Expr.h revision 0840f2378e9b5764755c5dffd27d7878c7606a0c
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include <cctype>
32
33namespace clang {
34  class ASTContext;
35  class APValue;
36  class Decl;
37  class IdentifierInfo;
38  class ParmVarDecl;
39  class NamedDecl;
40  class ValueDecl;
41  class BlockDecl;
42  class CXXBaseSpecifier;
43  class CXXOperatorCallExpr;
44  class CXXMemberCallExpr;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_NotBlockQualified,
240    MLV_ReadonlyProperty,
241    MLV_NoSetterProperty,
242    MLV_MemberFunction,
243    MLV_SubObjCPropertySetting,
244    MLV_InvalidMessageExpression,
245    MLV_ClassTemporary
246  };
247  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
248                                              SourceLocation *Loc = 0) const;
249
250  /// \brief The return type of classify(). Represents the C++0x expression
251  ///        taxonomy.
252  class Classification {
253  public:
254    /// \brief The various classification results. Most of these mean prvalue.
255    enum Kinds {
256      CL_LValue,
257      CL_XValue,
258      CL_Function, // Functions cannot be lvalues in C.
259      CL_Void, // Void cannot be an lvalue in C.
260      CL_AddressableVoid, // Void expression whose address can be taken in C.
261      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
262      CL_MemberFunction, // An expression referring to a member function
263      CL_SubObjCPropertySetting,
264      CL_ClassTemporary, // A prvalue of class type
265      CL_ObjCMessageRValue, // ObjC message is an rvalue
266      CL_PRValue // A prvalue for any other reason, of any other type
267    };
268    /// \brief The results of modification testing.
269    enum ModifiableType {
270      CM_Untested, // testModifiable was false.
271      CM_Modifiable,
272      CM_RValue, // Not modifiable because it's an rvalue
273      CM_Function, // Not modifiable because it's a function; C++ only
274      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
275      CM_NotBlockQualified, // Not captured in the closure
276      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
277      CM_ConstQualified,
278      CM_ArrayType,
279      CM_IncompleteType
280    };
281
282  private:
283    friend class Expr;
284
285    unsigned short Kind;
286    unsigned short Modifiable;
287
288    explicit Classification(Kinds k, ModifiableType m)
289      : Kind(k), Modifiable(m)
290    {}
291
292  public:
293    Classification() {}
294
295    Kinds getKind() const { return static_cast<Kinds>(Kind); }
296    ModifiableType getModifiable() const {
297      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
298      return static_cast<ModifiableType>(Modifiable);
299    }
300    bool isLValue() const { return Kind == CL_LValue; }
301    bool isXValue() const { return Kind == CL_XValue; }
302    bool isGLValue() const { return Kind <= CL_XValue; }
303    bool isPRValue() const { return Kind >= CL_Function; }
304    bool isRValue() const { return Kind >= CL_XValue; }
305    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
306
307    /// \brief Create a simple, modifiably lvalue
308    static Classification makeSimpleLValue() {
309      return Classification(CL_LValue, CM_Modifiable);
310    }
311
312  };
313  /// \brief Classify - Classify this expression according to the C++0x
314  ///        expression taxonomy.
315  ///
316  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
317  /// old lvalue vs rvalue. This function determines the type of expression this
318  /// is. There are three expression types:
319  /// - lvalues are classical lvalues as in C++03.
320  /// - prvalues are equivalent to rvalues in C++03.
321  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
322  ///   function returning an rvalue reference.
323  /// lvalues and xvalues are collectively referred to as glvalues, while
324  /// prvalues and xvalues together form rvalues.
325  Classification Classify(ASTContext &Ctx) const {
326    return ClassifyImpl(Ctx, 0);
327  }
328
329  /// \brief ClassifyModifiable - Classify this expression according to the
330  ///        C++0x expression taxonomy, and see if it is valid on the left side
331  ///        of an assignment.
332  ///
333  /// This function extends classify in that it also tests whether the
334  /// expression is modifiable (C99 6.3.2.1p1).
335  /// \param Loc A source location that might be filled with a relevant location
336  ///            if the expression is not modifiable.
337  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
338    return ClassifyImpl(Ctx, &Loc);
339  }
340
341  /// getValueKindForType - Given a formal return or parameter type,
342  /// give its value kind.
343  static ExprValueKind getValueKindForType(QualType T) {
344    if (const ReferenceType *RT = T->getAs<ReferenceType>())
345      return (isa<LValueReferenceType>(RT)
346                ? VK_LValue
347                : (RT->getPointeeType()->isFunctionType()
348                     ? VK_LValue : VK_XValue));
349    return VK_RValue;
350  }
351
352  /// getValueKind - The value kind that this expression produces.
353  ExprValueKind getValueKind() const {
354    return static_cast<ExprValueKind>(ExprBits.ValueKind);
355  }
356
357  /// getObjectKind - The object kind that this expression produces.
358  /// Object kinds are meaningful only for expressions that yield an
359  /// l-value or x-value.
360  ExprObjectKind getObjectKind() const {
361    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
362  }
363
364  bool isOrdinaryOrBitFieldObject() const {
365    ExprObjectKind OK = getObjectKind();
366    return (OK == OK_Ordinary || OK == OK_BitField);
367  }
368
369  /// setValueKind - Set the value kind produced by this expression.
370  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
371
372  /// setObjectKind - Set the object kind produced by this expression.
373  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
374
375private:
376  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
377
378public:
379
380  /// \brief If this expression refers to a bit-field, retrieve the
381  /// declaration of that bit-field.
382  FieldDecl *getBitField();
383
384  const FieldDecl *getBitField() const {
385    return const_cast<Expr*>(this)->getBitField();
386  }
387
388  /// \brief If this expression is an l-value for an Objective C
389  /// property, find the underlying property reference expression.
390  const ObjCPropertyRefExpr *getObjCProperty() const;
391
392  /// \brief Returns whether this expression refers to a vector element.
393  bool refersToVectorElement() const;
394
395  /// \brief Returns whether this expression has a placeholder type.
396  bool hasPlaceholderType() const {
397    return getType()->isPlaceholderType();
398  }
399
400  /// \brief Returns whether this expression has a specific placeholder type.
401  bool hasPlaceholderType(BuiltinType::Kind K) const {
402    assert(BuiltinType::isPlaceholderTypeKind(K));
403    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
404      return BT->getKind() == K;
405    return false;
406  }
407
408  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
409  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
410  /// but also int expressions which are produced by things like comparisons in
411  /// C.
412  bool isKnownToHaveBooleanValue() const;
413
414  /// isIntegerConstantExpr - Return true if this expression is a valid integer
415  /// constant expression, and, if so, return its value in Result.  If not a
416  /// valid i-c-e, return false and fill in Loc (if specified) with the location
417  /// of the invalid expression.
418  ///
419  /// Note: This does not perform the implicit conversions required by C++11
420  /// [expr.const]p5.
421  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
422                             SourceLocation *Loc = 0,
423                             bool isEvaluated = true) const;
424  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
425
426  /// isCXX98IntegralConstantExpr - Return true if this expression is an
427  /// integral constant expression in C++98. Can only be used in C++.
428  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
429
430  /// isCXX11ConstantExpr - Return true if this expression is a constant
431  /// expression in C++11. Can only be used in C++.
432  ///
433  /// Note: This does not perform the implicit conversions required by C++11
434  /// [expr.const]p5.
435  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
436                           SourceLocation *Loc = 0) const;
437
438  /// isPotentialConstantExpr - Return true if this function's definition
439  /// might be usable in a constant expression in C++11, if it were marked
440  /// constexpr. Return false if the function can never produce a constant
441  /// expression, along with diagnostics describing why not.
442  static bool isPotentialConstantExpr(const FunctionDecl *FD,
443                                      llvm::SmallVectorImpl<
444                                        PartialDiagnosticAt> &Diags);
445
446  /// isConstantInitializer - Returns true if this expression can be emitted to
447  /// IR as a constant, and thus can be used as a constant initializer in C.
448  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
449
450  /// EvalStatus is a struct with detailed info about an evaluation in progress.
451  struct EvalStatus {
452    /// HasSideEffects - Whether the evaluated expression has side effects.
453    /// For example, (f() && 0) can be folded, but it still has side effects.
454    bool HasSideEffects;
455
456    /// Diag - If this is non-null, it will be filled in with a stack of notes
457    /// indicating why evaluation failed (or why it failed to produce a constant
458    /// expression).
459    /// If the expression is unfoldable, the notes will indicate why it's not
460    /// foldable. If the expression is foldable, but not a constant expression,
461    /// the notes will describes why it isn't a constant expression. If the
462    /// expression *is* a constant expression, no notes will be produced.
463    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
464
465    EvalStatus() : HasSideEffects(false), Diag(0) {}
466
467    // hasSideEffects - Return true if the evaluated expression has
468    // side effects.
469    bool hasSideEffects() const {
470      return HasSideEffects;
471    }
472  };
473
474  /// EvalResult is a struct with detailed info about an evaluated expression.
475  struct EvalResult : EvalStatus {
476    /// Val - This is the value the expression can be folded to.
477    APValue Val;
478
479    // isGlobalLValue - Return true if the evaluated lvalue expression
480    // is global.
481    bool isGlobalLValue() const;
482  };
483
484  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
485  /// an rvalue using any crazy technique (that has nothing to do with language
486  /// standards) that we want to, even if the expression has side-effects. If
487  /// this function returns true, it returns the folded constant in Result. If
488  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
489  /// applied.
490  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
491
492  /// EvaluateAsBooleanCondition - Return true if this is a constant
493  /// which we we can fold and convert to a boolean condition using
494  /// any crazy technique that we want to, even if the expression has
495  /// side-effects.
496  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
497
498  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
499
500  /// EvaluateAsInt - Return true if this is a constant which we can fold and
501  /// convert to an integer, using any crazy technique that we want to.
502  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
503                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
504
505  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
506  /// constant folded without side-effects, but discard the result.
507  bool isEvaluatable(const ASTContext &Ctx) const;
508
509  /// HasSideEffects - This routine returns true for all those expressions
510  /// which must be evaluated each time and must not be optimized away
511  /// or evaluated at compile time. Example is a function call, volatile
512  /// variable read.
513  bool HasSideEffects(const ASTContext &Ctx) const;
514
515  /// \brief Determine whether this expression involves a call to any function
516  /// that is not trivial.
517  bool hasNonTrivialCall(ASTContext &Ctx);
518
519  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
520  /// integer. This must be called on an expression that constant folds to an
521  /// integer.
522  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
523
524  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
525  /// lvalue with link time known address, with no side-effects.
526  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
527
528  /// EvaluateAsInitializer - Evaluate an expression as if it were the
529  /// initializer of the given declaration. Returns true if the initializer
530  /// can be folded to a constant, and produces any relevant notes. In C++11,
531  /// notes will be produced if the expression is not a constant expression.
532  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
533                             const VarDecl *VD,
534                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
535
536  /// \brief Enumeration used to describe the kind of Null pointer constant
537  /// returned from \c isNullPointerConstant().
538  enum NullPointerConstantKind {
539    /// \brief Expression is not a Null pointer constant.
540    NPCK_NotNull = 0,
541
542    /// \brief Expression is a Null pointer constant built from a zero integer.
543    NPCK_ZeroInteger,
544
545    /// \brief Expression is a C++0X nullptr.
546    NPCK_CXX0X_nullptr,
547
548    /// \brief Expression is a GNU-style __null constant.
549    NPCK_GNUNull
550  };
551
552  /// \brief Enumeration used to describe how \c isNullPointerConstant()
553  /// should cope with value-dependent expressions.
554  enum NullPointerConstantValueDependence {
555    /// \brief Specifies that the expression should never be value-dependent.
556    NPC_NeverValueDependent = 0,
557
558    /// \brief Specifies that a value-dependent expression of integral or
559    /// dependent type should be considered a null pointer constant.
560    NPC_ValueDependentIsNull,
561
562    /// \brief Specifies that a value-dependent expression should be considered
563    /// to never be a null pointer constant.
564    NPC_ValueDependentIsNotNull
565  };
566
567  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
568  /// a Null pointer constant. The return value can further distinguish the
569  /// kind of NULL pointer constant that was detected.
570  NullPointerConstantKind isNullPointerConstant(
571      ASTContext &Ctx,
572      NullPointerConstantValueDependence NPC) const;
573
574  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
575  /// write barrier.
576  bool isOBJCGCCandidate(ASTContext &Ctx) const;
577
578  /// \brief Returns true if this expression is a bound member function.
579  bool isBoundMemberFunction(ASTContext &Ctx) const;
580
581  /// \brief Given an expression of bound-member type, find the type
582  /// of the member.  Returns null if this is an *overloaded* bound
583  /// member expression.
584  static QualType findBoundMemberType(const Expr *expr);
585
586  /// \brief Result type of CanThrow().
587  enum CanThrowResult {
588    CT_Cannot,
589    CT_Dependent,
590    CT_Can
591  };
592  /// \brief Test if this expression, if evaluated, might throw, according to
593  ///        the rules of C++ [expr.unary.noexcept].
594  CanThrowResult CanThrow(ASTContext &C) const;
595
596  /// IgnoreImpCasts - Skip past any implicit casts which might
597  /// surround this expression.  Only skips ImplicitCastExprs.
598  Expr *IgnoreImpCasts();
599
600  /// IgnoreImplicit - Skip past any implicit AST nodes which might
601  /// surround this expression.
602  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
603
604  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
605  ///  its subexpression.  If that subexpression is also a ParenExpr,
606  ///  then this method recursively returns its subexpression, and so forth.
607  ///  Otherwise, the method returns the current Expr.
608  Expr *IgnoreParens();
609
610  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
611  /// or CastExprs, returning their operand.
612  Expr *IgnoreParenCasts();
613
614  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
615  /// any ParenExpr or ImplicitCastExprs, returning their operand.
616  Expr *IgnoreParenImpCasts();
617
618  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
619  /// call to a conversion operator, return the argument.
620  Expr *IgnoreConversionOperator();
621
622  const Expr *IgnoreConversionOperator() const {
623    return const_cast<Expr*>(this)->IgnoreConversionOperator();
624  }
625
626  const Expr *IgnoreParenImpCasts() const {
627    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
628  }
629
630  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
631  /// CastExprs that represent lvalue casts, returning their operand.
632  Expr *IgnoreParenLValueCasts();
633
634  const Expr *IgnoreParenLValueCasts() const {
635    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
636  }
637
638  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
639  /// value (including ptr->int casts of the same size).  Strip off any
640  /// ParenExpr or CastExprs, returning their operand.
641  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
642
643  /// \brief Determine whether this expression is a default function argument.
644  ///
645  /// Default arguments are implicitly generated in the abstract syntax tree
646  /// by semantic analysis for function calls, object constructions, etc. in
647  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
648  /// this routine also looks through any implicit casts to determine whether
649  /// the expression is a default argument.
650  bool isDefaultArgument() const;
651
652  /// \brief Determine whether the result of this expression is a
653  /// temporary object of the given class type.
654  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
655
656  /// \brief Whether this expression is an implicit reference to 'this' in C++.
657  bool isImplicitCXXThis() const;
658
659  const Expr *IgnoreImpCasts() const {
660    return const_cast<Expr*>(this)->IgnoreImpCasts();
661  }
662  const Expr *IgnoreParens() const {
663    return const_cast<Expr*>(this)->IgnoreParens();
664  }
665  const Expr *IgnoreParenCasts() const {
666    return const_cast<Expr*>(this)->IgnoreParenCasts();
667  }
668  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
669    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
670  }
671
672  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
673
674  static bool classof(const Stmt *T) {
675    return T->getStmtClass() >= firstExprConstant &&
676           T->getStmtClass() <= lastExprConstant;
677  }
678  static bool classof(const Expr *) { return true; }
679};
680
681
682//===----------------------------------------------------------------------===//
683// Primary Expressions.
684//===----------------------------------------------------------------------===//
685
686/// OpaqueValueExpr - An expression referring to an opaque object of a
687/// fixed type and value class.  These don't correspond to concrete
688/// syntax; instead they're used to express operations (usually copy
689/// operations) on values whose source is generally obvious from
690/// context.
691class OpaqueValueExpr : public Expr {
692  friend class ASTStmtReader;
693  Expr *SourceExpr;
694  SourceLocation Loc;
695
696public:
697  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
698                  ExprObjectKind OK = OK_Ordinary,
699                  Expr *SourceExpr = 0)
700    : Expr(OpaqueValueExprClass, T, VK, OK,
701           T->isDependentType(),
702           T->isDependentType() ||
703           (SourceExpr && SourceExpr->isValueDependent()),
704           T->isInstantiationDependentType(),
705           false),
706      SourceExpr(SourceExpr), Loc(Loc) {
707  }
708
709  /// Given an expression which invokes a copy constructor --- i.e.  a
710  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
711  /// find the OpaqueValueExpr that's the source of the construction.
712  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
713
714  explicit OpaqueValueExpr(EmptyShell Empty)
715    : Expr(OpaqueValueExprClass, Empty) { }
716
717  /// \brief Retrieve the location of this expression.
718  SourceLocation getLocation() const { return Loc; }
719
720  SourceRange getSourceRange() const {
721    if (SourceExpr) return SourceExpr->getSourceRange();
722    return Loc;
723  }
724  SourceLocation getExprLoc() const {
725    if (SourceExpr) return SourceExpr->getExprLoc();
726    return Loc;
727  }
728
729  child_range children() { return child_range(); }
730
731  /// The source expression of an opaque value expression is the
732  /// expression which originally generated the value.  This is
733  /// provided as a convenience for analyses that don't wish to
734  /// precisely model the execution behavior of the program.
735  ///
736  /// The source expression is typically set when building the
737  /// expression which binds the opaque value expression in the first
738  /// place.
739  Expr *getSourceExpr() const { return SourceExpr; }
740
741  static bool classof(const Stmt *T) {
742    return T->getStmtClass() == OpaqueValueExprClass;
743  }
744  static bool classof(const OpaqueValueExpr *) { return true; }
745};
746
747/// \brief A reference to a declared variable, function, enum, etc.
748/// [C99 6.5.1p2]
749///
750/// This encodes all the information about how a declaration is referenced
751/// within an expression.
752///
753/// There are several optional constructs attached to DeclRefExprs only when
754/// they apply in order to conserve memory. These are laid out past the end of
755/// the object, and flags in the DeclRefExprBitfield track whether they exist:
756///
757///   DeclRefExprBits.HasQualifier:
758///       Specifies when this declaration reference expression has a C++
759///       nested-name-specifier.
760///   DeclRefExprBits.HasFoundDecl:
761///       Specifies when this declaration reference expression has a record of
762///       a NamedDecl (different from the referenced ValueDecl) which was found
763///       during name lookup and/or overload resolution.
764///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
765///       Specifies when this declaration reference expression has an explicit
766///       C++ template keyword and/or template argument list.
767class DeclRefExpr : public Expr {
768  /// \brief The declaration that we are referencing.
769  ValueDecl *D;
770
771  /// \brief The location of the declaration name itself.
772  SourceLocation Loc;
773
774  /// \brief Provides source/type location info for the declaration name
775  /// embedded in D.
776  DeclarationNameLoc DNLoc;
777
778  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
779  NestedNameSpecifierLoc &getInternalQualifierLoc() {
780    assert(hasQualifier());
781    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
782  }
783
784  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
785  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
786    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
787  }
788
789  /// \brief Test whether there is a distinct FoundDecl attached to the end of
790  /// this DRE.
791  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
792
793  /// \brief Helper to retrieve the optional NamedDecl through which this
794  /// reference occured.
795  NamedDecl *&getInternalFoundDecl() {
796    assert(hasFoundDecl());
797    if (hasQualifier())
798      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
799    return *reinterpret_cast<NamedDecl **>(this + 1);
800  }
801
802  /// \brief Helper to retrieve the optional NamedDecl through which this
803  /// reference occured.
804  NamedDecl *getInternalFoundDecl() const {
805    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
806  }
807
808  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
809              SourceLocation TemplateKWLoc,
810              ValueDecl *D, const DeclarationNameInfo &NameInfo,
811              NamedDecl *FoundD,
812              const TemplateArgumentListInfo *TemplateArgs,
813              QualType T, ExprValueKind VK);
814
815  /// \brief Construct an empty declaration reference expression.
816  explicit DeclRefExpr(EmptyShell Empty)
817    : Expr(DeclRefExprClass, Empty) { }
818
819  /// \brief Computes the type- and value-dependence flags for this
820  /// declaration reference expression.
821  void computeDependence();
822
823public:
824  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
825              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
826    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
827      D(D), Loc(L), DNLoc(LocInfo) {
828    DeclRefExprBits.HasQualifier = 0;
829    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
830    DeclRefExprBits.HasFoundDecl = 0;
831    DeclRefExprBits.HadMultipleCandidates = 0;
832    computeDependence();
833  }
834
835  static DeclRefExpr *Create(ASTContext &Context,
836                             NestedNameSpecifierLoc QualifierLoc,
837                             SourceLocation TemplateKWLoc,
838                             ValueDecl *D,
839                             SourceLocation NameLoc,
840                             QualType T, ExprValueKind VK,
841                             NamedDecl *FoundD = 0,
842                             const TemplateArgumentListInfo *TemplateArgs = 0);
843
844  static DeclRefExpr *Create(ASTContext &Context,
845                             NestedNameSpecifierLoc QualifierLoc,
846                             SourceLocation TemplateKWLoc,
847                             ValueDecl *D,
848                             const DeclarationNameInfo &NameInfo,
849                             QualType T, ExprValueKind VK,
850                             NamedDecl *FoundD = 0,
851                             const TemplateArgumentListInfo *TemplateArgs = 0);
852
853  /// \brief Construct an empty declaration reference expression.
854  static DeclRefExpr *CreateEmpty(ASTContext &Context,
855                                  bool HasQualifier,
856                                  bool HasFoundDecl,
857                                  bool HasTemplateKWAndArgsInfo,
858                                  unsigned NumTemplateArgs);
859
860  ValueDecl *getDecl() { return D; }
861  const ValueDecl *getDecl() const { return D; }
862  void setDecl(ValueDecl *NewD) { D = NewD; }
863
864  DeclarationNameInfo getNameInfo() const {
865    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
866  }
867
868  SourceLocation getLocation() const { return Loc; }
869  void setLocation(SourceLocation L) { Loc = L; }
870  SourceRange getSourceRange() const;
871
872  /// \brief Determine whether this declaration reference was preceded by a
873  /// C++ nested-name-specifier, e.g., \c N::foo.
874  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
875
876  /// \brief If the name was qualified, retrieves the nested-name-specifier
877  /// that precedes the name. Otherwise, returns NULL.
878  NestedNameSpecifier *getQualifier() const {
879    if (!hasQualifier())
880      return 0;
881
882    return getInternalQualifierLoc().getNestedNameSpecifier();
883  }
884
885  /// \brief If the name was qualified, retrieves the nested-name-specifier
886  /// that precedes the name, with source-location information.
887  NestedNameSpecifierLoc getQualifierLoc() const {
888    if (!hasQualifier())
889      return NestedNameSpecifierLoc();
890
891    return getInternalQualifierLoc();
892  }
893
894  /// \brief Get the NamedDecl through which this reference occured.
895  ///
896  /// This Decl may be different from the ValueDecl actually referred to in the
897  /// presence of using declarations, etc. It always returns non-NULL, and may
898  /// simple return the ValueDecl when appropriate.
899  NamedDecl *getFoundDecl() {
900    return hasFoundDecl() ? getInternalFoundDecl() : D;
901  }
902
903  /// \brief Get the NamedDecl through which this reference occurred.
904  /// See non-const variant.
905  const NamedDecl *getFoundDecl() const {
906    return hasFoundDecl() ? getInternalFoundDecl() : D;
907  }
908
909  bool hasTemplateKWAndArgsInfo() const {
910    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
911  }
912
913  /// \brief Return the optional template keyword and arguments info.
914  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
915    if (!hasTemplateKWAndArgsInfo())
916      return 0;
917
918    if (hasFoundDecl())
919      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
920        &getInternalFoundDecl() + 1);
921
922    if (hasQualifier())
923      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
924        &getInternalQualifierLoc() + 1);
925
926    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
927  }
928
929  /// \brief Return the optional template keyword and arguments info.
930  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
931    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
932  }
933
934  /// \brief Retrieve the location of the template keyword preceding
935  /// this name, if any.
936  SourceLocation getTemplateKeywordLoc() const {
937    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
938    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
939  }
940
941  /// \brief Retrieve the location of the left angle bracket starting the
942  /// explicit template argument list following the name, if any.
943  SourceLocation getLAngleLoc() const {
944    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
945    return getTemplateKWAndArgsInfo()->LAngleLoc;
946  }
947
948  /// \brief Retrieve the location of the right angle bracket ending the
949  /// explicit template argument list following the name, if any.
950  SourceLocation getRAngleLoc() const {
951    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
952    return getTemplateKWAndArgsInfo()->RAngleLoc;
953  }
954
955  /// \brief Determines whether the name in this declaration reference
956  /// was preceded by the template keyword.
957  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
958
959  /// \brief Determines whether this declaration reference was followed by an
960  /// explicit template argument list.
961  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
962
963  /// \brief Retrieve the explicit template argument list that followed the
964  /// member template name.
965  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
966    assert(hasExplicitTemplateArgs());
967    return *getTemplateKWAndArgsInfo();
968  }
969
970  /// \brief Retrieve the explicit template argument list that followed the
971  /// member template name.
972  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
973    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
974  }
975
976  /// \brief Retrieves the optional explicit template arguments.
977  /// This points to the same data as getExplicitTemplateArgs(), but
978  /// returns null if there are no explicit template arguments.
979  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
980    if (!hasExplicitTemplateArgs()) return 0;
981    return &getExplicitTemplateArgs();
982  }
983
984  /// \brief Copies the template arguments (if present) into the given
985  /// structure.
986  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
987    if (hasExplicitTemplateArgs())
988      getExplicitTemplateArgs().copyInto(List);
989  }
990
991  /// \brief Retrieve the template arguments provided as part of this
992  /// template-id.
993  const TemplateArgumentLoc *getTemplateArgs() const {
994    if (!hasExplicitTemplateArgs())
995      return 0;
996
997    return getExplicitTemplateArgs().getTemplateArgs();
998  }
999
1000  /// \brief Retrieve the number of template arguments provided as part of this
1001  /// template-id.
1002  unsigned getNumTemplateArgs() const {
1003    if (!hasExplicitTemplateArgs())
1004      return 0;
1005
1006    return getExplicitTemplateArgs().NumTemplateArgs;
1007  }
1008
1009  /// \brief Returns true if this expression refers to a function that
1010  /// was resolved from an overloaded set having size greater than 1.
1011  bool hadMultipleCandidates() const {
1012    return DeclRefExprBits.HadMultipleCandidates;
1013  }
1014  /// \brief Sets the flag telling whether this expression refers to
1015  /// a function that was resolved from an overloaded set having size
1016  /// greater than 1.
1017  void setHadMultipleCandidates(bool V = true) {
1018    DeclRefExprBits.HadMultipleCandidates = V;
1019  }
1020
1021  static bool classof(const Stmt *T) {
1022    return T->getStmtClass() == DeclRefExprClass;
1023  }
1024  static bool classof(const DeclRefExpr *) { return true; }
1025
1026  // Iterators
1027  child_range children() { return child_range(); }
1028
1029  friend class ASTStmtReader;
1030  friend class ASTStmtWriter;
1031};
1032
1033/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1034class PredefinedExpr : public Expr {
1035public:
1036  enum IdentType {
1037    Func,
1038    Function,
1039    PrettyFunction,
1040    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1041    /// 'virtual' keyword is omitted for virtual member functions.
1042    PrettyFunctionNoVirtual
1043  };
1044
1045private:
1046  SourceLocation Loc;
1047  IdentType Type;
1048public:
1049  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1050    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1051           type->isDependentType(), type->isDependentType(),
1052           type->isInstantiationDependentType(),
1053           /*ContainsUnexpandedParameterPack=*/false),
1054      Loc(l), Type(IT) {}
1055
1056  /// \brief Construct an empty predefined expression.
1057  explicit PredefinedExpr(EmptyShell Empty)
1058    : Expr(PredefinedExprClass, Empty) { }
1059
1060  IdentType getIdentType() const { return Type; }
1061  void setIdentType(IdentType IT) { Type = IT; }
1062
1063  SourceLocation getLocation() const { return Loc; }
1064  void setLocation(SourceLocation L) { Loc = L; }
1065
1066  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1067
1068  SourceRange getSourceRange() const { return SourceRange(Loc); }
1069
1070  static bool classof(const Stmt *T) {
1071    return T->getStmtClass() == PredefinedExprClass;
1072  }
1073  static bool classof(const PredefinedExpr *) { return true; }
1074
1075  // Iterators
1076  child_range children() { return child_range(); }
1077};
1078
1079/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1080/// leaking memory.
1081///
1082/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1083/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1084/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1085/// the APFloat/APInt values will never get freed. APNumericStorage uses
1086/// ASTContext's allocator for memory allocation.
1087class APNumericStorage {
1088  unsigned BitWidth;
1089  union {
1090    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1091    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1092  };
1093
1094  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1095
1096  APNumericStorage(const APNumericStorage&); // do not implement
1097  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1098
1099protected:
1100  APNumericStorage() : BitWidth(0), VAL(0) { }
1101
1102  llvm::APInt getIntValue() const {
1103    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1104    if (NumWords > 1)
1105      return llvm::APInt(BitWidth, NumWords, pVal);
1106    else
1107      return llvm::APInt(BitWidth, VAL);
1108  }
1109  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1110};
1111
1112class APIntStorage : public APNumericStorage {
1113public:
1114  llvm::APInt getValue() const { return getIntValue(); }
1115  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1116};
1117
1118class APFloatStorage : public APNumericStorage {
1119public:
1120  llvm::APFloat getValue(bool IsIEEE) const {
1121    return llvm::APFloat(getIntValue(), IsIEEE);
1122  }
1123  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1124    setIntValue(C, Val.bitcastToAPInt());
1125  }
1126};
1127
1128class IntegerLiteral : public Expr {
1129  APIntStorage Num;
1130  SourceLocation Loc;
1131
1132  /// \brief Construct an empty integer literal.
1133  explicit IntegerLiteral(EmptyShell Empty)
1134    : Expr(IntegerLiteralClass, Empty) { }
1135
1136public:
1137  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1138  // or UnsignedLongLongTy
1139  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1140                 QualType type, SourceLocation l)
1141    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1142           false, false),
1143      Loc(l) {
1144    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1145    assert(V.getBitWidth() == C.getIntWidth(type) &&
1146           "Integer type is not the correct size for constant.");
1147    setValue(C, V);
1148  }
1149
1150  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1151  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1152  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1153  /// \param V - the value that the returned integer literal contains.
1154  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1155                                QualType type, SourceLocation l);
1156  /// \brief Returns a new empty integer literal.
1157  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1158
1159  llvm::APInt getValue() const { return Num.getValue(); }
1160  SourceRange getSourceRange() const { return SourceRange(Loc); }
1161
1162  /// \brief Retrieve the location of the literal.
1163  SourceLocation getLocation() const { return Loc; }
1164
1165  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1166  void setLocation(SourceLocation Location) { Loc = Location; }
1167
1168  static bool classof(const Stmt *T) {
1169    return T->getStmtClass() == IntegerLiteralClass;
1170  }
1171  static bool classof(const IntegerLiteral *) { return true; }
1172
1173  // Iterators
1174  child_range children() { return child_range(); }
1175};
1176
1177class CharacterLiteral : public Expr {
1178public:
1179  enum CharacterKind {
1180    Ascii,
1181    Wide,
1182    UTF16,
1183    UTF32
1184  };
1185
1186private:
1187  unsigned Value;
1188  SourceLocation Loc;
1189  unsigned Kind : 2;
1190public:
1191  // type should be IntTy
1192  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1193                   SourceLocation l)
1194    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1195           false, false),
1196      Value(value), Loc(l), Kind(kind) {
1197  }
1198
1199  /// \brief Construct an empty character literal.
1200  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1201
1202  SourceLocation getLocation() const { return Loc; }
1203  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1204
1205  SourceRange getSourceRange() const { return SourceRange(Loc); }
1206
1207  unsigned getValue() const { return Value; }
1208
1209  void setLocation(SourceLocation Location) { Loc = Location; }
1210  void setKind(CharacterKind kind) { Kind = kind; }
1211  void setValue(unsigned Val) { Value = Val; }
1212
1213  static bool classof(const Stmt *T) {
1214    return T->getStmtClass() == CharacterLiteralClass;
1215  }
1216  static bool classof(const CharacterLiteral *) { return true; }
1217
1218  // Iterators
1219  child_range children() { return child_range(); }
1220};
1221
1222class FloatingLiteral : public Expr {
1223  APFloatStorage Num;
1224  bool IsIEEE : 1; // Distinguishes between PPC128 and IEEE128.
1225  bool IsExact : 1;
1226  SourceLocation Loc;
1227
1228  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1229                  QualType Type, SourceLocation L)
1230    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1231           false, false),
1232      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1233             &llvm::APFloat::IEEEquad),
1234      IsExact(isexact), Loc(L) {
1235    setValue(C, V);
1236  }
1237
1238  /// \brief Construct an empty floating-point literal.
1239  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
1240    : Expr(FloatingLiteralClass, Empty),
1241      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1242             &llvm::APFloat::IEEEquad),
1243      IsExact(false) { }
1244
1245public:
1246  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1247                                 bool isexact, QualType Type, SourceLocation L);
1248  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1249
1250  llvm::APFloat getValue() const { return Num.getValue(IsIEEE); }
1251  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1252    Num.setValue(C, Val);
1253  }
1254
1255  bool isExact() const { return IsExact; }
1256  void setExact(bool E) { IsExact = E; }
1257
1258  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1259  /// double.  Note that this may cause loss of precision, but is useful for
1260  /// debugging dumps, etc.
1261  double getValueAsApproximateDouble() const;
1262
1263  SourceLocation getLocation() const { return Loc; }
1264  void setLocation(SourceLocation L) { Loc = L; }
1265
1266  SourceRange getSourceRange() const { return SourceRange(Loc); }
1267
1268  static bool classof(const Stmt *T) {
1269    return T->getStmtClass() == FloatingLiteralClass;
1270  }
1271  static bool classof(const FloatingLiteral *) { return true; }
1272
1273  // Iterators
1274  child_range children() { return child_range(); }
1275};
1276
1277/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1278/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1279/// IntegerLiteral classes.  Instances of this class always have a Complex type
1280/// whose element type matches the subexpression.
1281///
1282class ImaginaryLiteral : public Expr {
1283  Stmt *Val;
1284public:
1285  ImaginaryLiteral(Expr *val, QualType Ty)
1286    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1287           false, false),
1288      Val(val) {}
1289
1290  /// \brief Build an empty imaginary literal.
1291  explicit ImaginaryLiteral(EmptyShell Empty)
1292    : Expr(ImaginaryLiteralClass, Empty) { }
1293
1294  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1295  Expr *getSubExpr() { return cast<Expr>(Val); }
1296  void setSubExpr(Expr *E) { Val = E; }
1297
1298  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1299  static bool classof(const Stmt *T) {
1300    return T->getStmtClass() == ImaginaryLiteralClass;
1301  }
1302  static bool classof(const ImaginaryLiteral *) { return true; }
1303
1304  // Iterators
1305  child_range children() { return child_range(&Val, &Val+1); }
1306};
1307
1308/// StringLiteral - This represents a string literal expression, e.g. "foo"
1309/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1310/// is NOT null-terminated, and the length of the string is determined by
1311/// calling getByteLength().  The C type for a string is always a
1312/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1313/// not.
1314///
1315/// Note that strings in C can be formed by concatenation of multiple string
1316/// literal pptokens in translation phase #6.  This keeps track of the locations
1317/// of each of these pieces.
1318///
1319/// Strings in C can also be truncated and extended by assigning into arrays,
1320/// e.g. with constructs like:
1321///   char X[2] = "foobar";
1322/// In this case, getByteLength() will return 6, but the string literal will
1323/// have type "char[2]".
1324class StringLiteral : public Expr {
1325public:
1326  enum StringKind {
1327    Ascii,
1328    Wide,
1329    UTF8,
1330    UTF16,
1331    UTF32
1332  };
1333
1334private:
1335  friend class ASTStmtReader;
1336
1337  union {
1338    const char *asChar;
1339    const uint16_t *asUInt16;
1340    const uint32_t *asUInt32;
1341  } StrData;
1342  unsigned Length;
1343  unsigned CharByteWidth : 4;
1344  unsigned Kind : 3;
1345  unsigned IsPascal : 1;
1346  unsigned NumConcatenated;
1347  SourceLocation TokLocs[1];
1348
1349  StringLiteral(QualType Ty) :
1350    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1351         false) {}
1352
1353  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1354
1355public:
1356  /// This is the "fully general" constructor that allows representation of
1357  /// strings formed from multiple concatenated tokens.
1358  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1359                               bool Pascal, QualType Ty,
1360                               const SourceLocation *Loc, unsigned NumStrs);
1361
1362  /// Simple constructor for string literals made from one token.
1363  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1364                               bool Pascal, QualType Ty,
1365                               SourceLocation Loc) {
1366    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1367  }
1368
1369  /// \brief Construct an empty string literal.
1370  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1371
1372  StringRef getString() const {
1373    assert(CharByteWidth==1
1374           && "This function is used in places that assume strings use char");
1375    return StringRef(StrData.asChar, getByteLength());
1376  }
1377
1378  /// Allow clients that need the byte representation, such as ASTWriterStmt
1379  /// ::VisitStringLiteral(), access.
1380  StringRef getBytes() const {
1381    // FIXME: StringRef may not be the right type to use as a result for this.
1382    if (CharByteWidth == 1)
1383      return StringRef(StrData.asChar, getByteLength());
1384    if (CharByteWidth == 4)
1385      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1386                       getByteLength());
1387    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1388    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1389                     getByteLength());
1390  }
1391
1392  uint32_t getCodeUnit(size_t i) const {
1393    assert(i < Length && "out of bounds access");
1394    if (CharByteWidth == 1)
1395      return static_cast<unsigned char>(StrData.asChar[i]);
1396    if (CharByteWidth == 4)
1397      return StrData.asUInt32[i];
1398    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1399    return StrData.asUInt16[i];
1400  }
1401
1402  unsigned getByteLength() const { return CharByteWidth*Length; }
1403  unsigned getLength() const { return Length; }
1404  unsigned getCharByteWidth() const { return CharByteWidth; }
1405
1406  /// \brief Sets the string data to the given string data.
1407  void setString(ASTContext &C, StringRef Str,
1408                 StringKind Kind, bool IsPascal);
1409
1410  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1411
1412
1413  bool isAscii() const { return Kind == Ascii; }
1414  bool isWide() const { return Kind == Wide; }
1415  bool isUTF8() const { return Kind == UTF8; }
1416  bool isUTF16() const { return Kind == UTF16; }
1417  bool isUTF32() const { return Kind == UTF32; }
1418  bool isPascal() const { return IsPascal; }
1419
1420  bool containsNonAsciiOrNull() const {
1421    StringRef Str = getString();
1422    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1423      if (!isascii(Str[i]) || !Str[i])
1424        return true;
1425    return false;
1426  }
1427
1428  /// getNumConcatenated - Get the number of string literal tokens that were
1429  /// concatenated in translation phase #6 to form this string literal.
1430  unsigned getNumConcatenated() const { return NumConcatenated; }
1431
1432  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1433    assert(TokNum < NumConcatenated && "Invalid tok number");
1434    return TokLocs[TokNum];
1435  }
1436  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1437    assert(TokNum < NumConcatenated && "Invalid tok number");
1438    TokLocs[TokNum] = L;
1439  }
1440
1441  /// getLocationOfByte - Return a source location that points to the specified
1442  /// byte of this string literal.
1443  ///
1444  /// Strings are amazingly complex.  They can be formed from multiple tokens
1445  /// and can have escape sequences in them in addition to the usual trigraph
1446  /// and escaped newline business.  This routine handles this complexity.
1447  ///
1448  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1449                                   const LangOptions &Features,
1450                                   const TargetInfo &Target) const;
1451
1452  typedef const SourceLocation *tokloc_iterator;
1453  tokloc_iterator tokloc_begin() const { return TokLocs; }
1454  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1455
1456  SourceRange getSourceRange() const {
1457    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1458  }
1459  static bool classof(const Stmt *T) {
1460    return T->getStmtClass() == StringLiteralClass;
1461  }
1462  static bool classof(const StringLiteral *) { return true; }
1463
1464  // Iterators
1465  child_range children() { return child_range(); }
1466};
1467
1468/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1469/// AST node is only formed if full location information is requested.
1470class ParenExpr : public Expr {
1471  SourceLocation L, R;
1472  Stmt *Val;
1473public:
1474  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1475    : Expr(ParenExprClass, val->getType(),
1476           val->getValueKind(), val->getObjectKind(),
1477           val->isTypeDependent(), val->isValueDependent(),
1478           val->isInstantiationDependent(),
1479           val->containsUnexpandedParameterPack()),
1480      L(l), R(r), Val(val) {}
1481
1482  /// \brief Construct an empty parenthesized expression.
1483  explicit ParenExpr(EmptyShell Empty)
1484    : Expr(ParenExprClass, Empty) { }
1485
1486  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1487  Expr *getSubExpr() { return cast<Expr>(Val); }
1488  void setSubExpr(Expr *E) { Val = E; }
1489
1490  SourceRange getSourceRange() const { return SourceRange(L, R); }
1491
1492  /// \brief Get the location of the left parentheses '('.
1493  SourceLocation getLParen() const { return L; }
1494  void setLParen(SourceLocation Loc) { L = Loc; }
1495
1496  /// \brief Get the location of the right parentheses ')'.
1497  SourceLocation getRParen() const { return R; }
1498  void setRParen(SourceLocation Loc) { R = Loc; }
1499
1500  static bool classof(const Stmt *T) {
1501    return T->getStmtClass() == ParenExprClass;
1502  }
1503  static bool classof(const ParenExpr *) { return true; }
1504
1505  // Iterators
1506  child_range children() { return child_range(&Val, &Val+1); }
1507};
1508
1509
1510/// UnaryOperator - This represents the unary-expression's (except sizeof and
1511/// alignof), the postinc/postdec operators from postfix-expression, and various
1512/// extensions.
1513///
1514/// Notes on various nodes:
1515///
1516/// Real/Imag - These return the real/imag part of a complex operand.  If
1517///   applied to a non-complex value, the former returns its operand and the
1518///   later returns zero in the type of the operand.
1519///
1520class UnaryOperator : public Expr {
1521public:
1522  typedef UnaryOperatorKind Opcode;
1523
1524private:
1525  unsigned Opc : 5;
1526  SourceLocation Loc;
1527  Stmt *Val;
1528public:
1529
1530  UnaryOperator(Expr *input, Opcode opc, QualType type,
1531                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1532    : Expr(UnaryOperatorClass, type, VK, OK,
1533           input->isTypeDependent() || type->isDependentType(),
1534           input->isValueDependent(),
1535           (input->isInstantiationDependent() ||
1536            type->isInstantiationDependentType()),
1537           input->containsUnexpandedParameterPack()),
1538      Opc(opc), Loc(l), Val(input) {}
1539
1540  /// \brief Build an empty unary operator.
1541  explicit UnaryOperator(EmptyShell Empty)
1542    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1543
1544  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1545  void setOpcode(Opcode O) { Opc = O; }
1546
1547  Expr *getSubExpr() const { return cast<Expr>(Val); }
1548  void setSubExpr(Expr *E) { Val = E; }
1549
1550  /// getOperatorLoc - Return the location of the operator.
1551  SourceLocation getOperatorLoc() const { return Loc; }
1552  void setOperatorLoc(SourceLocation L) { Loc = L; }
1553
1554  /// isPostfix - Return true if this is a postfix operation, like x++.
1555  static bool isPostfix(Opcode Op) {
1556    return Op == UO_PostInc || Op == UO_PostDec;
1557  }
1558
1559  /// isPrefix - Return true if this is a prefix operation, like --x.
1560  static bool isPrefix(Opcode Op) {
1561    return Op == UO_PreInc || Op == UO_PreDec;
1562  }
1563
1564  bool isPrefix() const { return isPrefix(getOpcode()); }
1565  bool isPostfix() const { return isPostfix(getOpcode()); }
1566
1567  static bool isIncrementOp(Opcode Op) {
1568    return Op == UO_PreInc || Op == UO_PostInc;
1569  }
1570  bool isIncrementOp() const {
1571    return isIncrementOp(getOpcode());
1572  }
1573
1574  static bool isDecrementOp(Opcode Op) {
1575    return Op == UO_PreDec || Op == UO_PostDec;
1576  }
1577  bool isDecrementOp() const {
1578    return isDecrementOp(getOpcode());
1579  }
1580
1581  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1582  bool isIncrementDecrementOp() const {
1583    return isIncrementDecrementOp(getOpcode());
1584  }
1585
1586  static bool isArithmeticOp(Opcode Op) {
1587    return Op >= UO_Plus && Op <= UO_LNot;
1588  }
1589  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1590
1591  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1592  /// corresponds to, e.g. "sizeof" or "[pre]++"
1593  static const char *getOpcodeStr(Opcode Op);
1594
1595  /// \brief Retrieve the unary opcode that corresponds to the given
1596  /// overloaded operator.
1597  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1598
1599  /// \brief Retrieve the overloaded operator kind that corresponds to
1600  /// the given unary opcode.
1601  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1602
1603  SourceRange getSourceRange() const {
1604    if (isPostfix())
1605      return SourceRange(Val->getLocStart(), Loc);
1606    else
1607      return SourceRange(Loc, Val->getLocEnd());
1608  }
1609  SourceLocation getExprLoc() const { return Loc; }
1610
1611  static bool classof(const Stmt *T) {
1612    return T->getStmtClass() == UnaryOperatorClass;
1613  }
1614  static bool classof(const UnaryOperator *) { return true; }
1615
1616  // Iterators
1617  child_range children() { return child_range(&Val, &Val+1); }
1618};
1619
1620/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1621/// offsetof(record-type, member-designator). For example, given:
1622/// @code
1623/// struct S {
1624///   float f;
1625///   double d;
1626/// };
1627/// struct T {
1628///   int i;
1629///   struct S s[10];
1630/// };
1631/// @endcode
1632/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1633
1634class OffsetOfExpr : public Expr {
1635public:
1636  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1637  class OffsetOfNode {
1638  public:
1639    /// \brief The kind of offsetof node we have.
1640    enum Kind {
1641      /// \brief An index into an array.
1642      Array = 0x00,
1643      /// \brief A field.
1644      Field = 0x01,
1645      /// \brief A field in a dependent type, known only by its name.
1646      Identifier = 0x02,
1647      /// \brief An implicit indirection through a C++ base class, when the
1648      /// field found is in a base class.
1649      Base = 0x03
1650    };
1651
1652  private:
1653    enum { MaskBits = 2, Mask = 0x03 };
1654
1655    /// \brief The source range that covers this part of the designator.
1656    SourceRange Range;
1657
1658    /// \brief The data describing the designator, which comes in three
1659    /// different forms, depending on the lower two bits.
1660    ///   - An unsigned index into the array of Expr*'s stored after this node
1661    ///     in memory, for [constant-expression] designators.
1662    ///   - A FieldDecl*, for references to a known field.
1663    ///   - An IdentifierInfo*, for references to a field with a given name
1664    ///     when the class type is dependent.
1665    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1666    ///     base class.
1667    uintptr_t Data;
1668
1669  public:
1670    /// \brief Create an offsetof node that refers to an array element.
1671    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1672                 SourceLocation RBracketLoc)
1673      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1674
1675    /// \brief Create an offsetof node that refers to a field.
1676    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1677                 SourceLocation NameLoc)
1678      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1679        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1680
1681    /// \brief Create an offsetof node that refers to an identifier.
1682    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1683                 SourceLocation NameLoc)
1684      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1685        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1686
1687    /// \brief Create an offsetof node that refers into a C++ base class.
1688    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1689      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1690
1691    /// \brief Determine what kind of offsetof node this is.
1692    Kind getKind() const {
1693      return static_cast<Kind>(Data & Mask);
1694    }
1695
1696    /// \brief For an array element node, returns the index into the array
1697    /// of expressions.
1698    unsigned getArrayExprIndex() const {
1699      assert(getKind() == Array);
1700      return Data >> 2;
1701    }
1702
1703    /// \brief For a field offsetof node, returns the field.
1704    FieldDecl *getField() const {
1705      assert(getKind() == Field);
1706      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1707    }
1708
1709    /// \brief For a field or identifier offsetof node, returns the name of
1710    /// the field.
1711    IdentifierInfo *getFieldName() const;
1712
1713    /// \brief For a base class node, returns the base specifier.
1714    CXXBaseSpecifier *getBase() const {
1715      assert(getKind() == Base);
1716      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1717    }
1718
1719    /// \brief Retrieve the source range that covers this offsetof node.
1720    ///
1721    /// For an array element node, the source range contains the locations of
1722    /// the square brackets. For a field or identifier node, the source range
1723    /// contains the location of the period (if there is one) and the
1724    /// identifier.
1725    SourceRange getSourceRange() const { return Range; }
1726  };
1727
1728private:
1729
1730  SourceLocation OperatorLoc, RParenLoc;
1731  // Base type;
1732  TypeSourceInfo *TSInfo;
1733  // Number of sub-components (i.e. instances of OffsetOfNode).
1734  unsigned NumComps;
1735  // Number of sub-expressions (i.e. array subscript expressions).
1736  unsigned NumExprs;
1737
1738  OffsetOfExpr(ASTContext &C, QualType type,
1739               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1740               OffsetOfNode* compsPtr, unsigned numComps,
1741               Expr** exprsPtr, unsigned numExprs,
1742               SourceLocation RParenLoc);
1743
1744  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1745    : Expr(OffsetOfExprClass, EmptyShell()),
1746      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1747
1748public:
1749
1750  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1751                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1752                              OffsetOfNode* compsPtr, unsigned numComps,
1753                              Expr** exprsPtr, unsigned numExprs,
1754                              SourceLocation RParenLoc);
1755
1756  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1757                                   unsigned NumComps, unsigned NumExprs);
1758
1759  /// getOperatorLoc - Return the location of the operator.
1760  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1761  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1762
1763  /// \brief Return the location of the right parentheses.
1764  SourceLocation getRParenLoc() const { return RParenLoc; }
1765  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1766
1767  TypeSourceInfo *getTypeSourceInfo() const {
1768    return TSInfo;
1769  }
1770  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1771    TSInfo = tsi;
1772  }
1773
1774  const OffsetOfNode &getComponent(unsigned Idx) const {
1775    assert(Idx < NumComps && "Subscript out of range");
1776    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1777  }
1778
1779  void setComponent(unsigned Idx, OffsetOfNode ON) {
1780    assert(Idx < NumComps && "Subscript out of range");
1781    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1782  }
1783
1784  unsigned getNumComponents() const {
1785    return NumComps;
1786  }
1787
1788  Expr* getIndexExpr(unsigned Idx) {
1789    assert(Idx < NumExprs && "Subscript out of range");
1790    return reinterpret_cast<Expr **>(
1791                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1792  }
1793  const Expr *getIndexExpr(unsigned Idx) const {
1794    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1795  }
1796
1797  void setIndexExpr(unsigned Idx, Expr* E) {
1798    assert(Idx < NumComps && "Subscript out of range");
1799    reinterpret_cast<Expr **>(
1800                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1801  }
1802
1803  unsigned getNumExpressions() const {
1804    return NumExprs;
1805  }
1806
1807  SourceRange getSourceRange() const {
1808    return SourceRange(OperatorLoc, RParenLoc);
1809  }
1810
1811  static bool classof(const Stmt *T) {
1812    return T->getStmtClass() == OffsetOfExprClass;
1813  }
1814
1815  static bool classof(const OffsetOfExpr *) { return true; }
1816
1817  // Iterators
1818  child_range children() {
1819    Stmt **begin =
1820      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1821                               + NumComps);
1822    return child_range(begin, begin + NumExprs);
1823  }
1824};
1825
1826/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1827/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1828/// vec_step (OpenCL 1.1 6.11.12).
1829class UnaryExprOrTypeTraitExpr : public Expr {
1830  unsigned Kind : 2;
1831  bool isType : 1;    // true if operand is a type, false if an expression
1832  union {
1833    TypeSourceInfo *Ty;
1834    Stmt *Ex;
1835  } Argument;
1836  SourceLocation OpLoc, RParenLoc;
1837
1838public:
1839  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1840                           QualType resultType, SourceLocation op,
1841                           SourceLocation rp) :
1842      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1843           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1844           // Value-dependent if the argument is type-dependent.
1845           TInfo->getType()->isDependentType(),
1846           TInfo->getType()->isInstantiationDependentType(),
1847           TInfo->getType()->containsUnexpandedParameterPack()),
1848      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1849    Argument.Ty = TInfo;
1850  }
1851
1852  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1853                           QualType resultType, SourceLocation op,
1854                           SourceLocation rp) :
1855      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1856           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1857           // Value-dependent if the argument is type-dependent.
1858           E->isTypeDependent(),
1859           E->isInstantiationDependent(),
1860           E->containsUnexpandedParameterPack()),
1861      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1862    Argument.Ex = E;
1863  }
1864
1865  /// \brief Construct an empty sizeof/alignof expression.
1866  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1867    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1868
1869  UnaryExprOrTypeTrait getKind() const {
1870    return static_cast<UnaryExprOrTypeTrait>(Kind);
1871  }
1872  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1873
1874  bool isArgumentType() const { return isType; }
1875  QualType getArgumentType() const {
1876    return getArgumentTypeInfo()->getType();
1877  }
1878  TypeSourceInfo *getArgumentTypeInfo() const {
1879    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1880    return Argument.Ty;
1881  }
1882  Expr *getArgumentExpr() {
1883    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1884    return static_cast<Expr*>(Argument.Ex);
1885  }
1886  const Expr *getArgumentExpr() const {
1887    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1888  }
1889
1890  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1891  void setArgument(TypeSourceInfo *TInfo) {
1892    Argument.Ty = TInfo;
1893    isType = true;
1894  }
1895
1896  /// Gets the argument type, or the type of the argument expression, whichever
1897  /// is appropriate.
1898  QualType getTypeOfArgument() const {
1899    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1900  }
1901
1902  SourceLocation getOperatorLoc() const { return OpLoc; }
1903  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1904
1905  SourceLocation getRParenLoc() const { return RParenLoc; }
1906  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1907
1908  SourceRange getSourceRange() const {
1909    return SourceRange(OpLoc, RParenLoc);
1910  }
1911
1912  static bool classof(const Stmt *T) {
1913    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1914  }
1915  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1916
1917  // Iterators
1918  child_range children();
1919};
1920
1921//===----------------------------------------------------------------------===//
1922// Postfix Operators.
1923//===----------------------------------------------------------------------===//
1924
1925/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1926class ArraySubscriptExpr : public Expr {
1927  enum { LHS, RHS, END_EXPR=2 };
1928  Stmt* SubExprs[END_EXPR];
1929  SourceLocation RBracketLoc;
1930public:
1931  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1932                     ExprValueKind VK, ExprObjectKind OK,
1933                     SourceLocation rbracketloc)
1934  : Expr(ArraySubscriptExprClass, t, VK, OK,
1935         lhs->isTypeDependent() || rhs->isTypeDependent(),
1936         lhs->isValueDependent() || rhs->isValueDependent(),
1937         (lhs->isInstantiationDependent() ||
1938          rhs->isInstantiationDependent()),
1939         (lhs->containsUnexpandedParameterPack() ||
1940          rhs->containsUnexpandedParameterPack())),
1941    RBracketLoc(rbracketloc) {
1942    SubExprs[LHS] = lhs;
1943    SubExprs[RHS] = rhs;
1944  }
1945
1946  /// \brief Create an empty array subscript expression.
1947  explicit ArraySubscriptExpr(EmptyShell Shell)
1948    : Expr(ArraySubscriptExprClass, Shell) { }
1949
1950  /// An array access can be written A[4] or 4[A] (both are equivalent).
1951  /// - getBase() and getIdx() always present the normalized view: A[4].
1952  ///    In this case getBase() returns "A" and getIdx() returns "4".
1953  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1954  ///    4[A] getLHS() returns "4".
1955  /// Note: Because vector element access is also written A[4] we must
1956  /// predicate the format conversion in getBase and getIdx only on the
1957  /// the type of the RHS, as it is possible for the LHS to be a vector of
1958  /// integer type
1959  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1960  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1961  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1962
1963  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1964  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1965  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1966
1967  Expr *getBase() {
1968    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1969  }
1970
1971  const Expr *getBase() const {
1972    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1973  }
1974
1975  Expr *getIdx() {
1976    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1977  }
1978
1979  const Expr *getIdx() const {
1980    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1981  }
1982
1983  SourceRange getSourceRange() const {
1984    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1985  }
1986
1987  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1988  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1989
1990  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1991
1992  static bool classof(const Stmt *T) {
1993    return T->getStmtClass() == ArraySubscriptExprClass;
1994  }
1995  static bool classof(const ArraySubscriptExpr *) { return true; }
1996
1997  // Iterators
1998  child_range children() {
1999    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2000  }
2001};
2002
2003
2004/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2005/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2006/// while its subclasses may represent alternative syntax that (semantically)
2007/// results in a function call. For example, CXXOperatorCallExpr is
2008/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2009/// "str1 + str2" to resolve to a function call.
2010class CallExpr : public Expr {
2011  enum { FN=0, PREARGS_START=1 };
2012  Stmt **SubExprs;
2013  unsigned NumArgs;
2014  SourceLocation RParenLoc;
2015
2016protected:
2017  // These versions of the constructor are for derived classes.
2018  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2019           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2020           SourceLocation rparenloc);
2021  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2022
2023  Stmt *getPreArg(unsigned i) {
2024    assert(i < getNumPreArgs() && "Prearg access out of range!");
2025    return SubExprs[PREARGS_START+i];
2026  }
2027  const Stmt *getPreArg(unsigned i) const {
2028    assert(i < getNumPreArgs() && "Prearg access out of range!");
2029    return SubExprs[PREARGS_START+i];
2030  }
2031  void setPreArg(unsigned i, Stmt *PreArg) {
2032    assert(i < getNumPreArgs() && "Prearg access out of range!");
2033    SubExprs[PREARGS_START+i] = PreArg;
2034  }
2035
2036  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2037
2038public:
2039  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2040           ExprValueKind VK, SourceLocation rparenloc);
2041
2042  /// \brief Build an empty call expression.
2043  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2044
2045  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2046  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2047  void setCallee(Expr *F) { SubExprs[FN] = F; }
2048
2049  Decl *getCalleeDecl();
2050  const Decl *getCalleeDecl() const {
2051    return const_cast<CallExpr*>(this)->getCalleeDecl();
2052  }
2053
2054  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2055  FunctionDecl *getDirectCallee();
2056  const FunctionDecl *getDirectCallee() const {
2057    return const_cast<CallExpr*>(this)->getDirectCallee();
2058  }
2059
2060  /// getNumArgs - Return the number of actual arguments to this call.
2061  ///
2062  unsigned getNumArgs() const { return NumArgs; }
2063
2064  /// \brief Retrieve the call arguments.
2065  Expr **getArgs() {
2066    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2067  }
2068  const Expr *const *getArgs() const {
2069    return const_cast<CallExpr*>(this)->getArgs();
2070  }
2071
2072  /// getArg - Return the specified argument.
2073  Expr *getArg(unsigned Arg) {
2074    assert(Arg < NumArgs && "Arg access out of range!");
2075    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2076  }
2077  const Expr *getArg(unsigned Arg) const {
2078    assert(Arg < NumArgs && "Arg access out of range!");
2079    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2080  }
2081
2082  /// setArg - Set the specified argument.
2083  void setArg(unsigned Arg, Expr *ArgExpr) {
2084    assert(Arg < NumArgs && "Arg access out of range!");
2085    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2086  }
2087
2088  /// setNumArgs - This changes the number of arguments present in this call.
2089  /// Any orphaned expressions are deleted by this, and any new operands are set
2090  /// to null.
2091  void setNumArgs(ASTContext& C, unsigned NumArgs);
2092
2093  typedef ExprIterator arg_iterator;
2094  typedef ConstExprIterator const_arg_iterator;
2095
2096  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2097  arg_iterator arg_end() {
2098    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2099  }
2100  const_arg_iterator arg_begin() const {
2101    return SubExprs+PREARGS_START+getNumPreArgs();
2102  }
2103  const_arg_iterator arg_end() const {
2104    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2105  }
2106
2107  /// getNumCommas - Return the number of commas that must have been present in
2108  /// this function call.
2109  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2110
2111  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2112  /// not, return 0.
2113  unsigned isBuiltinCall() const;
2114
2115  /// getCallReturnType - Get the return type of the call expr. This is not
2116  /// always the type of the expr itself, if the return type is a reference
2117  /// type.
2118  QualType getCallReturnType() const;
2119
2120  SourceLocation getRParenLoc() const { return RParenLoc; }
2121  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2122
2123  SourceRange getSourceRange() const;
2124
2125  static bool classof(const Stmt *T) {
2126    return T->getStmtClass() >= firstCallExprConstant &&
2127           T->getStmtClass() <= lastCallExprConstant;
2128  }
2129  static bool classof(const CallExpr *) { return true; }
2130
2131  // Iterators
2132  child_range children() {
2133    return child_range(&SubExprs[0],
2134                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2135  }
2136};
2137
2138/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2139///
2140class MemberExpr : public Expr {
2141  /// Extra data stored in some member expressions.
2142  struct MemberNameQualifier {
2143    /// \brief The nested-name-specifier that qualifies the name, including
2144    /// source-location information.
2145    NestedNameSpecifierLoc QualifierLoc;
2146
2147    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2148    /// name qualifiers.
2149    DeclAccessPair FoundDecl;
2150  };
2151
2152  /// Base - the expression for the base pointer or structure references.  In
2153  /// X.F, this is "X".
2154  Stmt *Base;
2155
2156  /// MemberDecl - This is the decl being referenced by the field/member name.
2157  /// In X.F, this is the decl referenced by F.
2158  ValueDecl *MemberDecl;
2159
2160  /// MemberDNLoc - Provides source/type location info for the
2161  /// declaration name embedded in MemberDecl.
2162  DeclarationNameLoc MemberDNLoc;
2163
2164  /// MemberLoc - This is the location of the member name.
2165  SourceLocation MemberLoc;
2166
2167  /// IsArrow - True if this is "X->F", false if this is "X.F".
2168  bool IsArrow : 1;
2169
2170  /// \brief True if this member expression used a nested-name-specifier to
2171  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2172  /// declaration.  When true, a MemberNameQualifier
2173  /// structure is allocated immediately after the MemberExpr.
2174  bool HasQualifierOrFoundDecl : 1;
2175
2176  /// \brief True if this member expression specified a template keyword
2177  /// and/or a template argument list explicitly, e.g., x->f<int>,
2178  /// x->template f, x->template f<int>.
2179  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2180  /// TemplateArguments (if any) are allocated immediately after
2181  /// the MemberExpr or, if the member expression also has a qualifier,
2182  /// after the MemberNameQualifier structure.
2183  bool HasTemplateKWAndArgsInfo : 1;
2184
2185  /// \brief True if this member expression refers to a method that
2186  /// was resolved from an overloaded set having size greater than 1.
2187  bool HadMultipleCandidates : 1;
2188
2189  /// \brief Retrieve the qualifier that preceded the member name, if any.
2190  MemberNameQualifier *getMemberQualifier() {
2191    assert(HasQualifierOrFoundDecl);
2192    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2193  }
2194
2195  /// \brief Retrieve the qualifier that preceded the member name, if any.
2196  const MemberNameQualifier *getMemberQualifier() const {
2197    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2198  }
2199
2200public:
2201  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2202             const DeclarationNameInfo &NameInfo, QualType ty,
2203             ExprValueKind VK, ExprObjectKind OK)
2204    : Expr(MemberExprClass, ty, VK, OK,
2205           base->isTypeDependent(),
2206           base->isValueDependent(),
2207           base->isInstantiationDependent(),
2208           base->containsUnexpandedParameterPack()),
2209      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2210      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2211      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2212      HadMultipleCandidates(false) {
2213    assert(memberdecl->getDeclName() == NameInfo.getName());
2214  }
2215
2216  // NOTE: this constructor should be used only when it is known that
2217  // the member name can not provide additional syntactic info
2218  // (i.e., source locations for C++ operator names or type source info
2219  // for constructors, destructors and conversion operators).
2220  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2221             SourceLocation l, QualType ty,
2222             ExprValueKind VK, ExprObjectKind OK)
2223    : Expr(MemberExprClass, ty, VK, OK,
2224           base->isTypeDependent(), base->isValueDependent(),
2225           base->isInstantiationDependent(),
2226           base->containsUnexpandedParameterPack()),
2227      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2228      IsArrow(isarrow),
2229      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2230      HadMultipleCandidates(false) {}
2231
2232  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2233                            NestedNameSpecifierLoc QualifierLoc,
2234                            SourceLocation TemplateKWLoc,
2235                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2236                            DeclarationNameInfo MemberNameInfo,
2237                            const TemplateArgumentListInfo *targs,
2238                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2239
2240  void setBase(Expr *E) { Base = E; }
2241  Expr *getBase() const { return cast<Expr>(Base); }
2242
2243  /// \brief Retrieve the member declaration to which this expression refers.
2244  ///
2245  /// The returned declaration will either be a FieldDecl or (in C++)
2246  /// a CXXMethodDecl.
2247  ValueDecl *getMemberDecl() const { return MemberDecl; }
2248  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2249
2250  /// \brief Retrieves the declaration found by lookup.
2251  DeclAccessPair getFoundDecl() const {
2252    if (!HasQualifierOrFoundDecl)
2253      return DeclAccessPair::make(getMemberDecl(),
2254                                  getMemberDecl()->getAccess());
2255    return getMemberQualifier()->FoundDecl;
2256  }
2257
2258  /// \brief Determines whether this member expression actually had
2259  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2260  /// x->Base::foo.
2261  bool hasQualifier() const { return getQualifier() != 0; }
2262
2263  /// \brief If the member name was qualified, retrieves the
2264  /// nested-name-specifier that precedes the member name. Otherwise, returns
2265  /// NULL.
2266  NestedNameSpecifier *getQualifier() const {
2267    if (!HasQualifierOrFoundDecl)
2268      return 0;
2269
2270    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2271  }
2272
2273  /// \brief If the member name was qualified, retrieves the
2274  /// nested-name-specifier that precedes the member name, with source-location
2275  /// information.
2276  NestedNameSpecifierLoc getQualifierLoc() const {
2277    if (!hasQualifier())
2278      return NestedNameSpecifierLoc();
2279
2280    return getMemberQualifier()->QualifierLoc;
2281  }
2282
2283  /// \brief Return the optional template keyword and arguments info.
2284  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2285    if (!HasTemplateKWAndArgsInfo)
2286      return 0;
2287
2288    if (!HasQualifierOrFoundDecl)
2289      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2290
2291    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2292                                                      getMemberQualifier() + 1);
2293  }
2294
2295  /// \brief Return the optional template keyword and arguments info.
2296  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2297    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2298  }
2299
2300  /// \brief Retrieve the location of the template keyword preceding
2301  /// the member name, if any.
2302  SourceLocation getTemplateKeywordLoc() const {
2303    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2304    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2305  }
2306
2307  /// \brief Retrieve the location of the left angle bracket starting the
2308  /// explicit template argument list following the member name, if any.
2309  SourceLocation getLAngleLoc() const {
2310    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2311    return getTemplateKWAndArgsInfo()->LAngleLoc;
2312  }
2313
2314  /// \brief Retrieve the location of the right angle bracket ending the
2315  /// explicit template argument list following the member name, if any.
2316  SourceLocation getRAngleLoc() const {
2317    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2318    return getTemplateKWAndArgsInfo()->RAngleLoc;
2319  }
2320
2321  /// Determines whether the member name was preceded by the template keyword.
2322  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2323
2324  /// \brief Determines whether the member name was followed by an
2325  /// explicit template argument list.
2326  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2327
2328  /// \brief Copies the template arguments (if present) into the given
2329  /// structure.
2330  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2331    if (hasExplicitTemplateArgs())
2332      getExplicitTemplateArgs().copyInto(List);
2333  }
2334
2335  /// \brief Retrieve the explicit template argument list that
2336  /// follow the member template name.  This must only be called on an
2337  /// expression with explicit template arguments.
2338  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2339    assert(hasExplicitTemplateArgs());
2340    return *getTemplateKWAndArgsInfo();
2341  }
2342
2343  /// \brief Retrieve the explicit template argument list that
2344  /// followed the member template name.  This must only be called on
2345  /// an expression with explicit template arguments.
2346  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2347    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2348  }
2349
2350  /// \brief Retrieves the optional explicit template arguments.
2351  /// This points to the same data as getExplicitTemplateArgs(), but
2352  /// returns null if there are no explicit template arguments.
2353  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2354    if (!hasExplicitTemplateArgs()) return 0;
2355    return &getExplicitTemplateArgs();
2356  }
2357
2358  /// \brief Retrieve the template arguments provided as part of this
2359  /// template-id.
2360  const TemplateArgumentLoc *getTemplateArgs() const {
2361    if (!hasExplicitTemplateArgs())
2362      return 0;
2363
2364    return getExplicitTemplateArgs().getTemplateArgs();
2365  }
2366
2367  /// \brief Retrieve the number of template arguments provided as part of this
2368  /// template-id.
2369  unsigned getNumTemplateArgs() const {
2370    if (!hasExplicitTemplateArgs())
2371      return 0;
2372
2373    return getExplicitTemplateArgs().NumTemplateArgs;
2374  }
2375
2376  /// \brief Retrieve the member declaration name info.
2377  DeclarationNameInfo getMemberNameInfo() const {
2378    return DeclarationNameInfo(MemberDecl->getDeclName(),
2379                               MemberLoc, MemberDNLoc);
2380  }
2381
2382  bool isArrow() const { return IsArrow; }
2383  void setArrow(bool A) { IsArrow = A; }
2384
2385  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2386  /// location of 'F'.
2387  SourceLocation getMemberLoc() const { return MemberLoc; }
2388  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2389
2390  SourceRange getSourceRange() const;
2391
2392  SourceLocation getExprLoc() const { return MemberLoc; }
2393
2394  /// \brief Determine whether the base of this explicit is implicit.
2395  bool isImplicitAccess() const {
2396    return getBase() && getBase()->isImplicitCXXThis();
2397  }
2398
2399  /// \brief Returns true if this member expression refers to a method that
2400  /// was resolved from an overloaded set having size greater than 1.
2401  bool hadMultipleCandidates() const {
2402    return HadMultipleCandidates;
2403  }
2404  /// \brief Sets the flag telling whether this expression refers to
2405  /// a method that was resolved from an overloaded set having size
2406  /// greater than 1.
2407  void setHadMultipleCandidates(bool V = true) {
2408    HadMultipleCandidates = V;
2409  }
2410
2411  static bool classof(const Stmt *T) {
2412    return T->getStmtClass() == MemberExprClass;
2413  }
2414  static bool classof(const MemberExpr *) { return true; }
2415
2416  // Iterators
2417  child_range children() { return child_range(&Base, &Base+1); }
2418
2419  friend class ASTReader;
2420  friend class ASTStmtWriter;
2421};
2422
2423/// CompoundLiteralExpr - [C99 6.5.2.5]
2424///
2425class CompoundLiteralExpr : public Expr {
2426  /// LParenLoc - If non-null, this is the location of the left paren in a
2427  /// compound literal like "(int){4}".  This can be null if this is a
2428  /// synthesized compound expression.
2429  SourceLocation LParenLoc;
2430
2431  /// The type as written.  This can be an incomplete array type, in
2432  /// which case the actual expression type will be different.
2433  /// The int part of the pair stores whether this expr is file scope.
2434  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2435  Stmt *Init;
2436public:
2437  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2438                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2439    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2440           tinfo->getType()->isDependentType(),
2441           init->isValueDependent(),
2442           (init->isInstantiationDependent() ||
2443            tinfo->getType()->isInstantiationDependentType()),
2444           init->containsUnexpandedParameterPack()),
2445      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2446
2447  /// \brief Construct an empty compound literal.
2448  explicit CompoundLiteralExpr(EmptyShell Empty)
2449    : Expr(CompoundLiteralExprClass, Empty) { }
2450
2451  const Expr *getInitializer() const { return cast<Expr>(Init); }
2452  Expr *getInitializer() { return cast<Expr>(Init); }
2453  void setInitializer(Expr *E) { Init = E; }
2454
2455  bool isFileScope() const { return TInfoAndScope.getInt(); }
2456  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2457
2458  SourceLocation getLParenLoc() const { return LParenLoc; }
2459  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2460
2461  TypeSourceInfo *getTypeSourceInfo() const {
2462    return TInfoAndScope.getPointer();
2463  }
2464  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2465    TInfoAndScope.setPointer(tinfo);
2466  }
2467
2468  SourceRange getSourceRange() const {
2469    // FIXME: Init should never be null.
2470    if (!Init)
2471      return SourceRange();
2472    if (LParenLoc.isInvalid())
2473      return Init->getSourceRange();
2474    return SourceRange(LParenLoc, Init->getLocEnd());
2475  }
2476
2477  static bool classof(const Stmt *T) {
2478    return T->getStmtClass() == CompoundLiteralExprClass;
2479  }
2480  static bool classof(const CompoundLiteralExpr *) { return true; }
2481
2482  // Iterators
2483  child_range children() { return child_range(&Init, &Init+1); }
2484};
2485
2486/// CastExpr - Base class for type casts, including both implicit
2487/// casts (ImplicitCastExpr) and explicit casts that have some
2488/// representation in the source code (ExplicitCastExpr's derived
2489/// classes).
2490class CastExpr : public Expr {
2491public:
2492  typedef clang::CastKind CastKind;
2493
2494private:
2495  Stmt *Op;
2496
2497  void CheckCastConsistency() const;
2498
2499  const CXXBaseSpecifier * const *path_buffer() const {
2500    return const_cast<CastExpr*>(this)->path_buffer();
2501  }
2502  CXXBaseSpecifier **path_buffer();
2503
2504  void setBasePathSize(unsigned basePathSize) {
2505    CastExprBits.BasePathSize = basePathSize;
2506    assert(CastExprBits.BasePathSize == basePathSize &&
2507           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2508  }
2509
2510protected:
2511  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2512           const CastKind kind, Expr *op, unsigned BasePathSize) :
2513    Expr(SC, ty, VK, OK_Ordinary,
2514         // Cast expressions are type-dependent if the type is
2515         // dependent (C++ [temp.dep.expr]p3).
2516         ty->isDependentType(),
2517         // Cast expressions are value-dependent if the type is
2518         // dependent or if the subexpression is value-dependent.
2519         ty->isDependentType() || (op && op->isValueDependent()),
2520         (ty->isInstantiationDependentType() ||
2521          (op && op->isInstantiationDependent())),
2522         (ty->containsUnexpandedParameterPack() ||
2523          op->containsUnexpandedParameterPack())),
2524    Op(op) {
2525    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2526    CastExprBits.Kind = kind;
2527    setBasePathSize(BasePathSize);
2528#ifndef NDEBUG
2529    CheckCastConsistency();
2530#endif
2531  }
2532
2533  /// \brief Construct an empty cast.
2534  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2535    : Expr(SC, Empty) {
2536    setBasePathSize(BasePathSize);
2537  }
2538
2539public:
2540  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2541  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2542  const char *getCastKindName() const;
2543
2544  Expr *getSubExpr() { return cast<Expr>(Op); }
2545  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2546  void setSubExpr(Expr *E) { Op = E; }
2547
2548  /// \brief Retrieve the cast subexpression as it was written in the source
2549  /// code, looking through any implicit casts or other intermediate nodes
2550  /// introduced by semantic analysis.
2551  Expr *getSubExprAsWritten();
2552  const Expr *getSubExprAsWritten() const {
2553    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2554  }
2555
2556  typedef CXXBaseSpecifier **path_iterator;
2557  typedef const CXXBaseSpecifier * const *path_const_iterator;
2558  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2559  unsigned path_size() const { return CastExprBits.BasePathSize; }
2560  path_iterator path_begin() { return path_buffer(); }
2561  path_iterator path_end() { return path_buffer() + path_size(); }
2562  path_const_iterator path_begin() const { return path_buffer(); }
2563  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2564
2565  void setCastPath(const CXXCastPath &Path);
2566
2567  static bool classof(const Stmt *T) {
2568    return T->getStmtClass() >= firstCastExprConstant &&
2569           T->getStmtClass() <= lastCastExprConstant;
2570  }
2571  static bool classof(const CastExpr *) { return true; }
2572
2573  // Iterators
2574  child_range children() { return child_range(&Op, &Op+1); }
2575};
2576
2577/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2578/// conversions, which have no direct representation in the original
2579/// source code. For example: converting T[]->T*, void f()->void
2580/// (*f)(), float->double, short->int, etc.
2581///
2582/// In C, implicit casts always produce rvalues. However, in C++, an
2583/// implicit cast whose result is being bound to a reference will be
2584/// an lvalue or xvalue. For example:
2585///
2586/// @code
2587/// class Base { };
2588/// class Derived : public Base { };
2589/// Derived &&ref();
2590/// void f(Derived d) {
2591///   Base& b = d; // initializer is an ImplicitCastExpr
2592///                // to an lvalue of type Base
2593///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2594///                     // to an xvalue of type Base
2595/// }
2596/// @endcode
2597class ImplicitCastExpr : public CastExpr {
2598private:
2599  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2600                   unsigned BasePathLength, ExprValueKind VK)
2601    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2602  }
2603
2604  /// \brief Construct an empty implicit cast.
2605  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2606    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2607
2608public:
2609  enum OnStack_t { OnStack };
2610  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2611                   ExprValueKind VK)
2612    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2613  }
2614
2615  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2616                                  CastKind Kind, Expr *Operand,
2617                                  const CXXCastPath *BasePath,
2618                                  ExprValueKind Cat);
2619
2620  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2621
2622  SourceRange getSourceRange() const {
2623    return getSubExpr()->getSourceRange();
2624  }
2625
2626  static bool classof(const Stmt *T) {
2627    return T->getStmtClass() == ImplicitCastExprClass;
2628  }
2629  static bool classof(const ImplicitCastExpr *) { return true; }
2630};
2631
2632inline Expr *Expr::IgnoreImpCasts() {
2633  Expr *e = this;
2634  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2635    e = ice->getSubExpr();
2636  return e;
2637}
2638
2639/// ExplicitCastExpr - An explicit cast written in the source
2640/// code.
2641///
2642/// This class is effectively an abstract class, because it provides
2643/// the basic representation of an explicitly-written cast without
2644/// specifying which kind of cast (C cast, functional cast, static
2645/// cast, etc.) was written; specific derived classes represent the
2646/// particular style of cast and its location information.
2647///
2648/// Unlike implicit casts, explicit cast nodes have two different
2649/// types: the type that was written into the source code, and the
2650/// actual type of the expression as determined by semantic
2651/// analysis. These types may differ slightly. For example, in C++ one
2652/// can cast to a reference type, which indicates that the resulting
2653/// expression will be an lvalue or xvalue. The reference type, however,
2654/// will not be used as the type of the expression.
2655class ExplicitCastExpr : public CastExpr {
2656  /// TInfo - Source type info for the (written) type
2657  /// this expression is casting to.
2658  TypeSourceInfo *TInfo;
2659
2660protected:
2661  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2662                   CastKind kind, Expr *op, unsigned PathSize,
2663                   TypeSourceInfo *writtenTy)
2664    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2665
2666  /// \brief Construct an empty explicit cast.
2667  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2668    : CastExpr(SC, Shell, PathSize) { }
2669
2670public:
2671  /// getTypeInfoAsWritten - Returns the type source info for the type
2672  /// that this expression is casting to.
2673  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2674  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2675
2676  /// getTypeAsWritten - Returns the type that this expression is
2677  /// casting to, as written in the source code.
2678  QualType getTypeAsWritten() const { return TInfo->getType(); }
2679
2680  static bool classof(const Stmt *T) {
2681     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2682            T->getStmtClass() <= lastExplicitCastExprConstant;
2683  }
2684  static bool classof(const ExplicitCastExpr *) { return true; }
2685};
2686
2687/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2688/// cast in C++ (C++ [expr.cast]), which uses the syntax
2689/// (Type)expr. For example: @c (int)f.
2690class CStyleCastExpr : public ExplicitCastExpr {
2691  SourceLocation LPLoc; // the location of the left paren
2692  SourceLocation RPLoc; // the location of the right paren
2693
2694  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2695                 unsigned PathSize, TypeSourceInfo *writtenTy,
2696                 SourceLocation l, SourceLocation r)
2697    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2698                       writtenTy), LPLoc(l), RPLoc(r) {}
2699
2700  /// \brief Construct an empty C-style explicit cast.
2701  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2702    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2703
2704public:
2705  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2706                                ExprValueKind VK, CastKind K,
2707                                Expr *Op, const CXXCastPath *BasePath,
2708                                TypeSourceInfo *WrittenTy, SourceLocation L,
2709                                SourceLocation R);
2710
2711  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2712
2713  SourceLocation getLParenLoc() const { return LPLoc; }
2714  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2715
2716  SourceLocation getRParenLoc() const { return RPLoc; }
2717  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2718
2719  SourceRange getSourceRange() const {
2720    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2721  }
2722  static bool classof(const Stmt *T) {
2723    return T->getStmtClass() == CStyleCastExprClass;
2724  }
2725  static bool classof(const CStyleCastExpr *) { return true; }
2726};
2727
2728/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2729///
2730/// This expression node kind describes a builtin binary operation,
2731/// such as "x + y" for integer values "x" and "y". The operands will
2732/// already have been converted to appropriate types (e.g., by
2733/// performing promotions or conversions).
2734///
2735/// In C++, where operators may be overloaded, a different kind of
2736/// expression node (CXXOperatorCallExpr) is used to express the
2737/// invocation of an overloaded operator with operator syntax. Within
2738/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2739/// used to store an expression "x + y" depends on the subexpressions
2740/// for x and y. If neither x or y is type-dependent, and the "+"
2741/// operator resolves to a built-in operation, BinaryOperator will be
2742/// used to express the computation (x and y may still be
2743/// value-dependent). If either x or y is type-dependent, or if the
2744/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2745/// be used to express the computation.
2746class BinaryOperator : public Expr {
2747public:
2748  typedef BinaryOperatorKind Opcode;
2749
2750private:
2751  unsigned Opc : 6;
2752  SourceLocation OpLoc;
2753
2754  enum { LHS, RHS, END_EXPR };
2755  Stmt* SubExprs[END_EXPR];
2756public:
2757
2758  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2759                 ExprValueKind VK, ExprObjectKind OK,
2760                 SourceLocation opLoc)
2761    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2762           lhs->isTypeDependent() || rhs->isTypeDependent(),
2763           lhs->isValueDependent() || rhs->isValueDependent(),
2764           (lhs->isInstantiationDependent() ||
2765            rhs->isInstantiationDependent()),
2766           (lhs->containsUnexpandedParameterPack() ||
2767            rhs->containsUnexpandedParameterPack())),
2768      Opc(opc), OpLoc(opLoc) {
2769    SubExprs[LHS] = lhs;
2770    SubExprs[RHS] = rhs;
2771    assert(!isCompoundAssignmentOp() &&
2772           "Use ArithAssignBinaryOperator for compound assignments");
2773  }
2774
2775  /// \brief Construct an empty binary operator.
2776  explicit BinaryOperator(EmptyShell Empty)
2777    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2778
2779  SourceLocation getExprLoc() const { return OpLoc; }
2780  SourceLocation getOperatorLoc() const { return OpLoc; }
2781  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2782
2783  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2784  void setOpcode(Opcode O) { Opc = O; }
2785
2786  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2787  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2788  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2789  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2790
2791  SourceRange getSourceRange() const {
2792    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2793  }
2794
2795  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2796  /// corresponds to, e.g. "<<=".
2797  static const char *getOpcodeStr(Opcode Op);
2798
2799  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2800
2801  /// \brief Retrieve the binary opcode that corresponds to the given
2802  /// overloaded operator.
2803  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2804
2805  /// \brief Retrieve the overloaded operator kind that corresponds to
2806  /// the given binary opcode.
2807  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2808
2809  /// predicates to categorize the respective opcodes.
2810  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2811  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2812  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2813  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2814  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2815  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2816
2817  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2818  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2819
2820  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2821  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2822
2823  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2824  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2825
2826  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2827  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2828
2829  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2830  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2831
2832  static bool isAssignmentOp(Opcode Opc) {
2833    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2834  }
2835  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2836
2837  static bool isCompoundAssignmentOp(Opcode Opc) {
2838    return Opc > BO_Assign && Opc <= BO_OrAssign;
2839  }
2840  bool isCompoundAssignmentOp() const {
2841    return isCompoundAssignmentOp(getOpcode());
2842  }
2843  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2844    assert(isCompoundAssignmentOp(Opc));
2845    if (Opc >= BO_AndAssign)
2846      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2847    else
2848      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2849  }
2850
2851  static bool isShiftAssignOp(Opcode Opc) {
2852    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2853  }
2854  bool isShiftAssignOp() const {
2855    return isShiftAssignOp(getOpcode());
2856  }
2857
2858  static bool classof(const Stmt *S) {
2859    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2860           S->getStmtClass() <= lastBinaryOperatorConstant;
2861  }
2862  static bool classof(const BinaryOperator *) { return true; }
2863
2864  // Iterators
2865  child_range children() {
2866    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2867  }
2868
2869protected:
2870  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2871                 ExprValueKind VK, ExprObjectKind OK,
2872                 SourceLocation opLoc, bool dead)
2873    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2874           lhs->isTypeDependent() || rhs->isTypeDependent(),
2875           lhs->isValueDependent() || rhs->isValueDependent(),
2876           (lhs->isInstantiationDependent() ||
2877            rhs->isInstantiationDependent()),
2878           (lhs->containsUnexpandedParameterPack() ||
2879            rhs->containsUnexpandedParameterPack())),
2880      Opc(opc), OpLoc(opLoc) {
2881    SubExprs[LHS] = lhs;
2882    SubExprs[RHS] = rhs;
2883  }
2884
2885  BinaryOperator(StmtClass SC, EmptyShell Empty)
2886    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2887};
2888
2889/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2890/// track of the type the operation is performed in.  Due to the semantics of
2891/// these operators, the operands are promoted, the arithmetic performed, an
2892/// implicit conversion back to the result type done, then the assignment takes
2893/// place.  This captures the intermediate type which the computation is done
2894/// in.
2895class CompoundAssignOperator : public BinaryOperator {
2896  QualType ComputationLHSType;
2897  QualType ComputationResultType;
2898public:
2899  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2900                         ExprValueKind VK, ExprObjectKind OK,
2901                         QualType CompLHSType, QualType CompResultType,
2902                         SourceLocation OpLoc)
2903    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2904      ComputationLHSType(CompLHSType),
2905      ComputationResultType(CompResultType) {
2906    assert(isCompoundAssignmentOp() &&
2907           "Only should be used for compound assignments");
2908  }
2909
2910  /// \brief Build an empty compound assignment operator expression.
2911  explicit CompoundAssignOperator(EmptyShell Empty)
2912    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2913
2914  // The two computation types are the type the LHS is converted
2915  // to for the computation and the type of the result; the two are
2916  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2917  QualType getComputationLHSType() const { return ComputationLHSType; }
2918  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2919
2920  QualType getComputationResultType() const { return ComputationResultType; }
2921  void setComputationResultType(QualType T) { ComputationResultType = T; }
2922
2923  static bool classof(const CompoundAssignOperator *) { return true; }
2924  static bool classof(const Stmt *S) {
2925    return S->getStmtClass() == CompoundAssignOperatorClass;
2926  }
2927};
2928
2929/// AbstractConditionalOperator - An abstract base class for
2930/// ConditionalOperator and BinaryConditionalOperator.
2931class AbstractConditionalOperator : public Expr {
2932  SourceLocation QuestionLoc, ColonLoc;
2933  friend class ASTStmtReader;
2934
2935protected:
2936  AbstractConditionalOperator(StmtClass SC, QualType T,
2937                              ExprValueKind VK, ExprObjectKind OK,
2938                              bool TD, bool VD, bool ID,
2939                              bool ContainsUnexpandedParameterPack,
2940                              SourceLocation qloc,
2941                              SourceLocation cloc)
2942    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2943      QuestionLoc(qloc), ColonLoc(cloc) {}
2944
2945  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2946    : Expr(SC, Empty) { }
2947
2948public:
2949  // getCond - Return the expression representing the condition for
2950  //   the ?: operator.
2951  Expr *getCond() const;
2952
2953  // getTrueExpr - Return the subexpression representing the value of
2954  //   the expression if the condition evaluates to true.
2955  Expr *getTrueExpr() const;
2956
2957  // getFalseExpr - Return the subexpression representing the value of
2958  //   the expression if the condition evaluates to false.  This is
2959  //   the same as getRHS.
2960  Expr *getFalseExpr() const;
2961
2962  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2963  SourceLocation getColonLoc() const { return ColonLoc; }
2964
2965  static bool classof(const Stmt *T) {
2966    return T->getStmtClass() == ConditionalOperatorClass ||
2967           T->getStmtClass() == BinaryConditionalOperatorClass;
2968  }
2969  static bool classof(const AbstractConditionalOperator *) { return true; }
2970};
2971
2972/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2973/// middle" extension is a BinaryConditionalOperator.
2974class ConditionalOperator : public AbstractConditionalOperator {
2975  enum { COND, LHS, RHS, END_EXPR };
2976  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2977
2978  friend class ASTStmtReader;
2979public:
2980  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2981                      SourceLocation CLoc, Expr *rhs,
2982                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2983    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2984           // FIXME: the type of the conditional operator doesn't
2985           // depend on the type of the conditional, but the standard
2986           // seems to imply that it could. File a bug!
2987           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2988           (cond->isValueDependent() || lhs->isValueDependent() ||
2989            rhs->isValueDependent()),
2990           (cond->isInstantiationDependent() ||
2991            lhs->isInstantiationDependent() ||
2992            rhs->isInstantiationDependent()),
2993           (cond->containsUnexpandedParameterPack() ||
2994            lhs->containsUnexpandedParameterPack() ||
2995            rhs->containsUnexpandedParameterPack()),
2996                                  QLoc, CLoc) {
2997    SubExprs[COND] = cond;
2998    SubExprs[LHS] = lhs;
2999    SubExprs[RHS] = rhs;
3000  }
3001
3002  /// \brief Build an empty conditional operator.
3003  explicit ConditionalOperator(EmptyShell Empty)
3004    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3005
3006  // getCond - Return the expression representing the condition for
3007  //   the ?: operator.
3008  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3009
3010  // getTrueExpr - Return the subexpression representing the value of
3011  //   the expression if the condition evaluates to true.
3012  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3013
3014  // getFalseExpr - Return the subexpression representing the value of
3015  //   the expression if the condition evaluates to false.  This is
3016  //   the same as getRHS.
3017  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3018
3019  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3020  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3021
3022  SourceRange getSourceRange() const {
3023    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3024  }
3025  static bool classof(const Stmt *T) {
3026    return T->getStmtClass() == ConditionalOperatorClass;
3027  }
3028  static bool classof(const ConditionalOperator *) { return true; }
3029
3030  // Iterators
3031  child_range children() {
3032    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3033  }
3034};
3035
3036/// BinaryConditionalOperator - The GNU extension to the conditional
3037/// operator which allows the middle operand to be omitted.
3038///
3039/// This is a different expression kind on the assumption that almost
3040/// every client ends up needing to know that these are different.
3041class BinaryConditionalOperator : public AbstractConditionalOperator {
3042  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3043
3044  /// - the common condition/left-hand-side expression, which will be
3045  ///   evaluated as the opaque value
3046  /// - the condition, expressed in terms of the opaque value
3047  /// - the left-hand-side, expressed in terms of the opaque value
3048  /// - the right-hand-side
3049  Stmt *SubExprs[NUM_SUBEXPRS];
3050  OpaqueValueExpr *OpaqueValue;
3051
3052  friend class ASTStmtReader;
3053public:
3054  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3055                            Expr *cond, Expr *lhs, Expr *rhs,
3056                            SourceLocation qloc, SourceLocation cloc,
3057                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3058    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3059           (common->isTypeDependent() || rhs->isTypeDependent()),
3060           (common->isValueDependent() || rhs->isValueDependent()),
3061           (common->isInstantiationDependent() ||
3062            rhs->isInstantiationDependent()),
3063           (common->containsUnexpandedParameterPack() ||
3064            rhs->containsUnexpandedParameterPack()),
3065                                  qloc, cloc),
3066      OpaqueValue(opaqueValue) {
3067    SubExprs[COMMON] = common;
3068    SubExprs[COND] = cond;
3069    SubExprs[LHS] = lhs;
3070    SubExprs[RHS] = rhs;
3071    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3072  }
3073
3074  /// \brief Build an empty conditional operator.
3075  explicit BinaryConditionalOperator(EmptyShell Empty)
3076    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3077
3078  /// \brief getCommon - Return the common expression, written to the
3079  ///   left of the condition.  The opaque value will be bound to the
3080  ///   result of this expression.
3081  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3082
3083  /// \brief getOpaqueValue - Return the opaque value placeholder.
3084  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3085
3086  /// \brief getCond - Return the condition expression; this is defined
3087  ///   in terms of the opaque value.
3088  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3089
3090  /// \brief getTrueExpr - Return the subexpression which will be
3091  ///   evaluated if the condition evaluates to true;  this is defined
3092  ///   in terms of the opaque value.
3093  Expr *getTrueExpr() const {
3094    return cast<Expr>(SubExprs[LHS]);
3095  }
3096
3097  /// \brief getFalseExpr - Return the subexpression which will be
3098  ///   evaluated if the condnition evaluates to false; this is
3099  ///   defined in terms of the opaque value.
3100  Expr *getFalseExpr() const {
3101    return cast<Expr>(SubExprs[RHS]);
3102  }
3103
3104  SourceRange getSourceRange() const {
3105    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3106  }
3107  static bool classof(const Stmt *T) {
3108    return T->getStmtClass() == BinaryConditionalOperatorClass;
3109  }
3110  static bool classof(const BinaryConditionalOperator *) { return true; }
3111
3112  // Iterators
3113  child_range children() {
3114    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3115  }
3116};
3117
3118inline Expr *AbstractConditionalOperator::getCond() const {
3119  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3120    return co->getCond();
3121  return cast<BinaryConditionalOperator>(this)->getCond();
3122}
3123
3124inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3125  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3126    return co->getTrueExpr();
3127  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3128}
3129
3130inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3131  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3132    return co->getFalseExpr();
3133  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3134}
3135
3136/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3137class AddrLabelExpr : public Expr {
3138  SourceLocation AmpAmpLoc, LabelLoc;
3139  LabelDecl *Label;
3140public:
3141  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3142                QualType t)
3143    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3144           false),
3145      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3146
3147  /// \brief Build an empty address of a label expression.
3148  explicit AddrLabelExpr(EmptyShell Empty)
3149    : Expr(AddrLabelExprClass, Empty) { }
3150
3151  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3152  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3153  SourceLocation getLabelLoc() const { return LabelLoc; }
3154  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3155
3156  SourceRange getSourceRange() const {
3157    return SourceRange(AmpAmpLoc, LabelLoc);
3158  }
3159
3160  LabelDecl *getLabel() const { return Label; }
3161  void setLabel(LabelDecl *L) { Label = L; }
3162
3163  static bool classof(const Stmt *T) {
3164    return T->getStmtClass() == AddrLabelExprClass;
3165  }
3166  static bool classof(const AddrLabelExpr *) { return true; }
3167
3168  // Iterators
3169  child_range children() { return child_range(); }
3170};
3171
3172/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3173/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3174/// takes the value of the last subexpression.
3175///
3176/// A StmtExpr is always an r-value; values "returned" out of a
3177/// StmtExpr will be copied.
3178class StmtExpr : public Expr {
3179  Stmt *SubStmt;
3180  SourceLocation LParenLoc, RParenLoc;
3181public:
3182  // FIXME: Does type-dependence need to be computed differently?
3183  // FIXME: Do we need to compute instantiation instantiation-dependence for
3184  // statements? (ugh!)
3185  StmtExpr(CompoundStmt *substmt, QualType T,
3186           SourceLocation lp, SourceLocation rp) :
3187    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3188         T->isDependentType(), false, false, false),
3189    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3190
3191  /// \brief Build an empty statement expression.
3192  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3193
3194  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3195  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3196  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3197
3198  SourceRange getSourceRange() const {
3199    return SourceRange(LParenLoc, RParenLoc);
3200  }
3201
3202  SourceLocation getLParenLoc() const { return LParenLoc; }
3203  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3204  SourceLocation getRParenLoc() const { return RParenLoc; }
3205  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3206
3207  static bool classof(const Stmt *T) {
3208    return T->getStmtClass() == StmtExprClass;
3209  }
3210  static bool classof(const StmtExpr *) { return true; }
3211
3212  // Iterators
3213  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3214};
3215
3216
3217/// ShuffleVectorExpr - clang-specific builtin-in function
3218/// __builtin_shufflevector.
3219/// This AST node represents a operator that does a constant
3220/// shuffle, similar to LLVM's shufflevector instruction. It takes
3221/// two vectors and a variable number of constant indices,
3222/// and returns the appropriately shuffled vector.
3223class ShuffleVectorExpr : public Expr {
3224  SourceLocation BuiltinLoc, RParenLoc;
3225
3226  // SubExprs - the list of values passed to the __builtin_shufflevector
3227  // function. The first two are vectors, and the rest are constant
3228  // indices.  The number of values in this list is always
3229  // 2+the number of indices in the vector type.
3230  Stmt **SubExprs;
3231  unsigned NumExprs;
3232
3233public:
3234  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3235                    QualType Type, SourceLocation BLoc,
3236                    SourceLocation RP);
3237
3238  /// \brief Build an empty vector-shuffle expression.
3239  explicit ShuffleVectorExpr(EmptyShell Empty)
3240    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3241
3242  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3243  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3244
3245  SourceLocation getRParenLoc() const { return RParenLoc; }
3246  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3247
3248  SourceRange getSourceRange() const {
3249    return SourceRange(BuiltinLoc, RParenLoc);
3250  }
3251  static bool classof(const Stmt *T) {
3252    return T->getStmtClass() == ShuffleVectorExprClass;
3253  }
3254  static bool classof(const ShuffleVectorExpr *) { return true; }
3255
3256  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3257  /// constant expression, the actual arguments passed in, and the function
3258  /// pointers.
3259  unsigned getNumSubExprs() const { return NumExprs; }
3260
3261  /// \brief Retrieve the array of expressions.
3262  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3263
3264  /// getExpr - Return the Expr at the specified index.
3265  Expr *getExpr(unsigned Index) {
3266    assert((Index < NumExprs) && "Arg access out of range!");
3267    return cast<Expr>(SubExprs[Index]);
3268  }
3269  const Expr *getExpr(unsigned Index) const {
3270    assert((Index < NumExprs) && "Arg access out of range!");
3271    return cast<Expr>(SubExprs[Index]);
3272  }
3273
3274  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3275
3276  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3277    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3278    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3279  }
3280
3281  // Iterators
3282  child_range children() {
3283    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3284  }
3285};
3286
3287/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3288/// This AST node is similar to the conditional operator (?:) in C, with
3289/// the following exceptions:
3290/// - the test expression must be a integer constant expression.
3291/// - the expression returned acts like the chosen subexpression in every
3292///   visible way: the type is the same as that of the chosen subexpression,
3293///   and all predicates (whether it's an l-value, whether it's an integer
3294///   constant expression, etc.) return the same result as for the chosen
3295///   sub-expression.
3296class ChooseExpr : public Expr {
3297  enum { COND, LHS, RHS, END_EXPR };
3298  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3299  SourceLocation BuiltinLoc, RParenLoc;
3300public:
3301  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3302             QualType t, ExprValueKind VK, ExprObjectKind OK,
3303             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3304    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3305           (cond->isInstantiationDependent() ||
3306            lhs->isInstantiationDependent() ||
3307            rhs->isInstantiationDependent()),
3308           (cond->containsUnexpandedParameterPack() ||
3309            lhs->containsUnexpandedParameterPack() ||
3310            rhs->containsUnexpandedParameterPack())),
3311      BuiltinLoc(BLoc), RParenLoc(RP) {
3312      SubExprs[COND] = cond;
3313      SubExprs[LHS] = lhs;
3314      SubExprs[RHS] = rhs;
3315    }
3316
3317  /// \brief Build an empty __builtin_choose_expr.
3318  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3319
3320  /// isConditionTrue - Return whether the condition is true (i.e. not
3321  /// equal to zero).
3322  bool isConditionTrue(const ASTContext &C) const;
3323
3324  /// getChosenSubExpr - Return the subexpression chosen according to the
3325  /// condition.
3326  Expr *getChosenSubExpr(const ASTContext &C) const {
3327    return isConditionTrue(C) ? getLHS() : getRHS();
3328  }
3329
3330  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3331  void setCond(Expr *E) { SubExprs[COND] = E; }
3332  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3333  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3334  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3335  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3336
3337  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3338  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3339
3340  SourceLocation getRParenLoc() const { return RParenLoc; }
3341  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3342
3343  SourceRange getSourceRange() const {
3344    return SourceRange(BuiltinLoc, RParenLoc);
3345  }
3346  static bool classof(const Stmt *T) {
3347    return T->getStmtClass() == ChooseExprClass;
3348  }
3349  static bool classof(const ChooseExpr *) { return true; }
3350
3351  // Iterators
3352  child_range children() {
3353    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3354  }
3355};
3356
3357/// GNUNullExpr - Implements the GNU __null extension, which is a name
3358/// for a null pointer constant that has integral type (e.g., int or
3359/// long) and is the same size and alignment as a pointer. The __null
3360/// extension is typically only used by system headers, which define
3361/// NULL as __null in C++ rather than using 0 (which is an integer
3362/// that may not match the size of a pointer).
3363class GNUNullExpr : public Expr {
3364  /// TokenLoc - The location of the __null keyword.
3365  SourceLocation TokenLoc;
3366
3367public:
3368  GNUNullExpr(QualType Ty, SourceLocation Loc)
3369    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3370           false),
3371      TokenLoc(Loc) { }
3372
3373  /// \brief Build an empty GNU __null expression.
3374  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3375
3376  /// getTokenLocation - The location of the __null token.
3377  SourceLocation getTokenLocation() const { return TokenLoc; }
3378  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3379
3380  SourceRange getSourceRange() const {
3381    return SourceRange(TokenLoc);
3382  }
3383  static bool classof(const Stmt *T) {
3384    return T->getStmtClass() == GNUNullExprClass;
3385  }
3386  static bool classof(const GNUNullExpr *) { return true; }
3387
3388  // Iterators
3389  child_range children() { return child_range(); }
3390};
3391
3392/// VAArgExpr, used for the builtin function __builtin_va_arg.
3393class VAArgExpr : public Expr {
3394  Stmt *Val;
3395  TypeSourceInfo *TInfo;
3396  SourceLocation BuiltinLoc, RParenLoc;
3397public:
3398  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3399            SourceLocation RPLoc, QualType t)
3400    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3401           t->isDependentType(), false,
3402           (TInfo->getType()->isInstantiationDependentType() ||
3403            e->isInstantiationDependent()),
3404           (TInfo->getType()->containsUnexpandedParameterPack() ||
3405            e->containsUnexpandedParameterPack())),
3406      Val(e), TInfo(TInfo),
3407      BuiltinLoc(BLoc),
3408      RParenLoc(RPLoc) { }
3409
3410  /// \brief Create an empty __builtin_va_arg expression.
3411  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3412
3413  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3414  Expr *getSubExpr() { return cast<Expr>(Val); }
3415  void setSubExpr(Expr *E) { Val = E; }
3416
3417  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3418  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3419
3420  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3421  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3422
3423  SourceLocation getRParenLoc() const { return RParenLoc; }
3424  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3425
3426  SourceRange getSourceRange() const {
3427    return SourceRange(BuiltinLoc, RParenLoc);
3428  }
3429  static bool classof(const Stmt *T) {
3430    return T->getStmtClass() == VAArgExprClass;
3431  }
3432  static bool classof(const VAArgExpr *) { return true; }
3433
3434  // Iterators
3435  child_range children() { return child_range(&Val, &Val+1); }
3436};
3437
3438/// @brief Describes an C or C++ initializer list.
3439///
3440/// InitListExpr describes an initializer list, which can be used to
3441/// initialize objects of different types, including
3442/// struct/class/union types, arrays, and vectors. For example:
3443///
3444/// @code
3445/// struct foo x = { 1, { 2, 3 } };
3446/// @endcode
3447///
3448/// Prior to semantic analysis, an initializer list will represent the
3449/// initializer list as written by the user, but will have the
3450/// placeholder type "void". This initializer list is called the
3451/// syntactic form of the initializer, and may contain C99 designated
3452/// initializers (represented as DesignatedInitExprs), initializations
3453/// of subobject members without explicit braces, and so on. Clients
3454/// interested in the original syntax of the initializer list should
3455/// use the syntactic form of the initializer list.
3456///
3457/// After semantic analysis, the initializer list will represent the
3458/// semantic form of the initializer, where the initializations of all
3459/// subobjects are made explicit with nested InitListExpr nodes and
3460/// C99 designators have been eliminated by placing the designated
3461/// initializations into the subobject they initialize. Additionally,
3462/// any "holes" in the initialization, where no initializer has been
3463/// specified for a particular subobject, will be replaced with
3464/// implicitly-generated ImplicitValueInitExpr expressions that
3465/// value-initialize the subobjects. Note, however, that the
3466/// initializer lists may still have fewer initializers than there are
3467/// elements to initialize within the object.
3468///
3469/// Given the semantic form of the initializer list, one can retrieve
3470/// the original syntactic form of that initializer list (if it
3471/// exists) using getSyntacticForm(). Since many initializer lists
3472/// have the same syntactic and semantic forms, getSyntacticForm() may
3473/// return NULL, indicating that the current initializer list also
3474/// serves as its syntactic form.
3475class InitListExpr : public Expr {
3476  // FIXME: Eliminate this vector in favor of ASTContext allocation
3477  typedef ASTVector<Stmt *> InitExprsTy;
3478  InitExprsTy InitExprs;
3479  SourceLocation LBraceLoc, RBraceLoc;
3480
3481  /// Contains the initializer list that describes the syntactic form
3482  /// written in the source code.
3483  InitListExpr *SyntacticForm;
3484
3485  /// \brief Either:
3486  ///  If this initializer list initializes an array with more elements than
3487  ///  there are initializers in the list, specifies an expression to be used
3488  ///  for value initialization of the rest of the elements.
3489  /// Or
3490  ///  If this initializer list initializes a union, specifies which
3491  ///  field within the union will be initialized.
3492  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3493
3494public:
3495  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3496               Expr **initexprs, unsigned numinits,
3497               SourceLocation rbraceloc);
3498
3499  /// \brief Build an empty initializer list.
3500  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3501    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3502
3503  unsigned getNumInits() const { return InitExprs.size(); }
3504
3505  /// \brief Retrieve the set of initializers.
3506  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3507
3508  const Expr *getInit(unsigned Init) const {
3509    assert(Init < getNumInits() && "Initializer access out of range!");
3510    return cast_or_null<Expr>(InitExprs[Init]);
3511  }
3512
3513  Expr *getInit(unsigned Init) {
3514    assert(Init < getNumInits() && "Initializer access out of range!");
3515    return cast_or_null<Expr>(InitExprs[Init]);
3516  }
3517
3518  void setInit(unsigned Init, Expr *expr) {
3519    assert(Init < getNumInits() && "Initializer access out of range!");
3520    InitExprs[Init] = expr;
3521  }
3522
3523  /// \brief Reserve space for some number of initializers.
3524  void reserveInits(ASTContext &C, unsigned NumInits);
3525
3526  /// @brief Specify the number of initializers
3527  ///
3528  /// If there are more than @p NumInits initializers, the remaining
3529  /// initializers will be destroyed. If there are fewer than @p
3530  /// NumInits initializers, NULL expressions will be added for the
3531  /// unknown initializers.
3532  void resizeInits(ASTContext &Context, unsigned NumInits);
3533
3534  /// @brief Updates the initializer at index @p Init with the new
3535  /// expression @p expr, and returns the old expression at that
3536  /// location.
3537  ///
3538  /// When @p Init is out of range for this initializer list, the
3539  /// initializer list will be extended with NULL expressions to
3540  /// accommodate the new entry.
3541  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3542
3543  /// \brief If this initializer list initializes an array with more elements
3544  /// than there are initializers in the list, specifies an expression to be
3545  /// used for value initialization of the rest of the elements.
3546  Expr *getArrayFiller() {
3547    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3548  }
3549  const Expr *getArrayFiller() const {
3550    return const_cast<InitListExpr *>(this)->getArrayFiller();
3551  }
3552  void setArrayFiller(Expr *filler);
3553
3554  /// \brief Return true if this is an array initializer and its array "filler"
3555  /// has been set.
3556  bool hasArrayFiller() const { return getArrayFiller(); }
3557
3558  /// \brief If this initializes a union, specifies which field in the
3559  /// union to initialize.
3560  ///
3561  /// Typically, this field is the first named field within the
3562  /// union. However, a designated initializer can specify the
3563  /// initialization of a different field within the union.
3564  FieldDecl *getInitializedFieldInUnion() {
3565    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3566  }
3567  const FieldDecl *getInitializedFieldInUnion() const {
3568    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3569  }
3570  void setInitializedFieldInUnion(FieldDecl *FD) {
3571    ArrayFillerOrUnionFieldInit = FD;
3572  }
3573
3574  // Explicit InitListExpr's originate from source code (and have valid source
3575  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3576  bool isExplicit() {
3577    return LBraceLoc.isValid() && RBraceLoc.isValid();
3578  }
3579
3580  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3581  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3582  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3583  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3584
3585  /// @brief Retrieve the initializer list that describes the
3586  /// syntactic form of the initializer.
3587  ///
3588  ///
3589  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3590  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3591
3592  bool hadArrayRangeDesignator() const {
3593    return InitListExprBits.HadArrayRangeDesignator != 0;
3594  }
3595  void sawArrayRangeDesignator(bool ARD = true) {
3596    InitListExprBits.HadArrayRangeDesignator = ARD;
3597  }
3598
3599  bool initializesStdInitializerList() const {
3600    return InitListExprBits.InitializesStdInitializerList != 0;
3601  }
3602  void setInitializesStdInitializerList(bool ISIL = true) {
3603    InitListExprBits.InitializesStdInitializerList = ISIL;
3604  }
3605
3606  SourceRange getSourceRange() const;
3607
3608  static bool classof(const Stmt *T) {
3609    return T->getStmtClass() == InitListExprClass;
3610  }
3611  static bool classof(const InitListExpr *) { return true; }
3612
3613  // Iterators
3614  child_range children() {
3615    if (InitExprs.empty()) return child_range();
3616    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3617  }
3618
3619  typedef InitExprsTy::iterator iterator;
3620  typedef InitExprsTy::const_iterator const_iterator;
3621  typedef InitExprsTy::reverse_iterator reverse_iterator;
3622  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3623
3624  iterator begin() { return InitExprs.begin(); }
3625  const_iterator begin() const { return InitExprs.begin(); }
3626  iterator end() { return InitExprs.end(); }
3627  const_iterator end() const { return InitExprs.end(); }
3628  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3629  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3630  reverse_iterator rend() { return InitExprs.rend(); }
3631  const_reverse_iterator rend() const { return InitExprs.rend(); }
3632
3633  friend class ASTStmtReader;
3634  friend class ASTStmtWriter;
3635};
3636
3637/// @brief Represents a C99 designated initializer expression.
3638///
3639/// A designated initializer expression (C99 6.7.8) contains one or
3640/// more designators (which can be field designators, array
3641/// designators, or GNU array-range designators) followed by an
3642/// expression that initializes the field or element(s) that the
3643/// designators refer to. For example, given:
3644///
3645/// @code
3646/// struct point {
3647///   double x;
3648///   double y;
3649/// };
3650/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3651/// @endcode
3652///
3653/// The InitListExpr contains three DesignatedInitExprs, the first of
3654/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3655/// designators, one array designator for @c [2] followed by one field
3656/// designator for @c .y. The initalization expression will be 1.0.
3657class DesignatedInitExpr : public Expr {
3658public:
3659  /// \brief Forward declaration of the Designator class.
3660  class Designator;
3661
3662private:
3663  /// The location of the '=' or ':' prior to the actual initializer
3664  /// expression.
3665  SourceLocation EqualOrColonLoc;
3666
3667  /// Whether this designated initializer used the GNU deprecated
3668  /// syntax rather than the C99 '=' syntax.
3669  bool GNUSyntax : 1;
3670
3671  /// The number of designators in this initializer expression.
3672  unsigned NumDesignators : 15;
3673
3674  /// The number of subexpressions of this initializer expression,
3675  /// which contains both the initializer and any additional
3676  /// expressions used by array and array-range designators.
3677  unsigned NumSubExprs : 16;
3678
3679  /// \brief The designators in this designated initialization
3680  /// expression.
3681  Designator *Designators;
3682
3683
3684  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3685                     const Designator *Designators,
3686                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3687                     Expr **IndexExprs, unsigned NumIndexExprs,
3688                     Expr *Init);
3689
3690  explicit DesignatedInitExpr(unsigned NumSubExprs)
3691    : Expr(DesignatedInitExprClass, EmptyShell()),
3692      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3693
3694public:
3695  /// A field designator, e.g., ".x".
3696  struct FieldDesignator {
3697    /// Refers to the field that is being initialized. The low bit
3698    /// of this field determines whether this is actually a pointer
3699    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3700    /// initially constructed, a field designator will store an
3701    /// IdentifierInfo*. After semantic analysis has resolved that
3702    /// name, the field designator will instead store a FieldDecl*.
3703    uintptr_t NameOrField;
3704
3705    /// The location of the '.' in the designated initializer.
3706    unsigned DotLoc;
3707
3708    /// The location of the field name in the designated initializer.
3709    unsigned FieldLoc;
3710  };
3711
3712  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3713  struct ArrayOrRangeDesignator {
3714    /// Location of the first index expression within the designated
3715    /// initializer expression's list of subexpressions.
3716    unsigned Index;
3717    /// The location of the '[' starting the array range designator.
3718    unsigned LBracketLoc;
3719    /// The location of the ellipsis separating the start and end
3720    /// indices. Only valid for GNU array-range designators.
3721    unsigned EllipsisLoc;
3722    /// The location of the ']' terminating the array range designator.
3723    unsigned RBracketLoc;
3724  };
3725
3726  /// @brief Represents a single C99 designator.
3727  ///
3728  /// @todo This class is infuriatingly similar to clang::Designator,
3729  /// but minor differences (storing indices vs. storing pointers)
3730  /// keep us from reusing it. Try harder, later, to rectify these
3731  /// differences.
3732  class Designator {
3733    /// @brief The kind of designator this describes.
3734    enum {
3735      FieldDesignator,
3736      ArrayDesignator,
3737      ArrayRangeDesignator
3738    } Kind;
3739
3740    union {
3741      /// A field designator, e.g., ".x".
3742      struct FieldDesignator Field;
3743      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3744      struct ArrayOrRangeDesignator ArrayOrRange;
3745    };
3746    friend class DesignatedInitExpr;
3747
3748  public:
3749    Designator() {}
3750
3751    /// @brief Initializes a field designator.
3752    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3753               SourceLocation FieldLoc)
3754      : Kind(FieldDesignator) {
3755      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3756      Field.DotLoc = DotLoc.getRawEncoding();
3757      Field.FieldLoc = FieldLoc.getRawEncoding();
3758    }
3759
3760    /// @brief Initializes an array designator.
3761    Designator(unsigned Index, SourceLocation LBracketLoc,
3762               SourceLocation RBracketLoc)
3763      : Kind(ArrayDesignator) {
3764      ArrayOrRange.Index = Index;
3765      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3766      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3767      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3768    }
3769
3770    /// @brief Initializes a GNU array-range designator.
3771    Designator(unsigned Index, SourceLocation LBracketLoc,
3772               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3773      : Kind(ArrayRangeDesignator) {
3774      ArrayOrRange.Index = Index;
3775      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3776      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3777      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3778    }
3779
3780    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3781    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3782    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3783
3784    IdentifierInfo *getFieldName() const;
3785
3786    FieldDecl *getField() const {
3787      assert(Kind == FieldDesignator && "Only valid on a field designator");
3788      if (Field.NameOrField & 0x01)
3789        return 0;
3790      else
3791        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3792    }
3793
3794    void setField(FieldDecl *FD) {
3795      assert(Kind == FieldDesignator && "Only valid on a field designator");
3796      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3797    }
3798
3799    SourceLocation getDotLoc() const {
3800      assert(Kind == FieldDesignator && "Only valid on a field designator");
3801      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3802    }
3803
3804    SourceLocation getFieldLoc() const {
3805      assert(Kind == FieldDesignator && "Only valid on a field designator");
3806      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3807    }
3808
3809    SourceLocation getLBracketLoc() const {
3810      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3811             "Only valid on an array or array-range designator");
3812      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3813    }
3814
3815    SourceLocation getRBracketLoc() const {
3816      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3817             "Only valid on an array or array-range designator");
3818      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3819    }
3820
3821    SourceLocation getEllipsisLoc() const {
3822      assert(Kind == ArrayRangeDesignator &&
3823             "Only valid on an array-range designator");
3824      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3825    }
3826
3827    unsigned getFirstExprIndex() const {
3828      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3829             "Only valid on an array or array-range designator");
3830      return ArrayOrRange.Index;
3831    }
3832
3833    SourceLocation getStartLocation() const {
3834      if (Kind == FieldDesignator)
3835        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3836      else
3837        return getLBracketLoc();
3838    }
3839    SourceLocation getEndLocation() const {
3840      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3841    }
3842    SourceRange getSourceRange() const {
3843      return SourceRange(getStartLocation(), getEndLocation());
3844    }
3845  };
3846
3847  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3848                                    unsigned NumDesignators,
3849                                    Expr **IndexExprs, unsigned NumIndexExprs,
3850                                    SourceLocation EqualOrColonLoc,
3851                                    bool GNUSyntax, Expr *Init);
3852
3853  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3854
3855  /// @brief Returns the number of designators in this initializer.
3856  unsigned size() const { return NumDesignators; }
3857
3858  // Iterator access to the designators.
3859  typedef Designator *designators_iterator;
3860  designators_iterator designators_begin() { return Designators; }
3861  designators_iterator designators_end() {
3862    return Designators + NumDesignators;
3863  }
3864
3865  typedef const Designator *const_designators_iterator;
3866  const_designators_iterator designators_begin() const { return Designators; }
3867  const_designators_iterator designators_end() const {
3868    return Designators + NumDesignators;
3869  }
3870
3871  typedef std::reverse_iterator<designators_iterator>
3872          reverse_designators_iterator;
3873  reverse_designators_iterator designators_rbegin() {
3874    return reverse_designators_iterator(designators_end());
3875  }
3876  reverse_designators_iterator designators_rend() {
3877    return reverse_designators_iterator(designators_begin());
3878  }
3879
3880  typedef std::reverse_iterator<const_designators_iterator>
3881          const_reverse_designators_iterator;
3882  const_reverse_designators_iterator designators_rbegin() const {
3883    return const_reverse_designators_iterator(designators_end());
3884  }
3885  const_reverse_designators_iterator designators_rend() const {
3886    return const_reverse_designators_iterator(designators_begin());
3887  }
3888
3889  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3890
3891  void setDesignators(ASTContext &C, const Designator *Desigs,
3892                      unsigned NumDesigs);
3893
3894  Expr *getArrayIndex(const Designator& D);
3895  Expr *getArrayRangeStart(const Designator& D);
3896  Expr *getArrayRangeEnd(const Designator& D);
3897
3898  /// @brief Retrieve the location of the '=' that precedes the
3899  /// initializer value itself, if present.
3900  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3901  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3902
3903  /// @brief Determines whether this designated initializer used the
3904  /// deprecated GNU syntax for designated initializers.
3905  bool usesGNUSyntax() const { return GNUSyntax; }
3906  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3907
3908  /// @brief Retrieve the initializer value.
3909  Expr *getInit() const {
3910    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3911  }
3912
3913  void setInit(Expr *init) {
3914    *child_begin() = init;
3915  }
3916
3917  /// \brief Retrieve the total number of subexpressions in this
3918  /// designated initializer expression, including the actual
3919  /// initialized value and any expressions that occur within array
3920  /// and array-range designators.
3921  unsigned getNumSubExprs() const { return NumSubExprs; }
3922
3923  Expr *getSubExpr(unsigned Idx) {
3924    assert(Idx < NumSubExprs && "Subscript out of range");
3925    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3926    Ptr += sizeof(DesignatedInitExpr);
3927    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3928  }
3929
3930  void setSubExpr(unsigned Idx, Expr *E) {
3931    assert(Idx < NumSubExprs && "Subscript out of range");
3932    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3933    Ptr += sizeof(DesignatedInitExpr);
3934    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3935  }
3936
3937  /// \brief Replaces the designator at index @p Idx with the series
3938  /// of designators in [First, Last).
3939  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3940                        const Designator *Last);
3941
3942  SourceRange getDesignatorsSourceRange() const;
3943
3944  SourceRange getSourceRange() const;
3945
3946  static bool classof(const Stmt *T) {
3947    return T->getStmtClass() == DesignatedInitExprClass;
3948  }
3949  static bool classof(const DesignatedInitExpr *) { return true; }
3950
3951  // Iterators
3952  child_range children() {
3953    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3954    return child_range(begin, begin + NumSubExprs);
3955  }
3956};
3957
3958/// \brief Represents an implicitly-generated value initialization of
3959/// an object of a given type.
3960///
3961/// Implicit value initializations occur within semantic initializer
3962/// list expressions (InitListExpr) as placeholders for subobject
3963/// initializations not explicitly specified by the user.
3964///
3965/// \see InitListExpr
3966class ImplicitValueInitExpr : public Expr {
3967public:
3968  explicit ImplicitValueInitExpr(QualType ty)
3969    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3970           false, false, ty->isInstantiationDependentType(), false) { }
3971
3972  /// \brief Construct an empty implicit value initialization.
3973  explicit ImplicitValueInitExpr(EmptyShell Empty)
3974    : Expr(ImplicitValueInitExprClass, Empty) { }
3975
3976  static bool classof(const Stmt *T) {
3977    return T->getStmtClass() == ImplicitValueInitExprClass;
3978  }
3979  static bool classof(const ImplicitValueInitExpr *) { return true; }
3980
3981  SourceRange getSourceRange() const {
3982    return SourceRange();
3983  }
3984
3985  // Iterators
3986  child_range children() { return child_range(); }
3987};
3988
3989
3990class ParenListExpr : public Expr {
3991  Stmt **Exprs;
3992  unsigned NumExprs;
3993  SourceLocation LParenLoc, RParenLoc;
3994
3995public:
3996  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3997                unsigned numexprs, SourceLocation rparenloc);
3998
3999  /// \brief Build an empty paren list.
4000  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4001
4002  unsigned getNumExprs() const { return NumExprs; }
4003
4004  const Expr* getExpr(unsigned Init) const {
4005    assert(Init < getNumExprs() && "Initializer access out of range!");
4006    return cast_or_null<Expr>(Exprs[Init]);
4007  }
4008
4009  Expr* getExpr(unsigned Init) {
4010    assert(Init < getNumExprs() && "Initializer access out of range!");
4011    return cast_or_null<Expr>(Exprs[Init]);
4012  }
4013
4014  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4015
4016  SourceLocation getLParenLoc() const { return LParenLoc; }
4017  SourceLocation getRParenLoc() const { return RParenLoc; }
4018
4019  SourceRange getSourceRange() const {
4020    return SourceRange(LParenLoc, RParenLoc);
4021  }
4022  static bool classof(const Stmt *T) {
4023    return T->getStmtClass() == ParenListExprClass;
4024  }
4025  static bool classof(const ParenListExpr *) { return true; }
4026
4027  // Iterators
4028  child_range children() {
4029    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4030  }
4031
4032  friend class ASTStmtReader;
4033  friend class ASTStmtWriter;
4034};
4035
4036
4037/// \brief Represents a C11 generic selection.
4038///
4039/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4040/// expression, followed by one or more generic associations.  Each generic
4041/// association specifies a type name and an expression, or "default" and an
4042/// expression (in which case it is known as a default generic association).
4043/// The type and value of the generic selection are identical to those of its
4044/// result expression, which is defined as the expression in the generic
4045/// association with a type name that is compatible with the type of the
4046/// controlling expression, or the expression in the default generic association
4047/// if no types are compatible.  For example:
4048///
4049/// @code
4050/// _Generic(X, double: 1, float: 2, default: 3)
4051/// @endcode
4052///
4053/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4054/// or 3 if "hello".
4055///
4056/// As an extension, generic selections are allowed in C++, where the following
4057/// additional semantics apply:
4058///
4059/// Any generic selection whose controlling expression is type-dependent or
4060/// which names a dependent type in its association list is result-dependent,
4061/// which means that the choice of result expression is dependent.
4062/// Result-dependent generic associations are both type- and value-dependent.
4063class GenericSelectionExpr : public Expr {
4064  enum { CONTROLLING, END_EXPR };
4065  TypeSourceInfo **AssocTypes;
4066  Stmt **SubExprs;
4067  unsigned NumAssocs, ResultIndex;
4068  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4069
4070public:
4071  GenericSelectionExpr(ASTContext &Context,
4072                       SourceLocation GenericLoc, Expr *ControllingExpr,
4073                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4074                       unsigned NumAssocs, SourceLocation DefaultLoc,
4075                       SourceLocation RParenLoc,
4076                       bool ContainsUnexpandedParameterPack,
4077                       unsigned ResultIndex);
4078
4079  /// This constructor is used in the result-dependent case.
4080  GenericSelectionExpr(ASTContext &Context,
4081                       SourceLocation GenericLoc, Expr *ControllingExpr,
4082                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4083                       unsigned NumAssocs, SourceLocation DefaultLoc,
4084                       SourceLocation RParenLoc,
4085                       bool ContainsUnexpandedParameterPack);
4086
4087  explicit GenericSelectionExpr(EmptyShell Empty)
4088    : Expr(GenericSelectionExprClass, Empty) { }
4089
4090  unsigned getNumAssocs() const { return NumAssocs; }
4091
4092  SourceLocation getGenericLoc() const { return GenericLoc; }
4093  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4094  SourceLocation getRParenLoc() const { return RParenLoc; }
4095
4096  const Expr *getAssocExpr(unsigned i) const {
4097    return cast<Expr>(SubExprs[END_EXPR+i]);
4098  }
4099  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4100
4101  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4102    return AssocTypes[i];
4103  }
4104  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4105
4106  QualType getAssocType(unsigned i) const {
4107    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4108      return TS->getType();
4109    else
4110      return QualType();
4111  }
4112
4113  const Expr *getControllingExpr() const {
4114    return cast<Expr>(SubExprs[CONTROLLING]);
4115  }
4116  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4117
4118  /// Whether this generic selection is result-dependent.
4119  bool isResultDependent() const { return ResultIndex == -1U; }
4120
4121  /// The zero-based index of the result expression's generic association in
4122  /// the generic selection's association list.  Defined only if the
4123  /// generic selection is not result-dependent.
4124  unsigned getResultIndex() const {
4125    assert(!isResultDependent() && "Generic selection is result-dependent");
4126    return ResultIndex;
4127  }
4128
4129  /// The generic selection's result expression.  Defined only if the
4130  /// generic selection is not result-dependent.
4131  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4132  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4133
4134  SourceRange getSourceRange() const {
4135    return SourceRange(GenericLoc, RParenLoc);
4136  }
4137  static bool classof(const Stmt *T) {
4138    return T->getStmtClass() == GenericSelectionExprClass;
4139  }
4140  static bool classof(const GenericSelectionExpr *) { return true; }
4141
4142  child_range children() {
4143    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4144  }
4145
4146  friend class ASTStmtReader;
4147};
4148
4149//===----------------------------------------------------------------------===//
4150// Clang Extensions
4151//===----------------------------------------------------------------------===//
4152
4153
4154/// ExtVectorElementExpr - This represents access to specific elements of a
4155/// vector, and may occur on the left hand side or right hand side.  For example
4156/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4157///
4158/// Note that the base may have either vector or pointer to vector type, just
4159/// like a struct field reference.
4160///
4161class ExtVectorElementExpr : public Expr {
4162  Stmt *Base;
4163  IdentifierInfo *Accessor;
4164  SourceLocation AccessorLoc;
4165public:
4166  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4167                       IdentifierInfo &accessor, SourceLocation loc)
4168    : Expr(ExtVectorElementExprClass, ty, VK,
4169           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4170           base->isTypeDependent(), base->isValueDependent(),
4171           base->isInstantiationDependent(),
4172           base->containsUnexpandedParameterPack()),
4173      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4174
4175  /// \brief Build an empty vector element expression.
4176  explicit ExtVectorElementExpr(EmptyShell Empty)
4177    : Expr(ExtVectorElementExprClass, Empty) { }
4178
4179  const Expr *getBase() const { return cast<Expr>(Base); }
4180  Expr *getBase() { return cast<Expr>(Base); }
4181  void setBase(Expr *E) { Base = E; }
4182
4183  IdentifierInfo &getAccessor() const { return *Accessor; }
4184  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4185
4186  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4187  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4188
4189  /// getNumElements - Get the number of components being selected.
4190  unsigned getNumElements() const;
4191
4192  /// containsDuplicateElements - Return true if any element access is
4193  /// repeated.
4194  bool containsDuplicateElements() const;
4195
4196  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4197  /// aggregate Constant of ConstantInt(s).
4198  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4199
4200  SourceRange getSourceRange() const {
4201    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4202  }
4203
4204  /// isArrow - Return true if the base expression is a pointer to vector,
4205  /// return false if the base expression is a vector.
4206  bool isArrow() const;
4207
4208  static bool classof(const Stmt *T) {
4209    return T->getStmtClass() == ExtVectorElementExprClass;
4210  }
4211  static bool classof(const ExtVectorElementExpr *) { return true; }
4212
4213  // Iterators
4214  child_range children() { return child_range(&Base, &Base+1); }
4215};
4216
4217
4218/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4219/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4220class BlockExpr : public Expr {
4221protected:
4222  BlockDecl *TheBlock;
4223public:
4224  BlockExpr(BlockDecl *BD, QualType ty)
4225    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4226           ty->isDependentType(), ty->isDependentType(),
4227           ty->isInstantiationDependentType() || BD->isDependentContext(),
4228           false),
4229      TheBlock(BD) {}
4230
4231  /// \brief Build an empty block expression.
4232  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4233
4234  const BlockDecl *getBlockDecl() const { return TheBlock; }
4235  BlockDecl *getBlockDecl() { return TheBlock; }
4236  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4237
4238  // Convenience functions for probing the underlying BlockDecl.
4239  SourceLocation getCaretLocation() const;
4240  const Stmt *getBody() const;
4241  Stmt *getBody();
4242
4243  SourceRange getSourceRange() const {
4244    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4245  }
4246
4247  /// getFunctionType - Return the underlying function type for this block.
4248  const FunctionProtoType *getFunctionType() const;
4249
4250  static bool classof(const Stmt *T) {
4251    return T->getStmtClass() == BlockExprClass;
4252  }
4253  static bool classof(const BlockExpr *) { return true; }
4254
4255  // Iterators
4256  child_range children() { return child_range(); }
4257};
4258
4259/// BlockDeclRefExpr - A reference to a local variable declared in an
4260/// enclosing scope.
4261class BlockDeclRefExpr : public Expr {
4262  VarDecl *D;
4263  SourceLocation Loc;
4264  bool IsByRef : 1;
4265  bool ConstQualAdded : 1;
4266public:
4267  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4268                   SourceLocation l, bool ByRef, bool constAdded = false);
4269
4270  // \brief Build an empty reference to a declared variable in a
4271  // block.
4272  explicit BlockDeclRefExpr(EmptyShell Empty)
4273    : Expr(BlockDeclRefExprClass, Empty) { }
4274
4275  VarDecl *getDecl() { return D; }
4276  const VarDecl *getDecl() const { return D; }
4277  void setDecl(VarDecl *VD) { D = VD; }
4278
4279  SourceLocation getLocation() const { return Loc; }
4280  void setLocation(SourceLocation L) { Loc = L; }
4281
4282  SourceRange getSourceRange() const { return SourceRange(Loc); }
4283
4284  bool isByRef() const { return IsByRef; }
4285  void setByRef(bool BR) { IsByRef = BR; }
4286
4287  bool isConstQualAdded() const { return ConstQualAdded; }
4288  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4289
4290  static bool classof(const Stmt *T) {
4291    return T->getStmtClass() == BlockDeclRefExprClass;
4292  }
4293  static bool classof(const BlockDeclRefExpr *) { return true; }
4294
4295  // Iterators
4296  child_range children() { return child_range(); }
4297};
4298
4299/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4300/// This AST node provides support for reinterpreting a type to another
4301/// type of the same size.
4302class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4303private:
4304  Stmt *SrcExpr;
4305  SourceLocation BuiltinLoc, RParenLoc;
4306
4307  friend class ASTReader;
4308  friend class ASTStmtReader;
4309  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4310
4311public:
4312  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4313             ExprValueKind VK, ExprObjectKind OK,
4314             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4315    : Expr(AsTypeExprClass, DstType, VK, OK,
4316           DstType->isDependentType(),
4317           DstType->isDependentType() || SrcExpr->isValueDependent(),
4318           (DstType->isInstantiationDependentType() ||
4319            SrcExpr->isInstantiationDependent()),
4320           (DstType->containsUnexpandedParameterPack() ||
4321            SrcExpr->containsUnexpandedParameterPack())),
4322  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4323
4324  /// getSrcExpr - Return the Expr to be converted.
4325  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4326
4327  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4328  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4329
4330  /// getRParenLoc - Return the location of final right parenthesis.
4331  SourceLocation getRParenLoc() const { return RParenLoc; }
4332
4333  SourceRange getSourceRange() const {
4334    return SourceRange(BuiltinLoc, RParenLoc);
4335  }
4336
4337  static bool classof(const Stmt *T) {
4338    return T->getStmtClass() == AsTypeExprClass;
4339  }
4340  static bool classof(const AsTypeExpr *) { return true; }
4341
4342  // Iterators
4343  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4344};
4345
4346/// PseudoObjectExpr - An expression which accesses a pseudo-object
4347/// l-value.  A pseudo-object is an abstract object, accesses to which
4348/// are translated to calls.  The pseudo-object expression has a
4349/// syntactic form, which shows how the expression was actually
4350/// written in the source code, and a semantic form, which is a series
4351/// of expressions to be executed in order which detail how the
4352/// operation is actually evaluated.  Optionally, one of the semantic
4353/// forms may also provide a result value for the expression.
4354///
4355/// If any of the semantic-form expressions is an OpaqueValueExpr,
4356/// that OVE is required to have a source expression, and it is bound
4357/// to the result of that source expression.  Such OVEs may appear
4358/// only in subsequent semantic-form expressions and as
4359/// sub-expressions of the syntactic form.
4360///
4361/// PseudoObjectExpr should be used only when an operation can be
4362/// usefully described in terms of fairly simple rewrite rules on
4363/// objects and functions that are meant to be used by end-developers.
4364/// For example, under the Itanium ABI, dynamic casts are implemented
4365/// as a call to a runtime function called __dynamic_cast; using this
4366/// class to describe that would be inappropriate because that call is
4367/// not really part of the user-visible semantics, and instead the
4368/// cast is properly reflected in the AST and IR-generation has been
4369/// taught to generate the call as necessary.  In contrast, an
4370/// Objective-C property access is semantically defined to be
4371/// equivalent to a particular message send, and this is very much
4372/// part of the user model.  The name of this class encourages this
4373/// modelling design.
4374class PseudoObjectExpr : public Expr {
4375  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4376  // Always at least two, because the first sub-expression is the
4377  // syntactic form.
4378
4379  // PseudoObjectExprBits.ResultIndex - The index of the
4380  // sub-expression holding the result.  0 means the result is void,
4381  // which is unambiguous because it's the index of the syntactic
4382  // form.  Note that this is therefore 1 higher than the value passed
4383  // in to Create, which is an index within the semantic forms.
4384  // Note also that ASTStmtWriter assumes this encoding.
4385
4386  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4387  const Expr * const *getSubExprsBuffer() const {
4388    return reinterpret_cast<const Expr * const *>(this + 1);
4389  }
4390
4391  friend class ASTStmtReader;
4392
4393  PseudoObjectExpr(QualType type, ExprValueKind VK,
4394                   Expr *syntactic, ArrayRef<Expr*> semantic,
4395                   unsigned resultIndex);
4396
4397  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4398
4399  unsigned getNumSubExprs() const {
4400    return PseudoObjectExprBits.NumSubExprs;
4401  }
4402
4403public:
4404  /// NoResult - A value for the result index indicating that there is
4405  /// no semantic result.
4406  enum { NoResult = ~0U };
4407
4408  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4409                                  ArrayRef<Expr*> semantic,
4410                                  unsigned resultIndex);
4411
4412  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4413                                  unsigned numSemanticExprs);
4414
4415  /// Return the syntactic form of this expression, i.e. the
4416  /// expression it actually looks like.  Likely to be expressed in
4417  /// terms of OpaqueValueExprs bound in the semantic form.
4418  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4419  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4420
4421  /// Return the index of the result-bearing expression into the semantics
4422  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4423  unsigned getResultExprIndex() const {
4424    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4425    return PseudoObjectExprBits.ResultIndex - 1;
4426  }
4427
4428  /// Return the result-bearing expression, or null if there is none.
4429  Expr *getResultExpr() {
4430    if (PseudoObjectExprBits.ResultIndex == 0)
4431      return 0;
4432    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4433  }
4434  const Expr *getResultExpr() const {
4435    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4436  }
4437
4438  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4439
4440  typedef Expr * const *semantics_iterator;
4441  typedef const Expr * const *const_semantics_iterator;
4442  semantics_iterator semantics_begin() {
4443    return getSubExprsBuffer() + 1;
4444  }
4445  const_semantics_iterator semantics_begin() const {
4446    return getSubExprsBuffer() + 1;
4447  }
4448  semantics_iterator semantics_end() {
4449    return getSubExprsBuffer() + getNumSubExprs();
4450  }
4451  const_semantics_iterator semantics_end() const {
4452    return getSubExprsBuffer() + getNumSubExprs();
4453  }
4454  Expr *getSemanticExpr(unsigned index) {
4455    assert(index + 1 < getNumSubExprs());
4456    return getSubExprsBuffer()[index + 1];
4457  }
4458  const Expr *getSemanticExpr(unsigned index) const {
4459    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4460  }
4461
4462  SourceLocation getExprLoc() const {
4463    return getSyntacticForm()->getExprLoc();
4464  }
4465  SourceRange getSourceRange() const {
4466    return getSyntacticForm()->getSourceRange();
4467  }
4468
4469  child_range children() {
4470    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4471    return child_range(cs, cs + getNumSubExprs());
4472  }
4473
4474  static bool classof(const Stmt *T) {
4475    return T->getStmtClass() == PseudoObjectExprClass;
4476  }
4477  static bool classof(const PseudoObjectExpr *) { return true; }
4478};
4479
4480/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4481/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4482/// similarly-named C++0x instructions.  All of these instructions take one
4483/// primary pointer and at least one memory order.
4484class AtomicExpr : public Expr {
4485public:
4486  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4487                  Add, Sub, And, Or, Xor, Init };
4488private:
4489  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4490  Stmt* SubExprs[END_EXPR];
4491  unsigned NumSubExprs;
4492  SourceLocation BuiltinLoc, RParenLoc;
4493  AtomicOp Op;
4494
4495public:
4496  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4497             AtomicOp op, SourceLocation RP);
4498
4499  /// \brief Build an empty AtomicExpr.
4500  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4501
4502  Expr *getPtr() const {
4503    return cast<Expr>(SubExprs[PTR]);
4504  }
4505  void setPtr(Expr *E) {
4506    SubExprs[PTR] = E;
4507  }
4508  Expr *getOrder() const {
4509    return cast<Expr>(SubExprs[ORDER]);
4510  }
4511  void setOrder(Expr *E) {
4512    SubExprs[ORDER] = E;
4513  }
4514  Expr *getVal1() const {
4515    if (Op == Init)
4516      return cast<Expr>(SubExprs[ORDER]);
4517    assert(NumSubExprs >= 3);
4518    return cast<Expr>(SubExprs[VAL1]);
4519  }
4520  void setVal1(Expr *E) {
4521    if (Op == Init) {
4522      SubExprs[ORDER] = E;
4523      return;
4524    }
4525    assert(NumSubExprs >= 3);
4526    SubExprs[VAL1] = E;
4527  }
4528  Expr *getOrderFail() const {
4529    assert(NumSubExprs == 5);
4530    return cast<Expr>(SubExprs[ORDER_FAIL]);
4531  }
4532  void setOrderFail(Expr *E) {
4533    assert(NumSubExprs == 5);
4534    SubExprs[ORDER_FAIL] = E;
4535  }
4536  Expr *getVal2() const {
4537    assert(NumSubExprs == 5);
4538    return cast<Expr>(SubExprs[VAL2]);
4539  }
4540  void setVal2(Expr *E) {
4541    assert(NumSubExprs == 5);
4542    SubExprs[VAL2] = E;
4543  }
4544
4545  AtomicOp getOp() const { return Op; }
4546  void setOp(AtomicOp op) { Op = op; }
4547  unsigned getNumSubExprs() { return NumSubExprs; }
4548  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4549
4550  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4551
4552  bool isVolatile() const {
4553    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4554  }
4555
4556  bool isCmpXChg() const {
4557    return getOp() == AtomicExpr::CmpXchgStrong ||
4558           getOp() == AtomicExpr::CmpXchgWeak;
4559  }
4560
4561  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4562  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4563
4564  SourceLocation getRParenLoc() const { return RParenLoc; }
4565  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4566
4567  SourceRange getSourceRange() const {
4568    return SourceRange(BuiltinLoc, RParenLoc);
4569  }
4570  static bool classof(const Stmt *T) {
4571    return T->getStmtClass() == AtomicExprClass;
4572  }
4573  static bool classof(const AtomicExpr *) { return true; }
4574
4575  // Iterators
4576  child_range children() {
4577    return child_range(SubExprs, SubExprs+NumSubExprs);
4578  }
4579};
4580}  // end namespace clang
4581
4582#endif
4583