Expr.h revision 06dec892b5300b43263d25c5476b506c9d6cfbad
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include <cctype>
30#include <vector>
31
32namespace clang {
33  class ASTContext;
34  class APValue;
35  class Decl;
36  class IdentifierInfo;
37  class ParmVarDecl;
38  class NamedDecl;
39  class ValueDecl;
40  class BlockDecl;
41  class CXXBaseSpecifier;
42  class CXXOperatorCallExpr;
43  class CXXMemberCallExpr;
44  class ObjCPropertyRefExpr;
45  class TemplateArgumentLoc;
46  class TemplateArgumentListInfo;
47  class OpaqueValueExpr;
48
49/// \brief A simple array of base specifiers.
50typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
51
52/// Expr - This represents one expression.  Note that Expr's are subclasses of
53/// Stmt.  This allows an expression to be transparently used any place a Stmt
54/// is required.
55///
56class Expr : public Stmt {
57  QualType TR;
58
59protected:
60  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
61       bool TD, bool VD, bool ContainsUnexpandedParameterPack) : Stmt(SC) {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.ValueKind = VK;
65    ExprBits.ObjectKind = OK;
66    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
67    setType(T);
68  }
69
70  /// \brief Construct an empty expression.
71  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
72
73public:
74  QualType getType() const { return TR; }
75  void setType(QualType t) {
76    // In C++, the type of an expression is always adjusted so that it
77    // will not have reference type an expression will never have
78    // reference type (C++ [expr]p6). Use
79    // QualType::getNonReferenceType() to retrieve the non-reference
80    // type. Additionally, inspect Expr::isLvalue to determine whether
81    // an expression that is adjusted in this manner should be
82    // considered an lvalue.
83    assert((t.isNull() || !t->isReferenceType()) &&
84           "Expressions can't have reference type");
85
86    TR = t;
87  }
88
89  /// isValueDependent - Determines whether this expression is
90  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
91  /// array bound of "Chars" in the following example is
92  /// value-dependent.
93  /// @code
94  /// template<int Size, char (&Chars)[Size]> struct meta_string;
95  /// @endcode
96  bool isValueDependent() const { return ExprBits.ValueDependent; }
97
98  /// \brief Set whether this expression is value-dependent or not.
99  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
100
101  /// isTypeDependent - Determines whether this expression is
102  /// type-dependent (C++ [temp.dep.expr]), which means that its type
103  /// could change from one template instantiation to the next. For
104  /// example, the expressions "x" and "x + y" are type-dependent in
105  /// the following code, but "y" is not type-dependent:
106  /// @code
107  /// template<typename T>
108  /// void add(T x, int y) {
109  ///   x + y;
110  /// }
111  /// @endcode
112  bool isTypeDependent() const { return ExprBits.TypeDependent; }
113
114  /// \brief Set whether this expression is type-dependent or not.
115  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
116
117  /// \brief Whether this expression contains an unexpanded parameter
118  /// pack (for C++0x variadic templates).
119  ///
120  /// Given the following function template:
121  ///
122  /// \code
123  /// template<typename F, typename ...Types>
124  /// void forward(const F &f, Types &&...args) {
125  ///   f(static_cast<Types&&>(args)...);
126  /// }
127  /// \endcode
128  ///
129  /// The expressions \c args and \c static_cast<Types&&>(args) both
130  /// contain parameter packs.
131  bool containsUnexpandedParameterPack() const {
132    return ExprBits.ContainsUnexpandedParameterPack;
133  }
134
135  /// \brief Set the bit that describes whether this expression
136  /// contains an unexpanded parameter pack.
137  void setContainsUnexpandedParameterPack(bool PP = true) {
138    ExprBits.ContainsUnexpandedParameterPack = PP;
139  }
140
141  /// getExprLoc - Return the preferred location for the arrow when diagnosing
142  /// a problem with a generic expression.
143  SourceLocation getExprLoc() const;
144
145  /// isUnusedResultAWarning - Return true if this immediate expression should
146  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
147  /// with location to warn on and the source range[s] to report with the
148  /// warning.
149  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
150                              SourceRange &R2, ASTContext &Ctx) const;
151
152  /// isLValue - True if this expression is an "l-value" according to
153  /// the rules of the current language.  C and C++ give somewhat
154  /// different rules for this concept, but in general, the result of
155  /// an l-value expression identifies a specific object whereas the
156  /// result of an r-value expression is a value detached from any
157  /// specific storage.
158  ///
159  /// C++0x divides the concept of "r-value" into pure r-values
160  /// ("pr-values") and so-called expiring values ("x-values"), which
161  /// identify specific objects that can be safely cannibalized for
162  /// their resources.  This is an unfortunate abuse of terminology on
163  /// the part of the C++ committee.  In Clang, when we say "r-value",
164  /// we generally mean a pr-value.
165  bool isLValue() const { return getValueKind() == VK_LValue; }
166  bool isRValue() const { return getValueKind() == VK_RValue; }
167  bool isXValue() const { return getValueKind() == VK_XValue; }
168  bool isGLValue() const { return getValueKind() != VK_RValue; }
169
170  enum LValueClassification {
171    LV_Valid,
172    LV_NotObjectType,
173    LV_IncompleteVoidType,
174    LV_DuplicateVectorComponents,
175    LV_InvalidExpression,
176    LV_MemberFunction,
177    LV_SubObjCPropertySetting,
178    LV_ClassTemporary
179  };
180  /// Reasons why an expression might not be an l-value.
181  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
182
183  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
184  /// does not have an incomplete type, does not have a const-qualified type,
185  /// and if it is a structure or union, does not have any member (including,
186  /// recursively, any member or element of all contained aggregates or unions)
187  /// with a const-qualified type.
188  ///
189  /// \param Loc [in] [out] - A source location which *may* be filled
190  /// in with the location of the expression making this a
191  /// non-modifiable lvalue, if specified.
192  enum isModifiableLvalueResult {
193    MLV_Valid,
194    MLV_NotObjectType,
195    MLV_IncompleteVoidType,
196    MLV_DuplicateVectorComponents,
197    MLV_InvalidExpression,
198    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
199    MLV_IncompleteType,
200    MLV_ConstQualified,
201    MLV_ArrayType,
202    MLV_NotBlockQualified,
203    MLV_ReadonlyProperty,
204    MLV_NoSetterProperty,
205    MLV_MemberFunction,
206    MLV_SubObjCPropertySetting,
207    MLV_ClassTemporary
208  };
209  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
210                                              SourceLocation *Loc = 0) const;
211
212  /// \brief The return type of classify(). Represents the C++0x expression
213  ///        taxonomy.
214  class Classification {
215  public:
216    /// \brief The various classification results. Most of these mean prvalue.
217    enum Kinds {
218      CL_LValue,
219      CL_XValue,
220      CL_Function, // Functions cannot be lvalues in C.
221      CL_Void, // Void cannot be an lvalue in C.
222      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
223      CL_MemberFunction, // An expression referring to a member function
224      CL_SubObjCPropertySetting,
225      CL_ClassTemporary, // A prvalue of class type
226      CL_PRValue // A prvalue for any other reason, of any other type
227    };
228    /// \brief The results of modification testing.
229    enum ModifiableType {
230      CM_Untested, // testModifiable was false.
231      CM_Modifiable,
232      CM_RValue, // Not modifiable because it's an rvalue
233      CM_Function, // Not modifiable because it's a function; C++ only
234      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
235      CM_NotBlockQualified, // Not captured in the closure
236      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
237      CM_ConstQualified,
238      CM_ArrayType,
239      CM_IncompleteType
240    };
241
242  private:
243    friend class Expr;
244
245    unsigned short Kind;
246    unsigned short Modifiable;
247
248    explicit Classification(Kinds k, ModifiableType m)
249      : Kind(k), Modifiable(m)
250    {}
251
252  public:
253    Classification() {}
254
255    Kinds getKind() const { return static_cast<Kinds>(Kind); }
256    ModifiableType getModifiable() const {
257      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
258      return static_cast<ModifiableType>(Modifiable);
259    }
260    bool isLValue() const { return Kind == CL_LValue; }
261    bool isXValue() const { return Kind == CL_XValue; }
262    bool isGLValue() const { return Kind <= CL_XValue; }
263    bool isPRValue() const { return Kind >= CL_Function; }
264    bool isRValue() const { return Kind >= CL_XValue; }
265    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
266
267    /// \brief Create a simple, modifiably lvalue
268    static Classification makeSimpleLValue() {
269      return Classification(CL_LValue, CM_Modifiable);
270    }
271
272  };
273  /// \brief Classify - Classify this expression according to the C++0x
274  ///        expression taxonomy.
275  ///
276  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
277  /// old lvalue vs rvalue. This function determines the type of expression this
278  /// is. There are three expression types:
279  /// - lvalues are classical lvalues as in C++03.
280  /// - prvalues are equivalent to rvalues in C++03.
281  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
282  ///   function returning an rvalue reference.
283  /// lvalues and xvalues are collectively referred to as glvalues, while
284  /// prvalues and xvalues together form rvalues.
285  Classification Classify(ASTContext &Ctx) const {
286    return ClassifyImpl(Ctx, 0);
287  }
288
289  /// \brief ClassifyModifiable - Classify this expression according to the
290  ///        C++0x expression taxonomy, and see if it is valid on the left side
291  ///        of an assignment.
292  ///
293  /// This function extends classify in that it also tests whether the
294  /// expression is modifiable (C99 6.3.2.1p1).
295  /// \param Loc A source location that might be filled with a relevant location
296  ///            if the expression is not modifiable.
297  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
298    return ClassifyImpl(Ctx, &Loc);
299  }
300
301  /// getValueKindForType - Given a formal return or parameter type,
302  /// give its value kind.
303  static ExprValueKind getValueKindForType(QualType T) {
304    if (const ReferenceType *RT = T->getAs<ReferenceType>())
305      return (isa<LValueReferenceType>(RT)
306                ? VK_LValue
307                : (RT->getPointeeType()->isFunctionType()
308                     ? VK_LValue : VK_XValue));
309    return VK_RValue;
310  }
311
312  /// getValueKind - The value kind that this expression produces.
313  ExprValueKind getValueKind() const {
314    return static_cast<ExprValueKind>(ExprBits.ValueKind);
315  }
316
317  /// getObjectKind - The object kind that this expression produces.
318  /// Object kinds are meaningful only for expressions that yield an
319  /// l-value or x-value.
320  ExprObjectKind getObjectKind() const {
321    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
322  }
323
324  bool isOrdinaryOrBitFieldObject() const {
325    ExprObjectKind OK = getObjectKind();
326    return (OK == OK_Ordinary || OK == OK_BitField);
327  }
328
329  /// setValueKind - Set the value kind produced by this expression.
330  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
331
332  /// setObjectKind - Set the object kind produced by this expression.
333  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
334
335private:
336  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
337
338public:
339
340  /// \brief If this expression refers to a bit-field, retrieve the
341  /// declaration of that bit-field.
342  FieldDecl *getBitField();
343
344  const FieldDecl *getBitField() const {
345    return const_cast<Expr*>(this)->getBitField();
346  }
347
348  /// \brief If this expression is an l-value for an Objective C
349  /// property, find the underlying property reference expression.
350  const ObjCPropertyRefExpr *getObjCProperty() const;
351
352  /// \brief Returns whether this expression refers to a vector element.
353  bool refersToVectorElement() const;
354
355  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
356  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
357  /// but also int expressions which are produced by things like comparisons in
358  /// C.
359  bool isKnownToHaveBooleanValue() const;
360
361  /// isIntegerConstantExpr - Return true if this expression is a valid integer
362  /// constant expression, and, if so, return its value in Result.  If not a
363  /// valid i-c-e, return false and fill in Loc (if specified) with the location
364  /// of the invalid expression.
365  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
366                             SourceLocation *Loc = 0,
367                             bool isEvaluated = true) const;
368  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
369    llvm::APSInt X;
370    return isIntegerConstantExpr(X, Ctx, Loc);
371  }
372  /// isConstantInitializer - Returns true if this expression is a constant
373  /// initializer, which can be emitted at compile-time.
374  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
375
376  /// EvalResult is a struct with detailed info about an evaluated expression.
377  struct EvalResult {
378    /// Val - This is the value the expression can be folded to.
379    APValue Val;
380
381    /// HasSideEffects - Whether the evaluated expression has side effects.
382    /// For example, (f() && 0) can be folded, but it still has side effects.
383    bool HasSideEffects;
384
385    /// Diag - If the expression is unfoldable, then Diag contains a note
386    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
387    /// position for the error, and DiagExpr is the expression that caused
388    /// the error.
389    /// If the expression is foldable, but not an integer constant expression,
390    /// Diag contains a note diagnostic that describes why it isn't an integer
391    /// constant expression. If the expression *is* an integer constant
392    /// expression, then Diag will be zero.
393    unsigned Diag;
394    const Expr *DiagExpr;
395    SourceLocation DiagLoc;
396
397    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
398
399    // isGlobalLValue - Return true if the evaluated lvalue expression
400    // is global.
401    bool isGlobalLValue() const;
402    // hasSideEffects - Return true if the evaluated expression has
403    // side effects.
404    bool hasSideEffects() const {
405      return HasSideEffects;
406    }
407  };
408
409  /// Evaluate - Return true if this is a constant which we can fold using
410  /// any crazy technique (that has nothing to do with language standards) that
411  /// we want to.  If this function returns true, it returns the folded constant
412  /// in Result.
413  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
414
415  /// EvaluateAsBooleanCondition - Return true if this is a constant
416  /// which we we can fold and convert to a boolean condition using
417  /// any crazy technique that we want to.
418  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
419
420  /// isEvaluatable - Call Evaluate to see if this expression can be constant
421  /// folded, but discard the result.
422  bool isEvaluatable(const ASTContext &Ctx) const;
423
424  /// HasSideEffects - This routine returns true for all those expressions
425  /// which must be evaluated each time and must not be optimized away
426  /// or evaluated at compile time. Example is a function call, volatile
427  /// variable read.
428  bool HasSideEffects(const ASTContext &Ctx) const;
429
430  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
431  /// must be called on an expression that constant folds to an integer.
432  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
433
434  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
435  /// with link time known address.
436  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
437
438  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
439  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
440
441  /// \brief Enumeration used to describe the kind of Null pointer constant
442  /// returned from \c isNullPointerConstant().
443  enum NullPointerConstantKind {
444    /// \brief Expression is not a Null pointer constant.
445    NPCK_NotNull = 0,
446
447    /// \brief Expression is a Null pointer constant built from a zero integer.
448    NPCK_ZeroInteger,
449
450    /// \brief Expression is a C++0X nullptr.
451    NPCK_CXX0X_nullptr,
452
453    /// \brief Expression is a GNU-style __null constant.
454    NPCK_GNUNull
455  };
456
457  /// \brief Enumeration used to describe how \c isNullPointerConstant()
458  /// should cope with value-dependent expressions.
459  enum NullPointerConstantValueDependence {
460    /// \brief Specifies that the expression should never be value-dependent.
461    NPC_NeverValueDependent = 0,
462
463    /// \brief Specifies that a value-dependent expression of integral or
464    /// dependent type should be considered a null pointer constant.
465    NPC_ValueDependentIsNull,
466
467    /// \brief Specifies that a value-dependent expression should be considered
468    /// to never be a null pointer constant.
469    NPC_ValueDependentIsNotNull
470  };
471
472  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
473  /// a Null pointer constant. The return value can further distinguish the
474  /// kind of NULL pointer constant that was detected.
475  NullPointerConstantKind isNullPointerConstant(
476      ASTContext &Ctx,
477      NullPointerConstantValueDependence NPC) const;
478
479  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
480  /// write barrier.
481  bool isOBJCGCCandidate(ASTContext &Ctx) const;
482
483  /// \brief Returns true if this expression is a bound member function.
484  bool isBoundMemberFunction(ASTContext &Ctx) const;
485
486  /// \brief Result type of CanThrow().
487  enum CanThrowResult {
488    CT_Cannot,
489    CT_Dependent,
490    CT_Can
491  };
492  /// \brief Test if this expression, if evaluated, might throw, according to
493  ///        the rules of C++ [expr.unary.noexcept].
494  CanThrowResult CanThrow(ASTContext &C) const;
495
496  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
497  ///  its subexpression.  If that subexpression is also a ParenExpr,
498  ///  then this method recursively returns its subexpression, and so forth.
499  ///  Otherwise, the method returns the current Expr.
500  Expr *IgnoreParens();
501
502  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
503  /// or CastExprs, returning their operand.
504  Expr *IgnoreParenCasts();
505
506  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
507  /// ParenExpr or ImplicitCastExprs, returning their operand.
508  Expr *IgnoreParenImpCasts();
509
510  const Expr *IgnoreParenImpCasts() const {
511    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
512  }
513
514  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
515  /// CastExprs that represent lvalue casts, returning their operand.
516  Expr *IgnoreParenLValueCasts();
517
518  const Expr *IgnoreParenLValueCasts() const {
519    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
520  }
521
522  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
523  /// value (including ptr->int casts of the same size).  Strip off any
524  /// ParenExpr or CastExprs, returning their operand.
525  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
526
527  /// \brief Determine whether this expression is a default function argument.
528  ///
529  /// Default arguments are implicitly generated in the abstract syntax tree
530  /// by semantic analysis for function calls, object constructions, etc. in
531  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
532  /// this routine also looks through any implicit casts to determine whether
533  /// the expression is a default argument.
534  bool isDefaultArgument() const;
535
536  /// \brief Determine whether the result of this expression is a
537  /// temporary object of the given class type.
538  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
539
540  /// \brief Whether this expression is an implicit reference to 'this' in C++.
541  bool isImplicitCXXThis() const;
542
543  const Expr *IgnoreParens() const {
544    return const_cast<Expr*>(this)->IgnoreParens();
545  }
546  const Expr *IgnoreParenCasts() const {
547    return const_cast<Expr*>(this)->IgnoreParenCasts();
548  }
549  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
550    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
551  }
552
553  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
554  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
555
556  static bool classof(const Stmt *T) {
557    return T->getStmtClass() >= firstExprConstant &&
558           T->getStmtClass() <= lastExprConstant;
559  }
560  static bool classof(const Expr *) { return true; }
561};
562
563
564//===----------------------------------------------------------------------===//
565// Primary Expressions.
566//===----------------------------------------------------------------------===//
567
568/// OpaqueValueExpr - An expression referring to an opaque object of a
569/// fixed type and value class.  These don't correspond to concrete
570/// syntax; instead they're used to express operations (usually copy
571/// operations) on values whose source is generally obvious from
572/// context.
573class OpaqueValueExpr : public Expr {
574  friend class ASTStmtReader;
575  Expr *SourceExpr;
576  SourceLocation Loc;
577
578public:
579  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
580                  ExprObjectKind OK = OK_Ordinary)
581    : Expr(OpaqueValueExprClass, T, VK, OK,
582           T->isDependentType(), T->isDependentType(), false),
583      SourceExpr(0), Loc(Loc) {
584  }
585
586  /// Given an expression which invokes a copy constructor --- i.e.  a
587  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
588  /// find the OpaqueValueExpr that's the source of the construction.
589  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
590
591  explicit OpaqueValueExpr(EmptyShell Empty)
592    : Expr(OpaqueValueExprClass, Empty) { }
593
594  /// \brief Retrieve the location of this expression.
595  SourceLocation getLocation() const { return Loc; }
596
597  SourceRange getSourceRange() const {
598    if (SourceExpr) return SourceExpr->getSourceRange();
599    return Loc;
600  }
601  SourceLocation getExprLoc() const {
602    if (SourceExpr) return SourceExpr->getExprLoc();
603    return Loc;
604  }
605
606  child_range children() { return child_range(); }
607
608  /// The source expression of an opaque value expression is the
609  /// expression which originally generated the value.  This is
610  /// provided as a convenience for analyses that don't wish to
611  /// precisely model the execution behavior of the program.
612  ///
613  /// The source expression is typically set when building the
614  /// expression which binds the opaque value expression in the first
615  /// place.
616  Expr *getSourceExpr() const { return SourceExpr; }
617  void setSourceExpr(Expr *e) { SourceExpr = e; }
618
619  static bool classof(const Stmt *T) {
620    return T->getStmtClass() == OpaqueValueExprClass;
621  }
622  static bool classof(const OpaqueValueExpr *) { return true; }
623};
624
625/// \brief Represents the qualifier that may precede a C++ name, e.g., the
626/// "std::" in "std::sort".
627struct NameQualifier {
628  /// \brief The nested-name-specifier that qualifies the name, including
629  /// source-location information.
630  NestedNameSpecifierLoc QualifierLoc;
631};
632
633/// \brief Represents an explicit template argument list in C++, e.g.,
634/// the "<int>" in "sort<int>".
635struct ExplicitTemplateArgumentList {
636  /// \brief The source location of the left angle bracket ('<');
637  SourceLocation LAngleLoc;
638
639  /// \brief The source location of the right angle bracket ('>');
640  SourceLocation RAngleLoc;
641
642  /// \brief The number of template arguments in TemplateArgs.
643  /// The actual template arguments (if any) are stored after the
644  /// ExplicitTemplateArgumentList structure.
645  unsigned NumTemplateArgs;
646
647  /// \brief Retrieve the template arguments
648  TemplateArgumentLoc *getTemplateArgs() {
649    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
650  }
651
652  /// \brief Retrieve the template arguments
653  const TemplateArgumentLoc *getTemplateArgs() const {
654    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
655  }
656
657  void initializeFrom(const TemplateArgumentListInfo &List);
658  void initializeFrom(const TemplateArgumentListInfo &List,
659                      bool &Dependent, bool &ContainsUnexpandedParameterPack);
660  void copyInto(TemplateArgumentListInfo &List) const;
661  static std::size_t sizeFor(unsigned NumTemplateArgs);
662  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
663};
664
665/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
666/// enum, etc.
667class DeclRefExpr : public Expr {
668  enum {
669    // Flag on DecoratedD that specifies when this declaration reference
670    // expression has a C++ nested-name-specifier.
671    HasQualifierFlag = 0x01,
672    // Flag on DecoratedD that specifies when this declaration reference
673    // expression has an explicit C++ template argument list.
674    HasExplicitTemplateArgumentListFlag = 0x02
675  };
676
677  // DecoratedD - The declaration that we are referencing, plus two bits to
678  // indicate whether (1) the declaration's name was explicitly qualified and
679  // (2) the declaration's name was followed by an explicit template
680  // argument list.
681  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
682
683  // Loc - The location of the declaration name itself.
684  SourceLocation Loc;
685
686  /// DNLoc - Provides source/type location info for the
687  /// declaration name embedded in DecoratedD.
688  DeclarationNameLoc DNLoc;
689
690  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
691  NameQualifier *getNameQualifier() {
692    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
693      return 0;
694
695    return reinterpret_cast<NameQualifier *> (this + 1);
696  }
697
698  /// \brief Retrieve the qualifier that preceded the member name, if any.
699  const NameQualifier *getNameQualifier() const {
700    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
701  }
702
703  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
704              ValueDecl *D, SourceLocation NameLoc,
705              const TemplateArgumentListInfo *TemplateArgs,
706              QualType T, ExprValueKind VK);
707
708  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
709              ValueDecl *D, const DeclarationNameInfo &NameInfo,
710              const TemplateArgumentListInfo *TemplateArgs,
711              QualType T, ExprValueKind VK);
712
713  /// \brief Construct an empty declaration reference expression.
714  explicit DeclRefExpr(EmptyShell Empty)
715    : Expr(DeclRefExprClass, Empty) { }
716
717  /// \brief Computes the type- and value-dependence flags for this
718  /// declaration reference expression.
719  void computeDependence();
720
721public:
722  DeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK, SourceLocation l) :
723    Expr(DeclRefExprClass, t, VK, OK_Ordinary, false, false, false),
724    DecoratedD(d, 0), Loc(l) {
725    computeDependence();
726  }
727
728  static DeclRefExpr *Create(ASTContext &Context,
729                             NestedNameSpecifierLoc QualifierLoc,
730                             ValueDecl *D,
731                             SourceLocation NameLoc,
732                             QualType T, ExprValueKind VK,
733                             const TemplateArgumentListInfo *TemplateArgs = 0);
734
735  static DeclRefExpr *Create(ASTContext &Context,
736                             NestedNameSpecifierLoc QualifierLoc,
737                             ValueDecl *D,
738                             const DeclarationNameInfo &NameInfo,
739                             QualType T, ExprValueKind VK,
740                             const TemplateArgumentListInfo *TemplateArgs = 0);
741
742  /// \brief Construct an empty declaration reference expression.
743  static DeclRefExpr *CreateEmpty(ASTContext &Context,
744                                  bool HasQualifier,
745                                  bool HasExplicitTemplateArgs,
746                                  unsigned NumTemplateArgs);
747
748  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
749  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
750  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
751
752  DeclarationNameInfo getNameInfo() const {
753    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
754  }
755
756  SourceLocation getLocation() const { return Loc; }
757  void setLocation(SourceLocation L) { Loc = L; }
758  SourceRange getSourceRange() const;
759
760  /// \brief Determine whether this declaration reference was preceded by a
761  /// C++ nested-name-specifier, e.g., \c N::foo.
762  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
763
764  /// \brief If the name was qualified, retrieves the nested-name-specifier
765  /// that precedes the name. Otherwise, returns NULL.
766  NestedNameSpecifier *getQualifier() const {
767    if (!hasQualifier())
768      return 0;
769
770    return getNameQualifier()->QualifierLoc.getNestedNameSpecifier();
771  }
772
773  /// \brief If the name was qualified, retrieves the nested-name-specifier
774  /// that precedes the name, with source-location information.
775  NestedNameSpecifierLoc getQualifierLoc() const {
776    if (!hasQualifier())
777      return NestedNameSpecifierLoc();
778
779    return getNameQualifier()->QualifierLoc;
780  }
781
782  bool hasExplicitTemplateArgs() const {
783    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
784  }
785
786  /// \brief Retrieve the explicit template argument list that followed the
787  /// member template name.
788  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
789    assert(hasExplicitTemplateArgs());
790
791    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
792      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
793
794    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
795                                                      getNameQualifier() + 1);
796  }
797
798  /// \brief Retrieve the explicit template argument list that followed the
799  /// member template name.
800  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
801    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
802  }
803
804  /// \brief Retrieves the optional explicit template arguments.
805  /// This points to the same data as getExplicitTemplateArgs(), but
806  /// returns null if there are no explicit template arguments.
807  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
808    if (!hasExplicitTemplateArgs()) return 0;
809    return &getExplicitTemplateArgs();
810  }
811
812  /// \brief Copies the template arguments (if present) into the given
813  /// structure.
814  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
815    if (hasExplicitTemplateArgs())
816      getExplicitTemplateArgs().copyInto(List);
817  }
818
819  /// \brief Retrieve the location of the left angle bracket following the
820  /// member name ('<'), if any.
821  SourceLocation getLAngleLoc() const {
822    if (!hasExplicitTemplateArgs())
823      return SourceLocation();
824
825    return getExplicitTemplateArgs().LAngleLoc;
826  }
827
828  /// \brief Retrieve the template arguments provided as part of this
829  /// template-id.
830  const TemplateArgumentLoc *getTemplateArgs() const {
831    if (!hasExplicitTemplateArgs())
832      return 0;
833
834    return getExplicitTemplateArgs().getTemplateArgs();
835  }
836
837  /// \brief Retrieve the number of template arguments provided as part of this
838  /// template-id.
839  unsigned getNumTemplateArgs() const {
840    if (!hasExplicitTemplateArgs())
841      return 0;
842
843    return getExplicitTemplateArgs().NumTemplateArgs;
844  }
845
846  /// \brief Retrieve the location of the right angle bracket following the
847  /// template arguments ('>').
848  SourceLocation getRAngleLoc() const {
849    if (!hasExplicitTemplateArgs())
850      return SourceLocation();
851
852    return getExplicitTemplateArgs().RAngleLoc;
853  }
854
855  static bool classof(const Stmt *T) {
856    return T->getStmtClass() == DeclRefExprClass;
857  }
858  static bool classof(const DeclRefExpr *) { return true; }
859
860  // Iterators
861  child_range children() { return child_range(); }
862
863  friend class ASTStmtReader;
864  friend class ASTStmtWriter;
865};
866
867/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
868class PredefinedExpr : public Expr {
869public:
870  enum IdentType {
871    Func,
872    Function,
873    PrettyFunction,
874    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
875    /// 'virtual' keyword is omitted for virtual member functions.
876    PrettyFunctionNoVirtual
877  };
878
879private:
880  SourceLocation Loc;
881  IdentType Type;
882public:
883  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
884    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
885           type->isDependentType(), type->isDependentType(),
886           /*ContainsUnexpandedParameterPack=*/false),
887      Loc(l), Type(IT) {}
888
889  /// \brief Construct an empty predefined expression.
890  explicit PredefinedExpr(EmptyShell Empty)
891    : Expr(PredefinedExprClass, Empty) { }
892
893  IdentType getIdentType() const { return Type; }
894  void setIdentType(IdentType IT) { Type = IT; }
895
896  SourceLocation getLocation() const { return Loc; }
897  void setLocation(SourceLocation L) { Loc = L; }
898
899  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
900
901  SourceRange getSourceRange() const { return SourceRange(Loc); }
902
903  static bool classof(const Stmt *T) {
904    return T->getStmtClass() == PredefinedExprClass;
905  }
906  static bool classof(const PredefinedExpr *) { return true; }
907
908  // Iterators
909  child_range children() { return child_range(); }
910};
911
912/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
913/// leaking memory.
914///
915/// For large floats/integers, APFloat/APInt will allocate memory from the heap
916/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
917/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
918/// the APFloat/APInt values will never get freed. APNumericStorage uses
919/// ASTContext's allocator for memory allocation.
920class APNumericStorage {
921  unsigned BitWidth;
922  union {
923    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
924    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
925  };
926
927  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
928
929  APNumericStorage(const APNumericStorage&); // do not implement
930  APNumericStorage& operator=(const APNumericStorage&); // do not implement
931
932protected:
933  APNumericStorage() : BitWidth(0), VAL(0) { }
934
935  llvm::APInt getIntValue() const {
936    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
937    if (NumWords > 1)
938      return llvm::APInt(BitWidth, NumWords, pVal);
939    else
940      return llvm::APInt(BitWidth, VAL);
941  }
942  void setIntValue(ASTContext &C, const llvm::APInt &Val);
943};
944
945class APIntStorage : public APNumericStorage {
946public:
947  llvm::APInt getValue() const { return getIntValue(); }
948  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
949};
950
951class APFloatStorage : public APNumericStorage {
952public:
953  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
954  void setValue(ASTContext &C, const llvm::APFloat &Val) {
955    setIntValue(C, Val.bitcastToAPInt());
956  }
957};
958
959class IntegerLiteral : public Expr {
960  APIntStorage Num;
961  SourceLocation Loc;
962
963  /// \brief Construct an empty integer literal.
964  explicit IntegerLiteral(EmptyShell Empty)
965    : Expr(IntegerLiteralClass, Empty) { }
966
967public:
968  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
969  // or UnsignedLongLongTy
970  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
971                 QualType type, SourceLocation l)
972    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
973           false),
974      Loc(l) {
975    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
976    setValue(C, V);
977  }
978
979  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
980  // or UnsignedLongLongTy
981  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
982                                QualType type, SourceLocation l);
983  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
984
985  llvm::APInt getValue() const { return Num.getValue(); }
986  SourceRange getSourceRange() const { return SourceRange(Loc); }
987
988  /// \brief Retrieve the location of the literal.
989  SourceLocation getLocation() const { return Loc; }
990
991  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
992  void setLocation(SourceLocation Location) { Loc = Location; }
993
994  static bool classof(const Stmt *T) {
995    return T->getStmtClass() == IntegerLiteralClass;
996  }
997  static bool classof(const IntegerLiteral *) { return true; }
998
999  // Iterators
1000  child_range children() { return child_range(); }
1001};
1002
1003class CharacterLiteral : public Expr {
1004  unsigned Value;
1005  SourceLocation Loc;
1006  bool IsWide;
1007public:
1008  // type should be IntTy
1009  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
1010    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1011           false),
1012      Value(value), Loc(l), IsWide(iswide) {
1013  }
1014
1015  /// \brief Construct an empty character literal.
1016  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1017
1018  SourceLocation getLocation() const { return Loc; }
1019  bool isWide() const { return IsWide; }
1020
1021  SourceRange getSourceRange() const { return SourceRange(Loc); }
1022
1023  unsigned getValue() const { return Value; }
1024
1025  void setLocation(SourceLocation Location) { Loc = Location; }
1026  void setWide(bool W) { IsWide = W; }
1027  void setValue(unsigned Val) { Value = Val; }
1028
1029  static bool classof(const Stmt *T) {
1030    return T->getStmtClass() == CharacterLiteralClass;
1031  }
1032  static bool classof(const CharacterLiteral *) { return true; }
1033
1034  // Iterators
1035  child_range children() { return child_range(); }
1036};
1037
1038class FloatingLiteral : public Expr {
1039  APFloatStorage Num;
1040  bool IsExact : 1;
1041  SourceLocation Loc;
1042
1043  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1044                  QualType Type, SourceLocation L)
1045    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1046           false),
1047      IsExact(isexact), Loc(L) {
1048    setValue(C, V);
1049  }
1050
1051  /// \brief Construct an empty floating-point literal.
1052  explicit FloatingLiteral(EmptyShell Empty)
1053    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1054
1055public:
1056  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1057                                 bool isexact, QualType Type, SourceLocation L);
1058  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1059
1060  llvm::APFloat getValue() const { return Num.getValue(); }
1061  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1062    Num.setValue(C, Val);
1063  }
1064
1065  bool isExact() const { return IsExact; }
1066  void setExact(bool E) { IsExact = E; }
1067
1068  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1069  /// double.  Note that this may cause loss of precision, but is useful for
1070  /// debugging dumps, etc.
1071  double getValueAsApproximateDouble() const;
1072
1073  SourceLocation getLocation() const { return Loc; }
1074  void setLocation(SourceLocation L) { Loc = L; }
1075
1076  SourceRange getSourceRange() const { return SourceRange(Loc); }
1077
1078  static bool classof(const Stmt *T) {
1079    return T->getStmtClass() == FloatingLiteralClass;
1080  }
1081  static bool classof(const FloatingLiteral *) { return true; }
1082
1083  // Iterators
1084  child_range children() { return child_range(); }
1085};
1086
1087/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1088/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1089/// IntegerLiteral classes.  Instances of this class always have a Complex type
1090/// whose element type matches the subexpression.
1091///
1092class ImaginaryLiteral : public Expr {
1093  Stmt *Val;
1094public:
1095  ImaginaryLiteral(Expr *val, QualType Ty)
1096    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1097           false),
1098      Val(val) {}
1099
1100  /// \brief Build an empty imaginary literal.
1101  explicit ImaginaryLiteral(EmptyShell Empty)
1102    : Expr(ImaginaryLiteralClass, Empty) { }
1103
1104  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1105  Expr *getSubExpr() { return cast<Expr>(Val); }
1106  void setSubExpr(Expr *E) { Val = E; }
1107
1108  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1109  static bool classof(const Stmt *T) {
1110    return T->getStmtClass() == ImaginaryLiteralClass;
1111  }
1112  static bool classof(const ImaginaryLiteral *) { return true; }
1113
1114  // Iterators
1115  child_range children() { return child_range(&Val, &Val+1); }
1116};
1117
1118/// StringLiteral - This represents a string literal expression, e.g. "foo"
1119/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1120/// is NOT null-terminated, and the length of the string is determined by
1121/// calling getByteLength().  The C type for a string is always a
1122/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1123/// not.
1124///
1125/// Note that strings in C can be formed by concatenation of multiple string
1126/// literal pptokens in translation phase #6.  This keeps track of the locations
1127/// of each of these pieces.
1128///
1129/// Strings in C can also be truncated and extended by assigning into arrays,
1130/// e.g. with constructs like:
1131///   char X[2] = "foobar";
1132/// In this case, getByteLength() will return 6, but the string literal will
1133/// have type "char[2]".
1134class StringLiteral : public Expr {
1135  const char *StrData;
1136  unsigned ByteLength;
1137  bool IsWide;
1138  unsigned NumConcatenated;
1139  SourceLocation TokLocs[1];
1140
1141  StringLiteral(QualType Ty) :
1142    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false) {}
1143
1144public:
1145  /// This is the "fully general" constructor that allows representation of
1146  /// strings formed from multiple concatenated tokens.
1147  static StringLiteral *Create(ASTContext &C, const char *StrData,
1148                               unsigned ByteLength, bool Wide, QualType Ty,
1149                               const SourceLocation *Loc, unsigned NumStrs);
1150
1151  /// Simple constructor for string literals made from one token.
1152  static StringLiteral *Create(ASTContext &C, const char *StrData,
1153                               unsigned ByteLength,
1154                               bool Wide, QualType Ty, SourceLocation Loc) {
1155    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1156  }
1157
1158  /// \brief Construct an empty string literal.
1159  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1160
1161  llvm::StringRef getString() const {
1162    return llvm::StringRef(StrData, ByteLength);
1163  }
1164
1165  unsigned getByteLength() const { return ByteLength; }
1166
1167  /// \brief Sets the string data to the given string data.
1168  void setString(ASTContext &C, llvm::StringRef Str);
1169
1170  bool isWide() const { return IsWide; }
1171  void setWide(bool W) { IsWide = W; }
1172
1173  bool containsNonAsciiOrNull() const {
1174    llvm::StringRef Str = getString();
1175    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1176      if (!isascii(Str[i]) || !Str[i])
1177        return true;
1178    return false;
1179  }
1180  /// getNumConcatenated - Get the number of string literal tokens that were
1181  /// concatenated in translation phase #6 to form this string literal.
1182  unsigned getNumConcatenated() const { return NumConcatenated; }
1183
1184  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1185    assert(TokNum < NumConcatenated && "Invalid tok number");
1186    return TokLocs[TokNum];
1187  }
1188  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1189    assert(TokNum < NumConcatenated && "Invalid tok number");
1190    TokLocs[TokNum] = L;
1191  }
1192
1193  /// getLocationOfByte - Return a source location that points to the specified
1194  /// byte of this string literal.
1195  ///
1196  /// Strings are amazingly complex.  They can be formed from multiple tokens
1197  /// and can have escape sequences in them in addition to the usual trigraph
1198  /// and escaped newline business.  This routine handles this complexity.
1199  ///
1200  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1201                                   const LangOptions &Features,
1202                                   const TargetInfo &Target) const;
1203
1204  typedef const SourceLocation *tokloc_iterator;
1205  tokloc_iterator tokloc_begin() const { return TokLocs; }
1206  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1207
1208  SourceRange getSourceRange() const {
1209    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1210  }
1211  static bool classof(const Stmt *T) {
1212    return T->getStmtClass() == StringLiteralClass;
1213  }
1214  static bool classof(const StringLiteral *) { return true; }
1215
1216  // Iterators
1217  child_range children() { return child_range(); }
1218};
1219
1220/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1221/// AST node is only formed if full location information is requested.
1222class ParenExpr : public Expr {
1223  SourceLocation L, R;
1224  Stmt *Val;
1225public:
1226  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1227    : Expr(ParenExprClass, val->getType(),
1228           val->getValueKind(), val->getObjectKind(),
1229           val->isTypeDependent(), val->isValueDependent(),
1230           val->containsUnexpandedParameterPack()),
1231      L(l), R(r), Val(val) {}
1232
1233  /// \brief Construct an empty parenthesized expression.
1234  explicit ParenExpr(EmptyShell Empty)
1235    : Expr(ParenExprClass, Empty) { }
1236
1237  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1238  Expr *getSubExpr() { return cast<Expr>(Val); }
1239  void setSubExpr(Expr *E) { Val = E; }
1240
1241  SourceRange getSourceRange() const { return SourceRange(L, R); }
1242
1243  /// \brief Get the location of the left parentheses '('.
1244  SourceLocation getLParen() const { return L; }
1245  void setLParen(SourceLocation Loc) { L = Loc; }
1246
1247  /// \brief Get the location of the right parentheses ')'.
1248  SourceLocation getRParen() const { return R; }
1249  void setRParen(SourceLocation Loc) { R = Loc; }
1250
1251  static bool classof(const Stmt *T) {
1252    return T->getStmtClass() == ParenExprClass;
1253  }
1254  static bool classof(const ParenExpr *) { return true; }
1255
1256  // Iterators
1257  child_range children() { return child_range(&Val, &Val+1); }
1258};
1259
1260
1261/// UnaryOperator - This represents the unary-expression's (except sizeof and
1262/// alignof), the postinc/postdec operators from postfix-expression, and various
1263/// extensions.
1264///
1265/// Notes on various nodes:
1266///
1267/// Real/Imag - These return the real/imag part of a complex operand.  If
1268///   applied to a non-complex value, the former returns its operand and the
1269///   later returns zero in the type of the operand.
1270///
1271class UnaryOperator : public Expr {
1272public:
1273  typedef UnaryOperatorKind Opcode;
1274
1275private:
1276  unsigned Opc : 5;
1277  SourceLocation Loc;
1278  Stmt *Val;
1279public:
1280
1281  UnaryOperator(Expr *input, Opcode opc, QualType type,
1282                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1283    : Expr(UnaryOperatorClass, type, VK, OK,
1284           input->isTypeDependent() || type->isDependentType(),
1285           input->isValueDependent(),
1286           input->containsUnexpandedParameterPack()),
1287      Opc(opc), Loc(l), Val(input) {}
1288
1289  /// \brief Build an empty unary operator.
1290  explicit UnaryOperator(EmptyShell Empty)
1291    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1292
1293  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1294  void setOpcode(Opcode O) { Opc = O; }
1295
1296  Expr *getSubExpr() const { return cast<Expr>(Val); }
1297  void setSubExpr(Expr *E) { Val = E; }
1298
1299  /// getOperatorLoc - Return the location of the operator.
1300  SourceLocation getOperatorLoc() const { return Loc; }
1301  void setOperatorLoc(SourceLocation L) { Loc = L; }
1302
1303  /// isPostfix - Return true if this is a postfix operation, like x++.
1304  static bool isPostfix(Opcode Op) {
1305    return Op == UO_PostInc || Op == UO_PostDec;
1306  }
1307
1308  /// isPrefix - Return true if this is a prefix operation, like --x.
1309  static bool isPrefix(Opcode Op) {
1310    return Op == UO_PreInc || Op == UO_PreDec;
1311  }
1312
1313  bool isPrefix() const { return isPrefix(getOpcode()); }
1314  bool isPostfix() const { return isPostfix(getOpcode()); }
1315  bool isIncrementOp() const {
1316    return Opc == UO_PreInc || Opc == UO_PostInc;
1317  }
1318  bool isIncrementDecrementOp() const {
1319    return Opc <= UO_PreDec;
1320  }
1321  static bool isArithmeticOp(Opcode Op) {
1322    return Op >= UO_Plus && Op <= UO_LNot;
1323  }
1324  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1325
1326  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1327  /// corresponds to, e.g. "sizeof" or "[pre]++"
1328  static const char *getOpcodeStr(Opcode Op);
1329
1330  /// \brief Retrieve the unary opcode that corresponds to the given
1331  /// overloaded operator.
1332  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1333
1334  /// \brief Retrieve the overloaded operator kind that corresponds to
1335  /// the given unary opcode.
1336  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1337
1338  SourceRange getSourceRange() const {
1339    if (isPostfix())
1340      return SourceRange(Val->getLocStart(), Loc);
1341    else
1342      return SourceRange(Loc, Val->getLocEnd());
1343  }
1344  SourceLocation getExprLoc() const { return Loc; }
1345
1346  static bool classof(const Stmt *T) {
1347    return T->getStmtClass() == UnaryOperatorClass;
1348  }
1349  static bool classof(const UnaryOperator *) { return true; }
1350
1351  // Iterators
1352  child_range children() { return child_range(&Val, &Val+1); }
1353};
1354
1355/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1356/// offsetof(record-type, member-designator). For example, given:
1357/// @code
1358/// struct S {
1359///   float f;
1360///   double d;
1361/// };
1362/// struct T {
1363///   int i;
1364///   struct S s[10];
1365/// };
1366/// @endcode
1367/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1368
1369class OffsetOfExpr : public Expr {
1370public:
1371  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1372  class OffsetOfNode {
1373  public:
1374    /// \brief The kind of offsetof node we have.
1375    enum Kind {
1376      /// \brief An index into an array.
1377      Array = 0x00,
1378      /// \brief A field.
1379      Field = 0x01,
1380      /// \brief A field in a dependent type, known only by its name.
1381      Identifier = 0x02,
1382      /// \brief An implicit indirection through a C++ base class, when the
1383      /// field found is in a base class.
1384      Base = 0x03
1385    };
1386
1387  private:
1388    enum { MaskBits = 2, Mask = 0x03 };
1389
1390    /// \brief The source range that covers this part of the designator.
1391    SourceRange Range;
1392
1393    /// \brief The data describing the designator, which comes in three
1394    /// different forms, depending on the lower two bits.
1395    ///   - An unsigned index into the array of Expr*'s stored after this node
1396    ///     in memory, for [constant-expression] designators.
1397    ///   - A FieldDecl*, for references to a known field.
1398    ///   - An IdentifierInfo*, for references to a field with a given name
1399    ///     when the class type is dependent.
1400    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1401    ///     base class.
1402    uintptr_t Data;
1403
1404  public:
1405    /// \brief Create an offsetof node that refers to an array element.
1406    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1407                 SourceLocation RBracketLoc)
1408      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1409
1410    /// \brief Create an offsetof node that refers to a field.
1411    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1412                 SourceLocation NameLoc)
1413      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1414        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1415
1416    /// \brief Create an offsetof node that refers to an identifier.
1417    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1418                 SourceLocation NameLoc)
1419      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1420        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1421
1422    /// \brief Create an offsetof node that refers into a C++ base class.
1423    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1424      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1425
1426    /// \brief Determine what kind of offsetof node this is.
1427    Kind getKind() const {
1428      return static_cast<Kind>(Data & Mask);
1429    }
1430
1431    /// \brief For an array element node, returns the index into the array
1432    /// of expressions.
1433    unsigned getArrayExprIndex() const {
1434      assert(getKind() == Array);
1435      return Data >> 2;
1436    }
1437
1438    /// \brief For a field offsetof node, returns the field.
1439    FieldDecl *getField() const {
1440      assert(getKind() == Field);
1441      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1442    }
1443
1444    /// \brief For a field or identifier offsetof node, returns the name of
1445    /// the field.
1446    IdentifierInfo *getFieldName() const;
1447
1448    /// \brief For a base class node, returns the base specifier.
1449    CXXBaseSpecifier *getBase() const {
1450      assert(getKind() == Base);
1451      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1452    }
1453
1454    /// \brief Retrieve the source range that covers this offsetof node.
1455    ///
1456    /// For an array element node, the source range contains the locations of
1457    /// the square brackets. For a field or identifier node, the source range
1458    /// contains the location of the period (if there is one) and the
1459    /// identifier.
1460    SourceRange getSourceRange() const { return Range; }
1461  };
1462
1463private:
1464
1465  SourceLocation OperatorLoc, RParenLoc;
1466  // Base type;
1467  TypeSourceInfo *TSInfo;
1468  // Number of sub-components (i.e. instances of OffsetOfNode).
1469  unsigned NumComps;
1470  // Number of sub-expressions (i.e. array subscript expressions).
1471  unsigned NumExprs;
1472
1473  OffsetOfExpr(ASTContext &C, QualType type,
1474               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1475               OffsetOfNode* compsPtr, unsigned numComps,
1476               Expr** exprsPtr, unsigned numExprs,
1477               SourceLocation RParenLoc);
1478
1479  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1480    : Expr(OffsetOfExprClass, EmptyShell()),
1481      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1482
1483public:
1484
1485  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1486                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1487                              OffsetOfNode* compsPtr, unsigned numComps,
1488                              Expr** exprsPtr, unsigned numExprs,
1489                              SourceLocation RParenLoc);
1490
1491  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1492                                   unsigned NumComps, unsigned NumExprs);
1493
1494  /// getOperatorLoc - Return the location of the operator.
1495  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1496  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1497
1498  /// \brief Return the location of the right parentheses.
1499  SourceLocation getRParenLoc() const { return RParenLoc; }
1500  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1501
1502  TypeSourceInfo *getTypeSourceInfo() const {
1503    return TSInfo;
1504  }
1505  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1506    TSInfo = tsi;
1507  }
1508
1509  const OffsetOfNode &getComponent(unsigned Idx) {
1510    assert(Idx < NumComps && "Subscript out of range");
1511    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1512  }
1513
1514  void setComponent(unsigned Idx, OffsetOfNode ON) {
1515    assert(Idx < NumComps && "Subscript out of range");
1516    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1517  }
1518
1519  unsigned getNumComponents() const {
1520    return NumComps;
1521  }
1522
1523  Expr* getIndexExpr(unsigned Idx) {
1524    assert(Idx < NumExprs && "Subscript out of range");
1525    return reinterpret_cast<Expr **>(
1526                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1527  }
1528
1529  void setIndexExpr(unsigned Idx, Expr* E) {
1530    assert(Idx < NumComps && "Subscript out of range");
1531    reinterpret_cast<Expr **>(
1532                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1533  }
1534
1535  unsigned getNumExpressions() const {
1536    return NumExprs;
1537  }
1538
1539  SourceRange getSourceRange() const {
1540    return SourceRange(OperatorLoc, RParenLoc);
1541  }
1542
1543  static bool classof(const Stmt *T) {
1544    return T->getStmtClass() == OffsetOfExprClass;
1545  }
1546
1547  static bool classof(const OffsetOfExpr *) { return true; }
1548
1549  // Iterators
1550  child_range children() {
1551    Stmt **begin =
1552      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1553                               + NumComps);
1554    return child_range(begin, begin + NumExprs);
1555  }
1556};
1557
1558/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1559/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1560/// vec_step (OpenCL 1.1 6.11.12).
1561class UnaryExprOrTypeTraitExpr : public Expr {
1562  unsigned Kind : 2;
1563  bool isType : 1;    // true if operand is a type, false if an expression
1564  union {
1565    TypeSourceInfo *Ty;
1566    Stmt *Ex;
1567  } Argument;
1568  SourceLocation OpLoc, RParenLoc;
1569
1570public:
1571  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1572                           QualType resultType, SourceLocation op,
1573                           SourceLocation rp) :
1574      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1575           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1576           // Value-dependent if the argument is type-dependent.
1577           TInfo->getType()->isDependentType(),
1578           TInfo->getType()->containsUnexpandedParameterPack()),
1579      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1580    Argument.Ty = TInfo;
1581  }
1582
1583  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1584                           QualType resultType, SourceLocation op,
1585                           SourceLocation rp) :
1586      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1587           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1588           // Value-dependent if the argument is type-dependent.
1589           E->isTypeDependent(),
1590           E->containsUnexpandedParameterPack()),
1591      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1592    Argument.Ex = E;
1593  }
1594
1595  /// \brief Construct an empty sizeof/alignof expression.
1596  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1597    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1598
1599  UnaryExprOrTypeTrait getKind() const {
1600    return static_cast<UnaryExprOrTypeTrait>(Kind);
1601  }
1602  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1603
1604  bool isArgumentType() const { return isType; }
1605  QualType getArgumentType() const {
1606    return getArgumentTypeInfo()->getType();
1607  }
1608  TypeSourceInfo *getArgumentTypeInfo() const {
1609    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1610    return Argument.Ty;
1611  }
1612  Expr *getArgumentExpr() {
1613    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1614    return static_cast<Expr*>(Argument.Ex);
1615  }
1616  const Expr *getArgumentExpr() const {
1617    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1618  }
1619
1620  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1621  void setArgument(TypeSourceInfo *TInfo) {
1622    Argument.Ty = TInfo;
1623    isType = true;
1624  }
1625
1626  /// Gets the argument type, or the type of the argument expression, whichever
1627  /// is appropriate.
1628  QualType getTypeOfArgument() const {
1629    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1630  }
1631
1632  SourceLocation getOperatorLoc() const { return OpLoc; }
1633  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1634
1635  SourceLocation getRParenLoc() const { return RParenLoc; }
1636  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1637
1638  SourceRange getSourceRange() const {
1639    return SourceRange(OpLoc, RParenLoc);
1640  }
1641
1642  static bool classof(const Stmt *T) {
1643    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1644  }
1645  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1646
1647  // Iterators
1648  child_range children();
1649};
1650
1651//===----------------------------------------------------------------------===//
1652// Postfix Operators.
1653//===----------------------------------------------------------------------===//
1654
1655/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1656class ArraySubscriptExpr : public Expr {
1657  enum { LHS, RHS, END_EXPR=2 };
1658  Stmt* SubExprs[END_EXPR];
1659  SourceLocation RBracketLoc;
1660public:
1661  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1662                     ExprValueKind VK, ExprObjectKind OK,
1663                     SourceLocation rbracketloc)
1664  : Expr(ArraySubscriptExprClass, t, VK, OK,
1665         lhs->isTypeDependent() || rhs->isTypeDependent(),
1666         lhs->isValueDependent() || rhs->isValueDependent(),
1667         (lhs->containsUnexpandedParameterPack() ||
1668          rhs->containsUnexpandedParameterPack())),
1669    RBracketLoc(rbracketloc) {
1670    SubExprs[LHS] = lhs;
1671    SubExprs[RHS] = rhs;
1672  }
1673
1674  /// \brief Create an empty array subscript expression.
1675  explicit ArraySubscriptExpr(EmptyShell Shell)
1676    : Expr(ArraySubscriptExprClass, Shell) { }
1677
1678  /// An array access can be written A[4] or 4[A] (both are equivalent).
1679  /// - getBase() and getIdx() always present the normalized view: A[4].
1680  ///    In this case getBase() returns "A" and getIdx() returns "4".
1681  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1682  ///    4[A] getLHS() returns "4".
1683  /// Note: Because vector element access is also written A[4] we must
1684  /// predicate the format conversion in getBase and getIdx only on the
1685  /// the type of the RHS, as it is possible for the LHS to be a vector of
1686  /// integer type
1687  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1688  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1689  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1690
1691  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1692  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1693  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1694
1695  Expr *getBase() {
1696    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1697  }
1698
1699  const Expr *getBase() const {
1700    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1701  }
1702
1703  Expr *getIdx() {
1704    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1705  }
1706
1707  const Expr *getIdx() const {
1708    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1709  }
1710
1711  SourceRange getSourceRange() const {
1712    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1713  }
1714
1715  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1716  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1717
1718  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1719
1720  static bool classof(const Stmt *T) {
1721    return T->getStmtClass() == ArraySubscriptExprClass;
1722  }
1723  static bool classof(const ArraySubscriptExpr *) { return true; }
1724
1725  // Iterators
1726  child_range children() {
1727    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1728  }
1729};
1730
1731
1732/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1733/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1734/// while its subclasses may represent alternative syntax that (semantically)
1735/// results in a function call. For example, CXXOperatorCallExpr is
1736/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1737/// "str1 + str2" to resolve to a function call.
1738class CallExpr : public Expr {
1739  enum { FN=0, PREARGS_START=1 };
1740  Stmt **SubExprs;
1741  unsigned NumArgs;
1742  SourceLocation RParenLoc;
1743
1744protected:
1745  // These versions of the constructor are for derived classes.
1746  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1747           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1748           SourceLocation rparenloc);
1749  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1750
1751  Stmt *getPreArg(unsigned i) {
1752    assert(i < getNumPreArgs() && "Prearg access out of range!");
1753    return SubExprs[PREARGS_START+i];
1754  }
1755  const Stmt *getPreArg(unsigned i) const {
1756    assert(i < getNumPreArgs() && "Prearg access out of range!");
1757    return SubExprs[PREARGS_START+i];
1758  }
1759  void setPreArg(unsigned i, Stmt *PreArg) {
1760    assert(i < getNumPreArgs() && "Prearg access out of range!");
1761    SubExprs[PREARGS_START+i] = PreArg;
1762  }
1763
1764  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1765
1766public:
1767  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1768           ExprValueKind VK, SourceLocation rparenloc);
1769
1770  /// \brief Build an empty call expression.
1771  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1772
1773  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1774  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1775  void setCallee(Expr *F) { SubExprs[FN] = F; }
1776
1777  Decl *getCalleeDecl();
1778  const Decl *getCalleeDecl() const {
1779    return const_cast<CallExpr*>(this)->getCalleeDecl();
1780  }
1781
1782  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1783  FunctionDecl *getDirectCallee();
1784  const FunctionDecl *getDirectCallee() const {
1785    return const_cast<CallExpr*>(this)->getDirectCallee();
1786  }
1787
1788  /// getNumArgs - Return the number of actual arguments to this call.
1789  ///
1790  unsigned getNumArgs() const { return NumArgs; }
1791
1792  /// \brief Retrieve the call arguments.
1793  Expr **getArgs() {
1794    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1795  }
1796
1797  /// getArg - Return the specified argument.
1798  Expr *getArg(unsigned Arg) {
1799    assert(Arg < NumArgs && "Arg access out of range!");
1800    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1801  }
1802  const Expr *getArg(unsigned Arg) const {
1803    assert(Arg < NumArgs && "Arg access out of range!");
1804    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1805  }
1806
1807  /// setArg - Set the specified argument.
1808  void setArg(unsigned Arg, Expr *ArgExpr) {
1809    assert(Arg < NumArgs && "Arg access out of range!");
1810    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1811  }
1812
1813  /// setNumArgs - This changes the number of arguments present in this call.
1814  /// Any orphaned expressions are deleted by this, and any new operands are set
1815  /// to null.
1816  void setNumArgs(ASTContext& C, unsigned NumArgs);
1817
1818  typedef ExprIterator arg_iterator;
1819  typedef ConstExprIterator const_arg_iterator;
1820
1821  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1822  arg_iterator arg_end() {
1823    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1824  }
1825  const_arg_iterator arg_begin() const {
1826    return SubExprs+PREARGS_START+getNumPreArgs();
1827  }
1828  const_arg_iterator arg_end() const {
1829    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1830  }
1831
1832  /// getNumCommas - Return the number of commas that must have been present in
1833  /// this function call.
1834  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1835
1836  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1837  /// not, return 0.
1838  unsigned isBuiltinCall(const ASTContext &Context) const;
1839
1840  /// getCallReturnType - Get the return type of the call expr. This is not
1841  /// always the type of the expr itself, if the return type is a reference
1842  /// type.
1843  QualType getCallReturnType() const;
1844
1845  SourceLocation getRParenLoc() const { return RParenLoc; }
1846  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1847
1848  SourceRange getSourceRange() const;
1849
1850  static bool classof(const Stmt *T) {
1851    return T->getStmtClass() >= firstCallExprConstant &&
1852           T->getStmtClass() <= lastCallExprConstant;
1853  }
1854  static bool classof(const CallExpr *) { return true; }
1855
1856  // Iterators
1857  child_range children() {
1858    return child_range(&SubExprs[0],
1859                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
1860  }
1861};
1862
1863/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1864///
1865class MemberExpr : public Expr {
1866  /// Extra data stored in some member expressions.
1867  struct MemberNameQualifier : public NameQualifier {
1868    DeclAccessPair FoundDecl;
1869  };
1870
1871  /// Base - the expression for the base pointer or structure references.  In
1872  /// X.F, this is "X".
1873  Stmt *Base;
1874
1875  /// MemberDecl - This is the decl being referenced by the field/member name.
1876  /// In X.F, this is the decl referenced by F.
1877  ValueDecl *MemberDecl;
1878
1879  /// MemberLoc - This is the location of the member name.
1880  SourceLocation MemberLoc;
1881
1882  /// MemberDNLoc - Provides source/type location info for the
1883  /// declaration name embedded in MemberDecl.
1884  DeclarationNameLoc MemberDNLoc;
1885
1886  /// IsArrow - True if this is "X->F", false if this is "X.F".
1887  bool IsArrow : 1;
1888
1889  /// \brief True if this member expression used a nested-name-specifier to
1890  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1891  /// declaration.  When true, a MemberNameQualifier
1892  /// structure is allocated immediately after the MemberExpr.
1893  bool HasQualifierOrFoundDecl : 1;
1894
1895  /// \brief True if this member expression specified a template argument list
1896  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1897  /// structure (and its TemplateArguments) are allocated immediately after
1898  /// the MemberExpr or, if the member expression also has a qualifier, after
1899  /// the MemberNameQualifier structure.
1900  bool HasExplicitTemplateArgumentList : 1;
1901
1902  /// \brief Retrieve the qualifier that preceded the member name, if any.
1903  MemberNameQualifier *getMemberQualifier() {
1904    assert(HasQualifierOrFoundDecl);
1905    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1906  }
1907
1908  /// \brief Retrieve the qualifier that preceded the member name, if any.
1909  const MemberNameQualifier *getMemberQualifier() const {
1910    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1911  }
1912
1913public:
1914  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1915             const DeclarationNameInfo &NameInfo, QualType ty,
1916             ExprValueKind VK, ExprObjectKind OK)
1917    : Expr(MemberExprClass, ty, VK, OK,
1918           base->isTypeDependent(), base->isValueDependent(),
1919           base->containsUnexpandedParameterPack()),
1920      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1921      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1922      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1923    assert(memberdecl->getDeclName() == NameInfo.getName());
1924  }
1925
1926  // NOTE: this constructor should be used only when it is known that
1927  // the member name can not provide additional syntactic info
1928  // (i.e., source locations for C++ operator names or type source info
1929  // for constructors, destructors and conversion oeprators).
1930  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1931             SourceLocation l, QualType ty,
1932             ExprValueKind VK, ExprObjectKind OK)
1933    : Expr(MemberExprClass, ty, VK, OK,
1934           base->isTypeDependent(), base->isValueDependent(),
1935           base->containsUnexpandedParameterPack()),
1936      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1937      IsArrow(isarrow),
1938      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1939
1940  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1941                            NestedNameSpecifierLoc QualifierLoc,
1942                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1943                            DeclarationNameInfo MemberNameInfo,
1944                            const TemplateArgumentListInfo *targs,
1945                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1946
1947  void setBase(Expr *E) { Base = E; }
1948  Expr *getBase() const { return cast<Expr>(Base); }
1949
1950  /// \brief Retrieve the member declaration to which this expression refers.
1951  ///
1952  /// The returned declaration will either be a FieldDecl or (in C++)
1953  /// a CXXMethodDecl.
1954  ValueDecl *getMemberDecl() const { return MemberDecl; }
1955  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1956
1957  /// \brief Retrieves the declaration found by lookup.
1958  DeclAccessPair getFoundDecl() const {
1959    if (!HasQualifierOrFoundDecl)
1960      return DeclAccessPair::make(getMemberDecl(),
1961                                  getMemberDecl()->getAccess());
1962    return getMemberQualifier()->FoundDecl;
1963  }
1964
1965  /// \brief Determines whether this member expression actually had
1966  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1967  /// x->Base::foo.
1968  bool hasQualifier() const { return getQualifier() != 0; }
1969
1970  /// \brief If the member name was qualified, retrieves the
1971  /// nested-name-specifier that precedes the member name. Otherwise, returns
1972  /// NULL.
1973  NestedNameSpecifier *getQualifier() const {
1974    if (!HasQualifierOrFoundDecl)
1975      return 0;
1976
1977    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
1978  }
1979
1980  /// \brief If the member name was qualified, retrieves the
1981  /// nested-name-specifier that precedes the member name, with source-location
1982  /// information.
1983  NestedNameSpecifierLoc getQualifierLoc() const {
1984    if (!hasQualifier())
1985      return NestedNameSpecifierLoc();
1986
1987    return getMemberQualifier()->QualifierLoc;
1988  }
1989
1990  /// \brief Determines whether this member expression actually had a C++
1991  /// template argument list explicitly specified, e.g., x.f<int>.
1992  bool hasExplicitTemplateArgs() const {
1993    return HasExplicitTemplateArgumentList;
1994  }
1995
1996  /// \brief Copies the template arguments (if present) into the given
1997  /// structure.
1998  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1999    if (hasExplicitTemplateArgs())
2000      getExplicitTemplateArgs().copyInto(List);
2001  }
2002
2003  /// \brief Retrieve the explicit template argument list that
2004  /// follow the member template name.  This must only be called on an
2005  /// expression with explicit template arguments.
2006  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2007    assert(HasExplicitTemplateArgumentList);
2008    if (!HasQualifierOrFoundDecl)
2009      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2010
2011    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
2012                                                      getMemberQualifier() + 1);
2013  }
2014
2015  /// \brief Retrieve the explicit template argument list that
2016  /// followed the member template name.  This must only be called on
2017  /// an expression with explicit template arguments.
2018  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2019    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2020  }
2021
2022  /// \brief Retrieves the optional explicit template arguments.
2023  /// This points to the same data as getExplicitTemplateArgs(), but
2024  /// returns null if there are no explicit template arguments.
2025  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
2026    if (!hasExplicitTemplateArgs()) return 0;
2027    return &getExplicitTemplateArgs();
2028  }
2029
2030  /// \brief Retrieve the location of the left angle bracket following the
2031  /// member name ('<'), if any.
2032  SourceLocation getLAngleLoc() const {
2033    if (!HasExplicitTemplateArgumentList)
2034      return SourceLocation();
2035
2036    return getExplicitTemplateArgs().LAngleLoc;
2037  }
2038
2039  /// \brief Retrieve the template arguments provided as part of this
2040  /// template-id.
2041  const TemplateArgumentLoc *getTemplateArgs() const {
2042    if (!HasExplicitTemplateArgumentList)
2043      return 0;
2044
2045    return getExplicitTemplateArgs().getTemplateArgs();
2046  }
2047
2048  /// \brief Retrieve the number of template arguments provided as part of this
2049  /// template-id.
2050  unsigned getNumTemplateArgs() const {
2051    if (!HasExplicitTemplateArgumentList)
2052      return 0;
2053
2054    return getExplicitTemplateArgs().NumTemplateArgs;
2055  }
2056
2057  /// \brief Retrieve the location of the right angle bracket following the
2058  /// template arguments ('>').
2059  SourceLocation getRAngleLoc() const {
2060    if (!HasExplicitTemplateArgumentList)
2061      return SourceLocation();
2062
2063    return getExplicitTemplateArgs().RAngleLoc;
2064  }
2065
2066  /// \brief Retrieve the member declaration name info.
2067  DeclarationNameInfo getMemberNameInfo() const {
2068    return DeclarationNameInfo(MemberDecl->getDeclName(),
2069                               MemberLoc, MemberDNLoc);
2070  }
2071
2072  bool isArrow() const { return IsArrow; }
2073  void setArrow(bool A) { IsArrow = A; }
2074
2075  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2076  /// location of 'F'.
2077  SourceLocation getMemberLoc() const { return MemberLoc; }
2078  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2079
2080  SourceRange getSourceRange() const;
2081
2082  SourceLocation getExprLoc() const { return MemberLoc; }
2083
2084  /// \brief Determine whether the base of this explicit is implicit.
2085  bool isImplicitAccess() const {
2086    return getBase() && getBase()->isImplicitCXXThis();
2087  }
2088
2089  static bool classof(const Stmt *T) {
2090    return T->getStmtClass() == MemberExprClass;
2091  }
2092  static bool classof(const MemberExpr *) { return true; }
2093
2094  // Iterators
2095  child_range children() { return child_range(&Base, &Base+1); }
2096
2097  friend class ASTReader;
2098  friend class ASTStmtWriter;
2099};
2100
2101/// CompoundLiteralExpr - [C99 6.5.2.5]
2102///
2103class CompoundLiteralExpr : public Expr {
2104  /// LParenLoc - If non-null, this is the location of the left paren in a
2105  /// compound literal like "(int){4}".  This can be null if this is a
2106  /// synthesized compound expression.
2107  SourceLocation LParenLoc;
2108
2109  /// The type as written.  This can be an incomplete array type, in
2110  /// which case the actual expression type will be different.
2111  TypeSourceInfo *TInfo;
2112  Stmt *Init;
2113  bool FileScope;
2114public:
2115  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2116                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2117    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2118           tinfo->getType()->isDependentType(),
2119           init->isValueDependent(),
2120           init->containsUnexpandedParameterPack()),
2121      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2122
2123  /// \brief Construct an empty compound literal.
2124  explicit CompoundLiteralExpr(EmptyShell Empty)
2125    : Expr(CompoundLiteralExprClass, Empty) { }
2126
2127  const Expr *getInitializer() const { return cast<Expr>(Init); }
2128  Expr *getInitializer() { return cast<Expr>(Init); }
2129  void setInitializer(Expr *E) { Init = E; }
2130
2131  bool isFileScope() const { return FileScope; }
2132  void setFileScope(bool FS) { FileScope = FS; }
2133
2134  SourceLocation getLParenLoc() const { return LParenLoc; }
2135  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2136
2137  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2138  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2139
2140  SourceRange getSourceRange() const {
2141    // FIXME: Init should never be null.
2142    if (!Init)
2143      return SourceRange();
2144    if (LParenLoc.isInvalid())
2145      return Init->getSourceRange();
2146    return SourceRange(LParenLoc, Init->getLocEnd());
2147  }
2148
2149  static bool classof(const Stmt *T) {
2150    return T->getStmtClass() == CompoundLiteralExprClass;
2151  }
2152  static bool classof(const CompoundLiteralExpr *) { return true; }
2153
2154  // Iterators
2155  child_range children() { return child_range(&Init, &Init+1); }
2156};
2157
2158/// CastExpr - Base class for type casts, including both implicit
2159/// casts (ImplicitCastExpr) and explicit casts that have some
2160/// representation in the source code (ExplicitCastExpr's derived
2161/// classes).
2162class CastExpr : public Expr {
2163public:
2164  typedef clang::CastKind CastKind;
2165
2166private:
2167  Stmt *Op;
2168
2169  void CheckCastConsistency() const {
2170#ifndef NDEBUG
2171    switch (getCastKind()) {
2172    case CK_DerivedToBase:
2173    case CK_UncheckedDerivedToBase:
2174    case CK_DerivedToBaseMemberPointer:
2175    case CK_BaseToDerived:
2176    case CK_BaseToDerivedMemberPointer:
2177      assert(!path_empty() && "Cast kind should have a base path!");
2178      break;
2179
2180    // These should not have an inheritance path.
2181    case CK_BitCast:
2182    case CK_Dynamic:
2183    case CK_ToUnion:
2184    case CK_ArrayToPointerDecay:
2185    case CK_FunctionToPointerDecay:
2186    case CK_NullToMemberPointer:
2187    case CK_NullToPointer:
2188    case CK_ConstructorConversion:
2189    case CK_IntegralToPointer:
2190    case CK_PointerToIntegral:
2191    case CK_ToVoid:
2192    case CK_VectorSplat:
2193    case CK_IntegralCast:
2194    case CK_IntegralToFloating:
2195    case CK_FloatingToIntegral:
2196    case CK_FloatingCast:
2197    case CK_AnyPointerToObjCPointerCast:
2198    case CK_AnyPointerToBlockPointerCast:
2199    case CK_ObjCObjectLValueCast:
2200    case CK_FloatingRealToComplex:
2201    case CK_FloatingComplexToReal:
2202    case CK_FloatingComplexCast:
2203    case CK_FloatingComplexToIntegralComplex:
2204    case CK_IntegralRealToComplex:
2205    case CK_IntegralComplexToReal:
2206    case CK_IntegralComplexCast:
2207    case CK_IntegralComplexToFloatingComplex:
2208      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2209      // fallthrough to check for null base path
2210
2211    case CK_Dependent:
2212    case CK_LValueToRValue:
2213    case CK_GetObjCProperty:
2214    case CK_NoOp:
2215    case CK_PointerToBoolean:
2216    case CK_IntegralToBoolean:
2217    case CK_FloatingToBoolean:
2218    case CK_MemberPointerToBoolean:
2219    case CK_FloatingComplexToBoolean:
2220    case CK_IntegralComplexToBoolean:
2221    case CK_LValueBitCast:            // -> bool&
2222    case CK_UserDefinedConversion:    // operator bool()
2223      assert(path_empty() && "Cast kind should not have a base path!");
2224      break;
2225    }
2226#endif
2227  }
2228
2229  const CXXBaseSpecifier * const *path_buffer() const {
2230    return const_cast<CastExpr*>(this)->path_buffer();
2231  }
2232  CXXBaseSpecifier **path_buffer();
2233
2234protected:
2235  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2236           const CastKind kind, Expr *op, unsigned BasePathSize) :
2237    Expr(SC, ty, VK, OK_Ordinary,
2238         // Cast expressions are type-dependent if the type is
2239         // dependent (C++ [temp.dep.expr]p3).
2240         ty->isDependentType(),
2241         // Cast expressions are value-dependent if the type is
2242         // dependent or if the subexpression is value-dependent.
2243         ty->isDependentType() || (op && op->isValueDependent()),
2244         (ty->containsUnexpandedParameterPack() ||
2245          op->containsUnexpandedParameterPack())),
2246    Op(op) {
2247    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2248    CastExprBits.Kind = kind;
2249    CastExprBits.BasePathSize = BasePathSize;
2250    CheckCastConsistency();
2251  }
2252
2253  /// \brief Construct an empty cast.
2254  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2255    : Expr(SC, Empty) {
2256    CastExprBits.BasePathSize = BasePathSize;
2257  }
2258
2259public:
2260  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2261  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2262  const char *getCastKindName() const;
2263
2264  Expr *getSubExpr() { return cast<Expr>(Op); }
2265  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2266  void setSubExpr(Expr *E) { Op = E; }
2267
2268  /// \brief Retrieve the cast subexpression as it was written in the source
2269  /// code, looking through any implicit casts or other intermediate nodes
2270  /// introduced by semantic analysis.
2271  Expr *getSubExprAsWritten();
2272  const Expr *getSubExprAsWritten() const {
2273    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2274  }
2275
2276  typedef CXXBaseSpecifier **path_iterator;
2277  typedef const CXXBaseSpecifier * const *path_const_iterator;
2278  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2279  unsigned path_size() const { return CastExprBits.BasePathSize; }
2280  path_iterator path_begin() { return path_buffer(); }
2281  path_iterator path_end() { return path_buffer() + path_size(); }
2282  path_const_iterator path_begin() const { return path_buffer(); }
2283  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2284
2285  void setCastPath(const CXXCastPath &Path);
2286
2287  static bool classof(const Stmt *T) {
2288    return T->getStmtClass() >= firstCastExprConstant &&
2289           T->getStmtClass() <= lastCastExprConstant;
2290  }
2291  static bool classof(const CastExpr *) { return true; }
2292
2293  // Iterators
2294  child_range children() { return child_range(&Op, &Op+1); }
2295};
2296
2297/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2298/// conversions, which have no direct representation in the original
2299/// source code. For example: converting T[]->T*, void f()->void
2300/// (*f)(), float->double, short->int, etc.
2301///
2302/// In C, implicit casts always produce rvalues. However, in C++, an
2303/// implicit cast whose result is being bound to a reference will be
2304/// an lvalue or xvalue. For example:
2305///
2306/// @code
2307/// class Base { };
2308/// class Derived : public Base { };
2309/// Derived &&ref();
2310/// void f(Derived d) {
2311///   Base& b = d; // initializer is an ImplicitCastExpr
2312///                // to an lvalue of type Base
2313///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2314///                     // to an xvalue of type Base
2315/// }
2316/// @endcode
2317class ImplicitCastExpr : public CastExpr {
2318private:
2319  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2320                   unsigned BasePathLength, ExprValueKind VK)
2321    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2322  }
2323
2324  /// \brief Construct an empty implicit cast.
2325  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2326    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2327
2328public:
2329  enum OnStack_t { OnStack };
2330  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2331                   ExprValueKind VK)
2332    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2333  }
2334
2335  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2336                                  CastKind Kind, Expr *Operand,
2337                                  const CXXCastPath *BasePath,
2338                                  ExprValueKind Cat);
2339
2340  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2341
2342  SourceRange getSourceRange() const {
2343    return getSubExpr()->getSourceRange();
2344  }
2345
2346  static bool classof(const Stmt *T) {
2347    return T->getStmtClass() == ImplicitCastExprClass;
2348  }
2349  static bool classof(const ImplicitCastExpr *) { return true; }
2350};
2351
2352/// ExplicitCastExpr - An explicit cast written in the source
2353/// code.
2354///
2355/// This class is effectively an abstract class, because it provides
2356/// the basic representation of an explicitly-written cast without
2357/// specifying which kind of cast (C cast, functional cast, static
2358/// cast, etc.) was written; specific derived classes represent the
2359/// particular style of cast and its location information.
2360///
2361/// Unlike implicit casts, explicit cast nodes have two different
2362/// types: the type that was written into the source code, and the
2363/// actual type of the expression as determined by semantic
2364/// analysis. These types may differ slightly. For example, in C++ one
2365/// can cast to a reference type, which indicates that the resulting
2366/// expression will be an lvalue or xvalue. The reference type, however,
2367/// will not be used as the type of the expression.
2368class ExplicitCastExpr : public CastExpr {
2369  /// TInfo - Source type info for the (written) type
2370  /// this expression is casting to.
2371  TypeSourceInfo *TInfo;
2372
2373protected:
2374  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2375                   CastKind kind, Expr *op, unsigned PathSize,
2376                   TypeSourceInfo *writtenTy)
2377    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2378
2379  /// \brief Construct an empty explicit cast.
2380  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2381    : CastExpr(SC, Shell, PathSize) { }
2382
2383public:
2384  /// getTypeInfoAsWritten - Returns the type source info for the type
2385  /// that this expression is casting to.
2386  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2387  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2388
2389  /// getTypeAsWritten - Returns the type that this expression is
2390  /// casting to, as written in the source code.
2391  QualType getTypeAsWritten() const { return TInfo->getType(); }
2392
2393  static bool classof(const Stmt *T) {
2394     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2395            T->getStmtClass() <= lastExplicitCastExprConstant;
2396  }
2397  static bool classof(const ExplicitCastExpr *) { return true; }
2398};
2399
2400/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2401/// cast in C++ (C++ [expr.cast]), which uses the syntax
2402/// (Type)expr. For example: @c (int)f.
2403class CStyleCastExpr : public ExplicitCastExpr {
2404  SourceLocation LPLoc; // the location of the left paren
2405  SourceLocation RPLoc; // the location of the right paren
2406
2407  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2408                 unsigned PathSize, TypeSourceInfo *writtenTy,
2409                 SourceLocation l, SourceLocation r)
2410    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2411                       writtenTy), LPLoc(l), RPLoc(r) {}
2412
2413  /// \brief Construct an empty C-style explicit cast.
2414  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2415    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2416
2417public:
2418  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2419                                ExprValueKind VK, CastKind K,
2420                                Expr *Op, const CXXCastPath *BasePath,
2421                                TypeSourceInfo *WrittenTy, SourceLocation L,
2422                                SourceLocation R);
2423
2424  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2425
2426  SourceLocation getLParenLoc() const { return LPLoc; }
2427  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2428
2429  SourceLocation getRParenLoc() const { return RPLoc; }
2430  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2431
2432  SourceRange getSourceRange() const {
2433    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2434  }
2435  static bool classof(const Stmt *T) {
2436    return T->getStmtClass() == CStyleCastExprClass;
2437  }
2438  static bool classof(const CStyleCastExpr *) { return true; }
2439};
2440
2441/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2442///
2443/// This expression node kind describes a builtin binary operation,
2444/// such as "x + y" for integer values "x" and "y". The operands will
2445/// already have been converted to appropriate types (e.g., by
2446/// performing promotions or conversions).
2447///
2448/// In C++, where operators may be overloaded, a different kind of
2449/// expression node (CXXOperatorCallExpr) is used to express the
2450/// invocation of an overloaded operator with operator syntax. Within
2451/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2452/// used to store an expression "x + y" depends on the subexpressions
2453/// for x and y. If neither x or y is type-dependent, and the "+"
2454/// operator resolves to a built-in operation, BinaryOperator will be
2455/// used to express the computation (x and y may still be
2456/// value-dependent). If either x or y is type-dependent, or if the
2457/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2458/// be used to express the computation.
2459class BinaryOperator : public Expr {
2460public:
2461  typedef BinaryOperatorKind Opcode;
2462
2463private:
2464  unsigned Opc : 6;
2465  SourceLocation OpLoc;
2466
2467  enum { LHS, RHS, END_EXPR };
2468  Stmt* SubExprs[END_EXPR];
2469public:
2470
2471  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2472                 ExprValueKind VK, ExprObjectKind OK,
2473                 SourceLocation opLoc)
2474    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2475           lhs->isTypeDependent() || rhs->isTypeDependent(),
2476           lhs->isValueDependent() || rhs->isValueDependent(),
2477           (lhs->containsUnexpandedParameterPack() ||
2478            rhs->containsUnexpandedParameterPack())),
2479      Opc(opc), OpLoc(opLoc) {
2480    SubExprs[LHS] = lhs;
2481    SubExprs[RHS] = rhs;
2482    assert(!isCompoundAssignmentOp() &&
2483           "Use ArithAssignBinaryOperator for compound assignments");
2484  }
2485
2486  /// \brief Construct an empty binary operator.
2487  explicit BinaryOperator(EmptyShell Empty)
2488    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2489
2490  SourceLocation getOperatorLoc() const { return OpLoc; }
2491  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2492
2493  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2494  void setOpcode(Opcode O) { Opc = O; }
2495
2496  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2497  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2498  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2499  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2500
2501  SourceRange getSourceRange() const {
2502    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2503  }
2504
2505  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2506  /// corresponds to, e.g. "<<=".
2507  static const char *getOpcodeStr(Opcode Op);
2508
2509  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2510
2511  /// \brief Retrieve the binary opcode that corresponds to the given
2512  /// overloaded operator.
2513  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2514
2515  /// \brief Retrieve the overloaded operator kind that corresponds to
2516  /// the given binary opcode.
2517  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2518
2519  /// predicates to categorize the respective opcodes.
2520  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2521  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2522  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2523  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2524  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2525  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2526
2527  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2528  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2529
2530  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2531  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2532
2533  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2534  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2535
2536  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2537  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2538
2539  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2540  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2541
2542  static bool isAssignmentOp(Opcode Opc) {
2543    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2544  }
2545  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2546
2547  static bool isCompoundAssignmentOp(Opcode Opc) {
2548    return Opc > BO_Assign && Opc <= BO_OrAssign;
2549  }
2550  bool isCompoundAssignmentOp() const {
2551    return isCompoundAssignmentOp(getOpcode());
2552  }
2553
2554  static bool isShiftAssignOp(Opcode Opc) {
2555    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2556  }
2557  bool isShiftAssignOp() const {
2558    return isShiftAssignOp(getOpcode());
2559  }
2560
2561  static bool classof(const Stmt *S) {
2562    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2563           S->getStmtClass() <= lastBinaryOperatorConstant;
2564  }
2565  static bool classof(const BinaryOperator *) { return true; }
2566
2567  // Iterators
2568  child_range children() {
2569    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2570  }
2571
2572protected:
2573  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2574                 ExprValueKind VK, ExprObjectKind OK,
2575                 SourceLocation opLoc, bool dead)
2576    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2577           lhs->isTypeDependent() || rhs->isTypeDependent(),
2578           lhs->isValueDependent() || rhs->isValueDependent(),
2579           (lhs->containsUnexpandedParameterPack() ||
2580            rhs->containsUnexpandedParameterPack())),
2581      Opc(opc), OpLoc(opLoc) {
2582    SubExprs[LHS] = lhs;
2583    SubExprs[RHS] = rhs;
2584  }
2585
2586  BinaryOperator(StmtClass SC, EmptyShell Empty)
2587    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2588};
2589
2590/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2591/// track of the type the operation is performed in.  Due to the semantics of
2592/// these operators, the operands are promoted, the aritmetic performed, an
2593/// implicit conversion back to the result type done, then the assignment takes
2594/// place.  This captures the intermediate type which the computation is done
2595/// in.
2596class CompoundAssignOperator : public BinaryOperator {
2597  QualType ComputationLHSType;
2598  QualType ComputationResultType;
2599public:
2600  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2601                         ExprValueKind VK, ExprObjectKind OK,
2602                         QualType CompLHSType, QualType CompResultType,
2603                         SourceLocation OpLoc)
2604    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2605      ComputationLHSType(CompLHSType),
2606      ComputationResultType(CompResultType) {
2607    assert(isCompoundAssignmentOp() &&
2608           "Only should be used for compound assignments");
2609  }
2610
2611  /// \brief Build an empty compound assignment operator expression.
2612  explicit CompoundAssignOperator(EmptyShell Empty)
2613    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2614
2615  // The two computation types are the type the LHS is converted
2616  // to for the computation and the type of the result; the two are
2617  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2618  QualType getComputationLHSType() const { return ComputationLHSType; }
2619  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2620
2621  QualType getComputationResultType() const { return ComputationResultType; }
2622  void setComputationResultType(QualType T) { ComputationResultType = T; }
2623
2624  static bool classof(const CompoundAssignOperator *) { return true; }
2625  static bool classof(const Stmt *S) {
2626    return S->getStmtClass() == CompoundAssignOperatorClass;
2627  }
2628};
2629
2630/// AbstractConditionalOperator - An abstract base class for
2631/// ConditionalOperator and BinaryConditionalOperator.
2632class AbstractConditionalOperator : public Expr {
2633  SourceLocation QuestionLoc, ColonLoc;
2634  friend class ASTStmtReader;
2635
2636protected:
2637  AbstractConditionalOperator(StmtClass SC, QualType T,
2638                              ExprValueKind VK, ExprObjectKind OK,
2639                              bool TD, bool VD,
2640                              bool ContainsUnexpandedParameterPack,
2641                              SourceLocation qloc,
2642                              SourceLocation cloc)
2643    : Expr(SC, T, VK, OK, TD, VD, ContainsUnexpandedParameterPack),
2644      QuestionLoc(qloc), ColonLoc(cloc) {}
2645
2646  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2647    : Expr(SC, Empty) { }
2648
2649public:
2650  // getCond - Return the expression representing the condition for
2651  //   the ?: operator.
2652  Expr *getCond() const;
2653
2654  // getTrueExpr - Return the subexpression representing the value of
2655  //   the expression if the condition evaluates to true.
2656  Expr *getTrueExpr() const;
2657
2658  // getFalseExpr - Return the subexpression representing the value of
2659  //   the expression if the condition evaluates to false.  This is
2660  //   the same as getRHS.
2661  Expr *getFalseExpr() const;
2662
2663  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2664  SourceLocation getColonLoc() const { return ColonLoc; }
2665
2666  static bool classof(const Stmt *T) {
2667    return T->getStmtClass() == ConditionalOperatorClass ||
2668           T->getStmtClass() == BinaryConditionalOperatorClass;
2669  }
2670  static bool classof(const AbstractConditionalOperator *) { return true; }
2671};
2672
2673/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2674/// middle" extension is a BinaryConditionalOperator.
2675class ConditionalOperator : public AbstractConditionalOperator {
2676  enum { COND, LHS, RHS, END_EXPR };
2677  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2678
2679  friend class ASTStmtReader;
2680public:
2681  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2682                      SourceLocation CLoc, Expr *rhs,
2683                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2684    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2685           // FIXME: the type of the conditional operator doesn't
2686           // depend on the type of the conditional, but the standard
2687           // seems to imply that it could. File a bug!
2688           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2689           (cond->isValueDependent() || lhs->isValueDependent() ||
2690            rhs->isValueDependent()),
2691           (cond->containsUnexpandedParameterPack() ||
2692            lhs->containsUnexpandedParameterPack() ||
2693            rhs->containsUnexpandedParameterPack()),
2694                                  QLoc, CLoc) {
2695    SubExprs[COND] = cond;
2696    SubExprs[LHS] = lhs;
2697    SubExprs[RHS] = rhs;
2698  }
2699
2700  /// \brief Build an empty conditional operator.
2701  explicit ConditionalOperator(EmptyShell Empty)
2702    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2703
2704  // getCond - Return the expression representing the condition for
2705  //   the ?: operator.
2706  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2707
2708  // getTrueExpr - Return the subexpression representing the value of
2709  //   the expression if the condition evaluates to true.
2710  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2711
2712  // getFalseExpr - Return the subexpression representing the value of
2713  //   the expression if the condition evaluates to false.  This is
2714  //   the same as getRHS.
2715  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2716
2717  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2718  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2719
2720  SourceRange getSourceRange() const {
2721    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2722  }
2723  static bool classof(const Stmt *T) {
2724    return T->getStmtClass() == ConditionalOperatorClass;
2725  }
2726  static bool classof(const ConditionalOperator *) { return true; }
2727
2728  // Iterators
2729  child_range children() {
2730    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2731  }
2732};
2733
2734/// BinaryConditionalOperator - The GNU extension to the conditional
2735/// operator which allows the middle operand to be omitted.
2736///
2737/// This is a different expression kind on the assumption that almost
2738/// every client ends up needing to know that these are different.
2739class BinaryConditionalOperator : public AbstractConditionalOperator {
2740  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2741
2742  /// - the common condition/left-hand-side expression, which will be
2743  ///   evaluated as the opaque value
2744  /// - the condition, expressed in terms of the opaque value
2745  /// - the left-hand-side, expressed in terms of the opaque value
2746  /// - the right-hand-side
2747  Stmt *SubExprs[NUM_SUBEXPRS];
2748  OpaqueValueExpr *OpaqueValue;
2749
2750  friend class ASTStmtReader;
2751public:
2752  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2753                            Expr *cond, Expr *lhs, Expr *rhs,
2754                            SourceLocation qloc, SourceLocation cloc,
2755                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2756    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2757           (common->isTypeDependent() || rhs->isTypeDependent()),
2758           (common->isValueDependent() || rhs->isValueDependent()),
2759           (common->containsUnexpandedParameterPack() ||
2760            rhs->containsUnexpandedParameterPack()),
2761                                  qloc, cloc),
2762      OpaqueValue(opaqueValue) {
2763    SubExprs[COMMON] = common;
2764    SubExprs[COND] = cond;
2765    SubExprs[LHS] = lhs;
2766    SubExprs[RHS] = rhs;
2767
2768    OpaqueValue->setSourceExpr(common);
2769  }
2770
2771  /// \brief Build an empty conditional operator.
2772  explicit BinaryConditionalOperator(EmptyShell Empty)
2773    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2774
2775  /// \brief getCommon - Return the common expression, written to the
2776  ///   left of the condition.  The opaque value will be bound to the
2777  ///   result of this expression.
2778  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2779
2780  /// \brief getOpaqueValue - Return the opaque value placeholder.
2781  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2782
2783  /// \brief getCond - Return the condition expression; this is defined
2784  ///   in terms of the opaque value.
2785  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2786
2787  /// \brief getTrueExpr - Return the subexpression which will be
2788  ///   evaluated if the condition evaluates to true;  this is defined
2789  ///   in terms of the opaque value.
2790  Expr *getTrueExpr() const {
2791    return cast<Expr>(SubExprs[LHS]);
2792  }
2793
2794  /// \brief getFalseExpr - Return the subexpression which will be
2795  ///   evaluated if the condnition evaluates to false; this is
2796  ///   defined in terms of the opaque value.
2797  Expr *getFalseExpr() const {
2798    return cast<Expr>(SubExprs[RHS]);
2799  }
2800
2801  SourceRange getSourceRange() const {
2802    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2803  }
2804  static bool classof(const Stmt *T) {
2805    return T->getStmtClass() == BinaryConditionalOperatorClass;
2806  }
2807  static bool classof(const BinaryConditionalOperator *) { return true; }
2808
2809  // Iterators
2810  child_range children() {
2811    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2812  }
2813};
2814
2815inline Expr *AbstractConditionalOperator::getCond() const {
2816  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2817    return co->getCond();
2818  return cast<BinaryConditionalOperator>(this)->getCond();
2819}
2820
2821inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2822  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2823    return co->getTrueExpr();
2824  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2825}
2826
2827inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2828  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2829    return co->getFalseExpr();
2830  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2831}
2832
2833/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2834class AddrLabelExpr : public Expr {
2835  SourceLocation AmpAmpLoc, LabelLoc;
2836  LabelDecl *Label;
2837public:
2838  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2839                QualType t)
2840    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false),
2841      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2842
2843  /// \brief Build an empty address of a label expression.
2844  explicit AddrLabelExpr(EmptyShell Empty)
2845    : Expr(AddrLabelExprClass, Empty) { }
2846
2847  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2848  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2849  SourceLocation getLabelLoc() const { return LabelLoc; }
2850  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2851
2852  SourceRange getSourceRange() const {
2853    return SourceRange(AmpAmpLoc, LabelLoc);
2854  }
2855
2856  LabelDecl *getLabel() const { return Label; }
2857  void setLabel(LabelDecl *L) { Label = L; }
2858
2859  static bool classof(const Stmt *T) {
2860    return T->getStmtClass() == AddrLabelExprClass;
2861  }
2862  static bool classof(const AddrLabelExpr *) { return true; }
2863
2864  // Iterators
2865  child_range children() { return child_range(); }
2866};
2867
2868/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2869/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2870/// takes the value of the last subexpression.
2871///
2872/// A StmtExpr is always an r-value; values "returned" out of a
2873/// StmtExpr will be copied.
2874class StmtExpr : public Expr {
2875  Stmt *SubStmt;
2876  SourceLocation LParenLoc, RParenLoc;
2877public:
2878  // FIXME: Does type-dependence need to be computed differently?
2879  StmtExpr(CompoundStmt *substmt, QualType T,
2880           SourceLocation lp, SourceLocation rp) :
2881    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2882         T->isDependentType(), false, false),
2883    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2884
2885  /// \brief Build an empty statement expression.
2886  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2887
2888  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2889  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2890  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2891
2892  SourceRange getSourceRange() const {
2893    return SourceRange(LParenLoc, RParenLoc);
2894  }
2895
2896  SourceLocation getLParenLoc() const { return LParenLoc; }
2897  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2898  SourceLocation getRParenLoc() const { return RParenLoc; }
2899  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2900
2901  static bool classof(const Stmt *T) {
2902    return T->getStmtClass() == StmtExprClass;
2903  }
2904  static bool classof(const StmtExpr *) { return true; }
2905
2906  // Iterators
2907  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
2908};
2909
2910
2911/// ShuffleVectorExpr - clang-specific builtin-in function
2912/// __builtin_shufflevector.
2913/// This AST node represents a operator that does a constant
2914/// shuffle, similar to LLVM's shufflevector instruction. It takes
2915/// two vectors and a variable number of constant indices,
2916/// and returns the appropriately shuffled vector.
2917class ShuffleVectorExpr : public Expr {
2918  SourceLocation BuiltinLoc, RParenLoc;
2919
2920  // SubExprs - the list of values passed to the __builtin_shufflevector
2921  // function. The first two are vectors, and the rest are constant
2922  // indices.  The number of values in this list is always
2923  // 2+the number of indices in the vector type.
2924  Stmt **SubExprs;
2925  unsigned NumExprs;
2926
2927public:
2928  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2929                    QualType Type, SourceLocation BLoc,
2930                    SourceLocation RP);
2931
2932  /// \brief Build an empty vector-shuffle expression.
2933  explicit ShuffleVectorExpr(EmptyShell Empty)
2934    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2935
2936  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2937  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2938
2939  SourceLocation getRParenLoc() const { return RParenLoc; }
2940  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2941
2942  SourceRange getSourceRange() const {
2943    return SourceRange(BuiltinLoc, RParenLoc);
2944  }
2945  static bool classof(const Stmt *T) {
2946    return T->getStmtClass() == ShuffleVectorExprClass;
2947  }
2948  static bool classof(const ShuffleVectorExpr *) { return true; }
2949
2950  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2951  /// constant expression, the actual arguments passed in, and the function
2952  /// pointers.
2953  unsigned getNumSubExprs() const { return NumExprs; }
2954
2955  /// \brief Retrieve the array of expressions.
2956  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
2957
2958  /// getExpr - Return the Expr at the specified index.
2959  Expr *getExpr(unsigned Index) {
2960    assert((Index < NumExprs) && "Arg access out of range!");
2961    return cast<Expr>(SubExprs[Index]);
2962  }
2963  const Expr *getExpr(unsigned Index) const {
2964    assert((Index < NumExprs) && "Arg access out of range!");
2965    return cast<Expr>(SubExprs[Index]);
2966  }
2967
2968  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2969
2970  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2971    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2972    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2973  }
2974
2975  // Iterators
2976  child_range children() {
2977    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
2978  }
2979};
2980
2981/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2982/// This AST node is similar to the conditional operator (?:) in C, with
2983/// the following exceptions:
2984/// - the test expression must be a integer constant expression.
2985/// - the expression returned acts like the chosen subexpression in every
2986///   visible way: the type is the same as that of the chosen subexpression,
2987///   and all predicates (whether it's an l-value, whether it's an integer
2988///   constant expression, etc.) return the same result as for the chosen
2989///   sub-expression.
2990class ChooseExpr : public Expr {
2991  enum { COND, LHS, RHS, END_EXPR };
2992  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2993  SourceLocation BuiltinLoc, RParenLoc;
2994public:
2995  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
2996             QualType t, ExprValueKind VK, ExprObjectKind OK,
2997             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2998    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
2999           (cond->containsUnexpandedParameterPack() ||
3000            lhs->containsUnexpandedParameterPack() ||
3001            rhs->containsUnexpandedParameterPack())),
3002      BuiltinLoc(BLoc), RParenLoc(RP) {
3003      SubExprs[COND] = cond;
3004      SubExprs[LHS] = lhs;
3005      SubExprs[RHS] = rhs;
3006    }
3007
3008  /// \brief Build an empty __builtin_choose_expr.
3009  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3010
3011  /// isConditionTrue - Return whether the condition is true (i.e. not
3012  /// equal to zero).
3013  bool isConditionTrue(const ASTContext &C) const;
3014
3015  /// getChosenSubExpr - Return the subexpression chosen according to the
3016  /// condition.
3017  Expr *getChosenSubExpr(const ASTContext &C) const {
3018    return isConditionTrue(C) ? getLHS() : getRHS();
3019  }
3020
3021  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3022  void setCond(Expr *E) { SubExprs[COND] = E; }
3023  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3024  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3025  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3026  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3027
3028  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3029  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3030
3031  SourceLocation getRParenLoc() const { return RParenLoc; }
3032  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3033
3034  SourceRange getSourceRange() const {
3035    return SourceRange(BuiltinLoc, RParenLoc);
3036  }
3037  static bool classof(const Stmt *T) {
3038    return T->getStmtClass() == ChooseExprClass;
3039  }
3040  static bool classof(const ChooseExpr *) { return true; }
3041
3042  // Iterators
3043  child_range children() {
3044    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3045  }
3046};
3047
3048/// GNUNullExpr - Implements the GNU __null extension, which is a name
3049/// for a null pointer constant that has integral type (e.g., int or
3050/// long) and is the same size and alignment as a pointer. The __null
3051/// extension is typically only used by system headers, which define
3052/// NULL as __null in C++ rather than using 0 (which is an integer
3053/// that may not match the size of a pointer).
3054class GNUNullExpr : public Expr {
3055  /// TokenLoc - The location of the __null keyword.
3056  SourceLocation TokenLoc;
3057
3058public:
3059  GNUNullExpr(QualType Ty, SourceLocation Loc)
3060    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false),
3061      TokenLoc(Loc) { }
3062
3063  /// \brief Build an empty GNU __null expression.
3064  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3065
3066  /// getTokenLocation - The location of the __null token.
3067  SourceLocation getTokenLocation() const { return TokenLoc; }
3068  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3069
3070  SourceRange getSourceRange() const {
3071    return SourceRange(TokenLoc);
3072  }
3073  static bool classof(const Stmt *T) {
3074    return T->getStmtClass() == GNUNullExprClass;
3075  }
3076  static bool classof(const GNUNullExpr *) { return true; }
3077
3078  // Iterators
3079  child_range children() { return child_range(); }
3080};
3081
3082/// VAArgExpr, used for the builtin function __builtin_va_arg.
3083class VAArgExpr : public Expr {
3084  Stmt *Val;
3085  TypeSourceInfo *TInfo;
3086  SourceLocation BuiltinLoc, RParenLoc;
3087public:
3088  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3089            SourceLocation RPLoc, QualType t)
3090    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3091           t->isDependentType(), false,
3092           (TInfo->getType()->containsUnexpandedParameterPack() ||
3093            e->containsUnexpandedParameterPack())),
3094      Val(e), TInfo(TInfo),
3095      BuiltinLoc(BLoc),
3096      RParenLoc(RPLoc) { }
3097
3098  /// \brief Create an empty __builtin_va_arg expression.
3099  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3100
3101  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3102  Expr *getSubExpr() { return cast<Expr>(Val); }
3103  void setSubExpr(Expr *E) { Val = E; }
3104
3105  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3106  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3107
3108  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3109  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3110
3111  SourceLocation getRParenLoc() const { return RParenLoc; }
3112  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3113
3114  SourceRange getSourceRange() const {
3115    return SourceRange(BuiltinLoc, RParenLoc);
3116  }
3117  static bool classof(const Stmt *T) {
3118    return T->getStmtClass() == VAArgExprClass;
3119  }
3120  static bool classof(const VAArgExpr *) { return true; }
3121
3122  // Iterators
3123  child_range children() { return child_range(&Val, &Val+1); }
3124};
3125
3126/// @brief Describes an C or C++ initializer list.
3127///
3128/// InitListExpr describes an initializer list, which can be used to
3129/// initialize objects of different types, including
3130/// struct/class/union types, arrays, and vectors. For example:
3131///
3132/// @code
3133/// struct foo x = { 1, { 2, 3 } };
3134/// @endcode
3135///
3136/// Prior to semantic analysis, an initializer list will represent the
3137/// initializer list as written by the user, but will have the
3138/// placeholder type "void". This initializer list is called the
3139/// syntactic form of the initializer, and may contain C99 designated
3140/// initializers (represented as DesignatedInitExprs), initializations
3141/// of subobject members without explicit braces, and so on. Clients
3142/// interested in the original syntax of the initializer list should
3143/// use the syntactic form of the initializer list.
3144///
3145/// After semantic analysis, the initializer list will represent the
3146/// semantic form of the initializer, where the initializations of all
3147/// subobjects are made explicit with nested InitListExpr nodes and
3148/// C99 designators have been eliminated by placing the designated
3149/// initializations into the subobject they initialize. Additionally,
3150/// any "holes" in the initialization, where no initializer has been
3151/// specified for a particular subobject, will be replaced with
3152/// implicitly-generated ImplicitValueInitExpr expressions that
3153/// value-initialize the subobjects. Note, however, that the
3154/// initializer lists may still have fewer initializers than there are
3155/// elements to initialize within the object.
3156///
3157/// Given the semantic form of the initializer list, one can retrieve
3158/// the original syntactic form of that initializer list (if it
3159/// exists) using getSyntacticForm(). Since many initializer lists
3160/// have the same syntactic and semantic forms, getSyntacticForm() may
3161/// return NULL, indicating that the current initializer list also
3162/// serves as its syntactic form.
3163class InitListExpr : public Expr {
3164  // FIXME: Eliminate this vector in favor of ASTContext allocation
3165  typedef ASTVector<Stmt *> InitExprsTy;
3166  InitExprsTy InitExprs;
3167  SourceLocation LBraceLoc, RBraceLoc;
3168
3169  /// Contains the initializer list that describes the syntactic form
3170  /// written in the source code.
3171  InitListExpr *SyntacticForm;
3172
3173  /// If this initializer list initializes a union, specifies which
3174  /// field within the union will be initialized.
3175  FieldDecl *UnionFieldInit;
3176
3177  /// Whether this initializer list originally had a GNU array-range
3178  /// designator in it. This is a temporary marker used by CodeGen.
3179  bool HadArrayRangeDesignator;
3180
3181public:
3182  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3183               Expr **initexprs, unsigned numinits,
3184               SourceLocation rbraceloc);
3185
3186  /// \brief Build an empty initializer list.
3187  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3188    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3189
3190  unsigned getNumInits() const { return InitExprs.size(); }
3191
3192  /// \brief Retrieve the set of initializers.
3193  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3194
3195  const Expr *getInit(unsigned Init) const {
3196    assert(Init < getNumInits() && "Initializer access out of range!");
3197    return cast_or_null<Expr>(InitExprs[Init]);
3198  }
3199
3200  Expr *getInit(unsigned Init) {
3201    assert(Init < getNumInits() && "Initializer access out of range!");
3202    return cast_or_null<Expr>(InitExprs[Init]);
3203  }
3204
3205  void setInit(unsigned Init, Expr *expr) {
3206    assert(Init < getNumInits() && "Initializer access out of range!");
3207    InitExprs[Init] = expr;
3208  }
3209
3210  /// \brief Reserve space for some number of initializers.
3211  void reserveInits(ASTContext &C, unsigned NumInits);
3212
3213  /// @brief Specify the number of initializers
3214  ///
3215  /// If there are more than @p NumInits initializers, the remaining
3216  /// initializers will be destroyed. If there are fewer than @p
3217  /// NumInits initializers, NULL expressions will be added for the
3218  /// unknown initializers.
3219  void resizeInits(ASTContext &Context, unsigned NumInits);
3220
3221  /// @brief Updates the initializer at index @p Init with the new
3222  /// expression @p expr, and returns the old expression at that
3223  /// location.
3224  ///
3225  /// When @p Init is out of range for this initializer list, the
3226  /// initializer list will be extended with NULL expressions to
3227  /// accomodate the new entry.
3228  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3229
3230  /// \brief If this initializes a union, specifies which field in the
3231  /// union to initialize.
3232  ///
3233  /// Typically, this field is the first named field within the
3234  /// union. However, a designated initializer can specify the
3235  /// initialization of a different field within the union.
3236  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
3237  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
3238
3239  // Explicit InitListExpr's originate from source code (and have valid source
3240  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3241  bool isExplicit() {
3242    return LBraceLoc.isValid() && RBraceLoc.isValid();
3243  }
3244
3245  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3246  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3247  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3248  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3249
3250  /// @brief Retrieve the initializer list that describes the
3251  /// syntactic form of the initializer.
3252  ///
3253  ///
3254  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3255  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3256
3257  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3258  void sawArrayRangeDesignator(bool ARD = true) {
3259    HadArrayRangeDesignator = ARD;
3260  }
3261
3262  SourceRange getSourceRange() const;
3263
3264  static bool classof(const Stmt *T) {
3265    return T->getStmtClass() == InitListExprClass;
3266  }
3267  static bool classof(const InitListExpr *) { return true; }
3268
3269  // Iterators
3270  child_range children() {
3271    if (InitExprs.empty()) return child_range();
3272    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3273  }
3274
3275  typedef InitExprsTy::iterator iterator;
3276  typedef InitExprsTy::const_iterator const_iterator;
3277  typedef InitExprsTy::reverse_iterator reverse_iterator;
3278  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3279
3280  iterator begin() { return InitExprs.begin(); }
3281  const_iterator begin() const { return InitExprs.begin(); }
3282  iterator end() { return InitExprs.end(); }
3283  const_iterator end() const { return InitExprs.end(); }
3284  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3285  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3286  reverse_iterator rend() { return InitExprs.rend(); }
3287  const_reverse_iterator rend() const { return InitExprs.rend(); }
3288};
3289
3290/// @brief Represents a C99 designated initializer expression.
3291///
3292/// A designated initializer expression (C99 6.7.8) contains one or
3293/// more designators (which can be field designators, array
3294/// designators, or GNU array-range designators) followed by an
3295/// expression that initializes the field or element(s) that the
3296/// designators refer to. For example, given:
3297///
3298/// @code
3299/// struct point {
3300///   double x;
3301///   double y;
3302/// };
3303/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3304/// @endcode
3305///
3306/// The InitListExpr contains three DesignatedInitExprs, the first of
3307/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3308/// designators, one array designator for @c [2] followed by one field
3309/// designator for @c .y. The initalization expression will be 1.0.
3310class DesignatedInitExpr : public Expr {
3311public:
3312  /// \brief Forward declaration of the Designator class.
3313  class Designator;
3314
3315private:
3316  /// The location of the '=' or ':' prior to the actual initializer
3317  /// expression.
3318  SourceLocation EqualOrColonLoc;
3319
3320  /// Whether this designated initializer used the GNU deprecated
3321  /// syntax rather than the C99 '=' syntax.
3322  bool GNUSyntax : 1;
3323
3324  /// The number of designators in this initializer expression.
3325  unsigned NumDesignators : 15;
3326
3327  /// \brief The designators in this designated initialization
3328  /// expression.
3329  Designator *Designators;
3330
3331  /// The number of subexpressions of this initializer expression,
3332  /// which contains both the initializer and any additional
3333  /// expressions used by array and array-range designators.
3334  unsigned NumSubExprs : 16;
3335
3336
3337  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3338                     const Designator *Designators,
3339                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3340                     Expr **IndexExprs, unsigned NumIndexExprs,
3341                     Expr *Init);
3342
3343  explicit DesignatedInitExpr(unsigned NumSubExprs)
3344    : Expr(DesignatedInitExprClass, EmptyShell()),
3345      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3346
3347public:
3348  /// A field designator, e.g., ".x".
3349  struct FieldDesignator {
3350    /// Refers to the field that is being initialized. The low bit
3351    /// of this field determines whether this is actually a pointer
3352    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3353    /// initially constructed, a field designator will store an
3354    /// IdentifierInfo*. After semantic analysis has resolved that
3355    /// name, the field designator will instead store a FieldDecl*.
3356    uintptr_t NameOrField;
3357
3358    /// The location of the '.' in the designated initializer.
3359    unsigned DotLoc;
3360
3361    /// The location of the field name in the designated initializer.
3362    unsigned FieldLoc;
3363  };
3364
3365  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3366  struct ArrayOrRangeDesignator {
3367    /// Location of the first index expression within the designated
3368    /// initializer expression's list of subexpressions.
3369    unsigned Index;
3370    /// The location of the '[' starting the array range designator.
3371    unsigned LBracketLoc;
3372    /// The location of the ellipsis separating the start and end
3373    /// indices. Only valid for GNU array-range designators.
3374    unsigned EllipsisLoc;
3375    /// The location of the ']' terminating the array range designator.
3376    unsigned RBracketLoc;
3377  };
3378
3379  /// @brief Represents a single C99 designator.
3380  ///
3381  /// @todo This class is infuriatingly similar to clang::Designator,
3382  /// but minor differences (storing indices vs. storing pointers)
3383  /// keep us from reusing it. Try harder, later, to rectify these
3384  /// differences.
3385  class Designator {
3386    /// @brief The kind of designator this describes.
3387    enum {
3388      FieldDesignator,
3389      ArrayDesignator,
3390      ArrayRangeDesignator
3391    } Kind;
3392
3393    union {
3394      /// A field designator, e.g., ".x".
3395      struct FieldDesignator Field;
3396      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3397      struct ArrayOrRangeDesignator ArrayOrRange;
3398    };
3399    friend class DesignatedInitExpr;
3400
3401  public:
3402    Designator() {}
3403
3404    /// @brief Initializes a field designator.
3405    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3406               SourceLocation FieldLoc)
3407      : Kind(FieldDesignator) {
3408      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3409      Field.DotLoc = DotLoc.getRawEncoding();
3410      Field.FieldLoc = FieldLoc.getRawEncoding();
3411    }
3412
3413    /// @brief Initializes an array designator.
3414    Designator(unsigned Index, SourceLocation LBracketLoc,
3415               SourceLocation RBracketLoc)
3416      : Kind(ArrayDesignator) {
3417      ArrayOrRange.Index = Index;
3418      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3419      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3420      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3421    }
3422
3423    /// @brief Initializes a GNU array-range designator.
3424    Designator(unsigned Index, SourceLocation LBracketLoc,
3425               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3426      : Kind(ArrayRangeDesignator) {
3427      ArrayOrRange.Index = Index;
3428      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3429      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3430      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3431    }
3432
3433    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3434    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3435    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3436
3437    IdentifierInfo * getFieldName();
3438
3439    FieldDecl *getField() {
3440      assert(Kind == FieldDesignator && "Only valid on a field designator");
3441      if (Field.NameOrField & 0x01)
3442        return 0;
3443      else
3444        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3445    }
3446
3447    void setField(FieldDecl *FD) {
3448      assert(Kind == FieldDesignator && "Only valid on a field designator");
3449      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3450    }
3451
3452    SourceLocation getDotLoc() const {
3453      assert(Kind == FieldDesignator && "Only valid on a field designator");
3454      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3455    }
3456
3457    SourceLocation getFieldLoc() const {
3458      assert(Kind == FieldDesignator && "Only valid on a field designator");
3459      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3460    }
3461
3462    SourceLocation getLBracketLoc() const {
3463      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3464             "Only valid on an array or array-range designator");
3465      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3466    }
3467
3468    SourceLocation getRBracketLoc() const {
3469      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3470             "Only valid on an array or array-range designator");
3471      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3472    }
3473
3474    SourceLocation getEllipsisLoc() const {
3475      assert(Kind == ArrayRangeDesignator &&
3476             "Only valid on an array-range designator");
3477      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3478    }
3479
3480    unsigned getFirstExprIndex() const {
3481      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3482             "Only valid on an array or array-range designator");
3483      return ArrayOrRange.Index;
3484    }
3485
3486    SourceLocation getStartLocation() const {
3487      if (Kind == FieldDesignator)
3488        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3489      else
3490        return getLBracketLoc();
3491    }
3492  };
3493
3494  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3495                                    unsigned NumDesignators,
3496                                    Expr **IndexExprs, unsigned NumIndexExprs,
3497                                    SourceLocation EqualOrColonLoc,
3498                                    bool GNUSyntax, Expr *Init);
3499
3500  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3501
3502  /// @brief Returns the number of designators in this initializer.
3503  unsigned size() const { return NumDesignators; }
3504
3505  // Iterator access to the designators.
3506  typedef Designator* designators_iterator;
3507  designators_iterator designators_begin() { return Designators; }
3508  designators_iterator designators_end() {
3509    return Designators + NumDesignators;
3510  }
3511
3512  typedef std::reverse_iterator<designators_iterator>
3513          reverse_designators_iterator;
3514  reverse_designators_iterator designators_rbegin() {
3515    return reverse_designators_iterator(designators_end());
3516  }
3517  reverse_designators_iterator designators_rend() {
3518    return reverse_designators_iterator(designators_begin());
3519  }
3520
3521  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3522
3523  void setDesignators(ASTContext &C, const Designator *Desigs,
3524                      unsigned NumDesigs);
3525
3526  Expr *getArrayIndex(const Designator& D);
3527  Expr *getArrayRangeStart(const Designator& D);
3528  Expr *getArrayRangeEnd(const Designator& D);
3529
3530  /// @brief Retrieve the location of the '=' that precedes the
3531  /// initializer value itself, if present.
3532  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3533  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3534
3535  /// @brief Determines whether this designated initializer used the
3536  /// deprecated GNU syntax for designated initializers.
3537  bool usesGNUSyntax() const { return GNUSyntax; }
3538  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3539
3540  /// @brief Retrieve the initializer value.
3541  Expr *getInit() const {
3542    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3543  }
3544
3545  void setInit(Expr *init) {
3546    *child_begin() = init;
3547  }
3548
3549  /// \brief Retrieve the total number of subexpressions in this
3550  /// designated initializer expression, including the actual
3551  /// initialized value and any expressions that occur within array
3552  /// and array-range designators.
3553  unsigned getNumSubExprs() const { return NumSubExprs; }
3554
3555  Expr *getSubExpr(unsigned Idx) {
3556    assert(Idx < NumSubExprs && "Subscript out of range");
3557    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3558    Ptr += sizeof(DesignatedInitExpr);
3559    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3560  }
3561
3562  void setSubExpr(unsigned Idx, Expr *E) {
3563    assert(Idx < NumSubExprs && "Subscript out of range");
3564    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3565    Ptr += sizeof(DesignatedInitExpr);
3566    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3567  }
3568
3569  /// \brief Replaces the designator at index @p Idx with the series
3570  /// of designators in [First, Last).
3571  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3572                        const Designator *Last);
3573
3574  SourceRange getSourceRange() const;
3575
3576  static bool classof(const Stmt *T) {
3577    return T->getStmtClass() == DesignatedInitExprClass;
3578  }
3579  static bool classof(const DesignatedInitExpr *) { return true; }
3580
3581  // Iterators
3582  child_range children() {
3583    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3584    return child_range(begin, begin + NumSubExprs);
3585  }
3586};
3587
3588/// \brief Represents an implicitly-generated value initialization of
3589/// an object of a given type.
3590///
3591/// Implicit value initializations occur within semantic initializer
3592/// list expressions (InitListExpr) as placeholders for subobject
3593/// initializations not explicitly specified by the user.
3594///
3595/// \see InitListExpr
3596class ImplicitValueInitExpr : public Expr {
3597public:
3598  explicit ImplicitValueInitExpr(QualType ty)
3599    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3600           false, false, false) { }
3601
3602  /// \brief Construct an empty implicit value initialization.
3603  explicit ImplicitValueInitExpr(EmptyShell Empty)
3604    : Expr(ImplicitValueInitExprClass, Empty) { }
3605
3606  static bool classof(const Stmt *T) {
3607    return T->getStmtClass() == ImplicitValueInitExprClass;
3608  }
3609  static bool classof(const ImplicitValueInitExpr *) { return true; }
3610
3611  SourceRange getSourceRange() const {
3612    return SourceRange();
3613  }
3614
3615  // Iterators
3616  child_range children() { return child_range(); }
3617};
3618
3619
3620class ParenListExpr : public Expr {
3621  Stmt **Exprs;
3622  unsigned NumExprs;
3623  SourceLocation LParenLoc, RParenLoc;
3624
3625public:
3626  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3627                unsigned numexprs, SourceLocation rparenloc);
3628
3629  /// \brief Build an empty paren list.
3630  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3631
3632  unsigned getNumExprs() const { return NumExprs; }
3633
3634  const Expr* getExpr(unsigned Init) const {
3635    assert(Init < getNumExprs() && "Initializer access out of range!");
3636    return cast_or_null<Expr>(Exprs[Init]);
3637  }
3638
3639  Expr* getExpr(unsigned Init) {
3640    assert(Init < getNumExprs() && "Initializer access out of range!");
3641    return cast_or_null<Expr>(Exprs[Init]);
3642  }
3643
3644  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3645
3646  SourceLocation getLParenLoc() const { return LParenLoc; }
3647  SourceLocation getRParenLoc() const { return RParenLoc; }
3648
3649  SourceRange getSourceRange() const {
3650    return SourceRange(LParenLoc, RParenLoc);
3651  }
3652  static bool classof(const Stmt *T) {
3653    return T->getStmtClass() == ParenListExprClass;
3654  }
3655  static bool classof(const ParenListExpr *) { return true; }
3656
3657  // Iterators
3658  child_range children() {
3659    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3660  }
3661
3662  friend class ASTStmtReader;
3663  friend class ASTStmtWriter;
3664};
3665
3666
3667//===----------------------------------------------------------------------===//
3668// Clang Extensions
3669//===----------------------------------------------------------------------===//
3670
3671
3672/// ExtVectorElementExpr - This represents access to specific elements of a
3673/// vector, and may occur on the left hand side or right hand side.  For example
3674/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3675///
3676/// Note that the base may have either vector or pointer to vector type, just
3677/// like a struct field reference.
3678///
3679class ExtVectorElementExpr : public Expr {
3680  Stmt *Base;
3681  IdentifierInfo *Accessor;
3682  SourceLocation AccessorLoc;
3683public:
3684  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3685                       IdentifierInfo &accessor, SourceLocation loc)
3686    : Expr(ExtVectorElementExprClass, ty, VK,
3687           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3688           base->isTypeDependent(), base->isValueDependent(),
3689           base->containsUnexpandedParameterPack()),
3690      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3691
3692  /// \brief Build an empty vector element expression.
3693  explicit ExtVectorElementExpr(EmptyShell Empty)
3694    : Expr(ExtVectorElementExprClass, Empty) { }
3695
3696  const Expr *getBase() const { return cast<Expr>(Base); }
3697  Expr *getBase() { return cast<Expr>(Base); }
3698  void setBase(Expr *E) { Base = E; }
3699
3700  IdentifierInfo &getAccessor() const { return *Accessor; }
3701  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3702
3703  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3704  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3705
3706  /// getNumElements - Get the number of components being selected.
3707  unsigned getNumElements() const;
3708
3709  /// containsDuplicateElements - Return true if any element access is
3710  /// repeated.
3711  bool containsDuplicateElements() const;
3712
3713  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3714  /// aggregate Constant of ConstantInt(s).
3715  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3716
3717  SourceRange getSourceRange() const {
3718    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3719  }
3720
3721  /// isArrow - Return true if the base expression is a pointer to vector,
3722  /// return false if the base expression is a vector.
3723  bool isArrow() const;
3724
3725  static bool classof(const Stmt *T) {
3726    return T->getStmtClass() == ExtVectorElementExprClass;
3727  }
3728  static bool classof(const ExtVectorElementExpr *) { return true; }
3729
3730  // Iterators
3731  child_range children() { return child_range(&Base, &Base+1); }
3732};
3733
3734
3735/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3736/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3737class BlockExpr : public Expr {
3738protected:
3739  BlockDecl *TheBlock;
3740public:
3741  BlockExpr(BlockDecl *BD, QualType ty)
3742    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3743           ty->isDependentType(), false, false),
3744      TheBlock(BD) {}
3745
3746  /// \brief Build an empty block expression.
3747  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3748
3749  const BlockDecl *getBlockDecl() const { return TheBlock; }
3750  BlockDecl *getBlockDecl() { return TheBlock; }
3751  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3752
3753  // Convenience functions for probing the underlying BlockDecl.
3754  SourceLocation getCaretLocation() const;
3755  const Stmt *getBody() const;
3756  Stmt *getBody();
3757
3758  SourceRange getSourceRange() const {
3759    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3760  }
3761
3762  /// getFunctionType - Return the underlying function type for this block.
3763  const FunctionType *getFunctionType() const;
3764
3765  static bool classof(const Stmt *T) {
3766    return T->getStmtClass() == BlockExprClass;
3767  }
3768  static bool classof(const BlockExpr *) { return true; }
3769
3770  // Iterators
3771  child_range children() { return child_range(); }
3772};
3773
3774/// BlockDeclRefExpr - A reference to a local variable declared in an
3775/// enclosing scope.
3776class BlockDeclRefExpr : public Expr {
3777  VarDecl *D;
3778  SourceLocation Loc;
3779  bool IsByRef : 1;
3780  bool ConstQualAdded : 1;
3781public:
3782  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3783                   SourceLocation l, bool ByRef, bool constAdded = false);
3784
3785  // \brief Build an empty reference to a declared variable in a
3786  // block.
3787  explicit BlockDeclRefExpr(EmptyShell Empty)
3788    : Expr(BlockDeclRefExprClass, Empty) { }
3789
3790  VarDecl *getDecl() { return D; }
3791  const VarDecl *getDecl() const { return D; }
3792  void setDecl(VarDecl *VD) { D = VD; }
3793
3794  SourceLocation getLocation() const { return Loc; }
3795  void setLocation(SourceLocation L) { Loc = L; }
3796
3797  SourceRange getSourceRange() const { return SourceRange(Loc); }
3798
3799  bool isByRef() const { return IsByRef; }
3800  void setByRef(bool BR) { IsByRef = BR; }
3801
3802  bool isConstQualAdded() const { return ConstQualAdded; }
3803  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3804
3805  static bool classof(const Stmt *T) {
3806    return T->getStmtClass() == BlockDeclRefExprClass;
3807  }
3808  static bool classof(const BlockDeclRefExpr *) { return true; }
3809
3810  // Iterators
3811  child_range children() { return child_range(); }
3812};
3813
3814}  // end namespace clang
3815
3816#endif
3817