Expr.h revision 13a140caba448a66ffcc5ff0d32a87d6e4f4ad3f
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include <cctype>
32
33namespace clang {
34  class ASTContext;
35  class APValue;
36  class Decl;
37  class IdentifierInfo;
38  class ParmVarDecl;
39  class NamedDecl;
40  class ValueDecl;
41  class BlockDecl;
42  class CXXBaseSpecifier;
43  class CXXOperatorCallExpr;
44  class CXXMemberCallExpr;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_NotBlockQualified,
240    MLV_ReadonlyProperty,
241    MLV_NoSetterProperty,
242    MLV_MemberFunction,
243    MLV_SubObjCPropertySetting,
244    MLV_InvalidMessageExpression,
245    MLV_ClassTemporary
246  };
247  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
248                                              SourceLocation *Loc = 0) const;
249
250  /// \brief The return type of classify(). Represents the C++0x expression
251  ///        taxonomy.
252  class Classification {
253  public:
254    /// \brief The various classification results. Most of these mean prvalue.
255    enum Kinds {
256      CL_LValue,
257      CL_XValue,
258      CL_Function, // Functions cannot be lvalues in C.
259      CL_Void, // Void cannot be an lvalue in C.
260      CL_AddressableVoid, // Void expression whose address can be taken in C.
261      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
262      CL_MemberFunction, // An expression referring to a member function
263      CL_SubObjCPropertySetting,
264      CL_ClassTemporary, // A prvalue of class type
265      CL_ObjCMessageRValue, // ObjC message is an rvalue
266      CL_PRValue // A prvalue for any other reason, of any other type
267    };
268    /// \brief The results of modification testing.
269    enum ModifiableType {
270      CM_Untested, // testModifiable was false.
271      CM_Modifiable,
272      CM_RValue, // Not modifiable because it's an rvalue
273      CM_Function, // Not modifiable because it's a function; C++ only
274      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
275      CM_NotBlockQualified, // Not captured in the closure
276      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
277      CM_ConstQualified,
278      CM_ArrayType,
279      CM_IncompleteType
280    };
281
282  private:
283    friend class Expr;
284
285    unsigned short Kind;
286    unsigned short Modifiable;
287
288    explicit Classification(Kinds k, ModifiableType m)
289      : Kind(k), Modifiable(m)
290    {}
291
292  public:
293    Classification() {}
294
295    Kinds getKind() const { return static_cast<Kinds>(Kind); }
296    ModifiableType getModifiable() const {
297      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
298      return static_cast<ModifiableType>(Modifiable);
299    }
300    bool isLValue() const { return Kind == CL_LValue; }
301    bool isXValue() const { return Kind == CL_XValue; }
302    bool isGLValue() const { return Kind <= CL_XValue; }
303    bool isPRValue() const { return Kind >= CL_Function; }
304    bool isRValue() const { return Kind >= CL_XValue; }
305    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
306
307    /// \brief Create a simple, modifiably lvalue
308    static Classification makeSimpleLValue() {
309      return Classification(CL_LValue, CM_Modifiable);
310    }
311
312  };
313  /// \brief Classify - Classify this expression according to the C++0x
314  ///        expression taxonomy.
315  ///
316  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
317  /// old lvalue vs rvalue. This function determines the type of expression this
318  /// is. There are three expression types:
319  /// - lvalues are classical lvalues as in C++03.
320  /// - prvalues are equivalent to rvalues in C++03.
321  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
322  ///   function returning an rvalue reference.
323  /// lvalues and xvalues are collectively referred to as glvalues, while
324  /// prvalues and xvalues together form rvalues.
325  Classification Classify(ASTContext &Ctx) const {
326    return ClassifyImpl(Ctx, 0);
327  }
328
329  /// \brief ClassifyModifiable - Classify this expression according to the
330  ///        C++0x expression taxonomy, and see if it is valid on the left side
331  ///        of an assignment.
332  ///
333  /// This function extends classify in that it also tests whether the
334  /// expression is modifiable (C99 6.3.2.1p1).
335  /// \param Loc A source location that might be filled with a relevant location
336  ///            if the expression is not modifiable.
337  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
338    return ClassifyImpl(Ctx, &Loc);
339  }
340
341  /// getValueKindForType - Given a formal return or parameter type,
342  /// give its value kind.
343  static ExprValueKind getValueKindForType(QualType T) {
344    if (const ReferenceType *RT = T->getAs<ReferenceType>())
345      return (isa<LValueReferenceType>(RT)
346                ? VK_LValue
347                : (RT->getPointeeType()->isFunctionType()
348                     ? VK_LValue : VK_XValue));
349    return VK_RValue;
350  }
351
352  /// getValueKind - The value kind that this expression produces.
353  ExprValueKind getValueKind() const {
354    return static_cast<ExprValueKind>(ExprBits.ValueKind);
355  }
356
357  /// getObjectKind - The object kind that this expression produces.
358  /// Object kinds are meaningful only for expressions that yield an
359  /// l-value or x-value.
360  ExprObjectKind getObjectKind() const {
361    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
362  }
363
364  bool isOrdinaryOrBitFieldObject() const {
365    ExprObjectKind OK = getObjectKind();
366    return (OK == OK_Ordinary || OK == OK_BitField);
367  }
368
369  /// setValueKind - Set the value kind produced by this expression.
370  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
371
372  /// setObjectKind - Set the object kind produced by this expression.
373  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
374
375private:
376  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
377
378public:
379
380  /// \brief If this expression refers to a bit-field, retrieve the
381  /// declaration of that bit-field.
382  FieldDecl *getBitField();
383
384  const FieldDecl *getBitField() const {
385    return const_cast<Expr*>(this)->getBitField();
386  }
387
388  /// \brief If this expression is an l-value for an Objective C
389  /// property, find the underlying property reference expression.
390  const ObjCPropertyRefExpr *getObjCProperty() const;
391
392  /// \brief Returns whether this expression refers to a vector element.
393  bool refersToVectorElement() const;
394
395  /// \brief Returns whether this expression has a placeholder type.
396  bool hasPlaceholderType() const {
397    return getType()->isPlaceholderType();
398  }
399
400  /// \brief Returns whether this expression has a specific placeholder type.
401  bool hasPlaceholderType(BuiltinType::Kind K) const {
402    assert(BuiltinType::isPlaceholderTypeKind(K));
403    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
404      return BT->getKind() == K;
405    return false;
406  }
407
408  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
409  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
410  /// but also int expressions which are produced by things like comparisons in
411  /// C.
412  bool isKnownToHaveBooleanValue() const;
413
414  /// isIntegerConstantExpr - Return true if this expression is a valid integer
415  /// constant expression, and, if so, return its value in Result.  If not a
416  /// valid i-c-e, return false and fill in Loc (if specified) with the location
417  /// of the invalid expression.
418  ///
419  /// Note: This does not perform the implicit conversions required by C++11
420  /// [expr.const]p5.
421  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
422                             SourceLocation *Loc = 0,
423                             bool isEvaluated = true) const;
424  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
425
426  /// isCXX98IntegralConstantExpr - Return true if this expression is an
427  /// integral constant expression in C++98. Can only be used in C++.
428  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
429
430  /// isCXX11ConstantExpr - Return true if this expression is a constant
431  /// expression in C++11. Can only be used in C++.
432  ///
433  /// Note: This does not perform the implicit conversions required by C++11
434  /// [expr.const]p5.
435  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
436                           SourceLocation *Loc = 0) const;
437
438  /// isPotentialConstantExpr - Return true if this function's definition
439  /// might be usable in a constant expression in C++11, if it were marked
440  /// constexpr. Return false if the function can never produce a constant
441  /// expression, along with diagnostics describing why not.
442  static bool isPotentialConstantExpr(const FunctionDecl *FD,
443                                      llvm::SmallVectorImpl<
444                                        PartialDiagnosticAt> &Diags);
445
446  /// isConstantInitializer - Returns true if this expression can be emitted to
447  /// IR as a constant, and thus can be used as a constant initializer in C.
448  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
449
450  /// EvalStatus is a struct with detailed info about an evaluation in progress.
451  struct EvalStatus {
452    /// HasSideEffects - Whether the evaluated expression has side effects.
453    /// For example, (f() && 0) can be folded, but it still has side effects.
454    bool HasSideEffects;
455
456    /// Diag - If this is non-null, it will be filled in with a stack of notes
457    /// indicating why evaluation failed (or why it failed to produce a constant
458    /// expression).
459    /// If the expression is unfoldable, the notes will indicate why it's not
460    /// foldable. If the expression is foldable, but not a constant expression,
461    /// the notes will describes why it isn't a constant expression. If the
462    /// expression *is* a constant expression, no notes will be produced.
463    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
464
465    EvalStatus() : HasSideEffects(false), Diag(0) {}
466
467    // hasSideEffects - Return true if the evaluated expression has
468    // side effects.
469    bool hasSideEffects() const {
470      return HasSideEffects;
471    }
472  };
473
474  /// EvalResult is a struct with detailed info about an evaluated expression.
475  struct EvalResult : EvalStatus {
476    /// Val - This is the value the expression can be folded to.
477    APValue Val;
478
479    // isGlobalLValue - Return true if the evaluated lvalue expression
480    // is global.
481    bool isGlobalLValue() const;
482  };
483
484  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
485  /// an rvalue using any crazy technique (that has nothing to do with language
486  /// standards) that we want to, even if the expression has side-effects. If
487  /// this function returns true, it returns the folded constant in Result. If
488  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
489  /// applied.
490  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
491
492  /// EvaluateAsBooleanCondition - Return true if this is a constant
493  /// which we we can fold and convert to a boolean condition using
494  /// any crazy technique that we want to, even if the expression has
495  /// side-effects.
496  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
497
498  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
499
500  /// EvaluateAsInt - Return true if this is a constant which we can fold and
501  /// convert to an integer, using any crazy technique that we want to.
502  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
503                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
504
505  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
506  /// constant folded without side-effects, but discard the result.
507  bool isEvaluatable(const ASTContext &Ctx) const;
508
509  /// HasSideEffects - This routine returns true for all those expressions
510  /// which must be evaluated each time and must not be optimized away
511  /// or evaluated at compile time. Example is a function call, volatile
512  /// variable read.
513  bool HasSideEffects(const ASTContext &Ctx) const;
514
515  /// \brief Determine whether this expression involves a call to any function
516  /// that is not trivial.
517  bool hasNonTrivialCall(ASTContext &Ctx);
518
519  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
520  /// integer. This must be called on an expression that constant folds to an
521  /// integer.
522  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
523
524  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
525  /// lvalue with link time known address, with no side-effects.
526  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
527
528  /// EvaluateAsInitializer - Evaluate an expression as if it were the
529  /// initializer of the given declaration. Returns true if the initializer
530  /// can be folded to a constant, and produces any relevant notes. In C++11,
531  /// notes will be produced if the expression is not a constant expression.
532  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
533                             const VarDecl *VD,
534                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
535
536  /// \brief Enumeration used to describe the kind of Null pointer constant
537  /// returned from \c isNullPointerConstant().
538  enum NullPointerConstantKind {
539    /// \brief Expression is not a Null pointer constant.
540    NPCK_NotNull = 0,
541
542    /// \brief Expression is a Null pointer constant built from a zero integer.
543    NPCK_ZeroInteger,
544
545    /// \brief Expression is a C++0X nullptr.
546    NPCK_CXX0X_nullptr,
547
548    /// \brief Expression is a GNU-style __null constant.
549    NPCK_GNUNull
550  };
551
552  /// \brief Enumeration used to describe how \c isNullPointerConstant()
553  /// should cope with value-dependent expressions.
554  enum NullPointerConstantValueDependence {
555    /// \brief Specifies that the expression should never be value-dependent.
556    NPC_NeverValueDependent = 0,
557
558    /// \brief Specifies that a value-dependent expression of integral or
559    /// dependent type should be considered a null pointer constant.
560    NPC_ValueDependentIsNull,
561
562    /// \brief Specifies that a value-dependent expression should be considered
563    /// to never be a null pointer constant.
564    NPC_ValueDependentIsNotNull
565  };
566
567  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
568  /// a Null pointer constant. The return value can further distinguish the
569  /// kind of NULL pointer constant that was detected.
570  NullPointerConstantKind isNullPointerConstant(
571      ASTContext &Ctx,
572      NullPointerConstantValueDependence NPC) const;
573
574  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
575  /// write barrier.
576  bool isOBJCGCCandidate(ASTContext &Ctx) const;
577
578  /// \brief Returns true if this expression is a bound member function.
579  bool isBoundMemberFunction(ASTContext &Ctx) const;
580
581  /// \brief Given an expression of bound-member type, find the type
582  /// of the member.  Returns null if this is an *overloaded* bound
583  /// member expression.
584  static QualType findBoundMemberType(const Expr *expr);
585
586  /// \brief Result type of CanThrow().
587  enum CanThrowResult {
588    CT_Cannot,
589    CT_Dependent,
590    CT_Can
591  };
592  /// \brief Test if this expression, if evaluated, might throw, according to
593  ///        the rules of C++ [expr.unary.noexcept].
594  CanThrowResult CanThrow(ASTContext &C) const;
595
596  /// IgnoreImpCasts - Skip past any implicit casts which might
597  /// surround this expression.  Only skips ImplicitCastExprs.
598  Expr *IgnoreImpCasts();
599
600  /// IgnoreImplicit - Skip past any implicit AST nodes which might
601  /// surround this expression.
602  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
603
604  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
605  ///  its subexpression.  If that subexpression is also a ParenExpr,
606  ///  then this method recursively returns its subexpression, and so forth.
607  ///  Otherwise, the method returns the current Expr.
608  Expr *IgnoreParens();
609
610  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
611  /// or CastExprs, returning their operand.
612  Expr *IgnoreParenCasts();
613
614  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
615  /// any ParenExpr or ImplicitCastExprs, returning their operand.
616  Expr *IgnoreParenImpCasts();
617
618  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
619  /// call to a conversion operator, return the argument.
620  Expr *IgnoreConversionOperator();
621
622  const Expr *IgnoreConversionOperator() const {
623    return const_cast<Expr*>(this)->IgnoreConversionOperator();
624  }
625
626  const Expr *IgnoreParenImpCasts() const {
627    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
628  }
629
630  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
631  /// CastExprs that represent lvalue casts, returning their operand.
632  Expr *IgnoreParenLValueCasts();
633
634  const Expr *IgnoreParenLValueCasts() const {
635    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
636  }
637
638  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
639  /// value (including ptr->int casts of the same size).  Strip off any
640  /// ParenExpr or CastExprs, returning their operand.
641  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
642
643  /// \brief Determine whether this expression is a default function argument.
644  ///
645  /// Default arguments are implicitly generated in the abstract syntax tree
646  /// by semantic analysis for function calls, object constructions, etc. in
647  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
648  /// this routine also looks through any implicit casts to determine whether
649  /// the expression is a default argument.
650  bool isDefaultArgument() const;
651
652  /// \brief Determine whether the result of this expression is a
653  /// temporary object of the given class type.
654  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
655
656  /// \brief Whether this expression is an implicit reference to 'this' in C++.
657  bool isImplicitCXXThis() const;
658
659  const Expr *IgnoreImpCasts() const {
660    return const_cast<Expr*>(this)->IgnoreImpCasts();
661  }
662  const Expr *IgnoreParens() const {
663    return const_cast<Expr*>(this)->IgnoreParens();
664  }
665  const Expr *IgnoreParenCasts() const {
666    return const_cast<Expr*>(this)->IgnoreParenCasts();
667  }
668  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
669    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
670  }
671
672  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
673
674  static bool classof(const Stmt *T) {
675    return T->getStmtClass() >= firstExprConstant &&
676           T->getStmtClass() <= lastExprConstant;
677  }
678  static bool classof(const Expr *) { return true; }
679};
680
681
682//===----------------------------------------------------------------------===//
683// Primary Expressions.
684//===----------------------------------------------------------------------===//
685
686/// OpaqueValueExpr - An expression referring to an opaque object of a
687/// fixed type and value class.  These don't correspond to concrete
688/// syntax; instead they're used to express operations (usually copy
689/// operations) on values whose source is generally obvious from
690/// context.
691class OpaqueValueExpr : public Expr {
692  friend class ASTStmtReader;
693  Expr *SourceExpr;
694  SourceLocation Loc;
695
696public:
697  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
698                  ExprObjectKind OK = OK_Ordinary,
699                  Expr *SourceExpr = 0)
700    : Expr(OpaqueValueExprClass, T, VK, OK,
701           T->isDependentType(),
702           T->isDependentType() ||
703           (SourceExpr && SourceExpr->isValueDependent()),
704           T->isInstantiationDependentType(),
705           false),
706      SourceExpr(SourceExpr), Loc(Loc) {
707  }
708
709  /// Given an expression which invokes a copy constructor --- i.e.  a
710  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
711  /// find the OpaqueValueExpr that's the source of the construction.
712  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
713
714  explicit OpaqueValueExpr(EmptyShell Empty)
715    : Expr(OpaqueValueExprClass, Empty) { }
716
717  /// \brief Retrieve the location of this expression.
718  SourceLocation getLocation() const { return Loc; }
719
720  SourceRange getSourceRange() const {
721    if (SourceExpr) return SourceExpr->getSourceRange();
722    return Loc;
723  }
724  SourceLocation getExprLoc() const {
725    if (SourceExpr) return SourceExpr->getExprLoc();
726    return Loc;
727  }
728
729  child_range children() { return child_range(); }
730
731  /// The source expression of an opaque value expression is the
732  /// expression which originally generated the value.  This is
733  /// provided as a convenience for analyses that don't wish to
734  /// precisely model the execution behavior of the program.
735  ///
736  /// The source expression is typically set when building the
737  /// expression which binds the opaque value expression in the first
738  /// place.
739  Expr *getSourceExpr() const { return SourceExpr; }
740
741  static bool classof(const Stmt *T) {
742    return T->getStmtClass() == OpaqueValueExprClass;
743  }
744  static bool classof(const OpaqueValueExpr *) { return true; }
745};
746
747/// \brief A reference to a declared variable, function, enum, etc.
748/// [C99 6.5.1p2]
749///
750/// This encodes all the information about how a declaration is referenced
751/// within an expression.
752///
753/// There are several optional constructs attached to DeclRefExprs only when
754/// they apply in order to conserve memory. These are laid out past the end of
755/// the object, and flags in the DeclRefExprBitfield track whether they exist:
756///
757///   DeclRefExprBits.HasQualifier:
758///       Specifies when this declaration reference expression has a C++
759///       nested-name-specifier.
760///   DeclRefExprBits.HasFoundDecl:
761///       Specifies when this declaration reference expression has a record of
762///       a NamedDecl (different from the referenced ValueDecl) which was found
763///       during name lookup and/or overload resolution.
764///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
765///       Specifies when this declaration reference expression has an explicit
766///       C++ template keyword and/or template argument list.
767class DeclRefExpr : public Expr {
768  /// \brief The declaration that we are referencing.
769  ValueDecl *D;
770
771  /// \brief The location of the declaration name itself.
772  SourceLocation Loc;
773
774  /// \brief Provides source/type location info for the declaration name
775  /// embedded in D.
776  DeclarationNameLoc DNLoc;
777
778  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
779  NestedNameSpecifierLoc &getInternalQualifierLoc() {
780    assert(hasQualifier());
781    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
782  }
783
784  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
785  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
786    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
787  }
788
789  /// \brief Test whether there is a distinct FoundDecl attached to the end of
790  /// this DRE.
791  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
792
793  /// \brief Helper to retrieve the optional NamedDecl through which this
794  /// reference occured.
795  NamedDecl *&getInternalFoundDecl() {
796    assert(hasFoundDecl());
797    if (hasQualifier())
798      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
799    return *reinterpret_cast<NamedDecl **>(this + 1);
800  }
801
802  /// \brief Helper to retrieve the optional NamedDecl through which this
803  /// reference occured.
804  NamedDecl *getInternalFoundDecl() const {
805    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
806  }
807
808  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
809              SourceLocation TemplateKWLoc,
810              ValueDecl *D, const DeclarationNameInfo &NameInfo,
811              NamedDecl *FoundD,
812              const TemplateArgumentListInfo *TemplateArgs,
813              QualType T, ExprValueKind VK);
814
815  /// \brief Construct an empty declaration reference expression.
816  explicit DeclRefExpr(EmptyShell Empty)
817    : Expr(DeclRefExprClass, Empty) { }
818
819  /// \brief Computes the type- and value-dependence flags for this
820  /// declaration reference expression.
821  void computeDependence();
822
823public:
824  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
825              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
826    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
827      D(D), Loc(L), DNLoc(LocInfo) {
828    DeclRefExprBits.HasQualifier = 0;
829    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
830    DeclRefExprBits.HasFoundDecl = 0;
831    DeclRefExprBits.HadMultipleCandidates = 0;
832    computeDependence();
833  }
834
835  static DeclRefExpr *Create(ASTContext &Context,
836                             NestedNameSpecifierLoc QualifierLoc,
837                             SourceLocation TemplateKWLoc,
838                             ValueDecl *D,
839                             SourceLocation NameLoc,
840                             QualType T, ExprValueKind VK,
841                             NamedDecl *FoundD = 0,
842                             const TemplateArgumentListInfo *TemplateArgs = 0);
843
844  static DeclRefExpr *Create(ASTContext &Context,
845                             NestedNameSpecifierLoc QualifierLoc,
846                             SourceLocation TemplateKWLoc,
847                             ValueDecl *D,
848                             const DeclarationNameInfo &NameInfo,
849                             QualType T, ExprValueKind VK,
850                             NamedDecl *FoundD = 0,
851                             const TemplateArgumentListInfo *TemplateArgs = 0);
852
853  /// \brief Construct an empty declaration reference expression.
854  static DeclRefExpr *CreateEmpty(ASTContext &Context,
855                                  bool HasQualifier,
856                                  bool HasFoundDecl,
857                                  bool HasTemplateKWAndArgsInfo,
858                                  unsigned NumTemplateArgs);
859
860  ValueDecl *getDecl() { return D; }
861  const ValueDecl *getDecl() const { return D; }
862  void setDecl(ValueDecl *NewD) { D = NewD; }
863
864  DeclarationNameInfo getNameInfo() const {
865    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
866  }
867
868  SourceLocation getLocation() const { return Loc; }
869  void setLocation(SourceLocation L) { Loc = L; }
870  SourceRange getSourceRange() const;
871
872  /// \brief Determine whether this declaration reference was preceded by a
873  /// C++ nested-name-specifier, e.g., \c N::foo.
874  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
875
876  /// \brief If the name was qualified, retrieves the nested-name-specifier
877  /// that precedes the name. Otherwise, returns NULL.
878  NestedNameSpecifier *getQualifier() const {
879    if (!hasQualifier())
880      return 0;
881
882    return getInternalQualifierLoc().getNestedNameSpecifier();
883  }
884
885  /// \brief If the name was qualified, retrieves the nested-name-specifier
886  /// that precedes the name, with source-location information.
887  NestedNameSpecifierLoc getQualifierLoc() const {
888    if (!hasQualifier())
889      return NestedNameSpecifierLoc();
890
891    return getInternalQualifierLoc();
892  }
893
894  /// \brief Get the NamedDecl through which this reference occured.
895  ///
896  /// This Decl may be different from the ValueDecl actually referred to in the
897  /// presence of using declarations, etc. It always returns non-NULL, and may
898  /// simple return the ValueDecl when appropriate.
899  NamedDecl *getFoundDecl() {
900    return hasFoundDecl() ? getInternalFoundDecl() : D;
901  }
902
903  /// \brief Get the NamedDecl through which this reference occurred.
904  /// See non-const variant.
905  const NamedDecl *getFoundDecl() const {
906    return hasFoundDecl() ? getInternalFoundDecl() : D;
907  }
908
909  bool hasTemplateKWAndArgsInfo() const {
910    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
911  }
912
913  /// \brief Return the optional template keyword and arguments info.
914  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
915    if (!hasTemplateKWAndArgsInfo())
916      return 0;
917
918    if (hasFoundDecl())
919      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
920        &getInternalFoundDecl() + 1);
921
922    if (hasQualifier())
923      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
924        &getInternalQualifierLoc() + 1);
925
926    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
927  }
928
929  /// \brief Return the optional template keyword and arguments info.
930  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
931    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
932  }
933
934  /// \brief Retrieve the location of the template keyword preceding
935  /// this name, if any.
936  SourceLocation getTemplateKeywordLoc() const {
937    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
938    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
939  }
940
941  /// \brief Retrieve the location of the left angle bracket starting the
942  /// explicit template argument list following the name, if any.
943  SourceLocation getLAngleLoc() const {
944    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
945    return getTemplateKWAndArgsInfo()->LAngleLoc;
946  }
947
948  /// \brief Retrieve the location of the right angle bracket ending the
949  /// explicit template argument list following the name, if any.
950  SourceLocation getRAngleLoc() const {
951    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
952    return getTemplateKWAndArgsInfo()->RAngleLoc;
953  }
954
955  /// \brief Determines whether the name in this declaration reference
956  /// was preceded by the template keyword.
957  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
958
959  /// \brief Determines whether this declaration reference was followed by an
960  /// explicit template argument list.
961  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
962
963  /// \brief Retrieve the explicit template argument list that followed the
964  /// member template name.
965  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
966    assert(hasExplicitTemplateArgs());
967    return *getTemplateKWAndArgsInfo();
968  }
969
970  /// \brief Retrieve the explicit template argument list that followed the
971  /// member template name.
972  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
973    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
974  }
975
976  /// \brief Retrieves the optional explicit template arguments.
977  /// This points to the same data as getExplicitTemplateArgs(), but
978  /// returns null if there are no explicit template arguments.
979  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
980    if (!hasExplicitTemplateArgs()) return 0;
981    return &getExplicitTemplateArgs();
982  }
983
984  /// \brief Copies the template arguments (if present) into the given
985  /// structure.
986  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
987    if (hasExplicitTemplateArgs())
988      getExplicitTemplateArgs().copyInto(List);
989  }
990
991  /// \brief Retrieve the template arguments provided as part of this
992  /// template-id.
993  const TemplateArgumentLoc *getTemplateArgs() const {
994    if (!hasExplicitTemplateArgs())
995      return 0;
996
997    return getExplicitTemplateArgs().getTemplateArgs();
998  }
999
1000  /// \brief Retrieve the number of template arguments provided as part of this
1001  /// template-id.
1002  unsigned getNumTemplateArgs() const {
1003    if (!hasExplicitTemplateArgs())
1004      return 0;
1005
1006    return getExplicitTemplateArgs().NumTemplateArgs;
1007  }
1008
1009  /// \brief Returns true if this expression refers to a function that
1010  /// was resolved from an overloaded set having size greater than 1.
1011  bool hadMultipleCandidates() const {
1012    return DeclRefExprBits.HadMultipleCandidates;
1013  }
1014  /// \brief Sets the flag telling whether this expression refers to
1015  /// a function that was resolved from an overloaded set having size
1016  /// greater than 1.
1017  void setHadMultipleCandidates(bool V = true) {
1018    DeclRefExprBits.HadMultipleCandidates = V;
1019  }
1020
1021  static bool classof(const Stmt *T) {
1022    return T->getStmtClass() == DeclRefExprClass;
1023  }
1024  static bool classof(const DeclRefExpr *) { return true; }
1025
1026  // Iterators
1027  child_range children() { return child_range(); }
1028
1029  friend class ASTStmtReader;
1030  friend class ASTStmtWriter;
1031};
1032
1033/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1034class PredefinedExpr : public Expr {
1035public:
1036  enum IdentType {
1037    Func,
1038    Function,
1039    PrettyFunction,
1040    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1041    /// 'virtual' keyword is omitted for virtual member functions.
1042    PrettyFunctionNoVirtual
1043  };
1044
1045private:
1046  SourceLocation Loc;
1047  IdentType Type;
1048public:
1049  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1050    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1051           type->isDependentType(), type->isDependentType(),
1052           type->isInstantiationDependentType(),
1053           /*ContainsUnexpandedParameterPack=*/false),
1054      Loc(l), Type(IT) {}
1055
1056  /// \brief Construct an empty predefined expression.
1057  explicit PredefinedExpr(EmptyShell Empty)
1058    : Expr(PredefinedExprClass, Empty) { }
1059
1060  IdentType getIdentType() const { return Type; }
1061  void setIdentType(IdentType IT) { Type = IT; }
1062
1063  SourceLocation getLocation() const { return Loc; }
1064  void setLocation(SourceLocation L) { Loc = L; }
1065
1066  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1067
1068  SourceRange getSourceRange() const { return SourceRange(Loc); }
1069
1070  static bool classof(const Stmt *T) {
1071    return T->getStmtClass() == PredefinedExprClass;
1072  }
1073  static bool classof(const PredefinedExpr *) { return true; }
1074
1075  // Iterators
1076  child_range children() { return child_range(); }
1077};
1078
1079/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1080/// leaking memory.
1081///
1082/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1083/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1084/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1085/// the APFloat/APInt values will never get freed. APNumericStorage uses
1086/// ASTContext's allocator for memory allocation.
1087class APNumericStorage {
1088  unsigned BitWidth;
1089  union {
1090    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1091    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1092  };
1093
1094  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1095
1096  APNumericStorage(const APNumericStorage&); // do not implement
1097  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1098
1099protected:
1100  APNumericStorage() : BitWidth(0), VAL(0) { }
1101
1102  llvm::APInt getIntValue() const {
1103    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1104    if (NumWords > 1)
1105      return llvm::APInt(BitWidth, NumWords, pVal);
1106    else
1107      return llvm::APInt(BitWidth, VAL);
1108  }
1109  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1110};
1111
1112class APIntStorage : public APNumericStorage {
1113public:
1114  llvm::APInt getValue() const { return getIntValue(); }
1115  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1116};
1117
1118class APFloatStorage : public APNumericStorage {
1119public:
1120  llvm::APFloat getValue(bool IsIEEE) const {
1121    return llvm::APFloat(getIntValue(), IsIEEE);
1122  }
1123  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1124    setIntValue(C, Val.bitcastToAPInt());
1125  }
1126};
1127
1128class IntegerLiteral : public Expr {
1129  APIntStorage Num;
1130  SourceLocation Loc;
1131
1132  /// \brief Construct an empty integer literal.
1133  explicit IntegerLiteral(EmptyShell Empty)
1134    : Expr(IntegerLiteralClass, Empty) { }
1135
1136public:
1137  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1138  // or UnsignedLongLongTy
1139  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1140                 QualType type, SourceLocation l)
1141    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1142           false, false),
1143      Loc(l) {
1144    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1145    assert(V.getBitWidth() == C.getIntWidth(type) &&
1146           "Integer type is not the correct size for constant.");
1147    setValue(C, V);
1148  }
1149
1150  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1151  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1152  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1153  /// \param V - the value that the returned integer literal contains.
1154  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1155                                QualType type, SourceLocation l);
1156  /// \brief Returns a new empty integer literal.
1157  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1158
1159  llvm::APInt getValue() const { return Num.getValue(); }
1160  SourceRange getSourceRange() const { return SourceRange(Loc); }
1161
1162  /// \brief Retrieve the location of the literal.
1163  SourceLocation getLocation() const { return Loc; }
1164
1165  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1166  void setLocation(SourceLocation Location) { Loc = Location; }
1167
1168  static bool classof(const Stmt *T) {
1169    return T->getStmtClass() == IntegerLiteralClass;
1170  }
1171  static bool classof(const IntegerLiteral *) { return true; }
1172
1173  // Iterators
1174  child_range children() { return child_range(); }
1175};
1176
1177class CharacterLiteral : public Expr {
1178public:
1179  enum CharacterKind {
1180    Ascii,
1181    Wide,
1182    UTF16,
1183    UTF32
1184  };
1185
1186private:
1187  unsigned Value;
1188  SourceLocation Loc;
1189  unsigned Kind : 2;
1190public:
1191  // type should be IntTy
1192  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1193                   SourceLocation l)
1194    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1195           false, false),
1196      Value(value), Loc(l), Kind(kind) {
1197  }
1198
1199  /// \brief Construct an empty character literal.
1200  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1201
1202  SourceLocation getLocation() const { return Loc; }
1203  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1204
1205  SourceRange getSourceRange() const { return SourceRange(Loc); }
1206
1207  unsigned getValue() const { return Value; }
1208
1209  void setLocation(SourceLocation Location) { Loc = Location; }
1210  void setKind(CharacterKind kind) { Kind = kind; }
1211  void setValue(unsigned Val) { Value = Val; }
1212
1213  static bool classof(const Stmt *T) {
1214    return T->getStmtClass() == CharacterLiteralClass;
1215  }
1216  static bool classof(const CharacterLiteral *) { return true; }
1217
1218  // Iterators
1219  child_range children() { return child_range(); }
1220};
1221
1222class FloatingLiteral : public Expr {
1223  APFloatStorage Num;
1224  bool IsIEEE : 1; // Distinguishes between PPC128 and IEEE128.
1225  bool IsExact : 1;
1226  SourceLocation Loc;
1227
1228  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1229                  QualType Type, SourceLocation L)
1230    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1231           false, false),
1232      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1233             &llvm::APFloat::IEEEquad),
1234      IsExact(isexact), Loc(L) {
1235    setValue(C, V);
1236  }
1237
1238  /// \brief Construct an empty floating-point literal.
1239  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
1240    : Expr(FloatingLiteralClass, Empty),
1241      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1242             &llvm::APFloat::IEEEquad),
1243      IsExact(false) { }
1244
1245public:
1246  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1247                                 bool isexact, QualType Type, SourceLocation L);
1248  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1249
1250  llvm::APFloat getValue() const { return Num.getValue(IsIEEE); }
1251  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1252    Num.setValue(C, Val);
1253  }
1254
1255  bool isExact() const { return IsExact; }
1256  void setExact(bool E) { IsExact = E; }
1257
1258  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1259  /// double.  Note that this may cause loss of precision, but is useful for
1260  /// debugging dumps, etc.
1261  double getValueAsApproximateDouble() const;
1262
1263  SourceLocation getLocation() const { return Loc; }
1264  void setLocation(SourceLocation L) { Loc = L; }
1265
1266  SourceRange getSourceRange() const { return SourceRange(Loc); }
1267
1268  static bool classof(const Stmt *T) {
1269    return T->getStmtClass() == FloatingLiteralClass;
1270  }
1271  static bool classof(const FloatingLiteral *) { return true; }
1272
1273  // Iterators
1274  child_range children() { return child_range(); }
1275};
1276
1277/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1278/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1279/// IntegerLiteral classes.  Instances of this class always have a Complex type
1280/// whose element type matches the subexpression.
1281///
1282class ImaginaryLiteral : public Expr {
1283  Stmt *Val;
1284public:
1285  ImaginaryLiteral(Expr *val, QualType Ty)
1286    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1287           false, false),
1288      Val(val) {}
1289
1290  /// \brief Build an empty imaginary literal.
1291  explicit ImaginaryLiteral(EmptyShell Empty)
1292    : Expr(ImaginaryLiteralClass, Empty) { }
1293
1294  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1295  Expr *getSubExpr() { return cast<Expr>(Val); }
1296  void setSubExpr(Expr *E) { Val = E; }
1297
1298  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1299  static bool classof(const Stmt *T) {
1300    return T->getStmtClass() == ImaginaryLiteralClass;
1301  }
1302  static bool classof(const ImaginaryLiteral *) { return true; }
1303
1304  // Iterators
1305  child_range children() { return child_range(&Val, &Val+1); }
1306};
1307
1308/// StringLiteral - This represents a string literal expression, e.g. "foo"
1309/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1310/// is NOT null-terminated, and the length of the string is determined by
1311/// calling getByteLength().  The C type for a string is always a
1312/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1313/// not.
1314///
1315/// Note that strings in C can be formed by concatenation of multiple string
1316/// literal pptokens in translation phase #6.  This keeps track of the locations
1317/// of each of these pieces.
1318///
1319/// Strings in C can also be truncated and extended by assigning into arrays,
1320/// e.g. with constructs like:
1321///   char X[2] = "foobar";
1322/// In this case, getByteLength() will return 6, but the string literal will
1323/// have type "char[2]".
1324class StringLiteral : public Expr {
1325public:
1326  enum StringKind {
1327    Ascii,
1328    Wide,
1329    UTF8,
1330    UTF16,
1331    UTF32
1332  };
1333
1334private:
1335  friend class ASTStmtReader;
1336
1337  union {
1338    const char *asChar;
1339    const uint16_t *asUInt16;
1340    const uint32_t *asUInt32;
1341  } StrData;
1342  unsigned Length;
1343  unsigned CharByteWidth;
1344  unsigned NumConcatenated;
1345  unsigned Kind : 3;
1346  bool IsPascal : 1;
1347  SourceLocation TokLocs[1];
1348
1349  StringLiteral(QualType Ty) :
1350    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1351         false) {}
1352
1353  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1354
1355public:
1356  /// This is the "fully general" constructor that allows representation of
1357  /// strings formed from multiple concatenated tokens.
1358  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1359                               bool Pascal, QualType Ty,
1360                               const SourceLocation *Loc, unsigned NumStrs);
1361
1362  /// Simple constructor for string literals made from one token.
1363  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1364                               bool Pascal, QualType Ty,
1365                               SourceLocation Loc) {
1366    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1367  }
1368
1369  /// \brief Construct an empty string literal.
1370  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1371
1372  StringRef getString() const {
1373    assert(CharByteWidth==1
1374           && "This function is used in places that assume strings use char");
1375    return StringRef(StrData.asChar, getByteLength());
1376  }
1377
1378  /// Allow clients that need the byte representation, such as ASTWriterStmt
1379  /// ::VisitStringLiteral(), access.
1380  StringRef getBytes() const {
1381    // FIXME: StringRef may not be the right type to use as a result for this.
1382    if (CharByteWidth == 1)
1383      return StringRef(StrData.asChar, getByteLength());
1384    if (CharByteWidth == 4)
1385      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1386                       getByteLength());
1387    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1388    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1389                     getByteLength());
1390  }
1391
1392  uint32_t getCodeUnit(size_t i) const {
1393    assert(i < Length && "out of bounds access");
1394    if (CharByteWidth == 1)
1395      return static_cast<unsigned char>(StrData.asChar[i]);
1396    if (CharByteWidth == 4)
1397      return StrData.asUInt32[i];
1398    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1399    return StrData.asUInt16[i];
1400  }
1401
1402  unsigned getByteLength() const { return CharByteWidth*Length; }
1403  unsigned getLength() const { return Length; }
1404  unsigned getCharByteWidth() const { return CharByteWidth; }
1405
1406  /// \brief Sets the string data to the given string data.
1407  void setString(ASTContext &C, StringRef Str,
1408                 StringKind Kind, bool IsPascal);
1409
1410  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1411
1412
1413  bool isAscii() const { return Kind == Ascii; }
1414  bool isWide() const { return Kind == Wide; }
1415  bool isUTF8() const { return Kind == UTF8; }
1416  bool isUTF16() const { return Kind == UTF16; }
1417  bool isUTF32() const { return Kind == UTF32; }
1418  bool isPascal() const { return IsPascal; }
1419
1420  bool containsNonAsciiOrNull() const {
1421    StringRef Str = getString();
1422    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1423      if (!isascii(Str[i]) || !Str[i])
1424        return true;
1425    return false;
1426  }
1427
1428  /// getNumConcatenated - Get the number of string literal tokens that were
1429  /// concatenated in translation phase #6 to form this string literal.
1430  unsigned getNumConcatenated() const { return NumConcatenated; }
1431
1432  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1433    assert(TokNum < NumConcatenated && "Invalid tok number");
1434    return TokLocs[TokNum];
1435  }
1436  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1437    assert(TokNum < NumConcatenated && "Invalid tok number");
1438    TokLocs[TokNum] = L;
1439  }
1440
1441  /// getLocationOfByte - Return a source location that points to the specified
1442  /// byte of this string literal.
1443  ///
1444  /// Strings are amazingly complex.  They can be formed from multiple tokens
1445  /// and can have escape sequences in them in addition to the usual trigraph
1446  /// and escaped newline business.  This routine handles this complexity.
1447  ///
1448  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1449                                   const LangOptions &Features,
1450                                   const TargetInfo &Target) const;
1451
1452  typedef const SourceLocation *tokloc_iterator;
1453  tokloc_iterator tokloc_begin() const { return TokLocs; }
1454  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1455
1456  SourceRange getSourceRange() const {
1457    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1458  }
1459  static bool classof(const Stmt *T) {
1460    return T->getStmtClass() == StringLiteralClass;
1461  }
1462  static bool classof(const StringLiteral *) { return true; }
1463
1464  // Iterators
1465  child_range children() { return child_range(); }
1466};
1467
1468/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1469/// AST node is only formed if full location information is requested.
1470class ParenExpr : public Expr {
1471  SourceLocation L, R;
1472  Stmt *Val;
1473public:
1474  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1475    : Expr(ParenExprClass, val->getType(),
1476           val->getValueKind(), val->getObjectKind(),
1477           val->isTypeDependent(), val->isValueDependent(),
1478           val->isInstantiationDependent(),
1479           val->containsUnexpandedParameterPack()),
1480      L(l), R(r), Val(val) {}
1481
1482  /// \brief Construct an empty parenthesized expression.
1483  explicit ParenExpr(EmptyShell Empty)
1484    : Expr(ParenExprClass, Empty) { }
1485
1486  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1487  Expr *getSubExpr() { return cast<Expr>(Val); }
1488  void setSubExpr(Expr *E) { Val = E; }
1489
1490  SourceRange getSourceRange() const { return SourceRange(L, R); }
1491
1492  /// \brief Get the location of the left parentheses '('.
1493  SourceLocation getLParen() const { return L; }
1494  void setLParen(SourceLocation Loc) { L = Loc; }
1495
1496  /// \brief Get the location of the right parentheses ')'.
1497  SourceLocation getRParen() const { return R; }
1498  void setRParen(SourceLocation Loc) { R = Loc; }
1499
1500  static bool classof(const Stmt *T) {
1501    return T->getStmtClass() == ParenExprClass;
1502  }
1503  static bool classof(const ParenExpr *) { return true; }
1504
1505  // Iterators
1506  child_range children() { return child_range(&Val, &Val+1); }
1507};
1508
1509
1510/// UnaryOperator - This represents the unary-expression's (except sizeof and
1511/// alignof), the postinc/postdec operators from postfix-expression, and various
1512/// extensions.
1513///
1514/// Notes on various nodes:
1515///
1516/// Real/Imag - These return the real/imag part of a complex operand.  If
1517///   applied to a non-complex value, the former returns its operand and the
1518///   later returns zero in the type of the operand.
1519///
1520class UnaryOperator : public Expr {
1521public:
1522  typedef UnaryOperatorKind Opcode;
1523
1524private:
1525  unsigned Opc : 5;
1526  SourceLocation Loc;
1527  Stmt *Val;
1528public:
1529
1530  UnaryOperator(Expr *input, Opcode opc, QualType type,
1531                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1532    : Expr(UnaryOperatorClass, type, VK, OK,
1533           input->isTypeDependent() || type->isDependentType(),
1534           input->isValueDependent(),
1535           (input->isInstantiationDependent() ||
1536            type->isInstantiationDependentType()),
1537           input->containsUnexpandedParameterPack()),
1538      Opc(opc), Loc(l), Val(input) {}
1539
1540  /// \brief Build an empty unary operator.
1541  explicit UnaryOperator(EmptyShell Empty)
1542    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1543
1544  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1545  void setOpcode(Opcode O) { Opc = O; }
1546
1547  Expr *getSubExpr() const { return cast<Expr>(Val); }
1548  void setSubExpr(Expr *E) { Val = E; }
1549
1550  /// getOperatorLoc - Return the location of the operator.
1551  SourceLocation getOperatorLoc() const { return Loc; }
1552  void setOperatorLoc(SourceLocation L) { Loc = L; }
1553
1554  /// isPostfix - Return true if this is a postfix operation, like x++.
1555  static bool isPostfix(Opcode Op) {
1556    return Op == UO_PostInc || Op == UO_PostDec;
1557  }
1558
1559  /// isPrefix - Return true if this is a prefix operation, like --x.
1560  static bool isPrefix(Opcode Op) {
1561    return Op == UO_PreInc || Op == UO_PreDec;
1562  }
1563
1564  bool isPrefix() const { return isPrefix(getOpcode()); }
1565  bool isPostfix() const { return isPostfix(getOpcode()); }
1566
1567  static bool isIncrementOp(Opcode Op) {
1568    return Op == UO_PreInc || Op == UO_PostInc;
1569  }
1570  bool isIncrementOp() const {
1571    return isIncrementOp(getOpcode());
1572  }
1573
1574  static bool isDecrementOp(Opcode Op) {
1575    return Op == UO_PreDec || Op == UO_PostDec;
1576  }
1577  bool isDecrementOp() const {
1578    return isDecrementOp(getOpcode());
1579  }
1580
1581  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1582  bool isIncrementDecrementOp() const {
1583    return isIncrementDecrementOp(getOpcode());
1584  }
1585
1586  static bool isArithmeticOp(Opcode Op) {
1587    return Op >= UO_Plus && Op <= UO_LNot;
1588  }
1589  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1590
1591  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1592  /// corresponds to, e.g. "sizeof" or "[pre]++"
1593  static const char *getOpcodeStr(Opcode Op);
1594
1595  /// \brief Retrieve the unary opcode that corresponds to the given
1596  /// overloaded operator.
1597  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1598
1599  /// \brief Retrieve the overloaded operator kind that corresponds to
1600  /// the given unary opcode.
1601  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1602
1603  SourceRange getSourceRange() const {
1604    if (isPostfix())
1605      return SourceRange(Val->getLocStart(), Loc);
1606    else
1607      return SourceRange(Loc, Val->getLocEnd());
1608  }
1609  SourceLocation getExprLoc() const { return Loc; }
1610
1611  static bool classof(const Stmt *T) {
1612    return T->getStmtClass() == UnaryOperatorClass;
1613  }
1614  static bool classof(const UnaryOperator *) { return true; }
1615
1616  // Iterators
1617  child_range children() { return child_range(&Val, &Val+1); }
1618};
1619
1620/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1621/// offsetof(record-type, member-designator). For example, given:
1622/// @code
1623/// struct S {
1624///   float f;
1625///   double d;
1626/// };
1627/// struct T {
1628///   int i;
1629///   struct S s[10];
1630/// };
1631/// @endcode
1632/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1633
1634class OffsetOfExpr : public Expr {
1635public:
1636  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1637  class OffsetOfNode {
1638  public:
1639    /// \brief The kind of offsetof node we have.
1640    enum Kind {
1641      /// \brief An index into an array.
1642      Array = 0x00,
1643      /// \brief A field.
1644      Field = 0x01,
1645      /// \brief A field in a dependent type, known only by its name.
1646      Identifier = 0x02,
1647      /// \brief An implicit indirection through a C++ base class, when the
1648      /// field found is in a base class.
1649      Base = 0x03
1650    };
1651
1652  private:
1653    enum { MaskBits = 2, Mask = 0x03 };
1654
1655    /// \brief The source range that covers this part of the designator.
1656    SourceRange Range;
1657
1658    /// \brief The data describing the designator, which comes in three
1659    /// different forms, depending on the lower two bits.
1660    ///   - An unsigned index into the array of Expr*'s stored after this node
1661    ///     in memory, for [constant-expression] designators.
1662    ///   - A FieldDecl*, for references to a known field.
1663    ///   - An IdentifierInfo*, for references to a field with a given name
1664    ///     when the class type is dependent.
1665    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1666    ///     base class.
1667    uintptr_t Data;
1668
1669  public:
1670    /// \brief Create an offsetof node that refers to an array element.
1671    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1672                 SourceLocation RBracketLoc)
1673      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1674
1675    /// \brief Create an offsetof node that refers to a field.
1676    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1677                 SourceLocation NameLoc)
1678      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1679        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1680
1681    /// \brief Create an offsetof node that refers to an identifier.
1682    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1683                 SourceLocation NameLoc)
1684      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1685        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1686
1687    /// \brief Create an offsetof node that refers into a C++ base class.
1688    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1689      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1690
1691    /// \brief Determine what kind of offsetof node this is.
1692    Kind getKind() const {
1693      return static_cast<Kind>(Data & Mask);
1694    }
1695
1696    /// \brief For an array element node, returns the index into the array
1697    /// of expressions.
1698    unsigned getArrayExprIndex() const {
1699      assert(getKind() == Array);
1700      return Data >> 2;
1701    }
1702
1703    /// \brief For a field offsetof node, returns the field.
1704    FieldDecl *getField() const {
1705      assert(getKind() == Field);
1706      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1707    }
1708
1709    /// \brief For a field or identifier offsetof node, returns the name of
1710    /// the field.
1711    IdentifierInfo *getFieldName() const;
1712
1713    /// \brief For a base class node, returns the base specifier.
1714    CXXBaseSpecifier *getBase() const {
1715      assert(getKind() == Base);
1716      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1717    }
1718
1719    /// \brief Retrieve the source range that covers this offsetof node.
1720    ///
1721    /// For an array element node, the source range contains the locations of
1722    /// the square brackets. For a field or identifier node, the source range
1723    /// contains the location of the period (if there is one) and the
1724    /// identifier.
1725    SourceRange getSourceRange() const { return Range; }
1726  };
1727
1728private:
1729
1730  SourceLocation OperatorLoc, RParenLoc;
1731  // Base type;
1732  TypeSourceInfo *TSInfo;
1733  // Number of sub-components (i.e. instances of OffsetOfNode).
1734  unsigned NumComps;
1735  // Number of sub-expressions (i.e. array subscript expressions).
1736  unsigned NumExprs;
1737
1738  OffsetOfExpr(ASTContext &C, QualType type,
1739               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1740               OffsetOfNode* compsPtr, unsigned numComps,
1741               Expr** exprsPtr, unsigned numExprs,
1742               SourceLocation RParenLoc);
1743
1744  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1745    : Expr(OffsetOfExprClass, EmptyShell()),
1746      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1747
1748public:
1749
1750  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1751                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1752                              OffsetOfNode* compsPtr, unsigned numComps,
1753                              Expr** exprsPtr, unsigned numExprs,
1754                              SourceLocation RParenLoc);
1755
1756  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1757                                   unsigned NumComps, unsigned NumExprs);
1758
1759  /// getOperatorLoc - Return the location of the operator.
1760  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1761  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1762
1763  /// \brief Return the location of the right parentheses.
1764  SourceLocation getRParenLoc() const { return RParenLoc; }
1765  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1766
1767  TypeSourceInfo *getTypeSourceInfo() const {
1768    return TSInfo;
1769  }
1770  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1771    TSInfo = tsi;
1772  }
1773
1774  const OffsetOfNode &getComponent(unsigned Idx) const {
1775    assert(Idx < NumComps && "Subscript out of range");
1776    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1777  }
1778
1779  void setComponent(unsigned Idx, OffsetOfNode ON) {
1780    assert(Idx < NumComps && "Subscript out of range");
1781    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1782  }
1783
1784  unsigned getNumComponents() const {
1785    return NumComps;
1786  }
1787
1788  Expr* getIndexExpr(unsigned Idx) {
1789    assert(Idx < NumExprs && "Subscript out of range");
1790    return reinterpret_cast<Expr **>(
1791                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1792  }
1793  const Expr *getIndexExpr(unsigned Idx) const {
1794    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1795  }
1796
1797  void setIndexExpr(unsigned Idx, Expr* E) {
1798    assert(Idx < NumComps && "Subscript out of range");
1799    reinterpret_cast<Expr **>(
1800                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1801  }
1802
1803  unsigned getNumExpressions() const {
1804    return NumExprs;
1805  }
1806
1807  SourceRange getSourceRange() const {
1808    return SourceRange(OperatorLoc, RParenLoc);
1809  }
1810
1811  static bool classof(const Stmt *T) {
1812    return T->getStmtClass() == OffsetOfExprClass;
1813  }
1814
1815  static bool classof(const OffsetOfExpr *) { return true; }
1816
1817  // Iterators
1818  child_range children() {
1819    Stmt **begin =
1820      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1821                               + NumComps);
1822    return child_range(begin, begin + NumExprs);
1823  }
1824};
1825
1826/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1827/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1828/// vec_step (OpenCL 1.1 6.11.12).
1829class UnaryExprOrTypeTraitExpr : public Expr {
1830  unsigned Kind : 2;
1831  bool isType : 1;    // true if operand is a type, false if an expression
1832  union {
1833    TypeSourceInfo *Ty;
1834    Stmt *Ex;
1835  } Argument;
1836  SourceLocation OpLoc, RParenLoc;
1837
1838public:
1839  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1840                           QualType resultType, SourceLocation op,
1841                           SourceLocation rp) :
1842      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1843           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1844           // Value-dependent if the argument is type-dependent.
1845           TInfo->getType()->isDependentType(),
1846           TInfo->getType()->isInstantiationDependentType(),
1847           TInfo->getType()->containsUnexpandedParameterPack()),
1848      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1849    Argument.Ty = TInfo;
1850  }
1851
1852  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1853                           QualType resultType, SourceLocation op,
1854                           SourceLocation rp) :
1855      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1856           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1857           // Value-dependent if the argument is type-dependent.
1858           E->isTypeDependent(),
1859           E->isInstantiationDependent(),
1860           E->containsUnexpandedParameterPack()),
1861      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1862    Argument.Ex = E;
1863  }
1864
1865  /// \brief Construct an empty sizeof/alignof expression.
1866  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1867    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1868
1869  UnaryExprOrTypeTrait getKind() const {
1870    return static_cast<UnaryExprOrTypeTrait>(Kind);
1871  }
1872  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1873
1874  bool isArgumentType() const { return isType; }
1875  QualType getArgumentType() const {
1876    return getArgumentTypeInfo()->getType();
1877  }
1878  TypeSourceInfo *getArgumentTypeInfo() const {
1879    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1880    return Argument.Ty;
1881  }
1882  Expr *getArgumentExpr() {
1883    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1884    return static_cast<Expr*>(Argument.Ex);
1885  }
1886  const Expr *getArgumentExpr() const {
1887    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1888  }
1889
1890  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1891  void setArgument(TypeSourceInfo *TInfo) {
1892    Argument.Ty = TInfo;
1893    isType = true;
1894  }
1895
1896  /// Gets the argument type, or the type of the argument expression, whichever
1897  /// is appropriate.
1898  QualType getTypeOfArgument() const {
1899    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1900  }
1901
1902  SourceLocation getOperatorLoc() const { return OpLoc; }
1903  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1904
1905  SourceLocation getRParenLoc() const { return RParenLoc; }
1906  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1907
1908  SourceRange getSourceRange() const {
1909    return SourceRange(OpLoc, RParenLoc);
1910  }
1911
1912  static bool classof(const Stmt *T) {
1913    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1914  }
1915  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1916
1917  // Iterators
1918  child_range children();
1919};
1920
1921//===----------------------------------------------------------------------===//
1922// Postfix Operators.
1923//===----------------------------------------------------------------------===//
1924
1925/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1926class ArraySubscriptExpr : public Expr {
1927  enum { LHS, RHS, END_EXPR=2 };
1928  Stmt* SubExprs[END_EXPR];
1929  SourceLocation RBracketLoc;
1930public:
1931  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1932                     ExprValueKind VK, ExprObjectKind OK,
1933                     SourceLocation rbracketloc)
1934  : Expr(ArraySubscriptExprClass, t, VK, OK,
1935         lhs->isTypeDependent() || rhs->isTypeDependent(),
1936         lhs->isValueDependent() || rhs->isValueDependent(),
1937         (lhs->isInstantiationDependent() ||
1938          rhs->isInstantiationDependent()),
1939         (lhs->containsUnexpandedParameterPack() ||
1940          rhs->containsUnexpandedParameterPack())),
1941    RBracketLoc(rbracketloc) {
1942    SubExprs[LHS] = lhs;
1943    SubExprs[RHS] = rhs;
1944  }
1945
1946  /// \brief Create an empty array subscript expression.
1947  explicit ArraySubscriptExpr(EmptyShell Shell)
1948    : Expr(ArraySubscriptExprClass, Shell) { }
1949
1950  /// An array access can be written A[4] or 4[A] (both are equivalent).
1951  /// - getBase() and getIdx() always present the normalized view: A[4].
1952  ///    In this case getBase() returns "A" and getIdx() returns "4".
1953  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1954  ///    4[A] getLHS() returns "4".
1955  /// Note: Because vector element access is also written A[4] we must
1956  /// predicate the format conversion in getBase and getIdx only on the
1957  /// the type of the RHS, as it is possible for the LHS to be a vector of
1958  /// integer type
1959  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1960  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1961  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1962
1963  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1964  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1965  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1966
1967  Expr *getBase() {
1968    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1969  }
1970
1971  const Expr *getBase() const {
1972    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1973  }
1974
1975  Expr *getIdx() {
1976    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1977  }
1978
1979  const Expr *getIdx() const {
1980    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1981  }
1982
1983  SourceRange getSourceRange() const {
1984    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1985  }
1986
1987  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1988  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1989
1990  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1991
1992  static bool classof(const Stmt *T) {
1993    return T->getStmtClass() == ArraySubscriptExprClass;
1994  }
1995  static bool classof(const ArraySubscriptExpr *) { return true; }
1996
1997  // Iterators
1998  child_range children() {
1999    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2000  }
2001};
2002
2003
2004/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2005/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2006/// while its subclasses may represent alternative syntax that (semantically)
2007/// results in a function call. For example, CXXOperatorCallExpr is
2008/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2009/// "str1 + str2" to resolve to a function call.
2010class CallExpr : public Expr {
2011  enum { FN=0, PREARGS_START=1 };
2012  Stmt **SubExprs;
2013  unsigned NumArgs;
2014  SourceLocation RParenLoc;
2015
2016protected:
2017  // These versions of the constructor are for derived classes.
2018  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2019           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2020           SourceLocation rparenloc);
2021  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2022
2023  Stmt *getPreArg(unsigned i) {
2024    assert(i < getNumPreArgs() && "Prearg access out of range!");
2025    return SubExprs[PREARGS_START+i];
2026  }
2027  const Stmt *getPreArg(unsigned i) const {
2028    assert(i < getNumPreArgs() && "Prearg access out of range!");
2029    return SubExprs[PREARGS_START+i];
2030  }
2031  void setPreArg(unsigned i, Stmt *PreArg) {
2032    assert(i < getNumPreArgs() && "Prearg access out of range!");
2033    SubExprs[PREARGS_START+i] = PreArg;
2034  }
2035
2036  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2037
2038public:
2039  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2040           ExprValueKind VK, SourceLocation rparenloc);
2041
2042  /// \brief Build an empty call expression.
2043  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2044
2045  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2046  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2047  void setCallee(Expr *F) { SubExprs[FN] = F; }
2048
2049  Decl *getCalleeDecl();
2050  const Decl *getCalleeDecl() const {
2051    return const_cast<CallExpr*>(this)->getCalleeDecl();
2052  }
2053
2054  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2055  FunctionDecl *getDirectCallee();
2056  const FunctionDecl *getDirectCallee() const {
2057    return const_cast<CallExpr*>(this)->getDirectCallee();
2058  }
2059
2060  /// getNumArgs - Return the number of actual arguments to this call.
2061  ///
2062  unsigned getNumArgs() const { return NumArgs; }
2063
2064  /// \brief Retrieve the call arguments.
2065  Expr **getArgs() {
2066    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2067  }
2068  const Expr *const *getArgs() const {
2069    return const_cast<CallExpr*>(this)->getArgs();
2070  }
2071
2072  /// getArg - Return the specified argument.
2073  Expr *getArg(unsigned Arg) {
2074    assert(Arg < NumArgs && "Arg access out of range!");
2075    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2076  }
2077  const Expr *getArg(unsigned Arg) const {
2078    assert(Arg < NumArgs && "Arg access out of range!");
2079    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2080  }
2081
2082  /// setArg - Set the specified argument.
2083  void setArg(unsigned Arg, Expr *ArgExpr) {
2084    assert(Arg < NumArgs && "Arg access out of range!");
2085    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2086  }
2087
2088  /// setNumArgs - This changes the number of arguments present in this call.
2089  /// Any orphaned expressions are deleted by this, and any new operands are set
2090  /// to null.
2091  void setNumArgs(ASTContext& C, unsigned NumArgs);
2092
2093  typedef ExprIterator arg_iterator;
2094  typedef ConstExprIterator const_arg_iterator;
2095
2096  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2097  arg_iterator arg_end() {
2098    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2099  }
2100  const_arg_iterator arg_begin() const {
2101    return SubExprs+PREARGS_START+getNumPreArgs();
2102  }
2103  const_arg_iterator arg_end() const {
2104    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2105  }
2106
2107  /// getNumCommas - Return the number of commas that must have been present in
2108  /// this function call.
2109  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2110
2111  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2112  /// not, return 0.
2113  unsigned isBuiltinCall() const;
2114
2115  /// getCallReturnType - Get the return type of the call expr. This is not
2116  /// always the type of the expr itself, if the return type is a reference
2117  /// type.
2118  QualType getCallReturnType() const;
2119
2120  SourceLocation getRParenLoc() const { return RParenLoc; }
2121  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2122
2123  SourceRange getSourceRange() const;
2124
2125  static bool classof(const Stmt *T) {
2126    return T->getStmtClass() >= firstCallExprConstant &&
2127           T->getStmtClass() <= lastCallExprConstant;
2128  }
2129  static bool classof(const CallExpr *) { return true; }
2130
2131  // Iterators
2132  child_range children() {
2133    return child_range(&SubExprs[0],
2134                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2135  }
2136};
2137
2138/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2139///
2140class MemberExpr : public Expr {
2141  /// Extra data stored in some member expressions.
2142  struct MemberNameQualifier {
2143    /// \brief The nested-name-specifier that qualifies the name, including
2144    /// source-location information.
2145    NestedNameSpecifierLoc QualifierLoc;
2146
2147    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2148    /// name qualifiers.
2149    DeclAccessPair FoundDecl;
2150  };
2151
2152  /// Base - the expression for the base pointer or structure references.  In
2153  /// X.F, this is "X".
2154  Stmt *Base;
2155
2156  /// MemberDecl - This is the decl being referenced by the field/member name.
2157  /// In X.F, this is the decl referenced by F.
2158  ValueDecl *MemberDecl;
2159
2160  /// MemberLoc - This is the location of the member name.
2161  SourceLocation MemberLoc;
2162
2163  /// MemberDNLoc - Provides source/type location info for the
2164  /// declaration name embedded in MemberDecl.
2165  DeclarationNameLoc MemberDNLoc;
2166
2167  /// IsArrow - True if this is "X->F", false if this is "X.F".
2168  bool IsArrow : 1;
2169
2170  /// \brief True if this member expression used a nested-name-specifier to
2171  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2172  /// declaration.  When true, a MemberNameQualifier
2173  /// structure is allocated immediately after the MemberExpr.
2174  bool HasQualifierOrFoundDecl : 1;
2175
2176  /// \brief True if this member expression specified a template keyword
2177  /// and/or a template argument list explicitly, e.g., x->f<int>,
2178  /// x->template f, x->template f<int>.
2179  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2180  /// TemplateArguments (if any) are allocated immediately after
2181  /// the MemberExpr or, if the member expression also has a qualifier,
2182  /// after the MemberNameQualifier structure.
2183  bool HasTemplateKWAndArgsInfo : 1;
2184
2185  /// \brief True if this member expression refers to a method that
2186  /// was resolved from an overloaded set having size greater than 1.
2187  bool HadMultipleCandidates : 1;
2188
2189  /// \brief Retrieve the qualifier that preceded the member name, if any.
2190  MemberNameQualifier *getMemberQualifier() {
2191    assert(HasQualifierOrFoundDecl);
2192    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2193  }
2194
2195  /// \brief Retrieve the qualifier that preceded the member name, if any.
2196  const MemberNameQualifier *getMemberQualifier() const {
2197    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2198  }
2199
2200public:
2201  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2202             const DeclarationNameInfo &NameInfo, QualType ty,
2203             ExprValueKind VK, ExprObjectKind OK)
2204    : Expr(MemberExprClass, ty, VK, OK,
2205           base->isTypeDependent(),
2206           base->isValueDependent(),
2207           base->isInstantiationDependent(),
2208           base->containsUnexpandedParameterPack()),
2209      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2210      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2211      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2212      HadMultipleCandidates(false) {
2213    assert(memberdecl->getDeclName() == NameInfo.getName());
2214  }
2215
2216  // NOTE: this constructor should be used only when it is known that
2217  // the member name can not provide additional syntactic info
2218  // (i.e., source locations for C++ operator names or type source info
2219  // for constructors, destructors and conversion operators).
2220  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2221             SourceLocation l, QualType ty,
2222             ExprValueKind VK, ExprObjectKind OK)
2223    : Expr(MemberExprClass, ty, VK, OK,
2224           base->isTypeDependent(), base->isValueDependent(),
2225           base->isInstantiationDependent(),
2226           base->containsUnexpandedParameterPack()),
2227      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2228      IsArrow(isarrow),
2229      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2230      HadMultipleCandidates(false) {}
2231
2232  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2233                            NestedNameSpecifierLoc QualifierLoc,
2234                            SourceLocation TemplateKWLoc,
2235                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2236                            DeclarationNameInfo MemberNameInfo,
2237                            const TemplateArgumentListInfo *targs,
2238                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2239
2240  void setBase(Expr *E) { Base = E; }
2241  Expr *getBase() const { return cast<Expr>(Base); }
2242
2243  /// \brief Retrieve the member declaration to which this expression refers.
2244  ///
2245  /// The returned declaration will either be a FieldDecl or (in C++)
2246  /// a CXXMethodDecl.
2247  ValueDecl *getMemberDecl() const { return MemberDecl; }
2248  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2249
2250  /// \brief Retrieves the declaration found by lookup.
2251  DeclAccessPair getFoundDecl() const {
2252    if (!HasQualifierOrFoundDecl)
2253      return DeclAccessPair::make(getMemberDecl(),
2254                                  getMemberDecl()->getAccess());
2255    return getMemberQualifier()->FoundDecl;
2256  }
2257
2258  /// \brief Determines whether this member expression actually had
2259  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2260  /// x->Base::foo.
2261  bool hasQualifier() const { return getQualifier() != 0; }
2262
2263  /// \brief If the member name was qualified, retrieves the
2264  /// nested-name-specifier that precedes the member name. Otherwise, returns
2265  /// NULL.
2266  NestedNameSpecifier *getQualifier() const {
2267    if (!HasQualifierOrFoundDecl)
2268      return 0;
2269
2270    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2271  }
2272
2273  /// \brief If the member name was qualified, retrieves the
2274  /// nested-name-specifier that precedes the member name, with source-location
2275  /// information.
2276  NestedNameSpecifierLoc getQualifierLoc() const {
2277    if (!hasQualifier())
2278      return NestedNameSpecifierLoc();
2279
2280    return getMemberQualifier()->QualifierLoc;
2281  }
2282
2283  /// \brief Return the optional template keyword and arguments info.
2284  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2285    if (!HasTemplateKWAndArgsInfo)
2286      return 0;
2287
2288    if (!HasQualifierOrFoundDecl)
2289      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2290
2291    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2292                                                      getMemberQualifier() + 1);
2293  }
2294
2295  /// \brief Return the optional template keyword and arguments info.
2296  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2297    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2298  }
2299
2300  /// \brief Retrieve the location of the template keyword preceding
2301  /// the member name, if any.
2302  SourceLocation getTemplateKeywordLoc() const {
2303    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2304    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2305  }
2306
2307  /// \brief Retrieve the location of the left angle bracket starting the
2308  /// explicit template argument list following the member name, if any.
2309  SourceLocation getLAngleLoc() const {
2310    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2311    return getTemplateKWAndArgsInfo()->LAngleLoc;
2312  }
2313
2314  /// \brief Retrieve the location of the right angle bracket ending the
2315  /// explicit template argument list following the member name, if any.
2316  SourceLocation getRAngleLoc() const {
2317    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2318    return getTemplateKWAndArgsInfo()->RAngleLoc;
2319  }
2320
2321  /// Determines whether the member name was preceded by the template keyword.
2322  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2323
2324  /// \brief Determines whether the member name was followed by an
2325  /// explicit template argument list.
2326  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2327
2328  /// \brief Copies the template arguments (if present) into the given
2329  /// structure.
2330  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2331    if (hasExplicitTemplateArgs())
2332      getExplicitTemplateArgs().copyInto(List);
2333  }
2334
2335  /// \brief Retrieve the explicit template argument list that
2336  /// follow the member template name.  This must only be called on an
2337  /// expression with explicit template arguments.
2338  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2339    assert(hasExplicitTemplateArgs());
2340    return *getTemplateKWAndArgsInfo();
2341  }
2342
2343  /// \brief Retrieve the explicit template argument list that
2344  /// followed the member template name.  This must only be called on
2345  /// an expression with explicit template arguments.
2346  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2347    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2348  }
2349
2350  /// \brief Retrieves the optional explicit template arguments.
2351  /// This points to the same data as getExplicitTemplateArgs(), but
2352  /// returns null if there are no explicit template arguments.
2353  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2354    if (!hasExplicitTemplateArgs()) return 0;
2355    return &getExplicitTemplateArgs();
2356  }
2357
2358  /// \brief Retrieve the template arguments provided as part of this
2359  /// template-id.
2360  const TemplateArgumentLoc *getTemplateArgs() const {
2361    if (!hasExplicitTemplateArgs())
2362      return 0;
2363
2364    return getExplicitTemplateArgs().getTemplateArgs();
2365  }
2366
2367  /// \brief Retrieve the number of template arguments provided as part of this
2368  /// template-id.
2369  unsigned getNumTemplateArgs() const {
2370    if (!hasExplicitTemplateArgs())
2371      return 0;
2372
2373    return getExplicitTemplateArgs().NumTemplateArgs;
2374  }
2375
2376  /// \brief Retrieve the member declaration name info.
2377  DeclarationNameInfo getMemberNameInfo() const {
2378    return DeclarationNameInfo(MemberDecl->getDeclName(),
2379                               MemberLoc, MemberDNLoc);
2380  }
2381
2382  bool isArrow() const { return IsArrow; }
2383  void setArrow(bool A) { IsArrow = A; }
2384
2385  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2386  /// location of 'F'.
2387  SourceLocation getMemberLoc() const { return MemberLoc; }
2388  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2389
2390  SourceRange getSourceRange() const;
2391
2392  SourceLocation getExprLoc() const { return MemberLoc; }
2393
2394  /// \brief Determine whether the base of this explicit is implicit.
2395  bool isImplicitAccess() const {
2396    return getBase() && getBase()->isImplicitCXXThis();
2397  }
2398
2399  /// \brief Returns true if this member expression refers to a method that
2400  /// was resolved from an overloaded set having size greater than 1.
2401  bool hadMultipleCandidates() const {
2402    return HadMultipleCandidates;
2403  }
2404  /// \brief Sets the flag telling whether this expression refers to
2405  /// a method that was resolved from an overloaded set having size
2406  /// greater than 1.
2407  void setHadMultipleCandidates(bool V = true) {
2408    HadMultipleCandidates = V;
2409  }
2410
2411  static bool classof(const Stmt *T) {
2412    return T->getStmtClass() == MemberExprClass;
2413  }
2414  static bool classof(const MemberExpr *) { return true; }
2415
2416  // Iterators
2417  child_range children() { return child_range(&Base, &Base+1); }
2418
2419  friend class ASTReader;
2420  friend class ASTStmtWriter;
2421};
2422
2423/// CompoundLiteralExpr - [C99 6.5.2.5]
2424///
2425class CompoundLiteralExpr : public Expr {
2426  /// LParenLoc - If non-null, this is the location of the left paren in a
2427  /// compound literal like "(int){4}".  This can be null if this is a
2428  /// synthesized compound expression.
2429  SourceLocation LParenLoc;
2430
2431  /// The type as written.  This can be an incomplete array type, in
2432  /// which case the actual expression type will be different.
2433  TypeSourceInfo *TInfo;
2434  Stmt *Init;
2435  bool FileScope;
2436public:
2437  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2438                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2439    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2440           tinfo->getType()->isDependentType(),
2441           init->isValueDependent(),
2442           (init->isInstantiationDependent() ||
2443            tinfo->getType()->isInstantiationDependentType()),
2444           init->containsUnexpandedParameterPack()),
2445      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2446
2447  /// \brief Construct an empty compound literal.
2448  explicit CompoundLiteralExpr(EmptyShell Empty)
2449    : Expr(CompoundLiteralExprClass, Empty) { }
2450
2451  const Expr *getInitializer() const { return cast<Expr>(Init); }
2452  Expr *getInitializer() { return cast<Expr>(Init); }
2453  void setInitializer(Expr *E) { Init = E; }
2454
2455  bool isFileScope() const { return FileScope; }
2456  void setFileScope(bool FS) { FileScope = FS; }
2457
2458  SourceLocation getLParenLoc() const { return LParenLoc; }
2459  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2460
2461  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2462  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2463
2464  SourceRange getSourceRange() const {
2465    // FIXME: Init should never be null.
2466    if (!Init)
2467      return SourceRange();
2468    if (LParenLoc.isInvalid())
2469      return Init->getSourceRange();
2470    return SourceRange(LParenLoc, Init->getLocEnd());
2471  }
2472
2473  static bool classof(const Stmt *T) {
2474    return T->getStmtClass() == CompoundLiteralExprClass;
2475  }
2476  static bool classof(const CompoundLiteralExpr *) { return true; }
2477
2478  // Iterators
2479  child_range children() { return child_range(&Init, &Init+1); }
2480};
2481
2482/// CastExpr - Base class for type casts, including both implicit
2483/// casts (ImplicitCastExpr) and explicit casts that have some
2484/// representation in the source code (ExplicitCastExpr's derived
2485/// classes).
2486class CastExpr : public Expr {
2487public:
2488  typedef clang::CastKind CastKind;
2489
2490private:
2491  Stmt *Op;
2492
2493  void CheckCastConsistency() const;
2494
2495  const CXXBaseSpecifier * const *path_buffer() const {
2496    return const_cast<CastExpr*>(this)->path_buffer();
2497  }
2498  CXXBaseSpecifier **path_buffer();
2499
2500  void setBasePathSize(unsigned basePathSize) {
2501    CastExprBits.BasePathSize = basePathSize;
2502    assert(CastExprBits.BasePathSize == basePathSize &&
2503           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2504  }
2505
2506protected:
2507  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2508           const CastKind kind, Expr *op, unsigned BasePathSize) :
2509    Expr(SC, ty, VK, OK_Ordinary,
2510         // Cast expressions are type-dependent if the type is
2511         // dependent (C++ [temp.dep.expr]p3).
2512         ty->isDependentType(),
2513         // Cast expressions are value-dependent if the type is
2514         // dependent or if the subexpression is value-dependent.
2515         ty->isDependentType() || (op && op->isValueDependent()),
2516         (ty->isInstantiationDependentType() ||
2517          (op && op->isInstantiationDependent())),
2518         (ty->containsUnexpandedParameterPack() ||
2519          op->containsUnexpandedParameterPack())),
2520    Op(op) {
2521    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2522    CastExprBits.Kind = kind;
2523    setBasePathSize(BasePathSize);
2524#ifndef NDEBUG
2525    CheckCastConsistency();
2526#endif
2527  }
2528
2529  /// \brief Construct an empty cast.
2530  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2531    : Expr(SC, Empty) {
2532    setBasePathSize(BasePathSize);
2533  }
2534
2535public:
2536  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2537  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2538  const char *getCastKindName() const;
2539
2540  Expr *getSubExpr() { return cast<Expr>(Op); }
2541  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2542  void setSubExpr(Expr *E) { Op = E; }
2543
2544  /// \brief Retrieve the cast subexpression as it was written in the source
2545  /// code, looking through any implicit casts or other intermediate nodes
2546  /// introduced by semantic analysis.
2547  Expr *getSubExprAsWritten();
2548  const Expr *getSubExprAsWritten() const {
2549    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2550  }
2551
2552  typedef CXXBaseSpecifier **path_iterator;
2553  typedef const CXXBaseSpecifier * const *path_const_iterator;
2554  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2555  unsigned path_size() const { return CastExprBits.BasePathSize; }
2556  path_iterator path_begin() { return path_buffer(); }
2557  path_iterator path_end() { return path_buffer() + path_size(); }
2558  path_const_iterator path_begin() const { return path_buffer(); }
2559  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2560
2561  void setCastPath(const CXXCastPath &Path);
2562
2563  static bool classof(const Stmt *T) {
2564    return T->getStmtClass() >= firstCastExprConstant &&
2565           T->getStmtClass() <= lastCastExprConstant;
2566  }
2567  static bool classof(const CastExpr *) { return true; }
2568
2569  // Iterators
2570  child_range children() { return child_range(&Op, &Op+1); }
2571};
2572
2573/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2574/// conversions, which have no direct representation in the original
2575/// source code. For example: converting T[]->T*, void f()->void
2576/// (*f)(), float->double, short->int, etc.
2577///
2578/// In C, implicit casts always produce rvalues. However, in C++, an
2579/// implicit cast whose result is being bound to a reference will be
2580/// an lvalue or xvalue. For example:
2581///
2582/// @code
2583/// class Base { };
2584/// class Derived : public Base { };
2585/// Derived &&ref();
2586/// void f(Derived d) {
2587///   Base& b = d; // initializer is an ImplicitCastExpr
2588///                // to an lvalue of type Base
2589///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2590///                     // to an xvalue of type Base
2591/// }
2592/// @endcode
2593class ImplicitCastExpr : public CastExpr {
2594private:
2595  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2596                   unsigned BasePathLength, ExprValueKind VK)
2597    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2598  }
2599
2600  /// \brief Construct an empty implicit cast.
2601  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2602    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2603
2604public:
2605  enum OnStack_t { OnStack };
2606  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2607                   ExprValueKind VK)
2608    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2609  }
2610
2611  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2612                                  CastKind Kind, Expr *Operand,
2613                                  const CXXCastPath *BasePath,
2614                                  ExprValueKind Cat);
2615
2616  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2617
2618  SourceRange getSourceRange() const {
2619    return getSubExpr()->getSourceRange();
2620  }
2621
2622  static bool classof(const Stmt *T) {
2623    return T->getStmtClass() == ImplicitCastExprClass;
2624  }
2625  static bool classof(const ImplicitCastExpr *) { return true; }
2626};
2627
2628inline Expr *Expr::IgnoreImpCasts() {
2629  Expr *e = this;
2630  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2631    e = ice->getSubExpr();
2632  return e;
2633}
2634
2635/// ExplicitCastExpr - An explicit cast written in the source
2636/// code.
2637///
2638/// This class is effectively an abstract class, because it provides
2639/// the basic representation of an explicitly-written cast without
2640/// specifying which kind of cast (C cast, functional cast, static
2641/// cast, etc.) was written; specific derived classes represent the
2642/// particular style of cast and its location information.
2643///
2644/// Unlike implicit casts, explicit cast nodes have two different
2645/// types: the type that was written into the source code, and the
2646/// actual type of the expression as determined by semantic
2647/// analysis. These types may differ slightly. For example, in C++ one
2648/// can cast to a reference type, which indicates that the resulting
2649/// expression will be an lvalue or xvalue. The reference type, however,
2650/// will not be used as the type of the expression.
2651class ExplicitCastExpr : public CastExpr {
2652  /// TInfo - Source type info for the (written) type
2653  /// this expression is casting to.
2654  TypeSourceInfo *TInfo;
2655
2656protected:
2657  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2658                   CastKind kind, Expr *op, unsigned PathSize,
2659                   TypeSourceInfo *writtenTy)
2660    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2661
2662  /// \brief Construct an empty explicit cast.
2663  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2664    : CastExpr(SC, Shell, PathSize) { }
2665
2666public:
2667  /// getTypeInfoAsWritten - Returns the type source info for the type
2668  /// that this expression is casting to.
2669  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2670  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2671
2672  /// getTypeAsWritten - Returns the type that this expression is
2673  /// casting to, as written in the source code.
2674  QualType getTypeAsWritten() const { return TInfo->getType(); }
2675
2676  static bool classof(const Stmt *T) {
2677     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2678            T->getStmtClass() <= lastExplicitCastExprConstant;
2679  }
2680  static bool classof(const ExplicitCastExpr *) { return true; }
2681};
2682
2683/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2684/// cast in C++ (C++ [expr.cast]), which uses the syntax
2685/// (Type)expr. For example: @c (int)f.
2686class CStyleCastExpr : public ExplicitCastExpr {
2687  SourceLocation LPLoc; // the location of the left paren
2688  SourceLocation RPLoc; // the location of the right paren
2689
2690  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2691                 unsigned PathSize, TypeSourceInfo *writtenTy,
2692                 SourceLocation l, SourceLocation r)
2693    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2694                       writtenTy), LPLoc(l), RPLoc(r) {}
2695
2696  /// \brief Construct an empty C-style explicit cast.
2697  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2698    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2699
2700public:
2701  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2702                                ExprValueKind VK, CastKind K,
2703                                Expr *Op, const CXXCastPath *BasePath,
2704                                TypeSourceInfo *WrittenTy, SourceLocation L,
2705                                SourceLocation R);
2706
2707  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2708
2709  SourceLocation getLParenLoc() const { return LPLoc; }
2710  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2711
2712  SourceLocation getRParenLoc() const { return RPLoc; }
2713  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2714
2715  SourceRange getSourceRange() const {
2716    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2717  }
2718  static bool classof(const Stmt *T) {
2719    return T->getStmtClass() == CStyleCastExprClass;
2720  }
2721  static bool classof(const CStyleCastExpr *) { return true; }
2722};
2723
2724/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2725///
2726/// This expression node kind describes a builtin binary operation,
2727/// such as "x + y" for integer values "x" and "y". The operands will
2728/// already have been converted to appropriate types (e.g., by
2729/// performing promotions or conversions).
2730///
2731/// In C++, where operators may be overloaded, a different kind of
2732/// expression node (CXXOperatorCallExpr) is used to express the
2733/// invocation of an overloaded operator with operator syntax. Within
2734/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2735/// used to store an expression "x + y" depends on the subexpressions
2736/// for x and y. If neither x or y is type-dependent, and the "+"
2737/// operator resolves to a built-in operation, BinaryOperator will be
2738/// used to express the computation (x and y may still be
2739/// value-dependent). If either x or y is type-dependent, or if the
2740/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2741/// be used to express the computation.
2742class BinaryOperator : public Expr {
2743public:
2744  typedef BinaryOperatorKind Opcode;
2745
2746private:
2747  unsigned Opc : 6;
2748  SourceLocation OpLoc;
2749
2750  enum { LHS, RHS, END_EXPR };
2751  Stmt* SubExprs[END_EXPR];
2752public:
2753
2754  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2755                 ExprValueKind VK, ExprObjectKind OK,
2756                 SourceLocation opLoc)
2757    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2758           lhs->isTypeDependent() || rhs->isTypeDependent(),
2759           lhs->isValueDependent() || rhs->isValueDependent(),
2760           (lhs->isInstantiationDependent() ||
2761            rhs->isInstantiationDependent()),
2762           (lhs->containsUnexpandedParameterPack() ||
2763            rhs->containsUnexpandedParameterPack())),
2764      Opc(opc), OpLoc(opLoc) {
2765    SubExprs[LHS] = lhs;
2766    SubExprs[RHS] = rhs;
2767    assert(!isCompoundAssignmentOp() &&
2768           "Use ArithAssignBinaryOperator for compound assignments");
2769  }
2770
2771  /// \brief Construct an empty binary operator.
2772  explicit BinaryOperator(EmptyShell Empty)
2773    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2774
2775  SourceLocation getExprLoc() const { return OpLoc; }
2776  SourceLocation getOperatorLoc() const { return OpLoc; }
2777  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2778
2779  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2780  void setOpcode(Opcode O) { Opc = O; }
2781
2782  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2783  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2784  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2785  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2786
2787  SourceRange getSourceRange() const {
2788    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2789  }
2790
2791  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2792  /// corresponds to, e.g. "<<=".
2793  static const char *getOpcodeStr(Opcode Op);
2794
2795  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2796
2797  /// \brief Retrieve the binary opcode that corresponds to the given
2798  /// overloaded operator.
2799  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2800
2801  /// \brief Retrieve the overloaded operator kind that corresponds to
2802  /// the given binary opcode.
2803  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2804
2805  /// predicates to categorize the respective opcodes.
2806  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2807  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2808  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2809  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2810  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2811  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2812
2813  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2814  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2815
2816  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2817  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2818
2819  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2820  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2821
2822  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2823  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2824
2825  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2826  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2827
2828  static bool isAssignmentOp(Opcode Opc) {
2829    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2830  }
2831  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2832
2833  static bool isCompoundAssignmentOp(Opcode Opc) {
2834    return Opc > BO_Assign && Opc <= BO_OrAssign;
2835  }
2836  bool isCompoundAssignmentOp() const {
2837    return isCompoundAssignmentOp(getOpcode());
2838  }
2839  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2840    assert(isCompoundAssignmentOp(Opc));
2841    if (Opc >= BO_AndAssign)
2842      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2843    else
2844      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2845  }
2846
2847  static bool isShiftAssignOp(Opcode Opc) {
2848    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2849  }
2850  bool isShiftAssignOp() const {
2851    return isShiftAssignOp(getOpcode());
2852  }
2853
2854  static bool classof(const Stmt *S) {
2855    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2856           S->getStmtClass() <= lastBinaryOperatorConstant;
2857  }
2858  static bool classof(const BinaryOperator *) { return true; }
2859
2860  // Iterators
2861  child_range children() {
2862    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2863  }
2864
2865protected:
2866  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2867                 ExprValueKind VK, ExprObjectKind OK,
2868                 SourceLocation opLoc, bool dead)
2869    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2870           lhs->isTypeDependent() || rhs->isTypeDependent(),
2871           lhs->isValueDependent() || rhs->isValueDependent(),
2872           (lhs->isInstantiationDependent() ||
2873            rhs->isInstantiationDependent()),
2874           (lhs->containsUnexpandedParameterPack() ||
2875            rhs->containsUnexpandedParameterPack())),
2876      Opc(opc), OpLoc(opLoc) {
2877    SubExprs[LHS] = lhs;
2878    SubExprs[RHS] = rhs;
2879  }
2880
2881  BinaryOperator(StmtClass SC, EmptyShell Empty)
2882    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2883};
2884
2885/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2886/// track of the type the operation is performed in.  Due to the semantics of
2887/// these operators, the operands are promoted, the arithmetic performed, an
2888/// implicit conversion back to the result type done, then the assignment takes
2889/// place.  This captures the intermediate type which the computation is done
2890/// in.
2891class CompoundAssignOperator : public BinaryOperator {
2892  QualType ComputationLHSType;
2893  QualType ComputationResultType;
2894public:
2895  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2896                         ExprValueKind VK, ExprObjectKind OK,
2897                         QualType CompLHSType, QualType CompResultType,
2898                         SourceLocation OpLoc)
2899    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2900      ComputationLHSType(CompLHSType),
2901      ComputationResultType(CompResultType) {
2902    assert(isCompoundAssignmentOp() &&
2903           "Only should be used for compound assignments");
2904  }
2905
2906  /// \brief Build an empty compound assignment operator expression.
2907  explicit CompoundAssignOperator(EmptyShell Empty)
2908    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2909
2910  // The two computation types are the type the LHS is converted
2911  // to for the computation and the type of the result; the two are
2912  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2913  QualType getComputationLHSType() const { return ComputationLHSType; }
2914  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2915
2916  QualType getComputationResultType() const { return ComputationResultType; }
2917  void setComputationResultType(QualType T) { ComputationResultType = T; }
2918
2919  static bool classof(const CompoundAssignOperator *) { return true; }
2920  static bool classof(const Stmt *S) {
2921    return S->getStmtClass() == CompoundAssignOperatorClass;
2922  }
2923};
2924
2925/// AbstractConditionalOperator - An abstract base class for
2926/// ConditionalOperator and BinaryConditionalOperator.
2927class AbstractConditionalOperator : public Expr {
2928  SourceLocation QuestionLoc, ColonLoc;
2929  friend class ASTStmtReader;
2930
2931protected:
2932  AbstractConditionalOperator(StmtClass SC, QualType T,
2933                              ExprValueKind VK, ExprObjectKind OK,
2934                              bool TD, bool VD, bool ID,
2935                              bool ContainsUnexpandedParameterPack,
2936                              SourceLocation qloc,
2937                              SourceLocation cloc)
2938    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2939      QuestionLoc(qloc), ColonLoc(cloc) {}
2940
2941  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2942    : Expr(SC, Empty) { }
2943
2944public:
2945  // getCond - Return the expression representing the condition for
2946  //   the ?: operator.
2947  Expr *getCond() const;
2948
2949  // getTrueExpr - Return the subexpression representing the value of
2950  //   the expression if the condition evaluates to true.
2951  Expr *getTrueExpr() const;
2952
2953  // getFalseExpr - Return the subexpression representing the value of
2954  //   the expression if the condition evaluates to false.  This is
2955  //   the same as getRHS.
2956  Expr *getFalseExpr() const;
2957
2958  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2959  SourceLocation getColonLoc() const { return ColonLoc; }
2960
2961  static bool classof(const Stmt *T) {
2962    return T->getStmtClass() == ConditionalOperatorClass ||
2963           T->getStmtClass() == BinaryConditionalOperatorClass;
2964  }
2965  static bool classof(const AbstractConditionalOperator *) { return true; }
2966};
2967
2968/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2969/// middle" extension is a BinaryConditionalOperator.
2970class ConditionalOperator : public AbstractConditionalOperator {
2971  enum { COND, LHS, RHS, END_EXPR };
2972  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2973
2974  friend class ASTStmtReader;
2975public:
2976  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2977                      SourceLocation CLoc, Expr *rhs,
2978                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2979    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2980           // FIXME: the type of the conditional operator doesn't
2981           // depend on the type of the conditional, but the standard
2982           // seems to imply that it could. File a bug!
2983           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2984           (cond->isValueDependent() || lhs->isValueDependent() ||
2985            rhs->isValueDependent()),
2986           (cond->isInstantiationDependent() ||
2987            lhs->isInstantiationDependent() ||
2988            rhs->isInstantiationDependent()),
2989           (cond->containsUnexpandedParameterPack() ||
2990            lhs->containsUnexpandedParameterPack() ||
2991            rhs->containsUnexpandedParameterPack()),
2992                                  QLoc, CLoc) {
2993    SubExprs[COND] = cond;
2994    SubExprs[LHS] = lhs;
2995    SubExprs[RHS] = rhs;
2996  }
2997
2998  /// \brief Build an empty conditional operator.
2999  explicit ConditionalOperator(EmptyShell Empty)
3000    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3001
3002  // getCond - Return the expression representing the condition for
3003  //   the ?: operator.
3004  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3005
3006  // getTrueExpr - Return the subexpression representing the value of
3007  //   the expression if the condition evaluates to true.
3008  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3009
3010  // getFalseExpr - Return the subexpression representing the value of
3011  //   the expression if the condition evaluates to false.  This is
3012  //   the same as getRHS.
3013  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3014
3015  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3016  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3017
3018  SourceRange getSourceRange() const {
3019    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3020  }
3021  static bool classof(const Stmt *T) {
3022    return T->getStmtClass() == ConditionalOperatorClass;
3023  }
3024  static bool classof(const ConditionalOperator *) { return true; }
3025
3026  // Iterators
3027  child_range children() {
3028    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3029  }
3030};
3031
3032/// BinaryConditionalOperator - The GNU extension to the conditional
3033/// operator which allows the middle operand to be omitted.
3034///
3035/// This is a different expression kind on the assumption that almost
3036/// every client ends up needing to know that these are different.
3037class BinaryConditionalOperator : public AbstractConditionalOperator {
3038  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3039
3040  /// - the common condition/left-hand-side expression, which will be
3041  ///   evaluated as the opaque value
3042  /// - the condition, expressed in terms of the opaque value
3043  /// - the left-hand-side, expressed in terms of the opaque value
3044  /// - the right-hand-side
3045  Stmt *SubExprs[NUM_SUBEXPRS];
3046  OpaqueValueExpr *OpaqueValue;
3047
3048  friend class ASTStmtReader;
3049public:
3050  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3051                            Expr *cond, Expr *lhs, Expr *rhs,
3052                            SourceLocation qloc, SourceLocation cloc,
3053                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3054    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3055           (common->isTypeDependent() || rhs->isTypeDependent()),
3056           (common->isValueDependent() || rhs->isValueDependent()),
3057           (common->isInstantiationDependent() ||
3058            rhs->isInstantiationDependent()),
3059           (common->containsUnexpandedParameterPack() ||
3060            rhs->containsUnexpandedParameterPack()),
3061                                  qloc, cloc),
3062      OpaqueValue(opaqueValue) {
3063    SubExprs[COMMON] = common;
3064    SubExprs[COND] = cond;
3065    SubExprs[LHS] = lhs;
3066    SubExprs[RHS] = rhs;
3067    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3068  }
3069
3070  /// \brief Build an empty conditional operator.
3071  explicit BinaryConditionalOperator(EmptyShell Empty)
3072    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3073
3074  /// \brief getCommon - Return the common expression, written to the
3075  ///   left of the condition.  The opaque value will be bound to the
3076  ///   result of this expression.
3077  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3078
3079  /// \brief getOpaqueValue - Return the opaque value placeholder.
3080  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3081
3082  /// \brief getCond - Return the condition expression; this is defined
3083  ///   in terms of the opaque value.
3084  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3085
3086  /// \brief getTrueExpr - Return the subexpression which will be
3087  ///   evaluated if the condition evaluates to true;  this is defined
3088  ///   in terms of the opaque value.
3089  Expr *getTrueExpr() const {
3090    return cast<Expr>(SubExprs[LHS]);
3091  }
3092
3093  /// \brief getFalseExpr - Return the subexpression which will be
3094  ///   evaluated if the condnition evaluates to false; this is
3095  ///   defined in terms of the opaque value.
3096  Expr *getFalseExpr() const {
3097    return cast<Expr>(SubExprs[RHS]);
3098  }
3099
3100  SourceRange getSourceRange() const {
3101    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3102  }
3103  static bool classof(const Stmt *T) {
3104    return T->getStmtClass() == BinaryConditionalOperatorClass;
3105  }
3106  static bool classof(const BinaryConditionalOperator *) { return true; }
3107
3108  // Iterators
3109  child_range children() {
3110    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3111  }
3112};
3113
3114inline Expr *AbstractConditionalOperator::getCond() const {
3115  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3116    return co->getCond();
3117  return cast<BinaryConditionalOperator>(this)->getCond();
3118}
3119
3120inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3121  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3122    return co->getTrueExpr();
3123  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3124}
3125
3126inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3127  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3128    return co->getFalseExpr();
3129  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3130}
3131
3132/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3133class AddrLabelExpr : public Expr {
3134  SourceLocation AmpAmpLoc, LabelLoc;
3135  LabelDecl *Label;
3136public:
3137  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3138                QualType t)
3139    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3140           false),
3141      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3142
3143  /// \brief Build an empty address of a label expression.
3144  explicit AddrLabelExpr(EmptyShell Empty)
3145    : Expr(AddrLabelExprClass, Empty) { }
3146
3147  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3148  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3149  SourceLocation getLabelLoc() const { return LabelLoc; }
3150  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3151
3152  SourceRange getSourceRange() const {
3153    return SourceRange(AmpAmpLoc, LabelLoc);
3154  }
3155
3156  LabelDecl *getLabel() const { return Label; }
3157  void setLabel(LabelDecl *L) { Label = L; }
3158
3159  static bool classof(const Stmt *T) {
3160    return T->getStmtClass() == AddrLabelExprClass;
3161  }
3162  static bool classof(const AddrLabelExpr *) { return true; }
3163
3164  // Iterators
3165  child_range children() { return child_range(); }
3166};
3167
3168/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3169/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3170/// takes the value of the last subexpression.
3171///
3172/// A StmtExpr is always an r-value; values "returned" out of a
3173/// StmtExpr will be copied.
3174class StmtExpr : public Expr {
3175  Stmt *SubStmt;
3176  SourceLocation LParenLoc, RParenLoc;
3177public:
3178  // FIXME: Does type-dependence need to be computed differently?
3179  // FIXME: Do we need to compute instantiation instantiation-dependence for
3180  // statements? (ugh!)
3181  StmtExpr(CompoundStmt *substmt, QualType T,
3182           SourceLocation lp, SourceLocation rp) :
3183    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3184         T->isDependentType(), false, false, false),
3185    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3186
3187  /// \brief Build an empty statement expression.
3188  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3189
3190  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3191  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3192  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3193
3194  SourceRange getSourceRange() const {
3195    return SourceRange(LParenLoc, RParenLoc);
3196  }
3197
3198  SourceLocation getLParenLoc() const { return LParenLoc; }
3199  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3200  SourceLocation getRParenLoc() const { return RParenLoc; }
3201  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3202
3203  static bool classof(const Stmt *T) {
3204    return T->getStmtClass() == StmtExprClass;
3205  }
3206  static bool classof(const StmtExpr *) { return true; }
3207
3208  // Iterators
3209  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3210};
3211
3212
3213/// ShuffleVectorExpr - clang-specific builtin-in function
3214/// __builtin_shufflevector.
3215/// This AST node represents a operator that does a constant
3216/// shuffle, similar to LLVM's shufflevector instruction. It takes
3217/// two vectors and a variable number of constant indices,
3218/// and returns the appropriately shuffled vector.
3219class ShuffleVectorExpr : public Expr {
3220  SourceLocation BuiltinLoc, RParenLoc;
3221
3222  // SubExprs - the list of values passed to the __builtin_shufflevector
3223  // function. The first two are vectors, and the rest are constant
3224  // indices.  The number of values in this list is always
3225  // 2+the number of indices in the vector type.
3226  Stmt **SubExprs;
3227  unsigned NumExprs;
3228
3229public:
3230  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3231                    QualType Type, SourceLocation BLoc,
3232                    SourceLocation RP);
3233
3234  /// \brief Build an empty vector-shuffle expression.
3235  explicit ShuffleVectorExpr(EmptyShell Empty)
3236    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3237
3238  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3239  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3240
3241  SourceLocation getRParenLoc() const { return RParenLoc; }
3242  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3243
3244  SourceRange getSourceRange() const {
3245    return SourceRange(BuiltinLoc, RParenLoc);
3246  }
3247  static bool classof(const Stmt *T) {
3248    return T->getStmtClass() == ShuffleVectorExprClass;
3249  }
3250  static bool classof(const ShuffleVectorExpr *) { return true; }
3251
3252  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3253  /// constant expression, the actual arguments passed in, and the function
3254  /// pointers.
3255  unsigned getNumSubExprs() const { return NumExprs; }
3256
3257  /// \brief Retrieve the array of expressions.
3258  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3259
3260  /// getExpr - Return the Expr at the specified index.
3261  Expr *getExpr(unsigned Index) {
3262    assert((Index < NumExprs) && "Arg access out of range!");
3263    return cast<Expr>(SubExprs[Index]);
3264  }
3265  const Expr *getExpr(unsigned Index) const {
3266    assert((Index < NumExprs) && "Arg access out of range!");
3267    return cast<Expr>(SubExprs[Index]);
3268  }
3269
3270  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3271
3272  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3273    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3274    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3275  }
3276
3277  // Iterators
3278  child_range children() {
3279    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3280  }
3281};
3282
3283/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3284/// This AST node is similar to the conditional operator (?:) in C, with
3285/// the following exceptions:
3286/// - the test expression must be a integer constant expression.
3287/// - the expression returned acts like the chosen subexpression in every
3288///   visible way: the type is the same as that of the chosen subexpression,
3289///   and all predicates (whether it's an l-value, whether it's an integer
3290///   constant expression, etc.) return the same result as for the chosen
3291///   sub-expression.
3292class ChooseExpr : public Expr {
3293  enum { COND, LHS, RHS, END_EXPR };
3294  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3295  SourceLocation BuiltinLoc, RParenLoc;
3296public:
3297  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3298             QualType t, ExprValueKind VK, ExprObjectKind OK,
3299             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3300    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3301           (cond->isInstantiationDependent() ||
3302            lhs->isInstantiationDependent() ||
3303            rhs->isInstantiationDependent()),
3304           (cond->containsUnexpandedParameterPack() ||
3305            lhs->containsUnexpandedParameterPack() ||
3306            rhs->containsUnexpandedParameterPack())),
3307      BuiltinLoc(BLoc), RParenLoc(RP) {
3308      SubExprs[COND] = cond;
3309      SubExprs[LHS] = lhs;
3310      SubExprs[RHS] = rhs;
3311    }
3312
3313  /// \brief Build an empty __builtin_choose_expr.
3314  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3315
3316  /// isConditionTrue - Return whether the condition is true (i.e. not
3317  /// equal to zero).
3318  bool isConditionTrue(const ASTContext &C) const;
3319
3320  /// getChosenSubExpr - Return the subexpression chosen according to the
3321  /// condition.
3322  Expr *getChosenSubExpr(const ASTContext &C) const {
3323    return isConditionTrue(C) ? getLHS() : getRHS();
3324  }
3325
3326  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3327  void setCond(Expr *E) { SubExprs[COND] = E; }
3328  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3329  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3330  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3331  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3332
3333  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3334  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3335
3336  SourceLocation getRParenLoc() const { return RParenLoc; }
3337  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3338
3339  SourceRange getSourceRange() const {
3340    return SourceRange(BuiltinLoc, RParenLoc);
3341  }
3342  static bool classof(const Stmt *T) {
3343    return T->getStmtClass() == ChooseExprClass;
3344  }
3345  static bool classof(const ChooseExpr *) { return true; }
3346
3347  // Iterators
3348  child_range children() {
3349    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3350  }
3351};
3352
3353/// GNUNullExpr - Implements the GNU __null extension, which is a name
3354/// for a null pointer constant that has integral type (e.g., int or
3355/// long) and is the same size and alignment as a pointer. The __null
3356/// extension is typically only used by system headers, which define
3357/// NULL as __null in C++ rather than using 0 (which is an integer
3358/// that may not match the size of a pointer).
3359class GNUNullExpr : public Expr {
3360  /// TokenLoc - The location of the __null keyword.
3361  SourceLocation TokenLoc;
3362
3363public:
3364  GNUNullExpr(QualType Ty, SourceLocation Loc)
3365    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3366           false),
3367      TokenLoc(Loc) { }
3368
3369  /// \brief Build an empty GNU __null expression.
3370  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3371
3372  /// getTokenLocation - The location of the __null token.
3373  SourceLocation getTokenLocation() const { return TokenLoc; }
3374  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3375
3376  SourceRange getSourceRange() const {
3377    return SourceRange(TokenLoc);
3378  }
3379  static bool classof(const Stmt *T) {
3380    return T->getStmtClass() == GNUNullExprClass;
3381  }
3382  static bool classof(const GNUNullExpr *) { return true; }
3383
3384  // Iterators
3385  child_range children() { return child_range(); }
3386};
3387
3388/// VAArgExpr, used for the builtin function __builtin_va_arg.
3389class VAArgExpr : public Expr {
3390  Stmt *Val;
3391  TypeSourceInfo *TInfo;
3392  SourceLocation BuiltinLoc, RParenLoc;
3393public:
3394  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3395            SourceLocation RPLoc, QualType t)
3396    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3397           t->isDependentType(), false,
3398           (TInfo->getType()->isInstantiationDependentType() ||
3399            e->isInstantiationDependent()),
3400           (TInfo->getType()->containsUnexpandedParameterPack() ||
3401            e->containsUnexpandedParameterPack())),
3402      Val(e), TInfo(TInfo),
3403      BuiltinLoc(BLoc),
3404      RParenLoc(RPLoc) { }
3405
3406  /// \brief Create an empty __builtin_va_arg expression.
3407  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3408
3409  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3410  Expr *getSubExpr() { return cast<Expr>(Val); }
3411  void setSubExpr(Expr *E) { Val = E; }
3412
3413  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3414  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3415
3416  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3417  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3418
3419  SourceLocation getRParenLoc() const { return RParenLoc; }
3420  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3421
3422  SourceRange getSourceRange() const {
3423    return SourceRange(BuiltinLoc, RParenLoc);
3424  }
3425  static bool classof(const Stmt *T) {
3426    return T->getStmtClass() == VAArgExprClass;
3427  }
3428  static bool classof(const VAArgExpr *) { return true; }
3429
3430  // Iterators
3431  child_range children() { return child_range(&Val, &Val+1); }
3432};
3433
3434/// @brief Describes an C or C++ initializer list.
3435///
3436/// InitListExpr describes an initializer list, which can be used to
3437/// initialize objects of different types, including
3438/// struct/class/union types, arrays, and vectors. For example:
3439///
3440/// @code
3441/// struct foo x = { 1, { 2, 3 } };
3442/// @endcode
3443///
3444/// Prior to semantic analysis, an initializer list will represent the
3445/// initializer list as written by the user, but will have the
3446/// placeholder type "void". This initializer list is called the
3447/// syntactic form of the initializer, and may contain C99 designated
3448/// initializers (represented as DesignatedInitExprs), initializations
3449/// of subobject members without explicit braces, and so on. Clients
3450/// interested in the original syntax of the initializer list should
3451/// use the syntactic form of the initializer list.
3452///
3453/// After semantic analysis, the initializer list will represent the
3454/// semantic form of the initializer, where the initializations of all
3455/// subobjects are made explicit with nested InitListExpr nodes and
3456/// C99 designators have been eliminated by placing the designated
3457/// initializations into the subobject they initialize. Additionally,
3458/// any "holes" in the initialization, where no initializer has been
3459/// specified for a particular subobject, will be replaced with
3460/// implicitly-generated ImplicitValueInitExpr expressions that
3461/// value-initialize the subobjects. Note, however, that the
3462/// initializer lists may still have fewer initializers than there are
3463/// elements to initialize within the object.
3464///
3465/// Given the semantic form of the initializer list, one can retrieve
3466/// the original syntactic form of that initializer list (if it
3467/// exists) using getSyntacticForm(). Since many initializer lists
3468/// have the same syntactic and semantic forms, getSyntacticForm() may
3469/// return NULL, indicating that the current initializer list also
3470/// serves as its syntactic form.
3471class InitListExpr : public Expr {
3472  // FIXME: Eliminate this vector in favor of ASTContext allocation
3473  typedef ASTVector<Stmt *> InitExprsTy;
3474  InitExprsTy InitExprs;
3475  SourceLocation LBraceLoc, RBraceLoc;
3476
3477  /// Contains the initializer list that describes the syntactic form
3478  /// written in the source code.
3479  InitListExpr *SyntacticForm;
3480
3481  /// \brief Either:
3482  ///  If this initializer list initializes an array with more elements than
3483  ///  there are initializers in the list, specifies an expression to be used
3484  ///  for value initialization of the rest of the elements.
3485  /// Or
3486  ///  If this initializer list initializes a union, specifies which
3487  ///  field within the union will be initialized.
3488  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3489
3490public:
3491  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3492               Expr **initexprs, unsigned numinits,
3493               SourceLocation rbraceloc);
3494
3495  /// \brief Build an empty initializer list.
3496  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3497    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3498
3499  unsigned getNumInits() const { return InitExprs.size(); }
3500
3501  /// \brief Retrieve the set of initializers.
3502  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3503
3504  const Expr *getInit(unsigned Init) const {
3505    assert(Init < getNumInits() && "Initializer access out of range!");
3506    return cast_or_null<Expr>(InitExprs[Init]);
3507  }
3508
3509  Expr *getInit(unsigned Init) {
3510    assert(Init < getNumInits() && "Initializer access out of range!");
3511    return cast_or_null<Expr>(InitExprs[Init]);
3512  }
3513
3514  void setInit(unsigned Init, Expr *expr) {
3515    assert(Init < getNumInits() && "Initializer access out of range!");
3516    InitExprs[Init] = expr;
3517  }
3518
3519  /// \brief Reserve space for some number of initializers.
3520  void reserveInits(ASTContext &C, unsigned NumInits);
3521
3522  /// @brief Specify the number of initializers
3523  ///
3524  /// If there are more than @p NumInits initializers, the remaining
3525  /// initializers will be destroyed. If there are fewer than @p
3526  /// NumInits initializers, NULL expressions will be added for the
3527  /// unknown initializers.
3528  void resizeInits(ASTContext &Context, unsigned NumInits);
3529
3530  /// @brief Updates the initializer at index @p Init with the new
3531  /// expression @p expr, and returns the old expression at that
3532  /// location.
3533  ///
3534  /// When @p Init is out of range for this initializer list, the
3535  /// initializer list will be extended with NULL expressions to
3536  /// accommodate the new entry.
3537  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3538
3539  /// \brief If this initializer list initializes an array with more elements
3540  /// than there are initializers in the list, specifies an expression to be
3541  /// used for value initialization of the rest of the elements.
3542  Expr *getArrayFiller() {
3543    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3544  }
3545  const Expr *getArrayFiller() const {
3546    return const_cast<InitListExpr *>(this)->getArrayFiller();
3547  }
3548  void setArrayFiller(Expr *filler);
3549
3550  /// \brief Return true if this is an array initializer and its array "filler"
3551  /// has been set.
3552  bool hasArrayFiller() const { return getArrayFiller(); }
3553
3554  /// \brief If this initializes a union, specifies which field in the
3555  /// union to initialize.
3556  ///
3557  /// Typically, this field is the first named field within the
3558  /// union. However, a designated initializer can specify the
3559  /// initialization of a different field within the union.
3560  FieldDecl *getInitializedFieldInUnion() {
3561    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3562  }
3563  const FieldDecl *getInitializedFieldInUnion() const {
3564    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3565  }
3566  void setInitializedFieldInUnion(FieldDecl *FD) {
3567    ArrayFillerOrUnionFieldInit = FD;
3568  }
3569
3570  // Explicit InitListExpr's originate from source code (and have valid source
3571  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3572  bool isExplicit() {
3573    return LBraceLoc.isValid() && RBraceLoc.isValid();
3574  }
3575
3576  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3577  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3578  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3579  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3580
3581  /// @brief Retrieve the initializer list that describes the
3582  /// syntactic form of the initializer.
3583  ///
3584  ///
3585  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3586  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3587
3588  bool hadArrayRangeDesignator() const {
3589    return InitListExprBits.HadArrayRangeDesignator != 0;
3590  }
3591  void sawArrayRangeDesignator(bool ARD = true) {
3592    InitListExprBits.HadArrayRangeDesignator = ARD;
3593  }
3594
3595  bool initializesStdInitializerList() const {
3596    return InitListExprBits.InitializesStdInitializerList != 0;
3597  }
3598  void setInitializesStdInitializerList(bool ISIL = true) {
3599    InitListExprBits.InitializesStdInitializerList = ISIL;
3600  }
3601
3602  SourceRange getSourceRange() const;
3603
3604  static bool classof(const Stmt *T) {
3605    return T->getStmtClass() == InitListExprClass;
3606  }
3607  static bool classof(const InitListExpr *) { return true; }
3608
3609  // Iterators
3610  child_range children() {
3611    if (InitExprs.empty()) return child_range();
3612    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3613  }
3614
3615  typedef InitExprsTy::iterator iterator;
3616  typedef InitExprsTy::const_iterator const_iterator;
3617  typedef InitExprsTy::reverse_iterator reverse_iterator;
3618  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3619
3620  iterator begin() { return InitExprs.begin(); }
3621  const_iterator begin() const { return InitExprs.begin(); }
3622  iterator end() { return InitExprs.end(); }
3623  const_iterator end() const { return InitExprs.end(); }
3624  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3625  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3626  reverse_iterator rend() { return InitExprs.rend(); }
3627  const_reverse_iterator rend() const { return InitExprs.rend(); }
3628
3629  friend class ASTStmtReader;
3630  friend class ASTStmtWriter;
3631};
3632
3633/// @brief Represents a C99 designated initializer expression.
3634///
3635/// A designated initializer expression (C99 6.7.8) contains one or
3636/// more designators (which can be field designators, array
3637/// designators, or GNU array-range designators) followed by an
3638/// expression that initializes the field or element(s) that the
3639/// designators refer to. For example, given:
3640///
3641/// @code
3642/// struct point {
3643///   double x;
3644///   double y;
3645/// };
3646/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3647/// @endcode
3648///
3649/// The InitListExpr contains three DesignatedInitExprs, the first of
3650/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3651/// designators, one array designator for @c [2] followed by one field
3652/// designator for @c .y. The initalization expression will be 1.0.
3653class DesignatedInitExpr : public Expr {
3654public:
3655  /// \brief Forward declaration of the Designator class.
3656  class Designator;
3657
3658private:
3659  /// The location of the '=' or ':' prior to the actual initializer
3660  /// expression.
3661  SourceLocation EqualOrColonLoc;
3662
3663  /// Whether this designated initializer used the GNU deprecated
3664  /// syntax rather than the C99 '=' syntax.
3665  bool GNUSyntax : 1;
3666
3667  /// The number of designators in this initializer expression.
3668  unsigned NumDesignators : 15;
3669
3670  /// \brief The designators in this designated initialization
3671  /// expression.
3672  Designator *Designators;
3673
3674  /// The number of subexpressions of this initializer expression,
3675  /// which contains both the initializer and any additional
3676  /// expressions used by array and array-range designators.
3677  unsigned NumSubExprs : 16;
3678
3679
3680  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3681                     const Designator *Designators,
3682                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3683                     Expr **IndexExprs, unsigned NumIndexExprs,
3684                     Expr *Init);
3685
3686  explicit DesignatedInitExpr(unsigned NumSubExprs)
3687    : Expr(DesignatedInitExprClass, EmptyShell()),
3688      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3689
3690public:
3691  /// A field designator, e.g., ".x".
3692  struct FieldDesignator {
3693    /// Refers to the field that is being initialized. The low bit
3694    /// of this field determines whether this is actually a pointer
3695    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3696    /// initially constructed, a field designator will store an
3697    /// IdentifierInfo*. After semantic analysis has resolved that
3698    /// name, the field designator will instead store a FieldDecl*.
3699    uintptr_t NameOrField;
3700
3701    /// The location of the '.' in the designated initializer.
3702    unsigned DotLoc;
3703
3704    /// The location of the field name in the designated initializer.
3705    unsigned FieldLoc;
3706  };
3707
3708  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3709  struct ArrayOrRangeDesignator {
3710    /// Location of the first index expression within the designated
3711    /// initializer expression's list of subexpressions.
3712    unsigned Index;
3713    /// The location of the '[' starting the array range designator.
3714    unsigned LBracketLoc;
3715    /// The location of the ellipsis separating the start and end
3716    /// indices. Only valid for GNU array-range designators.
3717    unsigned EllipsisLoc;
3718    /// The location of the ']' terminating the array range designator.
3719    unsigned RBracketLoc;
3720  };
3721
3722  /// @brief Represents a single C99 designator.
3723  ///
3724  /// @todo This class is infuriatingly similar to clang::Designator,
3725  /// but minor differences (storing indices vs. storing pointers)
3726  /// keep us from reusing it. Try harder, later, to rectify these
3727  /// differences.
3728  class Designator {
3729    /// @brief The kind of designator this describes.
3730    enum {
3731      FieldDesignator,
3732      ArrayDesignator,
3733      ArrayRangeDesignator
3734    } Kind;
3735
3736    union {
3737      /// A field designator, e.g., ".x".
3738      struct FieldDesignator Field;
3739      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3740      struct ArrayOrRangeDesignator ArrayOrRange;
3741    };
3742    friend class DesignatedInitExpr;
3743
3744  public:
3745    Designator() {}
3746
3747    /// @brief Initializes a field designator.
3748    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3749               SourceLocation FieldLoc)
3750      : Kind(FieldDesignator) {
3751      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3752      Field.DotLoc = DotLoc.getRawEncoding();
3753      Field.FieldLoc = FieldLoc.getRawEncoding();
3754    }
3755
3756    /// @brief Initializes an array designator.
3757    Designator(unsigned Index, SourceLocation LBracketLoc,
3758               SourceLocation RBracketLoc)
3759      : Kind(ArrayDesignator) {
3760      ArrayOrRange.Index = Index;
3761      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3762      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3763      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3764    }
3765
3766    /// @brief Initializes a GNU array-range designator.
3767    Designator(unsigned Index, SourceLocation LBracketLoc,
3768               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3769      : Kind(ArrayRangeDesignator) {
3770      ArrayOrRange.Index = Index;
3771      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3772      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3773      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3774    }
3775
3776    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3777    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3778    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3779
3780    IdentifierInfo *getFieldName() const;
3781
3782    FieldDecl *getField() const {
3783      assert(Kind == FieldDesignator && "Only valid on a field designator");
3784      if (Field.NameOrField & 0x01)
3785        return 0;
3786      else
3787        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3788    }
3789
3790    void setField(FieldDecl *FD) {
3791      assert(Kind == FieldDesignator && "Only valid on a field designator");
3792      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3793    }
3794
3795    SourceLocation getDotLoc() const {
3796      assert(Kind == FieldDesignator && "Only valid on a field designator");
3797      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3798    }
3799
3800    SourceLocation getFieldLoc() const {
3801      assert(Kind == FieldDesignator && "Only valid on a field designator");
3802      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3803    }
3804
3805    SourceLocation getLBracketLoc() const {
3806      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3807             "Only valid on an array or array-range designator");
3808      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3809    }
3810
3811    SourceLocation getRBracketLoc() const {
3812      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3813             "Only valid on an array or array-range designator");
3814      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3815    }
3816
3817    SourceLocation getEllipsisLoc() const {
3818      assert(Kind == ArrayRangeDesignator &&
3819             "Only valid on an array-range designator");
3820      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3821    }
3822
3823    unsigned getFirstExprIndex() const {
3824      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3825             "Only valid on an array or array-range designator");
3826      return ArrayOrRange.Index;
3827    }
3828
3829    SourceLocation getStartLocation() const {
3830      if (Kind == FieldDesignator)
3831        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3832      else
3833        return getLBracketLoc();
3834    }
3835    SourceLocation getEndLocation() const {
3836      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3837    }
3838    SourceRange getSourceRange() const {
3839      return SourceRange(getStartLocation(), getEndLocation());
3840    }
3841  };
3842
3843  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3844                                    unsigned NumDesignators,
3845                                    Expr **IndexExprs, unsigned NumIndexExprs,
3846                                    SourceLocation EqualOrColonLoc,
3847                                    bool GNUSyntax, Expr *Init);
3848
3849  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3850
3851  /// @brief Returns the number of designators in this initializer.
3852  unsigned size() const { return NumDesignators; }
3853
3854  // Iterator access to the designators.
3855  typedef Designator *designators_iterator;
3856  designators_iterator designators_begin() { return Designators; }
3857  designators_iterator designators_end() {
3858    return Designators + NumDesignators;
3859  }
3860
3861  typedef const Designator *const_designators_iterator;
3862  const_designators_iterator designators_begin() const { return Designators; }
3863  const_designators_iterator designators_end() const {
3864    return Designators + NumDesignators;
3865  }
3866
3867  typedef std::reverse_iterator<designators_iterator>
3868          reverse_designators_iterator;
3869  reverse_designators_iterator designators_rbegin() {
3870    return reverse_designators_iterator(designators_end());
3871  }
3872  reverse_designators_iterator designators_rend() {
3873    return reverse_designators_iterator(designators_begin());
3874  }
3875
3876  typedef std::reverse_iterator<const_designators_iterator>
3877          const_reverse_designators_iterator;
3878  const_reverse_designators_iterator designators_rbegin() const {
3879    return const_reverse_designators_iterator(designators_end());
3880  }
3881  const_reverse_designators_iterator designators_rend() const {
3882    return const_reverse_designators_iterator(designators_begin());
3883  }
3884
3885  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3886
3887  void setDesignators(ASTContext &C, const Designator *Desigs,
3888                      unsigned NumDesigs);
3889
3890  Expr *getArrayIndex(const Designator& D);
3891  Expr *getArrayRangeStart(const Designator& D);
3892  Expr *getArrayRangeEnd(const Designator& D);
3893
3894  /// @brief Retrieve the location of the '=' that precedes the
3895  /// initializer value itself, if present.
3896  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3897  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3898
3899  /// @brief Determines whether this designated initializer used the
3900  /// deprecated GNU syntax for designated initializers.
3901  bool usesGNUSyntax() const { return GNUSyntax; }
3902  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3903
3904  /// @brief Retrieve the initializer value.
3905  Expr *getInit() const {
3906    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3907  }
3908
3909  void setInit(Expr *init) {
3910    *child_begin() = init;
3911  }
3912
3913  /// \brief Retrieve the total number of subexpressions in this
3914  /// designated initializer expression, including the actual
3915  /// initialized value and any expressions that occur within array
3916  /// and array-range designators.
3917  unsigned getNumSubExprs() const { return NumSubExprs; }
3918
3919  Expr *getSubExpr(unsigned Idx) {
3920    assert(Idx < NumSubExprs && "Subscript out of range");
3921    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3922    Ptr += sizeof(DesignatedInitExpr);
3923    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3924  }
3925
3926  void setSubExpr(unsigned Idx, Expr *E) {
3927    assert(Idx < NumSubExprs && "Subscript out of range");
3928    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3929    Ptr += sizeof(DesignatedInitExpr);
3930    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3931  }
3932
3933  /// \brief Replaces the designator at index @p Idx with the series
3934  /// of designators in [First, Last).
3935  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3936                        const Designator *Last);
3937
3938  SourceRange getDesignatorsSourceRange() const;
3939
3940  SourceRange getSourceRange() const;
3941
3942  static bool classof(const Stmt *T) {
3943    return T->getStmtClass() == DesignatedInitExprClass;
3944  }
3945  static bool classof(const DesignatedInitExpr *) { return true; }
3946
3947  // Iterators
3948  child_range children() {
3949    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3950    return child_range(begin, begin + NumSubExprs);
3951  }
3952};
3953
3954/// \brief Represents an implicitly-generated value initialization of
3955/// an object of a given type.
3956///
3957/// Implicit value initializations occur within semantic initializer
3958/// list expressions (InitListExpr) as placeholders for subobject
3959/// initializations not explicitly specified by the user.
3960///
3961/// \see InitListExpr
3962class ImplicitValueInitExpr : public Expr {
3963public:
3964  explicit ImplicitValueInitExpr(QualType ty)
3965    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3966           false, false, ty->isInstantiationDependentType(), false) { }
3967
3968  /// \brief Construct an empty implicit value initialization.
3969  explicit ImplicitValueInitExpr(EmptyShell Empty)
3970    : Expr(ImplicitValueInitExprClass, Empty) { }
3971
3972  static bool classof(const Stmt *T) {
3973    return T->getStmtClass() == ImplicitValueInitExprClass;
3974  }
3975  static bool classof(const ImplicitValueInitExpr *) { return true; }
3976
3977  SourceRange getSourceRange() const {
3978    return SourceRange();
3979  }
3980
3981  // Iterators
3982  child_range children() { return child_range(); }
3983};
3984
3985
3986class ParenListExpr : public Expr {
3987  Stmt **Exprs;
3988  unsigned NumExprs;
3989  SourceLocation LParenLoc, RParenLoc;
3990
3991public:
3992  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3993                unsigned numexprs, SourceLocation rparenloc);
3994
3995  /// \brief Build an empty paren list.
3996  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3997
3998  unsigned getNumExprs() const { return NumExprs; }
3999
4000  const Expr* getExpr(unsigned Init) const {
4001    assert(Init < getNumExprs() && "Initializer access out of range!");
4002    return cast_or_null<Expr>(Exprs[Init]);
4003  }
4004
4005  Expr* getExpr(unsigned Init) {
4006    assert(Init < getNumExprs() && "Initializer access out of range!");
4007    return cast_or_null<Expr>(Exprs[Init]);
4008  }
4009
4010  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4011
4012  SourceLocation getLParenLoc() const { return LParenLoc; }
4013  SourceLocation getRParenLoc() const { return RParenLoc; }
4014
4015  SourceRange getSourceRange() const {
4016    return SourceRange(LParenLoc, RParenLoc);
4017  }
4018  static bool classof(const Stmt *T) {
4019    return T->getStmtClass() == ParenListExprClass;
4020  }
4021  static bool classof(const ParenListExpr *) { return true; }
4022
4023  // Iterators
4024  child_range children() {
4025    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4026  }
4027
4028  friend class ASTStmtReader;
4029  friend class ASTStmtWriter;
4030};
4031
4032
4033/// \brief Represents a C11 generic selection.
4034///
4035/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4036/// expression, followed by one or more generic associations.  Each generic
4037/// association specifies a type name and an expression, or "default" and an
4038/// expression (in which case it is known as a default generic association).
4039/// The type and value of the generic selection are identical to those of its
4040/// result expression, which is defined as the expression in the generic
4041/// association with a type name that is compatible with the type of the
4042/// controlling expression, or the expression in the default generic association
4043/// if no types are compatible.  For example:
4044///
4045/// @code
4046/// _Generic(X, double: 1, float: 2, default: 3)
4047/// @endcode
4048///
4049/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4050/// or 3 if "hello".
4051///
4052/// As an extension, generic selections are allowed in C++, where the following
4053/// additional semantics apply:
4054///
4055/// Any generic selection whose controlling expression is type-dependent or
4056/// which names a dependent type in its association list is result-dependent,
4057/// which means that the choice of result expression is dependent.
4058/// Result-dependent generic associations are both type- and value-dependent.
4059class GenericSelectionExpr : public Expr {
4060  enum { CONTROLLING, END_EXPR };
4061  TypeSourceInfo **AssocTypes;
4062  Stmt **SubExprs;
4063  unsigned NumAssocs, ResultIndex;
4064  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4065
4066public:
4067  GenericSelectionExpr(ASTContext &Context,
4068                       SourceLocation GenericLoc, Expr *ControllingExpr,
4069                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4070                       unsigned NumAssocs, SourceLocation DefaultLoc,
4071                       SourceLocation RParenLoc,
4072                       bool ContainsUnexpandedParameterPack,
4073                       unsigned ResultIndex);
4074
4075  /// This constructor is used in the result-dependent case.
4076  GenericSelectionExpr(ASTContext &Context,
4077                       SourceLocation GenericLoc, Expr *ControllingExpr,
4078                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4079                       unsigned NumAssocs, SourceLocation DefaultLoc,
4080                       SourceLocation RParenLoc,
4081                       bool ContainsUnexpandedParameterPack);
4082
4083  explicit GenericSelectionExpr(EmptyShell Empty)
4084    : Expr(GenericSelectionExprClass, Empty) { }
4085
4086  unsigned getNumAssocs() const { return NumAssocs; }
4087
4088  SourceLocation getGenericLoc() const { return GenericLoc; }
4089  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4090  SourceLocation getRParenLoc() const { return RParenLoc; }
4091
4092  const Expr *getAssocExpr(unsigned i) const {
4093    return cast<Expr>(SubExprs[END_EXPR+i]);
4094  }
4095  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4096
4097  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4098    return AssocTypes[i];
4099  }
4100  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4101
4102  QualType getAssocType(unsigned i) const {
4103    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4104      return TS->getType();
4105    else
4106      return QualType();
4107  }
4108
4109  const Expr *getControllingExpr() const {
4110    return cast<Expr>(SubExprs[CONTROLLING]);
4111  }
4112  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4113
4114  /// Whether this generic selection is result-dependent.
4115  bool isResultDependent() const { return ResultIndex == -1U; }
4116
4117  /// The zero-based index of the result expression's generic association in
4118  /// the generic selection's association list.  Defined only if the
4119  /// generic selection is not result-dependent.
4120  unsigned getResultIndex() const {
4121    assert(!isResultDependent() && "Generic selection is result-dependent");
4122    return ResultIndex;
4123  }
4124
4125  /// The generic selection's result expression.  Defined only if the
4126  /// generic selection is not result-dependent.
4127  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4128  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4129
4130  SourceRange getSourceRange() const {
4131    return SourceRange(GenericLoc, RParenLoc);
4132  }
4133  static bool classof(const Stmt *T) {
4134    return T->getStmtClass() == GenericSelectionExprClass;
4135  }
4136  static bool classof(const GenericSelectionExpr *) { return true; }
4137
4138  child_range children() {
4139    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4140  }
4141
4142  friend class ASTStmtReader;
4143};
4144
4145//===----------------------------------------------------------------------===//
4146// Clang Extensions
4147//===----------------------------------------------------------------------===//
4148
4149
4150/// ExtVectorElementExpr - This represents access to specific elements of a
4151/// vector, and may occur on the left hand side or right hand side.  For example
4152/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4153///
4154/// Note that the base may have either vector or pointer to vector type, just
4155/// like a struct field reference.
4156///
4157class ExtVectorElementExpr : public Expr {
4158  Stmt *Base;
4159  IdentifierInfo *Accessor;
4160  SourceLocation AccessorLoc;
4161public:
4162  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4163                       IdentifierInfo &accessor, SourceLocation loc)
4164    : Expr(ExtVectorElementExprClass, ty, VK,
4165           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4166           base->isTypeDependent(), base->isValueDependent(),
4167           base->isInstantiationDependent(),
4168           base->containsUnexpandedParameterPack()),
4169      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4170
4171  /// \brief Build an empty vector element expression.
4172  explicit ExtVectorElementExpr(EmptyShell Empty)
4173    : Expr(ExtVectorElementExprClass, Empty) { }
4174
4175  const Expr *getBase() const { return cast<Expr>(Base); }
4176  Expr *getBase() { return cast<Expr>(Base); }
4177  void setBase(Expr *E) { Base = E; }
4178
4179  IdentifierInfo &getAccessor() const { return *Accessor; }
4180  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4181
4182  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4183  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4184
4185  /// getNumElements - Get the number of components being selected.
4186  unsigned getNumElements() const;
4187
4188  /// containsDuplicateElements - Return true if any element access is
4189  /// repeated.
4190  bool containsDuplicateElements() const;
4191
4192  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4193  /// aggregate Constant of ConstantInt(s).
4194  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4195
4196  SourceRange getSourceRange() const {
4197    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4198  }
4199
4200  /// isArrow - Return true if the base expression is a pointer to vector,
4201  /// return false if the base expression is a vector.
4202  bool isArrow() const;
4203
4204  static bool classof(const Stmt *T) {
4205    return T->getStmtClass() == ExtVectorElementExprClass;
4206  }
4207  static bool classof(const ExtVectorElementExpr *) { return true; }
4208
4209  // Iterators
4210  child_range children() { return child_range(&Base, &Base+1); }
4211};
4212
4213
4214/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4215/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4216class BlockExpr : public Expr {
4217protected:
4218  BlockDecl *TheBlock;
4219public:
4220  BlockExpr(BlockDecl *BD, QualType ty)
4221    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4222           ty->isDependentType(), ty->isDependentType(),
4223           ty->isInstantiationDependentType() || BD->isDependentContext(),
4224           false),
4225      TheBlock(BD) {}
4226
4227  /// \brief Build an empty block expression.
4228  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4229
4230  const BlockDecl *getBlockDecl() const { return TheBlock; }
4231  BlockDecl *getBlockDecl() { return TheBlock; }
4232  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4233
4234  // Convenience functions for probing the underlying BlockDecl.
4235  SourceLocation getCaretLocation() const;
4236  const Stmt *getBody() const;
4237  Stmt *getBody();
4238
4239  SourceRange getSourceRange() const {
4240    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4241  }
4242
4243  /// getFunctionType - Return the underlying function type for this block.
4244  const FunctionProtoType *getFunctionType() const;
4245
4246  static bool classof(const Stmt *T) {
4247    return T->getStmtClass() == BlockExprClass;
4248  }
4249  static bool classof(const BlockExpr *) { return true; }
4250
4251  // Iterators
4252  child_range children() { return child_range(); }
4253};
4254
4255/// BlockDeclRefExpr - A reference to a local variable declared in an
4256/// enclosing scope.
4257class BlockDeclRefExpr : public Expr {
4258  VarDecl *D;
4259  SourceLocation Loc;
4260  bool IsByRef : 1;
4261  bool ConstQualAdded : 1;
4262public:
4263  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4264                   SourceLocation l, bool ByRef, bool constAdded = false);
4265
4266  // \brief Build an empty reference to a declared variable in a
4267  // block.
4268  explicit BlockDeclRefExpr(EmptyShell Empty)
4269    : Expr(BlockDeclRefExprClass, Empty) { }
4270
4271  VarDecl *getDecl() { return D; }
4272  const VarDecl *getDecl() const { return D; }
4273  void setDecl(VarDecl *VD) { D = VD; }
4274
4275  SourceLocation getLocation() const { return Loc; }
4276  void setLocation(SourceLocation L) { Loc = L; }
4277
4278  SourceRange getSourceRange() const { return SourceRange(Loc); }
4279
4280  bool isByRef() const { return IsByRef; }
4281  void setByRef(bool BR) { IsByRef = BR; }
4282
4283  bool isConstQualAdded() const { return ConstQualAdded; }
4284  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4285
4286  static bool classof(const Stmt *T) {
4287    return T->getStmtClass() == BlockDeclRefExprClass;
4288  }
4289  static bool classof(const BlockDeclRefExpr *) { return true; }
4290
4291  // Iterators
4292  child_range children() { return child_range(); }
4293};
4294
4295/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4296/// This AST node provides support for reinterpreting a type to another
4297/// type of the same size.
4298class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4299private:
4300  Stmt *SrcExpr;
4301  SourceLocation BuiltinLoc, RParenLoc;
4302
4303  friend class ASTReader;
4304  friend class ASTStmtReader;
4305  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4306
4307public:
4308  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4309             ExprValueKind VK, ExprObjectKind OK,
4310             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4311    : Expr(AsTypeExprClass, DstType, VK, OK,
4312           DstType->isDependentType(),
4313           DstType->isDependentType() || SrcExpr->isValueDependent(),
4314           (DstType->isInstantiationDependentType() ||
4315            SrcExpr->isInstantiationDependent()),
4316           (DstType->containsUnexpandedParameterPack() ||
4317            SrcExpr->containsUnexpandedParameterPack())),
4318  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4319
4320  /// getSrcExpr - Return the Expr to be converted.
4321  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4322
4323  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4324  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4325
4326  /// getRParenLoc - Return the location of final right parenthesis.
4327  SourceLocation getRParenLoc() const { return RParenLoc; }
4328
4329  SourceRange getSourceRange() const {
4330    return SourceRange(BuiltinLoc, RParenLoc);
4331  }
4332
4333  static bool classof(const Stmt *T) {
4334    return T->getStmtClass() == AsTypeExprClass;
4335  }
4336  static bool classof(const AsTypeExpr *) { return true; }
4337
4338  // Iterators
4339  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4340};
4341
4342/// PseudoObjectExpr - An expression which accesses a pseudo-object
4343/// l-value.  A pseudo-object is an abstract object, accesses to which
4344/// are translated to calls.  The pseudo-object expression has a
4345/// syntactic form, which shows how the expression was actually
4346/// written in the source code, and a semantic form, which is a series
4347/// of expressions to be executed in order which detail how the
4348/// operation is actually evaluated.  Optionally, one of the semantic
4349/// forms may also provide a result value for the expression.
4350///
4351/// If any of the semantic-form expressions is an OpaqueValueExpr,
4352/// that OVE is required to have a source expression, and it is bound
4353/// to the result of that source expression.  Such OVEs may appear
4354/// only in subsequent semantic-form expressions and as
4355/// sub-expressions of the syntactic form.
4356///
4357/// PseudoObjectExpr should be used only when an operation can be
4358/// usefully described in terms of fairly simple rewrite rules on
4359/// objects and functions that are meant to be used by end-developers.
4360/// For example, under the Itanium ABI, dynamic casts are implemented
4361/// as a call to a runtime function called __dynamic_cast; using this
4362/// class to describe that would be inappropriate because that call is
4363/// not really part of the user-visible semantics, and instead the
4364/// cast is properly reflected in the AST and IR-generation has been
4365/// taught to generate the call as necessary.  In contrast, an
4366/// Objective-C property access is semantically defined to be
4367/// equivalent to a particular message send, and this is very much
4368/// part of the user model.  The name of this class encourages this
4369/// modelling design.
4370class PseudoObjectExpr : public Expr {
4371  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4372  // Always at least two, because the first sub-expression is the
4373  // syntactic form.
4374
4375  // PseudoObjectExprBits.ResultIndex - The index of the
4376  // sub-expression holding the result.  0 means the result is void,
4377  // which is unambiguous because it's the index of the syntactic
4378  // form.  Note that this is therefore 1 higher than the value passed
4379  // in to Create, which is an index within the semantic forms.
4380  // Note also that ASTStmtWriter assumes this encoding.
4381
4382  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4383  const Expr * const *getSubExprsBuffer() const {
4384    return reinterpret_cast<const Expr * const *>(this + 1);
4385  }
4386
4387  friend class ASTStmtReader;
4388
4389  PseudoObjectExpr(QualType type, ExprValueKind VK,
4390                   Expr *syntactic, ArrayRef<Expr*> semantic,
4391                   unsigned resultIndex);
4392
4393  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4394
4395  unsigned getNumSubExprs() const {
4396    return PseudoObjectExprBits.NumSubExprs;
4397  }
4398
4399public:
4400  /// NoResult - A value for the result index indicating that there is
4401  /// no semantic result.
4402  enum { NoResult = ~0U };
4403
4404  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4405                                  ArrayRef<Expr*> semantic,
4406                                  unsigned resultIndex);
4407
4408  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4409                                  unsigned numSemanticExprs);
4410
4411  /// Return the syntactic form of this expression, i.e. the
4412  /// expression it actually looks like.  Likely to be expressed in
4413  /// terms of OpaqueValueExprs bound in the semantic form.
4414  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4415  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4416
4417  /// Return the index of the result-bearing expression into the semantics
4418  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4419  unsigned getResultExprIndex() const {
4420    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4421    return PseudoObjectExprBits.ResultIndex - 1;
4422  }
4423
4424  /// Return the result-bearing expression, or null if there is none.
4425  Expr *getResultExpr() {
4426    if (PseudoObjectExprBits.ResultIndex == 0)
4427      return 0;
4428    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4429  }
4430  const Expr *getResultExpr() const {
4431    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4432  }
4433
4434  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4435
4436  typedef Expr * const *semantics_iterator;
4437  typedef const Expr * const *const_semantics_iterator;
4438  semantics_iterator semantics_begin() {
4439    return getSubExprsBuffer() + 1;
4440  }
4441  const_semantics_iterator semantics_begin() const {
4442    return getSubExprsBuffer() + 1;
4443  }
4444  semantics_iterator semantics_end() {
4445    return getSubExprsBuffer() + getNumSubExprs();
4446  }
4447  const_semantics_iterator semantics_end() const {
4448    return getSubExprsBuffer() + getNumSubExprs();
4449  }
4450  Expr *getSemanticExpr(unsigned index) {
4451    assert(index + 1 < getNumSubExprs());
4452    return getSubExprsBuffer()[index + 1];
4453  }
4454  const Expr *getSemanticExpr(unsigned index) const {
4455    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4456  }
4457
4458  SourceLocation getExprLoc() const {
4459    return getSyntacticForm()->getExprLoc();
4460  }
4461  SourceRange getSourceRange() const {
4462    return getSyntacticForm()->getSourceRange();
4463  }
4464
4465  child_range children() {
4466    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4467    return child_range(cs, cs + getNumSubExprs());
4468  }
4469
4470  static bool classof(const Stmt *T) {
4471    return T->getStmtClass() == PseudoObjectExprClass;
4472  }
4473  static bool classof(const PseudoObjectExpr *) { return true; }
4474};
4475
4476/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4477/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4478/// similarly-named C++0x instructions.  All of these instructions take one
4479/// primary pointer and at least one memory order.
4480class AtomicExpr : public Expr {
4481public:
4482  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4483                  Add, Sub, And, Or, Xor, Init };
4484private:
4485  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4486  Stmt* SubExprs[END_EXPR];
4487  unsigned NumSubExprs;
4488  SourceLocation BuiltinLoc, RParenLoc;
4489  AtomicOp Op;
4490
4491public:
4492  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4493             AtomicOp op, SourceLocation RP);
4494
4495  /// \brief Build an empty AtomicExpr.
4496  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4497
4498  Expr *getPtr() const {
4499    return cast<Expr>(SubExprs[PTR]);
4500  }
4501  void setPtr(Expr *E) {
4502    SubExprs[PTR] = E;
4503  }
4504  Expr *getOrder() const {
4505    return cast<Expr>(SubExprs[ORDER]);
4506  }
4507  void setOrder(Expr *E) {
4508    SubExprs[ORDER] = E;
4509  }
4510  Expr *getVal1() const {
4511    if (Op == Init)
4512      return cast<Expr>(SubExprs[ORDER]);
4513    assert(NumSubExprs >= 3);
4514    return cast<Expr>(SubExprs[VAL1]);
4515  }
4516  void setVal1(Expr *E) {
4517    if (Op == Init) {
4518      SubExprs[ORDER] = E;
4519      return;
4520    }
4521    assert(NumSubExprs >= 3);
4522    SubExprs[VAL1] = E;
4523  }
4524  Expr *getOrderFail() const {
4525    assert(NumSubExprs == 5);
4526    return cast<Expr>(SubExprs[ORDER_FAIL]);
4527  }
4528  void setOrderFail(Expr *E) {
4529    assert(NumSubExprs == 5);
4530    SubExprs[ORDER_FAIL] = E;
4531  }
4532  Expr *getVal2() const {
4533    assert(NumSubExprs == 5);
4534    return cast<Expr>(SubExprs[VAL2]);
4535  }
4536  void setVal2(Expr *E) {
4537    assert(NumSubExprs == 5);
4538    SubExprs[VAL2] = E;
4539  }
4540
4541  AtomicOp getOp() const { return Op; }
4542  void setOp(AtomicOp op) { Op = op; }
4543  unsigned getNumSubExprs() { return NumSubExprs; }
4544  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4545
4546  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4547
4548  bool isVolatile() const {
4549    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4550  }
4551
4552  bool isCmpXChg() const {
4553    return getOp() == AtomicExpr::CmpXchgStrong ||
4554           getOp() == AtomicExpr::CmpXchgWeak;
4555  }
4556
4557  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4558  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4559
4560  SourceLocation getRParenLoc() const { return RParenLoc; }
4561  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4562
4563  SourceRange getSourceRange() const {
4564    return SourceRange(BuiltinLoc, RParenLoc);
4565  }
4566  static bool classof(const Stmt *T) {
4567    return T->getStmtClass() == AtomicExprClass;
4568  }
4569  static bool classof(const AtomicExpr *) { return true; }
4570
4571  // Iterators
4572  child_range children() {
4573    return child_range(SubExprs, SubExprs+NumSubExprs);
4574  }
4575};
4576}  // end namespace clang
4577
4578#endif
4579