Expr.h revision 180f47959a066795cc0f409433023af448bb0328
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include <cctype>
31
32namespace clang {
33  class ASTContext;
34  class APValue;
35  class Decl;
36  class IdentifierInfo;
37  class ParmVarDecl;
38  class NamedDecl;
39  class ValueDecl;
40  class BlockDecl;
41  class CXXBaseSpecifier;
42  class CXXOperatorCallExpr;
43  class CXXMemberCallExpr;
44  class ObjCPropertyRefExpr;
45  class OpaqueValueExpr;
46
47/// \brief A simple array of base specifiers.
48typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
49
50/// Expr - This represents one expression.  Note that Expr's are subclasses of
51/// Stmt.  This allows an expression to be transparently used any place a Stmt
52/// is required.
53///
54class Expr : public Stmt {
55  QualType TR;
56
57protected:
58  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
59       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
60    : Stmt(SC)
61  {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.InstantiationDependent = ID;
65    ExprBits.ValueKind = VK;
66    ExprBits.ObjectKind = OK;
67    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
68    setType(T);
69  }
70
71  /// \brief Construct an empty expression.
72  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
73
74public:
75  QualType getType() const { return TR; }
76  void setType(QualType t) {
77    // In C++, the type of an expression is always adjusted so that it
78    // will not have reference type an expression will never have
79    // reference type (C++ [expr]p6). Use
80    // QualType::getNonReferenceType() to retrieve the non-reference
81    // type. Additionally, inspect Expr::isLvalue to determine whether
82    // an expression that is adjusted in this manner should be
83    // considered an lvalue.
84    assert((t.isNull() || !t->isReferenceType()) &&
85           "Expressions can't have reference type");
86
87    TR = t;
88  }
89
90  /// isValueDependent - Determines whether this expression is
91  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
92  /// array bound of "Chars" in the following example is
93  /// value-dependent.
94  /// @code
95  /// template<int Size, char (&Chars)[Size]> struct meta_string;
96  /// @endcode
97  bool isValueDependent() const { return ExprBits.ValueDependent; }
98
99  /// \brief Set whether this expression is value-dependent or not.
100  void setValueDependent(bool VD) {
101    ExprBits.ValueDependent = VD;
102    if (VD)
103      ExprBits.InstantiationDependent = true;
104  }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return ExprBits.TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) {
121    ExprBits.TypeDependent = TD;
122    if (TD)
123      ExprBits.InstantiationDependent = true;
124  }
125
126  /// \brief Whether this expression is instantiation-dependent, meaning that
127  /// it depends in some way on a template parameter, even if neither its type
128  /// nor (constant) value can change due to the template instantiation.
129  ///
130  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
131  /// instantiation-dependent (since it involves a template parameter \c T), but
132  /// is neither type- nor value-dependent, since the type of the inner
133  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
134  /// \c sizeof is known.
135  ///
136  /// \code
137  /// template<typename T>
138  /// void f(T x, T y) {
139  ///   sizeof(sizeof(T() + T());
140  /// }
141  /// \endcode
142  ///
143  bool isInstantiationDependent() const {
144    return ExprBits.InstantiationDependent;
145  }
146
147  /// \brief Set whether this expression is instantiation-dependent or not.
148  void setInstantiationDependent(bool ID) {
149    ExprBits.InstantiationDependent = ID;
150  }
151
152  /// \brief Whether this expression contains an unexpanded parameter
153  /// pack (for C++0x variadic templates).
154  ///
155  /// Given the following function template:
156  ///
157  /// \code
158  /// template<typename F, typename ...Types>
159  /// void forward(const F &f, Types &&...args) {
160  ///   f(static_cast<Types&&>(args)...);
161  /// }
162  /// \endcode
163  ///
164  /// The expressions \c args and \c static_cast<Types&&>(args) both
165  /// contain parameter packs.
166  bool containsUnexpandedParameterPack() const {
167    return ExprBits.ContainsUnexpandedParameterPack;
168  }
169
170  /// \brief Set the bit that describes whether this expression
171  /// contains an unexpanded parameter pack.
172  void setContainsUnexpandedParameterPack(bool PP = true) {
173    ExprBits.ContainsUnexpandedParameterPack = PP;
174  }
175
176  /// getExprLoc - Return the preferred location for the arrow when diagnosing
177  /// a problem with a generic expression.
178  SourceLocation getExprLoc() const;
179
180  /// isUnusedResultAWarning - Return true if this immediate expression should
181  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
182  /// with location to warn on and the source range[s] to report with the
183  /// warning.
184  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
185                              SourceRange &R2, ASTContext &Ctx) const;
186
187  /// isLValue - True if this expression is an "l-value" according to
188  /// the rules of the current language.  C and C++ give somewhat
189  /// different rules for this concept, but in general, the result of
190  /// an l-value expression identifies a specific object whereas the
191  /// result of an r-value expression is a value detached from any
192  /// specific storage.
193  ///
194  /// C++0x divides the concept of "r-value" into pure r-values
195  /// ("pr-values") and so-called expiring values ("x-values"), which
196  /// identify specific objects that can be safely cannibalized for
197  /// their resources.  This is an unfortunate abuse of terminology on
198  /// the part of the C++ committee.  In Clang, when we say "r-value",
199  /// we generally mean a pr-value.
200  bool isLValue() const { return getValueKind() == VK_LValue; }
201  bool isRValue() const { return getValueKind() == VK_RValue; }
202  bool isXValue() const { return getValueKind() == VK_XValue; }
203  bool isGLValue() const { return getValueKind() != VK_RValue; }
204
205  enum LValueClassification {
206    LV_Valid,
207    LV_NotObjectType,
208    LV_IncompleteVoidType,
209    LV_DuplicateVectorComponents,
210    LV_InvalidExpression,
211    LV_InvalidMessageExpression,
212    LV_MemberFunction,
213    LV_SubObjCPropertySetting,
214    LV_ClassTemporary
215  };
216  /// Reasons why an expression might not be an l-value.
217  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
218
219  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
220  /// does not have an incomplete type, does not have a const-qualified type,
221  /// and if it is a structure or union, does not have any member (including,
222  /// recursively, any member or element of all contained aggregates or unions)
223  /// with a const-qualified type.
224  ///
225  /// \param Loc [in] [out] - A source location which *may* be filled
226  /// in with the location of the expression making this a
227  /// non-modifiable lvalue, if specified.
228  enum isModifiableLvalueResult {
229    MLV_Valid,
230    MLV_NotObjectType,
231    MLV_IncompleteVoidType,
232    MLV_DuplicateVectorComponents,
233    MLV_InvalidExpression,
234    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
235    MLV_IncompleteType,
236    MLV_ConstQualified,
237    MLV_ArrayType,
238    MLV_NotBlockQualified,
239    MLV_ReadonlyProperty,
240    MLV_NoSetterProperty,
241    MLV_MemberFunction,
242    MLV_SubObjCPropertySetting,
243    MLV_InvalidMessageExpression,
244    MLV_ClassTemporary
245  };
246  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
247                                              SourceLocation *Loc = 0) const;
248
249  /// \brief The return type of classify(). Represents the C++0x expression
250  ///        taxonomy.
251  class Classification {
252  public:
253    /// \brief The various classification results. Most of these mean prvalue.
254    enum Kinds {
255      CL_LValue,
256      CL_XValue,
257      CL_Function, // Functions cannot be lvalues in C.
258      CL_Void, // Void cannot be an lvalue in C.
259      CL_AddressableVoid, // Void expression whose address can be taken in C.
260      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
261      CL_MemberFunction, // An expression referring to a member function
262      CL_SubObjCPropertySetting,
263      CL_ClassTemporary, // A prvalue of class type
264      CL_ObjCMessageRValue, // ObjC message is an rvalue
265      CL_PRValue // A prvalue for any other reason, of any other type
266    };
267    /// \brief The results of modification testing.
268    enum ModifiableType {
269      CM_Untested, // testModifiable was false.
270      CM_Modifiable,
271      CM_RValue, // Not modifiable because it's an rvalue
272      CM_Function, // Not modifiable because it's a function; C++ only
273      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
274      CM_NotBlockQualified, // Not captured in the closure
275      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
276      CM_ConstQualified,
277      CM_ArrayType,
278      CM_IncompleteType
279    };
280
281  private:
282    friend class Expr;
283
284    unsigned short Kind;
285    unsigned short Modifiable;
286
287    explicit Classification(Kinds k, ModifiableType m)
288      : Kind(k), Modifiable(m)
289    {}
290
291  public:
292    Classification() {}
293
294    Kinds getKind() const { return static_cast<Kinds>(Kind); }
295    ModifiableType getModifiable() const {
296      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
297      return static_cast<ModifiableType>(Modifiable);
298    }
299    bool isLValue() const { return Kind == CL_LValue; }
300    bool isXValue() const { return Kind == CL_XValue; }
301    bool isGLValue() const { return Kind <= CL_XValue; }
302    bool isPRValue() const { return Kind >= CL_Function; }
303    bool isRValue() const { return Kind >= CL_XValue; }
304    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
305
306    /// \brief Create a simple, modifiably lvalue
307    static Classification makeSimpleLValue() {
308      return Classification(CL_LValue, CM_Modifiable);
309    }
310
311  };
312  /// \brief Classify - Classify this expression according to the C++0x
313  ///        expression taxonomy.
314  ///
315  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
316  /// old lvalue vs rvalue. This function determines the type of expression this
317  /// is. There are three expression types:
318  /// - lvalues are classical lvalues as in C++03.
319  /// - prvalues are equivalent to rvalues in C++03.
320  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
321  ///   function returning an rvalue reference.
322  /// lvalues and xvalues are collectively referred to as glvalues, while
323  /// prvalues and xvalues together form rvalues.
324  Classification Classify(ASTContext &Ctx) const {
325    return ClassifyImpl(Ctx, 0);
326  }
327
328  /// \brief ClassifyModifiable - Classify this expression according to the
329  ///        C++0x expression taxonomy, and see if it is valid on the left side
330  ///        of an assignment.
331  ///
332  /// This function extends classify in that it also tests whether the
333  /// expression is modifiable (C99 6.3.2.1p1).
334  /// \param Loc A source location that might be filled with a relevant location
335  ///            if the expression is not modifiable.
336  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
337    return ClassifyImpl(Ctx, &Loc);
338  }
339
340  /// getValueKindForType - Given a formal return or parameter type,
341  /// give its value kind.
342  static ExprValueKind getValueKindForType(QualType T) {
343    if (const ReferenceType *RT = T->getAs<ReferenceType>())
344      return (isa<LValueReferenceType>(RT)
345                ? VK_LValue
346                : (RT->getPointeeType()->isFunctionType()
347                     ? VK_LValue : VK_XValue));
348    return VK_RValue;
349  }
350
351  /// getValueKind - The value kind that this expression produces.
352  ExprValueKind getValueKind() const {
353    return static_cast<ExprValueKind>(ExprBits.ValueKind);
354  }
355
356  /// getObjectKind - The object kind that this expression produces.
357  /// Object kinds are meaningful only for expressions that yield an
358  /// l-value or x-value.
359  ExprObjectKind getObjectKind() const {
360    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
361  }
362
363  bool isOrdinaryOrBitFieldObject() const {
364    ExprObjectKind OK = getObjectKind();
365    return (OK == OK_Ordinary || OK == OK_BitField);
366  }
367
368  /// setValueKind - Set the value kind produced by this expression.
369  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
370
371  /// setObjectKind - Set the object kind produced by this expression.
372  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
373
374private:
375  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
376
377public:
378
379  /// \brief If this expression refers to a bit-field, retrieve the
380  /// declaration of that bit-field.
381  FieldDecl *getBitField();
382
383  const FieldDecl *getBitField() const {
384    return const_cast<Expr*>(this)->getBitField();
385  }
386
387  /// \brief If this expression is an l-value for an Objective C
388  /// property, find the underlying property reference expression.
389  const ObjCPropertyRefExpr *getObjCProperty() const;
390
391  /// \brief Returns whether this expression refers to a vector element.
392  bool refersToVectorElement() const;
393
394  /// \brief Returns whether this expression has a placeholder type.
395  bool hasPlaceholderType() const {
396    return getType()->isPlaceholderType();
397  }
398
399  /// \brief Returns whether this expression has a specific placeholder type.
400  bool hasPlaceholderType(BuiltinType::Kind K) const {
401    assert(BuiltinType::isPlaceholderTypeKind(K));
402    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
403      return BT->getKind() == K;
404    return false;
405  }
406
407  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
408  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
409  /// but also int expressions which are produced by things like comparisons in
410  /// C.
411  bool isKnownToHaveBooleanValue() const;
412
413  /// isIntegerConstantExpr - Return true if this expression is a valid integer
414  /// constant expression, and, if so, return its value in Result.  If not a
415  /// valid i-c-e, return false and fill in Loc (if specified) with the location
416  /// of the invalid expression.
417  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
418                             SourceLocation *Loc = 0,
419                             bool isEvaluated = true) const;
420  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
421    llvm::APSInt X;
422    return isIntegerConstantExpr(X, Ctx, Loc);
423  }
424  /// isConstantInitializer - Returns true if this expression is a constant
425  /// initializer, which can be emitted at compile-time.
426  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
427
428  /// EvalStatus is a struct with detailed info about an evaluation in progress.
429  struct EvalStatus {
430    /// HasSideEffects - Whether the evaluated expression has side effects.
431    /// For example, (f() && 0) can be folded, but it still has side effects.
432    bool HasSideEffects;
433
434    /// Diag - If the expression is unfoldable, then Diag contains a note
435    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
436    /// position for the error, and DiagExpr is the expression that caused
437    /// the error.
438    /// If the expression is foldable, but not an integer constant expression,
439    /// Diag contains a note diagnostic that describes why it isn't an integer
440    /// constant expression. If the expression *is* an integer constant
441    /// expression, then Diag will be zero.
442    unsigned Diag;
443    const Expr *DiagExpr;
444    SourceLocation DiagLoc;
445
446    EvalStatus() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
447
448    // hasSideEffects - Return true if the evaluated expression has
449    // side effects.
450    bool hasSideEffects() const {
451      return HasSideEffects;
452    }
453  };
454
455  /// EvalResult is a struct with detailed info about an evaluated expression.
456  struct EvalResult : EvalStatus {
457    /// Val - This is the value the expression can be folded to.
458    APValue Val;
459
460    // isGlobalLValue - Return true if the evaluated lvalue expression
461    // is global.
462    bool isGlobalLValue() const;
463  };
464
465  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
466  /// an rvalue using any crazy technique (that has nothing to do with language
467  /// standards) that we want to, even if the expression has side-effects. If
468  /// this function returns true, it returns the folded constant in Result. If
469  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
470  /// applied.
471  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
472
473  /// EvaluateAsBooleanCondition - Return true if this is a constant
474  /// which we we can fold and convert to a boolean condition using
475  /// any crazy technique that we want to, even if the expression has
476  /// side-effects.
477  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
478
479  /// EvaluateAsInt - Return true if this is a constant which we can fold and
480  /// convert to an integer without side-effects, using any crazy technique that
481  /// we want to.
482  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx) const;
483
484  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
485  /// constant folded without side-effects, but discard the result.
486  bool isEvaluatable(const ASTContext &Ctx) const;
487
488  /// HasSideEffects - This routine returns true for all those expressions
489  /// which must be evaluated each time and must not be optimized away
490  /// or evaluated at compile time. Example is a function call, volatile
491  /// variable read.
492  bool HasSideEffects(const ASTContext &Ctx) const;
493
494  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
495  /// integer. This must be called on an expression that constant folds to an
496  /// integer.
497  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
498
499  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
500  /// lvalue with link time known address, with no side-effects.
501  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
502
503  /// \brief Enumeration used to describe the kind of Null pointer constant
504  /// returned from \c isNullPointerConstant().
505  enum NullPointerConstantKind {
506    /// \brief Expression is not a Null pointer constant.
507    NPCK_NotNull = 0,
508
509    /// \brief Expression is a Null pointer constant built from a zero integer.
510    NPCK_ZeroInteger,
511
512    /// \brief Expression is a C++0X nullptr.
513    NPCK_CXX0X_nullptr,
514
515    /// \brief Expression is a GNU-style __null constant.
516    NPCK_GNUNull
517  };
518
519  /// \brief Enumeration used to describe how \c isNullPointerConstant()
520  /// should cope with value-dependent expressions.
521  enum NullPointerConstantValueDependence {
522    /// \brief Specifies that the expression should never be value-dependent.
523    NPC_NeverValueDependent = 0,
524
525    /// \brief Specifies that a value-dependent expression of integral or
526    /// dependent type should be considered a null pointer constant.
527    NPC_ValueDependentIsNull,
528
529    /// \brief Specifies that a value-dependent expression should be considered
530    /// to never be a null pointer constant.
531    NPC_ValueDependentIsNotNull
532  };
533
534  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
535  /// a Null pointer constant. The return value can further distinguish the
536  /// kind of NULL pointer constant that was detected.
537  NullPointerConstantKind isNullPointerConstant(
538      ASTContext &Ctx,
539      NullPointerConstantValueDependence NPC) const;
540
541  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
542  /// write barrier.
543  bool isOBJCGCCandidate(ASTContext &Ctx) const;
544
545  /// \brief Returns true if this expression is a bound member function.
546  bool isBoundMemberFunction(ASTContext &Ctx) const;
547
548  /// \brief Given an expression of bound-member type, find the type
549  /// of the member.  Returns null if this is an *overloaded* bound
550  /// member expression.
551  static QualType findBoundMemberType(const Expr *expr);
552
553  /// \brief Result type of CanThrow().
554  enum CanThrowResult {
555    CT_Cannot,
556    CT_Dependent,
557    CT_Can
558  };
559  /// \brief Test if this expression, if evaluated, might throw, according to
560  ///        the rules of C++ [expr.unary.noexcept].
561  CanThrowResult CanThrow(ASTContext &C) const;
562
563  /// IgnoreImpCasts - Skip past any implicit casts which might
564  /// surround this expression.  Only skips ImplicitCastExprs.
565  Expr *IgnoreImpCasts();
566
567  /// IgnoreImplicit - Skip past any implicit AST nodes which might
568  /// surround this expression.
569  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
570
571  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
572  ///  its subexpression.  If that subexpression is also a ParenExpr,
573  ///  then this method recursively returns its subexpression, and so forth.
574  ///  Otherwise, the method returns the current Expr.
575  Expr *IgnoreParens();
576
577  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
578  /// or CastExprs, returning their operand.
579  Expr *IgnoreParenCasts();
580
581  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
582  /// any ParenExpr or ImplicitCastExprs, returning their operand.
583  Expr *IgnoreParenImpCasts();
584
585  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
586  /// call to a conversion operator, return the argument.
587  Expr *IgnoreConversionOperator();
588
589  const Expr *IgnoreConversionOperator() const {
590    return const_cast<Expr*>(this)->IgnoreConversionOperator();
591  }
592
593  const Expr *IgnoreParenImpCasts() const {
594    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
595  }
596
597  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
598  /// CastExprs that represent lvalue casts, returning their operand.
599  Expr *IgnoreParenLValueCasts();
600
601  const Expr *IgnoreParenLValueCasts() const {
602    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
603  }
604
605  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
606  /// value (including ptr->int casts of the same size).  Strip off any
607  /// ParenExpr or CastExprs, returning their operand.
608  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
609
610  /// \brief Determine whether this expression is a default function argument.
611  ///
612  /// Default arguments are implicitly generated in the abstract syntax tree
613  /// by semantic analysis for function calls, object constructions, etc. in
614  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
615  /// this routine also looks through any implicit casts to determine whether
616  /// the expression is a default argument.
617  bool isDefaultArgument() const;
618
619  /// \brief Determine whether the result of this expression is a
620  /// temporary object of the given class type.
621  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
622
623  /// \brief Whether this expression is an implicit reference to 'this' in C++.
624  bool isImplicitCXXThis() const;
625
626  const Expr *IgnoreImpCasts() const {
627    return const_cast<Expr*>(this)->IgnoreImpCasts();
628  }
629  const Expr *IgnoreParens() const {
630    return const_cast<Expr*>(this)->IgnoreParens();
631  }
632  const Expr *IgnoreParenCasts() const {
633    return const_cast<Expr*>(this)->IgnoreParenCasts();
634  }
635  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
636    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
637  }
638
639  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
640  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
641
642  static bool classof(const Stmt *T) {
643    return T->getStmtClass() >= firstExprConstant &&
644           T->getStmtClass() <= lastExprConstant;
645  }
646  static bool classof(const Expr *) { return true; }
647};
648
649
650//===----------------------------------------------------------------------===//
651// Primary Expressions.
652//===----------------------------------------------------------------------===//
653
654/// OpaqueValueExpr - An expression referring to an opaque object of a
655/// fixed type and value class.  These don't correspond to concrete
656/// syntax; instead they're used to express operations (usually copy
657/// operations) on values whose source is generally obvious from
658/// context.
659class OpaqueValueExpr : public Expr {
660  friend class ASTStmtReader;
661  Expr *SourceExpr;
662  SourceLocation Loc;
663
664public:
665  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
666                  ExprObjectKind OK = OK_Ordinary)
667    : Expr(OpaqueValueExprClass, T, VK, OK,
668           T->isDependentType(), T->isDependentType(),
669           T->isInstantiationDependentType(),
670           false),
671      SourceExpr(0), Loc(Loc) {
672  }
673
674  /// Given an expression which invokes a copy constructor --- i.e.  a
675  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
676  /// find the OpaqueValueExpr that's the source of the construction.
677  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
678
679  explicit OpaqueValueExpr(EmptyShell Empty)
680    : Expr(OpaqueValueExprClass, Empty) { }
681
682  /// \brief Retrieve the location of this expression.
683  SourceLocation getLocation() const { return Loc; }
684
685  SourceRange getSourceRange() const {
686    if (SourceExpr) return SourceExpr->getSourceRange();
687    return Loc;
688  }
689  SourceLocation getExprLoc() const {
690    if (SourceExpr) return SourceExpr->getExprLoc();
691    return Loc;
692  }
693
694  child_range children() { return child_range(); }
695
696  /// The source expression of an opaque value expression is the
697  /// expression which originally generated the value.  This is
698  /// provided as a convenience for analyses that don't wish to
699  /// precisely model the execution behavior of the program.
700  ///
701  /// The source expression is typically set when building the
702  /// expression which binds the opaque value expression in the first
703  /// place.
704  Expr *getSourceExpr() const { return SourceExpr; }
705  void setSourceExpr(Expr *e) { SourceExpr = e; }
706
707  static bool classof(const Stmt *T) {
708    return T->getStmtClass() == OpaqueValueExprClass;
709  }
710  static bool classof(const OpaqueValueExpr *) { return true; }
711};
712
713/// \brief A reference to a declared variable, function, enum, etc.
714/// [C99 6.5.1p2]
715///
716/// This encodes all the information about how a declaration is referenced
717/// within an expression.
718///
719/// There are several optional constructs attached to DeclRefExprs only when
720/// they apply in order to conserve memory. These are laid out past the end of
721/// the object, and flags in the DeclRefExprBitfield track whether they exist:
722///
723///   DeclRefExprBits.HasQualifier:
724///       Specifies when this declaration reference expression has a C++
725///       nested-name-specifier.
726///   DeclRefExprBits.HasFoundDecl:
727///       Specifies when this declaration reference expression has a record of
728///       a NamedDecl (different from the referenced ValueDecl) which was found
729///       during name lookup and/or overload resolution.
730///   DeclRefExprBits.HasExplicitTemplateArgs:
731///       Specifies when this declaration reference expression has an explicit
732///       C++ template argument list.
733class DeclRefExpr : public Expr {
734  /// \brief The declaration that we are referencing.
735  ValueDecl *D;
736
737  /// \brief The location of the declaration name itself.
738  SourceLocation Loc;
739
740  /// \brief Provides source/type location info for the declaration name
741  /// embedded in D.
742  DeclarationNameLoc DNLoc;
743
744  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
745  NestedNameSpecifierLoc &getInternalQualifierLoc() {
746    assert(hasQualifier());
747    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
748  }
749
750  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
751  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
752    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
753  }
754
755  /// \brief Test whether there is a distinct FoundDecl attached to the end of
756  /// this DRE.
757  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
758
759  /// \brief Helper to retrieve the optional NamedDecl through which this
760  /// reference occured.
761  NamedDecl *&getInternalFoundDecl() {
762    assert(hasFoundDecl());
763    if (hasQualifier())
764      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
765    return *reinterpret_cast<NamedDecl **>(this + 1);
766  }
767
768  /// \brief Helper to retrieve the optional NamedDecl through which this
769  /// reference occured.
770  NamedDecl *getInternalFoundDecl() const {
771    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
772  }
773
774  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
775              ValueDecl *D, const DeclarationNameInfo &NameInfo,
776              NamedDecl *FoundD,
777              const TemplateArgumentListInfo *TemplateArgs,
778              QualType T, ExprValueKind VK);
779
780  /// \brief Construct an empty declaration reference expression.
781  explicit DeclRefExpr(EmptyShell Empty)
782    : Expr(DeclRefExprClass, Empty) { }
783
784  /// \brief Computes the type- and value-dependence flags for this
785  /// declaration reference expression.
786  void computeDependence();
787
788public:
789  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
790              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
791    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
792      D(D), Loc(L), DNLoc(LocInfo) {
793    DeclRefExprBits.HasQualifier = 0;
794    DeclRefExprBits.HasExplicitTemplateArgs = 0;
795    DeclRefExprBits.HasFoundDecl = 0;
796    DeclRefExprBits.HadMultipleCandidates = 0;
797    computeDependence();
798  }
799
800  static DeclRefExpr *Create(ASTContext &Context,
801                             NestedNameSpecifierLoc QualifierLoc,
802                             ValueDecl *D,
803                             SourceLocation NameLoc,
804                             QualType T, ExprValueKind VK,
805                             NamedDecl *FoundD = 0,
806                             const TemplateArgumentListInfo *TemplateArgs = 0);
807
808  static DeclRefExpr *Create(ASTContext &Context,
809                             NestedNameSpecifierLoc QualifierLoc,
810                             ValueDecl *D,
811                             const DeclarationNameInfo &NameInfo,
812                             QualType T, ExprValueKind VK,
813                             NamedDecl *FoundD = 0,
814                             const TemplateArgumentListInfo *TemplateArgs = 0);
815
816  /// \brief Construct an empty declaration reference expression.
817  static DeclRefExpr *CreateEmpty(ASTContext &Context,
818                                  bool HasQualifier,
819                                  bool HasFoundDecl,
820                                  bool HasExplicitTemplateArgs,
821                                  unsigned NumTemplateArgs);
822
823  ValueDecl *getDecl() { return D; }
824  const ValueDecl *getDecl() const { return D; }
825  void setDecl(ValueDecl *NewD) { D = NewD; }
826
827  DeclarationNameInfo getNameInfo() const {
828    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
829  }
830
831  SourceLocation getLocation() const { return Loc; }
832  void setLocation(SourceLocation L) { Loc = L; }
833  SourceRange getSourceRange() const;
834
835  /// \brief Determine whether this declaration reference was preceded by a
836  /// C++ nested-name-specifier, e.g., \c N::foo.
837  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
838
839  /// \brief If the name was qualified, retrieves the nested-name-specifier
840  /// that precedes the name. Otherwise, returns NULL.
841  NestedNameSpecifier *getQualifier() const {
842    if (!hasQualifier())
843      return 0;
844
845    return getInternalQualifierLoc().getNestedNameSpecifier();
846  }
847
848  /// \brief If the name was qualified, retrieves the nested-name-specifier
849  /// that precedes the name, with source-location information.
850  NestedNameSpecifierLoc getQualifierLoc() const {
851    if (!hasQualifier())
852      return NestedNameSpecifierLoc();
853
854    return getInternalQualifierLoc();
855  }
856
857  /// \brief Get the NamedDecl through which this reference occured.
858  ///
859  /// This Decl may be different from the ValueDecl actually referred to in the
860  /// presence of using declarations, etc. It always returns non-NULL, and may
861  /// simple return the ValueDecl when appropriate.
862  NamedDecl *getFoundDecl() {
863    return hasFoundDecl() ? getInternalFoundDecl() : D;
864  }
865
866  /// \brief Get the NamedDecl through which this reference occurred.
867  /// See non-const variant.
868  const NamedDecl *getFoundDecl() const {
869    return hasFoundDecl() ? getInternalFoundDecl() : D;
870  }
871
872  /// \brief Determines whether this declaration reference was followed by an
873  /// explict template argument list.
874  bool hasExplicitTemplateArgs() const {
875    return DeclRefExprBits.HasExplicitTemplateArgs;
876  }
877
878  /// \brief Retrieve the explicit template argument list that followed the
879  /// member template name.
880  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
881    assert(hasExplicitTemplateArgs());
882    if (hasFoundDecl())
883      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
884        &getInternalFoundDecl() + 1);
885
886    if (hasQualifier())
887      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
888        &getInternalQualifierLoc() + 1);
889
890    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
891  }
892
893  /// \brief Retrieve the explicit template argument list that followed the
894  /// member template name.
895  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
896    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
897  }
898
899  /// \brief Retrieves the optional explicit template arguments.
900  /// This points to the same data as getExplicitTemplateArgs(), but
901  /// returns null if there are no explicit template arguments.
902  const ASTTemplateArgumentListInfo *getExplicitTemplateArgsOpt() const {
903    if (!hasExplicitTemplateArgs()) return 0;
904    return &getExplicitTemplateArgs();
905  }
906
907  /// \brief Copies the template arguments (if present) into the given
908  /// structure.
909  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
910    if (hasExplicitTemplateArgs())
911      getExplicitTemplateArgs().copyInto(List);
912  }
913
914  /// \brief Retrieve the location of the left angle bracket following the
915  /// member name ('<'), if any.
916  SourceLocation getLAngleLoc() const {
917    if (!hasExplicitTemplateArgs())
918      return SourceLocation();
919
920    return getExplicitTemplateArgs().LAngleLoc;
921  }
922
923  /// \brief Retrieve the template arguments provided as part of this
924  /// template-id.
925  const TemplateArgumentLoc *getTemplateArgs() const {
926    if (!hasExplicitTemplateArgs())
927      return 0;
928
929    return getExplicitTemplateArgs().getTemplateArgs();
930  }
931
932  /// \brief Retrieve the number of template arguments provided as part of this
933  /// template-id.
934  unsigned getNumTemplateArgs() const {
935    if (!hasExplicitTemplateArgs())
936      return 0;
937
938    return getExplicitTemplateArgs().NumTemplateArgs;
939  }
940
941  /// \brief Retrieve the location of the right angle bracket following the
942  /// template arguments ('>').
943  SourceLocation getRAngleLoc() const {
944    if (!hasExplicitTemplateArgs())
945      return SourceLocation();
946
947    return getExplicitTemplateArgs().RAngleLoc;
948  }
949
950  /// \brief Returns true if this expression refers to a function that
951  /// was resolved from an overloaded set having size greater than 1.
952  bool hadMultipleCandidates() const {
953    return DeclRefExprBits.HadMultipleCandidates;
954  }
955  /// \brief Sets the flag telling whether this expression refers to
956  /// a function that was resolved from an overloaded set having size
957  /// greater than 1.
958  void setHadMultipleCandidates(bool V = true) {
959    DeclRefExprBits.HadMultipleCandidates = V;
960  }
961
962  static bool classof(const Stmt *T) {
963    return T->getStmtClass() == DeclRefExprClass;
964  }
965  static bool classof(const DeclRefExpr *) { return true; }
966
967  // Iterators
968  child_range children() { return child_range(); }
969
970  friend class ASTStmtReader;
971  friend class ASTStmtWriter;
972};
973
974/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
975class PredefinedExpr : public Expr {
976public:
977  enum IdentType {
978    Func,
979    Function,
980    PrettyFunction,
981    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
982    /// 'virtual' keyword is omitted for virtual member functions.
983    PrettyFunctionNoVirtual
984  };
985
986private:
987  SourceLocation Loc;
988  IdentType Type;
989public:
990  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
991    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
992           type->isDependentType(), type->isDependentType(),
993           type->isInstantiationDependentType(),
994           /*ContainsUnexpandedParameterPack=*/false),
995      Loc(l), Type(IT) {}
996
997  /// \brief Construct an empty predefined expression.
998  explicit PredefinedExpr(EmptyShell Empty)
999    : Expr(PredefinedExprClass, Empty) { }
1000
1001  IdentType getIdentType() const { return Type; }
1002  void setIdentType(IdentType IT) { Type = IT; }
1003
1004  SourceLocation getLocation() const { return Loc; }
1005  void setLocation(SourceLocation L) { Loc = L; }
1006
1007  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1008
1009  SourceRange getSourceRange() const { return SourceRange(Loc); }
1010
1011  static bool classof(const Stmt *T) {
1012    return T->getStmtClass() == PredefinedExprClass;
1013  }
1014  static bool classof(const PredefinedExpr *) { return true; }
1015
1016  // Iterators
1017  child_range children() { return child_range(); }
1018};
1019
1020/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1021/// leaking memory.
1022///
1023/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1024/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1025/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1026/// the APFloat/APInt values will never get freed. APNumericStorage uses
1027/// ASTContext's allocator for memory allocation.
1028class APNumericStorage {
1029  unsigned BitWidth;
1030  union {
1031    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1032    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1033  };
1034
1035  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1036
1037  APNumericStorage(const APNumericStorage&); // do not implement
1038  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1039
1040protected:
1041  APNumericStorage() : BitWidth(0), VAL(0) { }
1042
1043  llvm::APInt getIntValue() const {
1044    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1045    if (NumWords > 1)
1046      return llvm::APInt(BitWidth, NumWords, pVal);
1047    else
1048      return llvm::APInt(BitWidth, VAL);
1049  }
1050  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1051};
1052
1053class APIntStorage : public APNumericStorage {
1054public:
1055  llvm::APInt getValue() const { return getIntValue(); }
1056  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1057};
1058
1059class APFloatStorage : public APNumericStorage {
1060public:
1061  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
1062  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1063    setIntValue(C, Val.bitcastToAPInt());
1064  }
1065};
1066
1067class IntegerLiteral : public Expr {
1068  APIntStorage Num;
1069  SourceLocation Loc;
1070
1071  /// \brief Construct an empty integer literal.
1072  explicit IntegerLiteral(EmptyShell Empty)
1073    : Expr(IntegerLiteralClass, Empty) { }
1074
1075public:
1076  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1077  // or UnsignedLongLongTy
1078  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1079                 QualType type, SourceLocation l)
1080    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1081           false, false),
1082      Loc(l) {
1083    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1084    assert(V.getBitWidth() == C.getIntWidth(type) &&
1085           "Integer type is not the correct size for constant.");
1086    setValue(C, V);
1087  }
1088
1089  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1090  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1091  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1092  /// \param V - the value that the returned integer literal contains.
1093  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1094                                QualType type, SourceLocation l);
1095  /// \brief Returns a new empty integer literal.
1096  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1097
1098  llvm::APInt getValue() const { return Num.getValue(); }
1099  SourceRange getSourceRange() const { return SourceRange(Loc); }
1100
1101  /// \brief Retrieve the location of the literal.
1102  SourceLocation getLocation() const { return Loc; }
1103
1104  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1105  void setLocation(SourceLocation Location) { Loc = Location; }
1106
1107  static bool classof(const Stmt *T) {
1108    return T->getStmtClass() == IntegerLiteralClass;
1109  }
1110  static bool classof(const IntegerLiteral *) { return true; }
1111
1112  // Iterators
1113  child_range children() { return child_range(); }
1114};
1115
1116class CharacterLiteral : public Expr {
1117public:
1118  enum CharacterKind {
1119    Ascii,
1120    Wide,
1121    UTF16,
1122    UTF32
1123  };
1124
1125private:
1126  unsigned Value;
1127  SourceLocation Loc;
1128  unsigned Kind : 2;
1129public:
1130  // type should be IntTy
1131  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1132                   SourceLocation l)
1133    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1134           false, false),
1135      Value(value), Loc(l), Kind(kind) {
1136  }
1137
1138  /// \brief Construct an empty character literal.
1139  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1140
1141  SourceLocation getLocation() const { return Loc; }
1142  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1143
1144  SourceRange getSourceRange() const { return SourceRange(Loc); }
1145
1146  unsigned getValue() const { return Value; }
1147
1148  void setLocation(SourceLocation Location) { Loc = Location; }
1149  void setKind(CharacterKind kind) { Kind = kind; }
1150  void setValue(unsigned Val) { Value = Val; }
1151
1152  static bool classof(const Stmt *T) {
1153    return T->getStmtClass() == CharacterLiteralClass;
1154  }
1155  static bool classof(const CharacterLiteral *) { return true; }
1156
1157  // Iterators
1158  child_range children() { return child_range(); }
1159};
1160
1161class FloatingLiteral : public Expr {
1162  APFloatStorage Num;
1163  bool IsExact : 1;
1164  SourceLocation Loc;
1165
1166  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1167                  QualType Type, SourceLocation L)
1168    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1169           false, false),
1170      IsExact(isexact), Loc(L) {
1171    setValue(C, V);
1172  }
1173
1174  /// \brief Construct an empty floating-point literal.
1175  explicit FloatingLiteral(EmptyShell Empty)
1176    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1177
1178public:
1179  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1180                                 bool isexact, QualType Type, SourceLocation L);
1181  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1182
1183  llvm::APFloat getValue() const { return Num.getValue(); }
1184  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1185    Num.setValue(C, Val);
1186  }
1187
1188  bool isExact() const { return IsExact; }
1189  void setExact(bool E) { IsExact = E; }
1190
1191  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1192  /// double.  Note that this may cause loss of precision, but is useful for
1193  /// debugging dumps, etc.
1194  double getValueAsApproximateDouble() const;
1195
1196  SourceLocation getLocation() const { return Loc; }
1197  void setLocation(SourceLocation L) { Loc = L; }
1198
1199  SourceRange getSourceRange() const { return SourceRange(Loc); }
1200
1201  static bool classof(const Stmt *T) {
1202    return T->getStmtClass() == FloatingLiteralClass;
1203  }
1204  static bool classof(const FloatingLiteral *) { return true; }
1205
1206  // Iterators
1207  child_range children() { return child_range(); }
1208};
1209
1210/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1211/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1212/// IntegerLiteral classes.  Instances of this class always have a Complex type
1213/// whose element type matches the subexpression.
1214///
1215class ImaginaryLiteral : public Expr {
1216  Stmt *Val;
1217public:
1218  ImaginaryLiteral(Expr *val, QualType Ty)
1219    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1220           false, false),
1221      Val(val) {}
1222
1223  /// \brief Build an empty imaginary literal.
1224  explicit ImaginaryLiteral(EmptyShell Empty)
1225    : Expr(ImaginaryLiteralClass, Empty) { }
1226
1227  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1228  Expr *getSubExpr() { return cast<Expr>(Val); }
1229  void setSubExpr(Expr *E) { Val = E; }
1230
1231  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1232  static bool classof(const Stmt *T) {
1233    return T->getStmtClass() == ImaginaryLiteralClass;
1234  }
1235  static bool classof(const ImaginaryLiteral *) { return true; }
1236
1237  // Iterators
1238  child_range children() { return child_range(&Val, &Val+1); }
1239};
1240
1241/// StringLiteral - This represents a string literal expression, e.g. "foo"
1242/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1243/// is NOT null-terminated, and the length of the string is determined by
1244/// calling getByteLength().  The C type for a string is always a
1245/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1246/// not.
1247///
1248/// Note that strings in C can be formed by concatenation of multiple string
1249/// literal pptokens in translation phase #6.  This keeps track of the locations
1250/// of each of these pieces.
1251///
1252/// Strings in C can also be truncated and extended by assigning into arrays,
1253/// e.g. with constructs like:
1254///   char X[2] = "foobar";
1255/// In this case, getByteLength() will return 6, but the string literal will
1256/// have type "char[2]".
1257class StringLiteral : public Expr {
1258public:
1259  enum StringKind {
1260    Ascii,
1261    Wide,
1262    UTF8,
1263    UTF16,
1264    UTF32
1265  };
1266
1267private:
1268  friend class ASTStmtReader;
1269
1270  union {
1271    const char *asChar;
1272    const uint16_t *asUInt16;
1273    const uint32_t *asUInt32;
1274  } StrData;
1275  unsigned Length;
1276  unsigned CharByteWidth;
1277  unsigned NumConcatenated;
1278  unsigned Kind : 3;
1279  bool IsPascal : 1;
1280  SourceLocation TokLocs[1];
1281
1282  StringLiteral(QualType Ty) :
1283    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1284         false) {}
1285
1286  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1287
1288public:
1289  /// This is the "fully general" constructor that allows representation of
1290  /// strings formed from multiple concatenated tokens.
1291  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1292                               bool Pascal, QualType Ty,
1293                               const SourceLocation *Loc, unsigned NumStrs);
1294
1295  /// Simple constructor for string literals made from one token.
1296  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1297                               bool Pascal, QualType Ty,
1298                               SourceLocation Loc) {
1299    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1300  }
1301
1302  /// \brief Construct an empty string literal.
1303  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1304
1305  StringRef getString() const {
1306    assert(CharByteWidth==1
1307           && "This function is used in places that assume strings use char");
1308    return StringRef(StrData.asChar, getByteLength());
1309  }
1310
1311  /// Allow clients that need the byte representation, such as ASTWriterStmt
1312  /// ::VisitStringLiteral(), access.
1313  StringRef getBytes() const {
1314    // FIXME: StringRef may not be the right type to use as a result for this...
1315    assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
1316           && "unsupported CharByteWidth");
1317    if (CharByteWidth==4) {
1318      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1319                       getByteLength());
1320    } else if (CharByteWidth==2) {
1321      return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1322                       getByteLength());
1323    } else {
1324      return StringRef(StrData.asChar, getByteLength());
1325    }
1326  }
1327
1328  uint32_t getCodeUnit(size_t i) const {
1329    assert(i<Length && "out of bounds access");
1330    assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
1331           && "unsupported CharByteWidth");
1332    if (CharByteWidth==4) {
1333      return StrData.asUInt32[i];
1334    } else if (CharByteWidth==2) {
1335      return StrData.asUInt16[i];
1336    } else {
1337      return static_cast<unsigned char>(StrData.asChar[i]);
1338    }
1339  }
1340
1341  unsigned getByteLength() const { return CharByteWidth*Length; }
1342  unsigned getLength() const { return Length; }
1343  unsigned getCharByteWidth() const { return CharByteWidth; }
1344
1345  /// \brief Sets the string data to the given string data.
1346  void setString(ASTContext &C, StringRef Str,
1347                 StringKind Kind, bool IsPascal);
1348
1349  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1350
1351
1352  bool isAscii() const { return Kind == Ascii; }
1353  bool isWide() const { return Kind == Wide; }
1354  bool isUTF8() const { return Kind == UTF8; }
1355  bool isUTF16() const { return Kind == UTF16; }
1356  bool isUTF32() const { return Kind == UTF32; }
1357  bool isPascal() const { return IsPascal; }
1358
1359  bool containsNonAsciiOrNull() const {
1360    StringRef Str = getString();
1361    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1362      if (!isascii(Str[i]) || !Str[i])
1363        return true;
1364    return false;
1365  }
1366
1367  /// getNumConcatenated - Get the number of string literal tokens that were
1368  /// concatenated in translation phase #6 to form this string literal.
1369  unsigned getNumConcatenated() const { return NumConcatenated; }
1370
1371  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1372    assert(TokNum < NumConcatenated && "Invalid tok number");
1373    return TokLocs[TokNum];
1374  }
1375  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1376    assert(TokNum < NumConcatenated && "Invalid tok number");
1377    TokLocs[TokNum] = L;
1378  }
1379
1380  /// getLocationOfByte - Return a source location that points to the specified
1381  /// byte of this string literal.
1382  ///
1383  /// Strings are amazingly complex.  They can be formed from multiple tokens
1384  /// and can have escape sequences in them in addition to the usual trigraph
1385  /// and escaped newline business.  This routine handles this complexity.
1386  ///
1387  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1388                                   const LangOptions &Features,
1389                                   const TargetInfo &Target) const;
1390
1391  typedef const SourceLocation *tokloc_iterator;
1392  tokloc_iterator tokloc_begin() const { return TokLocs; }
1393  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1394
1395  SourceRange getSourceRange() const {
1396    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1397  }
1398  static bool classof(const Stmt *T) {
1399    return T->getStmtClass() == StringLiteralClass;
1400  }
1401  static bool classof(const StringLiteral *) { return true; }
1402
1403  // Iterators
1404  child_range children() { return child_range(); }
1405};
1406
1407/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1408/// AST node is only formed if full location information is requested.
1409class ParenExpr : public Expr {
1410  SourceLocation L, R;
1411  Stmt *Val;
1412public:
1413  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1414    : Expr(ParenExprClass, val->getType(),
1415           val->getValueKind(), val->getObjectKind(),
1416           val->isTypeDependent(), val->isValueDependent(),
1417           val->isInstantiationDependent(),
1418           val->containsUnexpandedParameterPack()),
1419      L(l), R(r), Val(val) {}
1420
1421  /// \brief Construct an empty parenthesized expression.
1422  explicit ParenExpr(EmptyShell Empty)
1423    : Expr(ParenExprClass, Empty) { }
1424
1425  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1426  Expr *getSubExpr() { return cast<Expr>(Val); }
1427  void setSubExpr(Expr *E) { Val = E; }
1428
1429  SourceRange getSourceRange() const { return SourceRange(L, R); }
1430
1431  /// \brief Get the location of the left parentheses '('.
1432  SourceLocation getLParen() const { return L; }
1433  void setLParen(SourceLocation Loc) { L = Loc; }
1434
1435  /// \brief Get the location of the right parentheses ')'.
1436  SourceLocation getRParen() const { return R; }
1437  void setRParen(SourceLocation Loc) { R = Loc; }
1438
1439  static bool classof(const Stmt *T) {
1440    return T->getStmtClass() == ParenExprClass;
1441  }
1442  static bool classof(const ParenExpr *) { return true; }
1443
1444  // Iterators
1445  child_range children() { return child_range(&Val, &Val+1); }
1446};
1447
1448
1449/// UnaryOperator - This represents the unary-expression's (except sizeof and
1450/// alignof), the postinc/postdec operators from postfix-expression, and various
1451/// extensions.
1452///
1453/// Notes on various nodes:
1454///
1455/// Real/Imag - These return the real/imag part of a complex operand.  If
1456///   applied to a non-complex value, the former returns its operand and the
1457///   later returns zero in the type of the operand.
1458///
1459class UnaryOperator : public Expr {
1460public:
1461  typedef UnaryOperatorKind Opcode;
1462
1463private:
1464  unsigned Opc : 5;
1465  SourceLocation Loc;
1466  Stmt *Val;
1467public:
1468
1469  UnaryOperator(Expr *input, Opcode opc, QualType type,
1470                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1471    : Expr(UnaryOperatorClass, type, VK, OK,
1472           input->isTypeDependent() || type->isDependentType(),
1473           input->isValueDependent(),
1474           (input->isInstantiationDependent() ||
1475            type->isInstantiationDependentType()),
1476           input->containsUnexpandedParameterPack()),
1477      Opc(opc), Loc(l), Val(input) {}
1478
1479  /// \brief Build an empty unary operator.
1480  explicit UnaryOperator(EmptyShell Empty)
1481    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1482
1483  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1484  void setOpcode(Opcode O) { Opc = O; }
1485
1486  Expr *getSubExpr() const { return cast<Expr>(Val); }
1487  void setSubExpr(Expr *E) { Val = E; }
1488
1489  /// getOperatorLoc - Return the location of the operator.
1490  SourceLocation getOperatorLoc() const { return Loc; }
1491  void setOperatorLoc(SourceLocation L) { Loc = L; }
1492
1493  /// isPostfix - Return true if this is a postfix operation, like x++.
1494  static bool isPostfix(Opcode Op) {
1495    return Op == UO_PostInc || Op == UO_PostDec;
1496  }
1497
1498  /// isPrefix - Return true if this is a prefix operation, like --x.
1499  static bool isPrefix(Opcode Op) {
1500    return Op == UO_PreInc || Op == UO_PreDec;
1501  }
1502
1503  bool isPrefix() const { return isPrefix(getOpcode()); }
1504  bool isPostfix() const { return isPostfix(getOpcode()); }
1505
1506  static bool isIncrementOp(Opcode Op) {
1507    return Op == UO_PreInc || Op == UO_PostInc;
1508  }
1509  bool isIncrementOp() const {
1510    return isIncrementOp(getOpcode());
1511  }
1512
1513  static bool isDecrementOp(Opcode Op) {
1514    return Op == UO_PreDec || Op == UO_PostDec;
1515  }
1516  bool isDecrementOp() const {
1517    return isDecrementOp(getOpcode());
1518  }
1519
1520  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1521  bool isIncrementDecrementOp() const {
1522    return isIncrementDecrementOp(getOpcode());
1523  }
1524
1525  static bool isArithmeticOp(Opcode Op) {
1526    return Op >= UO_Plus && Op <= UO_LNot;
1527  }
1528  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1529
1530  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1531  /// corresponds to, e.g. "sizeof" or "[pre]++"
1532  static const char *getOpcodeStr(Opcode Op);
1533
1534  /// \brief Retrieve the unary opcode that corresponds to the given
1535  /// overloaded operator.
1536  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1537
1538  /// \brief Retrieve the overloaded operator kind that corresponds to
1539  /// the given unary opcode.
1540  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1541
1542  SourceRange getSourceRange() const {
1543    if (isPostfix())
1544      return SourceRange(Val->getLocStart(), Loc);
1545    else
1546      return SourceRange(Loc, Val->getLocEnd());
1547  }
1548  SourceLocation getExprLoc() const { return Loc; }
1549
1550  static bool classof(const Stmt *T) {
1551    return T->getStmtClass() == UnaryOperatorClass;
1552  }
1553  static bool classof(const UnaryOperator *) { return true; }
1554
1555  // Iterators
1556  child_range children() { return child_range(&Val, &Val+1); }
1557};
1558
1559/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1560/// offsetof(record-type, member-designator). For example, given:
1561/// @code
1562/// struct S {
1563///   float f;
1564///   double d;
1565/// };
1566/// struct T {
1567///   int i;
1568///   struct S s[10];
1569/// };
1570/// @endcode
1571/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1572
1573class OffsetOfExpr : public Expr {
1574public:
1575  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1576  class OffsetOfNode {
1577  public:
1578    /// \brief The kind of offsetof node we have.
1579    enum Kind {
1580      /// \brief An index into an array.
1581      Array = 0x00,
1582      /// \brief A field.
1583      Field = 0x01,
1584      /// \brief A field in a dependent type, known only by its name.
1585      Identifier = 0x02,
1586      /// \brief An implicit indirection through a C++ base class, when the
1587      /// field found is in a base class.
1588      Base = 0x03
1589    };
1590
1591  private:
1592    enum { MaskBits = 2, Mask = 0x03 };
1593
1594    /// \brief The source range that covers this part of the designator.
1595    SourceRange Range;
1596
1597    /// \brief The data describing the designator, which comes in three
1598    /// different forms, depending on the lower two bits.
1599    ///   - An unsigned index into the array of Expr*'s stored after this node
1600    ///     in memory, for [constant-expression] designators.
1601    ///   - A FieldDecl*, for references to a known field.
1602    ///   - An IdentifierInfo*, for references to a field with a given name
1603    ///     when the class type is dependent.
1604    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1605    ///     base class.
1606    uintptr_t Data;
1607
1608  public:
1609    /// \brief Create an offsetof node that refers to an array element.
1610    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1611                 SourceLocation RBracketLoc)
1612      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1613
1614    /// \brief Create an offsetof node that refers to a field.
1615    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1616                 SourceLocation NameLoc)
1617      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1618        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1619
1620    /// \brief Create an offsetof node that refers to an identifier.
1621    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1622                 SourceLocation NameLoc)
1623      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1624        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1625
1626    /// \brief Create an offsetof node that refers into a C++ base class.
1627    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1628      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1629
1630    /// \brief Determine what kind of offsetof node this is.
1631    Kind getKind() const {
1632      return static_cast<Kind>(Data & Mask);
1633    }
1634
1635    /// \brief For an array element node, returns the index into the array
1636    /// of expressions.
1637    unsigned getArrayExprIndex() const {
1638      assert(getKind() == Array);
1639      return Data >> 2;
1640    }
1641
1642    /// \brief For a field offsetof node, returns the field.
1643    FieldDecl *getField() const {
1644      assert(getKind() == Field);
1645      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1646    }
1647
1648    /// \brief For a field or identifier offsetof node, returns the name of
1649    /// the field.
1650    IdentifierInfo *getFieldName() const;
1651
1652    /// \brief For a base class node, returns the base specifier.
1653    CXXBaseSpecifier *getBase() const {
1654      assert(getKind() == Base);
1655      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1656    }
1657
1658    /// \brief Retrieve the source range that covers this offsetof node.
1659    ///
1660    /// For an array element node, the source range contains the locations of
1661    /// the square brackets. For a field or identifier node, the source range
1662    /// contains the location of the period (if there is one) and the
1663    /// identifier.
1664    SourceRange getSourceRange() const { return Range; }
1665  };
1666
1667private:
1668
1669  SourceLocation OperatorLoc, RParenLoc;
1670  // Base type;
1671  TypeSourceInfo *TSInfo;
1672  // Number of sub-components (i.e. instances of OffsetOfNode).
1673  unsigned NumComps;
1674  // Number of sub-expressions (i.e. array subscript expressions).
1675  unsigned NumExprs;
1676
1677  OffsetOfExpr(ASTContext &C, QualType type,
1678               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1679               OffsetOfNode* compsPtr, unsigned numComps,
1680               Expr** exprsPtr, unsigned numExprs,
1681               SourceLocation RParenLoc);
1682
1683  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1684    : Expr(OffsetOfExprClass, EmptyShell()),
1685      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1686
1687public:
1688
1689  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1690                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1691                              OffsetOfNode* compsPtr, unsigned numComps,
1692                              Expr** exprsPtr, unsigned numExprs,
1693                              SourceLocation RParenLoc);
1694
1695  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1696                                   unsigned NumComps, unsigned NumExprs);
1697
1698  /// getOperatorLoc - Return the location of the operator.
1699  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1700  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1701
1702  /// \brief Return the location of the right parentheses.
1703  SourceLocation getRParenLoc() const { return RParenLoc; }
1704  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1705
1706  TypeSourceInfo *getTypeSourceInfo() const {
1707    return TSInfo;
1708  }
1709  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1710    TSInfo = tsi;
1711  }
1712
1713  const OffsetOfNode &getComponent(unsigned Idx) const {
1714    assert(Idx < NumComps && "Subscript out of range");
1715    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1716  }
1717
1718  void setComponent(unsigned Idx, OffsetOfNode ON) {
1719    assert(Idx < NumComps && "Subscript out of range");
1720    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1721  }
1722
1723  unsigned getNumComponents() const {
1724    return NumComps;
1725  }
1726
1727  Expr* getIndexExpr(unsigned Idx) {
1728    assert(Idx < NumExprs && "Subscript out of range");
1729    return reinterpret_cast<Expr **>(
1730                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1731  }
1732  const Expr *getIndexExpr(unsigned Idx) const {
1733    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1734  }
1735
1736  void setIndexExpr(unsigned Idx, Expr* E) {
1737    assert(Idx < NumComps && "Subscript out of range");
1738    reinterpret_cast<Expr **>(
1739                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1740  }
1741
1742  unsigned getNumExpressions() const {
1743    return NumExprs;
1744  }
1745
1746  SourceRange getSourceRange() const {
1747    return SourceRange(OperatorLoc, RParenLoc);
1748  }
1749
1750  static bool classof(const Stmt *T) {
1751    return T->getStmtClass() == OffsetOfExprClass;
1752  }
1753
1754  static bool classof(const OffsetOfExpr *) { return true; }
1755
1756  // Iterators
1757  child_range children() {
1758    Stmt **begin =
1759      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1760                               + NumComps);
1761    return child_range(begin, begin + NumExprs);
1762  }
1763};
1764
1765/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1766/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1767/// vec_step (OpenCL 1.1 6.11.12).
1768class UnaryExprOrTypeTraitExpr : public Expr {
1769  unsigned Kind : 2;
1770  bool isType : 1;    // true if operand is a type, false if an expression
1771  union {
1772    TypeSourceInfo *Ty;
1773    Stmt *Ex;
1774  } Argument;
1775  SourceLocation OpLoc, RParenLoc;
1776
1777public:
1778  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1779                           QualType resultType, SourceLocation op,
1780                           SourceLocation rp) :
1781      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1782           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1783           // Value-dependent if the argument is type-dependent.
1784           TInfo->getType()->isDependentType(),
1785           TInfo->getType()->isInstantiationDependentType(),
1786           TInfo->getType()->containsUnexpandedParameterPack()),
1787      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1788    Argument.Ty = TInfo;
1789  }
1790
1791  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1792                           QualType resultType, SourceLocation op,
1793                           SourceLocation rp) :
1794      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1795           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1796           // Value-dependent if the argument is type-dependent.
1797           E->isTypeDependent(),
1798           E->isInstantiationDependent(),
1799           E->containsUnexpandedParameterPack()),
1800      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1801    Argument.Ex = E;
1802  }
1803
1804  /// \brief Construct an empty sizeof/alignof expression.
1805  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1806    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1807
1808  UnaryExprOrTypeTrait getKind() const {
1809    return static_cast<UnaryExprOrTypeTrait>(Kind);
1810  }
1811  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1812
1813  bool isArgumentType() const { return isType; }
1814  QualType getArgumentType() const {
1815    return getArgumentTypeInfo()->getType();
1816  }
1817  TypeSourceInfo *getArgumentTypeInfo() const {
1818    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1819    return Argument.Ty;
1820  }
1821  Expr *getArgumentExpr() {
1822    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1823    return static_cast<Expr*>(Argument.Ex);
1824  }
1825  const Expr *getArgumentExpr() const {
1826    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1827  }
1828
1829  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1830  void setArgument(TypeSourceInfo *TInfo) {
1831    Argument.Ty = TInfo;
1832    isType = true;
1833  }
1834
1835  /// Gets the argument type, or the type of the argument expression, whichever
1836  /// is appropriate.
1837  QualType getTypeOfArgument() const {
1838    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1839  }
1840
1841  SourceLocation getOperatorLoc() const { return OpLoc; }
1842  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1843
1844  SourceLocation getRParenLoc() const { return RParenLoc; }
1845  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1846
1847  SourceRange getSourceRange() const {
1848    return SourceRange(OpLoc, RParenLoc);
1849  }
1850
1851  static bool classof(const Stmt *T) {
1852    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1853  }
1854  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1855
1856  // Iterators
1857  child_range children();
1858};
1859
1860//===----------------------------------------------------------------------===//
1861// Postfix Operators.
1862//===----------------------------------------------------------------------===//
1863
1864/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1865class ArraySubscriptExpr : public Expr {
1866  enum { LHS, RHS, END_EXPR=2 };
1867  Stmt* SubExprs[END_EXPR];
1868  SourceLocation RBracketLoc;
1869public:
1870  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1871                     ExprValueKind VK, ExprObjectKind OK,
1872                     SourceLocation rbracketloc)
1873  : Expr(ArraySubscriptExprClass, t, VK, OK,
1874         lhs->isTypeDependent() || rhs->isTypeDependent(),
1875         lhs->isValueDependent() || rhs->isValueDependent(),
1876         (lhs->isInstantiationDependent() ||
1877          rhs->isInstantiationDependent()),
1878         (lhs->containsUnexpandedParameterPack() ||
1879          rhs->containsUnexpandedParameterPack())),
1880    RBracketLoc(rbracketloc) {
1881    SubExprs[LHS] = lhs;
1882    SubExprs[RHS] = rhs;
1883  }
1884
1885  /// \brief Create an empty array subscript expression.
1886  explicit ArraySubscriptExpr(EmptyShell Shell)
1887    : Expr(ArraySubscriptExprClass, Shell) { }
1888
1889  /// An array access can be written A[4] or 4[A] (both are equivalent).
1890  /// - getBase() and getIdx() always present the normalized view: A[4].
1891  ///    In this case getBase() returns "A" and getIdx() returns "4".
1892  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1893  ///    4[A] getLHS() returns "4".
1894  /// Note: Because vector element access is also written A[4] we must
1895  /// predicate the format conversion in getBase and getIdx only on the
1896  /// the type of the RHS, as it is possible for the LHS to be a vector of
1897  /// integer type
1898  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1899  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1900  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1901
1902  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1903  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1904  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1905
1906  Expr *getBase() {
1907    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1908  }
1909
1910  const Expr *getBase() const {
1911    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1912  }
1913
1914  Expr *getIdx() {
1915    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1916  }
1917
1918  const Expr *getIdx() const {
1919    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1920  }
1921
1922  SourceRange getSourceRange() const {
1923    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1924  }
1925
1926  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1927  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1928
1929  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1930
1931  static bool classof(const Stmt *T) {
1932    return T->getStmtClass() == ArraySubscriptExprClass;
1933  }
1934  static bool classof(const ArraySubscriptExpr *) { return true; }
1935
1936  // Iterators
1937  child_range children() {
1938    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1939  }
1940};
1941
1942
1943/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1944/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1945/// while its subclasses may represent alternative syntax that (semantically)
1946/// results in a function call. For example, CXXOperatorCallExpr is
1947/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1948/// "str1 + str2" to resolve to a function call.
1949class CallExpr : public Expr {
1950  enum { FN=0, PREARGS_START=1 };
1951  Stmt **SubExprs;
1952  unsigned NumArgs;
1953  SourceLocation RParenLoc;
1954
1955protected:
1956  // These versions of the constructor are for derived classes.
1957  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1958           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1959           SourceLocation rparenloc);
1960  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1961
1962  Stmt *getPreArg(unsigned i) {
1963    assert(i < getNumPreArgs() && "Prearg access out of range!");
1964    return SubExprs[PREARGS_START+i];
1965  }
1966  const Stmt *getPreArg(unsigned i) const {
1967    assert(i < getNumPreArgs() && "Prearg access out of range!");
1968    return SubExprs[PREARGS_START+i];
1969  }
1970  void setPreArg(unsigned i, Stmt *PreArg) {
1971    assert(i < getNumPreArgs() && "Prearg access out of range!");
1972    SubExprs[PREARGS_START+i] = PreArg;
1973  }
1974
1975  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1976
1977public:
1978  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1979           ExprValueKind VK, SourceLocation rparenloc);
1980
1981  /// \brief Build an empty call expression.
1982  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1983
1984  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1985  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1986  void setCallee(Expr *F) { SubExprs[FN] = F; }
1987
1988  Decl *getCalleeDecl();
1989  const Decl *getCalleeDecl() const {
1990    return const_cast<CallExpr*>(this)->getCalleeDecl();
1991  }
1992
1993  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1994  FunctionDecl *getDirectCallee();
1995  const FunctionDecl *getDirectCallee() const {
1996    return const_cast<CallExpr*>(this)->getDirectCallee();
1997  }
1998
1999  /// getNumArgs - Return the number of actual arguments to this call.
2000  ///
2001  unsigned getNumArgs() const { return NumArgs; }
2002
2003  /// \brief Retrieve the call arguments.
2004  Expr **getArgs() {
2005    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2006  }
2007  const Expr *const *getArgs() const {
2008    return const_cast<CallExpr*>(this)->getArgs();
2009  }
2010
2011  /// getArg - Return the specified argument.
2012  Expr *getArg(unsigned Arg) {
2013    assert(Arg < NumArgs && "Arg access out of range!");
2014    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2015  }
2016  const Expr *getArg(unsigned Arg) const {
2017    assert(Arg < NumArgs && "Arg access out of range!");
2018    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2019  }
2020
2021  /// setArg - Set the specified argument.
2022  void setArg(unsigned Arg, Expr *ArgExpr) {
2023    assert(Arg < NumArgs && "Arg access out of range!");
2024    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2025  }
2026
2027  /// setNumArgs - This changes the number of arguments present in this call.
2028  /// Any orphaned expressions are deleted by this, and any new operands are set
2029  /// to null.
2030  void setNumArgs(ASTContext& C, unsigned NumArgs);
2031
2032  typedef ExprIterator arg_iterator;
2033  typedef ConstExprIterator const_arg_iterator;
2034
2035  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2036  arg_iterator arg_end() {
2037    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2038  }
2039  const_arg_iterator arg_begin() const {
2040    return SubExprs+PREARGS_START+getNumPreArgs();
2041  }
2042  const_arg_iterator arg_end() const {
2043    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2044  }
2045
2046  /// getNumCommas - Return the number of commas that must have been present in
2047  /// this function call.
2048  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2049
2050  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2051  /// not, return 0.
2052  unsigned isBuiltinCall() const;
2053
2054  /// getCallReturnType - Get the return type of the call expr. This is not
2055  /// always the type of the expr itself, if the return type is a reference
2056  /// type.
2057  QualType getCallReturnType() const;
2058
2059  SourceLocation getRParenLoc() const { return RParenLoc; }
2060  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2061
2062  SourceRange getSourceRange() const;
2063
2064  static bool classof(const Stmt *T) {
2065    return T->getStmtClass() >= firstCallExprConstant &&
2066           T->getStmtClass() <= lastCallExprConstant;
2067  }
2068  static bool classof(const CallExpr *) { return true; }
2069
2070  // Iterators
2071  child_range children() {
2072    return child_range(&SubExprs[0],
2073                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2074  }
2075};
2076
2077/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2078///
2079class MemberExpr : public Expr {
2080  /// Extra data stored in some member expressions.
2081  struct MemberNameQualifier {
2082    /// \brief The nested-name-specifier that qualifies the name, including
2083    /// source-location information.
2084    NestedNameSpecifierLoc QualifierLoc;
2085
2086    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2087    /// name qualifiers.
2088    DeclAccessPair FoundDecl;
2089  };
2090
2091  /// Base - the expression for the base pointer or structure references.  In
2092  /// X.F, this is "X".
2093  Stmt *Base;
2094
2095  /// MemberDecl - This is the decl being referenced by the field/member name.
2096  /// In X.F, this is the decl referenced by F.
2097  ValueDecl *MemberDecl;
2098
2099  /// MemberLoc - This is the location of the member name.
2100  SourceLocation MemberLoc;
2101
2102  /// MemberDNLoc - Provides source/type location info for the
2103  /// declaration name embedded in MemberDecl.
2104  DeclarationNameLoc MemberDNLoc;
2105
2106  /// IsArrow - True if this is "X->F", false if this is "X.F".
2107  bool IsArrow : 1;
2108
2109  /// \brief True if this member expression used a nested-name-specifier to
2110  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2111  /// declaration.  When true, a MemberNameQualifier
2112  /// structure is allocated immediately after the MemberExpr.
2113  bool HasQualifierOrFoundDecl : 1;
2114
2115  /// \brief True if this member expression specified a template argument list
2116  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
2117  /// structure (and its TemplateArguments) are allocated immediately after
2118  /// the MemberExpr or, if the member expression also has a qualifier, after
2119  /// the MemberNameQualifier structure.
2120  bool HasExplicitTemplateArgumentList : 1;
2121
2122  /// \brief True if this member expression refers to a method that
2123  /// was resolved from an overloaded set having size greater than 1.
2124  bool HadMultipleCandidates : 1;
2125
2126  /// \brief Retrieve the qualifier that preceded the member name, if any.
2127  MemberNameQualifier *getMemberQualifier() {
2128    assert(HasQualifierOrFoundDecl);
2129    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2130  }
2131
2132  /// \brief Retrieve the qualifier that preceded the member name, if any.
2133  const MemberNameQualifier *getMemberQualifier() const {
2134    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2135  }
2136
2137public:
2138  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2139             const DeclarationNameInfo &NameInfo, QualType ty,
2140             ExprValueKind VK, ExprObjectKind OK)
2141    : Expr(MemberExprClass, ty, VK, OK,
2142           base->isTypeDependent(),
2143           base->isValueDependent(),
2144           base->isInstantiationDependent(),
2145           base->containsUnexpandedParameterPack()),
2146      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2147      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2148      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2149      HadMultipleCandidates(false) {
2150    assert(memberdecl->getDeclName() == NameInfo.getName());
2151  }
2152
2153  // NOTE: this constructor should be used only when it is known that
2154  // the member name can not provide additional syntactic info
2155  // (i.e., source locations for C++ operator names or type source info
2156  // for constructors, destructors and conversion oeprators).
2157  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2158             SourceLocation l, QualType ty,
2159             ExprValueKind VK, ExprObjectKind OK)
2160    : Expr(MemberExprClass, ty, VK, OK,
2161           base->isTypeDependent(), base->isValueDependent(),
2162           base->isInstantiationDependent(),
2163           base->containsUnexpandedParameterPack()),
2164      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2165      IsArrow(isarrow),
2166      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2167      HadMultipleCandidates(false) {}
2168
2169  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2170                            NestedNameSpecifierLoc QualifierLoc,
2171                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2172                            DeclarationNameInfo MemberNameInfo,
2173                            const TemplateArgumentListInfo *targs,
2174                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2175
2176  void setBase(Expr *E) { Base = E; }
2177  Expr *getBase() const { return cast<Expr>(Base); }
2178
2179  /// \brief Retrieve the member declaration to which this expression refers.
2180  ///
2181  /// The returned declaration will either be a FieldDecl or (in C++)
2182  /// a CXXMethodDecl.
2183  ValueDecl *getMemberDecl() const { return MemberDecl; }
2184  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2185
2186  /// \brief Retrieves the declaration found by lookup.
2187  DeclAccessPair getFoundDecl() const {
2188    if (!HasQualifierOrFoundDecl)
2189      return DeclAccessPair::make(getMemberDecl(),
2190                                  getMemberDecl()->getAccess());
2191    return getMemberQualifier()->FoundDecl;
2192  }
2193
2194  /// \brief Determines whether this member expression actually had
2195  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2196  /// x->Base::foo.
2197  bool hasQualifier() const { return getQualifier() != 0; }
2198
2199  /// \brief If the member name was qualified, retrieves the
2200  /// nested-name-specifier that precedes the member name. Otherwise, returns
2201  /// NULL.
2202  NestedNameSpecifier *getQualifier() const {
2203    if (!HasQualifierOrFoundDecl)
2204      return 0;
2205
2206    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2207  }
2208
2209  /// \brief If the member name was qualified, retrieves the
2210  /// nested-name-specifier that precedes the member name, with source-location
2211  /// information.
2212  NestedNameSpecifierLoc getQualifierLoc() const {
2213    if (!hasQualifier())
2214      return NestedNameSpecifierLoc();
2215
2216    return getMemberQualifier()->QualifierLoc;
2217  }
2218
2219  /// \brief Determines whether this member expression actually had a C++
2220  /// template argument list explicitly specified, e.g., x.f<int>.
2221  bool hasExplicitTemplateArgs() const {
2222    return HasExplicitTemplateArgumentList;
2223  }
2224
2225  /// \brief Copies the template arguments (if present) into the given
2226  /// structure.
2227  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2228    if (hasExplicitTemplateArgs())
2229      getExplicitTemplateArgs().copyInto(List);
2230  }
2231
2232  /// \brief Retrieve the explicit template argument list that
2233  /// follow the member template name.  This must only be called on an
2234  /// expression with explicit template arguments.
2235  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2236    assert(HasExplicitTemplateArgumentList);
2237    if (!HasQualifierOrFoundDecl)
2238      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2239
2240    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
2241                                                      getMemberQualifier() + 1);
2242  }
2243
2244  /// \brief Retrieve the explicit template argument list that
2245  /// followed the member template name.  This must only be called on
2246  /// an expression with explicit template arguments.
2247  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2248    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2249  }
2250
2251  /// \brief Retrieves the optional explicit template arguments.
2252  /// This points to the same data as getExplicitTemplateArgs(), but
2253  /// returns null if there are no explicit template arguments.
2254  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2255    if (!hasExplicitTemplateArgs()) return 0;
2256    return &getExplicitTemplateArgs();
2257  }
2258
2259  /// \brief Retrieve the location of the left angle bracket following the
2260  /// member name ('<'), if any.
2261  SourceLocation getLAngleLoc() const {
2262    if (!HasExplicitTemplateArgumentList)
2263      return SourceLocation();
2264
2265    return getExplicitTemplateArgs().LAngleLoc;
2266  }
2267
2268  /// \brief Retrieve the template arguments provided as part of this
2269  /// template-id.
2270  const TemplateArgumentLoc *getTemplateArgs() const {
2271    if (!HasExplicitTemplateArgumentList)
2272      return 0;
2273
2274    return getExplicitTemplateArgs().getTemplateArgs();
2275  }
2276
2277  /// \brief Retrieve the number of template arguments provided as part of this
2278  /// template-id.
2279  unsigned getNumTemplateArgs() const {
2280    if (!HasExplicitTemplateArgumentList)
2281      return 0;
2282
2283    return getExplicitTemplateArgs().NumTemplateArgs;
2284  }
2285
2286  /// \brief Retrieve the location of the right angle bracket following the
2287  /// template arguments ('>').
2288  SourceLocation getRAngleLoc() const {
2289    if (!HasExplicitTemplateArgumentList)
2290      return SourceLocation();
2291
2292    return getExplicitTemplateArgs().RAngleLoc;
2293  }
2294
2295  /// \brief Retrieve the member declaration name info.
2296  DeclarationNameInfo getMemberNameInfo() const {
2297    return DeclarationNameInfo(MemberDecl->getDeclName(),
2298                               MemberLoc, MemberDNLoc);
2299  }
2300
2301  bool isArrow() const { return IsArrow; }
2302  void setArrow(bool A) { IsArrow = A; }
2303
2304  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2305  /// location of 'F'.
2306  SourceLocation getMemberLoc() const { return MemberLoc; }
2307  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2308
2309  SourceRange getSourceRange() const;
2310
2311  SourceLocation getExprLoc() const { return MemberLoc; }
2312
2313  /// \brief Determine whether the base of this explicit is implicit.
2314  bool isImplicitAccess() const {
2315    return getBase() && getBase()->isImplicitCXXThis();
2316  }
2317
2318  /// \brief Returns true if this member expression refers to a method that
2319  /// was resolved from an overloaded set having size greater than 1.
2320  bool hadMultipleCandidates() const {
2321    return HadMultipleCandidates;
2322  }
2323  /// \brief Sets the flag telling whether this expression refers to
2324  /// a method that was resolved from an overloaded set having size
2325  /// greater than 1.
2326  void setHadMultipleCandidates(bool V = true) {
2327    HadMultipleCandidates = V;
2328  }
2329
2330  static bool classof(const Stmt *T) {
2331    return T->getStmtClass() == MemberExprClass;
2332  }
2333  static bool classof(const MemberExpr *) { return true; }
2334
2335  // Iterators
2336  child_range children() { return child_range(&Base, &Base+1); }
2337
2338  friend class ASTReader;
2339  friend class ASTStmtWriter;
2340};
2341
2342/// CompoundLiteralExpr - [C99 6.5.2.5]
2343///
2344class CompoundLiteralExpr : public Expr {
2345  /// LParenLoc - If non-null, this is the location of the left paren in a
2346  /// compound literal like "(int){4}".  This can be null if this is a
2347  /// synthesized compound expression.
2348  SourceLocation LParenLoc;
2349
2350  /// The type as written.  This can be an incomplete array type, in
2351  /// which case the actual expression type will be different.
2352  TypeSourceInfo *TInfo;
2353  Stmt *Init;
2354  bool FileScope;
2355public:
2356  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2357                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2358    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2359           tinfo->getType()->isDependentType(),
2360           init->isValueDependent(),
2361           (init->isInstantiationDependent() ||
2362            tinfo->getType()->isInstantiationDependentType()),
2363           init->containsUnexpandedParameterPack()),
2364      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2365
2366  /// \brief Construct an empty compound literal.
2367  explicit CompoundLiteralExpr(EmptyShell Empty)
2368    : Expr(CompoundLiteralExprClass, Empty) { }
2369
2370  const Expr *getInitializer() const { return cast<Expr>(Init); }
2371  Expr *getInitializer() { return cast<Expr>(Init); }
2372  void setInitializer(Expr *E) { Init = E; }
2373
2374  bool isFileScope() const { return FileScope; }
2375  void setFileScope(bool FS) { FileScope = FS; }
2376
2377  SourceLocation getLParenLoc() const { return LParenLoc; }
2378  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2379
2380  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2381  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2382
2383  SourceRange getSourceRange() const {
2384    // FIXME: Init should never be null.
2385    if (!Init)
2386      return SourceRange();
2387    if (LParenLoc.isInvalid())
2388      return Init->getSourceRange();
2389    return SourceRange(LParenLoc, Init->getLocEnd());
2390  }
2391
2392  static bool classof(const Stmt *T) {
2393    return T->getStmtClass() == CompoundLiteralExprClass;
2394  }
2395  static bool classof(const CompoundLiteralExpr *) { return true; }
2396
2397  // Iterators
2398  child_range children() { return child_range(&Init, &Init+1); }
2399};
2400
2401/// CastExpr - Base class for type casts, including both implicit
2402/// casts (ImplicitCastExpr) and explicit casts that have some
2403/// representation in the source code (ExplicitCastExpr's derived
2404/// classes).
2405class CastExpr : public Expr {
2406public:
2407  typedef clang::CastKind CastKind;
2408
2409private:
2410  Stmt *Op;
2411
2412  void CheckCastConsistency() const;
2413
2414  const CXXBaseSpecifier * const *path_buffer() const {
2415    return const_cast<CastExpr*>(this)->path_buffer();
2416  }
2417  CXXBaseSpecifier **path_buffer();
2418
2419  void setBasePathSize(unsigned basePathSize) {
2420    CastExprBits.BasePathSize = basePathSize;
2421    assert(CastExprBits.BasePathSize == basePathSize &&
2422           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2423  }
2424
2425protected:
2426  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2427           const CastKind kind, Expr *op, unsigned BasePathSize) :
2428    Expr(SC, ty, VK, OK_Ordinary,
2429         // Cast expressions are type-dependent if the type is
2430         // dependent (C++ [temp.dep.expr]p3).
2431         ty->isDependentType(),
2432         // Cast expressions are value-dependent if the type is
2433         // dependent or if the subexpression is value-dependent.
2434         ty->isDependentType() || (op && op->isValueDependent()),
2435         (ty->isInstantiationDependentType() ||
2436          (op && op->isInstantiationDependent())),
2437         (ty->containsUnexpandedParameterPack() ||
2438          op->containsUnexpandedParameterPack())),
2439    Op(op) {
2440    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2441    CastExprBits.Kind = kind;
2442    setBasePathSize(BasePathSize);
2443#ifndef NDEBUG
2444    CheckCastConsistency();
2445#endif
2446  }
2447
2448  /// \brief Construct an empty cast.
2449  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2450    : Expr(SC, Empty) {
2451    setBasePathSize(BasePathSize);
2452  }
2453
2454public:
2455  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2456  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2457  const char *getCastKindName() const;
2458
2459  Expr *getSubExpr() { return cast<Expr>(Op); }
2460  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2461  void setSubExpr(Expr *E) { Op = E; }
2462
2463  /// \brief Retrieve the cast subexpression as it was written in the source
2464  /// code, looking through any implicit casts or other intermediate nodes
2465  /// introduced by semantic analysis.
2466  Expr *getSubExprAsWritten();
2467  const Expr *getSubExprAsWritten() const {
2468    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2469  }
2470
2471  typedef CXXBaseSpecifier **path_iterator;
2472  typedef const CXXBaseSpecifier * const *path_const_iterator;
2473  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2474  unsigned path_size() const { return CastExprBits.BasePathSize; }
2475  path_iterator path_begin() { return path_buffer(); }
2476  path_iterator path_end() { return path_buffer() + path_size(); }
2477  path_const_iterator path_begin() const { return path_buffer(); }
2478  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2479
2480  void setCastPath(const CXXCastPath &Path);
2481
2482  static bool classof(const Stmt *T) {
2483    return T->getStmtClass() >= firstCastExprConstant &&
2484           T->getStmtClass() <= lastCastExprConstant;
2485  }
2486  static bool classof(const CastExpr *) { return true; }
2487
2488  // Iterators
2489  child_range children() { return child_range(&Op, &Op+1); }
2490};
2491
2492/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2493/// conversions, which have no direct representation in the original
2494/// source code. For example: converting T[]->T*, void f()->void
2495/// (*f)(), float->double, short->int, etc.
2496///
2497/// In C, implicit casts always produce rvalues. However, in C++, an
2498/// implicit cast whose result is being bound to a reference will be
2499/// an lvalue or xvalue. For example:
2500///
2501/// @code
2502/// class Base { };
2503/// class Derived : public Base { };
2504/// Derived &&ref();
2505/// void f(Derived d) {
2506///   Base& b = d; // initializer is an ImplicitCastExpr
2507///                // to an lvalue of type Base
2508///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2509///                     // to an xvalue of type Base
2510/// }
2511/// @endcode
2512class ImplicitCastExpr : public CastExpr {
2513private:
2514  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2515                   unsigned BasePathLength, ExprValueKind VK)
2516    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2517  }
2518
2519  /// \brief Construct an empty implicit cast.
2520  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2521    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2522
2523public:
2524  enum OnStack_t { OnStack };
2525  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2526                   ExprValueKind VK)
2527    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2528  }
2529
2530  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2531                                  CastKind Kind, Expr *Operand,
2532                                  const CXXCastPath *BasePath,
2533                                  ExprValueKind Cat);
2534
2535  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2536
2537  SourceRange getSourceRange() const {
2538    return getSubExpr()->getSourceRange();
2539  }
2540
2541  static bool classof(const Stmt *T) {
2542    return T->getStmtClass() == ImplicitCastExprClass;
2543  }
2544  static bool classof(const ImplicitCastExpr *) { return true; }
2545};
2546
2547inline Expr *Expr::IgnoreImpCasts() {
2548  Expr *e = this;
2549  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2550    e = ice->getSubExpr();
2551  return e;
2552}
2553
2554/// ExplicitCastExpr - An explicit cast written in the source
2555/// code.
2556///
2557/// This class is effectively an abstract class, because it provides
2558/// the basic representation of an explicitly-written cast without
2559/// specifying which kind of cast (C cast, functional cast, static
2560/// cast, etc.) was written; specific derived classes represent the
2561/// particular style of cast and its location information.
2562///
2563/// Unlike implicit casts, explicit cast nodes have two different
2564/// types: the type that was written into the source code, and the
2565/// actual type of the expression as determined by semantic
2566/// analysis. These types may differ slightly. For example, in C++ one
2567/// can cast to a reference type, which indicates that the resulting
2568/// expression will be an lvalue or xvalue. The reference type, however,
2569/// will not be used as the type of the expression.
2570class ExplicitCastExpr : public CastExpr {
2571  /// TInfo - Source type info for the (written) type
2572  /// this expression is casting to.
2573  TypeSourceInfo *TInfo;
2574
2575protected:
2576  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2577                   CastKind kind, Expr *op, unsigned PathSize,
2578                   TypeSourceInfo *writtenTy)
2579    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2580
2581  /// \brief Construct an empty explicit cast.
2582  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2583    : CastExpr(SC, Shell, PathSize) { }
2584
2585public:
2586  /// getTypeInfoAsWritten - Returns the type source info for the type
2587  /// that this expression is casting to.
2588  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2589  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2590
2591  /// getTypeAsWritten - Returns the type that this expression is
2592  /// casting to, as written in the source code.
2593  QualType getTypeAsWritten() const { return TInfo->getType(); }
2594
2595  static bool classof(const Stmt *T) {
2596     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2597            T->getStmtClass() <= lastExplicitCastExprConstant;
2598  }
2599  static bool classof(const ExplicitCastExpr *) { return true; }
2600};
2601
2602/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2603/// cast in C++ (C++ [expr.cast]), which uses the syntax
2604/// (Type)expr. For example: @c (int)f.
2605class CStyleCastExpr : public ExplicitCastExpr {
2606  SourceLocation LPLoc; // the location of the left paren
2607  SourceLocation RPLoc; // the location of the right paren
2608
2609  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2610                 unsigned PathSize, TypeSourceInfo *writtenTy,
2611                 SourceLocation l, SourceLocation r)
2612    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2613                       writtenTy), LPLoc(l), RPLoc(r) {}
2614
2615  /// \brief Construct an empty C-style explicit cast.
2616  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2617    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2618
2619public:
2620  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2621                                ExprValueKind VK, CastKind K,
2622                                Expr *Op, const CXXCastPath *BasePath,
2623                                TypeSourceInfo *WrittenTy, SourceLocation L,
2624                                SourceLocation R);
2625
2626  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2627
2628  SourceLocation getLParenLoc() const { return LPLoc; }
2629  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2630
2631  SourceLocation getRParenLoc() const { return RPLoc; }
2632  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2633
2634  SourceRange getSourceRange() const {
2635    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2636  }
2637  static bool classof(const Stmt *T) {
2638    return T->getStmtClass() == CStyleCastExprClass;
2639  }
2640  static bool classof(const CStyleCastExpr *) { return true; }
2641};
2642
2643/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2644///
2645/// This expression node kind describes a builtin binary operation,
2646/// such as "x + y" for integer values "x" and "y". The operands will
2647/// already have been converted to appropriate types (e.g., by
2648/// performing promotions or conversions).
2649///
2650/// In C++, where operators may be overloaded, a different kind of
2651/// expression node (CXXOperatorCallExpr) is used to express the
2652/// invocation of an overloaded operator with operator syntax. Within
2653/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2654/// used to store an expression "x + y" depends on the subexpressions
2655/// for x and y. If neither x or y is type-dependent, and the "+"
2656/// operator resolves to a built-in operation, BinaryOperator will be
2657/// used to express the computation (x and y may still be
2658/// value-dependent). If either x or y is type-dependent, or if the
2659/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2660/// be used to express the computation.
2661class BinaryOperator : public Expr {
2662public:
2663  typedef BinaryOperatorKind Opcode;
2664
2665private:
2666  unsigned Opc : 6;
2667  SourceLocation OpLoc;
2668
2669  enum { LHS, RHS, END_EXPR };
2670  Stmt* SubExprs[END_EXPR];
2671public:
2672
2673  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2674                 ExprValueKind VK, ExprObjectKind OK,
2675                 SourceLocation opLoc)
2676    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2677           lhs->isTypeDependent() || rhs->isTypeDependent(),
2678           lhs->isValueDependent() || rhs->isValueDependent(),
2679           (lhs->isInstantiationDependent() ||
2680            rhs->isInstantiationDependent()),
2681           (lhs->containsUnexpandedParameterPack() ||
2682            rhs->containsUnexpandedParameterPack())),
2683      Opc(opc), OpLoc(opLoc) {
2684    SubExprs[LHS] = lhs;
2685    SubExprs[RHS] = rhs;
2686    assert(!isCompoundAssignmentOp() &&
2687           "Use ArithAssignBinaryOperator for compound assignments");
2688  }
2689
2690  /// \brief Construct an empty binary operator.
2691  explicit BinaryOperator(EmptyShell Empty)
2692    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2693
2694  SourceLocation getOperatorLoc() const { return OpLoc; }
2695  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2696
2697  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2698  void setOpcode(Opcode O) { Opc = O; }
2699
2700  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2701  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2702  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2703  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2704
2705  SourceRange getSourceRange() const {
2706    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2707  }
2708
2709  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2710  /// corresponds to, e.g. "<<=".
2711  static const char *getOpcodeStr(Opcode Op);
2712
2713  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2714
2715  /// \brief Retrieve the binary opcode that corresponds to the given
2716  /// overloaded operator.
2717  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2718
2719  /// \brief Retrieve the overloaded operator kind that corresponds to
2720  /// the given binary opcode.
2721  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2722
2723  /// predicates to categorize the respective opcodes.
2724  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2725  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2726  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2727  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2728  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2729  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2730
2731  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2732  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2733
2734  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2735  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2736
2737  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2738  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2739
2740  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2741  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2742
2743  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2744  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2745
2746  static bool isAssignmentOp(Opcode Opc) {
2747    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2748  }
2749  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2750
2751  static bool isCompoundAssignmentOp(Opcode Opc) {
2752    return Opc > BO_Assign && Opc <= BO_OrAssign;
2753  }
2754  bool isCompoundAssignmentOp() const {
2755    return isCompoundAssignmentOp(getOpcode());
2756  }
2757  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2758    assert(isCompoundAssignmentOp(Opc));
2759    if (Opc >= BO_XorAssign)
2760      return Opcode(unsigned(Opc) - BO_XorAssign + BO_Xor);
2761    else
2762      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2763  }
2764
2765  static bool isShiftAssignOp(Opcode Opc) {
2766    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2767  }
2768  bool isShiftAssignOp() const {
2769    return isShiftAssignOp(getOpcode());
2770  }
2771
2772  static bool classof(const Stmt *S) {
2773    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2774           S->getStmtClass() <= lastBinaryOperatorConstant;
2775  }
2776  static bool classof(const BinaryOperator *) { return true; }
2777
2778  // Iterators
2779  child_range children() {
2780    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2781  }
2782
2783protected:
2784  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2785                 ExprValueKind VK, ExprObjectKind OK,
2786                 SourceLocation opLoc, bool dead)
2787    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2788           lhs->isTypeDependent() || rhs->isTypeDependent(),
2789           lhs->isValueDependent() || rhs->isValueDependent(),
2790           (lhs->isInstantiationDependent() ||
2791            rhs->isInstantiationDependent()),
2792           (lhs->containsUnexpandedParameterPack() ||
2793            rhs->containsUnexpandedParameterPack())),
2794      Opc(opc), OpLoc(opLoc) {
2795    SubExprs[LHS] = lhs;
2796    SubExprs[RHS] = rhs;
2797  }
2798
2799  BinaryOperator(StmtClass SC, EmptyShell Empty)
2800    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2801};
2802
2803/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2804/// track of the type the operation is performed in.  Due to the semantics of
2805/// these operators, the operands are promoted, the arithmetic performed, an
2806/// implicit conversion back to the result type done, then the assignment takes
2807/// place.  This captures the intermediate type which the computation is done
2808/// in.
2809class CompoundAssignOperator : public BinaryOperator {
2810  QualType ComputationLHSType;
2811  QualType ComputationResultType;
2812public:
2813  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2814                         ExprValueKind VK, ExprObjectKind OK,
2815                         QualType CompLHSType, QualType CompResultType,
2816                         SourceLocation OpLoc)
2817    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2818      ComputationLHSType(CompLHSType),
2819      ComputationResultType(CompResultType) {
2820    assert(isCompoundAssignmentOp() &&
2821           "Only should be used for compound assignments");
2822  }
2823
2824  /// \brief Build an empty compound assignment operator expression.
2825  explicit CompoundAssignOperator(EmptyShell Empty)
2826    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2827
2828  // The two computation types are the type the LHS is converted
2829  // to for the computation and the type of the result; the two are
2830  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2831  QualType getComputationLHSType() const { return ComputationLHSType; }
2832  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2833
2834  QualType getComputationResultType() const { return ComputationResultType; }
2835  void setComputationResultType(QualType T) { ComputationResultType = T; }
2836
2837  static bool classof(const CompoundAssignOperator *) { return true; }
2838  static bool classof(const Stmt *S) {
2839    return S->getStmtClass() == CompoundAssignOperatorClass;
2840  }
2841};
2842
2843/// AbstractConditionalOperator - An abstract base class for
2844/// ConditionalOperator and BinaryConditionalOperator.
2845class AbstractConditionalOperator : public Expr {
2846  SourceLocation QuestionLoc, ColonLoc;
2847  friend class ASTStmtReader;
2848
2849protected:
2850  AbstractConditionalOperator(StmtClass SC, QualType T,
2851                              ExprValueKind VK, ExprObjectKind OK,
2852                              bool TD, bool VD, bool ID,
2853                              bool ContainsUnexpandedParameterPack,
2854                              SourceLocation qloc,
2855                              SourceLocation cloc)
2856    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2857      QuestionLoc(qloc), ColonLoc(cloc) {}
2858
2859  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2860    : Expr(SC, Empty) { }
2861
2862public:
2863  // getCond - Return the expression representing the condition for
2864  //   the ?: operator.
2865  Expr *getCond() const;
2866
2867  // getTrueExpr - Return the subexpression representing the value of
2868  //   the expression if the condition evaluates to true.
2869  Expr *getTrueExpr() const;
2870
2871  // getFalseExpr - Return the subexpression representing the value of
2872  //   the expression if the condition evaluates to false.  This is
2873  //   the same as getRHS.
2874  Expr *getFalseExpr() const;
2875
2876  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2877  SourceLocation getColonLoc() const { return ColonLoc; }
2878
2879  static bool classof(const Stmt *T) {
2880    return T->getStmtClass() == ConditionalOperatorClass ||
2881           T->getStmtClass() == BinaryConditionalOperatorClass;
2882  }
2883  static bool classof(const AbstractConditionalOperator *) { return true; }
2884};
2885
2886/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2887/// middle" extension is a BinaryConditionalOperator.
2888class ConditionalOperator : public AbstractConditionalOperator {
2889  enum { COND, LHS, RHS, END_EXPR };
2890  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2891
2892  friend class ASTStmtReader;
2893public:
2894  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2895                      SourceLocation CLoc, Expr *rhs,
2896                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2897    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2898           // FIXME: the type of the conditional operator doesn't
2899           // depend on the type of the conditional, but the standard
2900           // seems to imply that it could. File a bug!
2901           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2902           (cond->isValueDependent() || lhs->isValueDependent() ||
2903            rhs->isValueDependent()),
2904           (cond->isInstantiationDependent() ||
2905            lhs->isInstantiationDependent() ||
2906            rhs->isInstantiationDependent()),
2907           (cond->containsUnexpandedParameterPack() ||
2908            lhs->containsUnexpandedParameterPack() ||
2909            rhs->containsUnexpandedParameterPack()),
2910                                  QLoc, CLoc) {
2911    SubExprs[COND] = cond;
2912    SubExprs[LHS] = lhs;
2913    SubExprs[RHS] = rhs;
2914  }
2915
2916  /// \brief Build an empty conditional operator.
2917  explicit ConditionalOperator(EmptyShell Empty)
2918    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2919
2920  // getCond - Return the expression representing the condition for
2921  //   the ?: operator.
2922  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2923
2924  // getTrueExpr - Return the subexpression representing the value of
2925  //   the expression if the condition evaluates to true.
2926  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2927
2928  // getFalseExpr - Return the subexpression representing the value of
2929  //   the expression if the condition evaluates to false.  This is
2930  //   the same as getRHS.
2931  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2932
2933  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2934  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2935
2936  SourceRange getSourceRange() const {
2937    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2938  }
2939  static bool classof(const Stmt *T) {
2940    return T->getStmtClass() == ConditionalOperatorClass;
2941  }
2942  static bool classof(const ConditionalOperator *) { return true; }
2943
2944  // Iterators
2945  child_range children() {
2946    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2947  }
2948};
2949
2950/// BinaryConditionalOperator - The GNU extension to the conditional
2951/// operator which allows the middle operand to be omitted.
2952///
2953/// This is a different expression kind on the assumption that almost
2954/// every client ends up needing to know that these are different.
2955class BinaryConditionalOperator : public AbstractConditionalOperator {
2956  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2957
2958  /// - the common condition/left-hand-side expression, which will be
2959  ///   evaluated as the opaque value
2960  /// - the condition, expressed in terms of the opaque value
2961  /// - the left-hand-side, expressed in terms of the opaque value
2962  /// - the right-hand-side
2963  Stmt *SubExprs[NUM_SUBEXPRS];
2964  OpaqueValueExpr *OpaqueValue;
2965
2966  friend class ASTStmtReader;
2967public:
2968  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2969                            Expr *cond, Expr *lhs, Expr *rhs,
2970                            SourceLocation qloc, SourceLocation cloc,
2971                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2972    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2973           (common->isTypeDependent() || rhs->isTypeDependent()),
2974           (common->isValueDependent() || rhs->isValueDependent()),
2975           (common->isInstantiationDependent() ||
2976            rhs->isInstantiationDependent()),
2977           (common->containsUnexpandedParameterPack() ||
2978            rhs->containsUnexpandedParameterPack()),
2979                                  qloc, cloc),
2980      OpaqueValue(opaqueValue) {
2981    SubExprs[COMMON] = common;
2982    SubExprs[COND] = cond;
2983    SubExprs[LHS] = lhs;
2984    SubExprs[RHS] = rhs;
2985
2986    OpaqueValue->setSourceExpr(common);
2987  }
2988
2989  /// \brief Build an empty conditional operator.
2990  explicit BinaryConditionalOperator(EmptyShell Empty)
2991    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2992
2993  /// \brief getCommon - Return the common expression, written to the
2994  ///   left of the condition.  The opaque value will be bound to the
2995  ///   result of this expression.
2996  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2997
2998  /// \brief getOpaqueValue - Return the opaque value placeholder.
2999  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3000
3001  /// \brief getCond - Return the condition expression; this is defined
3002  ///   in terms of the opaque value.
3003  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3004
3005  /// \brief getTrueExpr - Return the subexpression which will be
3006  ///   evaluated if the condition evaluates to true;  this is defined
3007  ///   in terms of the opaque value.
3008  Expr *getTrueExpr() const {
3009    return cast<Expr>(SubExprs[LHS]);
3010  }
3011
3012  /// \brief getFalseExpr - Return the subexpression which will be
3013  ///   evaluated if the condnition evaluates to false; this is
3014  ///   defined in terms of the opaque value.
3015  Expr *getFalseExpr() const {
3016    return cast<Expr>(SubExprs[RHS]);
3017  }
3018
3019  SourceRange getSourceRange() const {
3020    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3021  }
3022  static bool classof(const Stmt *T) {
3023    return T->getStmtClass() == BinaryConditionalOperatorClass;
3024  }
3025  static bool classof(const BinaryConditionalOperator *) { return true; }
3026
3027  // Iterators
3028  child_range children() {
3029    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3030  }
3031};
3032
3033inline Expr *AbstractConditionalOperator::getCond() const {
3034  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3035    return co->getCond();
3036  return cast<BinaryConditionalOperator>(this)->getCond();
3037}
3038
3039inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3040  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3041    return co->getTrueExpr();
3042  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3043}
3044
3045inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3046  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3047    return co->getFalseExpr();
3048  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3049}
3050
3051/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3052class AddrLabelExpr : public Expr {
3053  SourceLocation AmpAmpLoc, LabelLoc;
3054  LabelDecl *Label;
3055public:
3056  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3057                QualType t)
3058    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3059           false),
3060      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3061
3062  /// \brief Build an empty address of a label expression.
3063  explicit AddrLabelExpr(EmptyShell Empty)
3064    : Expr(AddrLabelExprClass, Empty) { }
3065
3066  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3067  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3068  SourceLocation getLabelLoc() const { return LabelLoc; }
3069  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3070
3071  SourceRange getSourceRange() const {
3072    return SourceRange(AmpAmpLoc, LabelLoc);
3073  }
3074
3075  LabelDecl *getLabel() const { return Label; }
3076  void setLabel(LabelDecl *L) { Label = L; }
3077
3078  static bool classof(const Stmt *T) {
3079    return T->getStmtClass() == AddrLabelExprClass;
3080  }
3081  static bool classof(const AddrLabelExpr *) { return true; }
3082
3083  // Iterators
3084  child_range children() { return child_range(); }
3085};
3086
3087/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3088/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3089/// takes the value of the last subexpression.
3090///
3091/// A StmtExpr is always an r-value; values "returned" out of a
3092/// StmtExpr will be copied.
3093class StmtExpr : public Expr {
3094  Stmt *SubStmt;
3095  SourceLocation LParenLoc, RParenLoc;
3096public:
3097  // FIXME: Does type-dependence need to be computed differently?
3098  // FIXME: Do we need to compute instantiation instantiation-dependence for
3099  // statements? (ugh!)
3100  StmtExpr(CompoundStmt *substmt, QualType T,
3101           SourceLocation lp, SourceLocation rp) :
3102    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3103         T->isDependentType(), false, false, false),
3104    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3105
3106  /// \brief Build an empty statement expression.
3107  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3108
3109  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3110  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3111  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3112
3113  SourceRange getSourceRange() const {
3114    return SourceRange(LParenLoc, RParenLoc);
3115  }
3116
3117  SourceLocation getLParenLoc() const { return LParenLoc; }
3118  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3119  SourceLocation getRParenLoc() const { return RParenLoc; }
3120  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3121
3122  static bool classof(const Stmt *T) {
3123    return T->getStmtClass() == StmtExprClass;
3124  }
3125  static bool classof(const StmtExpr *) { return true; }
3126
3127  // Iterators
3128  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3129};
3130
3131
3132/// ShuffleVectorExpr - clang-specific builtin-in function
3133/// __builtin_shufflevector.
3134/// This AST node represents a operator that does a constant
3135/// shuffle, similar to LLVM's shufflevector instruction. It takes
3136/// two vectors and a variable number of constant indices,
3137/// and returns the appropriately shuffled vector.
3138class ShuffleVectorExpr : public Expr {
3139  SourceLocation BuiltinLoc, RParenLoc;
3140
3141  // SubExprs - the list of values passed to the __builtin_shufflevector
3142  // function. The first two are vectors, and the rest are constant
3143  // indices.  The number of values in this list is always
3144  // 2+the number of indices in the vector type.
3145  Stmt **SubExprs;
3146  unsigned NumExprs;
3147
3148public:
3149  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3150                    QualType Type, SourceLocation BLoc,
3151                    SourceLocation RP);
3152
3153  /// \brief Build an empty vector-shuffle expression.
3154  explicit ShuffleVectorExpr(EmptyShell Empty)
3155    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3156
3157  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3158  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3159
3160  SourceLocation getRParenLoc() const { return RParenLoc; }
3161  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3162
3163  SourceRange getSourceRange() const {
3164    return SourceRange(BuiltinLoc, RParenLoc);
3165  }
3166  static bool classof(const Stmt *T) {
3167    return T->getStmtClass() == ShuffleVectorExprClass;
3168  }
3169  static bool classof(const ShuffleVectorExpr *) { return true; }
3170
3171  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3172  /// constant expression, the actual arguments passed in, and the function
3173  /// pointers.
3174  unsigned getNumSubExprs() const { return NumExprs; }
3175
3176  /// \brief Retrieve the array of expressions.
3177  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3178
3179  /// getExpr - Return the Expr at the specified index.
3180  Expr *getExpr(unsigned Index) {
3181    assert((Index < NumExprs) && "Arg access out of range!");
3182    return cast<Expr>(SubExprs[Index]);
3183  }
3184  const Expr *getExpr(unsigned Index) const {
3185    assert((Index < NumExprs) && "Arg access out of range!");
3186    return cast<Expr>(SubExprs[Index]);
3187  }
3188
3189  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3190
3191  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3192    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3193    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3194  }
3195
3196  // Iterators
3197  child_range children() {
3198    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3199  }
3200};
3201
3202/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3203/// This AST node is similar to the conditional operator (?:) in C, with
3204/// the following exceptions:
3205/// - the test expression must be a integer constant expression.
3206/// - the expression returned acts like the chosen subexpression in every
3207///   visible way: the type is the same as that of the chosen subexpression,
3208///   and all predicates (whether it's an l-value, whether it's an integer
3209///   constant expression, etc.) return the same result as for the chosen
3210///   sub-expression.
3211class ChooseExpr : public Expr {
3212  enum { COND, LHS, RHS, END_EXPR };
3213  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3214  SourceLocation BuiltinLoc, RParenLoc;
3215public:
3216  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3217             QualType t, ExprValueKind VK, ExprObjectKind OK,
3218             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3219    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3220           (cond->isInstantiationDependent() ||
3221            lhs->isInstantiationDependent() ||
3222            rhs->isInstantiationDependent()),
3223           (cond->containsUnexpandedParameterPack() ||
3224            lhs->containsUnexpandedParameterPack() ||
3225            rhs->containsUnexpandedParameterPack())),
3226      BuiltinLoc(BLoc), RParenLoc(RP) {
3227      SubExprs[COND] = cond;
3228      SubExprs[LHS] = lhs;
3229      SubExprs[RHS] = rhs;
3230    }
3231
3232  /// \brief Build an empty __builtin_choose_expr.
3233  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3234
3235  /// isConditionTrue - Return whether the condition is true (i.e. not
3236  /// equal to zero).
3237  bool isConditionTrue(const ASTContext &C) const;
3238
3239  /// getChosenSubExpr - Return the subexpression chosen according to the
3240  /// condition.
3241  Expr *getChosenSubExpr(const ASTContext &C) const {
3242    return isConditionTrue(C) ? getLHS() : getRHS();
3243  }
3244
3245  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3246  void setCond(Expr *E) { SubExprs[COND] = E; }
3247  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3248  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3249  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3250  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3251
3252  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3253  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3254
3255  SourceLocation getRParenLoc() const { return RParenLoc; }
3256  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3257
3258  SourceRange getSourceRange() const {
3259    return SourceRange(BuiltinLoc, RParenLoc);
3260  }
3261  static bool classof(const Stmt *T) {
3262    return T->getStmtClass() == ChooseExprClass;
3263  }
3264  static bool classof(const ChooseExpr *) { return true; }
3265
3266  // Iterators
3267  child_range children() {
3268    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3269  }
3270};
3271
3272/// GNUNullExpr - Implements the GNU __null extension, which is a name
3273/// for a null pointer constant that has integral type (e.g., int or
3274/// long) and is the same size and alignment as a pointer. The __null
3275/// extension is typically only used by system headers, which define
3276/// NULL as __null in C++ rather than using 0 (which is an integer
3277/// that may not match the size of a pointer).
3278class GNUNullExpr : public Expr {
3279  /// TokenLoc - The location of the __null keyword.
3280  SourceLocation TokenLoc;
3281
3282public:
3283  GNUNullExpr(QualType Ty, SourceLocation Loc)
3284    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3285           false),
3286      TokenLoc(Loc) { }
3287
3288  /// \brief Build an empty GNU __null expression.
3289  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3290
3291  /// getTokenLocation - The location of the __null token.
3292  SourceLocation getTokenLocation() const { return TokenLoc; }
3293  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3294
3295  SourceRange getSourceRange() const {
3296    return SourceRange(TokenLoc);
3297  }
3298  static bool classof(const Stmt *T) {
3299    return T->getStmtClass() == GNUNullExprClass;
3300  }
3301  static bool classof(const GNUNullExpr *) { return true; }
3302
3303  // Iterators
3304  child_range children() { return child_range(); }
3305};
3306
3307/// VAArgExpr, used for the builtin function __builtin_va_arg.
3308class VAArgExpr : public Expr {
3309  Stmt *Val;
3310  TypeSourceInfo *TInfo;
3311  SourceLocation BuiltinLoc, RParenLoc;
3312public:
3313  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3314            SourceLocation RPLoc, QualType t)
3315    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3316           t->isDependentType(), false,
3317           (TInfo->getType()->isInstantiationDependentType() ||
3318            e->isInstantiationDependent()),
3319           (TInfo->getType()->containsUnexpandedParameterPack() ||
3320            e->containsUnexpandedParameterPack())),
3321      Val(e), TInfo(TInfo),
3322      BuiltinLoc(BLoc),
3323      RParenLoc(RPLoc) { }
3324
3325  /// \brief Create an empty __builtin_va_arg expression.
3326  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3327
3328  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3329  Expr *getSubExpr() { return cast<Expr>(Val); }
3330  void setSubExpr(Expr *E) { Val = E; }
3331
3332  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3333  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3334
3335  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3336  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3337
3338  SourceLocation getRParenLoc() const { return RParenLoc; }
3339  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3340
3341  SourceRange getSourceRange() const {
3342    return SourceRange(BuiltinLoc, RParenLoc);
3343  }
3344  static bool classof(const Stmt *T) {
3345    return T->getStmtClass() == VAArgExprClass;
3346  }
3347  static bool classof(const VAArgExpr *) { return true; }
3348
3349  // Iterators
3350  child_range children() { return child_range(&Val, &Val+1); }
3351};
3352
3353/// @brief Describes an C or C++ initializer list.
3354///
3355/// InitListExpr describes an initializer list, which can be used to
3356/// initialize objects of different types, including
3357/// struct/class/union types, arrays, and vectors. For example:
3358///
3359/// @code
3360/// struct foo x = { 1, { 2, 3 } };
3361/// @endcode
3362///
3363/// Prior to semantic analysis, an initializer list will represent the
3364/// initializer list as written by the user, but will have the
3365/// placeholder type "void". This initializer list is called the
3366/// syntactic form of the initializer, and may contain C99 designated
3367/// initializers (represented as DesignatedInitExprs), initializations
3368/// of subobject members without explicit braces, and so on. Clients
3369/// interested in the original syntax of the initializer list should
3370/// use the syntactic form of the initializer list.
3371///
3372/// After semantic analysis, the initializer list will represent the
3373/// semantic form of the initializer, where the initializations of all
3374/// subobjects are made explicit with nested InitListExpr nodes and
3375/// C99 designators have been eliminated by placing the designated
3376/// initializations into the subobject they initialize. Additionally,
3377/// any "holes" in the initialization, where no initializer has been
3378/// specified for a particular subobject, will be replaced with
3379/// implicitly-generated ImplicitValueInitExpr expressions that
3380/// value-initialize the subobjects. Note, however, that the
3381/// initializer lists may still have fewer initializers than there are
3382/// elements to initialize within the object.
3383///
3384/// Given the semantic form of the initializer list, one can retrieve
3385/// the original syntactic form of that initializer list (if it
3386/// exists) using getSyntacticForm(). Since many initializer lists
3387/// have the same syntactic and semantic forms, getSyntacticForm() may
3388/// return NULL, indicating that the current initializer list also
3389/// serves as its syntactic form.
3390class InitListExpr : public Expr {
3391  // FIXME: Eliminate this vector in favor of ASTContext allocation
3392  typedef ASTVector<Stmt *> InitExprsTy;
3393  InitExprsTy InitExprs;
3394  SourceLocation LBraceLoc, RBraceLoc;
3395
3396  /// Contains the initializer list that describes the syntactic form
3397  /// written in the source code.
3398  InitListExpr *SyntacticForm;
3399
3400  /// \brief Either:
3401  ///  If this initializer list initializes an array with more elements than
3402  ///  there are initializers in the list, specifies an expression to be used
3403  ///  for value initialization of the rest of the elements.
3404  /// Or
3405  ///  If this initializer list initializes a union, specifies which
3406  ///  field within the union will be initialized.
3407  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3408
3409  /// Whether this initializer list originally had a GNU array-range
3410  /// designator in it. This is a temporary marker used by CodeGen.
3411  bool HadArrayRangeDesignator;
3412
3413public:
3414  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3415               Expr **initexprs, unsigned numinits,
3416               SourceLocation rbraceloc);
3417
3418  /// \brief Build an empty initializer list.
3419  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3420    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3421
3422  unsigned getNumInits() const { return InitExprs.size(); }
3423
3424  /// \brief Retrieve the set of initializers.
3425  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3426
3427  const Expr *getInit(unsigned Init) const {
3428    assert(Init < getNumInits() && "Initializer access out of range!");
3429    return cast_or_null<Expr>(InitExprs[Init]);
3430  }
3431
3432  Expr *getInit(unsigned Init) {
3433    assert(Init < getNumInits() && "Initializer access out of range!");
3434    return cast_or_null<Expr>(InitExprs[Init]);
3435  }
3436
3437  void setInit(unsigned Init, Expr *expr) {
3438    assert(Init < getNumInits() && "Initializer access out of range!");
3439    InitExprs[Init] = expr;
3440  }
3441
3442  /// \brief Reserve space for some number of initializers.
3443  void reserveInits(ASTContext &C, unsigned NumInits);
3444
3445  /// @brief Specify the number of initializers
3446  ///
3447  /// If there are more than @p NumInits initializers, the remaining
3448  /// initializers will be destroyed. If there are fewer than @p
3449  /// NumInits initializers, NULL expressions will be added for the
3450  /// unknown initializers.
3451  void resizeInits(ASTContext &Context, unsigned NumInits);
3452
3453  /// @brief Updates the initializer at index @p Init with the new
3454  /// expression @p expr, and returns the old expression at that
3455  /// location.
3456  ///
3457  /// When @p Init is out of range for this initializer list, the
3458  /// initializer list will be extended with NULL expressions to
3459  /// accommodate the new entry.
3460  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3461
3462  /// \brief If this initializer list initializes an array with more elements
3463  /// than there are initializers in the list, specifies an expression to be
3464  /// used for value initialization of the rest of the elements.
3465  Expr *getArrayFiller() {
3466    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3467  }
3468  const Expr *getArrayFiller() const {
3469    return const_cast<InitListExpr *>(this)->getArrayFiller();
3470  }
3471  void setArrayFiller(Expr *filler);
3472
3473  /// \brief Return true if this is an array initializer and its array "filler"
3474  /// has been set.
3475  bool hasArrayFiller() const { return getArrayFiller(); }
3476
3477  /// \brief If this initializes a union, specifies which field in the
3478  /// union to initialize.
3479  ///
3480  /// Typically, this field is the first named field within the
3481  /// union. However, a designated initializer can specify the
3482  /// initialization of a different field within the union.
3483  FieldDecl *getInitializedFieldInUnion() {
3484    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3485  }
3486  const FieldDecl *getInitializedFieldInUnion() const {
3487    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3488  }
3489  void setInitializedFieldInUnion(FieldDecl *FD) {
3490    ArrayFillerOrUnionFieldInit = FD;
3491  }
3492
3493  // Explicit InitListExpr's originate from source code (and have valid source
3494  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3495  bool isExplicit() {
3496    return LBraceLoc.isValid() && RBraceLoc.isValid();
3497  }
3498
3499  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3500  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3501  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3502  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3503
3504  /// @brief Retrieve the initializer list that describes the
3505  /// syntactic form of the initializer.
3506  ///
3507  ///
3508  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3509  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3510
3511  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3512  void sawArrayRangeDesignator(bool ARD = true) {
3513    HadArrayRangeDesignator = ARD;
3514  }
3515
3516  SourceRange getSourceRange() const;
3517
3518  static bool classof(const Stmt *T) {
3519    return T->getStmtClass() == InitListExprClass;
3520  }
3521  static bool classof(const InitListExpr *) { return true; }
3522
3523  // Iterators
3524  child_range children() {
3525    if (InitExprs.empty()) return child_range();
3526    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3527  }
3528
3529  typedef InitExprsTy::iterator iterator;
3530  typedef InitExprsTy::const_iterator const_iterator;
3531  typedef InitExprsTy::reverse_iterator reverse_iterator;
3532  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3533
3534  iterator begin() { return InitExprs.begin(); }
3535  const_iterator begin() const { return InitExprs.begin(); }
3536  iterator end() { return InitExprs.end(); }
3537  const_iterator end() const { return InitExprs.end(); }
3538  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3539  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3540  reverse_iterator rend() { return InitExprs.rend(); }
3541  const_reverse_iterator rend() const { return InitExprs.rend(); }
3542
3543  friend class ASTStmtReader;
3544  friend class ASTStmtWriter;
3545};
3546
3547/// @brief Represents a C99 designated initializer expression.
3548///
3549/// A designated initializer expression (C99 6.7.8) contains one or
3550/// more designators (which can be field designators, array
3551/// designators, or GNU array-range designators) followed by an
3552/// expression that initializes the field or element(s) that the
3553/// designators refer to. For example, given:
3554///
3555/// @code
3556/// struct point {
3557///   double x;
3558///   double y;
3559/// };
3560/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3561/// @endcode
3562///
3563/// The InitListExpr contains three DesignatedInitExprs, the first of
3564/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3565/// designators, one array designator for @c [2] followed by one field
3566/// designator for @c .y. The initalization expression will be 1.0.
3567class DesignatedInitExpr : public Expr {
3568public:
3569  /// \brief Forward declaration of the Designator class.
3570  class Designator;
3571
3572private:
3573  /// The location of the '=' or ':' prior to the actual initializer
3574  /// expression.
3575  SourceLocation EqualOrColonLoc;
3576
3577  /// Whether this designated initializer used the GNU deprecated
3578  /// syntax rather than the C99 '=' syntax.
3579  bool GNUSyntax : 1;
3580
3581  /// The number of designators in this initializer expression.
3582  unsigned NumDesignators : 15;
3583
3584  /// \brief The designators in this designated initialization
3585  /// expression.
3586  Designator *Designators;
3587
3588  /// The number of subexpressions of this initializer expression,
3589  /// which contains both the initializer and any additional
3590  /// expressions used by array and array-range designators.
3591  unsigned NumSubExprs : 16;
3592
3593
3594  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3595                     const Designator *Designators,
3596                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3597                     Expr **IndexExprs, unsigned NumIndexExprs,
3598                     Expr *Init);
3599
3600  explicit DesignatedInitExpr(unsigned NumSubExprs)
3601    : Expr(DesignatedInitExprClass, EmptyShell()),
3602      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3603
3604public:
3605  /// A field designator, e.g., ".x".
3606  struct FieldDesignator {
3607    /// Refers to the field that is being initialized. The low bit
3608    /// of this field determines whether this is actually a pointer
3609    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3610    /// initially constructed, a field designator will store an
3611    /// IdentifierInfo*. After semantic analysis has resolved that
3612    /// name, the field designator will instead store a FieldDecl*.
3613    uintptr_t NameOrField;
3614
3615    /// The location of the '.' in the designated initializer.
3616    unsigned DotLoc;
3617
3618    /// The location of the field name in the designated initializer.
3619    unsigned FieldLoc;
3620  };
3621
3622  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3623  struct ArrayOrRangeDesignator {
3624    /// Location of the first index expression within the designated
3625    /// initializer expression's list of subexpressions.
3626    unsigned Index;
3627    /// The location of the '[' starting the array range designator.
3628    unsigned LBracketLoc;
3629    /// The location of the ellipsis separating the start and end
3630    /// indices. Only valid for GNU array-range designators.
3631    unsigned EllipsisLoc;
3632    /// The location of the ']' terminating the array range designator.
3633    unsigned RBracketLoc;
3634  };
3635
3636  /// @brief Represents a single C99 designator.
3637  ///
3638  /// @todo This class is infuriatingly similar to clang::Designator,
3639  /// but minor differences (storing indices vs. storing pointers)
3640  /// keep us from reusing it. Try harder, later, to rectify these
3641  /// differences.
3642  class Designator {
3643    /// @brief The kind of designator this describes.
3644    enum {
3645      FieldDesignator,
3646      ArrayDesignator,
3647      ArrayRangeDesignator
3648    } Kind;
3649
3650    union {
3651      /// A field designator, e.g., ".x".
3652      struct FieldDesignator Field;
3653      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3654      struct ArrayOrRangeDesignator ArrayOrRange;
3655    };
3656    friend class DesignatedInitExpr;
3657
3658  public:
3659    Designator() {}
3660
3661    /// @brief Initializes a field designator.
3662    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3663               SourceLocation FieldLoc)
3664      : Kind(FieldDesignator) {
3665      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3666      Field.DotLoc = DotLoc.getRawEncoding();
3667      Field.FieldLoc = FieldLoc.getRawEncoding();
3668    }
3669
3670    /// @brief Initializes an array designator.
3671    Designator(unsigned Index, SourceLocation LBracketLoc,
3672               SourceLocation RBracketLoc)
3673      : Kind(ArrayDesignator) {
3674      ArrayOrRange.Index = Index;
3675      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3676      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3677      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3678    }
3679
3680    /// @brief Initializes a GNU array-range designator.
3681    Designator(unsigned Index, SourceLocation LBracketLoc,
3682               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3683      : Kind(ArrayRangeDesignator) {
3684      ArrayOrRange.Index = Index;
3685      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3686      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3687      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3688    }
3689
3690    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3691    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3692    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3693
3694    IdentifierInfo *getFieldName() const;
3695
3696    FieldDecl *getField() const {
3697      assert(Kind == FieldDesignator && "Only valid on a field designator");
3698      if (Field.NameOrField & 0x01)
3699        return 0;
3700      else
3701        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3702    }
3703
3704    void setField(FieldDecl *FD) {
3705      assert(Kind == FieldDesignator && "Only valid on a field designator");
3706      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3707    }
3708
3709    SourceLocation getDotLoc() const {
3710      assert(Kind == FieldDesignator && "Only valid on a field designator");
3711      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3712    }
3713
3714    SourceLocation getFieldLoc() const {
3715      assert(Kind == FieldDesignator && "Only valid on a field designator");
3716      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3717    }
3718
3719    SourceLocation getLBracketLoc() const {
3720      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3721             "Only valid on an array or array-range designator");
3722      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3723    }
3724
3725    SourceLocation getRBracketLoc() const {
3726      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3727             "Only valid on an array or array-range designator");
3728      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3729    }
3730
3731    SourceLocation getEllipsisLoc() const {
3732      assert(Kind == ArrayRangeDesignator &&
3733             "Only valid on an array-range designator");
3734      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3735    }
3736
3737    unsigned getFirstExprIndex() const {
3738      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3739             "Only valid on an array or array-range designator");
3740      return ArrayOrRange.Index;
3741    }
3742
3743    SourceLocation getStartLocation() const {
3744      if (Kind == FieldDesignator)
3745        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3746      else
3747        return getLBracketLoc();
3748    }
3749    SourceLocation getEndLocation() const {
3750      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3751    }
3752    SourceRange getSourceRange() const {
3753      return SourceRange(getStartLocation(), getEndLocation());
3754    }
3755  };
3756
3757  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3758                                    unsigned NumDesignators,
3759                                    Expr **IndexExprs, unsigned NumIndexExprs,
3760                                    SourceLocation EqualOrColonLoc,
3761                                    bool GNUSyntax, Expr *Init);
3762
3763  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3764
3765  /// @brief Returns the number of designators in this initializer.
3766  unsigned size() const { return NumDesignators; }
3767
3768  // Iterator access to the designators.
3769  typedef Designator *designators_iterator;
3770  designators_iterator designators_begin() { return Designators; }
3771  designators_iterator designators_end() {
3772    return Designators + NumDesignators;
3773  }
3774
3775  typedef const Designator *const_designators_iterator;
3776  const_designators_iterator designators_begin() const { return Designators; }
3777  const_designators_iterator designators_end() const {
3778    return Designators + NumDesignators;
3779  }
3780
3781  typedef std::reverse_iterator<designators_iterator>
3782          reverse_designators_iterator;
3783  reverse_designators_iterator designators_rbegin() {
3784    return reverse_designators_iterator(designators_end());
3785  }
3786  reverse_designators_iterator designators_rend() {
3787    return reverse_designators_iterator(designators_begin());
3788  }
3789
3790  typedef std::reverse_iterator<const_designators_iterator>
3791          const_reverse_designators_iterator;
3792  const_reverse_designators_iterator designators_rbegin() const {
3793    return const_reverse_designators_iterator(designators_end());
3794  }
3795  const_reverse_designators_iterator designators_rend() const {
3796    return const_reverse_designators_iterator(designators_begin());
3797  }
3798
3799  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3800
3801  void setDesignators(ASTContext &C, const Designator *Desigs,
3802                      unsigned NumDesigs);
3803
3804  Expr *getArrayIndex(const Designator& D);
3805  Expr *getArrayRangeStart(const Designator& D);
3806  Expr *getArrayRangeEnd(const Designator& D);
3807
3808  /// @brief Retrieve the location of the '=' that precedes the
3809  /// initializer value itself, if present.
3810  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3811  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3812
3813  /// @brief Determines whether this designated initializer used the
3814  /// deprecated GNU syntax for designated initializers.
3815  bool usesGNUSyntax() const { return GNUSyntax; }
3816  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3817
3818  /// @brief Retrieve the initializer value.
3819  Expr *getInit() const {
3820    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3821  }
3822
3823  void setInit(Expr *init) {
3824    *child_begin() = init;
3825  }
3826
3827  /// \brief Retrieve the total number of subexpressions in this
3828  /// designated initializer expression, including the actual
3829  /// initialized value and any expressions that occur within array
3830  /// and array-range designators.
3831  unsigned getNumSubExprs() const { return NumSubExprs; }
3832
3833  Expr *getSubExpr(unsigned Idx) {
3834    assert(Idx < NumSubExprs && "Subscript out of range");
3835    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3836    Ptr += sizeof(DesignatedInitExpr);
3837    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3838  }
3839
3840  void setSubExpr(unsigned Idx, Expr *E) {
3841    assert(Idx < NumSubExprs && "Subscript out of range");
3842    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3843    Ptr += sizeof(DesignatedInitExpr);
3844    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3845  }
3846
3847  /// \brief Replaces the designator at index @p Idx with the series
3848  /// of designators in [First, Last).
3849  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3850                        const Designator *Last);
3851
3852  SourceRange getDesignatorsSourceRange() const;
3853
3854  SourceRange getSourceRange() const;
3855
3856  static bool classof(const Stmt *T) {
3857    return T->getStmtClass() == DesignatedInitExprClass;
3858  }
3859  static bool classof(const DesignatedInitExpr *) { return true; }
3860
3861  // Iterators
3862  child_range children() {
3863    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3864    return child_range(begin, begin + NumSubExprs);
3865  }
3866};
3867
3868/// \brief Represents an implicitly-generated value initialization of
3869/// an object of a given type.
3870///
3871/// Implicit value initializations occur within semantic initializer
3872/// list expressions (InitListExpr) as placeholders for subobject
3873/// initializations not explicitly specified by the user.
3874///
3875/// \see InitListExpr
3876class ImplicitValueInitExpr : public Expr {
3877public:
3878  explicit ImplicitValueInitExpr(QualType ty)
3879    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3880           false, false, ty->isInstantiationDependentType(), false) { }
3881
3882  /// \brief Construct an empty implicit value initialization.
3883  explicit ImplicitValueInitExpr(EmptyShell Empty)
3884    : Expr(ImplicitValueInitExprClass, Empty) { }
3885
3886  static bool classof(const Stmt *T) {
3887    return T->getStmtClass() == ImplicitValueInitExprClass;
3888  }
3889  static bool classof(const ImplicitValueInitExpr *) { return true; }
3890
3891  SourceRange getSourceRange() const {
3892    return SourceRange();
3893  }
3894
3895  // Iterators
3896  child_range children() { return child_range(); }
3897};
3898
3899
3900class ParenListExpr : public Expr {
3901  Stmt **Exprs;
3902  unsigned NumExprs;
3903  SourceLocation LParenLoc, RParenLoc;
3904
3905public:
3906  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3907                unsigned numexprs, SourceLocation rparenloc, QualType T);
3908
3909  /// \brief Build an empty paren list.
3910  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3911
3912  unsigned getNumExprs() const { return NumExprs; }
3913
3914  const Expr* getExpr(unsigned Init) const {
3915    assert(Init < getNumExprs() && "Initializer access out of range!");
3916    return cast_or_null<Expr>(Exprs[Init]);
3917  }
3918
3919  Expr* getExpr(unsigned Init) {
3920    assert(Init < getNumExprs() && "Initializer access out of range!");
3921    return cast_or_null<Expr>(Exprs[Init]);
3922  }
3923
3924  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3925
3926  SourceLocation getLParenLoc() const { return LParenLoc; }
3927  SourceLocation getRParenLoc() const { return RParenLoc; }
3928
3929  SourceRange getSourceRange() const {
3930    return SourceRange(LParenLoc, RParenLoc);
3931  }
3932  static bool classof(const Stmt *T) {
3933    return T->getStmtClass() == ParenListExprClass;
3934  }
3935  static bool classof(const ParenListExpr *) { return true; }
3936
3937  // Iterators
3938  child_range children() {
3939    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3940  }
3941
3942  friend class ASTStmtReader;
3943  friend class ASTStmtWriter;
3944};
3945
3946
3947/// \brief Represents a C1X generic selection.
3948///
3949/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3950/// expression, followed by one or more generic associations.  Each generic
3951/// association specifies a type name and an expression, or "default" and an
3952/// expression (in which case it is known as a default generic association).
3953/// The type and value of the generic selection are identical to those of its
3954/// result expression, which is defined as the expression in the generic
3955/// association with a type name that is compatible with the type of the
3956/// controlling expression, or the expression in the default generic association
3957/// if no types are compatible.  For example:
3958///
3959/// @code
3960/// _Generic(X, double: 1, float: 2, default: 3)
3961/// @endcode
3962///
3963/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3964/// or 3 if "hello".
3965///
3966/// As an extension, generic selections are allowed in C++, where the following
3967/// additional semantics apply:
3968///
3969/// Any generic selection whose controlling expression is type-dependent or
3970/// which names a dependent type in its association list is result-dependent,
3971/// which means that the choice of result expression is dependent.
3972/// Result-dependent generic associations are both type- and value-dependent.
3973class GenericSelectionExpr : public Expr {
3974  enum { CONTROLLING, END_EXPR };
3975  TypeSourceInfo **AssocTypes;
3976  Stmt **SubExprs;
3977  unsigned NumAssocs, ResultIndex;
3978  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3979
3980public:
3981  GenericSelectionExpr(ASTContext &Context,
3982                       SourceLocation GenericLoc, Expr *ControllingExpr,
3983                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3984                       unsigned NumAssocs, SourceLocation DefaultLoc,
3985                       SourceLocation RParenLoc,
3986                       bool ContainsUnexpandedParameterPack,
3987                       unsigned ResultIndex);
3988
3989  /// This constructor is used in the result-dependent case.
3990  GenericSelectionExpr(ASTContext &Context,
3991                       SourceLocation GenericLoc, Expr *ControllingExpr,
3992                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3993                       unsigned NumAssocs, SourceLocation DefaultLoc,
3994                       SourceLocation RParenLoc,
3995                       bool ContainsUnexpandedParameterPack);
3996
3997  explicit GenericSelectionExpr(EmptyShell Empty)
3998    : Expr(GenericSelectionExprClass, Empty) { }
3999
4000  unsigned getNumAssocs() const { return NumAssocs; }
4001
4002  SourceLocation getGenericLoc() const { return GenericLoc; }
4003  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4004  SourceLocation getRParenLoc() const { return RParenLoc; }
4005
4006  const Expr *getAssocExpr(unsigned i) const {
4007    return cast<Expr>(SubExprs[END_EXPR+i]);
4008  }
4009  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4010
4011  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4012    return AssocTypes[i];
4013  }
4014  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4015
4016  QualType getAssocType(unsigned i) const {
4017    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4018      return TS->getType();
4019    else
4020      return QualType();
4021  }
4022
4023  const Expr *getControllingExpr() const {
4024    return cast<Expr>(SubExprs[CONTROLLING]);
4025  }
4026  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4027
4028  /// Whether this generic selection is result-dependent.
4029  bool isResultDependent() const { return ResultIndex == -1U; }
4030
4031  /// The zero-based index of the result expression's generic association in
4032  /// the generic selection's association list.  Defined only if the
4033  /// generic selection is not result-dependent.
4034  unsigned getResultIndex() const {
4035    assert(!isResultDependent() && "Generic selection is result-dependent");
4036    return ResultIndex;
4037  }
4038
4039  /// The generic selection's result expression.  Defined only if the
4040  /// generic selection is not result-dependent.
4041  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4042  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4043
4044  SourceRange getSourceRange() const {
4045    return SourceRange(GenericLoc, RParenLoc);
4046  }
4047  static bool classof(const Stmt *T) {
4048    return T->getStmtClass() == GenericSelectionExprClass;
4049  }
4050  static bool classof(const GenericSelectionExpr *) { return true; }
4051
4052  child_range children() {
4053    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4054  }
4055
4056  friend class ASTStmtReader;
4057};
4058
4059//===----------------------------------------------------------------------===//
4060// Clang Extensions
4061//===----------------------------------------------------------------------===//
4062
4063
4064/// ExtVectorElementExpr - This represents access to specific elements of a
4065/// vector, and may occur on the left hand side or right hand side.  For example
4066/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4067///
4068/// Note that the base may have either vector or pointer to vector type, just
4069/// like a struct field reference.
4070///
4071class ExtVectorElementExpr : public Expr {
4072  Stmt *Base;
4073  IdentifierInfo *Accessor;
4074  SourceLocation AccessorLoc;
4075public:
4076  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4077                       IdentifierInfo &accessor, SourceLocation loc)
4078    : Expr(ExtVectorElementExprClass, ty, VK,
4079           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4080           base->isTypeDependent(), base->isValueDependent(),
4081           base->isInstantiationDependent(),
4082           base->containsUnexpandedParameterPack()),
4083      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4084
4085  /// \brief Build an empty vector element expression.
4086  explicit ExtVectorElementExpr(EmptyShell Empty)
4087    : Expr(ExtVectorElementExprClass, Empty) { }
4088
4089  const Expr *getBase() const { return cast<Expr>(Base); }
4090  Expr *getBase() { return cast<Expr>(Base); }
4091  void setBase(Expr *E) { Base = E; }
4092
4093  IdentifierInfo &getAccessor() const { return *Accessor; }
4094  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4095
4096  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4097  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4098
4099  /// getNumElements - Get the number of components being selected.
4100  unsigned getNumElements() const;
4101
4102  /// containsDuplicateElements - Return true if any element access is
4103  /// repeated.
4104  bool containsDuplicateElements() const;
4105
4106  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4107  /// aggregate Constant of ConstantInt(s).
4108  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4109
4110  SourceRange getSourceRange() const {
4111    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4112  }
4113
4114  /// isArrow - Return true if the base expression is a pointer to vector,
4115  /// return false if the base expression is a vector.
4116  bool isArrow() const;
4117
4118  static bool classof(const Stmt *T) {
4119    return T->getStmtClass() == ExtVectorElementExprClass;
4120  }
4121  static bool classof(const ExtVectorElementExpr *) { return true; }
4122
4123  // Iterators
4124  child_range children() { return child_range(&Base, &Base+1); }
4125};
4126
4127
4128/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4129/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4130class BlockExpr : public Expr {
4131protected:
4132  BlockDecl *TheBlock;
4133public:
4134  BlockExpr(BlockDecl *BD, QualType ty)
4135    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4136           ty->isDependentType(), false,
4137           // FIXME: Check for instantiate-dependence in the statement?
4138           ty->isInstantiationDependentType(),
4139           false),
4140      TheBlock(BD) {}
4141
4142  /// \brief Build an empty block expression.
4143  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4144
4145  const BlockDecl *getBlockDecl() const { return TheBlock; }
4146  BlockDecl *getBlockDecl() { return TheBlock; }
4147  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4148
4149  // Convenience functions for probing the underlying BlockDecl.
4150  SourceLocation getCaretLocation() const;
4151  const Stmt *getBody() const;
4152  Stmt *getBody();
4153
4154  SourceRange getSourceRange() const {
4155    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4156  }
4157
4158  /// getFunctionType - Return the underlying function type for this block.
4159  const FunctionType *getFunctionType() const;
4160
4161  static bool classof(const Stmt *T) {
4162    return T->getStmtClass() == BlockExprClass;
4163  }
4164  static bool classof(const BlockExpr *) { return true; }
4165
4166  // Iterators
4167  child_range children() { return child_range(); }
4168};
4169
4170/// BlockDeclRefExpr - A reference to a local variable declared in an
4171/// enclosing scope.
4172class BlockDeclRefExpr : public Expr {
4173  VarDecl *D;
4174  SourceLocation Loc;
4175  bool IsByRef : 1;
4176  bool ConstQualAdded : 1;
4177public:
4178  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4179                   SourceLocation l, bool ByRef, bool constAdded = false);
4180
4181  // \brief Build an empty reference to a declared variable in a
4182  // block.
4183  explicit BlockDeclRefExpr(EmptyShell Empty)
4184    : Expr(BlockDeclRefExprClass, Empty) { }
4185
4186  VarDecl *getDecl() { return D; }
4187  const VarDecl *getDecl() const { return D; }
4188  void setDecl(VarDecl *VD) { D = VD; }
4189
4190  SourceLocation getLocation() const { return Loc; }
4191  void setLocation(SourceLocation L) { Loc = L; }
4192
4193  SourceRange getSourceRange() const { return SourceRange(Loc); }
4194
4195  bool isByRef() const { return IsByRef; }
4196  void setByRef(bool BR) { IsByRef = BR; }
4197
4198  bool isConstQualAdded() const { return ConstQualAdded; }
4199  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4200
4201  static bool classof(const Stmt *T) {
4202    return T->getStmtClass() == BlockDeclRefExprClass;
4203  }
4204  static bool classof(const BlockDeclRefExpr *) { return true; }
4205
4206  // Iterators
4207  child_range children() { return child_range(); }
4208};
4209
4210/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4211/// This AST node provides support for reinterpreting a type to another
4212/// type of the same size.
4213class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4214private:
4215  Stmt *SrcExpr;
4216  SourceLocation BuiltinLoc, RParenLoc;
4217
4218  friend class ASTReader;
4219  friend class ASTStmtReader;
4220  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4221
4222public:
4223  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4224             ExprValueKind VK, ExprObjectKind OK,
4225             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4226    : Expr(AsTypeExprClass, DstType, VK, OK,
4227           DstType->isDependentType(),
4228           DstType->isDependentType() || SrcExpr->isValueDependent(),
4229           (DstType->isInstantiationDependentType() ||
4230            SrcExpr->isInstantiationDependent()),
4231           (DstType->containsUnexpandedParameterPack() ||
4232            SrcExpr->containsUnexpandedParameterPack())),
4233  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4234
4235  /// getSrcExpr - Return the Expr to be converted.
4236  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4237
4238  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4239  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4240
4241  /// getRParenLoc - Return the location of final right parenthesis.
4242  SourceLocation getRParenLoc() const { return RParenLoc; }
4243
4244  SourceRange getSourceRange() const {
4245    return SourceRange(BuiltinLoc, RParenLoc);
4246  }
4247
4248  static bool classof(const Stmt *T) {
4249    return T->getStmtClass() == AsTypeExprClass;
4250  }
4251  static bool classof(const AsTypeExpr *) { return true; }
4252
4253  // Iterators
4254  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4255};
4256
4257/// PseudoObjectExpr - An expression which accesses a pseudo-object
4258/// l-value.  A pseudo-object is an abstract object, accesses to which
4259/// are translated to calls.  The pseudo-object expression has a
4260/// syntactic form, which shows how the expression was actually
4261/// written in the source code, and a semantic form, which is a series
4262/// of expressions to be executed in order which detail how the
4263/// operation is actually evaluated.  Optionally, one of the semantic
4264/// forms may also provide a result value for the expression.
4265///
4266/// If any of the semantic-form expressions is an OpaqueValueExpr,
4267/// that OVE is required to have a source expression, and it is bound
4268/// to the result of that source expression.  Such OVEs may appear
4269/// only in subsequent semantic-form expressions and as
4270/// sub-expressions of the syntactic form.
4271///
4272/// PseudoObjectExpr should be used only when an operation can be
4273/// usefully described in terms of fairly simple rewrite rules on
4274/// objects and functions that are meant to be used by end-developers.
4275/// For example, under the Itanium ABI, dynamic casts are implemented
4276/// as a call to a runtime function called __dynamic_cast; using this
4277/// class to describe that would be inappropriate because that call is
4278/// not really part of the user-visible semantics, and instead the
4279/// cast is properly reflected in the AST and IR-generation has been
4280/// taught to generate the call as necessary.  In contrast, an
4281/// Objective-C property access is semantically defined to be
4282/// equivalent to a particular message send, and this is very much
4283/// part of the user model.  The name of this class encourages this
4284/// modelling design.
4285class PseudoObjectExpr : public Expr {
4286  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4287  // Always at least two, because the first sub-expression is the
4288  // syntactic form.
4289
4290  // PseudoObjectExprBits.ResultIndex - The index of the
4291  // sub-expression holding the result.  0 means the result is void,
4292  // which is unambiguous because it's the index of the syntactic
4293  // form.  Note that this is therefore 1 higher than the value passed
4294  // in to Create, which is an index within the semantic forms.
4295  // Note also that ASTStmtWriter assumes this encoding.
4296
4297  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4298  const Expr * const *getSubExprsBuffer() const {
4299    return reinterpret_cast<const Expr * const *>(this + 1);
4300  }
4301
4302  friend class ASTStmtReader;
4303
4304  PseudoObjectExpr(QualType type, ExprValueKind VK,
4305                   Expr *syntactic, ArrayRef<Expr*> semantic,
4306                   unsigned resultIndex);
4307
4308  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4309
4310  unsigned getNumSubExprs() const {
4311    return PseudoObjectExprBits.NumSubExprs;
4312  }
4313
4314public:
4315  /// NoResult - A value for the result index indicating that there is
4316  /// no semantic result.
4317  enum { NoResult = ~0U };
4318
4319  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4320                                  ArrayRef<Expr*> semantic,
4321                                  unsigned resultIndex);
4322
4323  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4324                                  unsigned numSemanticExprs);
4325
4326  /// Return the syntactic form of this expression, i.e. the
4327  /// expression it actually looks like.  Likely to be expressed in
4328  /// terms of OpaqueValueExprs bound in the semantic form.
4329  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4330  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4331
4332  /// Return the index of the result-bearing expression into the semantics
4333  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4334  unsigned getResultExprIndex() const {
4335    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4336    return PseudoObjectExprBits.ResultIndex - 1;
4337  }
4338
4339  /// Return the result-bearing expression, or null if there is none.
4340  Expr *getResultExpr() {
4341    if (PseudoObjectExprBits.ResultIndex == 0)
4342      return 0;
4343    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4344  }
4345  const Expr *getResultExpr() const {
4346    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4347  }
4348
4349  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4350
4351  typedef Expr * const *semantics_iterator;
4352  typedef const Expr * const *const_semantics_iterator;
4353  semantics_iterator semantics_begin() {
4354    return getSubExprsBuffer() + 1;
4355  }
4356  const_semantics_iterator semantics_begin() const {
4357    return getSubExprsBuffer() + 1;
4358  }
4359  semantics_iterator semantics_end() {
4360    return getSubExprsBuffer() + getNumSubExprs();
4361  }
4362  const_semantics_iterator semantics_end() const {
4363    return getSubExprsBuffer() + getNumSubExprs();
4364  }
4365  Expr *getSemanticExpr(unsigned index) {
4366    assert(index + 1 < getNumSubExprs());
4367    return getSubExprsBuffer()[index + 1];
4368  }
4369  const Expr *getSemanticExpr(unsigned index) const {
4370    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4371  }
4372
4373  SourceLocation getExprLoc() const {
4374    return getSyntacticForm()->getExprLoc();
4375  }
4376  SourceRange getSourceRange() const {
4377    return getSyntacticForm()->getSourceRange();
4378  }
4379
4380  child_range children() {
4381    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4382    return child_range(cs, cs + getNumSubExprs());
4383  }
4384
4385  static bool classof(const Stmt *T) {
4386    return T->getStmtClass() == PseudoObjectExprClass;
4387  }
4388  static bool classof(const PseudoObjectExpr *) { return true; }
4389};
4390
4391/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4392/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4393/// similarly-named C++0x instructions.  All of these instructions take one
4394/// primary pointer and at least one memory order.
4395class AtomicExpr : public Expr {
4396public:
4397  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4398                  Add, Sub, And, Or, Xor };
4399private:
4400  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4401  Stmt* SubExprs[END_EXPR];
4402  unsigned NumSubExprs;
4403  SourceLocation BuiltinLoc, RParenLoc;
4404  AtomicOp Op;
4405
4406public:
4407  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4408             AtomicOp op, SourceLocation RP);
4409
4410  /// \brief Build an empty AtomicExpr.
4411  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4412
4413  Expr *getPtr() const {
4414    return cast<Expr>(SubExprs[PTR]);
4415  }
4416  void setPtr(Expr *E) {
4417    SubExprs[PTR] = E;
4418  }
4419  Expr *getOrder() const {
4420    return cast<Expr>(SubExprs[ORDER]);
4421  }
4422  void setOrder(Expr *E) {
4423    SubExprs[ORDER] = E;
4424  }
4425  Expr *getVal1() const {
4426    assert(NumSubExprs >= 3);
4427    return cast<Expr>(SubExprs[VAL1]);
4428  }
4429  void setVal1(Expr *E) {
4430    assert(NumSubExprs >= 3);
4431    SubExprs[VAL1] = E;
4432  }
4433  Expr *getOrderFail() const {
4434    assert(NumSubExprs == 5);
4435    return cast<Expr>(SubExprs[ORDER_FAIL]);
4436  }
4437  void setOrderFail(Expr *E) {
4438    assert(NumSubExprs == 5);
4439    SubExprs[ORDER_FAIL] = E;
4440  }
4441  Expr *getVal2() const {
4442    assert(NumSubExprs == 5);
4443    return cast<Expr>(SubExprs[VAL2]);
4444  }
4445  void setVal2(Expr *E) {
4446    assert(NumSubExprs == 5);
4447    SubExprs[VAL2] = E;
4448  }
4449
4450  AtomicOp getOp() const { return Op; }
4451  void setOp(AtomicOp op) { Op = op; }
4452  unsigned getNumSubExprs() { return NumSubExprs; }
4453  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4454
4455  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4456
4457  bool isVolatile() const {
4458    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4459  }
4460
4461  bool isCmpXChg() const {
4462    return getOp() == AtomicExpr::CmpXchgStrong ||
4463           getOp() == AtomicExpr::CmpXchgWeak;
4464  }
4465
4466  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4467  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4468
4469  SourceLocation getRParenLoc() const { return RParenLoc; }
4470  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4471
4472  SourceRange getSourceRange() const {
4473    return SourceRange(BuiltinLoc, RParenLoc);
4474  }
4475  static bool classof(const Stmt *T) {
4476    return T->getStmtClass() == AtomicExprClass;
4477  }
4478  static bool classof(const AtomicExpr *) { return true; }
4479
4480  // Iterators
4481  child_range children() {
4482    return child_range(SubExprs, SubExprs+NumSubExprs);
4483  }
4484};
4485}  // end namespace clang
4486
4487#endif
4488