Expr.h revision 0ae287a498b8cec2086fe6b7e753cbb3df63e74a
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <vector>
29
30namespace clang {
31  class ASTContext;
32  class APValue;
33  class Decl;
34  class IdentifierInfo;
35  class ParmVarDecl;
36  class NamedDecl;
37  class ValueDecl;
38  class BlockDecl;
39  class CXXBaseSpecifier;
40  class CXXOperatorCallExpr;
41  class CXXMemberCallExpr;
42  class TemplateArgumentLoc;
43  class TemplateArgumentListInfo;
44
45/// \brief A simple array of base specifiers.
46typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
47
48/// Expr - This represents one expression.  Note that Expr's are subclasses of
49/// Stmt.  This allows an expression to be transparently used any place a Stmt
50/// is required.
51///
52class Expr : public Stmt {
53  QualType TR;
54
55  virtual void ANCHOR(); // key function.
56
57protected:
58  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
59       bool TD, bool VD) : Stmt(SC) {
60    ExprBits.TypeDependent = TD;
61    ExprBits.ValueDependent = VD;
62    ExprBits.ValueKind = VK;
63    ExprBits.ObjectKind = OK;
64    setType(T);
65  }
66
67  /// \brief Construct an empty expression.
68  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
69
70public:
71  QualType getType() const { return TR; }
72  void setType(QualType t) {
73    // In C++, the type of an expression is always adjusted so that it
74    // will not have reference type an expression will never have
75    // reference type (C++ [expr]p6). Use
76    // QualType::getNonReferenceType() to retrieve the non-reference
77    // type. Additionally, inspect Expr::isLvalue to determine whether
78    // an expression that is adjusted in this manner should be
79    // considered an lvalue.
80    assert((t.isNull() || !t->isReferenceType()) &&
81           "Expressions can't have reference type");
82
83    TR = t;
84  }
85
86  /// isValueDependent - Determines whether this expression is
87  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
88  /// array bound of "Chars" in the following example is
89  /// value-dependent.
90  /// @code
91  /// template<int Size, char (&Chars)[Size]> struct meta_string;
92  /// @endcode
93  bool isValueDependent() const { return ExprBits.ValueDependent; }
94
95  /// \brief Set whether this expression is value-dependent or not.
96  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
97
98  /// isTypeDependent - Determines whether this expression is
99  /// type-dependent (C++ [temp.dep.expr]), which means that its type
100  /// could change from one template instantiation to the next. For
101  /// example, the expressions "x" and "x + y" are type-dependent in
102  /// the following code, but "y" is not type-dependent:
103  /// @code
104  /// template<typename T>
105  /// void add(T x, int y) {
106  ///   x + y;
107  /// }
108  /// @endcode
109  bool isTypeDependent() const { return ExprBits.TypeDependent; }
110
111  /// \brief Set whether this expression is type-dependent or not.
112  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
113
114  /// SourceLocation tokens are not useful in isolation - they are low level
115  /// value objects created/interpreted by SourceManager. We assume AST
116  /// clients will have a pointer to the respective SourceManager.
117  virtual SourceRange getSourceRange() const = 0;
118
119  /// getExprLoc - Return the preferred location for the arrow when diagnosing
120  /// a problem with a generic expression.
121  virtual SourceLocation getExprLoc() const { return getLocStart(); }
122
123  /// isUnusedResultAWarning - Return true if this immediate expression should
124  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
125  /// with location to warn on and the source range[s] to report with the
126  /// warning.
127  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
128                              SourceRange &R2, ASTContext &Ctx) const;
129
130  /// isLValue - True if this expression is an "l-value" according to
131  /// the rules of the current language.  C and C++ give somewhat
132  /// different rules for this concept, but in general, the result of
133  /// an l-value expression identifies a specific object whereas the
134  /// result of an r-value expression is a value detached from any
135  /// specific storage.
136  ///
137  /// C++0x divides the concept of "r-value" into pure r-values
138  /// ("pr-values") and so-called expiring values ("x-values"), which
139  /// identify specific objects that can be safely cannibalized for
140  /// their resources.  This is an unfortunate abuse of terminology on
141  /// the part of the C++ committee.  In Clang, when we say "r-value",
142  /// we generally mean a pr-value.
143  bool isLValue() const { return getValueKind() == VK_LValue; }
144  bool isRValue() const { return getValueKind() == VK_RValue; }
145  bool isXValue() const { return getValueKind() == VK_XValue; }
146  bool isGLValue() const { return getValueKind() != VK_RValue; }
147
148  enum LValueClassification {
149    LV_Valid,
150    LV_NotObjectType,
151    LV_IncompleteVoidType,
152    LV_DuplicateVectorComponents,
153    LV_InvalidExpression,
154    LV_MemberFunction,
155    LV_SubObjCPropertySetting,
156    LV_ClassTemporary
157  };
158  /// Reasons why an expression might not be an l-value.
159  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
160
161  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
162  /// does not have an incomplete type, does not have a const-qualified type,
163  /// and if it is a structure or union, does not have any member (including,
164  /// recursively, any member or element of all contained aggregates or unions)
165  /// with a const-qualified type.
166  ///
167  /// \param Loc [in] [out] - A source location which *may* be filled
168  /// in with the location of the expression making this a
169  /// non-modifiable lvalue, if specified.
170  enum isModifiableLvalueResult {
171    MLV_Valid,
172    MLV_NotObjectType,
173    MLV_IncompleteVoidType,
174    MLV_DuplicateVectorComponents,
175    MLV_InvalidExpression,
176    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
177    MLV_IncompleteType,
178    MLV_ConstQualified,
179    MLV_ArrayType,
180    MLV_NotBlockQualified,
181    MLV_ReadonlyProperty,
182    MLV_NoSetterProperty,
183    MLV_MemberFunction,
184    MLV_SubObjCPropertySetting,
185    MLV_ClassTemporary
186  };
187  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
188                                              SourceLocation *Loc = 0) const;
189
190  /// \brief The return type of classify(). Represents the C++0x expression
191  ///        taxonomy.
192  class Classification {
193  public:
194    /// \brief The various classification results. Most of these mean prvalue.
195    enum Kinds {
196      CL_LValue,
197      CL_XValue,
198      CL_Function, // Functions cannot be lvalues in C.
199      CL_Void, // Void cannot be an lvalue in C.
200      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
201      CL_MemberFunction, // An expression referring to a member function
202      CL_SubObjCPropertySetting,
203      CL_ClassTemporary, // A prvalue of class type
204      CL_PRValue // A prvalue for any other reason, of any other type
205    };
206    /// \brief The results of modification testing.
207    enum ModifiableType {
208      CM_Untested, // testModifiable was false.
209      CM_Modifiable,
210      CM_RValue, // Not modifiable because it's an rvalue
211      CM_Function, // Not modifiable because it's a function; C++ only
212      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
213      CM_NotBlockQualified, // Not captured in the closure
214      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
215      CM_ConstQualified,
216      CM_ArrayType,
217      CM_IncompleteType
218    };
219
220  private:
221    friend class Expr;
222
223    unsigned short Kind;
224    unsigned short Modifiable;
225
226    explicit Classification(Kinds k, ModifiableType m)
227      : Kind(k), Modifiable(m)
228    {}
229
230  public:
231    Classification() {}
232
233    Kinds getKind() const { return static_cast<Kinds>(Kind); }
234    ModifiableType getModifiable() const {
235      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
236      return static_cast<ModifiableType>(Modifiable);
237    }
238    bool isLValue() const { return Kind == CL_LValue; }
239    bool isXValue() const { return Kind == CL_XValue; }
240    bool isGLValue() const { return Kind <= CL_XValue; }
241    bool isPRValue() const { return Kind >= CL_Function; }
242    bool isRValue() const { return Kind >= CL_XValue; }
243    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
244  };
245  /// \brief Classify - Classify this expression according to the C++0x
246  ///        expression taxonomy.
247  ///
248  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
249  /// old lvalue vs rvalue. This function determines the type of expression this
250  /// is. There are three expression types:
251  /// - lvalues are classical lvalues as in C++03.
252  /// - prvalues are equivalent to rvalues in C++03.
253  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
254  ///   function returning an rvalue reference.
255  /// lvalues and xvalues are collectively referred to as glvalues, while
256  /// prvalues and xvalues together form rvalues.
257  Classification Classify(ASTContext &Ctx) const {
258    return ClassifyImpl(Ctx, 0);
259  }
260
261  /// \brief ClassifyModifiable - Classify this expression according to the
262  ///        C++0x expression taxonomy, and see if it is valid on the left side
263  ///        of an assignment.
264  ///
265  /// This function extends classify in that it also tests whether the
266  /// expression is modifiable (C99 6.3.2.1p1).
267  /// \param Loc A source location that might be filled with a relevant location
268  ///            if the expression is not modifiable.
269  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
270    return ClassifyImpl(Ctx, &Loc);
271  }
272
273  /// getValueKindForType - Given a formal return or parameter type,
274  /// give its value kind.
275  static ExprValueKind getValueKindForType(QualType T) {
276    if (const ReferenceType *RT = T->getAs<ReferenceType>())
277      return (isa<LValueReferenceType>(RT)
278                ? VK_LValue
279                : (RT->getPointeeType()->isFunctionType()
280                     ? VK_LValue : VK_XValue));
281    return VK_RValue;
282  }
283
284  /// getValueKind - The value kind that this expression produces.
285  ExprValueKind getValueKind() const {
286    return static_cast<ExprValueKind>(ExprBits.ValueKind);
287  }
288
289  /// getObjectKind - The object kind that this expression produces.
290  /// Object kinds are meaningful only for expressions that yield an
291  /// l-value or x-value.
292  ExprObjectKind getObjectKind() const {
293    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
294  }
295
296  /// setValueKind - Set the value kind produced by this expression.
297  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
298
299  /// setObjectKind - Set the object kind produced by this expression.
300  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
301
302private:
303  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
304
305public:
306
307  /// \brief If this expression refers to a bit-field, retrieve the
308  /// declaration of that bit-field.
309  FieldDecl *getBitField();
310
311  const FieldDecl *getBitField() const {
312    return const_cast<Expr*>(this)->getBitField();
313  }
314
315  /// \brief Returns whether this expression refers to a vector element.
316  bool refersToVectorElement() const;
317
318  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
319  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
320  /// but also int expressions which are produced by things like comparisons in
321  /// C.
322  bool isKnownToHaveBooleanValue() const;
323
324  /// isIntegerConstantExpr - Return true if this expression is a valid integer
325  /// constant expression, and, if so, return its value in Result.  If not a
326  /// valid i-c-e, return false and fill in Loc (if specified) with the location
327  /// of the invalid expression.
328  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
329                             SourceLocation *Loc = 0,
330                             bool isEvaluated = true) const;
331  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
332    llvm::APSInt X;
333    return isIntegerConstantExpr(X, Ctx, Loc);
334  }
335  /// isConstantInitializer - Returns true if this expression is a constant
336  /// initializer, which can be emitted at compile-time.
337  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
338
339  /// EvalResult is a struct with detailed info about an evaluated expression.
340  struct EvalResult {
341    /// Val - This is the value the expression can be folded to.
342    APValue Val;
343
344    /// HasSideEffects - Whether the evaluated expression has side effects.
345    /// For example, (f() && 0) can be folded, but it still has side effects.
346    bool HasSideEffects;
347
348    /// Diag - If the expression is unfoldable, then Diag contains a note
349    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
350    /// position for the error, and DiagExpr is the expression that caused
351    /// the error.
352    /// If the expression is foldable, but not an integer constant expression,
353    /// Diag contains a note diagnostic that describes why it isn't an integer
354    /// constant expression. If the expression *is* an integer constant
355    /// expression, then Diag will be zero.
356    unsigned Diag;
357    const Expr *DiagExpr;
358    SourceLocation DiagLoc;
359
360    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
361
362    // isGlobalLValue - Return true if the evaluated lvalue expression
363    // is global.
364    bool isGlobalLValue() const;
365    // hasSideEffects - Return true if the evaluated expression has
366    // side effects.
367    bool hasSideEffects() const {
368      return HasSideEffects;
369    }
370  };
371
372  /// Evaluate - Return true if this is a constant which we can fold using
373  /// any crazy technique (that has nothing to do with language standards) that
374  /// we want to.  If this function returns true, it returns the folded constant
375  /// in Result.
376  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
377
378  /// EvaluateAsBooleanCondition - Return true if this is a constant
379  /// which we we can fold and convert to a boolean condition using
380  /// any crazy technique that we want to.
381  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
382
383  /// isEvaluatable - Call Evaluate to see if this expression can be constant
384  /// folded, but discard the result.
385  bool isEvaluatable(ASTContext &Ctx) const;
386
387  /// HasSideEffects - This routine returns true for all those expressions
388  /// which must be evaluated each time and must not be optimized away
389  /// or evaluated at compile time. Example is a function call, volatile
390  /// variable read.
391  bool HasSideEffects(ASTContext &Ctx) const;
392
393  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
394  /// must be called on an expression that constant folds to an integer.
395  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
396
397  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
398  /// with link time known address.
399  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
400
401  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
402  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
403
404  /// \brief Enumeration used to describe how \c isNullPointerConstant()
405  /// should cope with value-dependent expressions.
406  enum NullPointerConstantValueDependence {
407    /// \brief Specifies that the expression should never be value-dependent.
408    NPC_NeverValueDependent = 0,
409
410    /// \brief Specifies that a value-dependent expression of integral or
411    /// dependent type should be considered a null pointer constant.
412    NPC_ValueDependentIsNull,
413
414    /// \brief Specifies that a value-dependent expression should be considered
415    /// to never be a null pointer constant.
416    NPC_ValueDependentIsNotNull
417  };
418
419  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
420  /// integer constant expression with the value zero, or if this is one that is
421  /// cast to void*.
422  bool isNullPointerConstant(ASTContext &Ctx,
423                             NullPointerConstantValueDependence NPC) const;
424
425  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
426  /// write barrier.
427  bool isOBJCGCCandidate(ASTContext &Ctx) const;
428
429  /// \brief Returns true if this expression is a bound member function.
430  bool isBoundMemberFunction(ASTContext &Ctx) const;
431
432  /// \brief Result type of CanThrow().
433  enum CanThrowResult {
434    CT_Cannot,
435    CT_Dependent,
436    CT_Can
437  };
438  /// \brief Test if this expression, if evaluated, might throw, according to
439  ///        the rules of C++ [expr.unary.noexcept].
440  CanThrowResult CanThrow(ASTContext &C) const;
441
442  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
443  ///  its subexpression.  If that subexpression is also a ParenExpr,
444  ///  then this method recursively returns its subexpression, and so forth.
445  ///  Otherwise, the method returns the current Expr.
446  Expr *IgnoreParens();
447
448  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
449  /// or CastExprs, returning their operand.
450  Expr *IgnoreParenCasts();
451
452  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
453  /// ParenExpr or ImplicitCastExprs, returning their operand.
454  Expr *IgnoreParenImpCasts();
455
456  const Expr *IgnoreParenImpCasts() const {
457    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
458  }
459
460  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
461  /// value (including ptr->int casts of the same size).  Strip off any
462  /// ParenExpr or CastExprs, returning their operand.
463  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
464
465  /// \brief Determine whether this expression is a default function argument.
466  ///
467  /// Default arguments are implicitly generated in the abstract syntax tree
468  /// by semantic analysis for function calls, object constructions, etc. in
469  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
470  /// this routine also looks through any implicit casts to determine whether
471  /// the expression is a default argument.
472  bool isDefaultArgument() const;
473
474  /// \brief Determine whether the result of this expression is a
475  /// temporary object of the given class type.
476  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
477
478  const Expr *IgnoreParens() const {
479    return const_cast<Expr*>(this)->IgnoreParens();
480  }
481  const Expr *IgnoreParenCasts() const {
482    return const_cast<Expr*>(this)->IgnoreParenCasts();
483  }
484  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
485    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
486  }
487
488  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
489  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
490
491  static bool classof(const Stmt *T) {
492    return T->getStmtClass() >= firstExprConstant &&
493           T->getStmtClass() <= lastExprConstant;
494  }
495  static bool classof(const Expr *) { return true; }
496};
497
498
499//===----------------------------------------------------------------------===//
500// Primary Expressions.
501//===----------------------------------------------------------------------===//
502
503/// \brief Represents the qualifier that may precede a C++ name, e.g., the
504/// "std::" in "std::sort".
505struct NameQualifier {
506  /// \brief The nested name specifier.
507  NestedNameSpecifier *NNS;
508
509  /// \brief The source range covered by the nested name specifier.
510  SourceRange Range;
511};
512
513/// \brief Represents an explicit template argument list in C++, e.g.,
514/// the "<int>" in "sort<int>".
515struct ExplicitTemplateArgumentList {
516  /// \brief The source location of the left angle bracket ('<');
517  SourceLocation LAngleLoc;
518
519  /// \brief The source location of the right angle bracket ('>');
520  SourceLocation RAngleLoc;
521
522  /// \brief The number of template arguments in TemplateArgs.
523  /// The actual template arguments (if any) are stored after the
524  /// ExplicitTemplateArgumentList structure.
525  unsigned NumTemplateArgs;
526
527  /// \brief Retrieve the template arguments
528  TemplateArgumentLoc *getTemplateArgs() {
529    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
530  }
531
532  /// \brief Retrieve the template arguments
533  const TemplateArgumentLoc *getTemplateArgs() const {
534    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
535  }
536
537  void initializeFrom(const TemplateArgumentListInfo &List);
538  void copyInto(TemplateArgumentListInfo &List) const;
539  static std::size_t sizeFor(unsigned NumTemplateArgs);
540  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
541};
542
543/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
544/// enum, etc.
545class DeclRefExpr : public Expr {
546  enum {
547    // Flag on DecoratedD that specifies when this declaration reference
548    // expression has a C++ nested-name-specifier.
549    HasQualifierFlag = 0x01,
550    // Flag on DecoratedD that specifies when this declaration reference
551    // expression has an explicit C++ template argument list.
552    HasExplicitTemplateArgumentListFlag = 0x02
553  };
554
555  // DecoratedD - The declaration that we are referencing, plus two bits to
556  // indicate whether (1) the declaration's name was explicitly qualified and
557  // (2) the declaration's name was followed by an explicit template
558  // argument list.
559  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
560
561  // Loc - The location of the declaration name itself.
562  SourceLocation Loc;
563
564  /// DNLoc - Provides source/type location info for the
565  /// declaration name embedded in DecoratedD.
566  DeclarationNameLoc DNLoc;
567
568  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
569  NameQualifier *getNameQualifier() {
570    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
571      return 0;
572
573    return reinterpret_cast<NameQualifier *> (this + 1);
574  }
575
576  /// \brief Retrieve the qualifier that preceded the member name, if any.
577  const NameQualifier *getNameQualifier() const {
578    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
579  }
580
581  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
582              ValueDecl *D, SourceLocation NameLoc,
583              const TemplateArgumentListInfo *TemplateArgs,
584              QualType T, ExprValueKind VK);
585
586  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
587              ValueDecl *D, const DeclarationNameInfo &NameInfo,
588              const TemplateArgumentListInfo *TemplateArgs,
589              QualType T, ExprValueKind VK);
590
591  /// \brief Construct an empty declaration reference expression.
592  explicit DeclRefExpr(EmptyShell Empty)
593    : Expr(DeclRefExprClass, Empty) { }
594
595  /// \brief Computes the type- and value-dependence flags for this
596  /// declaration reference expression.
597  void computeDependence();
598
599public:
600  DeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK, SourceLocation l) :
601    Expr(DeclRefExprClass, t, VK, OK_Ordinary, false, false),
602    DecoratedD(d, 0), Loc(l) {
603    computeDependence();
604  }
605
606  static DeclRefExpr *Create(ASTContext &Context,
607                             NestedNameSpecifier *Qualifier,
608                             SourceRange QualifierRange,
609                             ValueDecl *D,
610                             SourceLocation NameLoc,
611                             QualType T, ExprValueKind VK,
612                             const TemplateArgumentListInfo *TemplateArgs = 0);
613
614  static DeclRefExpr *Create(ASTContext &Context,
615                             NestedNameSpecifier *Qualifier,
616                             SourceRange QualifierRange,
617                             ValueDecl *D,
618                             const DeclarationNameInfo &NameInfo,
619                             QualType T, ExprValueKind VK,
620                             const TemplateArgumentListInfo *TemplateArgs = 0);
621
622  /// \brief Construct an empty declaration reference expression.
623  static DeclRefExpr *CreateEmpty(ASTContext &Context,
624                                  bool HasQualifier, unsigned NumTemplateArgs);
625
626  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
627  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
628  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
629
630  DeclarationNameInfo getNameInfo() const {
631    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
632  }
633
634  SourceLocation getLocation() const { return Loc; }
635  void setLocation(SourceLocation L) { Loc = L; }
636  virtual SourceRange getSourceRange() const;
637
638  /// \brief Determine whether this declaration reference was preceded by a
639  /// C++ nested-name-specifier, e.g., \c N::foo.
640  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
641
642  /// \brief If the name was qualified, retrieves the source range of
643  /// the nested-name-specifier that precedes the name. Otherwise,
644  /// returns an empty source range.
645  SourceRange getQualifierRange() const {
646    if (!hasQualifier())
647      return SourceRange();
648
649    return getNameQualifier()->Range;
650  }
651
652  /// \brief If the name was qualified, retrieves the nested-name-specifier
653  /// that precedes the name. Otherwise, returns NULL.
654  NestedNameSpecifier *getQualifier() const {
655    if (!hasQualifier())
656      return 0;
657
658    return getNameQualifier()->NNS;
659  }
660
661  bool hasExplicitTemplateArgs() const {
662    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
663  }
664
665  /// \brief Retrieve the explicit template argument list that followed the
666  /// member template name.
667  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
668    assert(hasExplicitTemplateArgs());
669
670    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
671      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
672
673    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
674                                                      getNameQualifier() + 1);
675  }
676
677  /// \brief Retrieve the explicit template argument list that followed the
678  /// member template name.
679  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
680    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
681  }
682
683  /// \brief Retrieves the optional explicit template arguments.
684  /// This points to the same data as getExplicitTemplateArgs(), but
685  /// returns null if there are no explicit template arguments.
686  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
687    if (!hasExplicitTemplateArgs()) return 0;
688    return &getExplicitTemplateArgs();
689  }
690
691  /// \brief Copies the template arguments (if present) into the given
692  /// structure.
693  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
694    if (hasExplicitTemplateArgs())
695      getExplicitTemplateArgs().copyInto(List);
696  }
697
698  /// \brief Retrieve the location of the left angle bracket following the
699  /// member name ('<'), if any.
700  SourceLocation getLAngleLoc() const {
701    if (!hasExplicitTemplateArgs())
702      return SourceLocation();
703
704    return getExplicitTemplateArgs().LAngleLoc;
705  }
706
707  /// \brief Retrieve the template arguments provided as part of this
708  /// template-id.
709  const TemplateArgumentLoc *getTemplateArgs() const {
710    if (!hasExplicitTemplateArgs())
711      return 0;
712
713    return getExplicitTemplateArgs().getTemplateArgs();
714  }
715
716  /// \brief Retrieve the number of template arguments provided as part of this
717  /// template-id.
718  unsigned getNumTemplateArgs() const {
719    if (!hasExplicitTemplateArgs())
720      return 0;
721
722    return getExplicitTemplateArgs().NumTemplateArgs;
723  }
724
725  /// \brief Retrieve the location of the right angle bracket following the
726  /// template arguments ('>').
727  SourceLocation getRAngleLoc() const {
728    if (!hasExplicitTemplateArgs())
729      return SourceLocation();
730
731    return getExplicitTemplateArgs().RAngleLoc;
732  }
733
734  static bool classof(const Stmt *T) {
735    return T->getStmtClass() == DeclRefExprClass;
736  }
737  static bool classof(const DeclRefExpr *) { return true; }
738
739  // Iterators
740  virtual child_iterator child_begin();
741  virtual child_iterator child_end();
742
743  friend class ASTStmtReader;
744  friend class ASTStmtWriter;
745};
746
747/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
748class PredefinedExpr : public Expr {
749public:
750  enum IdentType {
751    Func,
752    Function,
753    PrettyFunction,
754    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
755    /// 'virtual' keyword is omitted for virtual member functions.
756    PrettyFunctionNoVirtual
757  };
758
759private:
760  SourceLocation Loc;
761  IdentType Type;
762public:
763  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
764    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
765           type->isDependentType(), type->isDependentType()),
766      Loc(l), Type(IT) {}
767
768  /// \brief Construct an empty predefined expression.
769  explicit PredefinedExpr(EmptyShell Empty)
770    : Expr(PredefinedExprClass, Empty) { }
771
772  IdentType getIdentType() const { return Type; }
773  void setIdentType(IdentType IT) { Type = IT; }
774
775  SourceLocation getLocation() const { return Loc; }
776  void setLocation(SourceLocation L) { Loc = L; }
777
778  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
779
780  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
781
782  static bool classof(const Stmt *T) {
783    return T->getStmtClass() == PredefinedExprClass;
784  }
785  static bool classof(const PredefinedExpr *) { return true; }
786
787  // Iterators
788  virtual child_iterator child_begin();
789  virtual child_iterator child_end();
790};
791
792/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
793/// leaking memory.
794///
795/// For large floats/integers, APFloat/APInt will allocate memory from the heap
796/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
797/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
798/// the APFloat/APInt values will never get freed. APNumericStorage uses
799/// ASTContext's allocator for memory allocation.
800class APNumericStorage {
801  unsigned BitWidth;
802  union {
803    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
804    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
805  };
806
807  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
808
809  APNumericStorage(const APNumericStorage&); // do not implement
810  APNumericStorage& operator=(const APNumericStorage&); // do not implement
811
812protected:
813  APNumericStorage() : BitWidth(0), VAL(0) { }
814
815  llvm::APInt getIntValue() const {
816    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
817    if (NumWords > 1)
818      return llvm::APInt(BitWidth, NumWords, pVal);
819    else
820      return llvm::APInt(BitWidth, VAL);
821  }
822  void setIntValue(ASTContext &C, const llvm::APInt &Val);
823};
824
825class APIntStorage : public APNumericStorage {
826public:
827  llvm::APInt getValue() const { return getIntValue(); }
828  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
829};
830
831class APFloatStorage : public APNumericStorage {
832public:
833  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
834  void setValue(ASTContext &C, const llvm::APFloat &Val) {
835    setIntValue(C, Val.bitcastToAPInt());
836  }
837};
838
839class IntegerLiteral : public Expr {
840  APIntStorage Num;
841  SourceLocation Loc;
842
843  /// \brief Construct an empty integer literal.
844  explicit IntegerLiteral(EmptyShell Empty)
845    : Expr(IntegerLiteralClass, Empty) { }
846
847public:
848  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
849  // or UnsignedLongLongTy
850  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
851                 QualType type, SourceLocation l)
852    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false),
853      Loc(l) {
854    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
855    setValue(C, V);
856  }
857
858  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
859  // or UnsignedLongLongTy
860  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
861                                QualType type, SourceLocation l);
862  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
863
864  llvm::APInt getValue() const { return Num.getValue(); }
865  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
866
867  /// \brief Retrieve the location of the literal.
868  SourceLocation getLocation() const { return Loc; }
869
870  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
871  void setLocation(SourceLocation Location) { Loc = Location; }
872
873  static bool classof(const Stmt *T) {
874    return T->getStmtClass() == IntegerLiteralClass;
875  }
876  static bool classof(const IntegerLiteral *) { return true; }
877
878  // Iterators
879  virtual child_iterator child_begin();
880  virtual child_iterator child_end();
881};
882
883class CharacterLiteral : public Expr {
884  unsigned Value;
885  SourceLocation Loc;
886  bool IsWide;
887public:
888  // type should be IntTy
889  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
890    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false),
891      Value(value), Loc(l), IsWide(iswide) {
892  }
893
894  /// \brief Construct an empty character literal.
895  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
896
897  SourceLocation getLocation() const { return Loc; }
898  bool isWide() const { return IsWide; }
899
900  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
901
902  unsigned getValue() const { return Value; }
903
904  void setLocation(SourceLocation Location) { Loc = Location; }
905  void setWide(bool W) { IsWide = W; }
906  void setValue(unsigned Val) { Value = Val; }
907
908  static bool classof(const Stmt *T) {
909    return T->getStmtClass() == CharacterLiteralClass;
910  }
911  static bool classof(const CharacterLiteral *) { return true; }
912
913  // Iterators
914  virtual child_iterator child_begin();
915  virtual child_iterator child_end();
916};
917
918class FloatingLiteral : public Expr {
919  APFloatStorage Num;
920  bool IsExact : 1;
921  SourceLocation Loc;
922
923  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
924                  QualType Type, SourceLocation L)
925    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false),
926      IsExact(isexact), Loc(L) {
927    setValue(C, V);
928  }
929
930  /// \brief Construct an empty floating-point literal.
931  explicit FloatingLiteral(EmptyShell Empty)
932    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
933
934public:
935  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
936                                 bool isexact, QualType Type, SourceLocation L);
937  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
938
939  llvm::APFloat getValue() const { return Num.getValue(); }
940  void setValue(ASTContext &C, const llvm::APFloat &Val) {
941    Num.setValue(C, Val);
942  }
943
944  bool isExact() const { return IsExact; }
945  void setExact(bool E) { IsExact = E; }
946
947  /// getValueAsApproximateDouble - This returns the value as an inaccurate
948  /// double.  Note that this may cause loss of precision, but is useful for
949  /// debugging dumps, etc.
950  double getValueAsApproximateDouble() const;
951
952  SourceLocation getLocation() const { return Loc; }
953  void setLocation(SourceLocation L) { Loc = L; }
954
955  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
956
957  static bool classof(const Stmt *T) {
958    return T->getStmtClass() == FloatingLiteralClass;
959  }
960  static bool classof(const FloatingLiteral *) { return true; }
961
962  // Iterators
963  virtual child_iterator child_begin();
964  virtual child_iterator child_end();
965};
966
967/// ImaginaryLiteral - We support imaginary integer and floating point literals,
968/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
969/// IntegerLiteral classes.  Instances of this class always have a Complex type
970/// whose element type matches the subexpression.
971///
972class ImaginaryLiteral : public Expr {
973  Stmt *Val;
974public:
975  ImaginaryLiteral(Expr *val, QualType Ty)
976    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false),
977      Val(val) {}
978
979  /// \brief Build an empty imaginary literal.
980  explicit ImaginaryLiteral(EmptyShell Empty)
981    : Expr(ImaginaryLiteralClass, Empty) { }
982
983  const Expr *getSubExpr() const { return cast<Expr>(Val); }
984  Expr *getSubExpr() { return cast<Expr>(Val); }
985  void setSubExpr(Expr *E) { Val = E; }
986
987  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
988  static bool classof(const Stmt *T) {
989    return T->getStmtClass() == ImaginaryLiteralClass;
990  }
991  static bool classof(const ImaginaryLiteral *) { return true; }
992
993  // Iterators
994  virtual child_iterator child_begin();
995  virtual child_iterator child_end();
996};
997
998/// StringLiteral - This represents a string literal expression, e.g. "foo"
999/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1000/// is NOT null-terminated, and the length of the string is determined by
1001/// calling getByteLength().  The C type for a string is always a
1002/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1003/// not.
1004///
1005/// Note that strings in C can be formed by concatenation of multiple string
1006/// literal pptokens in translation phase #6.  This keeps track of the locations
1007/// of each of these pieces.
1008///
1009/// Strings in C can also be truncated and extended by assigning into arrays,
1010/// e.g. with constructs like:
1011///   char X[2] = "foobar";
1012/// In this case, getByteLength() will return 6, but the string literal will
1013/// have type "char[2]".
1014class StringLiteral : public Expr {
1015  const char *StrData;
1016  unsigned ByteLength;
1017  bool IsWide;
1018  unsigned NumConcatenated;
1019  SourceLocation TokLocs[1];
1020
1021  StringLiteral(QualType Ty) :
1022    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false) {}
1023
1024public:
1025  /// This is the "fully general" constructor that allows representation of
1026  /// strings formed from multiple concatenated tokens.
1027  static StringLiteral *Create(ASTContext &C, const char *StrData,
1028                               unsigned ByteLength, bool Wide, QualType Ty,
1029                               const SourceLocation *Loc, unsigned NumStrs);
1030
1031  /// Simple constructor for string literals made from one token.
1032  static StringLiteral *Create(ASTContext &C, const char *StrData,
1033                               unsigned ByteLength,
1034                               bool Wide, QualType Ty, SourceLocation Loc) {
1035    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1036  }
1037
1038  /// \brief Construct an empty string literal.
1039  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1040
1041  llvm::StringRef getString() const {
1042    return llvm::StringRef(StrData, ByteLength);
1043  }
1044
1045  unsigned getByteLength() const { return ByteLength; }
1046
1047  /// \brief Sets the string data to the given string data.
1048  void setString(ASTContext &C, llvm::StringRef Str);
1049
1050  bool isWide() const { return IsWide; }
1051  void setWide(bool W) { IsWide = W; }
1052
1053  bool containsNonAsciiOrNull() const {
1054    llvm::StringRef Str = getString();
1055    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1056      if (!isascii(Str[i]) || !Str[i])
1057        return true;
1058    return false;
1059  }
1060  /// getNumConcatenated - Get the number of string literal tokens that were
1061  /// concatenated in translation phase #6 to form this string literal.
1062  unsigned getNumConcatenated() const { return NumConcatenated; }
1063
1064  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1065    assert(TokNum < NumConcatenated && "Invalid tok number");
1066    return TokLocs[TokNum];
1067  }
1068  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1069    assert(TokNum < NumConcatenated && "Invalid tok number");
1070    TokLocs[TokNum] = L;
1071  }
1072
1073  /// getLocationOfByte - Return a source location that points to the specified
1074  /// byte of this string literal.
1075  ///
1076  /// Strings are amazingly complex.  They can be formed from multiple tokens
1077  /// and can have escape sequences in them in addition to the usual trigraph
1078  /// and escaped newline business.  This routine handles this complexity.
1079  ///
1080  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1081                                   const LangOptions &Features,
1082                                   const TargetInfo &Target) const;
1083
1084  typedef const SourceLocation *tokloc_iterator;
1085  tokloc_iterator tokloc_begin() const { return TokLocs; }
1086  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1087
1088  virtual SourceRange getSourceRange() const {
1089    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1090  }
1091  static bool classof(const Stmt *T) {
1092    return T->getStmtClass() == StringLiteralClass;
1093  }
1094  static bool classof(const StringLiteral *) { return true; }
1095
1096  // Iterators
1097  virtual child_iterator child_begin();
1098  virtual child_iterator child_end();
1099};
1100
1101/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1102/// AST node is only formed if full location information is requested.
1103class ParenExpr : public Expr {
1104  SourceLocation L, R;
1105  Stmt *Val;
1106public:
1107  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1108    : Expr(ParenExprClass, val->getType(),
1109           val->getValueKind(), val->getObjectKind(),
1110           val->isTypeDependent(), val->isValueDependent()),
1111      L(l), R(r), Val(val) {}
1112
1113  /// \brief Construct an empty parenthesized expression.
1114  explicit ParenExpr(EmptyShell Empty)
1115    : Expr(ParenExprClass, Empty) { }
1116
1117  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1118  Expr *getSubExpr() { return cast<Expr>(Val); }
1119  void setSubExpr(Expr *E) { Val = E; }
1120
1121  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1122
1123  /// \brief Get the location of the left parentheses '('.
1124  SourceLocation getLParen() const { return L; }
1125  void setLParen(SourceLocation Loc) { L = Loc; }
1126
1127  /// \brief Get the location of the right parentheses ')'.
1128  SourceLocation getRParen() const { return R; }
1129  void setRParen(SourceLocation Loc) { R = Loc; }
1130
1131  static bool classof(const Stmt *T) {
1132    return T->getStmtClass() == ParenExprClass;
1133  }
1134  static bool classof(const ParenExpr *) { return true; }
1135
1136  // Iterators
1137  virtual child_iterator child_begin();
1138  virtual child_iterator child_end();
1139};
1140
1141
1142/// UnaryOperator - This represents the unary-expression's (except sizeof and
1143/// alignof), the postinc/postdec operators from postfix-expression, and various
1144/// extensions.
1145///
1146/// Notes on various nodes:
1147///
1148/// Real/Imag - These return the real/imag part of a complex operand.  If
1149///   applied to a non-complex value, the former returns its operand and the
1150///   later returns zero in the type of the operand.
1151///
1152class UnaryOperator : public Expr {
1153public:
1154  typedef UnaryOperatorKind Opcode;
1155
1156private:
1157  unsigned Opc : 5;
1158  SourceLocation Loc;
1159  Stmt *Val;
1160public:
1161
1162  UnaryOperator(Expr *input, Opcode opc, QualType type,
1163                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1164    : Expr(UnaryOperatorClass, type, VK, OK,
1165           input->isTypeDependent() || type->isDependentType(),
1166           input->isValueDependent()),
1167      Opc(opc), Loc(l), Val(input) {}
1168
1169  /// \brief Build an empty unary operator.
1170  explicit UnaryOperator(EmptyShell Empty)
1171    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1172
1173  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1174  void setOpcode(Opcode O) { Opc = O; }
1175
1176  Expr *getSubExpr() const { return cast<Expr>(Val); }
1177  void setSubExpr(Expr *E) { Val = E; }
1178
1179  /// getOperatorLoc - Return the location of the operator.
1180  SourceLocation getOperatorLoc() const { return Loc; }
1181  void setOperatorLoc(SourceLocation L) { Loc = L; }
1182
1183  /// isPostfix - Return true if this is a postfix operation, like x++.
1184  static bool isPostfix(Opcode Op) {
1185    return Op == UO_PostInc || Op == UO_PostDec;
1186  }
1187
1188  /// isPrefix - Return true if this is a prefix operation, like --x.
1189  static bool isPrefix(Opcode Op) {
1190    return Op == UO_PreInc || Op == UO_PreDec;
1191  }
1192
1193  bool isPrefix() const { return isPrefix(getOpcode()); }
1194  bool isPostfix() const { return isPostfix(getOpcode()); }
1195  bool isIncrementOp() const {
1196    return Opc == UO_PreInc || Opc == UO_PostInc;
1197  }
1198  bool isIncrementDecrementOp() const {
1199    return Opc <= UO_PreDec;
1200  }
1201  static bool isArithmeticOp(Opcode Op) {
1202    return Op >= UO_Plus && Op <= UO_LNot;
1203  }
1204  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1205
1206  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1207  /// corresponds to, e.g. "sizeof" or "[pre]++"
1208  static const char *getOpcodeStr(Opcode Op);
1209
1210  /// \brief Retrieve the unary opcode that corresponds to the given
1211  /// overloaded operator.
1212  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1213
1214  /// \brief Retrieve the overloaded operator kind that corresponds to
1215  /// the given unary opcode.
1216  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1217
1218  virtual SourceRange getSourceRange() const {
1219    if (isPostfix())
1220      return SourceRange(Val->getLocStart(), Loc);
1221    else
1222      return SourceRange(Loc, Val->getLocEnd());
1223  }
1224  virtual SourceLocation getExprLoc() const { return Loc; }
1225
1226  static bool classof(const Stmt *T) {
1227    return T->getStmtClass() == UnaryOperatorClass;
1228  }
1229  static bool classof(const UnaryOperator *) { return true; }
1230
1231  // Iterators
1232  virtual child_iterator child_begin();
1233  virtual child_iterator child_end();
1234};
1235
1236/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1237/// offsetof(record-type, member-designator). For example, given:
1238/// @code
1239/// struct S {
1240///   float f;
1241///   double d;
1242/// };
1243/// struct T {
1244///   int i;
1245///   struct S s[10];
1246/// };
1247/// @endcode
1248/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1249
1250class OffsetOfExpr : public Expr {
1251public:
1252  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1253  class OffsetOfNode {
1254  public:
1255    /// \brief The kind of offsetof node we have.
1256    enum Kind {
1257      /// \brief An index into an array.
1258      Array = 0x00,
1259      /// \brief A field.
1260      Field = 0x01,
1261      /// \brief A field in a dependent type, known only by its name.
1262      Identifier = 0x02,
1263      /// \brief An implicit indirection through a C++ base class, when the
1264      /// field found is in a base class.
1265      Base = 0x03
1266    };
1267
1268  private:
1269    enum { MaskBits = 2, Mask = 0x03 };
1270
1271    /// \brief The source range that covers this part of the designator.
1272    SourceRange Range;
1273
1274    /// \brief The data describing the designator, which comes in three
1275    /// different forms, depending on the lower two bits.
1276    ///   - An unsigned index into the array of Expr*'s stored after this node
1277    ///     in memory, for [constant-expression] designators.
1278    ///   - A FieldDecl*, for references to a known field.
1279    ///   - An IdentifierInfo*, for references to a field with a given name
1280    ///     when the class type is dependent.
1281    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1282    ///     base class.
1283    uintptr_t Data;
1284
1285  public:
1286    /// \brief Create an offsetof node that refers to an array element.
1287    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1288                 SourceLocation RBracketLoc)
1289      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1290
1291    /// \brief Create an offsetof node that refers to a field.
1292    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1293                 SourceLocation NameLoc)
1294      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1295        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1296
1297    /// \brief Create an offsetof node that refers to an identifier.
1298    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1299                 SourceLocation NameLoc)
1300      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1301        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1302
1303    /// \brief Create an offsetof node that refers into a C++ base class.
1304    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1305      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1306
1307    /// \brief Determine what kind of offsetof node this is.
1308    Kind getKind() const {
1309      return static_cast<Kind>(Data & Mask);
1310    }
1311
1312    /// \brief For an array element node, returns the index into the array
1313    /// of expressions.
1314    unsigned getArrayExprIndex() const {
1315      assert(getKind() == Array);
1316      return Data >> 2;
1317    }
1318
1319    /// \brief For a field offsetof node, returns the field.
1320    FieldDecl *getField() const {
1321      assert(getKind() == Field);
1322      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1323    }
1324
1325    /// \brief For a field or identifier offsetof node, returns the name of
1326    /// the field.
1327    IdentifierInfo *getFieldName() const;
1328
1329    /// \brief For a base class node, returns the base specifier.
1330    CXXBaseSpecifier *getBase() const {
1331      assert(getKind() == Base);
1332      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1333    }
1334
1335    /// \brief Retrieve the source range that covers this offsetof node.
1336    ///
1337    /// For an array element node, the source range contains the locations of
1338    /// the square brackets. For a field or identifier node, the source range
1339    /// contains the location of the period (if there is one) and the
1340    /// identifier.
1341    SourceRange getRange() const { return Range; }
1342  };
1343
1344private:
1345
1346  SourceLocation OperatorLoc, RParenLoc;
1347  // Base type;
1348  TypeSourceInfo *TSInfo;
1349  // Number of sub-components (i.e. instances of OffsetOfNode).
1350  unsigned NumComps;
1351  // Number of sub-expressions (i.e. array subscript expressions).
1352  unsigned NumExprs;
1353
1354  OffsetOfExpr(ASTContext &C, QualType type,
1355               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1356               OffsetOfNode* compsPtr, unsigned numComps,
1357               Expr** exprsPtr, unsigned numExprs,
1358               SourceLocation RParenLoc);
1359
1360  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1361    : Expr(OffsetOfExprClass, EmptyShell()),
1362      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1363
1364public:
1365
1366  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1367                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1368                              OffsetOfNode* compsPtr, unsigned numComps,
1369                              Expr** exprsPtr, unsigned numExprs,
1370                              SourceLocation RParenLoc);
1371
1372  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1373                                   unsigned NumComps, unsigned NumExprs);
1374
1375  /// getOperatorLoc - Return the location of the operator.
1376  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1377  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1378
1379  /// \brief Return the location of the right parentheses.
1380  SourceLocation getRParenLoc() const { return RParenLoc; }
1381  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1382
1383  TypeSourceInfo *getTypeSourceInfo() const {
1384    return TSInfo;
1385  }
1386  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1387    TSInfo = tsi;
1388  }
1389
1390  const OffsetOfNode &getComponent(unsigned Idx) {
1391    assert(Idx < NumComps && "Subscript out of range");
1392    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1393  }
1394
1395  void setComponent(unsigned Idx, OffsetOfNode ON) {
1396    assert(Idx < NumComps && "Subscript out of range");
1397    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1398  }
1399
1400  unsigned getNumComponents() const {
1401    return NumComps;
1402  }
1403
1404  Expr* getIndexExpr(unsigned Idx) {
1405    assert(Idx < NumExprs && "Subscript out of range");
1406    return reinterpret_cast<Expr **>(
1407                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1408  }
1409
1410  void setIndexExpr(unsigned Idx, Expr* E) {
1411    assert(Idx < NumComps && "Subscript out of range");
1412    reinterpret_cast<Expr **>(
1413                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1414  }
1415
1416  unsigned getNumExpressions() const {
1417    return NumExprs;
1418  }
1419
1420  virtual SourceRange getSourceRange() const {
1421    return SourceRange(OperatorLoc, RParenLoc);
1422  }
1423
1424  static bool classof(const Stmt *T) {
1425    return T->getStmtClass() == OffsetOfExprClass;
1426  }
1427
1428  static bool classof(const OffsetOfExpr *) { return true; }
1429
1430  // Iterators
1431  virtual child_iterator child_begin();
1432  virtual child_iterator child_end();
1433};
1434
1435/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1436/// types and expressions.
1437class SizeOfAlignOfExpr : public Expr {
1438  bool isSizeof : 1;  // true if sizeof, false if alignof.
1439  bool isType : 1;    // true if operand is a type, false if an expression
1440  union {
1441    TypeSourceInfo *Ty;
1442    Stmt *Ex;
1443  } Argument;
1444  SourceLocation OpLoc, RParenLoc;
1445
1446public:
1447  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1448                    QualType resultType, SourceLocation op,
1449                    SourceLocation rp) :
1450      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1451           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1452           // Value-dependent if the argument is type-dependent.
1453           TInfo->getType()->isDependentType()),
1454      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1455    Argument.Ty = TInfo;
1456  }
1457
1458  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1459                    QualType resultType, SourceLocation op,
1460                    SourceLocation rp) :
1461      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1462           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1463           // Value-dependent if the argument is type-dependent.
1464           E->isTypeDependent()),
1465      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1466    Argument.Ex = E;
1467  }
1468
1469  /// \brief Construct an empty sizeof/alignof expression.
1470  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1471    : Expr(SizeOfAlignOfExprClass, Empty) { }
1472
1473  bool isSizeOf() const { return isSizeof; }
1474  void setSizeof(bool S) { isSizeof = S; }
1475
1476  bool isArgumentType() const { return isType; }
1477  QualType getArgumentType() const {
1478    return getArgumentTypeInfo()->getType();
1479  }
1480  TypeSourceInfo *getArgumentTypeInfo() const {
1481    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1482    return Argument.Ty;
1483  }
1484  Expr *getArgumentExpr() {
1485    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1486    return static_cast<Expr*>(Argument.Ex);
1487  }
1488  const Expr *getArgumentExpr() const {
1489    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1490  }
1491
1492  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1493  void setArgument(TypeSourceInfo *TInfo) {
1494    Argument.Ty = TInfo;
1495    isType = true;
1496  }
1497
1498  /// Gets the argument type, or the type of the argument expression, whichever
1499  /// is appropriate.
1500  QualType getTypeOfArgument() const {
1501    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1502  }
1503
1504  SourceLocation getOperatorLoc() const { return OpLoc; }
1505  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1506
1507  SourceLocation getRParenLoc() const { return RParenLoc; }
1508  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1509
1510  virtual SourceRange getSourceRange() const {
1511    return SourceRange(OpLoc, RParenLoc);
1512  }
1513
1514  static bool classof(const Stmt *T) {
1515    return T->getStmtClass() == SizeOfAlignOfExprClass;
1516  }
1517  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1518
1519  // Iterators
1520  virtual child_iterator child_begin();
1521  virtual child_iterator child_end();
1522};
1523
1524//===----------------------------------------------------------------------===//
1525// Postfix Operators.
1526//===----------------------------------------------------------------------===//
1527
1528/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1529class ArraySubscriptExpr : public Expr {
1530  enum { LHS, RHS, END_EXPR=2 };
1531  Stmt* SubExprs[END_EXPR];
1532  SourceLocation RBracketLoc;
1533public:
1534  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1535                     ExprValueKind VK, ExprObjectKind OK,
1536                     SourceLocation rbracketloc)
1537  : Expr(ArraySubscriptExprClass, t, VK, OK,
1538         lhs->isTypeDependent() || rhs->isTypeDependent(),
1539         lhs->isValueDependent() || rhs->isValueDependent()),
1540    RBracketLoc(rbracketloc) {
1541    SubExprs[LHS] = lhs;
1542    SubExprs[RHS] = rhs;
1543  }
1544
1545  /// \brief Create an empty array subscript expression.
1546  explicit ArraySubscriptExpr(EmptyShell Shell)
1547    : Expr(ArraySubscriptExprClass, Shell) { }
1548
1549  /// An array access can be written A[4] or 4[A] (both are equivalent).
1550  /// - getBase() and getIdx() always present the normalized view: A[4].
1551  ///    In this case getBase() returns "A" and getIdx() returns "4".
1552  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1553  ///    4[A] getLHS() returns "4".
1554  /// Note: Because vector element access is also written A[4] we must
1555  /// predicate the format conversion in getBase and getIdx only on the
1556  /// the type of the RHS, as it is possible for the LHS to be a vector of
1557  /// integer type
1558  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1559  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1560  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1561
1562  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1563  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1564  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1565
1566  Expr *getBase() {
1567    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1568  }
1569
1570  const Expr *getBase() const {
1571    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1572  }
1573
1574  Expr *getIdx() {
1575    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1576  }
1577
1578  const Expr *getIdx() const {
1579    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1580  }
1581
1582  virtual SourceRange getSourceRange() const {
1583    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1584  }
1585
1586  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1587  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1588
1589  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1590
1591  static bool classof(const Stmt *T) {
1592    return T->getStmtClass() == ArraySubscriptExprClass;
1593  }
1594  static bool classof(const ArraySubscriptExpr *) { return true; }
1595
1596  // Iterators
1597  virtual child_iterator child_begin();
1598  virtual child_iterator child_end();
1599};
1600
1601
1602/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1603/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1604/// while its subclasses may represent alternative syntax that (semantically)
1605/// results in a function call. For example, CXXOperatorCallExpr is
1606/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1607/// "str1 + str2" to resolve to a function call.
1608class CallExpr : public Expr {
1609  enum { FN=0, ARGS_START=1 };
1610  Stmt **SubExprs;
1611  unsigned NumArgs;
1612  SourceLocation RParenLoc;
1613
1614protected:
1615  // This version of the constructor is for derived classes.
1616  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1617           QualType t, ExprValueKind VK, SourceLocation rparenloc);
1618
1619public:
1620  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1621           ExprValueKind VK, SourceLocation rparenloc);
1622
1623  /// \brief Build an empty call expression.
1624  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1625
1626  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1627  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1628  void setCallee(Expr *F) { SubExprs[FN] = F; }
1629
1630  Decl *getCalleeDecl();
1631  const Decl *getCalleeDecl() const {
1632    return const_cast<CallExpr*>(this)->getCalleeDecl();
1633  }
1634
1635  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1636  FunctionDecl *getDirectCallee();
1637  const FunctionDecl *getDirectCallee() const {
1638    return const_cast<CallExpr*>(this)->getDirectCallee();
1639  }
1640
1641  /// getNumArgs - Return the number of actual arguments to this call.
1642  ///
1643  unsigned getNumArgs() const { return NumArgs; }
1644
1645  /// getArg - Return the specified argument.
1646  Expr *getArg(unsigned Arg) {
1647    assert(Arg < NumArgs && "Arg access out of range!");
1648    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1649  }
1650  const Expr *getArg(unsigned Arg) const {
1651    assert(Arg < NumArgs && "Arg access out of range!");
1652    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1653  }
1654
1655  /// setArg - Set the specified argument.
1656  void setArg(unsigned Arg, Expr *ArgExpr) {
1657    assert(Arg < NumArgs && "Arg access out of range!");
1658    SubExprs[Arg+ARGS_START] = ArgExpr;
1659  }
1660
1661  /// setNumArgs - This changes the number of arguments present in this call.
1662  /// Any orphaned expressions are deleted by this, and any new operands are set
1663  /// to null.
1664  void setNumArgs(ASTContext& C, unsigned NumArgs);
1665
1666  typedef ExprIterator arg_iterator;
1667  typedef ConstExprIterator const_arg_iterator;
1668
1669  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1670  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1671  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1672  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1673
1674  /// getNumCommas - Return the number of commas that must have been present in
1675  /// this function call.
1676  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1677
1678  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1679  /// not, return 0.
1680  unsigned isBuiltinCall(ASTContext &Context) const;
1681
1682  /// getCallReturnType - Get the return type of the call expr. This is not
1683  /// always the type of the expr itself, if the return type is a reference
1684  /// type.
1685  QualType getCallReturnType() const;
1686
1687  SourceLocation getRParenLoc() const { return RParenLoc; }
1688  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1689
1690  virtual SourceRange getSourceRange() const {
1691    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1692  }
1693
1694  static bool classof(const Stmt *T) {
1695    return T->getStmtClass() >= firstCallExprConstant &&
1696           T->getStmtClass() <= lastCallExprConstant;
1697  }
1698  static bool classof(const CallExpr *) { return true; }
1699
1700  // Iterators
1701  virtual child_iterator child_begin();
1702  virtual child_iterator child_end();
1703};
1704
1705/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1706///
1707class MemberExpr : public Expr {
1708  /// Extra data stored in some member expressions.
1709  struct MemberNameQualifier : public NameQualifier {
1710    DeclAccessPair FoundDecl;
1711  };
1712
1713  /// Base - the expression for the base pointer or structure references.  In
1714  /// X.F, this is "X".
1715  Stmt *Base;
1716
1717  /// MemberDecl - This is the decl being referenced by the field/member name.
1718  /// In X.F, this is the decl referenced by F.
1719  ValueDecl *MemberDecl;
1720
1721  /// MemberLoc - This is the location of the member name.
1722  SourceLocation MemberLoc;
1723
1724  /// MemberDNLoc - Provides source/type location info for the
1725  /// declaration name embedded in MemberDecl.
1726  DeclarationNameLoc MemberDNLoc;
1727
1728  /// IsArrow - True if this is "X->F", false if this is "X.F".
1729  bool IsArrow : 1;
1730
1731  /// \brief True if this member expression used a nested-name-specifier to
1732  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1733  /// declaration.  When true, a MemberNameQualifier
1734  /// structure is allocated immediately after the MemberExpr.
1735  bool HasQualifierOrFoundDecl : 1;
1736
1737  /// \brief True if this member expression specified a template argument list
1738  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1739  /// structure (and its TemplateArguments) are allocated immediately after
1740  /// the MemberExpr or, if the member expression also has a qualifier, after
1741  /// the MemberNameQualifier structure.
1742  bool HasExplicitTemplateArgumentList : 1;
1743
1744  /// \brief Retrieve the qualifier that preceded the member name, if any.
1745  MemberNameQualifier *getMemberQualifier() {
1746    assert(HasQualifierOrFoundDecl);
1747    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1748  }
1749
1750  /// \brief Retrieve the qualifier that preceded the member name, if any.
1751  const MemberNameQualifier *getMemberQualifier() const {
1752    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1753  }
1754
1755public:
1756  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1757             const DeclarationNameInfo &NameInfo, QualType ty,
1758             ExprValueKind VK, ExprObjectKind OK)
1759    : Expr(MemberExprClass, ty, VK, OK,
1760           base->isTypeDependent(), base->isValueDependent()),
1761      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1762      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1763      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1764    assert(memberdecl->getDeclName() == NameInfo.getName());
1765  }
1766
1767  // NOTE: this constructor should be used only when it is known that
1768  // the member name can not provide additional syntactic info
1769  // (i.e., source locations for C++ operator names or type source info
1770  // for constructors, destructors and conversion oeprators).
1771  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1772             SourceLocation l, QualType ty,
1773             ExprValueKind VK, ExprObjectKind OK)
1774    : Expr(MemberExprClass, ty, VK, OK,
1775           base->isTypeDependent(), base->isValueDependent()),
1776      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1777      IsArrow(isarrow),
1778      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1779
1780  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1781                            NestedNameSpecifier *qual, SourceRange qualrange,
1782                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1783                            DeclarationNameInfo MemberNameInfo,
1784                            const TemplateArgumentListInfo *targs,
1785                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1786
1787  void setBase(Expr *E) { Base = E; }
1788  Expr *getBase() const { return cast<Expr>(Base); }
1789
1790  /// \brief Retrieve the member declaration to which this expression refers.
1791  ///
1792  /// The returned declaration will either be a FieldDecl or (in C++)
1793  /// a CXXMethodDecl.
1794  ValueDecl *getMemberDecl() const { return MemberDecl; }
1795  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1796
1797  /// \brief Retrieves the declaration found by lookup.
1798  DeclAccessPair getFoundDecl() const {
1799    if (!HasQualifierOrFoundDecl)
1800      return DeclAccessPair::make(getMemberDecl(),
1801                                  getMemberDecl()->getAccess());
1802    return getMemberQualifier()->FoundDecl;
1803  }
1804
1805  /// \brief Determines whether this member expression actually had
1806  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1807  /// x->Base::foo.
1808  bool hasQualifier() const { return getQualifier() != 0; }
1809
1810  /// \brief If the member name was qualified, retrieves the source range of
1811  /// the nested-name-specifier that precedes the member name. Otherwise,
1812  /// returns an empty source range.
1813  SourceRange getQualifierRange() const {
1814    if (!HasQualifierOrFoundDecl)
1815      return SourceRange();
1816
1817    return getMemberQualifier()->Range;
1818  }
1819
1820  /// \brief If the member name was qualified, retrieves the
1821  /// nested-name-specifier that precedes the member name. Otherwise, returns
1822  /// NULL.
1823  NestedNameSpecifier *getQualifier() const {
1824    if (!HasQualifierOrFoundDecl)
1825      return 0;
1826
1827    return getMemberQualifier()->NNS;
1828  }
1829
1830  /// \brief Determines whether this member expression actually had a C++
1831  /// template argument list explicitly specified, e.g., x.f<int>.
1832  bool hasExplicitTemplateArgs() const {
1833    return HasExplicitTemplateArgumentList;
1834  }
1835
1836  /// \brief Copies the template arguments (if present) into the given
1837  /// structure.
1838  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1839    if (hasExplicitTemplateArgs())
1840      getExplicitTemplateArgs().copyInto(List);
1841  }
1842
1843  /// \brief Retrieve the explicit template argument list that
1844  /// follow the member template name.  This must only be called on an
1845  /// expression with explicit template arguments.
1846  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1847    assert(HasExplicitTemplateArgumentList);
1848    if (!HasQualifierOrFoundDecl)
1849      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1850
1851    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
1852                                                      getMemberQualifier() + 1);
1853  }
1854
1855  /// \brief Retrieve the explicit template argument list that
1856  /// followed the member template name.  This must only be called on
1857  /// an expression with explicit template arguments.
1858  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1859    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
1860  }
1861
1862  /// \brief Retrieves the optional explicit template arguments.
1863  /// This points to the same data as getExplicitTemplateArgs(), but
1864  /// returns null if there are no explicit template arguments.
1865  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
1866    if (!hasExplicitTemplateArgs()) return 0;
1867    return &getExplicitTemplateArgs();
1868  }
1869
1870  /// \brief Retrieve the location of the left angle bracket following the
1871  /// member name ('<'), if any.
1872  SourceLocation getLAngleLoc() const {
1873    if (!HasExplicitTemplateArgumentList)
1874      return SourceLocation();
1875
1876    return getExplicitTemplateArgs().LAngleLoc;
1877  }
1878
1879  /// \brief Retrieve the template arguments provided as part of this
1880  /// template-id.
1881  const TemplateArgumentLoc *getTemplateArgs() const {
1882    if (!HasExplicitTemplateArgumentList)
1883      return 0;
1884
1885    return getExplicitTemplateArgs().getTemplateArgs();
1886  }
1887
1888  /// \brief Retrieve the number of template arguments provided as part of this
1889  /// template-id.
1890  unsigned getNumTemplateArgs() const {
1891    if (!HasExplicitTemplateArgumentList)
1892      return 0;
1893
1894    return getExplicitTemplateArgs().NumTemplateArgs;
1895  }
1896
1897  /// \brief Retrieve the location of the right angle bracket following the
1898  /// template arguments ('>').
1899  SourceLocation getRAngleLoc() const {
1900    if (!HasExplicitTemplateArgumentList)
1901      return SourceLocation();
1902
1903    return getExplicitTemplateArgs().RAngleLoc;
1904  }
1905
1906  /// \brief Retrieve the member declaration name info.
1907  DeclarationNameInfo getMemberNameInfo() const {
1908    return DeclarationNameInfo(MemberDecl->getDeclName(),
1909                               MemberLoc, MemberDNLoc);
1910  }
1911
1912  bool isArrow() const { return IsArrow; }
1913  void setArrow(bool A) { IsArrow = A; }
1914
1915  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1916  /// location of 'F'.
1917  SourceLocation getMemberLoc() const { return MemberLoc; }
1918  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1919
1920  virtual SourceRange getSourceRange() const {
1921    // If we have an implicit base (like a C++ implicit this),
1922    // make sure not to return its location
1923    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1924      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1925
1926    SourceLocation BaseLoc = getBase()->getLocStart();
1927    if (BaseLoc.isInvalid())
1928      return SourceRange(MemberLoc, EndLoc);
1929    return SourceRange(BaseLoc, EndLoc);
1930  }
1931
1932  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1933
1934  static bool classof(const Stmt *T) {
1935    return T->getStmtClass() == MemberExprClass;
1936  }
1937  static bool classof(const MemberExpr *) { return true; }
1938
1939  // Iterators
1940  virtual child_iterator child_begin();
1941  virtual child_iterator child_end();
1942
1943  friend class ASTReader;
1944  friend class ASTStmtWriter;
1945};
1946
1947/// CompoundLiteralExpr - [C99 6.5.2.5]
1948///
1949class CompoundLiteralExpr : public Expr {
1950  /// LParenLoc - If non-null, this is the location of the left paren in a
1951  /// compound literal like "(int){4}".  This can be null if this is a
1952  /// synthesized compound expression.
1953  SourceLocation LParenLoc;
1954
1955  /// The type as written.  This can be an incomplete array type, in
1956  /// which case the actual expression type will be different.
1957  TypeSourceInfo *TInfo;
1958  Stmt *Init;
1959  bool FileScope;
1960public:
1961  // FIXME: Can compound literals be value-dependent?
1962  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1963                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
1964    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
1965           tinfo->getType()->isDependentType(), false),
1966      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1967
1968  /// \brief Construct an empty compound literal.
1969  explicit CompoundLiteralExpr(EmptyShell Empty)
1970    : Expr(CompoundLiteralExprClass, Empty) { }
1971
1972  const Expr *getInitializer() const { return cast<Expr>(Init); }
1973  Expr *getInitializer() { return cast<Expr>(Init); }
1974  void setInitializer(Expr *E) { Init = E; }
1975
1976  bool isFileScope() const { return FileScope; }
1977  void setFileScope(bool FS) { FileScope = FS; }
1978
1979  SourceLocation getLParenLoc() const { return LParenLoc; }
1980  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1981
1982  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1983  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1984
1985  virtual SourceRange getSourceRange() const {
1986    // FIXME: Init should never be null.
1987    if (!Init)
1988      return SourceRange();
1989    if (LParenLoc.isInvalid())
1990      return Init->getSourceRange();
1991    return SourceRange(LParenLoc, Init->getLocEnd());
1992  }
1993
1994  static bool classof(const Stmt *T) {
1995    return T->getStmtClass() == CompoundLiteralExprClass;
1996  }
1997  static bool classof(const CompoundLiteralExpr *) { return true; }
1998
1999  // Iterators
2000  virtual child_iterator child_begin();
2001  virtual child_iterator child_end();
2002};
2003
2004/// CastExpr - Base class for type casts, including both implicit
2005/// casts (ImplicitCastExpr) and explicit casts that have some
2006/// representation in the source code (ExplicitCastExpr's derived
2007/// classes).
2008class CastExpr : public Expr {
2009public:
2010  typedef clang::CastKind CastKind;
2011
2012private:
2013  Stmt *Op;
2014
2015  void CheckCastConsistency() const {
2016#ifndef NDEBUG
2017    switch (getCastKind()) {
2018    case CK_DerivedToBase:
2019    case CK_UncheckedDerivedToBase:
2020    case CK_DerivedToBaseMemberPointer:
2021    case CK_BaseToDerived:
2022    case CK_BaseToDerivedMemberPointer:
2023      assert(!path_empty() && "Cast kind should have a base path!");
2024      break;
2025
2026    // These should not have an inheritance path.
2027    case CK_BitCast:
2028    case CK_Dynamic:
2029    case CK_ToUnion:
2030    case CK_ArrayToPointerDecay:
2031    case CK_FunctionToPointerDecay:
2032    case CK_NullToMemberPointer:
2033    case CK_NullToPointer:
2034    case CK_ConstructorConversion:
2035    case CK_IntegralToPointer:
2036    case CK_PointerToIntegral:
2037    case CK_ToVoid:
2038    case CK_VectorSplat:
2039    case CK_IntegralCast:
2040    case CK_IntegralToFloating:
2041    case CK_FloatingToIntegral:
2042    case CK_FloatingCast:
2043    case CK_AnyPointerToObjCPointerCast:
2044    case CK_AnyPointerToBlockPointerCast:
2045    case CK_ObjCObjectLValueCast:
2046    case CK_FloatingRealToComplex:
2047    case CK_FloatingComplexToReal:
2048    case CK_FloatingComplexCast:
2049    case CK_FloatingComplexToIntegralComplex:
2050    case CK_IntegralRealToComplex:
2051    case CK_IntegralComplexToReal:
2052    case CK_IntegralComplexCast:
2053    case CK_IntegralComplexToFloatingComplex:
2054      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2055      // fallthrough to check for null base path
2056
2057    case CK_Dependent:
2058    case CK_LValueToRValue:
2059    case CK_NoOp:
2060    case CK_PointerToBoolean:
2061    case CK_IntegralToBoolean:
2062    case CK_FloatingToBoolean:
2063    case CK_MemberPointerToBoolean:
2064    case CK_FloatingComplexToBoolean:
2065    case CK_IntegralComplexToBoolean:
2066    case CK_LValueBitCast:            // -> bool&
2067    case CK_UserDefinedConversion:    // operator bool()
2068      assert(path_empty() && "Cast kind should not have a base path!");
2069      break;
2070    }
2071#endif
2072  }
2073
2074  const CXXBaseSpecifier * const *path_buffer() const {
2075    return const_cast<CastExpr*>(this)->path_buffer();
2076  }
2077  CXXBaseSpecifier **path_buffer();
2078
2079protected:
2080  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2081           const CastKind kind, Expr *op, unsigned BasePathSize) :
2082    Expr(SC, ty, VK, OK_Ordinary,
2083         // Cast expressions are type-dependent if the type is
2084         // dependent (C++ [temp.dep.expr]p3).
2085         ty->isDependentType(),
2086         // Cast expressions are value-dependent if the type is
2087         // dependent or if the subexpression is value-dependent.
2088         ty->isDependentType() || (op && op->isValueDependent())),
2089    Op(op) {
2090    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2091    CastExprBits.Kind = kind;
2092    CastExprBits.BasePathSize = BasePathSize;
2093    CheckCastConsistency();
2094  }
2095
2096  /// \brief Construct an empty cast.
2097  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2098    : Expr(SC, Empty) {
2099    CastExprBits.BasePathSize = BasePathSize;
2100  }
2101
2102public:
2103  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2104  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2105  const char *getCastKindName() const;
2106
2107  Expr *getSubExpr() { return cast<Expr>(Op); }
2108  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2109  void setSubExpr(Expr *E) { Op = E; }
2110
2111  /// \brief Retrieve the cast subexpression as it was written in the source
2112  /// code, looking through any implicit casts or other intermediate nodes
2113  /// introduced by semantic analysis.
2114  Expr *getSubExprAsWritten();
2115  const Expr *getSubExprAsWritten() const {
2116    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2117  }
2118
2119  typedef CXXBaseSpecifier **path_iterator;
2120  typedef const CXXBaseSpecifier * const *path_const_iterator;
2121  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2122  unsigned path_size() const { return CastExprBits.BasePathSize; }
2123  path_iterator path_begin() { return path_buffer(); }
2124  path_iterator path_end() { return path_buffer() + path_size(); }
2125  path_const_iterator path_begin() const { return path_buffer(); }
2126  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2127
2128  void setCastPath(const CXXCastPath &Path);
2129
2130  static bool classof(const Stmt *T) {
2131    return T->getStmtClass() >= firstCastExprConstant &&
2132           T->getStmtClass() <= lastCastExprConstant;
2133  }
2134  static bool classof(const CastExpr *) { return true; }
2135
2136  // Iterators
2137  virtual child_iterator child_begin();
2138  virtual child_iterator child_end();
2139};
2140
2141/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2142/// conversions, which have no direct representation in the original
2143/// source code. For example: converting T[]->T*, void f()->void
2144/// (*f)(), float->double, short->int, etc.
2145///
2146/// In C, implicit casts always produce rvalues. However, in C++, an
2147/// implicit cast whose result is being bound to a reference will be
2148/// an lvalue or xvalue. For example:
2149///
2150/// @code
2151/// class Base { };
2152/// class Derived : public Base { };
2153/// Derived &&ref();
2154/// void f(Derived d) {
2155///   Base& b = d; // initializer is an ImplicitCastExpr
2156///                // to an lvalue of type Base
2157///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2158///                     // to an xvalue of type Base
2159/// }
2160/// @endcode
2161class ImplicitCastExpr : public CastExpr {
2162private:
2163  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2164                   unsigned BasePathLength, ExprValueKind VK)
2165    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2166  }
2167
2168  /// \brief Construct an empty implicit cast.
2169  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2170    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2171
2172public:
2173  enum OnStack_t { OnStack };
2174  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2175                   ExprValueKind VK)
2176    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2177  }
2178
2179  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2180                                  CastKind Kind, Expr *Operand,
2181                                  const CXXCastPath *BasePath,
2182                                  ExprValueKind Cat);
2183
2184  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2185
2186  virtual SourceRange getSourceRange() const {
2187    return getSubExpr()->getSourceRange();
2188  }
2189
2190  static bool classof(const Stmt *T) {
2191    return T->getStmtClass() == ImplicitCastExprClass;
2192  }
2193  static bool classof(const ImplicitCastExpr *) { return true; }
2194};
2195
2196/// ExplicitCastExpr - An explicit cast written in the source
2197/// code.
2198///
2199/// This class is effectively an abstract class, because it provides
2200/// the basic representation of an explicitly-written cast without
2201/// specifying which kind of cast (C cast, functional cast, static
2202/// cast, etc.) was written; specific derived classes represent the
2203/// particular style of cast and its location information.
2204///
2205/// Unlike implicit casts, explicit cast nodes have two different
2206/// types: the type that was written into the source code, and the
2207/// actual type of the expression as determined by semantic
2208/// analysis. These types may differ slightly. For example, in C++ one
2209/// can cast to a reference type, which indicates that the resulting
2210/// expression will be an lvalue or xvalue. The reference type, however,
2211/// will not be used as the type of the expression.
2212class ExplicitCastExpr : public CastExpr {
2213  /// TInfo - Source type info for the (written) type
2214  /// this expression is casting to.
2215  TypeSourceInfo *TInfo;
2216
2217protected:
2218  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2219                   CastKind kind, Expr *op, unsigned PathSize,
2220                   TypeSourceInfo *writtenTy)
2221    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2222
2223  /// \brief Construct an empty explicit cast.
2224  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2225    : CastExpr(SC, Shell, PathSize) { }
2226
2227public:
2228  /// getTypeInfoAsWritten - Returns the type source info for the type
2229  /// that this expression is casting to.
2230  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2231  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2232
2233  /// getTypeAsWritten - Returns the type that this expression is
2234  /// casting to, as written in the source code.
2235  QualType getTypeAsWritten() const { return TInfo->getType(); }
2236
2237  static bool classof(const Stmt *T) {
2238     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2239            T->getStmtClass() <= lastExplicitCastExprConstant;
2240  }
2241  static bool classof(const ExplicitCastExpr *) { return true; }
2242};
2243
2244/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2245/// cast in C++ (C++ [expr.cast]), which uses the syntax
2246/// (Type)expr. For example: @c (int)f.
2247class CStyleCastExpr : public ExplicitCastExpr {
2248  SourceLocation LPLoc; // the location of the left paren
2249  SourceLocation RPLoc; // the location of the right paren
2250
2251  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2252                 unsigned PathSize, TypeSourceInfo *writtenTy,
2253                 SourceLocation l, SourceLocation r)
2254    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2255                       writtenTy), LPLoc(l), RPLoc(r) {}
2256
2257  /// \brief Construct an empty C-style explicit cast.
2258  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2259    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2260
2261public:
2262  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2263                                ExprValueKind VK, CastKind K,
2264                                Expr *Op, const CXXCastPath *BasePath,
2265                                TypeSourceInfo *WrittenTy, SourceLocation L,
2266                                SourceLocation R);
2267
2268  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2269
2270  SourceLocation getLParenLoc() const { return LPLoc; }
2271  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2272
2273  SourceLocation getRParenLoc() const { return RPLoc; }
2274  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2275
2276  virtual SourceRange getSourceRange() const {
2277    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2278  }
2279  static bool classof(const Stmt *T) {
2280    return T->getStmtClass() == CStyleCastExprClass;
2281  }
2282  static bool classof(const CStyleCastExpr *) { return true; }
2283};
2284
2285/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2286///
2287/// This expression node kind describes a builtin binary operation,
2288/// such as "x + y" for integer values "x" and "y". The operands will
2289/// already have been converted to appropriate types (e.g., by
2290/// performing promotions or conversions).
2291///
2292/// In C++, where operators may be overloaded, a different kind of
2293/// expression node (CXXOperatorCallExpr) is used to express the
2294/// invocation of an overloaded operator with operator syntax. Within
2295/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2296/// used to store an expression "x + y" depends on the subexpressions
2297/// for x and y. If neither x or y is type-dependent, and the "+"
2298/// operator resolves to a built-in operation, BinaryOperator will be
2299/// used to express the computation (x and y may still be
2300/// value-dependent). If either x or y is type-dependent, or if the
2301/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2302/// be used to express the computation.
2303class BinaryOperator : public Expr {
2304public:
2305  typedef BinaryOperatorKind Opcode;
2306
2307private:
2308  unsigned Opc : 6;
2309  SourceLocation OpLoc;
2310
2311  enum { LHS, RHS, END_EXPR };
2312  Stmt* SubExprs[END_EXPR];
2313public:
2314
2315  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2316                 ExprValueKind VK, ExprObjectKind OK,
2317                 SourceLocation opLoc)
2318    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2319           lhs->isTypeDependent() || rhs->isTypeDependent(),
2320           lhs->isValueDependent() || rhs->isValueDependent()),
2321      Opc(opc), OpLoc(opLoc) {
2322    SubExprs[LHS] = lhs;
2323    SubExprs[RHS] = rhs;
2324    assert(!isCompoundAssignmentOp() &&
2325           "Use ArithAssignBinaryOperator for compound assignments");
2326  }
2327
2328  /// \brief Construct an empty binary operator.
2329  explicit BinaryOperator(EmptyShell Empty)
2330    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2331
2332  SourceLocation getOperatorLoc() const { return OpLoc; }
2333  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2334
2335  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2336  void setOpcode(Opcode O) { Opc = O; }
2337
2338  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2339  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2340  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2341  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2342
2343  virtual SourceRange getSourceRange() const {
2344    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2345  }
2346
2347  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2348  /// corresponds to, e.g. "<<=".
2349  static const char *getOpcodeStr(Opcode Op);
2350
2351  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2352
2353  /// \brief Retrieve the binary opcode that corresponds to the given
2354  /// overloaded operator.
2355  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2356
2357  /// \brief Retrieve the overloaded operator kind that corresponds to
2358  /// the given binary opcode.
2359  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2360
2361  /// predicates to categorize the respective opcodes.
2362  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2363  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2364  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2365  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2366  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2367  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2368
2369  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2370  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2371
2372  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2373  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2374
2375  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2376  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2377
2378  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2379  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2380
2381  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2382  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2383
2384  bool isAssignmentOp() const { return Opc >= BO_Assign && Opc <= BO_OrAssign; }
2385  bool isCompoundAssignmentOp() const {
2386    return Opc > BO_Assign && Opc <= BO_OrAssign;
2387  }
2388  bool isShiftAssignOp() const {
2389    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2390  }
2391
2392  static bool classof(const Stmt *S) {
2393    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2394           S->getStmtClass() <= lastBinaryOperatorConstant;
2395  }
2396  static bool classof(const BinaryOperator *) { return true; }
2397
2398  // Iterators
2399  virtual child_iterator child_begin();
2400  virtual child_iterator child_end();
2401
2402protected:
2403  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2404                 ExprValueKind VK, ExprObjectKind OK,
2405                 SourceLocation opLoc, bool dead)
2406    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2407           lhs->isTypeDependent() || rhs->isTypeDependent(),
2408           lhs->isValueDependent() || rhs->isValueDependent()),
2409      Opc(opc), OpLoc(opLoc) {
2410    SubExprs[LHS] = lhs;
2411    SubExprs[RHS] = rhs;
2412  }
2413
2414  BinaryOperator(StmtClass SC, EmptyShell Empty)
2415    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2416};
2417
2418/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2419/// track of the type the operation is performed in.  Due to the semantics of
2420/// these operators, the operands are promoted, the aritmetic performed, an
2421/// implicit conversion back to the result type done, then the assignment takes
2422/// place.  This captures the intermediate type which the computation is done
2423/// in.
2424class CompoundAssignOperator : public BinaryOperator {
2425  QualType ComputationLHSType;
2426  QualType ComputationResultType;
2427public:
2428  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2429                         ExprValueKind VK, ExprObjectKind OK,
2430                         QualType CompLHSType, QualType CompResultType,
2431                         SourceLocation OpLoc)
2432    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2433      ComputationLHSType(CompLHSType),
2434      ComputationResultType(CompResultType) {
2435    assert(isCompoundAssignmentOp() &&
2436           "Only should be used for compound assignments");
2437  }
2438
2439  /// \brief Build an empty compound assignment operator expression.
2440  explicit CompoundAssignOperator(EmptyShell Empty)
2441    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2442
2443  // The two computation types are the type the LHS is converted
2444  // to for the computation and the type of the result; the two are
2445  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2446  QualType getComputationLHSType() const { return ComputationLHSType; }
2447  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2448
2449  QualType getComputationResultType() const { return ComputationResultType; }
2450  void setComputationResultType(QualType T) { ComputationResultType = T; }
2451
2452  static bool classof(const CompoundAssignOperator *) { return true; }
2453  static bool classof(const Stmt *S) {
2454    return S->getStmtClass() == CompoundAssignOperatorClass;
2455  }
2456};
2457
2458/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2459/// GNU "missing LHS" extension is in use.
2460///
2461class ConditionalOperator : public Expr {
2462  enum { COND, LHS, RHS, END_EXPR };
2463  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2464  Stmt* Save;
2465  SourceLocation QuestionLoc, ColonLoc;
2466public:
2467  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2468                      SourceLocation CLoc, Expr *rhs, Expr *save,
2469                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2470    : Expr(ConditionalOperatorClass, t, VK, OK,
2471           // FIXME: the type of the conditional operator doesn't
2472           // depend on the type of the conditional, but the standard
2473           // seems to imply that it could. File a bug!
2474           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2475           (cond->isValueDependent() ||
2476            (lhs && lhs->isValueDependent()) ||
2477            (rhs && rhs->isValueDependent()))),
2478      QuestionLoc(QLoc),
2479      ColonLoc(CLoc) {
2480    SubExprs[COND] = cond;
2481    SubExprs[LHS] = lhs;
2482    SubExprs[RHS] = rhs;
2483    Save = save;
2484  }
2485
2486  /// \brief Build an empty conditional operator.
2487  explicit ConditionalOperator(EmptyShell Empty)
2488    : Expr(ConditionalOperatorClass, Empty) { }
2489
2490  // getCond - Return the expression representing the condition for
2491  //  the ?: operator.
2492  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2493  void setCond(Expr *E) { SubExprs[COND] = E; }
2494
2495  // getTrueExpr - Return the subexpression representing the value of the ?:
2496  //  expression if the condition evaluates to true.
2497  Expr *getTrueExpr() const {
2498    return cast<Expr>(SubExprs[LHS]);
2499  }
2500
2501  // getFalseExpr - Return the subexpression representing the value of the ?:
2502  // expression if the condition evaluates to false. This is the same as getRHS.
2503  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2504
2505  // getSaveExpr - In most cases this value will be null. Except a GCC extension
2506  // allows the left subexpression to be omitted, and instead of that condition
2507  // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
2508  // expression "x" is only evaluated once. Under this senario, this function
2509  // returns the original, non-converted condition expression for the ?:operator
2510  Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2511
2512  Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
2513  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2514
2515  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2516  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2517
2518  Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2519  void setSAVE(Expr *E) { Save = E; }
2520
2521  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2522  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2523
2524  SourceLocation getColonLoc() const { return ColonLoc; }
2525  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2526
2527  virtual SourceRange getSourceRange() const {
2528    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2529  }
2530  static bool classof(const Stmt *T) {
2531    return T->getStmtClass() == ConditionalOperatorClass;
2532  }
2533  static bool classof(const ConditionalOperator *) { return true; }
2534
2535  // Iterators
2536  virtual child_iterator child_begin();
2537  virtual child_iterator child_end();
2538};
2539
2540/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2541class AddrLabelExpr : public Expr {
2542  SourceLocation AmpAmpLoc, LabelLoc;
2543  LabelStmt *Label;
2544public:
2545  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2546                QualType t)
2547    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false),
2548      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2549
2550  /// \brief Build an empty address of a label expression.
2551  explicit AddrLabelExpr(EmptyShell Empty)
2552    : Expr(AddrLabelExprClass, Empty) { }
2553
2554  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2555  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2556  SourceLocation getLabelLoc() const { return LabelLoc; }
2557  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2558
2559  virtual SourceRange getSourceRange() const {
2560    return SourceRange(AmpAmpLoc, LabelLoc);
2561  }
2562
2563  LabelStmt *getLabel() const { return Label; }
2564  void setLabel(LabelStmt *S) { Label = S; }
2565
2566  static bool classof(const Stmt *T) {
2567    return T->getStmtClass() == AddrLabelExprClass;
2568  }
2569  static bool classof(const AddrLabelExpr *) { return true; }
2570
2571  // Iterators
2572  virtual child_iterator child_begin();
2573  virtual child_iterator child_end();
2574};
2575
2576/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2577/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2578/// takes the value of the last subexpression.
2579///
2580/// A StmtExpr is always an r-value; values "returned" out of a
2581/// StmtExpr will be copied.
2582class StmtExpr : public Expr {
2583  Stmt *SubStmt;
2584  SourceLocation LParenLoc, RParenLoc;
2585public:
2586  // FIXME: Does type-dependence need to be computed differently?
2587  StmtExpr(CompoundStmt *substmt, QualType T,
2588           SourceLocation lp, SourceLocation rp) :
2589    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2590         T->isDependentType(), false),
2591    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2592
2593  /// \brief Build an empty statement expression.
2594  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2595
2596  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2597  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2598  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2599
2600  virtual SourceRange getSourceRange() const {
2601    return SourceRange(LParenLoc, RParenLoc);
2602  }
2603
2604  SourceLocation getLParenLoc() const { return LParenLoc; }
2605  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2606  SourceLocation getRParenLoc() const { return RParenLoc; }
2607  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2608
2609  static bool classof(const Stmt *T) {
2610    return T->getStmtClass() == StmtExprClass;
2611  }
2612  static bool classof(const StmtExpr *) { return true; }
2613
2614  // Iterators
2615  virtual child_iterator child_begin();
2616  virtual child_iterator child_end();
2617};
2618
2619/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2620/// This AST node represents a function that returns 1 if two *types* (not
2621/// expressions) are compatible. The result of this built-in function can be
2622/// used in integer constant expressions.
2623class TypesCompatibleExpr : public Expr {
2624  TypeSourceInfo *TInfo1;
2625  TypeSourceInfo *TInfo2;
2626  SourceLocation BuiltinLoc, RParenLoc;
2627public:
2628  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2629                      TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
2630                      SourceLocation RP) :
2631    Expr(TypesCompatibleExprClass, ReturnType, VK_RValue, OK_Ordinary,
2632         false, false),
2633    TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2634
2635  /// \brief Build an empty __builtin_type_compatible_p expression.
2636  explicit TypesCompatibleExpr(EmptyShell Empty)
2637    : Expr(TypesCompatibleExprClass, Empty) { }
2638
2639  TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
2640  void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
2641  TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
2642  void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
2643
2644  QualType getArgType1() const { return TInfo1->getType(); }
2645  QualType getArgType2() const { return TInfo2->getType(); }
2646
2647  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2648  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2649
2650  SourceLocation getRParenLoc() const { return RParenLoc; }
2651  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2652
2653  virtual SourceRange getSourceRange() const {
2654    return SourceRange(BuiltinLoc, RParenLoc);
2655  }
2656  static bool classof(const Stmt *T) {
2657    return T->getStmtClass() == TypesCompatibleExprClass;
2658  }
2659  static bool classof(const TypesCompatibleExpr *) { return true; }
2660
2661  // Iterators
2662  virtual child_iterator child_begin();
2663  virtual child_iterator child_end();
2664};
2665
2666/// ShuffleVectorExpr - clang-specific builtin-in function
2667/// __builtin_shufflevector.
2668/// This AST node represents a operator that does a constant
2669/// shuffle, similar to LLVM's shufflevector instruction. It takes
2670/// two vectors and a variable number of constant indices,
2671/// and returns the appropriately shuffled vector.
2672class ShuffleVectorExpr : public Expr {
2673  SourceLocation BuiltinLoc, RParenLoc;
2674
2675  // SubExprs - the list of values passed to the __builtin_shufflevector
2676  // function. The first two are vectors, and the rest are constant
2677  // indices.  The number of values in this list is always
2678  // 2+the number of indices in the vector type.
2679  Stmt **SubExprs;
2680  unsigned NumExprs;
2681
2682public:
2683  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2684  // to be computed differently?
2685  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2686                    QualType Type, SourceLocation BLoc,
2687                    SourceLocation RP) :
2688    Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
2689         Type->isDependentType(), false),
2690    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2691
2692    SubExprs = new (C) Stmt*[nexpr];
2693    for (unsigned i = 0; i < nexpr; i++)
2694      SubExprs[i] = args[i];
2695  }
2696
2697  /// \brief Build an empty vector-shuffle expression.
2698  explicit ShuffleVectorExpr(EmptyShell Empty)
2699    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2700
2701  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2702  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2703
2704  SourceLocation getRParenLoc() const { return RParenLoc; }
2705  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2706
2707  virtual SourceRange getSourceRange() const {
2708    return SourceRange(BuiltinLoc, RParenLoc);
2709  }
2710  static bool classof(const Stmt *T) {
2711    return T->getStmtClass() == ShuffleVectorExprClass;
2712  }
2713  static bool classof(const ShuffleVectorExpr *) { return true; }
2714
2715  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2716  /// constant expression, the actual arguments passed in, and the function
2717  /// pointers.
2718  unsigned getNumSubExprs() const { return NumExprs; }
2719
2720  /// getExpr - Return the Expr at the specified index.
2721  Expr *getExpr(unsigned Index) {
2722    assert((Index < NumExprs) && "Arg access out of range!");
2723    return cast<Expr>(SubExprs[Index]);
2724  }
2725  const Expr *getExpr(unsigned Index) const {
2726    assert((Index < NumExprs) && "Arg access out of range!");
2727    return cast<Expr>(SubExprs[Index]);
2728  }
2729
2730  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2731
2732  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2733    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2734    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2735  }
2736
2737  // Iterators
2738  virtual child_iterator child_begin();
2739  virtual child_iterator child_end();
2740};
2741
2742/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2743/// This AST node is similar to the conditional operator (?:) in C, with
2744/// the following exceptions:
2745/// - the test expression must be a integer constant expression.
2746/// - the expression returned acts like the chosen subexpression in every
2747///   visible way: the type is the same as that of the chosen subexpression,
2748///   and all predicates (whether it's an l-value, whether it's an integer
2749///   constant expression, etc.) return the same result as for the chosen
2750///   sub-expression.
2751class ChooseExpr : public Expr {
2752  enum { COND, LHS, RHS, END_EXPR };
2753  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2754  SourceLocation BuiltinLoc, RParenLoc;
2755public:
2756  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
2757             QualType t, ExprValueKind VK, ExprObjectKind OK,
2758             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2759    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent),
2760      BuiltinLoc(BLoc), RParenLoc(RP) {
2761      SubExprs[COND] = cond;
2762      SubExprs[LHS] = lhs;
2763      SubExprs[RHS] = rhs;
2764    }
2765
2766  /// \brief Build an empty __builtin_choose_expr.
2767  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2768
2769  /// isConditionTrue - Return whether the condition is true (i.e. not
2770  /// equal to zero).
2771  bool isConditionTrue(ASTContext &C) const;
2772
2773  /// getChosenSubExpr - Return the subexpression chosen according to the
2774  /// condition.
2775  Expr *getChosenSubExpr(ASTContext &C) const {
2776    return isConditionTrue(C) ? getLHS() : getRHS();
2777  }
2778
2779  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2780  void setCond(Expr *E) { SubExprs[COND] = E; }
2781  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2782  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2783  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2784  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2785
2786  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2787  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2788
2789  SourceLocation getRParenLoc() const { return RParenLoc; }
2790  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2791
2792  virtual SourceRange getSourceRange() const {
2793    return SourceRange(BuiltinLoc, RParenLoc);
2794  }
2795  static bool classof(const Stmt *T) {
2796    return T->getStmtClass() == ChooseExprClass;
2797  }
2798  static bool classof(const ChooseExpr *) { return true; }
2799
2800  // Iterators
2801  virtual child_iterator child_begin();
2802  virtual child_iterator child_end();
2803};
2804
2805/// GNUNullExpr - Implements the GNU __null extension, which is a name
2806/// for a null pointer constant that has integral type (e.g., int or
2807/// long) and is the same size and alignment as a pointer. The __null
2808/// extension is typically only used by system headers, which define
2809/// NULL as __null in C++ rather than using 0 (which is an integer
2810/// that may not match the size of a pointer).
2811class GNUNullExpr : public Expr {
2812  /// TokenLoc - The location of the __null keyword.
2813  SourceLocation TokenLoc;
2814
2815public:
2816  GNUNullExpr(QualType Ty, SourceLocation Loc)
2817    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false),
2818      TokenLoc(Loc) { }
2819
2820  /// \brief Build an empty GNU __null expression.
2821  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2822
2823  /// getTokenLocation - The location of the __null token.
2824  SourceLocation getTokenLocation() const { return TokenLoc; }
2825  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2826
2827  virtual SourceRange getSourceRange() const {
2828    return SourceRange(TokenLoc);
2829  }
2830  static bool classof(const Stmt *T) {
2831    return T->getStmtClass() == GNUNullExprClass;
2832  }
2833  static bool classof(const GNUNullExpr *) { return true; }
2834
2835  // Iterators
2836  virtual child_iterator child_begin();
2837  virtual child_iterator child_end();
2838};
2839
2840/// VAArgExpr, used for the builtin function __builtin_va_arg.
2841class VAArgExpr : public Expr {
2842  Stmt *Val;
2843  TypeSourceInfo *TInfo;
2844  SourceLocation BuiltinLoc, RParenLoc;
2845public:
2846  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2847            SourceLocation RPLoc, QualType t)
2848    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
2849           t->isDependentType(), false),
2850      Val(e), TInfo(TInfo),
2851      BuiltinLoc(BLoc),
2852      RParenLoc(RPLoc) { }
2853
2854  /// \brief Create an empty __builtin_va_arg expression.
2855  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2856
2857  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2858  Expr *getSubExpr() { return cast<Expr>(Val); }
2859  void setSubExpr(Expr *E) { Val = E; }
2860
2861  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2862  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2863
2864  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2865  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2866
2867  SourceLocation getRParenLoc() const { return RParenLoc; }
2868  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2869
2870  virtual SourceRange getSourceRange() const {
2871    return SourceRange(BuiltinLoc, RParenLoc);
2872  }
2873  static bool classof(const Stmt *T) {
2874    return T->getStmtClass() == VAArgExprClass;
2875  }
2876  static bool classof(const VAArgExpr *) { return true; }
2877
2878  // Iterators
2879  virtual child_iterator child_begin();
2880  virtual child_iterator child_end();
2881};
2882
2883/// @brief Describes an C or C++ initializer list.
2884///
2885/// InitListExpr describes an initializer list, which can be used to
2886/// initialize objects of different types, including
2887/// struct/class/union types, arrays, and vectors. For example:
2888///
2889/// @code
2890/// struct foo x = { 1, { 2, 3 } };
2891/// @endcode
2892///
2893/// Prior to semantic analysis, an initializer list will represent the
2894/// initializer list as written by the user, but will have the
2895/// placeholder type "void". This initializer list is called the
2896/// syntactic form of the initializer, and may contain C99 designated
2897/// initializers (represented as DesignatedInitExprs), initializations
2898/// of subobject members without explicit braces, and so on. Clients
2899/// interested in the original syntax of the initializer list should
2900/// use the syntactic form of the initializer list.
2901///
2902/// After semantic analysis, the initializer list will represent the
2903/// semantic form of the initializer, where the initializations of all
2904/// subobjects are made explicit with nested InitListExpr nodes and
2905/// C99 designators have been eliminated by placing the designated
2906/// initializations into the subobject they initialize. Additionally,
2907/// any "holes" in the initialization, where no initializer has been
2908/// specified for a particular subobject, will be replaced with
2909/// implicitly-generated ImplicitValueInitExpr expressions that
2910/// value-initialize the subobjects. Note, however, that the
2911/// initializer lists may still have fewer initializers than there are
2912/// elements to initialize within the object.
2913///
2914/// Given the semantic form of the initializer list, one can retrieve
2915/// the original syntactic form of that initializer list (if it
2916/// exists) using getSyntacticForm(). Since many initializer lists
2917/// have the same syntactic and semantic forms, getSyntacticForm() may
2918/// return NULL, indicating that the current initializer list also
2919/// serves as its syntactic form.
2920class InitListExpr : public Expr {
2921  // FIXME: Eliminate this vector in favor of ASTContext allocation
2922  typedef ASTVector<Stmt *> InitExprsTy;
2923  InitExprsTy InitExprs;
2924  SourceLocation LBraceLoc, RBraceLoc;
2925
2926  /// Contains the initializer list that describes the syntactic form
2927  /// written in the source code.
2928  InitListExpr *SyntacticForm;
2929
2930  /// If this initializer list initializes a union, specifies which
2931  /// field within the union will be initialized.
2932  FieldDecl *UnionFieldInit;
2933
2934  /// Whether this initializer list originally had a GNU array-range
2935  /// designator in it. This is a temporary marker used by CodeGen.
2936  bool HadArrayRangeDesignator;
2937
2938public:
2939  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2940               Expr **initexprs, unsigned numinits,
2941               SourceLocation rbraceloc);
2942
2943  /// \brief Build an empty initializer list.
2944  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2945    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2946
2947  unsigned getNumInits() const { return InitExprs.size(); }
2948
2949  const Expr *getInit(unsigned Init) const {
2950    assert(Init < getNumInits() && "Initializer access out of range!");
2951    return cast_or_null<Expr>(InitExprs[Init]);
2952  }
2953
2954  Expr *getInit(unsigned Init) {
2955    assert(Init < getNumInits() && "Initializer access out of range!");
2956    return cast_or_null<Expr>(InitExprs[Init]);
2957  }
2958
2959  void setInit(unsigned Init, Expr *expr) {
2960    assert(Init < getNumInits() && "Initializer access out of range!");
2961    InitExprs[Init] = expr;
2962  }
2963
2964  /// \brief Reserve space for some number of initializers.
2965  void reserveInits(ASTContext &C, unsigned NumInits);
2966
2967  /// @brief Specify the number of initializers
2968  ///
2969  /// If there are more than @p NumInits initializers, the remaining
2970  /// initializers will be destroyed. If there are fewer than @p
2971  /// NumInits initializers, NULL expressions will be added for the
2972  /// unknown initializers.
2973  void resizeInits(ASTContext &Context, unsigned NumInits);
2974
2975  /// @brief Updates the initializer at index @p Init with the new
2976  /// expression @p expr, and returns the old expression at that
2977  /// location.
2978  ///
2979  /// When @p Init is out of range for this initializer list, the
2980  /// initializer list will be extended with NULL expressions to
2981  /// accomodate the new entry.
2982  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2983
2984  /// \brief If this initializes a union, specifies which field in the
2985  /// union to initialize.
2986  ///
2987  /// Typically, this field is the first named field within the
2988  /// union. However, a designated initializer can specify the
2989  /// initialization of a different field within the union.
2990  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2991  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2992
2993  // Explicit InitListExpr's originate from source code (and have valid source
2994  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2995  bool isExplicit() {
2996    return LBraceLoc.isValid() && RBraceLoc.isValid();
2997  }
2998
2999  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3000  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3001  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3002  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3003
3004  /// @brief Retrieve the initializer list that describes the
3005  /// syntactic form of the initializer.
3006  ///
3007  ///
3008  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3009  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3010
3011  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3012  void sawArrayRangeDesignator(bool ARD = true) {
3013    HadArrayRangeDesignator = ARD;
3014  }
3015
3016  virtual SourceRange getSourceRange() const;
3017
3018  static bool classof(const Stmt *T) {
3019    return T->getStmtClass() == InitListExprClass;
3020  }
3021  static bool classof(const InitListExpr *) { return true; }
3022
3023  // Iterators
3024  virtual child_iterator child_begin();
3025  virtual child_iterator child_end();
3026
3027  typedef InitExprsTy::iterator iterator;
3028  typedef InitExprsTy::const_iterator const_iterator;
3029  typedef InitExprsTy::reverse_iterator reverse_iterator;
3030  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3031
3032  iterator begin() { return InitExprs.begin(); }
3033  const_iterator begin() const { return InitExprs.begin(); }
3034  iterator end() { return InitExprs.end(); }
3035  const_iterator end() const { return InitExprs.end(); }
3036  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3037  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3038  reverse_iterator rend() { return InitExprs.rend(); }
3039  const_reverse_iterator rend() const { return InitExprs.rend(); }
3040};
3041
3042/// @brief Represents a C99 designated initializer expression.
3043///
3044/// A designated initializer expression (C99 6.7.8) contains one or
3045/// more designators (which can be field designators, array
3046/// designators, or GNU array-range designators) followed by an
3047/// expression that initializes the field or element(s) that the
3048/// designators refer to. For example, given:
3049///
3050/// @code
3051/// struct point {
3052///   double x;
3053///   double y;
3054/// };
3055/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3056/// @endcode
3057///
3058/// The InitListExpr contains three DesignatedInitExprs, the first of
3059/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3060/// designators, one array designator for @c [2] followed by one field
3061/// designator for @c .y. The initalization expression will be 1.0.
3062class DesignatedInitExpr : public Expr {
3063public:
3064  /// \brief Forward declaration of the Designator class.
3065  class Designator;
3066
3067private:
3068  /// The location of the '=' or ':' prior to the actual initializer
3069  /// expression.
3070  SourceLocation EqualOrColonLoc;
3071
3072  /// Whether this designated initializer used the GNU deprecated
3073  /// syntax rather than the C99 '=' syntax.
3074  bool GNUSyntax : 1;
3075
3076  /// The number of designators in this initializer expression.
3077  unsigned NumDesignators : 15;
3078
3079  /// \brief The designators in this designated initialization
3080  /// expression.
3081  Designator *Designators;
3082
3083  /// The number of subexpressions of this initializer expression,
3084  /// which contains both the initializer and any additional
3085  /// expressions used by array and array-range designators.
3086  unsigned NumSubExprs : 16;
3087
3088
3089  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3090                     const Designator *Designators,
3091                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3092                     Expr **IndexExprs, unsigned NumIndexExprs,
3093                     Expr *Init);
3094
3095  explicit DesignatedInitExpr(unsigned NumSubExprs)
3096    : Expr(DesignatedInitExprClass, EmptyShell()),
3097      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3098
3099public:
3100  /// A field designator, e.g., ".x".
3101  struct FieldDesignator {
3102    /// Refers to the field that is being initialized. The low bit
3103    /// of this field determines whether this is actually a pointer
3104    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3105    /// initially constructed, a field designator will store an
3106    /// IdentifierInfo*. After semantic analysis has resolved that
3107    /// name, the field designator will instead store a FieldDecl*.
3108    uintptr_t NameOrField;
3109
3110    /// The location of the '.' in the designated initializer.
3111    unsigned DotLoc;
3112
3113    /// The location of the field name in the designated initializer.
3114    unsigned FieldLoc;
3115  };
3116
3117  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3118  struct ArrayOrRangeDesignator {
3119    /// Location of the first index expression within the designated
3120    /// initializer expression's list of subexpressions.
3121    unsigned Index;
3122    /// The location of the '[' starting the array range designator.
3123    unsigned LBracketLoc;
3124    /// The location of the ellipsis separating the start and end
3125    /// indices. Only valid for GNU array-range designators.
3126    unsigned EllipsisLoc;
3127    /// The location of the ']' terminating the array range designator.
3128    unsigned RBracketLoc;
3129  };
3130
3131  /// @brief Represents a single C99 designator.
3132  ///
3133  /// @todo This class is infuriatingly similar to clang::Designator,
3134  /// but minor differences (storing indices vs. storing pointers)
3135  /// keep us from reusing it. Try harder, later, to rectify these
3136  /// differences.
3137  class Designator {
3138    /// @brief The kind of designator this describes.
3139    enum {
3140      FieldDesignator,
3141      ArrayDesignator,
3142      ArrayRangeDesignator
3143    } Kind;
3144
3145    union {
3146      /// A field designator, e.g., ".x".
3147      struct FieldDesignator Field;
3148      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3149      struct ArrayOrRangeDesignator ArrayOrRange;
3150    };
3151    friend class DesignatedInitExpr;
3152
3153  public:
3154    Designator() {}
3155
3156    /// @brief Initializes a field designator.
3157    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3158               SourceLocation FieldLoc)
3159      : Kind(FieldDesignator) {
3160      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3161      Field.DotLoc = DotLoc.getRawEncoding();
3162      Field.FieldLoc = FieldLoc.getRawEncoding();
3163    }
3164
3165    /// @brief Initializes an array designator.
3166    Designator(unsigned Index, SourceLocation LBracketLoc,
3167               SourceLocation RBracketLoc)
3168      : Kind(ArrayDesignator) {
3169      ArrayOrRange.Index = Index;
3170      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3171      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3172      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3173    }
3174
3175    /// @brief Initializes a GNU array-range designator.
3176    Designator(unsigned Index, SourceLocation LBracketLoc,
3177               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3178      : Kind(ArrayRangeDesignator) {
3179      ArrayOrRange.Index = Index;
3180      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3181      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3182      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3183    }
3184
3185    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3186    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3187    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3188
3189    IdentifierInfo * getFieldName();
3190
3191    FieldDecl *getField() {
3192      assert(Kind == FieldDesignator && "Only valid on a field designator");
3193      if (Field.NameOrField & 0x01)
3194        return 0;
3195      else
3196        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3197    }
3198
3199    void setField(FieldDecl *FD) {
3200      assert(Kind == FieldDesignator && "Only valid on a field designator");
3201      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3202    }
3203
3204    SourceLocation getDotLoc() const {
3205      assert(Kind == FieldDesignator && "Only valid on a field designator");
3206      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3207    }
3208
3209    SourceLocation getFieldLoc() const {
3210      assert(Kind == FieldDesignator && "Only valid on a field designator");
3211      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3212    }
3213
3214    SourceLocation getLBracketLoc() const {
3215      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3216             "Only valid on an array or array-range designator");
3217      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3218    }
3219
3220    SourceLocation getRBracketLoc() const {
3221      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3222             "Only valid on an array or array-range designator");
3223      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3224    }
3225
3226    SourceLocation getEllipsisLoc() const {
3227      assert(Kind == ArrayRangeDesignator &&
3228             "Only valid on an array-range designator");
3229      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3230    }
3231
3232    unsigned getFirstExprIndex() const {
3233      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3234             "Only valid on an array or array-range designator");
3235      return ArrayOrRange.Index;
3236    }
3237
3238    SourceLocation getStartLocation() const {
3239      if (Kind == FieldDesignator)
3240        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3241      else
3242        return getLBracketLoc();
3243    }
3244  };
3245
3246  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3247                                    unsigned NumDesignators,
3248                                    Expr **IndexExprs, unsigned NumIndexExprs,
3249                                    SourceLocation EqualOrColonLoc,
3250                                    bool GNUSyntax, Expr *Init);
3251
3252  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3253
3254  /// @brief Returns the number of designators in this initializer.
3255  unsigned size() const { return NumDesignators; }
3256
3257  // Iterator access to the designators.
3258  typedef Designator* designators_iterator;
3259  designators_iterator designators_begin() { return Designators; }
3260  designators_iterator designators_end() {
3261    return Designators + NumDesignators;
3262  }
3263
3264  typedef std::reverse_iterator<designators_iterator>
3265          reverse_designators_iterator;
3266  reverse_designators_iterator designators_rbegin() {
3267    return reverse_designators_iterator(designators_end());
3268  }
3269  reverse_designators_iterator designators_rend() {
3270    return reverse_designators_iterator(designators_begin());
3271  }
3272
3273  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3274
3275  void setDesignators(ASTContext &C, const Designator *Desigs,
3276                      unsigned NumDesigs);
3277
3278  Expr *getArrayIndex(const Designator& D);
3279  Expr *getArrayRangeStart(const Designator& D);
3280  Expr *getArrayRangeEnd(const Designator& D);
3281
3282  /// @brief Retrieve the location of the '=' that precedes the
3283  /// initializer value itself, if present.
3284  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3285  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3286
3287  /// @brief Determines whether this designated initializer used the
3288  /// deprecated GNU syntax for designated initializers.
3289  bool usesGNUSyntax() const { return GNUSyntax; }
3290  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3291
3292  /// @brief Retrieve the initializer value.
3293  Expr *getInit() const {
3294    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3295  }
3296
3297  void setInit(Expr *init) {
3298    *child_begin() = init;
3299  }
3300
3301  /// \brief Retrieve the total number of subexpressions in this
3302  /// designated initializer expression, including the actual
3303  /// initialized value and any expressions that occur within array
3304  /// and array-range designators.
3305  unsigned getNumSubExprs() const { return NumSubExprs; }
3306
3307  Expr *getSubExpr(unsigned Idx) {
3308    assert(Idx < NumSubExprs && "Subscript out of range");
3309    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3310    Ptr += sizeof(DesignatedInitExpr);
3311    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3312  }
3313
3314  void setSubExpr(unsigned Idx, Expr *E) {
3315    assert(Idx < NumSubExprs && "Subscript out of range");
3316    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3317    Ptr += sizeof(DesignatedInitExpr);
3318    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3319  }
3320
3321  /// \brief Replaces the designator at index @p Idx with the series
3322  /// of designators in [First, Last).
3323  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3324                        const Designator *Last);
3325
3326  virtual SourceRange getSourceRange() const;
3327
3328  static bool classof(const Stmt *T) {
3329    return T->getStmtClass() == DesignatedInitExprClass;
3330  }
3331  static bool classof(const DesignatedInitExpr *) { return true; }
3332
3333  // Iterators
3334  virtual child_iterator child_begin();
3335  virtual child_iterator child_end();
3336};
3337
3338/// \brief Represents an implicitly-generated value initialization of
3339/// an object of a given type.
3340///
3341/// Implicit value initializations occur within semantic initializer
3342/// list expressions (InitListExpr) as placeholders for subobject
3343/// initializations not explicitly specified by the user.
3344///
3345/// \see InitListExpr
3346class ImplicitValueInitExpr : public Expr {
3347public:
3348  explicit ImplicitValueInitExpr(QualType ty)
3349    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3350           false, false) { }
3351
3352  /// \brief Construct an empty implicit value initialization.
3353  explicit ImplicitValueInitExpr(EmptyShell Empty)
3354    : Expr(ImplicitValueInitExprClass, Empty) { }
3355
3356  static bool classof(const Stmt *T) {
3357    return T->getStmtClass() == ImplicitValueInitExprClass;
3358  }
3359  static bool classof(const ImplicitValueInitExpr *) { return true; }
3360
3361  virtual SourceRange getSourceRange() const {
3362    return SourceRange();
3363  }
3364
3365  // Iterators
3366  virtual child_iterator child_begin();
3367  virtual child_iterator child_end();
3368};
3369
3370
3371class ParenListExpr : public Expr {
3372  Stmt **Exprs;
3373  unsigned NumExprs;
3374  SourceLocation LParenLoc, RParenLoc;
3375
3376public:
3377  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3378                unsigned numexprs, SourceLocation rparenloc);
3379
3380  /// \brief Build an empty paren list.
3381  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3382
3383  unsigned getNumExprs() const { return NumExprs; }
3384
3385  const Expr* getExpr(unsigned Init) const {
3386    assert(Init < getNumExprs() && "Initializer access out of range!");
3387    return cast_or_null<Expr>(Exprs[Init]);
3388  }
3389
3390  Expr* getExpr(unsigned Init) {
3391    assert(Init < getNumExprs() && "Initializer access out of range!");
3392    return cast_or_null<Expr>(Exprs[Init]);
3393  }
3394
3395  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3396
3397  SourceLocation getLParenLoc() const { return LParenLoc; }
3398  SourceLocation getRParenLoc() const { return RParenLoc; }
3399
3400  virtual SourceRange getSourceRange() const {
3401    return SourceRange(LParenLoc, RParenLoc);
3402  }
3403  static bool classof(const Stmt *T) {
3404    return T->getStmtClass() == ParenListExprClass;
3405  }
3406  static bool classof(const ParenListExpr *) { return true; }
3407
3408  // Iterators
3409  virtual child_iterator child_begin();
3410  virtual child_iterator child_end();
3411
3412  friend class ASTStmtReader;
3413  friend class ASTStmtWriter;
3414};
3415
3416
3417//===----------------------------------------------------------------------===//
3418// Clang Extensions
3419//===----------------------------------------------------------------------===//
3420
3421
3422/// ExtVectorElementExpr - This represents access to specific elements of a
3423/// vector, and may occur on the left hand side or right hand side.  For example
3424/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3425///
3426/// Note that the base may have either vector or pointer to vector type, just
3427/// like a struct field reference.
3428///
3429class ExtVectorElementExpr : public Expr {
3430  Stmt *Base;
3431  IdentifierInfo *Accessor;
3432  SourceLocation AccessorLoc;
3433public:
3434  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3435                       IdentifierInfo &accessor, SourceLocation loc)
3436    : Expr(ExtVectorElementExprClass, ty, VK,
3437           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3438           base->isTypeDependent(), base->isValueDependent()),
3439      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3440
3441  /// \brief Build an empty vector element expression.
3442  explicit ExtVectorElementExpr(EmptyShell Empty)
3443    : Expr(ExtVectorElementExprClass, Empty) { }
3444
3445  const Expr *getBase() const { return cast<Expr>(Base); }
3446  Expr *getBase() { return cast<Expr>(Base); }
3447  void setBase(Expr *E) { Base = E; }
3448
3449  IdentifierInfo &getAccessor() const { return *Accessor; }
3450  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3451
3452  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3453  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3454
3455  /// getNumElements - Get the number of components being selected.
3456  unsigned getNumElements() const;
3457
3458  /// containsDuplicateElements - Return true if any element access is
3459  /// repeated.
3460  bool containsDuplicateElements() const;
3461
3462  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3463  /// aggregate Constant of ConstantInt(s).
3464  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3465
3466  virtual SourceRange getSourceRange() const {
3467    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3468  }
3469
3470  /// isArrow - Return true if the base expression is a pointer to vector,
3471  /// return false if the base expression is a vector.
3472  bool isArrow() const;
3473
3474  static bool classof(const Stmt *T) {
3475    return T->getStmtClass() == ExtVectorElementExprClass;
3476  }
3477  static bool classof(const ExtVectorElementExpr *) { return true; }
3478
3479  // Iterators
3480  virtual child_iterator child_begin();
3481  virtual child_iterator child_end();
3482};
3483
3484
3485/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3486/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3487class BlockExpr : public Expr {
3488protected:
3489  BlockDecl *TheBlock;
3490  bool HasBlockDeclRefExprs;
3491public:
3492  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3493    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3494           ty->isDependentType(), false),
3495      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3496
3497  /// \brief Build an empty block expression.
3498  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3499
3500  const BlockDecl *getBlockDecl() const { return TheBlock; }
3501  BlockDecl *getBlockDecl() { return TheBlock; }
3502  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3503
3504  // Convenience functions for probing the underlying BlockDecl.
3505  SourceLocation getCaretLocation() const;
3506  const Stmt *getBody() const;
3507  Stmt *getBody();
3508
3509  virtual SourceRange getSourceRange() const {
3510    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3511  }
3512
3513  /// getFunctionType - Return the underlying function type for this block.
3514  const FunctionType *getFunctionType() const;
3515
3516  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3517  /// inside of the block that reference values outside the block.
3518  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3519  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3520
3521  static bool classof(const Stmt *T) {
3522    return T->getStmtClass() == BlockExprClass;
3523  }
3524  static bool classof(const BlockExpr *) { return true; }
3525
3526  // Iterators
3527  virtual child_iterator child_begin();
3528  virtual child_iterator child_end();
3529};
3530
3531/// BlockDeclRefExpr - A reference to a declared variable, function,
3532/// enum, etc.
3533class BlockDeclRefExpr : public Expr {
3534  ValueDecl *D;
3535  SourceLocation Loc;
3536  bool IsByRef : 1;
3537  bool ConstQualAdded : 1;
3538  Stmt *CopyConstructorVal;
3539public:
3540  // FIXME: Fix type/value dependence!
3541  BlockDeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK,
3542                   SourceLocation l, bool ByRef, bool constAdded = false,
3543                   Stmt *copyConstructorVal = 0)
3544    : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary,
3545           (!t.isNull() && t->isDependentType()), false),
3546    D(d), Loc(l), IsByRef(ByRef),
3547    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3548
3549  // \brief Build an empty reference to a declared variable in a
3550  // block.
3551  explicit BlockDeclRefExpr(EmptyShell Empty)
3552    : Expr(BlockDeclRefExprClass, Empty) { }
3553
3554  ValueDecl *getDecl() { return D; }
3555  const ValueDecl *getDecl() const { return D; }
3556  void setDecl(ValueDecl *VD) { D = VD; }
3557
3558  SourceLocation getLocation() const { return Loc; }
3559  void setLocation(SourceLocation L) { Loc = L; }
3560
3561  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3562
3563  bool isByRef() const { return IsByRef; }
3564  void setByRef(bool BR) { IsByRef = BR; }
3565
3566  bool isConstQualAdded() const { return ConstQualAdded; }
3567  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3568
3569  const Expr *getCopyConstructorExpr() const
3570    { return cast_or_null<Expr>(CopyConstructorVal); }
3571  Expr *getCopyConstructorExpr()
3572    { return cast_or_null<Expr>(CopyConstructorVal); }
3573  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3574
3575  static bool classof(const Stmt *T) {
3576    return T->getStmtClass() == BlockDeclRefExprClass;
3577  }
3578  static bool classof(const BlockDeclRefExpr *) { return true; }
3579
3580  // Iterators
3581  virtual child_iterator child_begin();
3582  virtual child_iterator child_end();
3583};
3584
3585/// OpaqueValueExpr - An expression referring to an opaque object of a
3586/// fixed type and value class.  These don't correspond to concrete
3587/// syntax; instead they're used to express operations (usually copy
3588/// operations) on values whose source is generally obvious from
3589/// context.
3590class OpaqueValueExpr : public Expr {
3591  friend class ASTStmtReader;
3592public:
3593  OpaqueValueExpr(QualType T, ExprValueKind VK, ExprObjectKind OK = OK_Ordinary)
3594    : Expr(OpaqueValueExprClass, T, VK, OK,
3595           T->isDependentType(), T->isDependentType()) {
3596  }
3597
3598  explicit OpaqueValueExpr(EmptyShell Empty)
3599    : Expr(OpaqueValueExprClass, Empty) { }
3600
3601  virtual SourceRange getSourceRange() const;
3602  virtual child_iterator child_begin();
3603  virtual child_iterator child_end();
3604
3605  static bool classof(const Stmt *T) {
3606    return T->getStmtClass() == OpaqueValueExprClass;
3607  }
3608  static bool classof(const OpaqueValueExpr *) { return true; }
3609};
3610
3611}  // end namespace clang
3612
3613#endif
3614