label; }
1399
1400  static bool classof(const Stmt *T) {
1401    return T->getStmtClass() == AddrLabelExprClass;
1402  }
1403  static bool classof(const AddrLabelExpr *) { return true; }
1404
1405  // Iterators
1406  virtual child_iterator child_begin();
1407  virtual child_iterator child_end();
1408
1409  virtual void EmitImpl(llvm::Serializer& S) const;
1410  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1411};
1412
1413/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1414/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1415/// takes the value of the last subexpression.
1416class StmtExpr : public Expr {
1417  Stmt *SubStmt;
1418  SourceLocation LParenLoc, RParenLoc;
1419public:
1420  StmtExpr(CompoundStmt *substmt, QualType T,
1421           SourceLocation lp, SourceLocation rp) :
1422    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1423
1424  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1425  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1426
1427  virtual SourceRange getSourceRange() const {
1428    return SourceRange(LParenLoc, RParenLoc);
1429  }
1430
1431  SourceLocation getLParenLoc() const { return LParenLoc; }
1432  SourceLocation getRParenLoc() const { return RParenLoc; }
1433
1434  static bool classof(const Stmt *T) {
1435    return T->getStmtClass() == StmtExprClass;
1436  }
1437  static bool classof(const StmtExpr *) { return true; }
1438
1439  // Iterators
1440  virtual child_iterator child_begin();
1441  virtual child_iterator child_end();
1442
1443  virtual void EmitImpl(llvm::Serializer& S) const;
1444  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1445};
1446
1447/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1448/// This AST node represents a function that returns 1 if two *types* (not
1449/// expressions) are compatible. The result of this built-in function can be
1450/// used in integer constant expressions.
1451class TypesCompatibleExpr : public Expr {
1452  QualType Type1;
1453  QualType Type2;
1454  SourceLocation BuiltinLoc, RParenLoc;
1455public:
1456  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1457                      QualType t1, QualType t2, SourceLocation RP) :
1458    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1459    BuiltinLoc(BLoc), RParenLoc(RP) {}
1460
1461  QualType getArgType1() const { return Type1; }
1462  QualType getArgType2() const { return Type2; }
1463
1464  virtual SourceRange getSourceRange() const {
1465    return SourceRange(BuiltinLoc, RParenLoc);
1466  }
1467  static bool classof(const Stmt *T) {
1468    return T->getStmtClass() == TypesCompatibleExprClass;
1469  }
1470  static bool classof(const TypesCompatibleExpr *) { return true; }
1471
1472  // Iterators
1473  virtual child_iterator child_begin();
1474  virtual child_iterator child_end();
1475
1476  virtual void EmitImpl(llvm::Serializer& S) const;
1477  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1478};
1479
1480/// ShuffleVectorExpr - clang-specific builtin-in function
1481/// __builtin_shufflevector.
1482/// This AST node represents a operator that does a constant
1483/// shuffle, similar to LLVM's shufflevector instruction. It takes
1484/// two vectors and a variable number of constant indices,
1485/// and returns the appropriately shuffled vector.
1486class ShuffleVectorExpr : public Expr {
1487  SourceLocation BuiltinLoc, RParenLoc;
1488
1489  // SubExprs - the list of values passed to the __builtin_shufflevector
1490  // function. The first two are vectors, and the rest are constant
1491  // indices.  The number of values in this list is always
1492  // 2+the number of indices in the vector type.
1493  Stmt **SubExprs;
1494  unsigned NumExprs;
1495
1496public:
1497  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1498                    QualType Type, SourceLocation BLoc,
1499                    SourceLocation RP) :
1500    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1501    RParenLoc(RP), NumExprs(nexpr) {
1502
1503    SubExprs = new Stmt*[nexpr];
1504    for (unsigned i = 0; i < nexpr; i++)
1505      SubExprs[i] = args[i];
1506  }
1507
1508  virtual SourceRange getSourceRange() const {
1509    return SourceRange(BuiltinLoc, RParenLoc);
1510  }
1511  static bool classof(const Stmt *T) {
1512    return T->getStmtClass() == ShuffleVectorExprClass;
1513  }
1514  static bool classof(const ShuffleVectorExpr *) { return true; }
1515
1516  ~ShuffleVectorExpr() {
1517    delete [] SubExprs;
1518  }
1519
1520  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1521  /// constant expression, the actual arguments passed in, and the function
1522  /// pointers.
1523  unsigned getNumSubExprs() const { return NumExprs; }
1524
1525  /// getExpr - Return the Expr at the specified index.
1526  Expr *getExpr(unsigned Index) {
1527    assert((Index < NumExprs) && "Arg access out of range!");
1528    return cast<Expr>(SubExprs[Index]);
1529  }
1530  const Expr *getExpr(unsigned Index) const {
1531    assert((Index < NumExprs) && "Arg access out of range!");
1532    return cast<Expr>(SubExprs[Index]);
1533  }
1534
1535  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1536    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1537    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1538  }
1539
1540  // Iterators
1541  virtual child_iterator child_begin();
1542  virtual child_iterator child_end();
1543
1544  virtual void EmitImpl(llvm::Serializer& S) const;
1545  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1546};
1547
1548/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1549/// This AST node is similar to the conditional operator (?:) in C, with
1550/// the following exceptions:
1551/// - the test expression must be a integer constant expression.
1552/// - the expression returned acts like the chosen subexpression in every
1553///   visible way: the type is the same as that of the chosen subexpression,
1554///   and all predicates (whether it's an l-value, whether it's an integer
1555///   constant expression, etc.) return the same result as for the chosen
1556///   sub-expression.
1557class ChooseExpr : public Expr {
1558  enum { COND, LHS, RHS, END_EXPR };
1559  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1560  SourceLocation BuiltinLoc, RParenLoc;
1561public:
1562  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1563             SourceLocation RP)
1564    : Expr(ChooseExprClass, t),
1565      BuiltinLoc(BLoc), RParenLoc(RP) {
1566      SubExprs[COND] = cond;
1567      SubExprs[LHS] = lhs;
1568      SubExprs[RHS] = rhs;
1569    }
1570
1571  /// isConditionTrue - Return whether the condition is true (i.e. not
1572  /// equal to zero).
1573  bool isConditionTrue(ASTContext &C) const;
1574
1575  /// getChosenSubExpr - Return the subexpression chosen according to the
1576  /// condition.
1577  Expr *getChosenSubExpr(ASTContext &C) const {
1578    return isConditionTrue(C) ? getLHS() : getRHS();
1579  }
1580
1581  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1582  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1583  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1584
1585  virtual SourceRange getSourceRange() const {
1586    return SourceRange(BuiltinLoc, RParenLoc);
1587  }
1588  static bool classof(const Stmt *T) {
1589    return T->getStmtClass() == ChooseExprClass;
1590  }
1591  static bool classof(const ChooseExpr *) { return true; }
1592
1593  // Iterators
1594  virtual child_iterator child_begin();
1595  virtual child_iterator child_end();
1596
1597  virtual void EmitImpl(llvm::Serializer& S) const;
1598  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1599};
1600
1601/// GNUNullExpr - Implements the GNU __null extension, which is a name
1602/// for a null pointer constant that has integral type (e.g., int or
1603/// long) and is the same size and alignment as a pointer. The __null
1604/// extension is typically only used by system headers, which define
1605/// NULL as __null in C++ rather than using 0 (which is an integer
1606/// that may not match the size of a pointer).
1607class GNUNullExpr : public Expr {
1608  /// TokenLoc - The location of the __null keyword.
1609  SourceLocation TokenLoc;
1610
1611public:
1612  GNUNullExpr(QualType Ty, SourceLocation Loc)
1613    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1614
1615  /// getTokenLocation - The location of the __null token.
1616  SourceLocation getTokenLocation() const { return TokenLoc; }
1617
1618  virtual SourceRange getSourceRange() const {
1619    return SourceRange(TokenLoc);
1620  }
1621  static bool classof(const Stmt *T) {
1622    return T->getStmtClass() == GNUNullExprClass;
1623  }
1624  static bool classof(const GNUNullExpr *) { return true; }
1625
1626  // Iterators
1627  virtual child_iterator child_begin();
1628  virtual child_iterator child_end();
1629
1630  virtual void EmitImpl(llvm::Serializer& S) const;
1631  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1632};
1633
1634/// VAArgExpr, used for the builtin function __builtin_va_start.
1635class VAArgExpr : public Expr {
1636  Stmt *Val;
1637  SourceLocation BuiltinLoc, RParenLoc;
1638public:
1639  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1640    : Expr(VAArgExprClass, t),
1641      Val(e),
1642      BuiltinLoc(BLoc),
1643      RParenLoc(RPLoc) { }
1644
1645  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1646  Expr *getSubExpr() { return cast<Expr>(Val); }
1647  virtual SourceRange getSourceRange() const {
1648    return SourceRange(BuiltinLoc, RParenLoc);
1649  }
1650  static bool classof(const Stmt *T) {
1651    return T->getStmtClass() == VAArgExprClass;
1652  }
1653  static bool classof(const VAArgExpr *) { return true; }
1654
1655  // Iterators
1656  virtual child_iterator child_begin();
1657  virtual child_iterator child_end();
1658
1659  virtual void EmitImpl(llvm::Serializer& S) const;
1660  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1661};
1662
1663/// @brief Describes an C or C++ initializer list.
1664///
1665/// InitListExpr describes an initializer list, which can be used to
1666/// initialize objects of different types, including
1667/// struct/class/union types, arrays, and vectors. For example:
1668///
1669/// @code
1670/// struct foo x = { 1, { 2, 3 } };
1671/// @endcode
1672///
1673/// Prior to semantic analysis, an initializer list will represent the
1674/// initializer list as written by the user, but will have the
1675/// placeholder type "void". This initializer list is called the
1676/// syntactic form of the initializer, and may contain C99 designated
1677/// initializers (represented as DesignatedInitExprs), initializations
1678/// of subobject members without explicit braces, and so on. Clients
1679/// interested in the original syntax of the initializer list should
1680/// use the syntactic form of the initializer list.
1681///
1682/// After semantic analysis, the initializer list will represent the
1683/// semantic form of the initializer, where the initializations of all
1684/// subobjects are made explicit with nested InitListExpr nodes and
1685/// C99 designators have been eliminated by placing the designated
1686/// initializations into the subobject they initialize. Additionally,
1687/// any "holes" in the initialization, where no initializer has been
1688/// specified for a particular subobject, will be replaced with
1689/// implicitly-generated ImplicitValueInitExpr expressions that
1690/// value-initialize the subobjects. Note, however, that the
1691/// initializer lists may still have fewer initializers than there are
1692/// elements to initialize within the object.
1693///
1694/// Given the semantic form of the initializer list, one can retrieve
1695/// the original syntactic form of that initializer list (if it
1696/// exists) using getSyntacticForm(). Since many initializer lists
1697/// have the same syntactic and semantic forms, getSyntacticForm() may
1698/// return NULL, indicating that the current initializer list also
1699/// serves as its syntactic form.
1700class InitListExpr : public Expr {
1701  std::vector<Stmt *> InitExprs;
1702  SourceLocation LBraceLoc, RBraceLoc;
1703
1704  /// Contains the initializer list that describes the syntactic form
1705  /// written in the source code.
1706  InitListExpr *SyntacticForm;
1707
1708  /// If this initializer list initializes a union, specifies which
1709  /// field within the union will be initialized.
1710  FieldDecl *UnionFieldInit;
1711
1712  /// Whether this initializer list originally had a GNU array-range
1713  /// designator in it. This is a temporary marker used by CodeGen.
1714  bool HadArrayRangeDesignator;
1715
1716public:
1717  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1718               SourceLocation rbraceloc);
1719
1720  unsigned getNumInits() const { return InitExprs.size(); }
1721
1722  const Expr* getInit(unsigned Init) const {
1723    assert(Init < getNumInits() && "Initializer access out of range!");
1724    return cast_or_null<Expr>(InitExprs[Init]);
1725  }
1726
1727  Expr* getInit(unsigned Init) {
1728    assert(Init < getNumInits() && "Initializer access out of range!");
1729    return cast_or_null<Expr>(InitExprs[Init]);
1730  }
1731
1732  void setInit(unsigned Init, Expr *expr) {
1733    assert(Init < getNumInits() && "Initializer access out of range!");
1734    InitExprs[Init] = expr;
1735  }
1736
1737  /// @brief Specify the number of initializers
1738  ///
1739  /// If there are more than @p NumInits initializers, the remaining
1740  /// initializers will be destroyed. If there are fewer than @p
1741  /// NumInits initializers, NULL expressions will be added for the
1742  /// unknown initializers.
1743  void resizeInits(ASTContext &Context, unsigned NumInits);
1744
1745  /// @brief Updates the initializer at index @p Init with the new
1746  /// expression @p expr, and returns the old expression at that
1747  /// location.
1748  ///
1749  /// When @p Init is out of range for this initializer list, the
1750  /// initializer list will be extended with NULL expressions to
1751  /// accomodate the new entry.
1752  Expr *updateInit(unsigned Init, Expr *expr);
1753
1754  /// \brief If this initializes a union, specifies which field in the
1755  /// union to initialize.
1756  ///
1757  /// Typically, this field is the first named field within the
1758  /// union. However, a designated initializer can specify the
1759  /// initialization of a different field within the union.
1760  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1761  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1762
1763  // Explicit InitListExpr's originate from source code (and have valid source
1764  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1765  bool isExplicit() {
1766    return LBraceLoc.isValid() && RBraceLoc.isValid();
1767  }
1768
1769  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1770
1771  /// @brief Retrieve the initializer list that describes the
1772  /// syntactic form of the initializer.
1773  ///
1774  ///
1775  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1776  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1777
1778  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1779  void sawArrayRangeDesignator() {
1780    HadArrayRangeDesignator = true;
1781  }
1782
1783  virtual SourceRange getSourceRange() const {
1784    return SourceRange(LBraceLoc, RBraceLoc);
1785  }
1786  static bool classof(const Stmt *T) {
1787    return T->getStmtClass() == InitListExprClass;
1788  }
1789  static bool classof(const InitListExpr *) { return true; }
1790
1791  // Iterators
1792  virtual child_iterator child_begin();
1793  virtual child_iterator child_end();
1794
1795  typedef std::vector<Stmt *>::iterator iterator;
1796  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1797
1798  iterator begin() { return InitExprs.begin(); }
1799  iterator end() { return InitExprs.end(); }
1800  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1801  reverse_iterator rend() { return InitExprs.rend(); }
1802
1803  // Serailization.
1804  virtual void EmitImpl(llvm::Serializer& S) const;
1805  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1806
1807private:
1808  // Used by serializer.
1809  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1810};
1811
1812/// @brief Represents a C99 designated initializer expression.
1813///
1814/// A designated initializer expression (C99 6.7.8) contains one or
1815/// more designators (which can be field designators, array
1816/// designators, or GNU array-range designators) followed by an
1817/// expression that initializes the field or element(s) that the
1818/// designators refer to. For example, given:
1819///
1820/// @code
1821/// struct point {
1822///   double x;
1823///   double y;
1824/// };
1825/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1826/// @endcode
1827///
1828/// The InitListExpr contains three DesignatedInitExprs, the first of
1829/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1830/// designators, one array designator for @c [2] followed by one field
1831/// designator for @c .y. The initalization expression will be 1.0.
1832class DesignatedInitExpr : public Expr {
1833  /// The location of the '=' or ':' prior to the actual initializer
1834  /// expression.
1835  SourceLocation EqualOrColonLoc;
1836
1837  /// Whether this designated initializer used the GNU deprecated ':'
1838  /// syntax rather than the C99 '=' syntax.
1839  bool UsesColonSyntax : 1;
1840
1841  /// The number of designators in this initializer expression.
1842  unsigned NumDesignators : 15;
1843
1844  /// The number of subexpressions of this initializer expression,
1845  /// which contains both the initializer and any additional
1846  /// expressions used by array and array-range designators.
1847  unsigned NumSubExprs : 16;
1848
1849  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1850                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1851                     unsigned NumSubExprs)
1852    : Expr(DesignatedInitExprClass, Ty),
1853      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1854      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1855
1856public:
1857  /// A field designator, e.g., ".x".
1858  struct FieldDesignator {
1859    /// Refers to the field that is being initialized. The low bit
1860    /// of this field determines whether this is actually a pointer
1861    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1862    /// initially constructed, a field designator will store an
1863    /// IdentifierInfo*. After semantic analysis has resolved that
1864    /// name, the field designator will instead store a FieldDecl*.
1865    uintptr_t NameOrField;
1866
1867    /// The location of the '.' in the designated initializer.
1868    unsigned DotLoc;
1869
1870    /// The location of the field name in the designated initializer.
1871    unsigned FieldLoc;
1872  };
1873
1874  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1875  struct ArrayOrRangeDesignator {
1876    /// Location of the first index expression within the designated
1877    /// initializer expression's list of subexpressions.
1878    unsigned Index;
1879    /// The location of the '[' starting the array range designator.
1880    unsigned LBracketLoc;
1881    /// The location of the ellipsis separating the start and end
1882    /// indices. Only valid for GNU array-range designators.
1883    unsigned EllipsisLoc;
1884    /// The location of the ']' terminating the array range designator.
1885    unsigned RBracketLoc;
1886  };
1887
1888  /// @brief Represents a single C99 designator.
1889  ///
1890  /// @todo This class is infuriatingly similar to clang::Designator,
1891  /// but minor differences (storing indices vs. storing pointers)
1892  /// keep us from reusing it. Try harder, later, to rectify these
1893  /// differences.
1894  class Designator {
1895    /// @brief The kind of designator this describes.
1896    enum {
1897      FieldDesignator,
1898      ArrayDesignator,
1899      ArrayRangeDesignator
1900    } Kind;
1901
1902    union {
1903      /// A field designator, e.g., ".x".
1904      struct FieldDesignator Field;
1905      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1906      struct ArrayOrRangeDesignator ArrayOrRange;
1907    };
1908    friend class DesignatedInitExpr;
1909
1910  public:
1911    /// @brief Initializes a field designator.
1912    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1913               SourceLocation FieldLoc)
1914      : Kind(FieldDesignator) {
1915      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1916      Field.DotLoc = DotLoc.getRawEncoding();
1917      Field.FieldLoc = FieldLoc.getRawEncoding();
1918    }
1919
1920    /// @brief Initializes an array designator.
1921    Designator(unsigned Index, SourceLocation LBracketLoc,
1922               SourceLocation RBracketLoc)
1923      : Kind(ArrayDesignator) {
1924      ArrayOrRange.Index = Index;
1925      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1926      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1927      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1928    }
1929
1930    /// @brief Initializes a GNU array-range designator.
1931    Designator(unsigned Index, SourceLocation LBracketLoc,
1932               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1933      : Kind(ArrayRangeDesignator) {
1934      ArrayOrRange.Index = Index;
1935      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1936      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1937      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1938    }
1939
1940    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1941    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1942    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1943
1944    IdentifierInfo * getFieldName();
1945
1946    FieldDecl *getField() {
1947      assert(Kind == FieldDesignator && "Only valid on a field designator");
1948      if (Field.NameOrField & 0x01)
1949        return 0;
1950      else
1951        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1952    }
1953
1954    void setField(FieldDecl *FD) {
1955      assert(Kind == FieldDesignator && "Only valid on a field designator");
1956      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1957    }
1958
1959    SourceLocation getDotLoc() const {
1960      assert(Kind == FieldDesignator && "Only valid on a field designator");
1961      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1962    }
1963
1964    SourceLocation getFieldLoc() const {
1965      assert(Kind == FieldDesignator && "Only valid on a field designator");
1966      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1967    }
1968
1969    SourceLocation getLBracketLoc() const {
1970      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1971             "Only valid on an array or array-range designator");
1972      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1973    }
1974
1975    SourceLocation getRBracketLoc() const {
1976      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1977             "Only valid on an array or array-range designator");
1978      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1979    }
1980
1981    SourceLocation getEllipsisLoc() const {
1982      assert(Kind == ArrayRangeDesignator &&
1983             "Only valid on an array-range designator");
1984      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1985    }
1986
1987    SourceLocation getStartLocation() const {
1988      if (Kind == FieldDesignator)
1989        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1990      else
1991        return getLBracketLoc();
1992    }
1993  };
1994
1995  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1996                                    unsigned NumDesignators,
1997                                    Expr **IndexExprs, unsigned NumIndexExprs,
1998                                    SourceLocation EqualOrColonLoc,
1999                                    bool UsesColonSyntax, Expr *Init);
2000
2001  /// @brief Returns the number of designators in this initializer.
2002  unsigned size() const { return NumDesignators; }
2003
2004  // Iterator access to the designators.
2005  typedef Designator* designators_iterator;
2006  designators_iterator designators_begin();
2007  designators_iterator designators_end();
2008
2009  Expr *getArrayIndex(const Designator& D);
2010  Expr *getArrayRangeStart(const Designator& D);
2011  Expr *getArrayRangeEnd(const Designator& D);
2012
2013  /// @brief Retrieve the location of the '=' that precedes the
2014  /// initializer value itself, if present.
2015  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2016
2017  /// @brief Determines whether this designated initializer used the
2018  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
2019  bool usesColonSyntax() const { return UsesColonSyntax; }
2020
2021  /// @brief Retrieve the initializer value.
2022  Expr *getInit() const {
2023    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2024  }
2025
2026  void setInit(Expr *init) {
2027    *child_begin() = init;
2028  }
2029
2030  virtual SourceRange getSourceRange() const;
2031
2032  static bool classof(const Stmt *T) {
2033    return T->getStmtClass() == DesignatedInitExprClass;
2034  }
2035  static bool classof(const DesignatedInitExpr *) { return true; }
2036
2037  // Iterators
2038  virtual child_iterator child_begin();
2039  virtual child_iterator child_end();
2040};
2041
2042/// \brief Represents an implicitly-generated value initialization of
2043/// an object of a given type.
2044///
2045/// Implicit value initializations occur within semantic initializer
2046/// list expressions (InitListExpr) as placeholders for subobject
2047/// initializations not explicitly specified by the user.
2048///
2049/// \see InitListExpr
2050class ImplicitValueInitExpr : public Expr {
2051public:
2052  explicit ImplicitValueInitExpr(QualType ty)
2053    : Expr(ImplicitValueInitExprClass, ty) { }
2054
2055  static bool classof(const Stmt *T) {
2056    return T->getStmtClass() == ImplicitValueInitExprClass;
2057  }
2058  static bool classof(const ImplicitValueInitExpr *) { return true; }
2059
2060  virtual SourceRange getSourceRange() const {
2061    return SourceRange();
2062  }
2063
2064  // Iterators
2065  virtual child_iterator child_begin();
2066  virtual child_iterator child_end();
2067};
2068
2069//===----------------------------------------------------------------------===//
2070// Clang Extensions
2071//===----------------------------------------------------------------------===//
2072
2073
2074/// ExtVectorElementExpr - This represents access to specific elements of a
2075/// vector, and may occur on the left hand side or right hand side.  For example
2076/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2077///
2078/// Note that the base may have either vector or pointer to vector type, just
2079/// like a struct field reference.
2080///
2081class ExtVectorElementExpr : public Expr {
2082  Stmt *Base;
2083  IdentifierInfo &Accessor;
2084  SourceLocation AccessorLoc;
2085public:
2086  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2087                       SourceLocation loc)
2088    : Expr(ExtVectorElementExprClass, ty),
2089      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2090
2091  const Expr *getBase() const { return cast<Expr>(Base); }
2092  Expr *getBase() { return cast<Expr>(Base); }
2093
2094  IdentifierInfo &getAccessor() const { return Accessor; }
2095
2096  /// getNumElements - Get the number of components being selected.
2097  unsigned getNumElements() const;
2098
2099  /// containsDuplicateElements - Return true if any element access is
2100  /// repeated.
2101  bool containsDuplicateElements() const;
2102
2103  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2104  /// aggregate Constant of ConstantInt(s).
2105  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2106
2107  virtual SourceRange getSourceRange() const {
2108    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2109  }
2110
2111  /// isArrow - Return true if the base expression is a pointer to vector,
2112  /// return false if the base expression is a vector.
2113  bool isArrow() const;
2114
2115  static bool classof(const Stmt *T) {
2116    return T->getStmtClass() == ExtVectorElementExprClass;
2117  }
2118  static bool classof(const ExtVectorElementExpr *) { return true; }
2119
2120  // Iterators
2121  virtual child_iterator child_begin();
2122  virtual child_iterator child_end();
2123
2124  virtual void EmitImpl(llvm::Serializer& S) const;
2125  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2126};
2127
2128
2129/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2130/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2131class BlockExpr : public Expr {
2132protected:
2133  BlockDecl *TheBlock;
2134  bool HasBlockDeclRefExprs;
2135public:
2136  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2137    : Expr(BlockExprClass, ty),
2138      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2139
2140  const BlockDecl *getBlockDecl() const { return TheBlock; }
2141  BlockDecl *getBlockDecl() { return TheBlock; }
2142
2143  // Convenience functions for probing the underlying BlockDecl.
2144  SourceLocation getCaretLocation() const;
2145  const Stmt *getBody() const;
2146  Stmt *getBody();
2147
2148  virtual SourceRange getSourceRange() const {
2149    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2150  }
2151
2152  /// getFunctionType - Return the underlying function type for this block.
2153  const FunctionType *getFunctionType() const;
2154
2155  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2156  /// contained inside.
2157  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2158
2159  static bool classof(const Stmt *T) {
2160    return T->getStmtClass() == BlockExprClass;
2161  }
2162  static bool classof(const BlockExpr *) { return true; }
2163
2164  // Iterators
2165  virtual child_iterator child_begin();
2166  virtual child_iterator child_end();
2167
2168  virtual void EmitImpl(llvm::Serializer& S) const;
2169  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2170};
2171
2172/// BlockDeclRefExpr - A reference to a declared variable, function,
2173/// enum, etc.
2174class BlockDeclRefExpr : public Expr {
2175  ValueDecl *D;
2176  SourceLocation Loc;
2177  bool IsByRef;
2178public:
2179  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2180       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2181
2182  ValueDecl *getDecl() { return D; }
2183  const ValueDecl *getDecl() const { return D; }
2184  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2185
2186  bool isByRef() const { return IsByRef; }
2187
2188  static bool classof(const Stmt *T) {
2189    return T->getStmtClass() == BlockDeclRefExprClass;
2190  }
2191  static bool classof(const BlockDeclRefExpr *) { return true; }
2192
2193  // Iterators
2194  virtual child_iterator child_begin();
2195  virtual child_iterator child_end();
2196
2197  virtual void EmitImpl(llvm::Serializer& S) const;
2198  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2199};
2200
2201}  // end namespace clang
2202
2203#endif
2204