Expr.h revision 0e800c9c20d1a658a91096c756c4a4a9e90264fc
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <vector>
29
30namespace clang {
31  class ASTContext;
32  class APValue;
33  class Decl;
34  class IdentifierInfo;
35  class ParmVarDecl;
36  class NamedDecl;
37  class ValueDecl;
38  class BlockDecl;
39  class CXXBaseSpecifier;
40  class CXXOperatorCallExpr;
41  class CXXMemberCallExpr;
42  class ObjCPropertyRefExpr;
43  class TemplateArgumentLoc;
44  class TemplateArgumentListInfo;
45
46/// \brief A simple array of base specifiers.
47typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
48
49/// Expr - This represents one expression.  Note that Expr's are subclasses of
50/// Stmt.  This allows an expression to be transparently used any place a Stmt
51/// is required.
52///
53class Expr : public Stmt {
54  QualType TR;
55
56  virtual void ANCHOR(); // key function.
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD) : Stmt(SC) {
61    ExprBits.TypeDependent = TD;
62    ExprBits.ValueDependent = VD;
63    ExprBits.ValueKind = VK;
64    ExprBits.ObjectKind = OK;
65    setType(T);
66  }
67
68  /// \brief Construct an empty expression.
69  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
70
71public:
72  QualType getType() const { return TR; }
73  void setType(QualType t) {
74    // In C++, the type of an expression is always adjusted so that it
75    // will not have reference type an expression will never have
76    // reference type (C++ [expr]p6). Use
77    // QualType::getNonReferenceType() to retrieve the non-reference
78    // type. Additionally, inspect Expr::isLvalue to determine whether
79    // an expression that is adjusted in this manner should be
80    // considered an lvalue.
81    assert((t.isNull() || !t->isReferenceType()) &&
82           "Expressions can't have reference type");
83
84    TR = t;
85  }
86
87  /// isValueDependent - Determines whether this expression is
88  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
89  /// array bound of "Chars" in the following example is
90  /// value-dependent.
91  /// @code
92  /// template<int Size, char (&Chars)[Size]> struct meta_string;
93  /// @endcode
94  bool isValueDependent() const { return ExprBits.ValueDependent; }
95
96  /// \brief Set whether this expression is value-dependent or not.
97  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
98
99  /// isTypeDependent - Determines whether this expression is
100  /// type-dependent (C++ [temp.dep.expr]), which means that its type
101  /// could change from one template instantiation to the next. For
102  /// example, the expressions "x" and "x + y" are type-dependent in
103  /// the following code, but "y" is not type-dependent:
104  /// @code
105  /// template<typename T>
106  /// void add(T x, int y) {
107  ///   x + y;
108  /// }
109  /// @endcode
110  bool isTypeDependent() const { return ExprBits.TypeDependent; }
111
112  /// \brief Set whether this expression is type-dependent or not.
113  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
114
115  /// SourceLocation tokens are not useful in isolation - they are low level
116  /// value objects created/interpreted by SourceManager. We assume AST
117  /// clients will have a pointer to the respective SourceManager.
118  virtual SourceRange getSourceRange() const = 0;
119
120  /// getExprLoc - Return the preferred location for the arrow when diagnosing
121  /// a problem with a generic expression.
122  virtual SourceLocation getExprLoc() const { return getLocStart(); }
123
124  /// isUnusedResultAWarning - Return true if this immediate expression should
125  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
126  /// with location to warn on and the source range[s] to report with the
127  /// warning.
128  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
129                              SourceRange &R2, ASTContext &Ctx) const;
130
131  /// isLValue - True if this expression is an "l-value" according to
132  /// the rules of the current language.  C and C++ give somewhat
133  /// different rules for this concept, but in general, the result of
134  /// an l-value expression identifies a specific object whereas the
135  /// result of an r-value expression is a value detached from any
136  /// specific storage.
137  ///
138  /// C++0x divides the concept of "r-value" into pure r-values
139  /// ("pr-values") and so-called expiring values ("x-values"), which
140  /// identify specific objects that can be safely cannibalized for
141  /// their resources.  This is an unfortunate abuse of terminology on
142  /// the part of the C++ committee.  In Clang, when we say "r-value",
143  /// we generally mean a pr-value.
144  bool isLValue() const { return getValueKind() == VK_LValue; }
145  bool isRValue() const { return getValueKind() == VK_RValue; }
146  bool isXValue() const { return getValueKind() == VK_XValue; }
147  bool isGLValue() const { return getValueKind() != VK_RValue; }
148
149  enum LValueClassification {
150    LV_Valid,
151    LV_NotObjectType,
152    LV_IncompleteVoidType,
153    LV_DuplicateVectorComponents,
154    LV_InvalidExpression,
155    LV_MemberFunction,
156    LV_SubObjCPropertySetting,
157    LV_ClassTemporary
158  };
159  /// Reasons why an expression might not be an l-value.
160  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
161
162  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
163  /// does not have an incomplete type, does not have a const-qualified type,
164  /// and if it is a structure or union, does not have any member (including,
165  /// recursively, any member or element of all contained aggregates or unions)
166  /// with a const-qualified type.
167  ///
168  /// \param Loc [in] [out] - A source location which *may* be filled
169  /// in with the location of the expression making this a
170  /// non-modifiable lvalue, if specified.
171  enum isModifiableLvalueResult {
172    MLV_Valid,
173    MLV_NotObjectType,
174    MLV_IncompleteVoidType,
175    MLV_DuplicateVectorComponents,
176    MLV_InvalidExpression,
177    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
178    MLV_IncompleteType,
179    MLV_ConstQualified,
180    MLV_ArrayType,
181    MLV_NotBlockQualified,
182    MLV_ReadonlyProperty,
183    MLV_NoSetterProperty,
184    MLV_MemberFunction,
185    MLV_SubObjCPropertySetting,
186    MLV_ClassTemporary
187  };
188  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
189                                              SourceLocation *Loc = 0) const;
190
191  /// \brief The return type of classify(). Represents the C++0x expression
192  ///        taxonomy.
193  class Classification {
194  public:
195    /// \brief The various classification results. Most of these mean prvalue.
196    enum Kinds {
197      CL_LValue,
198      CL_XValue,
199      CL_Function, // Functions cannot be lvalues in C.
200      CL_Void, // Void cannot be an lvalue in C.
201      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
202      CL_MemberFunction, // An expression referring to a member function
203      CL_SubObjCPropertySetting,
204      CL_ClassTemporary, // A prvalue of class type
205      CL_PRValue // A prvalue for any other reason, of any other type
206    };
207    /// \brief The results of modification testing.
208    enum ModifiableType {
209      CM_Untested, // testModifiable was false.
210      CM_Modifiable,
211      CM_RValue, // Not modifiable because it's an rvalue
212      CM_Function, // Not modifiable because it's a function; C++ only
213      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
214      CM_NotBlockQualified, // Not captured in the closure
215      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
216      CM_ConstQualified,
217      CM_ArrayType,
218      CM_IncompleteType
219    };
220
221  private:
222    friend class Expr;
223
224    unsigned short Kind;
225    unsigned short Modifiable;
226
227    explicit Classification(Kinds k, ModifiableType m)
228      : Kind(k), Modifiable(m)
229    {}
230
231  public:
232    Classification() {}
233
234    Kinds getKind() const { return static_cast<Kinds>(Kind); }
235    ModifiableType getModifiable() const {
236      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
237      return static_cast<ModifiableType>(Modifiable);
238    }
239    bool isLValue() const { return Kind == CL_LValue; }
240    bool isXValue() const { return Kind == CL_XValue; }
241    bool isGLValue() const { return Kind <= CL_XValue; }
242    bool isPRValue() const { return Kind >= CL_Function; }
243    bool isRValue() const { return Kind >= CL_XValue; }
244    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
245  };
246  /// \brief Classify - Classify this expression according to the C++0x
247  ///        expression taxonomy.
248  ///
249  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
250  /// old lvalue vs rvalue. This function determines the type of expression this
251  /// is. There are three expression types:
252  /// - lvalues are classical lvalues as in C++03.
253  /// - prvalues are equivalent to rvalues in C++03.
254  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
255  ///   function returning an rvalue reference.
256  /// lvalues and xvalues are collectively referred to as glvalues, while
257  /// prvalues and xvalues together form rvalues.
258  Classification Classify(ASTContext &Ctx) const {
259    return ClassifyImpl(Ctx, 0);
260  }
261
262  /// \brief ClassifyModifiable - Classify this expression according to the
263  ///        C++0x expression taxonomy, and see if it is valid on the left side
264  ///        of an assignment.
265  ///
266  /// This function extends classify in that it also tests whether the
267  /// expression is modifiable (C99 6.3.2.1p1).
268  /// \param Loc A source location that might be filled with a relevant location
269  ///            if the expression is not modifiable.
270  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
271    return ClassifyImpl(Ctx, &Loc);
272  }
273
274  /// getValueKindForType - Given a formal return or parameter type,
275  /// give its value kind.
276  static ExprValueKind getValueKindForType(QualType T) {
277    if (const ReferenceType *RT = T->getAs<ReferenceType>())
278      return (isa<LValueReferenceType>(RT)
279                ? VK_LValue
280                : (RT->getPointeeType()->isFunctionType()
281                     ? VK_LValue : VK_XValue));
282    return VK_RValue;
283  }
284
285  /// getValueKind - The value kind that this expression produces.
286  ExprValueKind getValueKind() const {
287    return static_cast<ExprValueKind>(ExprBits.ValueKind);
288  }
289
290  /// getObjectKind - The object kind that this expression produces.
291  /// Object kinds are meaningful only for expressions that yield an
292  /// l-value or x-value.
293  ExprObjectKind getObjectKind() const {
294    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
295  }
296
297  /// setValueKind - Set the value kind produced by this expression.
298  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
299
300  /// setObjectKind - Set the object kind produced by this expression.
301  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
302
303private:
304  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
305
306public:
307
308  /// \brief If this expression refers to a bit-field, retrieve the
309  /// declaration of that bit-field.
310  FieldDecl *getBitField();
311
312  const FieldDecl *getBitField() const {
313    return const_cast<Expr*>(this)->getBitField();
314  }
315
316  /// \brief If this expression is an l-value for an Objective C
317  /// property, find the underlying property reference expression.
318  const ObjCPropertyRefExpr *getObjCProperty() const;
319
320  /// \brief Returns whether this expression refers to a vector element.
321  bool refersToVectorElement() const;
322
323  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
324  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
325  /// but also int expressions which are produced by things like comparisons in
326  /// C.
327  bool isKnownToHaveBooleanValue() const;
328
329  /// isIntegerConstantExpr - Return true if this expression is a valid integer
330  /// constant expression, and, if so, return its value in Result.  If not a
331  /// valid i-c-e, return false and fill in Loc (if specified) with the location
332  /// of the invalid expression.
333  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
334                             SourceLocation *Loc = 0,
335                             bool isEvaluated = true) const;
336  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
337    llvm::APSInt X;
338    return isIntegerConstantExpr(X, Ctx, Loc);
339  }
340  /// isConstantInitializer - Returns true if this expression is a constant
341  /// initializer, which can be emitted at compile-time.
342  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
343
344  /// EvalResult is a struct with detailed info about an evaluated expression.
345  struct EvalResult {
346    /// Val - This is the value the expression can be folded to.
347    APValue Val;
348
349    /// HasSideEffects - Whether the evaluated expression has side effects.
350    /// For example, (f() && 0) can be folded, but it still has side effects.
351    bool HasSideEffects;
352
353    /// Diag - If the expression is unfoldable, then Diag contains a note
354    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
355    /// position for the error, and DiagExpr is the expression that caused
356    /// the error.
357    /// If the expression is foldable, but not an integer constant expression,
358    /// Diag contains a note diagnostic that describes why it isn't an integer
359    /// constant expression. If the expression *is* an integer constant
360    /// expression, then Diag will be zero.
361    unsigned Diag;
362    const Expr *DiagExpr;
363    SourceLocation DiagLoc;
364
365    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
366
367    // isGlobalLValue - Return true if the evaluated lvalue expression
368    // is global.
369    bool isGlobalLValue() const;
370    // hasSideEffects - Return true if the evaluated expression has
371    // side effects.
372    bool hasSideEffects() const {
373      return HasSideEffects;
374    }
375  };
376
377  /// Evaluate - Return true if this is a constant which we can fold using
378  /// any crazy technique (that has nothing to do with language standards) that
379  /// we want to.  If this function returns true, it returns the folded constant
380  /// in Result.
381  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
382
383  /// EvaluateAsBooleanCondition - Return true if this is a constant
384  /// which we we can fold and convert to a boolean condition using
385  /// any crazy technique that we want to.
386  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
387
388  /// isEvaluatable - Call Evaluate to see if this expression can be constant
389  /// folded, but discard the result.
390  bool isEvaluatable(ASTContext &Ctx) const;
391
392  /// HasSideEffects - This routine returns true for all those expressions
393  /// which must be evaluated each time and must not be optimized away
394  /// or evaluated at compile time. Example is a function call, volatile
395  /// variable read.
396  bool HasSideEffects(ASTContext &Ctx) const;
397
398  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
399  /// must be called on an expression that constant folds to an integer.
400  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
401
402  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
403  /// with link time known address.
404  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
405
406  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
407  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
408
409  /// \brief Enumeration used to describe how \c isNullPointerConstant()
410  /// should cope with value-dependent expressions.
411  enum NullPointerConstantValueDependence {
412    /// \brief Specifies that the expression should never be value-dependent.
413    NPC_NeverValueDependent = 0,
414
415    /// \brief Specifies that a value-dependent expression of integral or
416    /// dependent type should be considered a null pointer constant.
417    NPC_ValueDependentIsNull,
418
419    /// \brief Specifies that a value-dependent expression should be considered
420    /// to never be a null pointer constant.
421    NPC_ValueDependentIsNotNull
422  };
423
424  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
425  /// integer constant expression with the value zero, or if this is one that is
426  /// cast to void*.
427  bool isNullPointerConstant(ASTContext &Ctx,
428                             NullPointerConstantValueDependence NPC) const;
429
430  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
431  /// write barrier.
432  bool isOBJCGCCandidate(ASTContext &Ctx) const;
433
434  /// \brief Returns true if this expression is a bound member function.
435  bool isBoundMemberFunction(ASTContext &Ctx) const;
436
437  /// \brief Result type of CanThrow().
438  enum CanThrowResult {
439    CT_Cannot,
440    CT_Dependent,
441    CT_Can
442  };
443  /// \brief Test if this expression, if evaluated, might throw, according to
444  ///        the rules of C++ [expr.unary.noexcept].
445  CanThrowResult CanThrow(ASTContext &C) const;
446
447  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
448  ///  its subexpression.  If that subexpression is also a ParenExpr,
449  ///  then this method recursively returns its subexpression, and so forth.
450  ///  Otherwise, the method returns the current Expr.
451  Expr *IgnoreParens();
452
453  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
454  /// or CastExprs, returning their operand.
455  Expr *IgnoreParenCasts();
456
457  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
458  /// ParenExpr or ImplicitCastExprs, returning their operand.
459  Expr *IgnoreParenImpCasts();
460
461  const Expr *IgnoreParenImpCasts() const {
462    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
463  }
464
465  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
466  /// CastExprs that represent lvalue casts, returning their operand.
467  Expr *IgnoreParenLValueCasts();
468
469  const Expr *IgnoreParenLValueCasts() const {
470    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
471  }
472
473  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
474  /// value (including ptr->int casts of the same size).  Strip off any
475  /// ParenExpr or CastExprs, returning their operand.
476  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
477
478  /// \brief Determine whether this expression is a default function argument.
479  ///
480  /// Default arguments are implicitly generated in the abstract syntax tree
481  /// by semantic analysis for function calls, object constructions, etc. in
482  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
483  /// this routine also looks through any implicit casts to determine whether
484  /// the expression is a default argument.
485  bool isDefaultArgument() const;
486
487  /// \brief Determine whether the result of this expression is a
488  /// temporary object of the given class type.
489  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
490
491  const Expr *IgnoreParens() const {
492    return const_cast<Expr*>(this)->IgnoreParens();
493  }
494  const Expr *IgnoreParenCasts() const {
495    return const_cast<Expr*>(this)->IgnoreParenCasts();
496  }
497  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
498    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
499  }
500
501  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
502  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
503
504  static bool classof(const Stmt *T) {
505    return T->getStmtClass() >= firstExprConstant &&
506           T->getStmtClass() <= lastExprConstant;
507  }
508  static bool classof(const Expr *) { return true; }
509};
510
511
512//===----------------------------------------------------------------------===//
513// Primary Expressions.
514//===----------------------------------------------------------------------===//
515
516/// \brief Represents the qualifier that may precede a C++ name, e.g., the
517/// "std::" in "std::sort".
518struct NameQualifier {
519  /// \brief The nested name specifier.
520  NestedNameSpecifier *NNS;
521
522  /// \brief The source range covered by the nested name specifier.
523  SourceRange Range;
524};
525
526/// \brief Represents an explicit template argument list in C++, e.g.,
527/// the "<int>" in "sort<int>".
528struct ExplicitTemplateArgumentList {
529  /// \brief The source location of the left angle bracket ('<');
530  SourceLocation LAngleLoc;
531
532  /// \brief The source location of the right angle bracket ('>');
533  SourceLocation RAngleLoc;
534
535  /// \brief The number of template arguments in TemplateArgs.
536  /// The actual template arguments (if any) are stored after the
537  /// ExplicitTemplateArgumentList structure.
538  unsigned NumTemplateArgs;
539
540  /// \brief Retrieve the template arguments
541  TemplateArgumentLoc *getTemplateArgs() {
542    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
543  }
544
545  /// \brief Retrieve the template arguments
546  const TemplateArgumentLoc *getTemplateArgs() const {
547    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
548  }
549
550  void initializeFrom(const TemplateArgumentListInfo &List);
551  void copyInto(TemplateArgumentListInfo &List) const;
552  static std::size_t sizeFor(unsigned NumTemplateArgs);
553  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
554};
555
556/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
557/// enum, etc.
558class DeclRefExpr : public Expr {
559  enum {
560    // Flag on DecoratedD that specifies when this declaration reference
561    // expression has a C++ nested-name-specifier.
562    HasQualifierFlag = 0x01,
563    // Flag on DecoratedD that specifies when this declaration reference
564    // expression has an explicit C++ template argument list.
565    HasExplicitTemplateArgumentListFlag = 0x02
566  };
567
568  // DecoratedD - The declaration that we are referencing, plus two bits to
569  // indicate whether (1) the declaration's name was explicitly qualified and
570  // (2) the declaration's name was followed by an explicit template
571  // argument list.
572  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
573
574  // Loc - The location of the declaration name itself.
575  SourceLocation Loc;
576
577  /// DNLoc - Provides source/type location info for the
578  /// declaration name embedded in DecoratedD.
579  DeclarationNameLoc DNLoc;
580
581  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
582  NameQualifier *getNameQualifier() {
583    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
584      return 0;
585
586    return reinterpret_cast<NameQualifier *> (this + 1);
587  }
588
589  /// \brief Retrieve the qualifier that preceded the member name, if any.
590  const NameQualifier *getNameQualifier() const {
591    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
592  }
593
594  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
595              ValueDecl *D, SourceLocation NameLoc,
596              const TemplateArgumentListInfo *TemplateArgs,
597              QualType T, ExprValueKind VK);
598
599  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
600              ValueDecl *D, const DeclarationNameInfo &NameInfo,
601              const TemplateArgumentListInfo *TemplateArgs,
602              QualType T, ExprValueKind VK);
603
604  /// \brief Construct an empty declaration reference expression.
605  explicit DeclRefExpr(EmptyShell Empty)
606    : Expr(DeclRefExprClass, Empty) { }
607
608  /// \brief Computes the type- and value-dependence flags for this
609  /// declaration reference expression.
610  void computeDependence();
611
612public:
613  DeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK, SourceLocation l) :
614    Expr(DeclRefExprClass, t, VK, OK_Ordinary, false, false),
615    DecoratedD(d, 0), Loc(l) {
616    computeDependence();
617  }
618
619  static DeclRefExpr *Create(ASTContext &Context,
620                             NestedNameSpecifier *Qualifier,
621                             SourceRange QualifierRange,
622                             ValueDecl *D,
623                             SourceLocation NameLoc,
624                             QualType T, ExprValueKind VK,
625                             const TemplateArgumentListInfo *TemplateArgs = 0);
626
627  static DeclRefExpr *Create(ASTContext &Context,
628                             NestedNameSpecifier *Qualifier,
629                             SourceRange QualifierRange,
630                             ValueDecl *D,
631                             const DeclarationNameInfo &NameInfo,
632                             QualType T, ExprValueKind VK,
633                             const TemplateArgumentListInfo *TemplateArgs = 0);
634
635  /// \brief Construct an empty declaration reference expression.
636  static DeclRefExpr *CreateEmpty(ASTContext &Context,
637                                  bool HasQualifier, unsigned NumTemplateArgs);
638
639  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
640  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
641  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
642
643  DeclarationNameInfo getNameInfo() const {
644    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
645  }
646
647  SourceLocation getLocation() const { return Loc; }
648  void setLocation(SourceLocation L) { Loc = L; }
649  virtual SourceRange getSourceRange() const;
650
651  /// \brief Determine whether this declaration reference was preceded by a
652  /// C++ nested-name-specifier, e.g., \c N::foo.
653  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
654
655  /// \brief If the name was qualified, retrieves the source range of
656  /// the nested-name-specifier that precedes the name. Otherwise,
657  /// returns an empty source range.
658  SourceRange getQualifierRange() const {
659    if (!hasQualifier())
660      return SourceRange();
661
662    return getNameQualifier()->Range;
663  }
664
665  /// \brief If the name was qualified, retrieves the nested-name-specifier
666  /// that precedes the name. Otherwise, returns NULL.
667  NestedNameSpecifier *getQualifier() const {
668    if (!hasQualifier())
669      return 0;
670
671    return getNameQualifier()->NNS;
672  }
673
674  bool hasExplicitTemplateArgs() const {
675    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
676  }
677
678  /// \brief Retrieve the explicit template argument list that followed the
679  /// member template name.
680  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
681    assert(hasExplicitTemplateArgs());
682
683    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
684      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
685
686    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
687                                                      getNameQualifier() + 1);
688  }
689
690  /// \brief Retrieve the explicit template argument list that followed the
691  /// member template name.
692  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
693    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
694  }
695
696  /// \brief Retrieves the optional explicit template arguments.
697  /// This points to the same data as getExplicitTemplateArgs(), but
698  /// returns null if there are no explicit template arguments.
699  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
700    if (!hasExplicitTemplateArgs()) return 0;
701    return &getExplicitTemplateArgs();
702  }
703
704  /// \brief Copies the template arguments (if present) into the given
705  /// structure.
706  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
707    if (hasExplicitTemplateArgs())
708      getExplicitTemplateArgs().copyInto(List);
709  }
710
711  /// \brief Retrieve the location of the left angle bracket following the
712  /// member name ('<'), if any.
713  SourceLocation getLAngleLoc() const {
714    if (!hasExplicitTemplateArgs())
715      return SourceLocation();
716
717    return getExplicitTemplateArgs().LAngleLoc;
718  }
719
720  /// \brief Retrieve the template arguments provided as part of this
721  /// template-id.
722  const TemplateArgumentLoc *getTemplateArgs() const {
723    if (!hasExplicitTemplateArgs())
724      return 0;
725
726    return getExplicitTemplateArgs().getTemplateArgs();
727  }
728
729  /// \brief Retrieve the number of template arguments provided as part of this
730  /// template-id.
731  unsigned getNumTemplateArgs() const {
732    if (!hasExplicitTemplateArgs())
733      return 0;
734
735    return getExplicitTemplateArgs().NumTemplateArgs;
736  }
737
738  /// \brief Retrieve the location of the right angle bracket following the
739  /// template arguments ('>').
740  SourceLocation getRAngleLoc() const {
741    if (!hasExplicitTemplateArgs())
742      return SourceLocation();
743
744    return getExplicitTemplateArgs().RAngleLoc;
745  }
746
747  static bool classof(const Stmt *T) {
748    return T->getStmtClass() == DeclRefExprClass;
749  }
750  static bool classof(const DeclRefExpr *) { return true; }
751
752  // Iterators
753  virtual child_iterator child_begin();
754  virtual child_iterator child_end();
755
756  friend class ASTStmtReader;
757  friend class ASTStmtWriter;
758};
759
760/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
761class PredefinedExpr : public Expr {
762public:
763  enum IdentType {
764    Func,
765    Function,
766    PrettyFunction,
767    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
768    /// 'virtual' keyword is omitted for virtual member functions.
769    PrettyFunctionNoVirtual
770  };
771
772private:
773  SourceLocation Loc;
774  IdentType Type;
775public:
776  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
777    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
778           type->isDependentType(), type->isDependentType()),
779      Loc(l), Type(IT) {}
780
781  /// \brief Construct an empty predefined expression.
782  explicit PredefinedExpr(EmptyShell Empty)
783    : Expr(PredefinedExprClass, Empty) { }
784
785  IdentType getIdentType() const { return Type; }
786  void setIdentType(IdentType IT) { Type = IT; }
787
788  SourceLocation getLocation() const { return Loc; }
789  void setLocation(SourceLocation L) { Loc = L; }
790
791  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
792
793  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
794
795  static bool classof(const Stmt *T) {
796    return T->getStmtClass() == PredefinedExprClass;
797  }
798  static bool classof(const PredefinedExpr *) { return true; }
799
800  // Iterators
801  virtual child_iterator child_begin();
802  virtual child_iterator child_end();
803};
804
805/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
806/// leaking memory.
807///
808/// For large floats/integers, APFloat/APInt will allocate memory from the heap
809/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
810/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
811/// the APFloat/APInt values will never get freed. APNumericStorage uses
812/// ASTContext's allocator for memory allocation.
813class APNumericStorage {
814  unsigned BitWidth;
815  union {
816    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
817    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
818  };
819
820  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
821
822  APNumericStorage(const APNumericStorage&); // do not implement
823  APNumericStorage& operator=(const APNumericStorage&); // do not implement
824
825protected:
826  APNumericStorage() : BitWidth(0), VAL(0) { }
827
828  llvm::APInt getIntValue() const {
829    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
830    if (NumWords > 1)
831      return llvm::APInt(BitWidth, NumWords, pVal);
832    else
833      return llvm::APInt(BitWidth, VAL);
834  }
835  void setIntValue(ASTContext &C, const llvm::APInt &Val);
836};
837
838class APIntStorage : public APNumericStorage {
839public:
840  llvm::APInt getValue() const { return getIntValue(); }
841  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
842};
843
844class APFloatStorage : public APNumericStorage {
845public:
846  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
847  void setValue(ASTContext &C, const llvm::APFloat &Val) {
848    setIntValue(C, Val.bitcastToAPInt());
849  }
850};
851
852class IntegerLiteral : public Expr {
853  APIntStorage Num;
854  SourceLocation Loc;
855
856  /// \brief Construct an empty integer literal.
857  explicit IntegerLiteral(EmptyShell Empty)
858    : Expr(IntegerLiteralClass, Empty) { }
859
860public:
861  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
862  // or UnsignedLongLongTy
863  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
864                 QualType type, SourceLocation l)
865    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false),
866      Loc(l) {
867    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
868    setValue(C, V);
869  }
870
871  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
872  // or UnsignedLongLongTy
873  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
874                                QualType type, SourceLocation l);
875  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
876
877  llvm::APInt getValue() const { return Num.getValue(); }
878  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
879
880  /// \brief Retrieve the location of the literal.
881  SourceLocation getLocation() const { return Loc; }
882
883  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
884  void setLocation(SourceLocation Location) { Loc = Location; }
885
886  static bool classof(const Stmt *T) {
887    return T->getStmtClass() == IntegerLiteralClass;
888  }
889  static bool classof(const IntegerLiteral *) { return true; }
890
891  // Iterators
892  virtual child_iterator child_begin();
893  virtual child_iterator child_end();
894};
895
896class CharacterLiteral : public Expr {
897  unsigned Value;
898  SourceLocation Loc;
899  bool IsWide;
900public:
901  // type should be IntTy
902  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
903    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false),
904      Value(value), Loc(l), IsWide(iswide) {
905  }
906
907  /// \brief Construct an empty character literal.
908  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
909
910  SourceLocation getLocation() const { return Loc; }
911  bool isWide() const { return IsWide; }
912
913  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
914
915  unsigned getValue() const { return Value; }
916
917  void setLocation(SourceLocation Location) { Loc = Location; }
918  void setWide(bool W) { IsWide = W; }
919  void setValue(unsigned Val) { Value = Val; }
920
921  static bool classof(const Stmt *T) {
922    return T->getStmtClass() == CharacterLiteralClass;
923  }
924  static bool classof(const CharacterLiteral *) { return true; }
925
926  // Iterators
927  virtual child_iterator child_begin();
928  virtual child_iterator child_end();
929};
930
931class FloatingLiteral : public Expr {
932  APFloatStorage Num;
933  bool IsExact : 1;
934  SourceLocation Loc;
935
936  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
937                  QualType Type, SourceLocation L)
938    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false),
939      IsExact(isexact), Loc(L) {
940    setValue(C, V);
941  }
942
943  /// \brief Construct an empty floating-point literal.
944  explicit FloatingLiteral(EmptyShell Empty)
945    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
946
947public:
948  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
949                                 bool isexact, QualType Type, SourceLocation L);
950  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
951
952  llvm::APFloat getValue() const { return Num.getValue(); }
953  void setValue(ASTContext &C, const llvm::APFloat &Val) {
954    Num.setValue(C, Val);
955  }
956
957  bool isExact() const { return IsExact; }
958  void setExact(bool E) { IsExact = E; }
959
960  /// getValueAsApproximateDouble - This returns the value as an inaccurate
961  /// double.  Note that this may cause loss of precision, but is useful for
962  /// debugging dumps, etc.
963  double getValueAsApproximateDouble() const;
964
965  SourceLocation getLocation() const { return Loc; }
966  void setLocation(SourceLocation L) { Loc = L; }
967
968  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
969
970  static bool classof(const Stmt *T) {
971    return T->getStmtClass() == FloatingLiteralClass;
972  }
973  static bool classof(const FloatingLiteral *) { return true; }
974
975  // Iterators
976  virtual child_iterator child_begin();
977  virtual child_iterator child_end();
978};
979
980/// ImaginaryLiteral - We support imaginary integer and floating point literals,
981/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
982/// IntegerLiteral classes.  Instances of this class always have a Complex type
983/// whose element type matches the subexpression.
984///
985class ImaginaryLiteral : public Expr {
986  Stmt *Val;
987public:
988  ImaginaryLiteral(Expr *val, QualType Ty)
989    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false),
990      Val(val) {}
991
992  /// \brief Build an empty imaginary literal.
993  explicit ImaginaryLiteral(EmptyShell Empty)
994    : Expr(ImaginaryLiteralClass, Empty) { }
995
996  const Expr *getSubExpr() const { return cast<Expr>(Val); }
997  Expr *getSubExpr() { return cast<Expr>(Val); }
998  void setSubExpr(Expr *E) { Val = E; }
999
1000  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
1001  static bool classof(const Stmt *T) {
1002    return T->getStmtClass() == ImaginaryLiteralClass;
1003  }
1004  static bool classof(const ImaginaryLiteral *) { return true; }
1005
1006  // Iterators
1007  virtual child_iterator child_begin();
1008  virtual child_iterator child_end();
1009};
1010
1011/// StringLiteral - This represents a string literal expression, e.g. "foo"
1012/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1013/// is NOT null-terminated, and the length of the string is determined by
1014/// calling getByteLength().  The C type for a string is always a
1015/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1016/// not.
1017///
1018/// Note that strings in C can be formed by concatenation of multiple string
1019/// literal pptokens in translation phase #6.  This keeps track of the locations
1020/// of each of these pieces.
1021///
1022/// Strings in C can also be truncated and extended by assigning into arrays,
1023/// e.g. with constructs like:
1024///   char X[2] = "foobar";
1025/// In this case, getByteLength() will return 6, but the string literal will
1026/// have type "char[2]".
1027class StringLiteral : public Expr {
1028  const char *StrData;
1029  unsigned ByteLength;
1030  bool IsWide;
1031  unsigned NumConcatenated;
1032  SourceLocation TokLocs[1];
1033
1034  StringLiteral(QualType Ty) :
1035    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false) {}
1036
1037public:
1038  /// This is the "fully general" constructor that allows representation of
1039  /// strings formed from multiple concatenated tokens.
1040  static StringLiteral *Create(ASTContext &C, const char *StrData,
1041                               unsigned ByteLength, bool Wide, QualType Ty,
1042                               const SourceLocation *Loc, unsigned NumStrs);
1043
1044  /// Simple constructor for string literals made from one token.
1045  static StringLiteral *Create(ASTContext &C, const char *StrData,
1046                               unsigned ByteLength,
1047                               bool Wide, QualType Ty, SourceLocation Loc) {
1048    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1049  }
1050
1051  /// \brief Construct an empty string literal.
1052  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1053
1054  llvm::StringRef getString() const {
1055    return llvm::StringRef(StrData, ByteLength);
1056  }
1057
1058  unsigned getByteLength() const { return ByteLength; }
1059
1060  /// \brief Sets the string data to the given string data.
1061  void setString(ASTContext &C, llvm::StringRef Str);
1062
1063  bool isWide() const { return IsWide; }
1064  void setWide(bool W) { IsWide = W; }
1065
1066  bool containsNonAsciiOrNull() const {
1067    llvm::StringRef Str = getString();
1068    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1069      if (!isascii(Str[i]) || !Str[i])
1070        return true;
1071    return false;
1072  }
1073  /// getNumConcatenated - Get the number of string literal tokens that were
1074  /// concatenated in translation phase #6 to form this string literal.
1075  unsigned getNumConcatenated() const { return NumConcatenated; }
1076
1077  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1078    assert(TokNum < NumConcatenated && "Invalid tok number");
1079    return TokLocs[TokNum];
1080  }
1081  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1082    assert(TokNum < NumConcatenated && "Invalid tok number");
1083    TokLocs[TokNum] = L;
1084  }
1085
1086  /// getLocationOfByte - Return a source location that points to the specified
1087  /// byte of this string literal.
1088  ///
1089  /// Strings are amazingly complex.  They can be formed from multiple tokens
1090  /// and can have escape sequences in them in addition to the usual trigraph
1091  /// and escaped newline business.  This routine handles this complexity.
1092  ///
1093  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1094                                   const LangOptions &Features,
1095                                   const TargetInfo &Target) const;
1096
1097  typedef const SourceLocation *tokloc_iterator;
1098  tokloc_iterator tokloc_begin() const { return TokLocs; }
1099  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1100
1101  virtual SourceRange getSourceRange() const {
1102    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1103  }
1104  static bool classof(const Stmt *T) {
1105    return T->getStmtClass() == StringLiteralClass;
1106  }
1107  static bool classof(const StringLiteral *) { return true; }
1108
1109  // Iterators
1110  virtual child_iterator child_begin();
1111  virtual child_iterator child_end();
1112};
1113
1114/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1115/// AST node is only formed if full location information is requested.
1116class ParenExpr : public Expr {
1117  SourceLocation L, R;
1118  Stmt *Val;
1119public:
1120  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1121    : Expr(ParenExprClass, val->getType(),
1122           val->getValueKind(), val->getObjectKind(),
1123           val->isTypeDependent(), val->isValueDependent()),
1124      L(l), R(r), Val(val) {}
1125
1126  /// \brief Construct an empty parenthesized expression.
1127  explicit ParenExpr(EmptyShell Empty)
1128    : Expr(ParenExprClass, Empty) { }
1129
1130  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1131  Expr *getSubExpr() { return cast<Expr>(Val); }
1132  void setSubExpr(Expr *E) { Val = E; }
1133
1134  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1135
1136  /// \brief Get the location of the left parentheses '('.
1137  SourceLocation getLParen() const { return L; }
1138  void setLParen(SourceLocation Loc) { L = Loc; }
1139
1140  /// \brief Get the location of the right parentheses ')'.
1141  SourceLocation getRParen() const { return R; }
1142  void setRParen(SourceLocation Loc) { R = Loc; }
1143
1144  static bool classof(const Stmt *T) {
1145    return T->getStmtClass() == ParenExprClass;
1146  }
1147  static bool classof(const ParenExpr *) { return true; }
1148
1149  // Iterators
1150  virtual child_iterator child_begin();
1151  virtual child_iterator child_end();
1152};
1153
1154
1155/// UnaryOperator - This represents the unary-expression's (except sizeof and
1156/// alignof), the postinc/postdec operators from postfix-expression, and various
1157/// extensions.
1158///
1159/// Notes on various nodes:
1160///
1161/// Real/Imag - These return the real/imag part of a complex operand.  If
1162///   applied to a non-complex value, the former returns its operand and the
1163///   later returns zero in the type of the operand.
1164///
1165class UnaryOperator : public Expr {
1166public:
1167  typedef UnaryOperatorKind Opcode;
1168
1169private:
1170  unsigned Opc : 5;
1171  SourceLocation Loc;
1172  Stmt *Val;
1173public:
1174
1175  UnaryOperator(Expr *input, Opcode opc, QualType type,
1176                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1177    : Expr(UnaryOperatorClass, type, VK, OK,
1178           input->isTypeDependent() || type->isDependentType(),
1179           input->isValueDependent()),
1180      Opc(opc), Loc(l), Val(input) {}
1181
1182  /// \brief Build an empty unary operator.
1183  explicit UnaryOperator(EmptyShell Empty)
1184    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1185
1186  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1187  void setOpcode(Opcode O) { Opc = O; }
1188
1189  Expr *getSubExpr() const { return cast<Expr>(Val); }
1190  void setSubExpr(Expr *E) { Val = E; }
1191
1192  /// getOperatorLoc - Return the location of the operator.
1193  SourceLocation getOperatorLoc() const { return Loc; }
1194  void setOperatorLoc(SourceLocation L) { Loc = L; }
1195
1196  /// isPostfix - Return true if this is a postfix operation, like x++.
1197  static bool isPostfix(Opcode Op) {
1198    return Op == UO_PostInc || Op == UO_PostDec;
1199  }
1200
1201  /// isPrefix - Return true if this is a prefix operation, like --x.
1202  static bool isPrefix(Opcode Op) {
1203    return Op == UO_PreInc || Op == UO_PreDec;
1204  }
1205
1206  bool isPrefix() const { return isPrefix(getOpcode()); }
1207  bool isPostfix() const { return isPostfix(getOpcode()); }
1208  bool isIncrementOp() const {
1209    return Opc == UO_PreInc || Opc == UO_PostInc;
1210  }
1211  bool isIncrementDecrementOp() const {
1212    return Opc <= UO_PreDec;
1213  }
1214  static bool isArithmeticOp(Opcode Op) {
1215    return Op >= UO_Plus && Op <= UO_LNot;
1216  }
1217  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1218
1219  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1220  /// corresponds to, e.g. "sizeof" or "[pre]++"
1221  static const char *getOpcodeStr(Opcode Op);
1222
1223  /// \brief Retrieve the unary opcode that corresponds to the given
1224  /// overloaded operator.
1225  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1226
1227  /// \brief Retrieve the overloaded operator kind that corresponds to
1228  /// the given unary opcode.
1229  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1230
1231  virtual SourceRange getSourceRange() const {
1232    if (isPostfix())
1233      return SourceRange(Val->getLocStart(), Loc);
1234    else
1235      return SourceRange(Loc, Val->getLocEnd());
1236  }
1237  virtual SourceLocation getExprLoc() const { return Loc; }
1238
1239  static bool classof(const Stmt *T) {
1240    return T->getStmtClass() == UnaryOperatorClass;
1241  }
1242  static bool classof(const UnaryOperator *) { return true; }
1243
1244  // Iterators
1245  virtual child_iterator child_begin();
1246  virtual child_iterator child_end();
1247};
1248
1249/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1250/// offsetof(record-type, member-designator). For example, given:
1251/// @code
1252/// struct S {
1253///   float f;
1254///   double d;
1255/// };
1256/// struct T {
1257///   int i;
1258///   struct S s[10];
1259/// };
1260/// @endcode
1261/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1262
1263class OffsetOfExpr : public Expr {
1264public:
1265  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1266  class OffsetOfNode {
1267  public:
1268    /// \brief The kind of offsetof node we have.
1269    enum Kind {
1270      /// \brief An index into an array.
1271      Array = 0x00,
1272      /// \brief A field.
1273      Field = 0x01,
1274      /// \brief A field in a dependent type, known only by its name.
1275      Identifier = 0x02,
1276      /// \brief An implicit indirection through a C++ base class, when the
1277      /// field found is in a base class.
1278      Base = 0x03
1279    };
1280
1281  private:
1282    enum { MaskBits = 2, Mask = 0x03 };
1283
1284    /// \brief The source range that covers this part of the designator.
1285    SourceRange Range;
1286
1287    /// \brief The data describing the designator, which comes in three
1288    /// different forms, depending on the lower two bits.
1289    ///   - An unsigned index into the array of Expr*'s stored after this node
1290    ///     in memory, for [constant-expression] designators.
1291    ///   - A FieldDecl*, for references to a known field.
1292    ///   - An IdentifierInfo*, for references to a field with a given name
1293    ///     when the class type is dependent.
1294    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1295    ///     base class.
1296    uintptr_t Data;
1297
1298  public:
1299    /// \brief Create an offsetof node that refers to an array element.
1300    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1301                 SourceLocation RBracketLoc)
1302      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1303
1304    /// \brief Create an offsetof node that refers to a field.
1305    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1306                 SourceLocation NameLoc)
1307      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1308        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1309
1310    /// \brief Create an offsetof node that refers to an identifier.
1311    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1312                 SourceLocation NameLoc)
1313      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1314        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1315
1316    /// \brief Create an offsetof node that refers into a C++ base class.
1317    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1318      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1319
1320    /// \brief Determine what kind of offsetof node this is.
1321    Kind getKind() const {
1322      return static_cast<Kind>(Data & Mask);
1323    }
1324
1325    /// \brief For an array element node, returns the index into the array
1326    /// of expressions.
1327    unsigned getArrayExprIndex() const {
1328      assert(getKind() == Array);
1329      return Data >> 2;
1330    }
1331
1332    /// \brief For a field offsetof node, returns the field.
1333    FieldDecl *getField() const {
1334      assert(getKind() == Field);
1335      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1336    }
1337
1338    /// \brief For a field or identifier offsetof node, returns the name of
1339    /// the field.
1340    IdentifierInfo *getFieldName() const;
1341
1342    /// \brief For a base class node, returns the base specifier.
1343    CXXBaseSpecifier *getBase() const {
1344      assert(getKind() == Base);
1345      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1346    }
1347
1348    /// \brief Retrieve the source range that covers this offsetof node.
1349    ///
1350    /// For an array element node, the source range contains the locations of
1351    /// the square brackets. For a field or identifier node, the source range
1352    /// contains the location of the period (if there is one) and the
1353    /// identifier.
1354    SourceRange getRange() const { return Range; }
1355  };
1356
1357private:
1358
1359  SourceLocation OperatorLoc, RParenLoc;
1360  // Base type;
1361  TypeSourceInfo *TSInfo;
1362  // Number of sub-components (i.e. instances of OffsetOfNode).
1363  unsigned NumComps;
1364  // Number of sub-expressions (i.e. array subscript expressions).
1365  unsigned NumExprs;
1366
1367  OffsetOfExpr(ASTContext &C, QualType type,
1368               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1369               OffsetOfNode* compsPtr, unsigned numComps,
1370               Expr** exprsPtr, unsigned numExprs,
1371               SourceLocation RParenLoc);
1372
1373  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1374    : Expr(OffsetOfExprClass, EmptyShell()),
1375      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1376
1377public:
1378
1379  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1380                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1381                              OffsetOfNode* compsPtr, unsigned numComps,
1382                              Expr** exprsPtr, unsigned numExprs,
1383                              SourceLocation RParenLoc);
1384
1385  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1386                                   unsigned NumComps, unsigned NumExprs);
1387
1388  /// getOperatorLoc - Return the location of the operator.
1389  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1390  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1391
1392  /// \brief Return the location of the right parentheses.
1393  SourceLocation getRParenLoc() const { return RParenLoc; }
1394  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1395
1396  TypeSourceInfo *getTypeSourceInfo() const {
1397    return TSInfo;
1398  }
1399  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1400    TSInfo = tsi;
1401  }
1402
1403  const OffsetOfNode &getComponent(unsigned Idx) {
1404    assert(Idx < NumComps && "Subscript out of range");
1405    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1406  }
1407
1408  void setComponent(unsigned Idx, OffsetOfNode ON) {
1409    assert(Idx < NumComps && "Subscript out of range");
1410    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1411  }
1412
1413  unsigned getNumComponents() const {
1414    return NumComps;
1415  }
1416
1417  Expr* getIndexExpr(unsigned Idx) {
1418    assert(Idx < NumExprs && "Subscript out of range");
1419    return reinterpret_cast<Expr **>(
1420                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1421  }
1422
1423  void setIndexExpr(unsigned Idx, Expr* E) {
1424    assert(Idx < NumComps && "Subscript out of range");
1425    reinterpret_cast<Expr **>(
1426                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1427  }
1428
1429  unsigned getNumExpressions() const {
1430    return NumExprs;
1431  }
1432
1433  virtual SourceRange getSourceRange() const {
1434    return SourceRange(OperatorLoc, RParenLoc);
1435  }
1436
1437  static bool classof(const Stmt *T) {
1438    return T->getStmtClass() == OffsetOfExprClass;
1439  }
1440
1441  static bool classof(const OffsetOfExpr *) { return true; }
1442
1443  // Iterators
1444  virtual child_iterator child_begin();
1445  virtual child_iterator child_end();
1446};
1447
1448/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1449/// types and expressions.
1450class SizeOfAlignOfExpr : public Expr {
1451  bool isSizeof : 1;  // true if sizeof, false if alignof.
1452  bool isType : 1;    // true if operand is a type, false if an expression
1453  union {
1454    TypeSourceInfo *Ty;
1455    Stmt *Ex;
1456  } Argument;
1457  SourceLocation OpLoc, RParenLoc;
1458
1459public:
1460  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1461                    QualType resultType, SourceLocation op,
1462                    SourceLocation rp) :
1463      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1464           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1465           // Value-dependent if the argument is type-dependent.
1466           TInfo->getType()->isDependentType()),
1467      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1468    Argument.Ty = TInfo;
1469  }
1470
1471  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1472                    QualType resultType, SourceLocation op,
1473                    SourceLocation rp) :
1474      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1475           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1476           // Value-dependent if the argument is type-dependent.
1477           E->isTypeDependent()),
1478      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1479    Argument.Ex = E;
1480  }
1481
1482  /// \brief Construct an empty sizeof/alignof expression.
1483  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1484    : Expr(SizeOfAlignOfExprClass, Empty) { }
1485
1486  bool isSizeOf() const { return isSizeof; }
1487  void setSizeof(bool S) { isSizeof = S; }
1488
1489  bool isArgumentType() const { return isType; }
1490  QualType getArgumentType() const {
1491    return getArgumentTypeInfo()->getType();
1492  }
1493  TypeSourceInfo *getArgumentTypeInfo() const {
1494    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1495    return Argument.Ty;
1496  }
1497  Expr *getArgumentExpr() {
1498    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1499    return static_cast<Expr*>(Argument.Ex);
1500  }
1501  const Expr *getArgumentExpr() const {
1502    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1503  }
1504
1505  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1506  void setArgument(TypeSourceInfo *TInfo) {
1507    Argument.Ty = TInfo;
1508    isType = true;
1509  }
1510
1511  /// Gets the argument type, or the type of the argument expression, whichever
1512  /// is appropriate.
1513  QualType getTypeOfArgument() const {
1514    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1515  }
1516
1517  SourceLocation getOperatorLoc() const { return OpLoc; }
1518  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1519
1520  SourceLocation getRParenLoc() const { return RParenLoc; }
1521  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1522
1523  virtual SourceRange getSourceRange() const {
1524    return SourceRange(OpLoc, RParenLoc);
1525  }
1526
1527  static bool classof(const Stmt *T) {
1528    return T->getStmtClass() == SizeOfAlignOfExprClass;
1529  }
1530  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1531
1532  // Iterators
1533  virtual child_iterator child_begin();
1534  virtual child_iterator child_end();
1535};
1536
1537//===----------------------------------------------------------------------===//
1538// Postfix Operators.
1539//===----------------------------------------------------------------------===//
1540
1541/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1542class ArraySubscriptExpr : public Expr {
1543  enum { LHS, RHS, END_EXPR=2 };
1544  Stmt* SubExprs[END_EXPR];
1545  SourceLocation RBracketLoc;
1546public:
1547  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1548                     ExprValueKind VK, ExprObjectKind OK,
1549                     SourceLocation rbracketloc)
1550  : Expr(ArraySubscriptExprClass, t, VK, OK,
1551         lhs->isTypeDependent() || rhs->isTypeDependent(),
1552         lhs->isValueDependent() || rhs->isValueDependent()),
1553    RBracketLoc(rbracketloc) {
1554    SubExprs[LHS] = lhs;
1555    SubExprs[RHS] = rhs;
1556  }
1557
1558  /// \brief Create an empty array subscript expression.
1559  explicit ArraySubscriptExpr(EmptyShell Shell)
1560    : Expr(ArraySubscriptExprClass, Shell) { }
1561
1562  /// An array access can be written A[4] or 4[A] (both are equivalent).
1563  /// - getBase() and getIdx() always present the normalized view: A[4].
1564  ///    In this case getBase() returns "A" and getIdx() returns "4".
1565  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1566  ///    4[A] getLHS() returns "4".
1567  /// Note: Because vector element access is also written A[4] we must
1568  /// predicate the format conversion in getBase and getIdx only on the
1569  /// the type of the RHS, as it is possible for the LHS to be a vector of
1570  /// integer type
1571  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1572  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1573  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1574
1575  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1576  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1577  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1578
1579  Expr *getBase() {
1580    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1581  }
1582
1583  const Expr *getBase() const {
1584    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1585  }
1586
1587  Expr *getIdx() {
1588    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1589  }
1590
1591  const Expr *getIdx() const {
1592    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1593  }
1594
1595  virtual SourceRange getSourceRange() const {
1596    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1597  }
1598
1599  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1600  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1601
1602  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1603
1604  static bool classof(const Stmt *T) {
1605    return T->getStmtClass() == ArraySubscriptExprClass;
1606  }
1607  static bool classof(const ArraySubscriptExpr *) { return true; }
1608
1609  // Iterators
1610  virtual child_iterator child_begin();
1611  virtual child_iterator child_end();
1612};
1613
1614
1615/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1616/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1617/// while its subclasses may represent alternative syntax that (semantically)
1618/// results in a function call. For example, CXXOperatorCallExpr is
1619/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1620/// "str1 + str2" to resolve to a function call.
1621class CallExpr : public Expr {
1622  enum { FN=0, ARGS_START=1 };
1623  Stmt **SubExprs;
1624  unsigned NumArgs;
1625  SourceLocation RParenLoc;
1626
1627protected:
1628  // This version of the constructor is for derived classes.
1629  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1630           QualType t, ExprValueKind VK, SourceLocation rparenloc);
1631
1632public:
1633  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1634           ExprValueKind VK, SourceLocation rparenloc);
1635
1636  /// \brief Build an empty call expression.
1637  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1638
1639  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1640  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1641  void setCallee(Expr *F) { SubExprs[FN] = F; }
1642
1643  Decl *getCalleeDecl();
1644  const Decl *getCalleeDecl() const {
1645    return const_cast<CallExpr*>(this)->getCalleeDecl();
1646  }
1647
1648  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1649  FunctionDecl *getDirectCallee();
1650  const FunctionDecl *getDirectCallee() const {
1651    return const_cast<CallExpr*>(this)->getDirectCallee();
1652  }
1653
1654  /// getNumArgs - Return the number of actual arguments to this call.
1655  ///
1656  unsigned getNumArgs() const { return NumArgs; }
1657
1658  /// getArg - Return the specified argument.
1659  Expr *getArg(unsigned Arg) {
1660    assert(Arg < NumArgs && "Arg access out of range!");
1661    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1662  }
1663  const Expr *getArg(unsigned Arg) const {
1664    assert(Arg < NumArgs && "Arg access out of range!");
1665    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1666  }
1667
1668  /// setArg - Set the specified argument.
1669  void setArg(unsigned Arg, Expr *ArgExpr) {
1670    assert(Arg < NumArgs && "Arg access out of range!");
1671    SubExprs[Arg+ARGS_START] = ArgExpr;
1672  }
1673
1674  /// setNumArgs - This changes the number of arguments present in this call.
1675  /// Any orphaned expressions are deleted by this, and any new operands are set
1676  /// to null.
1677  void setNumArgs(ASTContext& C, unsigned NumArgs);
1678
1679  typedef ExprIterator arg_iterator;
1680  typedef ConstExprIterator const_arg_iterator;
1681
1682  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1683  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1684  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1685  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1686
1687  /// getNumCommas - Return the number of commas that must have been present in
1688  /// this function call.
1689  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1690
1691  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1692  /// not, return 0.
1693  unsigned isBuiltinCall(ASTContext &Context) const;
1694
1695  /// getCallReturnType - Get the return type of the call expr. This is not
1696  /// always the type of the expr itself, if the return type is a reference
1697  /// type.
1698  QualType getCallReturnType() const;
1699
1700  SourceLocation getRParenLoc() const { return RParenLoc; }
1701  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1702
1703  virtual SourceRange getSourceRange() const {
1704    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1705  }
1706
1707  static bool classof(const Stmt *T) {
1708    return T->getStmtClass() >= firstCallExprConstant &&
1709           T->getStmtClass() <= lastCallExprConstant;
1710  }
1711  static bool classof(const CallExpr *) { return true; }
1712
1713  // Iterators
1714  virtual child_iterator child_begin();
1715  virtual child_iterator child_end();
1716};
1717
1718/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1719///
1720class MemberExpr : public Expr {
1721  /// Extra data stored in some member expressions.
1722  struct MemberNameQualifier : public NameQualifier {
1723    DeclAccessPair FoundDecl;
1724  };
1725
1726  /// Base - the expression for the base pointer or structure references.  In
1727  /// X.F, this is "X".
1728  Stmt *Base;
1729
1730  /// MemberDecl - This is the decl being referenced by the field/member name.
1731  /// In X.F, this is the decl referenced by F.
1732  ValueDecl *MemberDecl;
1733
1734  /// MemberLoc - This is the location of the member name.
1735  SourceLocation MemberLoc;
1736
1737  /// MemberDNLoc - Provides source/type location info for the
1738  /// declaration name embedded in MemberDecl.
1739  DeclarationNameLoc MemberDNLoc;
1740
1741  /// IsArrow - True if this is "X->F", false if this is "X.F".
1742  bool IsArrow : 1;
1743
1744  /// \brief True if this member expression used a nested-name-specifier to
1745  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1746  /// declaration.  When true, a MemberNameQualifier
1747  /// structure is allocated immediately after the MemberExpr.
1748  bool HasQualifierOrFoundDecl : 1;
1749
1750  /// \brief True if this member expression specified a template argument list
1751  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1752  /// structure (and its TemplateArguments) are allocated immediately after
1753  /// the MemberExpr or, if the member expression also has a qualifier, after
1754  /// the MemberNameQualifier structure.
1755  bool HasExplicitTemplateArgumentList : 1;
1756
1757  /// \brief Retrieve the qualifier that preceded the member name, if any.
1758  MemberNameQualifier *getMemberQualifier() {
1759    assert(HasQualifierOrFoundDecl);
1760    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1761  }
1762
1763  /// \brief Retrieve the qualifier that preceded the member name, if any.
1764  const MemberNameQualifier *getMemberQualifier() const {
1765    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1766  }
1767
1768public:
1769  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1770             const DeclarationNameInfo &NameInfo, QualType ty,
1771             ExprValueKind VK, ExprObjectKind OK)
1772    : Expr(MemberExprClass, ty, VK, OK,
1773           base->isTypeDependent(), base->isValueDependent()),
1774      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1775      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1776      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1777    assert(memberdecl->getDeclName() == NameInfo.getName());
1778  }
1779
1780  // NOTE: this constructor should be used only when it is known that
1781  // the member name can not provide additional syntactic info
1782  // (i.e., source locations for C++ operator names or type source info
1783  // for constructors, destructors and conversion oeprators).
1784  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1785             SourceLocation l, QualType ty,
1786             ExprValueKind VK, ExprObjectKind OK)
1787    : Expr(MemberExprClass, ty, VK, OK,
1788           base->isTypeDependent(), base->isValueDependent()),
1789      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1790      IsArrow(isarrow),
1791      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1792
1793  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1794                            NestedNameSpecifier *qual, SourceRange qualrange,
1795                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1796                            DeclarationNameInfo MemberNameInfo,
1797                            const TemplateArgumentListInfo *targs,
1798                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1799
1800  void setBase(Expr *E) { Base = E; }
1801  Expr *getBase() const { return cast<Expr>(Base); }
1802
1803  /// \brief Retrieve the member declaration to which this expression refers.
1804  ///
1805  /// The returned declaration will either be a FieldDecl or (in C++)
1806  /// a CXXMethodDecl.
1807  ValueDecl *getMemberDecl() const { return MemberDecl; }
1808  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1809
1810  /// \brief Retrieves the declaration found by lookup.
1811  DeclAccessPair getFoundDecl() const {
1812    if (!HasQualifierOrFoundDecl)
1813      return DeclAccessPair::make(getMemberDecl(),
1814                                  getMemberDecl()->getAccess());
1815    return getMemberQualifier()->FoundDecl;
1816  }
1817
1818  /// \brief Determines whether this member expression actually had
1819  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1820  /// x->Base::foo.
1821  bool hasQualifier() const { return getQualifier() != 0; }
1822
1823  /// \brief If the member name was qualified, retrieves the source range of
1824  /// the nested-name-specifier that precedes the member name. Otherwise,
1825  /// returns an empty source range.
1826  SourceRange getQualifierRange() const {
1827    if (!HasQualifierOrFoundDecl)
1828      return SourceRange();
1829
1830    return getMemberQualifier()->Range;
1831  }
1832
1833  /// \brief If the member name was qualified, retrieves the
1834  /// nested-name-specifier that precedes the member name. Otherwise, returns
1835  /// NULL.
1836  NestedNameSpecifier *getQualifier() const {
1837    if (!HasQualifierOrFoundDecl)
1838      return 0;
1839
1840    return getMemberQualifier()->NNS;
1841  }
1842
1843  /// \brief Determines whether this member expression actually had a C++
1844  /// template argument list explicitly specified, e.g., x.f<int>.
1845  bool hasExplicitTemplateArgs() const {
1846    return HasExplicitTemplateArgumentList;
1847  }
1848
1849  /// \brief Copies the template arguments (if present) into the given
1850  /// structure.
1851  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1852    if (hasExplicitTemplateArgs())
1853      getExplicitTemplateArgs().copyInto(List);
1854  }
1855
1856  /// \brief Retrieve the explicit template argument list that
1857  /// follow the member template name.  This must only be called on an
1858  /// expression with explicit template arguments.
1859  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1860    assert(HasExplicitTemplateArgumentList);
1861    if (!HasQualifierOrFoundDecl)
1862      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1863
1864    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
1865                                                      getMemberQualifier() + 1);
1866  }
1867
1868  /// \brief Retrieve the explicit template argument list that
1869  /// followed the member template name.  This must only be called on
1870  /// an expression with explicit template arguments.
1871  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1872    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
1873  }
1874
1875  /// \brief Retrieves the optional explicit template arguments.
1876  /// This points to the same data as getExplicitTemplateArgs(), but
1877  /// returns null if there are no explicit template arguments.
1878  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
1879    if (!hasExplicitTemplateArgs()) return 0;
1880    return &getExplicitTemplateArgs();
1881  }
1882
1883  /// \brief Retrieve the location of the left angle bracket following the
1884  /// member name ('<'), if any.
1885  SourceLocation getLAngleLoc() const {
1886    if (!HasExplicitTemplateArgumentList)
1887      return SourceLocation();
1888
1889    return getExplicitTemplateArgs().LAngleLoc;
1890  }
1891
1892  /// \brief Retrieve the template arguments provided as part of this
1893  /// template-id.
1894  const TemplateArgumentLoc *getTemplateArgs() const {
1895    if (!HasExplicitTemplateArgumentList)
1896      return 0;
1897
1898    return getExplicitTemplateArgs().getTemplateArgs();
1899  }
1900
1901  /// \brief Retrieve the number of template arguments provided as part of this
1902  /// template-id.
1903  unsigned getNumTemplateArgs() const {
1904    if (!HasExplicitTemplateArgumentList)
1905      return 0;
1906
1907    return getExplicitTemplateArgs().NumTemplateArgs;
1908  }
1909
1910  /// \brief Retrieve the location of the right angle bracket following the
1911  /// template arguments ('>').
1912  SourceLocation getRAngleLoc() const {
1913    if (!HasExplicitTemplateArgumentList)
1914      return SourceLocation();
1915
1916    return getExplicitTemplateArgs().RAngleLoc;
1917  }
1918
1919  /// \brief Retrieve the member declaration name info.
1920  DeclarationNameInfo getMemberNameInfo() const {
1921    return DeclarationNameInfo(MemberDecl->getDeclName(),
1922                               MemberLoc, MemberDNLoc);
1923  }
1924
1925  bool isArrow() const { return IsArrow; }
1926  void setArrow(bool A) { IsArrow = A; }
1927
1928  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1929  /// location of 'F'.
1930  SourceLocation getMemberLoc() const { return MemberLoc; }
1931  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1932
1933  virtual SourceRange getSourceRange() const {
1934    // If we have an implicit base (like a C++ implicit this),
1935    // make sure not to return its location
1936    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1937      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1938
1939    SourceLocation BaseLoc = getBase()->getLocStart();
1940    if (BaseLoc.isInvalid())
1941      return SourceRange(MemberLoc, EndLoc);
1942    return SourceRange(BaseLoc, EndLoc);
1943  }
1944
1945  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1946
1947  static bool classof(const Stmt *T) {
1948    return T->getStmtClass() == MemberExprClass;
1949  }
1950  static bool classof(const MemberExpr *) { return true; }
1951
1952  // Iterators
1953  virtual child_iterator child_begin();
1954  virtual child_iterator child_end();
1955
1956  friend class ASTReader;
1957  friend class ASTStmtWriter;
1958};
1959
1960/// CompoundLiteralExpr - [C99 6.5.2.5]
1961///
1962class CompoundLiteralExpr : public Expr {
1963  /// LParenLoc - If non-null, this is the location of the left paren in a
1964  /// compound literal like "(int){4}".  This can be null if this is a
1965  /// synthesized compound expression.
1966  SourceLocation LParenLoc;
1967
1968  /// The type as written.  This can be an incomplete array type, in
1969  /// which case the actual expression type will be different.
1970  TypeSourceInfo *TInfo;
1971  Stmt *Init;
1972  bool FileScope;
1973public:
1974  // FIXME: Can compound literals be value-dependent?
1975  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1976                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
1977    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
1978           tinfo->getType()->isDependentType(), false),
1979      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1980
1981  /// \brief Construct an empty compound literal.
1982  explicit CompoundLiteralExpr(EmptyShell Empty)
1983    : Expr(CompoundLiteralExprClass, Empty) { }
1984
1985  const Expr *getInitializer() const { return cast<Expr>(Init); }
1986  Expr *getInitializer() { return cast<Expr>(Init); }
1987  void setInitializer(Expr *E) { Init = E; }
1988
1989  bool isFileScope() const { return FileScope; }
1990  void setFileScope(bool FS) { FileScope = FS; }
1991
1992  SourceLocation getLParenLoc() const { return LParenLoc; }
1993  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1994
1995  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1996  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1997
1998  virtual SourceRange getSourceRange() const {
1999    // FIXME: Init should never be null.
2000    if (!Init)
2001      return SourceRange();
2002    if (LParenLoc.isInvalid())
2003      return Init->getSourceRange();
2004    return SourceRange(LParenLoc, Init->getLocEnd());
2005  }
2006
2007  static bool classof(const Stmt *T) {
2008    return T->getStmtClass() == CompoundLiteralExprClass;
2009  }
2010  static bool classof(const CompoundLiteralExpr *) { return true; }
2011
2012  // Iterators
2013  virtual child_iterator child_begin();
2014  virtual child_iterator child_end();
2015};
2016
2017/// CastExpr - Base class for type casts, including both implicit
2018/// casts (ImplicitCastExpr) and explicit casts that have some
2019/// representation in the source code (ExplicitCastExpr's derived
2020/// classes).
2021class CastExpr : public Expr {
2022public:
2023  typedef clang::CastKind CastKind;
2024
2025private:
2026  Stmt *Op;
2027
2028  void CheckCastConsistency() const {
2029#ifndef NDEBUG
2030    switch (getCastKind()) {
2031    case CK_DerivedToBase:
2032    case CK_UncheckedDerivedToBase:
2033    case CK_DerivedToBaseMemberPointer:
2034    case CK_BaseToDerived:
2035    case CK_BaseToDerivedMemberPointer:
2036      assert(!path_empty() && "Cast kind should have a base path!");
2037      break;
2038
2039    // These should not have an inheritance path.
2040    case CK_BitCast:
2041    case CK_Dynamic:
2042    case CK_ToUnion:
2043    case CK_ArrayToPointerDecay:
2044    case CK_FunctionToPointerDecay:
2045    case CK_NullToMemberPointer:
2046    case CK_NullToPointer:
2047    case CK_ConstructorConversion:
2048    case CK_IntegralToPointer:
2049    case CK_PointerToIntegral:
2050    case CK_ToVoid:
2051    case CK_VectorSplat:
2052    case CK_IntegralCast:
2053    case CK_IntegralToFloating:
2054    case CK_FloatingToIntegral:
2055    case CK_FloatingCast:
2056    case CK_AnyPointerToObjCPointerCast:
2057    case CK_AnyPointerToBlockPointerCast:
2058    case CK_ObjCObjectLValueCast:
2059    case CK_FloatingRealToComplex:
2060    case CK_FloatingComplexToReal:
2061    case CK_FloatingComplexCast:
2062    case CK_FloatingComplexToIntegralComplex:
2063    case CK_IntegralRealToComplex:
2064    case CK_IntegralComplexToReal:
2065    case CK_IntegralComplexCast:
2066    case CK_IntegralComplexToFloatingComplex:
2067      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2068      // fallthrough to check for null base path
2069
2070    case CK_Dependent:
2071    case CK_LValueToRValue:
2072    case CK_GetObjCProperty:
2073    case CK_NoOp:
2074    case CK_PointerToBoolean:
2075    case CK_IntegralToBoolean:
2076    case CK_FloatingToBoolean:
2077    case CK_MemberPointerToBoolean:
2078    case CK_FloatingComplexToBoolean:
2079    case CK_IntegralComplexToBoolean:
2080    case CK_LValueBitCast:            // -> bool&
2081    case CK_UserDefinedConversion:    // operator bool()
2082      assert(path_empty() && "Cast kind should not have a base path!");
2083      break;
2084    }
2085#endif
2086  }
2087
2088  const CXXBaseSpecifier * const *path_buffer() const {
2089    return const_cast<CastExpr*>(this)->path_buffer();
2090  }
2091  CXXBaseSpecifier **path_buffer();
2092
2093protected:
2094  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2095           const CastKind kind, Expr *op, unsigned BasePathSize) :
2096    Expr(SC, ty, VK, OK_Ordinary,
2097         // Cast expressions are type-dependent if the type is
2098         // dependent (C++ [temp.dep.expr]p3).
2099         ty->isDependentType(),
2100         // Cast expressions are value-dependent if the type is
2101         // dependent or if the subexpression is value-dependent.
2102         ty->isDependentType() || (op && op->isValueDependent())),
2103    Op(op) {
2104    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2105    CastExprBits.Kind = kind;
2106    CastExprBits.BasePathSize = BasePathSize;
2107    CheckCastConsistency();
2108  }
2109
2110  /// \brief Construct an empty cast.
2111  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2112    : Expr(SC, Empty) {
2113    CastExprBits.BasePathSize = BasePathSize;
2114  }
2115
2116public:
2117  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2118  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2119  const char *getCastKindName() const;
2120
2121  Expr *getSubExpr() { return cast<Expr>(Op); }
2122  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2123  void setSubExpr(Expr *E) { Op = E; }
2124
2125  /// \brief Retrieve the cast subexpression as it was written in the source
2126  /// code, looking through any implicit casts or other intermediate nodes
2127  /// introduced by semantic analysis.
2128  Expr *getSubExprAsWritten();
2129  const Expr *getSubExprAsWritten() const {
2130    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2131  }
2132
2133  typedef CXXBaseSpecifier **path_iterator;
2134  typedef const CXXBaseSpecifier * const *path_const_iterator;
2135  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2136  unsigned path_size() const { return CastExprBits.BasePathSize; }
2137  path_iterator path_begin() { return path_buffer(); }
2138  path_iterator path_end() { return path_buffer() + path_size(); }
2139  path_const_iterator path_begin() const { return path_buffer(); }
2140  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2141
2142  void setCastPath(const CXXCastPath &Path);
2143
2144  static bool classof(const Stmt *T) {
2145    return T->getStmtClass() >= firstCastExprConstant &&
2146           T->getStmtClass() <= lastCastExprConstant;
2147  }
2148  static bool classof(const CastExpr *) { return true; }
2149
2150  // Iterators
2151  virtual child_iterator child_begin();
2152  virtual child_iterator child_end();
2153};
2154
2155/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2156/// conversions, which have no direct representation in the original
2157/// source code. For example: converting T[]->T*, void f()->void
2158/// (*f)(), float->double, short->int, etc.
2159///
2160/// In C, implicit casts always produce rvalues. However, in C++, an
2161/// implicit cast whose result is being bound to a reference will be
2162/// an lvalue or xvalue. For example:
2163///
2164/// @code
2165/// class Base { };
2166/// class Derived : public Base { };
2167/// Derived &&ref();
2168/// void f(Derived d) {
2169///   Base& b = d; // initializer is an ImplicitCastExpr
2170///                // to an lvalue of type Base
2171///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2172///                     // to an xvalue of type Base
2173/// }
2174/// @endcode
2175class ImplicitCastExpr : public CastExpr {
2176private:
2177  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2178                   unsigned BasePathLength, ExprValueKind VK)
2179    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2180  }
2181
2182  /// \brief Construct an empty implicit cast.
2183  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2184    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2185
2186public:
2187  enum OnStack_t { OnStack };
2188  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2189                   ExprValueKind VK)
2190    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2191  }
2192
2193  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2194                                  CastKind Kind, Expr *Operand,
2195                                  const CXXCastPath *BasePath,
2196                                  ExprValueKind Cat);
2197
2198  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2199
2200  virtual SourceRange getSourceRange() const {
2201    return getSubExpr()->getSourceRange();
2202  }
2203
2204  static bool classof(const Stmt *T) {
2205    return T->getStmtClass() == ImplicitCastExprClass;
2206  }
2207  static bool classof(const ImplicitCastExpr *) { return true; }
2208};
2209
2210/// ExplicitCastExpr - An explicit cast written in the source
2211/// code.
2212///
2213/// This class is effectively an abstract class, because it provides
2214/// the basic representation of an explicitly-written cast without
2215/// specifying which kind of cast (C cast, functional cast, static
2216/// cast, etc.) was written; specific derived classes represent the
2217/// particular style of cast and its location information.
2218///
2219/// Unlike implicit casts, explicit cast nodes have two different
2220/// types: the type that was written into the source code, and the
2221/// actual type of the expression as determined by semantic
2222/// analysis. These types may differ slightly. For example, in C++ one
2223/// can cast to a reference type, which indicates that the resulting
2224/// expression will be an lvalue or xvalue. The reference type, however,
2225/// will not be used as the type of the expression.
2226class ExplicitCastExpr : public CastExpr {
2227  /// TInfo - Source type info for the (written) type
2228  /// this expression is casting to.
2229  TypeSourceInfo *TInfo;
2230
2231protected:
2232  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2233                   CastKind kind, Expr *op, unsigned PathSize,
2234                   TypeSourceInfo *writtenTy)
2235    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2236
2237  /// \brief Construct an empty explicit cast.
2238  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2239    : CastExpr(SC, Shell, PathSize) { }
2240
2241public:
2242  /// getTypeInfoAsWritten - Returns the type source info for the type
2243  /// that this expression is casting to.
2244  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2245  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2246
2247  /// getTypeAsWritten - Returns the type that this expression is
2248  /// casting to, as written in the source code.
2249  QualType getTypeAsWritten() const { return TInfo->getType(); }
2250
2251  static bool classof(const Stmt *T) {
2252     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2253            T->getStmtClass() <= lastExplicitCastExprConstant;
2254  }
2255  static bool classof(const ExplicitCastExpr *) { return true; }
2256};
2257
2258/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2259/// cast in C++ (C++ [expr.cast]), which uses the syntax
2260/// (Type)expr. For example: @c (int)f.
2261class CStyleCastExpr : public ExplicitCastExpr {
2262  SourceLocation LPLoc; // the location of the left paren
2263  SourceLocation RPLoc; // the location of the right paren
2264
2265  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2266                 unsigned PathSize, TypeSourceInfo *writtenTy,
2267                 SourceLocation l, SourceLocation r)
2268    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2269                       writtenTy), LPLoc(l), RPLoc(r) {}
2270
2271  /// \brief Construct an empty C-style explicit cast.
2272  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2273    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2274
2275public:
2276  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2277                                ExprValueKind VK, CastKind K,
2278                                Expr *Op, const CXXCastPath *BasePath,
2279                                TypeSourceInfo *WrittenTy, SourceLocation L,
2280                                SourceLocation R);
2281
2282  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2283
2284  SourceLocation getLParenLoc() const { return LPLoc; }
2285  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2286
2287  SourceLocation getRParenLoc() const { return RPLoc; }
2288  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2289
2290  virtual SourceRange getSourceRange() const {
2291    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2292  }
2293  static bool classof(const Stmt *T) {
2294    return T->getStmtClass() == CStyleCastExprClass;
2295  }
2296  static bool classof(const CStyleCastExpr *) { return true; }
2297};
2298
2299/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2300///
2301/// This expression node kind describes a builtin binary operation,
2302/// such as "x + y" for integer values "x" and "y". The operands will
2303/// already have been converted to appropriate types (e.g., by
2304/// performing promotions or conversions).
2305///
2306/// In C++, where operators may be overloaded, a different kind of
2307/// expression node (CXXOperatorCallExpr) is used to express the
2308/// invocation of an overloaded operator with operator syntax. Within
2309/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2310/// used to store an expression "x + y" depends on the subexpressions
2311/// for x and y. If neither x or y is type-dependent, and the "+"
2312/// operator resolves to a built-in operation, BinaryOperator will be
2313/// used to express the computation (x and y may still be
2314/// value-dependent). If either x or y is type-dependent, or if the
2315/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2316/// be used to express the computation.
2317class BinaryOperator : public Expr {
2318public:
2319  typedef BinaryOperatorKind Opcode;
2320
2321private:
2322  unsigned Opc : 6;
2323  SourceLocation OpLoc;
2324
2325  enum { LHS, RHS, END_EXPR };
2326  Stmt* SubExprs[END_EXPR];
2327public:
2328
2329  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2330                 ExprValueKind VK, ExprObjectKind OK,
2331                 SourceLocation opLoc)
2332    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2333           lhs->isTypeDependent() || rhs->isTypeDependent(),
2334           lhs->isValueDependent() || rhs->isValueDependent()),
2335      Opc(opc), OpLoc(opLoc) {
2336    SubExprs[LHS] = lhs;
2337    SubExprs[RHS] = rhs;
2338    assert(!isCompoundAssignmentOp() &&
2339           "Use ArithAssignBinaryOperator for compound assignments");
2340  }
2341
2342  /// \brief Construct an empty binary operator.
2343  explicit BinaryOperator(EmptyShell Empty)
2344    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2345
2346  SourceLocation getOperatorLoc() const { return OpLoc; }
2347  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2348
2349  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2350  void setOpcode(Opcode O) { Opc = O; }
2351
2352  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2353  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2354  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2355  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2356
2357  virtual SourceRange getSourceRange() const {
2358    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2359  }
2360
2361  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2362  /// corresponds to, e.g. "<<=".
2363  static const char *getOpcodeStr(Opcode Op);
2364
2365  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2366
2367  /// \brief Retrieve the binary opcode that corresponds to the given
2368  /// overloaded operator.
2369  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2370
2371  /// \brief Retrieve the overloaded operator kind that corresponds to
2372  /// the given binary opcode.
2373  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2374
2375  /// predicates to categorize the respective opcodes.
2376  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2377  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2378  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2379  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2380  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2381  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2382
2383  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2384  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2385
2386  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2387  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2388
2389  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2390  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2391
2392  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2393  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2394
2395  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2396  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2397
2398  static bool isAssignmentOp(Opcode Opc) {
2399    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2400  }
2401  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2402
2403  static bool isCompoundAssignmentOp(Opcode Opc) {
2404    return Opc > BO_Assign && Opc <= BO_OrAssign;
2405  }
2406  bool isCompoundAssignmentOp() const {
2407    return isCompoundAssignmentOp(getOpcode());
2408  }
2409
2410  static bool isShiftAssignOp(Opcode Opc) {
2411    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2412  }
2413  bool isShiftAssignOp() const {
2414    return isShiftAssignOp(getOpcode());
2415  }
2416
2417  static bool classof(const Stmt *S) {
2418    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2419           S->getStmtClass() <= lastBinaryOperatorConstant;
2420  }
2421  static bool classof(const BinaryOperator *) { return true; }
2422
2423  // Iterators
2424  virtual child_iterator child_begin();
2425  virtual child_iterator child_end();
2426
2427protected:
2428  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2429                 ExprValueKind VK, ExprObjectKind OK,
2430                 SourceLocation opLoc, bool dead)
2431    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2432           lhs->isTypeDependent() || rhs->isTypeDependent(),
2433           lhs->isValueDependent() || rhs->isValueDependent()),
2434      Opc(opc), OpLoc(opLoc) {
2435    SubExprs[LHS] = lhs;
2436    SubExprs[RHS] = rhs;
2437  }
2438
2439  BinaryOperator(StmtClass SC, EmptyShell Empty)
2440    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2441};
2442
2443/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2444/// track of the type the operation is performed in.  Due to the semantics of
2445/// these operators, the operands are promoted, the aritmetic performed, an
2446/// implicit conversion back to the result type done, then the assignment takes
2447/// place.  This captures the intermediate type which the computation is done
2448/// in.
2449class CompoundAssignOperator : public BinaryOperator {
2450  QualType ComputationLHSType;
2451  QualType ComputationResultType;
2452public:
2453  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2454                         ExprValueKind VK, ExprObjectKind OK,
2455                         QualType CompLHSType, QualType CompResultType,
2456                         SourceLocation OpLoc)
2457    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2458      ComputationLHSType(CompLHSType),
2459      ComputationResultType(CompResultType) {
2460    assert(isCompoundAssignmentOp() &&
2461           "Only should be used for compound assignments");
2462  }
2463
2464  /// \brief Build an empty compound assignment operator expression.
2465  explicit CompoundAssignOperator(EmptyShell Empty)
2466    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2467
2468  // The two computation types are the type the LHS is converted
2469  // to for the computation and the type of the result; the two are
2470  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2471  QualType getComputationLHSType() const { return ComputationLHSType; }
2472  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2473
2474  QualType getComputationResultType() const { return ComputationResultType; }
2475  void setComputationResultType(QualType T) { ComputationResultType = T; }
2476
2477  static bool classof(const CompoundAssignOperator *) { return true; }
2478  static bool classof(const Stmt *S) {
2479    return S->getStmtClass() == CompoundAssignOperatorClass;
2480  }
2481};
2482
2483/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2484/// GNU "missing LHS" extension is in use.
2485///
2486class ConditionalOperator : public Expr {
2487  enum { COND, LHS, RHS, END_EXPR };
2488  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2489  Stmt* Save;
2490  SourceLocation QuestionLoc, ColonLoc;
2491public:
2492  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2493                      SourceLocation CLoc, Expr *rhs, Expr *save,
2494                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2495    : Expr(ConditionalOperatorClass, t, VK, OK,
2496           // FIXME: the type of the conditional operator doesn't
2497           // depend on the type of the conditional, but the standard
2498           // seems to imply that it could. File a bug!
2499           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2500           (cond->isValueDependent() ||
2501            (lhs && lhs->isValueDependent()) ||
2502            (rhs && rhs->isValueDependent()))),
2503      QuestionLoc(QLoc),
2504      ColonLoc(CLoc) {
2505    SubExprs[COND] = cond;
2506    SubExprs[LHS] = lhs;
2507    SubExprs[RHS] = rhs;
2508    Save = save;
2509  }
2510
2511  /// \brief Build an empty conditional operator.
2512  explicit ConditionalOperator(EmptyShell Empty)
2513    : Expr(ConditionalOperatorClass, Empty) { }
2514
2515  // getCond - Return the expression representing the condition for
2516  //  the ?: operator.
2517  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2518  void setCond(Expr *E) { SubExprs[COND] = E; }
2519
2520  // getTrueExpr - Return the subexpression representing the value of the ?:
2521  //  expression if the condition evaluates to true.
2522  Expr *getTrueExpr() const {
2523    return cast<Expr>(SubExprs[LHS]);
2524  }
2525
2526  // getFalseExpr - Return the subexpression representing the value of the ?:
2527  // expression if the condition evaluates to false. This is the same as getRHS.
2528  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2529
2530  // getSaveExpr - In most cases this value will be null. Except a GCC extension
2531  // allows the left subexpression to be omitted, and instead of that condition
2532  // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
2533  // expression "x" is only evaluated once. Under this senario, this function
2534  // returns the original, non-converted condition expression for the ?:operator
2535  Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2536
2537  Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
2538  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2539
2540  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2541  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2542
2543  Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2544  void setSAVE(Expr *E) { Save = E; }
2545
2546  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2547  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2548
2549  SourceLocation getColonLoc() const { return ColonLoc; }
2550  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2551
2552  virtual SourceRange getSourceRange() const {
2553    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2554  }
2555  static bool classof(const Stmt *T) {
2556    return T->getStmtClass() == ConditionalOperatorClass;
2557  }
2558  static bool classof(const ConditionalOperator *) { return true; }
2559
2560  // Iterators
2561  virtual child_iterator child_begin();
2562  virtual child_iterator child_end();
2563};
2564
2565/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2566class AddrLabelExpr : public Expr {
2567  SourceLocation AmpAmpLoc, LabelLoc;
2568  LabelStmt *Label;
2569public:
2570  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2571                QualType t)
2572    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false),
2573      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2574
2575  /// \brief Build an empty address of a label expression.
2576  explicit AddrLabelExpr(EmptyShell Empty)
2577    : Expr(AddrLabelExprClass, Empty) { }
2578
2579  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2580  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2581  SourceLocation getLabelLoc() const { return LabelLoc; }
2582  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2583
2584  virtual SourceRange getSourceRange() const {
2585    return SourceRange(AmpAmpLoc, LabelLoc);
2586  }
2587
2588  LabelStmt *getLabel() const { return Label; }
2589  void setLabel(LabelStmt *S) { Label = S; }
2590
2591  static bool classof(const Stmt *T) {
2592    return T->getStmtClass() == AddrLabelExprClass;
2593  }
2594  static bool classof(const AddrLabelExpr *) { return true; }
2595
2596  // Iterators
2597  virtual child_iterator child_begin();
2598  virtual child_iterator child_end();
2599};
2600
2601/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2602/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2603/// takes the value of the last subexpression.
2604///
2605/// A StmtExpr is always an r-value; values "returned" out of a
2606/// StmtExpr will be copied.
2607class StmtExpr : public Expr {
2608  Stmt *SubStmt;
2609  SourceLocation LParenLoc, RParenLoc;
2610public:
2611  // FIXME: Does type-dependence need to be computed differently?
2612  StmtExpr(CompoundStmt *substmt, QualType T,
2613           SourceLocation lp, SourceLocation rp) :
2614    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2615         T->isDependentType(), false),
2616    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2617
2618  /// \brief Build an empty statement expression.
2619  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2620
2621  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2622  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2623  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2624
2625  virtual SourceRange getSourceRange() const {
2626    return SourceRange(LParenLoc, RParenLoc);
2627  }
2628
2629  SourceLocation getLParenLoc() const { return LParenLoc; }
2630  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2631  SourceLocation getRParenLoc() const { return RParenLoc; }
2632  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2633
2634  static bool classof(const Stmt *T) {
2635    return T->getStmtClass() == StmtExprClass;
2636  }
2637  static bool classof(const StmtExpr *) { return true; }
2638
2639  // Iterators
2640  virtual child_iterator child_begin();
2641  virtual child_iterator child_end();
2642};
2643
2644/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2645/// This AST node represents a function that returns 1 if two *types* (not
2646/// expressions) are compatible. The result of this built-in function can be
2647/// used in integer constant expressions.
2648class TypesCompatibleExpr : public Expr {
2649  TypeSourceInfo *TInfo1;
2650  TypeSourceInfo *TInfo2;
2651  SourceLocation BuiltinLoc, RParenLoc;
2652public:
2653  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2654                      TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
2655                      SourceLocation RP) :
2656    Expr(TypesCompatibleExprClass, ReturnType, VK_RValue, OK_Ordinary,
2657         false, false),
2658    TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2659
2660  /// \brief Build an empty __builtin_type_compatible_p expression.
2661  explicit TypesCompatibleExpr(EmptyShell Empty)
2662    : Expr(TypesCompatibleExprClass, Empty) { }
2663
2664  TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
2665  void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
2666  TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
2667  void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
2668
2669  QualType getArgType1() const { return TInfo1->getType(); }
2670  QualType getArgType2() const { return TInfo2->getType(); }
2671
2672  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2673  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2674
2675  SourceLocation getRParenLoc() const { return RParenLoc; }
2676  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2677
2678  virtual SourceRange getSourceRange() const {
2679    return SourceRange(BuiltinLoc, RParenLoc);
2680  }
2681  static bool classof(const Stmt *T) {
2682    return T->getStmtClass() == TypesCompatibleExprClass;
2683  }
2684  static bool classof(const TypesCompatibleExpr *) { return true; }
2685
2686  // Iterators
2687  virtual child_iterator child_begin();
2688  virtual child_iterator child_end();
2689};
2690
2691/// ShuffleVectorExpr - clang-specific builtin-in function
2692/// __builtin_shufflevector.
2693/// This AST node represents a operator that does a constant
2694/// shuffle, similar to LLVM's shufflevector instruction. It takes
2695/// two vectors and a variable number of constant indices,
2696/// and returns the appropriately shuffled vector.
2697class ShuffleVectorExpr : public Expr {
2698  SourceLocation BuiltinLoc, RParenLoc;
2699
2700  // SubExprs - the list of values passed to the __builtin_shufflevector
2701  // function. The first two are vectors, and the rest are constant
2702  // indices.  The number of values in this list is always
2703  // 2+the number of indices in the vector type.
2704  Stmt **SubExprs;
2705  unsigned NumExprs;
2706
2707public:
2708  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2709  // to be computed differently?
2710  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2711                    QualType Type, SourceLocation BLoc,
2712                    SourceLocation RP) :
2713    Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
2714         Type->isDependentType(), false),
2715    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2716
2717    SubExprs = new (C) Stmt*[nexpr];
2718    for (unsigned i = 0; i < nexpr; i++)
2719      SubExprs[i] = args[i];
2720  }
2721
2722  /// \brief Build an empty vector-shuffle expression.
2723  explicit ShuffleVectorExpr(EmptyShell Empty)
2724    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2725
2726  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2727  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2728
2729  SourceLocation getRParenLoc() const { return RParenLoc; }
2730  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2731
2732  virtual SourceRange getSourceRange() const {
2733    return SourceRange(BuiltinLoc, RParenLoc);
2734  }
2735  static bool classof(const Stmt *T) {
2736    return T->getStmtClass() == ShuffleVectorExprClass;
2737  }
2738  static bool classof(const ShuffleVectorExpr *) { return true; }
2739
2740  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2741  /// constant expression, the actual arguments passed in, and the function
2742  /// pointers.
2743  unsigned getNumSubExprs() const { return NumExprs; }
2744
2745  /// getExpr - Return the Expr at the specified index.
2746  Expr *getExpr(unsigned Index) {
2747    assert((Index < NumExprs) && "Arg access out of range!");
2748    return cast<Expr>(SubExprs[Index]);
2749  }
2750  const Expr *getExpr(unsigned Index) const {
2751    assert((Index < NumExprs) && "Arg access out of range!");
2752    return cast<Expr>(SubExprs[Index]);
2753  }
2754
2755  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2756
2757  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2758    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2759    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2760  }
2761
2762  // Iterators
2763  virtual child_iterator child_begin();
2764  virtual child_iterator child_end();
2765};
2766
2767/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2768/// This AST node is similar to the conditional operator (?:) in C, with
2769/// the following exceptions:
2770/// - the test expression must be a integer constant expression.
2771/// - the expression returned acts like the chosen subexpression in every
2772///   visible way: the type is the same as that of the chosen subexpression,
2773///   and all predicates (whether it's an l-value, whether it's an integer
2774///   constant expression, etc.) return the same result as for the chosen
2775///   sub-expression.
2776class ChooseExpr : public Expr {
2777  enum { COND, LHS, RHS, END_EXPR };
2778  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2779  SourceLocation BuiltinLoc, RParenLoc;
2780public:
2781  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
2782             QualType t, ExprValueKind VK, ExprObjectKind OK,
2783             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2784    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent),
2785      BuiltinLoc(BLoc), RParenLoc(RP) {
2786      SubExprs[COND] = cond;
2787      SubExprs[LHS] = lhs;
2788      SubExprs[RHS] = rhs;
2789    }
2790
2791  /// \brief Build an empty __builtin_choose_expr.
2792  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2793
2794  /// isConditionTrue - Return whether the condition is true (i.e. not
2795  /// equal to zero).
2796  bool isConditionTrue(ASTContext &C) const;
2797
2798  /// getChosenSubExpr - Return the subexpression chosen according to the
2799  /// condition.
2800  Expr *getChosenSubExpr(ASTContext &C) const {
2801    return isConditionTrue(C) ? getLHS() : getRHS();
2802  }
2803
2804  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2805  void setCond(Expr *E) { SubExprs[COND] = E; }
2806  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2807  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2808  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2809  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2810
2811  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2812  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2813
2814  SourceLocation getRParenLoc() const { return RParenLoc; }
2815  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2816
2817  virtual SourceRange getSourceRange() const {
2818    return SourceRange(BuiltinLoc, RParenLoc);
2819  }
2820  static bool classof(const Stmt *T) {
2821    return T->getStmtClass() == ChooseExprClass;
2822  }
2823  static bool classof(const ChooseExpr *) { return true; }
2824
2825  // Iterators
2826  virtual child_iterator child_begin();
2827  virtual child_iterator child_end();
2828};
2829
2830/// GNUNullExpr - Implements the GNU __null extension, which is a name
2831/// for a null pointer constant that has integral type (e.g., int or
2832/// long) and is the same size and alignment as a pointer. The __null
2833/// extension is typically only used by system headers, which define
2834/// NULL as __null in C++ rather than using 0 (which is an integer
2835/// that may not match the size of a pointer).
2836class GNUNullExpr : public Expr {
2837  /// TokenLoc - The location of the __null keyword.
2838  SourceLocation TokenLoc;
2839
2840public:
2841  GNUNullExpr(QualType Ty, SourceLocation Loc)
2842    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false),
2843      TokenLoc(Loc) { }
2844
2845  /// \brief Build an empty GNU __null expression.
2846  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2847
2848  /// getTokenLocation - The location of the __null token.
2849  SourceLocation getTokenLocation() const { return TokenLoc; }
2850  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2851
2852  virtual SourceRange getSourceRange() const {
2853    return SourceRange(TokenLoc);
2854  }
2855  static bool classof(const Stmt *T) {
2856    return T->getStmtClass() == GNUNullExprClass;
2857  }
2858  static bool classof(const GNUNullExpr *) { return true; }
2859
2860  // Iterators
2861  virtual child_iterator child_begin();
2862  virtual child_iterator child_end();
2863};
2864
2865/// VAArgExpr, used for the builtin function __builtin_va_arg.
2866class VAArgExpr : public Expr {
2867  Stmt *Val;
2868  TypeSourceInfo *TInfo;
2869  SourceLocation BuiltinLoc, RParenLoc;
2870public:
2871  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2872            SourceLocation RPLoc, QualType t)
2873    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
2874           t->isDependentType(), false),
2875      Val(e), TInfo(TInfo),
2876      BuiltinLoc(BLoc),
2877      RParenLoc(RPLoc) { }
2878
2879  /// \brief Create an empty __builtin_va_arg expression.
2880  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2881
2882  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2883  Expr *getSubExpr() { return cast<Expr>(Val); }
2884  void setSubExpr(Expr *E) { Val = E; }
2885
2886  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2887  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2888
2889  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2890  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2891
2892  SourceLocation getRParenLoc() const { return RParenLoc; }
2893  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2894
2895  virtual SourceRange getSourceRange() const {
2896    return SourceRange(BuiltinLoc, RParenLoc);
2897  }
2898  static bool classof(const Stmt *T) {
2899    return T->getStmtClass() == VAArgExprClass;
2900  }
2901  static bool classof(const VAArgExpr *) { return true; }
2902
2903  // Iterators
2904  virtual child_iterator child_begin();
2905  virtual child_iterator child_end();
2906};
2907
2908/// @brief Describes an C or C++ initializer list.
2909///
2910/// InitListExpr describes an initializer list, which can be used to
2911/// initialize objects of different types, including
2912/// struct/class/union types, arrays, and vectors. For example:
2913///
2914/// @code
2915/// struct foo x = { 1, { 2, 3 } };
2916/// @endcode
2917///
2918/// Prior to semantic analysis, an initializer list will represent the
2919/// initializer list as written by the user, but will have the
2920/// placeholder type "void". This initializer list is called the
2921/// syntactic form of the initializer, and may contain C99 designated
2922/// initializers (represented as DesignatedInitExprs), initializations
2923/// of subobject members without explicit braces, and so on. Clients
2924/// interested in the original syntax of the initializer list should
2925/// use the syntactic form of the initializer list.
2926///
2927/// After semantic analysis, the initializer list will represent the
2928/// semantic form of the initializer, where the initializations of all
2929/// subobjects are made explicit with nested InitListExpr nodes and
2930/// C99 designators have been eliminated by placing the designated
2931/// initializations into the subobject they initialize. Additionally,
2932/// any "holes" in the initialization, where no initializer has been
2933/// specified for a particular subobject, will be replaced with
2934/// implicitly-generated ImplicitValueInitExpr expressions that
2935/// value-initialize the subobjects. Note, however, that the
2936/// initializer lists may still have fewer initializers than there are
2937/// elements to initialize within the object.
2938///
2939/// Given the semantic form of the initializer list, one can retrieve
2940/// the original syntactic form of that initializer list (if it
2941/// exists) using getSyntacticForm(). Since many initializer lists
2942/// have the same syntactic and semantic forms, getSyntacticForm() may
2943/// return NULL, indicating that the current initializer list also
2944/// serves as its syntactic form.
2945class InitListExpr : public Expr {
2946  // FIXME: Eliminate this vector in favor of ASTContext allocation
2947  typedef ASTVector<Stmt *> InitExprsTy;
2948  InitExprsTy InitExprs;
2949  SourceLocation LBraceLoc, RBraceLoc;
2950
2951  /// Contains the initializer list that describes the syntactic form
2952  /// written in the source code.
2953  InitListExpr *SyntacticForm;
2954
2955  /// If this initializer list initializes a union, specifies which
2956  /// field within the union will be initialized.
2957  FieldDecl *UnionFieldInit;
2958
2959  /// Whether this initializer list originally had a GNU array-range
2960  /// designator in it. This is a temporary marker used by CodeGen.
2961  bool HadArrayRangeDesignator;
2962
2963public:
2964  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2965               Expr **initexprs, unsigned numinits,
2966               SourceLocation rbraceloc);
2967
2968  /// \brief Build an empty initializer list.
2969  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2970    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2971
2972  unsigned getNumInits() const { return InitExprs.size(); }
2973
2974  const Expr *getInit(unsigned Init) const {
2975    assert(Init < getNumInits() && "Initializer access out of range!");
2976    return cast_or_null<Expr>(InitExprs[Init]);
2977  }
2978
2979  Expr *getInit(unsigned Init) {
2980    assert(Init < getNumInits() && "Initializer access out of range!");
2981    return cast_or_null<Expr>(InitExprs[Init]);
2982  }
2983
2984  void setInit(unsigned Init, Expr *expr) {
2985    assert(Init < getNumInits() && "Initializer access out of range!");
2986    InitExprs[Init] = expr;
2987  }
2988
2989  /// \brief Reserve space for some number of initializers.
2990  void reserveInits(ASTContext &C, unsigned NumInits);
2991
2992  /// @brief Specify the number of initializers
2993  ///
2994  /// If there are more than @p NumInits initializers, the remaining
2995  /// initializers will be destroyed. If there are fewer than @p
2996  /// NumInits initializers, NULL expressions will be added for the
2997  /// unknown initializers.
2998  void resizeInits(ASTContext &Context, unsigned NumInits);
2999
3000  /// @brief Updates the initializer at index @p Init with the new
3001  /// expression @p expr, and returns the old expression at that
3002  /// location.
3003  ///
3004  /// When @p Init is out of range for this initializer list, the
3005  /// initializer list will be extended with NULL expressions to
3006  /// accomodate the new entry.
3007  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3008
3009  /// \brief If this initializes a union, specifies which field in the
3010  /// union to initialize.
3011  ///
3012  /// Typically, this field is the first named field within the
3013  /// union. However, a designated initializer can specify the
3014  /// initialization of a different field within the union.
3015  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
3016  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
3017
3018  // Explicit InitListExpr's originate from source code (and have valid source
3019  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3020  bool isExplicit() {
3021    return LBraceLoc.isValid() && RBraceLoc.isValid();
3022  }
3023
3024  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3025  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3026  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3027  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3028
3029  /// @brief Retrieve the initializer list that describes the
3030  /// syntactic form of the initializer.
3031  ///
3032  ///
3033  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3034  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3035
3036  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3037  void sawArrayRangeDesignator(bool ARD = true) {
3038    HadArrayRangeDesignator = ARD;
3039  }
3040
3041  virtual SourceRange getSourceRange() const;
3042
3043  static bool classof(const Stmt *T) {
3044    return T->getStmtClass() == InitListExprClass;
3045  }
3046  static bool classof(const InitListExpr *) { return true; }
3047
3048  // Iterators
3049  virtual child_iterator child_begin();
3050  virtual child_iterator child_end();
3051
3052  typedef InitExprsTy::iterator iterator;
3053  typedef InitExprsTy::const_iterator const_iterator;
3054  typedef InitExprsTy::reverse_iterator reverse_iterator;
3055  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3056
3057  iterator begin() { return InitExprs.begin(); }
3058  const_iterator begin() const { return InitExprs.begin(); }
3059  iterator end() { return InitExprs.end(); }
3060  const_iterator end() const { return InitExprs.end(); }
3061  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3062  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3063  reverse_iterator rend() { return InitExprs.rend(); }
3064  const_reverse_iterator rend() const { return InitExprs.rend(); }
3065};
3066
3067/// @brief Represents a C99 designated initializer expression.
3068///
3069/// A designated initializer expression (C99 6.7.8) contains one or
3070/// more designators (which can be field designators, array
3071/// designators, or GNU array-range designators) followed by an
3072/// expression that initializes the field or element(s) that the
3073/// designators refer to. For example, given:
3074///
3075/// @code
3076/// struct point {
3077///   double x;
3078///   double y;
3079/// };
3080/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3081/// @endcode
3082///
3083/// The InitListExpr contains three DesignatedInitExprs, the first of
3084/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3085/// designators, one array designator for @c [2] followed by one field
3086/// designator for @c .y. The initalization expression will be 1.0.
3087class DesignatedInitExpr : public Expr {
3088public:
3089  /// \brief Forward declaration of the Designator class.
3090  class Designator;
3091
3092private:
3093  /// The location of the '=' or ':' prior to the actual initializer
3094  /// expression.
3095  SourceLocation EqualOrColonLoc;
3096
3097  /// Whether this designated initializer used the GNU deprecated
3098  /// syntax rather than the C99 '=' syntax.
3099  bool GNUSyntax : 1;
3100
3101  /// The number of designators in this initializer expression.
3102  unsigned NumDesignators : 15;
3103
3104  /// \brief The designators in this designated initialization
3105  /// expression.
3106  Designator *Designators;
3107
3108  /// The number of subexpressions of this initializer expression,
3109  /// which contains both the initializer and any additional
3110  /// expressions used by array and array-range designators.
3111  unsigned NumSubExprs : 16;
3112
3113
3114  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3115                     const Designator *Designators,
3116                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3117                     Expr **IndexExprs, unsigned NumIndexExprs,
3118                     Expr *Init);
3119
3120  explicit DesignatedInitExpr(unsigned NumSubExprs)
3121    : Expr(DesignatedInitExprClass, EmptyShell()),
3122      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3123
3124public:
3125  /// A field designator, e.g., ".x".
3126  struct FieldDesignator {
3127    /// Refers to the field that is being initialized. The low bit
3128    /// of this field determines whether this is actually a pointer
3129    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3130    /// initially constructed, a field designator will store an
3131    /// IdentifierInfo*. After semantic analysis has resolved that
3132    /// name, the field designator will instead store a FieldDecl*.
3133    uintptr_t NameOrField;
3134
3135    /// The location of the '.' in the designated initializer.
3136    unsigned DotLoc;
3137
3138    /// The location of the field name in the designated initializer.
3139    unsigned FieldLoc;
3140  };
3141
3142  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3143  struct ArrayOrRangeDesignator {
3144    /// Location of the first index expression within the designated
3145    /// initializer expression's list of subexpressions.
3146    unsigned Index;
3147    /// The location of the '[' starting the array range designator.
3148    unsigned LBracketLoc;
3149    /// The location of the ellipsis separating the start and end
3150    /// indices. Only valid for GNU array-range designators.
3151    unsigned EllipsisLoc;
3152    /// The location of the ']' terminating the array range designator.
3153    unsigned RBracketLoc;
3154  };
3155
3156  /// @brief Represents a single C99 designator.
3157  ///
3158  /// @todo This class is infuriatingly similar to clang::Designator,
3159  /// but minor differences (storing indices vs. storing pointers)
3160  /// keep us from reusing it. Try harder, later, to rectify these
3161  /// differences.
3162  class Designator {
3163    /// @brief The kind of designator this describes.
3164    enum {
3165      FieldDesignator,
3166      ArrayDesignator,
3167      ArrayRangeDesignator
3168    } Kind;
3169
3170    union {
3171      /// A field designator, e.g., ".x".
3172      struct FieldDesignator Field;
3173      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3174      struct ArrayOrRangeDesignator ArrayOrRange;
3175    };
3176    friend class DesignatedInitExpr;
3177
3178  public:
3179    Designator() {}
3180
3181    /// @brief Initializes a field designator.
3182    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3183               SourceLocation FieldLoc)
3184      : Kind(FieldDesignator) {
3185      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3186      Field.DotLoc = DotLoc.getRawEncoding();
3187      Field.FieldLoc = FieldLoc.getRawEncoding();
3188    }
3189
3190    /// @brief Initializes an array designator.
3191    Designator(unsigned Index, SourceLocation LBracketLoc,
3192               SourceLocation RBracketLoc)
3193      : Kind(ArrayDesignator) {
3194      ArrayOrRange.Index = Index;
3195      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3196      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3197      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3198    }
3199
3200    /// @brief Initializes a GNU array-range designator.
3201    Designator(unsigned Index, SourceLocation LBracketLoc,
3202               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3203      : Kind(ArrayRangeDesignator) {
3204      ArrayOrRange.Index = Index;
3205      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3206      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3207      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3208    }
3209
3210    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3211    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3212    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3213
3214    IdentifierInfo * getFieldName();
3215
3216    FieldDecl *getField() {
3217      assert(Kind == FieldDesignator && "Only valid on a field designator");
3218      if (Field.NameOrField & 0x01)
3219        return 0;
3220      else
3221        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3222    }
3223
3224    void setField(FieldDecl *FD) {
3225      assert(Kind == FieldDesignator && "Only valid on a field designator");
3226      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3227    }
3228
3229    SourceLocation getDotLoc() const {
3230      assert(Kind == FieldDesignator && "Only valid on a field designator");
3231      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3232    }
3233
3234    SourceLocation getFieldLoc() const {
3235      assert(Kind == FieldDesignator && "Only valid on a field designator");
3236      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3237    }
3238
3239    SourceLocation getLBracketLoc() const {
3240      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3241             "Only valid on an array or array-range designator");
3242      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3243    }
3244
3245    SourceLocation getRBracketLoc() const {
3246      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3247             "Only valid on an array or array-range designator");
3248      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3249    }
3250
3251    SourceLocation getEllipsisLoc() const {
3252      assert(Kind == ArrayRangeDesignator &&
3253             "Only valid on an array-range designator");
3254      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3255    }
3256
3257    unsigned getFirstExprIndex() const {
3258      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3259             "Only valid on an array or array-range designator");
3260      return ArrayOrRange.Index;
3261    }
3262
3263    SourceLocation getStartLocation() const {
3264      if (Kind == FieldDesignator)
3265        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3266      else
3267        return getLBracketLoc();
3268    }
3269  };
3270
3271  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3272                                    unsigned NumDesignators,
3273                                    Expr **IndexExprs, unsigned NumIndexExprs,
3274                                    SourceLocation EqualOrColonLoc,
3275                                    bool GNUSyntax, Expr *Init);
3276
3277  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3278
3279  /// @brief Returns the number of designators in this initializer.
3280  unsigned size() const { return NumDesignators; }
3281
3282  // Iterator access to the designators.
3283  typedef Designator* designators_iterator;
3284  designators_iterator designators_begin() { return Designators; }
3285  designators_iterator designators_end() {
3286    return Designators + NumDesignators;
3287  }
3288
3289  typedef std::reverse_iterator<designators_iterator>
3290          reverse_designators_iterator;
3291  reverse_designators_iterator designators_rbegin() {
3292    return reverse_designators_iterator(designators_end());
3293  }
3294  reverse_designators_iterator designators_rend() {
3295    return reverse_designators_iterator(designators_begin());
3296  }
3297
3298  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3299
3300  void setDesignators(ASTContext &C, const Designator *Desigs,
3301                      unsigned NumDesigs);
3302
3303  Expr *getArrayIndex(const Designator& D);
3304  Expr *getArrayRangeStart(const Designator& D);
3305  Expr *getArrayRangeEnd(const Designator& D);
3306
3307  /// @brief Retrieve the location of the '=' that precedes the
3308  /// initializer value itself, if present.
3309  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3310  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3311
3312  /// @brief Determines whether this designated initializer used the
3313  /// deprecated GNU syntax for designated initializers.
3314  bool usesGNUSyntax() const { return GNUSyntax; }
3315  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3316
3317  /// @brief Retrieve the initializer value.
3318  Expr *getInit() const {
3319    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3320  }
3321
3322  void setInit(Expr *init) {
3323    *child_begin() = init;
3324  }
3325
3326  /// \brief Retrieve the total number of subexpressions in this
3327  /// designated initializer expression, including the actual
3328  /// initialized value and any expressions that occur within array
3329  /// and array-range designators.
3330  unsigned getNumSubExprs() const { return NumSubExprs; }
3331
3332  Expr *getSubExpr(unsigned Idx) {
3333    assert(Idx < NumSubExprs && "Subscript out of range");
3334    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3335    Ptr += sizeof(DesignatedInitExpr);
3336    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3337  }
3338
3339  void setSubExpr(unsigned Idx, Expr *E) {
3340    assert(Idx < NumSubExprs && "Subscript out of range");
3341    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3342    Ptr += sizeof(DesignatedInitExpr);
3343    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3344  }
3345
3346  /// \brief Replaces the designator at index @p Idx with the series
3347  /// of designators in [First, Last).
3348  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3349                        const Designator *Last);
3350
3351  virtual SourceRange getSourceRange() const;
3352
3353  static bool classof(const Stmt *T) {
3354    return T->getStmtClass() == DesignatedInitExprClass;
3355  }
3356  static bool classof(const DesignatedInitExpr *) { return true; }
3357
3358  // Iterators
3359  virtual child_iterator child_begin();
3360  virtual child_iterator child_end();
3361};
3362
3363/// \brief Represents an implicitly-generated value initialization of
3364/// an object of a given type.
3365///
3366/// Implicit value initializations occur within semantic initializer
3367/// list expressions (InitListExpr) as placeholders for subobject
3368/// initializations not explicitly specified by the user.
3369///
3370/// \see InitListExpr
3371class ImplicitValueInitExpr : public Expr {
3372public:
3373  explicit ImplicitValueInitExpr(QualType ty)
3374    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3375           false, false) { }
3376
3377  /// \brief Construct an empty implicit value initialization.
3378  explicit ImplicitValueInitExpr(EmptyShell Empty)
3379    : Expr(ImplicitValueInitExprClass, Empty) { }
3380
3381  static bool classof(const Stmt *T) {
3382    return T->getStmtClass() == ImplicitValueInitExprClass;
3383  }
3384  static bool classof(const ImplicitValueInitExpr *) { return true; }
3385
3386  virtual SourceRange getSourceRange() const {
3387    return SourceRange();
3388  }
3389
3390  // Iterators
3391  virtual child_iterator child_begin();
3392  virtual child_iterator child_end();
3393};
3394
3395
3396class ParenListExpr : public Expr {
3397  Stmt **Exprs;
3398  unsigned NumExprs;
3399  SourceLocation LParenLoc, RParenLoc;
3400
3401public:
3402  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3403                unsigned numexprs, SourceLocation rparenloc);
3404
3405  /// \brief Build an empty paren list.
3406  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3407
3408  unsigned getNumExprs() const { return NumExprs; }
3409
3410  const Expr* getExpr(unsigned Init) const {
3411    assert(Init < getNumExprs() && "Initializer access out of range!");
3412    return cast_or_null<Expr>(Exprs[Init]);
3413  }
3414
3415  Expr* getExpr(unsigned Init) {
3416    assert(Init < getNumExprs() && "Initializer access out of range!");
3417    return cast_or_null<Expr>(Exprs[Init]);
3418  }
3419
3420  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3421
3422  SourceLocation getLParenLoc() const { return LParenLoc; }
3423  SourceLocation getRParenLoc() const { return RParenLoc; }
3424
3425  virtual SourceRange getSourceRange() const {
3426    return SourceRange(LParenLoc, RParenLoc);
3427  }
3428  static bool classof(const Stmt *T) {
3429    return T->getStmtClass() == ParenListExprClass;
3430  }
3431  static bool classof(const ParenListExpr *) { return true; }
3432
3433  // Iterators
3434  virtual child_iterator child_begin();
3435  virtual child_iterator child_end();
3436
3437  friend class ASTStmtReader;
3438  friend class ASTStmtWriter;
3439};
3440
3441
3442//===----------------------------------------------------------------------===//
3443// Clang Extensions
3444//===----------------------------------------------------------------------===//
3445
3446
3447/// ExtVectorElementExpr - This represents access to specific elements of a
3448/// vector, and may occur on the left hand side or right hand side.  For example
3449/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3450///
3451/// Note that the base may have either vector or pointer to vector type, just
3452/// like a struct field reference.
3453///
3454class ExtVectorElementExpr : public Expr {
3455  Stmt *Base;
3456  IdentifierInfo *Accessor;
3457  SourceLocation AccessorLoc;
3458public:
3459  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3460                       IdentifierInfo &accessor, SourceLocation loc)
3461    : Expr(ExtVectorElementExprClass, ty, VK,
3462           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3463           base->isTypeDependent(), base->isValueDependent()),
3464      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3465
3466  /// \brief Build an empty vector element expression.
3467  explicit ExtVectorElementExpr(EmptyShell Empty)
3468    : Expr(ExtVectorElementExprClass, Empty) { }
3469
3470  const Expr *getBase() const { return cast<Expr>(Base); }
3471  Expr *getBase() { return cast<Expr>(Base); }
3472  void setBase(Expr *E) { Base = E; }
3473
3474  IdentifierInfo &getAccessor() const { return *Accessor; }
3475  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3476
3477  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3478  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3479
3480  /// getNumElements - Get the number of components being selected.
3481  unsigned getNumElements() const;
3482
3483  /// containsDuplicateElements - Return true if any element access is
3484  /// repeated.
3485  bool containsDuplicateElements() const;
3486
3487  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3488  /// aggregate Constant of ConstantInt(s).
3489  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3490
3491  virtual SourceRange getSourceRange() const {
3492    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3493  }
3494
3495  /// isArrow - Return true if the base expression is a pointer to vector,
3496  /// return false if the base expression is a vector.
3497  bool isArrow() const;
3498
3499  static bool classof(const Stmt *T) {
3500    return T->getStmtClass() == ExtVectorElementExprClass;
3501  }
3502  static bool classof(const ExtVectorElementExpr *) { return true; }
3503
3504  // Iterators
3505  virtual child_iterator child_begin();
3506  virtual child_iterator child_end();
3507};
3508
3509
3510/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3511/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3512class BlockExpr : public Expr {
3513protected:
3514  BlockDecl *TheBlock;
3515  bool HasBlockDeclRefExprs;
3516public:
3517  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3518    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3519           ty->isDependentType(), false),
3520      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3521
3522  /// \brief Build an empty block expression.
3523  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3524
3525  const BlockDecl *getBlockDecl() const { return TheBlock; }
3526  BlockDecl *getBlockDecl() { return TheBlock; }
3527  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3528
3529  // Convenience functions for probing the underlying BlockDecl.
3530  SourceLocation getCaretLocation() const;
3531  const Stmt *getBody() const;
3532  Stmt *getBody();
3533
3534  virtual SourceRange getSourceRange() const {
3535    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3536  }
3537
3538  /// getFunctionType - Return the underlying function type for this block.
3539  const FunctionType *getFunctionType() const;
3540
3541  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3542  /// inside of the block that reference values outside the block.
3543  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3544  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3545
3546  static bool classof(const Stmt *T) {
3547    return T->getStmtClass() == BlockExprClass;
3548  }
3549  static bool classof(const BlockExpr *) { return true; }
3550
3551  // Iterators
3552  virtual child_iterator child_begin();
3553  virtual child_iterator child_end();
3554};
3555
3556/// BlockDeclRefExpr - A reference to a declared variable, function,
3557/// enum, etc.
3558class BlockDeclRefExpr : public Expr {
3559  ValueDecl *D;
3560  SourceLocation Loc;
3561  bool IsByRef : 1;
3562  bool ConstQualAdded : 1;
3563  Stmt *CopyConstructorVal;
3564public:
3565  // FIXME: Fix type/value dependence!
3566  BlockDeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK,
3567                   SourceLocation l, bool ByRef, bool constAdded = false,
3568                   Stmt *copyConstructorVal = 0)
3569    : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary,
3570           (!t.isNull() && t->isDependentType()), false),
3571    D(d), Loc(l), IsByRef(ByRef),
3572    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3573
3574  // \brief Build an empty reference to a declared variable in a
3575  // block.
3576  explicit BlockDeclRefExpr(EmptyShell Empty)
3577    : Expr(BlockDeclRefExprClass, Empty) { }
3578
3579  ValueDecl *getDecl() { return D; }
3580  const ValueDecl *getDecl() const { return D; }
3581  void setDecl(ValueDecl *VD) { D = VD; }
3582
3583  SourceLocation getLocation() const { return Loc; }
3584  void setLocation(SourceLocation L) { Loc = L; }
3585
3586  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3587
3588  bool isByRef() const { return IsByRef; }
3589  void setByRef(bool BR) { IsByRef = BR; }
3590
3591  bool isConstQualAdded() const { return ConstQualAdded; }
3592  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3593
3594  const Expr *getCopyConstructorExpr() const
3595    { return cast_or_null<Expr>(CopyConstructorVal); }
3596  Expr *getCopyConstructorExpr()
3597    { return cast_or_null<Expr>(CopyConstructorVal); }
3598  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3599
3600  static bool classof(const Stmt *T) {
3601    return T->getStmtClass() == BlockDeclRefExprClass;
3602  }
3603  static bool classof(const BlockDeclRefExpr *) { return true; }
3604
3605  // Iterators
3606  virtual child_iterator child_begin();
3607  virtual child_iterator child_end();
3608};
3609
3610/// OpaqueValueExpr - An expression referring to an opaque object of a
3611/// fixed type and value class.  These don't correspond to concrete
3612/// syntax; instead they're used to express operations (usually copy
3613/// operations) on values whose source is generally obvious from
3614/// context.
3615class OpaqueValueExpr : public Expr {
3616  friend class ASTStmtReader;
3617public:
3618  OpaqueValueExpr(QualType T, ExprValueKind VK, ExprObjectKind OK = OK_Ordinary)
3619    : Expr(OpaqueValueExprClass, T, VK, OK,
3620           T->isDependentType(), T->isDependentType()) {
3621  }
3622
3623  explicit OpaqueValueExpr(EmptyShell Empty)
3624    : Expr(OpaqueValueExprClass, Empty) { }
3625
3626  virtual SourceRange getSourceRange() const;
3627  virtual child_iterator child_begin();
3628  virtual child_iterator child_end();
3629
3630  static bool classof(const Stmt *T) {
3631    return T->getStmtClass() == OpaqueValueExprClass;
3632  }
3633  static bool classof(const OpaqueValueExpr *) { return true; }
3634};
3635
3636}  // end namespace clang
3637
3638#endif
3639