Expr.h revision 1d9b3b25f7ac0d0195bba6b507a684fe5e7943ee
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include <cctype>
30
31namespace clang {
32  class ASTContext;
33  class APValue;
34  class Decl;
35  class IdentifierInfo;
36  class ParmVarDecl;
37  class NamedDecl;
38  class ValueDecl;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXOperatorCallExpr;
42  class CXXMemberCallExpr;
43  class ObjCPropertyRefExpr;
44  class TemplateArgumentLoc;
45  class TemplateArgumentListInfo;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_NotBlockQualified,
240    MLV_ReadonlyProperty,
241    MLV_NoSetterProperty,
242    MLV_MemberFunction,
243    MLV_SubObjCPropertySetting,
244    MLV_InvalidMessageExpression,
245    MLV_ClassTemporary
246  };
247  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
248                                              SourceLocation *Loc = 0) const;
249
250  /// \brief The return type of classify(). Represents the C++0x expression
251  ///        taxonomy.
252  class Classification {
253  public:
254    /// \brief The various classification results. Most of these mean prvalue.
255    enum Kinds {
256      CL_LValue,
257      CL_XValue,
258      CL_Function, // Functions cannot be lvalues in C.
259      CL_Void, // Void cannot be an lvalue in C.
260      CL_AddressableVoid, // Void expression whose address can be taken in C.
261      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
262      CL_MemberFunction, // An expression referring to a member function
263      CL_SubObjCPropertySetting,
264      CL_ClassTemporary, // A prvalue of class type
265      CL_ObjCMessageRValue, // ObjC message is an rvalue
266      CL_PRValue // A prvalue for any other reason, of any other type
267    };
268    /// \brief The results of modification testing.
269    enum ModifiableType {
270      CM_Untested, // testModifiable was false.
271      CM_Modifiable,
272      CM_RValue, // Not modifiable because it's an rvalue
273      CM_Function, // Not modifiable because it's a function; C++ only
274      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
275      CM_NotBlockQualified, // Not captured in the closure
276      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
277      CM_ConstQualified,
278      CM_ArrayType,
279      CM_IncompleteType
280    };
281
282  private:
283    friend class Expr;
284
285    unsigned short Kind;
286    unsigned short Modifiable;
287
288    explicit Classification(Kinds k, ModifiableType m)
289      : Kind(k), Modifiable(m)
290    {}
291
292  public:
293    Classification() {}
294
295    Kinds getKind() const { return static_cast<Kinds>(Kind); }
296    ModifiableType getModifiable() const {
297      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
298      return static_cast<ModifiableType>(Modifiable);
299    }
300    bool isLValue() const { return Kind == CL_LValue; }
301    bool isXValue() const { return Kind == CL_XValue; }
302    bool isGLValue() const { return Kind <= CL_XValue; }
303    bool isPRValue() const { return Kind >= CL_Function; }
304    bool isRValue() const { return Kind >= CL_XValue; }
305    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
306
307    /// \brief Create a simple, modifiably lvalue
308    static Classification makeSimpleLValue() {
309      return Classification(CL_LValue, CM_Modifiable);
310    }
311
312  };
313  /// \brief Classify - Classify this expression according to the C++0x
314  ///        expression taxonomy.
315  ///
316  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
317  /// old lvalue vs rvalue. This function determines the type of expression this
318  /// is. There are three expression types:
319  /// - lvalues are classical lvalues as in C++03.
320  /// - prvalues are equivalent to rvalues in C++03.
321  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
322  ///   function returning an rvalue reference.
323  /// lvalues and xvalues are collectively referred to as glvalues, while
324  /// prvalues and xvalues together form rvalues.
325  Classification Classify(ASTContext &Ctx) const {
326    return ClassifyImpl(Ctx, 0);
327  }
328
329  /// \brief ClassifyModifiable - Classify this expression according to the
330  ///        C++0x expression taxonomy, and see if it is valid on the left side
331  ///        of an assignment.
332  ///
333  /// This function extends classify in that it also tests whether the
334  /// expression is modifiable (C99 6.3.2.1p1).
335  /// \param Loc A source location that might be filled with a relevant location
336  ///            if the expression is not modifiable.
337  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
338    return ClassifyImpl(Ctx, &Loc);
339  }
340
341  /// getValueKindForType - Given a formal return or parameter type,
342  /// give its value kind.
343  static ExprValueKind getValueKindForType(QualType T) {
344    if (const ReferenceType *RT = T->getAs<ReferenceType>())
345      return (isa<LValueReferenceType>(RT)
346                ? VK_LValue
347                : (RT->getPointeeType()->isFunctionType()
348                     ? VK_LValue : VK_XValue));
349    return VK_RValue;
350  }
351
352  /// getValueKind - The value kind that this expression produces.
353  ExprValueKind getValueKind() const {
354    return static_cast<ExprValueKind>(ExprBits.ValueKind);
355  }
356
357  /// getObjectKind - The object kind that this expression produces.
358  /// Object kinds are meaningful only for expressions that yield an
359  /// l-value or x-value.
360  ExprObjectKind getObjectKind() const {
361    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
362  }
363
364  bool isOrdinaryOrBitFieldObject() const {
365    ExprObjectKind OK = getObjectKind();
366    return (OK == OK_Ordinary || OK == OK_BitField);
367  }
368
369  /// setValueKind - Set the value kind produced by this expression.
370  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
371
372  /// setObjectKind - Set the object kind produced by this expression.
373  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
374
375private:
376  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
377
378public:
379
380  /// \brief If this expression refers to a bit-field, retrieve the
381  /// declaration of that bit-field.
382  FieldDecl *getBitField();
383
384  const FieldDecl *getBitField() const {
385    return const_cast<Expr*>(this)->getBitField();
386  }
387
388  /// \brief If this expression is an l-value for an Objective C
389  /// property, find the underlying property reference expression.
390  const ObjCPropertyRefExpr *getObjCProperty() const;
391
392  /// \brief Returns whether this expression refers to a vector element.
393  bool refersToVectorElement() const;
394
395  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
396  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
397  /// but also int expressions which are produced by things like comparisons in
398  /// C.
399  bool isKnownToHaveBooleanValue() const;
400
401  /// isIntegerConstantExpr - Return true if this expression is a valid integer
402  /// constant expression, and, if so, return its value in Result.  If not a
403  /// valid i-c-e, return false and fill in Loc (if specified) with the location
404  /// of the invalid expression.
405  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
406                             SourceLocation *Loc = 0,
407                             bool isEvaluated = true) const;
408  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
409    llvm::APSInt X;
410    return isIntegerConstantExpr(X, Ctx, Loc);
411  }
412  /// isConstantInitializer - Returns true if this expression is a constant
413  /// initializer, which can be emitted at compile-time.
414  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
415
416  /// EvalResult is a struct with detailed info about an evaluated expression.
417  struct EvalResult {
418    /// Val - This is the value the expression can be folded to.
419    APValue Val;
420
421    /// HasSideEffects - Whether the evaluated expression has side effects.
422    /// For example, (f() && 0) can be folded, but it still has side effects.
423    bool HasSideEffects;
424
425    /// Diag - If the expression is unfoldable, then Diag contains a note
426    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
427    /// position for the error, and DiagExpr is the expression that caused
428    /// the error.
429    /// If the expression is foldable, but not an integer constant expression,
430    /// Diag contains a note diagnostic that describes why it isn't an integer
431    /// constant expression. If the expression *is* an integer constant
432    /// expression, then Diag will be zero.
433    unsigned Diag;
434    const Expr *DiagExpr;
435    SourceLocation DiagLoc;
436
437    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
438
439    // isGlobalLValue - Return true if the evaluated lvalue expression
440    // is global.
441    bool isGlobalLValue() const;
442    // hasSideEffects - Return true if the evaluated expression has
443    // side effects.
444    bool hasSideEffects() const {
445      return HasSideEffects;
446    }
447  };
448
449  /// Evaluate - Return true if this is a constant which we can fold using
450  /// any crazy technique (that has nothing to do with language standards) that
451  /// we want to.  If this function returns true, it returns the folded constant
452  /// in Result.
453  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
454
455  /// EvaluateAsBooleanCondition - Return true if this is a constant
456  /// which we we can fold and convert to a boolean condition using
457  /// any crazy technique that we want to.
458  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
459
460  /// isEvaluatable - Call Evaluate to see if this expression can be constant
461  /// folded, but discard the result.
462  bool isEvaluatable(const ASTContext &Ctx) const;
463
464  /// HasSideEffects - This routine returns true for all those expressions
465  /// which must be evaluated each time and must not be optimized away
466  /// or evaluated at compile time. Example is a function call, volatile
467  /// variable read.
468  bool HasSideEffects(const ASTContext &Ctx) const;
469
470  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
471  /// must be called on an expression that constant folds to an integer.
472  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
473
474  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
475  /// with link time known address.
476  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
477
478  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
479  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
480
481  /// \brief Enumeration used to describe the kind of Null pointer constant
482  /// returned from \c isNullPointerConstant().
483  enum NullPointerConstantKind {
484    /// \brief Expression is not a Null pointer constant.
485    NPCK_NotNull = 0,
486
487    /// \brief Expression is a Null pointer constant built from a zero integer.
488    NPCK_ZeroInteger,
489
490    /// \brief Expression is a C++0X nullptr.
491    NPCK_CXX0X_nullptr,
492
493    /// \brief Expression is a GNU-style __null constant.
494    NPCK_GNUNull
495  };
496
497  /// \brief Enumeration used to describe how \c isNullPointerConstant()
498  /// should cope with value-dependent expressions.
499  enum NullPointerConstantValueDependence {
500    /// \brief Specifies that the expression should never be value-dependent.
501    NPC_NeverValueDependent = 0,
502
503    /// \brief Specifies that a value-dependent expression of integral or
504    /// dependent type should be considered a null pointer constant.
505    NPC_ValueDependentIsNull,
506
507    /// \brief Specifies that a value-dependent expression should be considered
508    /// to never be a null pointer constant.
509    NPC_ValueDependentIsNotNull
510  };
511
512  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
513  /// a Null pointer constant. The return value can further distinguish the
514  /// kind of NULL pointer constant that was detected.
515  NullPointerConstantKind isNullPointerConstant(
516      ASTContext &Ctx,
517      NullPointerConstantValueDependence NPC) const;
518
519  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
520  /// write barrier.
521  bool isOBJCGCCandidate(ASTContext &Ctx) const;
522
523  /// \brief Returns true if this expression is a bound member function.
524  bool isBoundMemberFunction(ASTContext &Ctx) const;
525
526  /// \brief Given an expression of bound-member type, find the type
527  /// of the member.  Returns null if this is an *overloaded* bound
528  /// member expression.
529  static QualType findBoundMemberType(const Expr *expr);
530
531  /// \brief Result type of CanThrow().
532  enum CanThrowResult {
533    CT_Cannot,
534    CT_Dependent,
535    CT_Can
536  };
537  /// \brief Test if this expression, if evaluated, might throw, according to
538  ///        the rules of C++ [expr.unary.noexcept].
539  CanThrowResult CanThrow(ASTContext &C) const;
540
541  /// IgnoreImpCasts - Skip past any implicit casts which might
542  /// surround this expression.  Only skips ImplicitCastExprs.
543  Expr *IgnoreImpCasts();
544
545  /// IgnoreImplicit - Skip past any implicit AST nodes which might
546  /// surround this expression.
547  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
548
549  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
550  ///  its subexpression.  If that subexpression is also a ParenExpr,
551  ///  then this method recursively returns its subexpression, and so forth.
552  ///  Otherwise, the method returns the current Expr.
553  Expr *IgnoreParens();
554
555  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
556  /// or CastExprs, returning their operand.
557  Expr *IgnoreParenCasts();
558
559  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
560  /// ParenExpr or ImplicitCastExprs, returning their operand.
561  Expr *IgnoreParenImpCasts();
562
563  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
564  /// call to a conversion operator, return the argument.
565  Expr *IgnoreConversionOperator();
566
567  const Expr *IgnoreConversionOperator() const {
568    return const_cast<Expr*>(this)->IgnoreConversionOperator();
569  }
570
571  const Expr *IgnoreParenImpCasts() const {
572    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
573  }
574
575  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
576  /// CastExprs that represent lvalue casts, returning their operand.
577  Expr *IgnoreParenLValueCasts();
578
579  const Expr *IgnoreParenLValueCasts() const {
580    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
581  }
582
583  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
584  /// value (including ptr->int casts of the same size).  Strip off any
585  /// ParenExpr or CastExprs, returning their operand.
586  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
587
588  /// \brief Determine whether this expression is a default function argument.
589  ///
590  /// Default arguments are implicitly generated in the abstract syntax tree
591  /// by semantic analysis for function calls, object constructions, etc. in
592  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
593  /// this routine also looks through any implicit casts to determine whether
594  /// the expression is a default argument.
595  bool isDefaultArgument() const;
596
597  /// \brief Determine whether the result of this expression is a
598  /// temporary object of the given class type.
599  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
600
601  /// \brief Whether this expression is an implicit reference to 'this' in C++.
602  bool isImplicitCXXThis() const;
603
604  const Expr *IgnoreImpCasts() const {
605    return const_cast<Expr*>(this)->IgnoreImpCasts();
606  }
607  const Expr *IgnoreParens() const {
608    return const_cast<Expr*>(this)->IgnoreParens();
609  }
610  const Expr *IgnoreParenCasts() const {
611    return const_cast<Expr*>(this)->IgnoreParenCasts();
612  }
613  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
614    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
615  }
616
617  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
618  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
619
620  static bool classof(const Stmt *T) {
621    return T->getStmtClass() >= firstExprConstant &&
622           T->getStmtClass() <= lastExprConstant;
623  }
624  static bool classof(const Expr *) { return true; }
625};
626
627
628//===----------------------------------------------------------------------===//
629// Primary Expressions.
630//===----------------------------------------------------------------------===//
631
632/// OpaqueValueExpr - An expression referring to an opaque object of a
633/// fixed type and value class.  These don't correspond to concrete
634/// syntax; instead they're used to express operations (usually copy
635/// operations) on values whose source is generally obvious from
636/// context.
637class OpaqueValueExpr : public Expr {
638  friend class ASTStmtReader;
639  Expr *SourceExpr;
640  SourceLocation Loc;
641
642public:
643  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
644                  ExprObjectKind OK = OK_Ordinary)
645    : Expr(OpaqueValueExprClass, T, VK, OK,
646           T->isDependentType(), T->isDependentType(),
647           T->isInstantiationDependentType(),
648           false),
649      SourceExpr(0), Loc(Loc) {
650  }
651
652  /// Given an expression which invokes a copy constructor --- i.e.  a
653  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
654  /// find the OpaqueValueExpr that's the source of the construction.
655  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
656
657  explicit OpaqueValueExpr(EmptyShell Empty)
658    : Expr(OpaqueValueExprClass, Empty) { }
659
660  /// \brief Retrieve the location of this expression.
661  SourceLocation getLocation() const { return Loc; }
662
663  SourceRange getSourceRange() const {
664    if (SourceExpr) return SourceExpr->getSourceRange();
665    return Loc;
666  }
667  SourceLocation getExprLoc() const {
668    if (SourceExpr) return SourceExpr->getExprLoc();
669    return Loc;
670  }
671
672  child_range children() { return child_range(); }
673
674  /// The source expression of an opaque value expression is the
675  /// expression which originally generated the value.  This is
676  /// provided as a convenience for analyses that don't wish to
677  /// precisely model the execution behavior of the program.
678  ///
679  /// The source expression is typically set when building the
680  /// expression which binds the opaque value expression in the first
681  /// place.
682  Expr *getSourceExpr() const { return SourceExpr; }
683  void setSourceExpr(Expr *e) { SourceExpr = e; }
684
685  static bool classof(const Stmt *T) {
686    return T->getStmtClass() == OpaqueValueExprClass;
687  }
688  static bool classof(const OpaqueValueExpr *) { return true; }
689};
690
691/// \brief Represents an explicit template argument list in C++, e.g.,
692/// the "<int>" in "sort<int>".
693struct ExplicitTemplateArgumentList {
694  /// \brief The source location of the left angle bracket ('<');
695  SourceLocation LAngleLoc;
696
697  /// \brief The source location of the right angle bracket ('>');
698  SourceLocation RAngleLoc;
699
700  /// \brief The number of template arguments in TemplateArgs.
701  /// The actual template arguments (if any) are stored after the
702  /// ExplicitTemplateArgumentList structure.
703  unsigned NumTemplateArgs;
704
705  /// \brief Retrieve the template arguments
706  TemplateArgumentLoc *getTemplateArgs() {
707    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
708  }
709
710  /// \brief Retrieve the template arguments
711  const TemplateArgumentLoc *getTemplateArgs() const {
712    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
713  }
714
715  void initializeFrom(const TemplateArgumentListInfo &List);
716  void initializeFrom(const TemplateArgumentListInfo &List,
717                      bool &Dependent, bool &InstantiationDependent,
718                      bool &ContainsUnexpandedParameterPack);
719  void copyInto(TemplateArgumentListInfo &List) const;
720  static std::size_t sizeFor(unsigned NumTemplateArgs);
721  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
722};
723
724/// \brief A reference to a declared variable, function, enum, etc.
725/// [C99 6.5.1p2]
726///
727/// This encodes all the information about how a declaration is referenced
728/// within an expression.
729///
730/// There are several optional constructs attached to DeclRefExprs only when
731/// they apply in order to conserve memory. These are laid out past the end of
732/// the object, and flags in the DeclRefExprBitfield track whether they exist:
733///
734///   DeclRefExprBits.HasQualifier:
735///       Specifies when this declaration reference expression has a C++
736///       nested-name-specifier.
737///   DeclRefExprBits.HasFoundDecl:
738///       Specifies when this declaration reference expression has a record of
739///       a NamedDecl (different from the referenced ValueDecl) which was found
740///       during name lookup and/or overload resolution.
741///   DeclRefExprBits.HasExplicitTemplateArgs:
742///       Specifies when this declaration reference expression has an explicit
743///       C++ template argument list.
744class DeclRefExpr : public Expr {
745  /// \brief The declaration that we are referencing.
746  ValueDecl *D;
747
748  /// \brief The location of the declaration name itself.
749  SourceLocation Loc;
750
751  /// \brief Provides source/type location info for the declaration name
752  /// embedded in D.
753  DeclarationNameLoc DNLoc;
754
755  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
756  NestedNameSpecifierLoc &getInternalQualifierLoc() {
757    assert(hasQualifier());
758    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
759  }
760
761  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
762  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
763    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
764  }
765
766  /// \brief Test whether there is a distinct FoundDecl attached to the end of
767  /// this DRE.
768  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
769
770  /// \brief Helper to retrieve the optional NamedDecl through which this
771  /// reference occured.
772  NamedDecl *&getInternalFoundDecl() {
773    assert(hasFoundDecl());
774    if (hasQualifier())
775      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
776    return *reinterpret_cast<NamedDecl **>(this + 1);
777  }
778
779  /// \brief Helper to retrieve the optional NamedDecl through which this
780  /// reference occured.
781  NamedDecl *getInternalFoundDecl() const {
782    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
783  }
784
785  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
786              ValueDecl *D, const DeclarationNameInfo &NameInfo,
787              NamedDecl *FoundD,
788              const TemplateArgumentListInfo *TemplateArgs,
789              QualType T, ExprValueKind VK);
790
791  /// \brief Construct an empty declaration reference expression.
792  explicit DeclRefExpr(EmptyShell Empty)
793    : Expr(DeclRefExprClass, Empty) { }
794
795  /// \brief Computes the type- and value-dependence flags for this
796  /// declaration reference expression.
797  void computeDependence();
798
799public:
800  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
801              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
802    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
803      D(D), Loc(L), DNLoc(LocInfo) {
804    DeclRefExprBits.HasQualifier = 0;
805    DeclRefExprBits.HasExplicitTemplateArgs = 0;
806    DeclRefExprBits.HasFoundDecl = 0;
807    computeDependence();
808  }
809
810  static DeclRefExpr *Create(ASTContext &Context,
811                             NestedNameSpecifierLoc QualifierLoc,
812                             ValueDecl *D,
813                             SourceLocation NameLoc,
814                             QualType T, ExprValueKind VK,
815                             NamedDecl *FoundD = 0,
816                             const TemplateArgumentListInfo *TemplateArgs = 0);
817
818  static DeclRefExpr *Create(ASTContext &Context,
819                             NestedNameSpecifierLoc QualifierLoc,
820                             ValueDecl *D,
821                             const DeclarationNameInfo &NameInfo,
822                             QualType T, ExprValueKind VK,
823                             NamedDecl *FoundD = 0,
824                             const TemplateArgumentListInfo *TemplateArgs = 0);
825
826  /// \brief Construct an empty declaration reference expression.
827  static DeclRefExpr *CreateEmpty(ASTContext &Context,
828                                  bool HasQualifier,
829                                  bool HasFoundDecl,
830                                  bool HasExplicitTemplateArgs,
831                                  unsigned NumTemplateArgs);
832
833  ValueDecl *getDecl() { return D; }
834  const ValueDecl *getDecl() const { return D; }
835  void setDecl(ValueDecl *NewD) { D = NewD; }
836
837  DeclarationNameInfo getNameInfo() const {
838    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
839  }
840
841  SourceLocation getLocation() const { return Loc; }
842  void setLocation(SourceLocation L) { Loc = L; }
843  SourceRange getSourceRange() const;
844
845  /// \brief Determine whether this declaration reference was preceded by a
846  /// C++ nested-name-specifier, e.g., \c N::foo.
847  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
848
849  /// \brief If the name was qualified, retrieves the nested-name-specifier
850  /// that precedes the name. Otherwise, returns NULL.
851  NestedNameSpecifier *getQualifier() const {
852    if (!hasQualifier())
853      return 0;
854
855    return getInternalQualifierLoc().getNestedNameSpecifier();
856  }
857
858  /// \brief If the name was qualified, retrieves the nested-name-specifier
859  /// that precedes the name, with source-location information.
860  NestedNameSpecifierLoc getQualifierLoc() const {
861    if (!hasQualifier())
862      return NestedNameSpecifierLoc();
863
864    return getInternalQualifierLoc();
865  }
866
867  /// \brief Get the NamedDecl through which this reference occured.
868  ///
869  /// This Decl may be different from the ValueDecl actually referred to in the
870  /// presence of using declarations, etc. It always returns non-NULL, and may
871  /// simple return the ValueDecl when appropriate.
872  NamedDecl *getFoundDecl() {
873    return hasFoundDecl() ? getInternalFoundDecl() : D;
874  }
875
876  /// \brief Get the NamedDecl through which this reference occurred.
877  /// See non-const variant.
878  const NamedDecl *getFoundDecl() const {
879    return hasFoundDecl() ? getInternalFoundDecl() : D;
880  }
881
882  /// \brief Determines whether this declaration reference was followed by an
883  /// explict template argument list.
884  bool hasExplicitTemplateArgs() const {
885    return DeclRefExprBits.HasExplicitTemplateArgs;
886  }
887
888  /// \brief Retrieve the explicit template argument list that followed the
889  /// member template name.
890  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
891    assert(hasExplicitTemplateArgs());
892    if (hasFoundDecl())
893      return *reinterpret_cast<ExplicitTemplateArgumentList *>(
894        &getInternalFoundDecl() + 1);
895
896    if (hasQualifier())
897      return *reinterpret_cast<ExplicitTemplateArgumentList *>(
898        &getInternalQualifierLoc() + 1);
899
900    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
901  }
902
903  /// \brief Retrieve the explicit template argument list that followed the
904  /// member template name.
905  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
906    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
907  }
908
909  /// \brief Retrieves the optional explicit template arguments.
910  /// This points to the same data as getExplicitTemplateArgs(), but
911  /// returns null if there are no explicit template arguments.
912  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
913    if (!hasExplicitTemplateArgs()) return 0;
914    return &getExplicitTemplateArgs();
915  }
916
917  /// \brief Copies the template arguments (if present) into the given
918  /// structure.
919  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
920    if (hasExplicitTemplateArgs())
921      getExplicitTemplateArgs().copyInto(List);
922  }
923
924  /// \brief Retrieve the location of the left angle bracket following the
925  /// member name ('<'), if any.
926  SourceLocation getLAngleLoc() const {
927    if (!hasExplicitTemplateArgs())
928      return SourceLocation();
929
930    return getExplicitTemplateArgs().LAngleLoc;
931  }
932
933  /// \brief Retrieve the template arguments provided as part of this
934  /// template-id.
935  const TemplateArgumentLoc *getTemplateArgs() const {
936    if (!hasExplicitTemplateArgs())
937      return 0;
938
939    return getExplicitTemplateArgs().getTemplateArgs();
940  }
941
942  /// \brief Retrieve the number of template arguments provided as part of this
943  /// template-id.
944  unsigned getNumTemplateArgs() const {
945    if (!hasExplicitTemplateArgs())
946      return 0;
947
948    return getExplicitTemplateArgs().NumTemplateArgs;
949  }
950
951  /// \brief Retrieve the location of the right angle bracket following the
952  /// template arguments ('>').
953  SourceLocation getRAngleLoc() const {
954    if (!hasExplicitTemplateArgs())
955      return SourceLocation();
956
957    return getExplicitTemplateArgs().RAngleLoc;
958  }
959
960  static bool classof(const Stmt *T) {
961    return T->getStmtClass() == DeclRefExprClass;
962  }
963  static bool classof(const DeclRefExpr *) { return true; }
964
965  // Iterators
966  child_range children() { return child_range(); }
967
968  friend class ASTStmtReader;
969  friend class ASTStmtWriter;
970};
971
972/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
973class PredefinedExpr : public Expr {
974public:
975  enum IdentType {
976    Func,
977    Function,
978    PrettyFunction,
979    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
980    /// 'virtual' keyword is omitted for virtual member functions.
981    PrettyFunctionNoVirtual
982  };
983
984private:
985  SourceLocation Loc;
986  IdentType Type;
987public:
988  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
989    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
990           type->isDependentType(), type->isDependentType(),
991           type->isInstantiationDependentType(),
992           /*ContainsUnexpandedParameterPack=*/false),
993      Loc(l), Type(IT) {}
994
995  /// \brief Construct an empty predefined expression.
996  explicit PredefinedExpr(EmptyShell Empty)
997    : Expr(PredefinedExprClass, Empty) { }
998
999  IdentType getIdentType() const { return Type; }
1000  void setIdentType(IdentType IT) { Type = IT; }
1001
1002  SourceLocation getLocation() const { return Loc; }
1003  void setLocation(SourceLocation L) { Loc = L; }
1004
1005  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1006
1007  SourceRange getSourceRange() const { return SourceRange(Loc); }
1008
1009  static bool classof(const Stmt *T) {
1010    return T->getStmtClass() == PredefinedExprClass;
1011  }
1012  static bool classof(const PredefinedExpr *) { return true; }
1013
1014  // Iterators
1015  child_range children() { return child_range(); }
1016};
1017
1018/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1019/// leaking memory.
1020///
1021/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1022/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1023/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1024/// the APFloat/APInt values will never get freed. APNumericStorage uses
1025/// ASTContext's allocator for memory allocation.
1026class APNumericStorage {
1027  unsigned BitWidth;
1028  union {
1029    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1030    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1031  };
1032
1033  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1034
1035  APNumericStorage(const APNumericStorage&); // do not implement
1036  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1037
1038protected:
1039  APNumericStorage() : BitWidth(0), VAL(0) { }
1040
1041  llvm::APInt getIntValue() const {
1042    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1043    if (NumWords > 1)
1044      return llvm::APInt(BitWidth, NumWords, pVal);
1045    else
1046      return llvm::APInt(BitWidth, VAL);
1047  }
1048  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1049};
1050
1051class APIntStorage : public APNumericStorage {
1052public:
1053  llvm::APInt getValue() const { return getIntValue(); }
1054  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1055};
1056
1057class APFloatStorage : public APNumericStorage {
1058public:
1059  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
1060  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1061    setIntValue(C, Val.bitcastToAPInt());
1062  }
1063};
1064
1065class IntegerLiteral : public Expr {
1066  APIntStorage Num;
1067  SourceLocation Loc;
1068
1069  /// \brief Construct an empty integer literal.
1070  explicit IntegerLiteral(EmptyShell Empty)
1071    : Expr(IntegerLiteralClass, Empty) { }
1072
1073public:
1074  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1075  // or UnsignedLongLongTy
1076  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1077                 QualType type, SourceLocation l)
1078    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1079           false, false),
1080      Loc(l) {
1081    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1082    assert(V.getBitWidth() == C.getIntWidth(type) &&
1083           "Integer type is not the correct size for constant.");
1084    setValue(C, V);
1085  }
1086
1087  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1088  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1089  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1090  /// \param V - the value that the returned integer literal contains.
1091  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1092                                QualType type, SourceLocation l);
1093  /// \brief Returns a new empty integer literal.
1094  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1095
1096  llvm::APInt getValue() const { return Num.getValue(); }
1097  SourceRange getSourceRange() const { return SourceRange(Loc); }
1098
1099  /// \brief Retrieve the location of the literal.
1100  SourceLocation getLocation() const { return Loc; }
1101
1102  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1103  void setLocation(SourceLocation Location) { Loc = Location; }
1104
1105  static bool classof(const Stmt *T) {
1106    return T->getStmtClass() == IntegerLiteralClass;
1107  }
1108  static bool classof(const IntegerLiteral *) { return true; }
1109
1110  // Iterators
1111  child_range children() { return child_range(); }
1112};
1113
1114class CharacterLiteral : public Expr {
1115public:
1116  enum CharacterKind {
1117    Ascii,
1118    Wide,
1119    UTF16,
1120    UTF32
1121  };
1122
1123private:
1124  unsigned Value;
1125  SourceLocation Loc;
1126  unsigned Kind : 2;
1127public:
1128  // type should be IntTy
1129  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1130                   SourceLocation l)
1131    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1132           false, false),
1133      Value(value), Loc(l), Kind(kind) {
1134  }
1135
1136  /// \brief Construct an empty character literal.
1137  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1138
1139  SourceLocation getLocation() const { return Loc; }
1140  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1141
1142  SourceRange getSourceRange() const { return SourceRange(Loc); }
1143
1144  unsigned getValue() const { return Value; }
1145
1146  void setLocation(SourceLocation Location) { Loc = Location; }
1147  void setKind(CharacterKind kind) { Kind = kind; }
1148  void setValue(unsigned Val) { Value = Val; }
1149
1150  static bool classof(const Stmt *T) {
1151    return T->getStmtClass() == CharacterLiteralClass;
1152  }
1153  static bool classof(const CharacterLiteral *) { return true; }
1154
1155  // Iterators
1156  child_range children() { return child_range(); }
1157};
1158
1159class FloatingLiteral : public Expr {
1160  APFloatStorage Num;
1161  bool IsExact : 1;
1162  SourceLocation Loc;
1163
1164  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1165                  QualType Type, SourceLocation L)
1166    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1167           false, false),
1168      IsExact(isexact), Loc(L) {
1169    setValue(C, V);
1170  }
1171
1172  /// \brief Construct an empty floating-point literal.
1173  explicit FloatingLiteral(EmptyShell Empty)
1174    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1175
1176public:
1177  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1178                                 bool isexact, QualType Type, SourceLocation L);
1179  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1180
1181  llvm::APFloat getValue() const { return Num.getValue(); }
1182  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1183    Num.setValue(C, Val);
1184  }
1185
1186  bool isExact() const { return IsExact; }
1187  void setExact(bool E) { IsExact = E; }
1188
1189  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1190  /// double.  Note that this may cause loss of precision, but is useful for
1191  /// debugging dumps, etc.
1192  double getValueAsApproximateDouble() const;
1193
1194  SourceLocation getLocation() const { return Loc; }
1195  void setLocation(SourceLocation L) { Loc = L; }
1196
1197  SourceRange getSourceRange() const { return SourceRange(Loc); }
1198
1199  static bool classof(const Stmt *T) {
1200    return T->getStmtClass() == FloatingLiteralClass;
1201  }
1202  static bool classof(const FloatingLiteral *) { return true; }
1203
1204  // Iterators
1205  child_range children() { return child_range(); }
1206};
1207
1208/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1209/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1210/// IntegerLiteral classes.  Instances of this class always have a Complex type
1211/// whose element type matches the subexpression.
1212///
1213class ImaginaryLiteral : public Expr {
1214  Stmt *Val;
1215public:
1216  ImaginaryLiteral(Expr *val, QualType Ty)
1217    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1218           false, false),
1219      Val(val) {}
1220
1221  /// \brief Build an empty imaginary literal.
1222  explicit ImaginaryLiteral(EmptyShell Empty)
1223    : Expr(ImaginaryLiteralClass, Empty) { }
1224
1225  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1226  Expr *getSubExpr() { return cast<Expr>(Val); }
1227  void setSubExpr(Expr *E) { Val = E; }
1228
1229  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1230  static bool classof(const Stmt *T) {
1231    return T->getStmtClass() == ImaginaryLiteralClass;
1232  }
1233  static bool classof(const ImaginaryLiteral *) { return true; }
1234
1235  // Iterators
1236  child_range children() { return child_range(&Val, &Val+1); }
1237};
1238
1239/// StringLiteral - This represents a string literal expression, e.g. "foo"
1240/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1241/// is NOT null-terminated, and the length of the string is determined by
1242/// calling getByteLength().  The C type for a string is always a
1243/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1244/// not.
1245///
1246/// Note that strings in C can be formed by concatenation of multiple string
1247/// literal pptokens in translation phase #6.  This keeps track of the locations
1248/// of each of these pieces.
1249///
1250/// Strings in C can also be truncated and extended by assigning into arrays,
1251/// e.g. with constructs like:
1252///   char X[2] = "foobar";
1253/// In this case, getByteLength() will return 6, but the string literal will
1254/// have type "char[2]".
1255class StringLiteral : public Expr {
1256public:
1257  enum StringKind {
1258    Ascii,
1259    Wide,
1260    UTF8,
1261    UTF16,
1262    UTF32
1263  };
1264
1265private:
1266  friend class ASTStmtReader;
1267
1268  const char *StrData;
1269  unsigned ByteLength;
1270  unsigned NumConcatenated;
1271  unsigned Kind : 3;
1272  bool IsPascal : 1;
1273  SourceLocation TokLocs[1];
1274
1275  StringLiteral(QualType Ty) :
1276    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1277         false) {}
1278
1279public:
1280  /// This is the "fully general" constructor that allows representation of
1281  /// strings formed from multiple concatenated tokens.
1282  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1283                               bool Pascal, QualType Ty,
1284                               const SourceLocation *Loc, unsigned NumStrs);
1285
1286  /// Simple constructor for string literals made from one token.
1287  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1288                               bool Pascal, QualType Ty,
1289                               SourceLocation Loc) {
1290    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1291  }
1292
1293  /// \brief Construct an empty string literal.
1294  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1295
1296  StringRef getString() const {
1297    return StringRef(StrData, ByteLength);
1298  }
1299
1300  unsigned getByteLength() const { return ByteLength; }
1301
1302  /// \brief Sets the string data to the given string data.
1303  void setString(ASTContext &C, StringRef Str);
1304
1305  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1306  bool isAscii() const { return Kind == Ascii; }
1307  bool isWide() const { return Kind == Wide; }
1308  bool isUTF8() const { return Kind == UTF8; }
1309  bool isUTF16() const { return Kind == UTF16; }
1310  bool isUTF32() const { return Kind == UTF32; }
1311  bool isPascal() const { return IsPascal; }
1312
1313  bool containsNonAsciiOrNull() const {
1314    StringRef Str = getString();
1315    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1316      if (!isascii(Str[i]) || !Str[i])
1317        return true;
1318    return false;
1319  }
1320  /// getNumConcatenated - Get the number of string literal tokens that were
1321  /// concatenated in translation phase #6 to form this string literal.
1322  unsigned getNumConcatenated() const { return NumConcatenated; }
1323
1324  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1325    assert(TokNum < NumConcatenated && "Invalid tok number");
1326    return TokLocs[TokNum];
1327  }
1328  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1329    assert(TokNum < NumConcatenated && "Invalid tok number");
1330    TokLocs[TokNum] = L;
1331  }
1332
1333  /// getLocationOfByte - Return a source location that points to the specified
1334  /// byte of this string literal.
1335  ///
1336  /// Strings are amazingly complex.  They can be formed from multiple tokens
1337  /// and can have escape sequences in them in addition to the usual trigraph
1338  /// and escaped newline business.  This routine handles this complexity.
1339  ///
1340  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1341                                   const LangOptions &Features,
1342                                   const TargetInfo &Target) const;
1343
1344  typedef const SourceLocation *tokloc_iterator;
1345  tokloc_iterator tokloc_begin() const { return TokLocs; }
1346  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1347
1348  SourceRange getSourceRange() const {
1349    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1350  }
1351  static bool classof(const Stmt *T) {
1352    return T->getStmtClass() == StringLiteralClass;
1353  }
1354  static bool classof(const StringLiteral *) { return true; }
1355
1356  // Iterators
1357  child_range children() { return child_range(); }
1358};
1359
1360/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1361/// AST node is only formed if full location information is requested.
1362class ParenExpr : public Expr {
1363  SourceLocation L, R;
1364  Stmt *Val;
1365public:
1366  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1367    : Expr(ParenExprClass, val->getType(),
1368           val->getValueKind(), val->getObjectKind(),
1369           val->isTypeDependent(), val->isValueDependent(),
1370           val->isInstantiationDependent(),
1371           val->containsUnexpandedParameterPack()),
1372      L(l), R(r), Val(val) {}
1373
1374  /// \brief Construct an empty parenthesized expression.
1375  explicit ParenExpr(EmptyShell Empty)
1376    : Expr(ParenExprClass, Empty) { }
1377
1378  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1379  Expr *getSubExpr() { return cast<Expr>(Val); }
1380  void setSubExpr(Expr *E) { Val = E; }
1381
1382  SourceRange getSourceRange() const { return SourceRange(L, R); }
1383
1384  /// \brief Get the location of the left parentheses '('.
1385  SourceLocation getLParen() const { return L; }
1386  void setLParen(SourceLocation Loc) { L = Loc; }
1387
1388  /// \brief Get the location of the right parentheses ')'.
1389  SourceLocation getRParen() const { return R; }
1390  void setRParen(SourceLocation Loc) { R = Loc; }
1391
1392  static bool classof(const Stmt *T) {
1393    return T->getStmtClass() == ParenExprClass;
1394  }
1395  static bool classof(const ParenExpr *) { return true; }
1396
1397  // Iterators
1398  child_range children() { return child_range(&Val, &Val+1); }
1399};
1400
1401
1402/// UnaryOperator - This represents the unary-expression's (except sizeof and
1403/// alignof), the postinc/postdec operators from postfix-expression, and various
1404/// extensions.
1405///
1406/// Notes on various nodes:
1407///
1408/// Real/Imag - These return the real/imag part of a complex operand.  If
1409///   applied to a non-complex value, the former returns its operand and the
1410///   later returns zero in the type of the operand.
1411///
1412class UnaryOperator : public Expr {
1413public:
1414  typedef UnaryOperatorKind Opcode;
1415
1416private:
1417  unsigned Opc : 5;
1418  SourceLocation Loc;
1419  Stmt *Val;
1420public:
1421
1422  UnaryOperator(Expr *input, Opcode opc, QualType type,
1423                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1424    : Expr(UnaryOperatorClass, type, VK, OK,
1425           input->isTypeDependent() || type->isDependentType(),
1426           input->isValueDependent(),
1427           (input->isInstantiationDependent() ||
1428            type->isInstantiationDependentType()),
1429           input->containsUnexpandedParameterPack()),
1430      Opc(opc), Loc(l), Val(input) {}
1431
1432  /// \brief Build an empty unary operator.
1433  explicit UnaryOperator(EmptyShell Empty)
1434    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1435
1436  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1437  void setOpcode(Opcode O) { Opc = O; }
1438
1439  Expr *getSubExpr() const { return cast<Expr>(Val); }
1440  void setSubExpr(Expr *E) { Val = E; }
1441
1442  /// getOperatorLoc - Return the location of the operator.
1443  SourceLocation getOperatorLoc() const { return Loc; }
1444  void setOperatorLoc(SourceLocation L) { Loc = L; }
1445
1446  /// isPostfix - Return true if this is a postfix operation, like x++.
1447  static bool isPostfix(Opcode Op) {
1448    return Op == UO_PostInc || Op == UO_PostDec;
1449  }
1450
1451  /// isPrefix - Return true if this is a prefix operation, like --x.
1452  static bool isPrefix(Opcode Op) {
1453    return Op == UO_PreInc || Op == UO_PreDec;
1454  }
1455
1456  bool isPrefix() const { return isPrefix(getOpcode()); }
1457  bool isPostfix() const { return isPostfix(getOpcode()); }
1458  bool isIncrementOp() const {
1459    return Opc == UO_PreInc || Opc == UO_PostInc;
1460  }
1461  bool isIncrementDecrementOp() const {
1462    return Opc <= UO_PreDec;
1463  }
1464  static bool isArithmeticOp(Opcode Op) {
1465    return Op >= UO_Plus && Op <= UO_LNot;
1466  }
1467  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1468
1469  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1470  /// corresponds to, e.g. "sizeof" or "[pre]++"
1471  static const char *getOpcodeStr(Opcode Op);
1472
1473  /// \brief Retrieve the unary opcode that corresponds to the given
1474  /// overloaded operator.
1475  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1476
1477  /// \brief Retrieve the overloaded operator kind that corresponds to
1478  /// the given unary opcode.
1479  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1480
1481  SourceRange getSourceRange() const {
1482    if (isPostfix())
1483      return SourceRange(Val->getLocStart(), Loc);
1484    else
1485      return SourceRange(Loc, Val->getLocEnd());
1486  }
1487  SourceLocation getExprLoc() const { return Loc; }
1488
1489  static bool classof(const Stmt *T) {
1490    return T->getStmtClass() == UnaryOperatorClass;
1491  }
1492  static bool classof(const UnaryOperator *) { return true; }
1493
1494  // Iterators
1495  child_range children() { return child_range(&Val, &Val+1); }
1496};
1497
1498/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1499/// offsetof(record-type, member-designator). For example, given:
1500/// @code
1501/// struct S {
1502///   float f;
1503///   double d;
1504/// };
1505/// struct T {
1506///   int i;
1507///   struct S s[10];
1508/// };
1509/// @endcode
1510/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1511
1512class OffsetOfExpr : public Expr {
1513public:
1514  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1515  class OffsetOfNode {
1516  public:
1517    /// \brief The kind of offsetof node we have.
1518    enum Kind {
1519      /// \brief An index into an array.
1520      Array = 0x00,
1521      /// \brief A field.
1522      Field = 0x01,
1523      /// \brief A field in a dependent type, known only by its name.
1524      Identifier = 0x02,
1525      /// \brief An implicit indirection through a C++ base class, when the
1526      /// field found is in a base class.
1527      Base = 0x03
1528    };
1529
1530  private:
1531    enum { MaskBits = 2, Mask = 0x03 };
1532
1533    /// \brief The source range that covers this part of the designator.
1534    SourceRange Range;
1535
1536    /// \brief The data describing the designator, which comes in three
1537    /// different forms, depending on the lower two bits.
1538    ///   - An unsigned index into the array of Expr*'s stored after this node
1539    ///     in memory, for [constant-expression] designators.
1540    ///   - A FieldDecl*, for references to a known field.
1541    ///   - An IdentifierInfo*, for references to a field with a given name
1542    ///     when the class type is dependent.
1543    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1544    ///     base class.
1545    uintptr_t Data;
1546
1547  public:
1548    /// \brief Create an offsetof node that refers to an array element.
1549    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1550                 SourceLocation RBracketLoc)
1551      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1552
1553    /// \brief Create an offsetof node that refers to a field.
1554    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1555                 SourceLocation NameLoc)
1556      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1557        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1558
1559    /// \brief Create an offsetof node that refers to an identifier.
1560    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1561                 SourceLocation NameLoc)
1562      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1563        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1564
1565    /// \brief Create an offsetof node that refers into a C++ base class.
1566    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1567      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1568
1569    /// \brief Determine what kind of offsetof node this is.
1570    Kind getKind() const {
1571      return static_cast<Kind>(Data & Mask);
1572    }
1573
1574    /// \brief For an array element node, returns the index into the array
1575    /// of expressions.
1576    unsigned getArrayExprIndex() const {
1577      assert(getKind() == Array);
1578      return Data >> 2;
1579    }
1580
1581    /// \brief For a field offsetof node, returns the field.
1582    FieldDecl *getField() const {
1583      assert(getKind() == Field);
1584      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1585    }
1586
1587    /// \brief For a field or identifier offsetof node, returns the name of
1588    /// the field.
1589    IdentifierInfo *getFieldName() const;
1590
1591    /// \brief For a base class node, returns the base specifier.
1592    CXXBaseSpecifier *getBase() const {
1593      assert(getKind() == Base);
1594      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1595    }
1596
1597    /// \brief Retrieve the source range that covers this offsetof node.
1598    ///
1599    /// For an array element node, the source range contains the locations of
1600    /// the square brackets. For a field or identifier node, the source range
1601    /// contains the location of the period (if there is one) and the
1602    /// identifier.
1603    SourceRange getSourceRange() const { return Range; }
1604  };
1605
1606private:
1607
1608  SourceLocation OperatorLoc, RParenLoc;
1609  // Base type;
1610  TypeSourceInfo *TSInfo;
1611  // Number of sub-components (i.e. instances of OffsetOfNode).
1612  unsigned NumComps;
1613  // Number of sub-expressions (i.e. array subscript expressions).
1614  unsigned NumExprs;
1615
1616  OffsetOfExpr(ASTContext &C, QualType type,
1617               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1618               OffsetOfNode* compsPtr, unsigned numComps,
1619               Expr** exprsPtr, unsigned numExprs,
1620               SourceLocation RParenLoc);
1621
1622  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1623    : Expr(OffsetOfExprClass, EmptyShell()),
1624      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1625
1626public:
1627
1628  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1629                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1630                              OffsetOfNode* compsPtr, unsigned numComps,
1631                              Expr** exprsPtr, unsigned numExprs,
1632                              SourceLocation RParenLoc);
1633
1634  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1635                                   unsigned NumComps, unsigned NumExprs);
1636
1637  /// getOperatorLoc - Return the location of the operator.
1638  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1639  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1640
1641  /// \brief Return the location of the right parentheses.
1642  SourceLocation getRParenLoc() const { return RParenLoc; }
1643  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1644
1645  TypeSourceInfo *getTypeSourceInfo() const {
1646    return TSInfo;
1647  }
1648  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1649    TSInfo = tsi;
1650  }
1651
1652  const OffsetOfNode &getComponent(unsigned Idx) const {
1653    assert(Idx < NumComps && "Subscript out of range");
1654    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1655  }
1656
1657  void setComponent(unsigned Idx, OffsetOfNode ON) {
1658    assert(Idx < NumComps && "Subscript out of range");
1659    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1660  }
1661
1662  unsigned getNumComponents() const {
1663    return NumComps;
1664  }
1665
1666  Expr* getIndexExpr(unsigned Idx) {
1667    assert(Idx < NumExprs && "Subscript out of range");
1668    return reinterpret_cast<Expr **>(
1669                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1670  }
1671  const Expr *getIndexExpr(unsigned Idx) const {
1672    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1673  }
1674
1675  void setIndexExpr(unsigned Idx, Expr* E) {
1676    assert(Idx < NumComps && "Subscript out of range");
1677    reinterpret_cast<Expr **>(
1678                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1679  }
1680
1681  unsigned getNumExpressions() const {
1682    return NumExprs;
1683  }
1684
1685  SourceRange getSourceRange() const {
1686    return SourceRange(OperatorLoc, RParenLoc);
1687  }
1688
1689  static bool classof(const Stmt *T) {
1690    return T->getStmtClass() == OffsetOfExprClass;
1691  }
1692
1693  static bool classof(const OffsetOfExpr *) { return true; }
1694
1695  // Iterators
1696  child_range children() {
1697    Stmt **begin =
1698      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1699                               + NumComps);
1700    return child_range(begin, begin + NumExprs);
1701  }
1702};
1703
1704/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1705/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1706/// vec_step (OpenCL 1.1 6.11.12).
1707class UnaryExprOrTypeTraitExpr : public Expr {
1708  unsigned Kind : 2;
1709  bool isType : 1;    // true if operand is a type, false if an expression
1710  union {
1711    TypeSourceInfo *Ty;
1712    Stmt *Ex;
1713  } Argument;
1714  SourceLocation OpLoc, RParenLoc;
1715
1716public:
1717  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1718                           QualType resultType, SourceLocation op,
1719                           SourceLocation rp) :
1720      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1721           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1722           // Value-dependent if the argument is type-dependent.
1723           TInfo->getType()->isDependentType(),
1724           TInfo->getType()->isInstantiationDependentType(),
1725           TInfo->getType()->containsUnexpandedParameterPack()),
1726      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1727    Argument.Ty = TInfo;
1728  }
1729
1730  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1731                           QualType resultType, SourceLocation op,
1732                           SourceLocation rp) :
1733      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1734           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1735           // Value-dependent if the argument is type-dependent.
1736           E->isTypeDependent(),
1737           E->isInstantiationDependent(),
1738           E->containsUnexpandedParameterPack()),
1739      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1740    Argument.Ex = E;
1741  }
1742
1743  /// \brief Construct an empty sizeof/alignof expression.
1744  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1745    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1746
1747  UnaryExprOrTypeTrait getKind() const {
1748    return static_cast<UnaryExprOrTypeTrait>(Kind);
1749  }
1750  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1751
1752  bool isArgumentType() const { return isType; }
1753  QualType getArgumentType() const {
1754    return getArgumentTypeInfo()->getType();
1755  }
1756  TypeSourceInfo *getArgumentTypeInfo() const {
1757    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1758    return Argument.Ty;
1759  }
1760  Expr *getArgumentExpr() {
1761    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1762    return static_cast<Expr*>(Argument.Ex);
1763  }
1764  const Expr *getArgumentExpr() const {
1765    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1766  }
1767
1768  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1769  void setArgument(TypeSourceInfo *TInfo) {
1770    Argument.Ty = TInfo;
1771    isType = true;
1772  }
1773
1774  /// Gets the argument type, or the type of the argument expression, whichever
1775  /// is appropriate.
1776  QualType getTypeOfArgument() const {
1777    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1778  }
1779
1780  SourceLocation getOperatorLoc() const { return OpLoc; }
1781  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1782
1783  SourceLocation getRParenLoc() const { return RParenLoc; }
1784  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1785
1786  SourceRange getSourceRange() const {
1787    return SourceRange(OpLoc, RParenLoc);
1788  }
1789
1790  static bool classof(const Stmt *T) {
1791    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1792  }
1793  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1794
1795  // Iterators
1796  child_range children();
1797};
1798
1799//===----------------------------------------------------------------------===//
1800// Postfix Operators.
1801//===----------------------------------------------------------------------===//
1802
1803/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1804class ArraySubscriptExpr : public Expr {
1805  enum { LHS, RHS, END_EXPR=2 };
1806  Stmt* SubExprs[END_EXPR];
1807  SourceLocation RBracketLoc;
1808public:
1809  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1810                     ExprValueKind VK, ExprObjectKind OK,
1811                     SourceLocation rbracketloc)
1812  : Expr(ArraySubscriptExprClass, t, VK, OK,
1813         lhs->isTypeDependent() || rhs->isTypeDependent(),
1814         lhs->isValueDependent() || rhs->isValueDependent(),
1815         (lhs->isInstantiationDependent() ||
1816          rhs->isInstantiationDependent()),
1817         (lhs->containsUnexpandedParameterPack() ||
1818          rhs->containsUnexpandedParameterPack())),
1819    RBracketLoc(rbracketloc) {
1820    SubExprs[LHS] = lhs;
1821    SubExprs[RHS] = rhs;
1822  }
1823
1824  /// \brief Create an empty array subscript expression.
1825  explicit ArraySubscriptExpr(EmptyShell Shell)
1826    : Expr(ArraySubscriptExprClass, Shell) { }
1827
1828  /// An array access can be written A[4] or 4[A] (both are equivalent).
1829  /// - getBase() and getIdx() always present the normalized view: A[4].
1830  ///    In this case getBase() returns "A" and getIdx() returns "4".
1831  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1832  ///    4[A] getLHS() returns "4".
1833  /// Note: Because vector element access is also written A[4] we must
1834  /// predicate the format conversion in getBase and getIdx only on the
1835  /// the type of the RHS, as it is possible for the LHS to be a vector of
1836  /// integer type
1837  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1838  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1839  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1840
1841  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1842  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1843  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1844
1845  Expr *getBase() {
1846    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1847  }
1848
1849  const Expr *getBase() const {
1850    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1851  }
1852
1853  Expr *getIdx() {
1854    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1855  }
1856
1857  const Expr *getIdx() const {
1858    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1859  }
1860
1861  SourceRange getSourceRange() const {
1862    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1863  }
1864
1865  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1866  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1867
1868  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1869
1870  static bool classof(const Stmt *T) {
1871    return T->getStmtClass() == ArraySubscriptExprClass;
1872  }
1873  static bool classof(const ArraySubscriptExpr *) { return true; }
1874
1875  // Iterators
1876  child_range children() {
1877    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1878  }
1879};
1880
1881
1882/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1883/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1884/// while its subclasses may represent alternative syntax that (semantically)
1885/// results in a function call. For example, CXXOperatorCallExpr is
1886/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1887/// "str1 + str2" to resolve to a function call.
1888class CallExpr : public Expr {
1889  enum { FN=0, PREARGS_START=1 };
1890  Stmt **SubExprs;
1891  unsigned NumArgs;
1892  SourceLocation RParenLoc;
1893
1894protected:
1895  // These versions of the constructor are for derived classes.
1896  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1897           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1898           SourceLocation rparenloc);
1899  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1900
1901  Stmt *getPreArg(unsigned i) {
1902    assert(i < getNumPreArgs() && "Prearg access out of range!");
1903    return SubExprs[PREARGS_START+i];
1904  }
1905  const Stmt *getPreArg(unsigned i) const {
1906    assert(i < getNumPreArgs() && "Prearg access out of range!");
1907    return SubExprs[PREARGS_START+i];
1908  }
1909  void setPreArg(unsigned i, Stmt *PreArg) {
1910    assert(i < getNumPreArgs() && "Prearg access out of range!");
1911    SubExprs[PREARGS_START+i] = PreArg;
1912  }
1913
1914  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1915
1916public:
1917  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1918           ExprValueKind VK, SourceLocation rparenloc);
1919
1920  /// \brief Build an empty call expression.
1921  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1922
1923  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1924  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1925  void setCallee(Expr *F) { SubExprs[FN] = F; }
1926
1927  Decl *getCalleeDecl();
1928  const Decl *getCalleeDecl() const {
1929    return const_cast<CallExpr*>(this)->getCalleeDecl();
1930  }
1931
1932  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1933  FunctionDecl *getDirectCallee();
1934  const FunctionDecl *getDirectCallee() const {
1935    return const_cast<CallExpr*>(this)->getDirectCallee();
1936  }
1937
1938  /// getNumArgs - Return the number of actual arguments to this call.
1939  ///
1940  unsigned getNumArgs() const { return NumArgs; }
1941
1942  /// \brief Retrieve the call arguments.
1943  Expr **getArgs() {
1944    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1945  }
1946
1947  /// getArg - Return the specified argument.
1948  Expr *getArg(unsigned Arg) {
1949    assert(Arg < NumArgs && "Arg access out of range!");
1950    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1951  }
1952  const Expr *getArg(unsigned Arg) const {
1953    assert(Arg < NumArgs && "Arg access out of range!");
1954    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1955  }
1956
1957  /// setArg - Set the specified argument.
1958  void setArg(unsigned Arg, Expr *ArgExpr) {
1959    assert(Arg < NumArgs && "Arg access out of range!");
1960    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1961  }
1962
1963  /// setNumArgs - This changes the number of arguments present in this call.
1964  /// Any orphaned expressions are deleted by this, and any new operands are set
1965  /// to null.
1966  void setNumArgs(ASTContext& C, unsigned NumArgs);
1967
1968  typedef ExprIterator arg_iterator;
1969  typedef ConstExprIterator const_arg_iterator;
1970
1971  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1972  arg_iterator arg_end() {
1973    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1974  }
1975  const_arg_iterator arg_begin() const {
1976    return SubExprs+PREARGS_START+getNumPreArgs();
1977  }
1978  const_arg_iterator arg_end() const {
1979    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1980  }
1981
1982  /// getNumCommas - Return the number of commas that must have been present in
1983  /// this function call.
1984  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1985
1986  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1987  /// not, return 0.
1988  unsigned isBuiltinCall(const ASTContext &Context) const;
1989
1990  /// getCallReturnType - Get the return type of the call expr. This is not
1991  /// always the type of the expr itself, if the return type is a reference
1992  /// type.
1993  QualType getCallReturnType() const;
1994
1995  SourceLocation getRParenLoc() const { return RParenLoc; }
1996  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1997
1998  SourceRange getSourceRange() const;
1999
2000  static bool classof(const Stmt *T) {
2001    return T->getStmtClass() >= firstCallExprConstant &&
2002           T->getStmtClass() <= lastCallExprConstant;
2003  }
2004  static bool classof(const CallExpr *) { return true; }
2005
2006  // Iterators
2007  child_range children() {
2008    return child_range(&SubExprs[0],
2009                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2010  }
2011};
2012
2013/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2014///
2015class MemberExpr : public Expr {
2016  /// Extra data stored in some member expressions.
2017  struct MemberNameQualifier {
2018    /// \brief The nested-name-specifier that qualifies the name, including
2019    /// source-location information.
2020    NestedNameSpecifierLoc QualifierLoc;
2021
2022    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2023    /// name qualifiers.
2024    DeclAccessPair FoundDecl;
2025  };
2026
2027  /// Base - the expression for the base pointer or structure references.  In
2028  /// X.F, this is "X".
2029  Stmt *Base;
2030
2031  /// MemberDecl - This is the decl being referenced by the field/member name.
2032  /// In X.F, this is the decl referenced by F.
2033  ValueDecl *MemberDecl;
2034
2035  /// MemberLoc - This is the location of the member name.
2036  SourceLocation MemberLoc;
2037
2038  /// MemberDNLoc - Provides source/type location info for the
2039  /// declaration name embedded in MemberDecl.
2040  DeclarationNameLoc MemberDNLoc;
2041
2042  /// IsArrow - True if this is "X->F", false if this is "X.F".
2043  bool IsArrow : 1;
2044
2045  /// \brief True if this member expression used a nested-name-specifier to
2046  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2047  /// declaration.  When true, a MemberNameQualifier
2048  /// structure is allocated immediately after the MemberExpr.
2049  bool HasQualifierOrFoundDecl : 1;
2050
2051  /// \brief True if this member expression specified a template argument list
2052  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
2053  /// structure (and its TemplateArguments) are allocated immediately after
2054  /// the MemberExpr or, if the member expression also has a qualifier, after
2055  /// the MemberNameQualifier structure.
2056  bool HasExplicitTemplateArgumentList : 1;
2057
2058  /// \brief Retrieve the qualifier that preceded the member name, if any.
2059  MemberNameQualifier *getMemberQualifier() {
2060    assert(HasQualifierOrFoundDecl);
2061    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2062  }
2063
2064  /// \brief Retrieve the qualifier that preceded the member name, if any.
2065  const MemberNameQualifier *getMemberQualifier() const {
2066    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2067  }
2068
2069public:
2070  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2071             const DeclarationNameInfo &NameInfo, QualType ty,
2072             ExprValueKind VK, ExprObjectKind OK)
2073    : Expr(MemberExprClass, ty, VK, OK,
2074           base->isTypeDependent(),
2075           base->isValueDependent(),
2076           base->isInstantiationDependent(),
2077           base->containsUnexpandedParameterPack()),
2078      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2079      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2080      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
2081    assert(memberdecl->getDeclName() == NameInfo.getName());
2082  }
2083
2084  // NOTE: this constructor should be used only when it is known that
2085  // the member name can not provide additional syntactic info
2086  // (i.e., source locations for C++ operator names or type source info
2087  // for constructors, destructors and conversion oeprators).
2088  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2089             SourceLocation l, QualType ty,
2090             ExprValueKind VK, ExprObjectKind OK)
2091    : Expr(MemberExprClass, ty, VK, OK,
2092           base->isTypeDependent(), base->isValueDependent(),
2093           base->isInstantiationDependent(),
2094           base->containsUnexpandedParameterPack()),
2095      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2096      IsArrow(isarrow),
2097      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
2098
2099  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2100                            NestedNameSpecifierLoc QualifierLoc,
2101                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2102                            DeclarationNameInfo MemberNameInfo,
2103                            const TemplateArgumentListInfo *targs,
2104                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2105
2106  void setBase(Expr *E) { Base = E; }
2107  Expr *getBase() const { return cast<Expr>(Base); }
2108
2109  /// \brief Retrieve the member declaration to which this expression refers.
2110  ///
2111  /// The returned declaration will either be a FieldDecl or (in C++)
2112  /// a CXXMethodDecl.
2113  ValueDecl *getMemberDecl() const { return MemberDecl; }
2114  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2115
2116  /// \brief Retrieves the declaration found by lookup.
2117  DeclAccessPair getFoundDecl() const {
2118    if (!HasQualifierOrFoundDecl)
2119      return DeclAccessPair::make(getMemberDecl(),
2120                                  getMemberDecl()->getAccess());
2121    return getMemberQualifier()->FoundDecl;
2122  }
2123
2124  /// \brief Determines whether this member expression actually had
2125  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2126  /// x->Base::foo.
2127  bool hasQualifier() const { return getQualifier() != 0; }
2128
2129  /// \brief If the member name was qualified, retrieves the
2130  /// nested-name-specifier that precedes the member name. Otherwise, returns
2131  /// NULL.
2132  NestedNameSpecifier *getQualifier() const {
2133    if (!HasQualifierOrFoundDecl)
2134      return 0;
2135
2136    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2137  }
2138
2139  /// \brief If the member name was qualified, retrieves the
2140  /// nested-name-specifier that precedes the member name, with source-location
2141  /// information.
2142  NestedNameSpecifierLoc getQualifierLoc() const {
2143    if (!hasQualifier())
2144      return NestedNameSpecifierLoc();
2145
2146    return getMemberQualifier()->QualifierLoc;
2147  }
2148
2149  /// \brief Determines whether this member expression actually had a C++
2150  /// template argument list explicitly specified, e.g., x.f<int>.
2151  bool hasExplicitTemplateArgs() const {
2152    return HasExplicitTemplateArgumentList;
2153  }
2154
2155  /// \brief Copies the template arguments (if present) into the given
2156  /// structure.
2157  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2158    if (hasExplicitTemplateArgs())
2159      getExplicitTemplateArgs().copyInto(List);
2160  }
2161
2162  /// \brief Retrieve the explicit template argument list that
2163  /// follow the member template name.  This must only be called on an
2164  /// expression with explicit template arguments.
2165  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2166    assert(HasExplicitTemplateArgumentList);
2167    if (!HasQualifierOrFoundDecl)
2168      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2169
2170    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
2171                                                      getMemberQualifier() + 1);
2172  }
2173
2174  /// \brief Retrieve the explicit template argument list that
2175  /// followed the member template name.  This must only be called on
2176  /// an expression with explicit template arguments.
2177  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2178    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2179  }
2180
2181  /// \brief Retrieves the optional explicit template arguments.
2182  /// This points to the same data as getExplicitTemplateArgs(), but
2183  /// returns null if there are no explicit template arguments.
2184  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
2185    if (!hasExplicitTemplateArgs()) return 0;
2186    return &getExplicitTemplateArgs();
2187  }
2188
2189  /// \brief Retrieve the location of the left angle bracket following the
2190  /// member name ('<'), if any.
2191  SourceLocation getLAngleLoc() const {
2192    if (!HasExplicitTemplateArgumentList)
2193      return SourceLocation();
2194
2195    return getExplicitTemplateArgs().LAngleLoc;
2196  }
2197
2198  /// \brief Retrieve the template arguments provided as part of this
2199  /// template-id.
2200  const TemplateArgumentLoc *getTemplateArgs() const {
2201    if (!HasExplicitTemplateArgumentList)
2202      return 0;
2203
2204    return getExplicitTemplateArgs().getTemplateArgs();
2205  }
2206
2207  /// \brief Retrieve the number of template arguments provided as part of this
2208  /// template-id.
2209  unsigned getNumTemplateArgs() const {
2210    if (!HasExplicitTemplateArgumentList)
2211      return 0;
2212
2213    return getExplicitTemplateArgs().NumTemplateArgs;
2214  }
2215
2216  /// \brief Retrieve the location of the right angle bracket following the
2217  /// template arguments ('>').
2218  SourceLocation getRAngleLoc() const {
2219    if (!HasExplicitTemplateArgumentList)
2220      return SourceLocation();
2221
2222    return getExplicitTemplateArgs().RAngleLoc;
2223  }
2224
2225  /// \brief Retrieve the member declaration name info.
2226  DeclarationNameInfo getMemberNameInfo() const {
2227    return DeclarationNameInfo(MemberDecl->getDeclName(),
2228                               MemberLoc, MemberDNLoc);
2229  }
2230
2231  bool isArrow() const { return IsArrow; }
2232  void setArrow(bool A) { IsArrow = A; }
2233
2234  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2235  /// location of 'F'.
2236  SourceLocation getMemberLoc() const { return MemberLoc; }
2237  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2238
2239  SourceRange getSourceRange() const;
2240
2241  SourceLocation getExprLoc() const { return MemberLoc; }
2242
2243  /// \brief Determine whether the base of this explicit is implicit.
2244  bool isImplicitAccess() const {
2245    return getBase() && getBase()->isImplicitCXXThis();
2246  }
2247
2248  static bool classof(const Stmt *T) {
2249    return T->getStmtClass() == MemberExprClass;
2250  }
2251  static bool classof(const MemberExpr *) { return true; }
2252
2253  // Iterators
2254  child_range children() { return child_range(&Base, &Base+1); }
2255
2256  friend class ASTReader;
2257  friend class ASTStmtWriter;
2258};
2259
2260/// CompoundLiteralExpr - [C99 6.5.2.5]
2261///
2262class CompoundLiteralExpr : public Expr {
2263  /// LParenLoc - If non-null, this is the location of the left paren in a
2264  /// compound literal like "(int){4}".  This can be null if this is a
2265  /// synthesized compound expression.
2266  SourceLocation LParenLoc;
2267
2268  /// The type as written.  This can be an incomplete array type, in
2269  /// which case the actual expression type will be different.
2270  TypeSourceInfo *TInfo;
2271  Stmt *Init;
2272  bool FileScope;
2273public:
2274  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2275                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2276    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2277           tinfo->getType()->isDependentType(),
2278           init->isValueDependent(),
2279           (init->isInstantiationDependent() ||
2280            tinfo->getType()->isInstantiationDependentType()),
2281           init->containsUnexpandedParameterPack()),
2282      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2283
2284  /// \brief Construct an empty compound literal.
2285  explicit CompoundLiteralExpr(EmptyShell Empty)
2286    : Expr(CompoundLiteralExprClass, Empty) { }
2287
2288  const Expr *getInitializer() const { return cast<Expr>(Init); }
2289  Expr *getInitializer() { return cast<Expr>(Init); }
2290  void setInitializer(Expr *E) { Init = E; }
2291
2292  bool isFileScope() const { return FileScope; }
2293  void setFileScope(bool FS) { FileScope = FS; }
2294
2295  SourceLocation getLParenLoc() const { return LParenLoc; }
2296  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2297
2298  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2299  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2300
2301  SourceRange getSourceRange() const {
2302    // FIXME: Init should never be null.
2303    if (!Init)
2304      return SourceRange();
2305    if (LParenLoc.isInvalid())
2306      return Init->getSourceRange();
2307    return SourceRange(LParenLoc, Init->getLocEnd());
2308  }
2309
2310  static bool classof(const Stmt *T) {
2311    return T->getStmtClass() == CompoundLiteralExprClass;
2312  }
2313  static bool classof(const CompoundLiteralExpr *) { return true; }
2314
2315  // Iterators
2316  child_range children() { return child_range(&Init, &Init+1); }
2317};
2318
2319/// CastExpr - Base class for type casts, including both implicit
2320/// casts (ImplicitCastExpr) and explicit casts that have some
2321/// representation in the source code (ExplicitCastExpr's derived
2322/// classes).
2323class CastExpr : public Expr {
2324public:
2325  typedef clang::CastKind CastKind;
2326
2327private:
2328  Stmt *Op;
2329
2330  void CheckCastConsistency() const;
2331
2332  const CXXBaseSpecifier * const *path_buffer() const {
2333    return const_cast<CastExpr*>(this)->path_buffer();
2334  }
2335  CXXBaseSpecifier **path_buffer();
2336
2337  void setBasePathSize(unsigned basePathSize) {
2338    CastExprBits.BasePathSize = basePathSize;
2339    assert(CastExprBits.BasePathSize == basePathSize &&
2340           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2341  }
2342
2343protected:
2344  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2345           const CastKind kind, Expr *op, unsigned BasePathSize) :
2346    Expr(SC, ty, VK, OK_Ordinary,
2347         // Cast expressions are type-dependent if the type is
2348         // dependent (C++ [temp.dep.expr]p3).
2349         ty->isDependentType(),
2350         // Cast expressions are value-dependent if the type is
2351         // dependent or if the subexpression is value-dependent.
2352         ty->isDependentType() || (op && op->isValueDependent()),
2353         (ty->isInstantiationDependentType() ||
2354          (op && op->isInstantiationDependent())),
2355         (ty->containsUnexpandedParameterPack() ||
2356          op->containsUnexpandedParameterPack())),
2357    Op(op) {
2358    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2359    CastExprBits.Kind = kind;
2360    setBasePathSize(BasePathSize);
2361#ifndef NDEBUG
2362    CheckCastConsistency();
2363#endif
2364  }
2365
2366  /// \brief Construct an empty cast.
2367  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2368    : Expr(SC, Empty) {
2369    setBasePathSize(BasePathSize);
2370  }
2371
2372public:
2373  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2374  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2375  const char *getCastKindName() const;
2376
2377  Expr *getSubExpr() { return cast<Expr>(Op); }
2378  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2379  void setSubExpr(Expr *E) { Op = E; }
2380
2381  /// \brief Retrieve the cast subexpression as it was written in the source
2382  /// code, looking through any implicit casts or other intermediate nodes
2383  /// introduced by semantic analysis.
2384  Expr *getSubExprAsWritten();
2385  const Expr *getSubExprAsWritten() const {
2386    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2387  }
2388
2389  typedef CXXBaseSpecifier **path_iterator;
2390  typedef const CXXBaseSpecifier * const *path_const_iterator;
2391  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2392  unsigned path_size() const { return CastExprBits.BasePathSize; }
2393  path_iterator path_begin() { return path_buffer(); }
2394  path_iterator path_end() { return path_buffer() + path_size(); }
2395  path_const_iterator path_begin() const { return path_buffer(); }
2396  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2397
2398  void setCastPath(const CXXCastPath &Path);
2399
2400  static bool classof(const Stmt *T) {
2401    return T->getStmtClass() >= firstCastExprConstant &&
2402           T->getStmtClass() <= lastCastExprConstant;
2403  }
2404  static bool classof(const CastExpr *) { return true; }
2405
2406  // Iterators
2407  child_range children() { return child_range(&Op, &Op+1); }
2408};
2409
2410/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2411/// conversions, which have no direct representation in the original
2412/// source code. For example: converting T[]->T*, void f()->void
2413/// (*f)(), float->double, short->int, etc.
2414///
2415/// In C, implicit casts always produce rvalues. However, in C++, an
2416/// implicit cast whose result is being bound to a reference will be
2417/// an lvalue or xvalue. For example:
2418///
2419/// @code
2420/// class Base { };
2421/// class Derived : public Base { };
2422/// Derived &&ref();
2423/// void f(Derived d) {
2424///   Base& b = d; // initializer is an ImplicitCastExpr
2425///                // to an lvalue of type Base
2426///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2427///                     // to an xvalue of type Base
2428/// }
2429/// @endcode
2430class ImplicitCastExpr : public CastExpr {
2431private:
2432  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2433                   unsigned BasePathLength, ExprValueKind VK)
2434    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2435  }
2436
2437  /// \brief Construct an empty implicit cast.
2438  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2439    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2440
2441public:
2442  enum OnStack_t { OnStack };
2443  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2444                   ExprValueKind VK)
2445    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2446  }
2447
2448  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2449                                  CastKind Kind, Expr *Operand,
2450                                  const CXXCastPath *BasePath,
2451                                  ExprValueKind Cat);
2452
2453  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2454
2455  SourceRange getSourceRange() const {
2456    return getSubExpr()->getSourceRange();
2457  }
2458
2459  static bool classof(const Stmt *T) {
2460    return T->getStmtClass() == ImplicitCastExprClass;
2461  }
2462  static bool classof(const ImplicitCastExpr *) { return true; }
2463};
2464
2465inline Expr *Expr::IgnoreImpCasts() {
2466  Expr *e = this;
2467  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2468    e = ice->getSubExpr();
2469  return e;
2470}
2471
2472/// ExplicitCastExpr - An explicit cast written in the source
2473/// code.
2474///
2475/// This class is effectively an abstract class, because it provides
2476/// the basic representation of an explicitly-written cast without
2477/// specifying which kind of cast (C cast, functional cast, static
2478/// cast, etc.) was written; specific derived classes represent the
2479/// particular style of cast and its location information.
2480///
2481/// Unlike implicit casts, explicit cast nodes have two different
2482/// types: the type that was written into the source code, and the
2483/// actual type of the expression as determined by semantic
2484/// analysis. These types may differ slightly. For example, in C++ one
2485/// can cast to a reference type, which indicates that the resulting
2486/// expression will be an lvalue or xvalue. The reference type, however,
2487/// will not be used as the type of the expression.
2488class ExplicitCastExpr : public CastExpr {
2489  /// TInfo - Source type info for the (written) type
2490  /// this expression is casting to.
2491  TypeSourceInfo *TInfo;
2492
2493protected:
2494  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2495                   CastKind kind, Expr *op, unsigned PathSize,
2496                   TypeSourceInfo *writtenTy)
2497    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2498
2499  /// \brief Construct an empty explicit cast.
2500  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2501    : CastExpr(SC, Shell, PathSize) { }
2502
2503public:
2504  /// getTypeInfoAsWritten - Returns the type source info for the type
2505  /// that this expression is casting to.
2506  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2507  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2508
2509  /// getTypeAsWritten - Returns the type that this expression is
2510  /// casting to, as written in the source code.
2511  QualType getTypeAsWritten() const { return TInfo->getType(); }
2512
2513  static bool classof(const Stmt *T) {
2514     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2515            T->getStmtClass() <= lastExplicitCastExprConstant;
2516  }
2517  static bool classof(const ExplicitCastExpr *) { return true; }
2518};
2519
2520/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2521/// cast in C++ (C++ [expr.cast]), which uses the syntax
2522/// (Type)expr. For example: @c (int)f.
2523class CStyleCastExpr : public ExplicitCastExpr {
2524  SourceLocation LPLoc; // the location of the left paren
2525  SourceLocation RPLoc; // the location of the right paren
2526
2527  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2528                 unsigned PathSize, TypeSourceInfo *writtenTy,
2529                 SourceLocation l, SourceLocation r)
2530    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2531                       writtenTy), LPLoc(l), RPLoc(r) {}
2532
2533  /// \brief Construct an empty C-style explicit cast.
2534  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2535    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2536
2537public:
2538  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2539                                ExprValueKind VK, CastKind K,
2540                                Expr *Op, const CXXCastPath *BasePath,
2541                                TypeSourceInfo *WrittenTy, SourceLocation L,
2542                                SourceLocation R);
2543
2544  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2545
2546  SourceLocation getLParenLoc() const { return LPLoc; }
2547  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2548
2549  SourceLocation getRParenLoc() const { return RPLoc; }
2550  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2551
2552  SourceRange getSourceRange() const {
2553    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2554  }
2555  static bool classof(const Stmt *T) {
2556    return T->getStmtClass() == CStyleCastExprClass;
2557  }
2558  static bool classof(const CStyleCastExpr *) { return true; }
2559};
2560
2561/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2562///
2563/// This expression node kind describes a builtin binary operation,
2564/// such as "x + y" for integer values "x" and "y". The operands will
2565/// already have been converted to appropriate types (e.g., by
2566/// performing promotions or conversions).
2567///
2568/// In C++, where operators may be overloaded, a different kind of
2569/// expression node (CXXOperatorCallExpr) is used to express the
2570/// invocation of an overloaded operator with operator syntax. Within
2571/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2572/// used to store an expression "x + y" depends on the subexpressions
2573/// for x and y. If neither x or y is type-dependent, and the "+"
2574/// operator resolves to a built-in operation, BinaryOperator will be
2575/// used to express the computation (x and y may still be
2576/// value-dependent). If either x or y is type-dependent, or if the
2577/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2578/// be used to express the computation.
2579class BinaryOperator : public Expr {
2580public:
2581  typedef BinaryOperatorKind Opcode;
2582
2583private:
2584  unsigned Opc : 6;
2585  SourceLocation OpLoc;
2586
2587  enum { LHS, RHS, END_EXPR };
2588  Stmt* SubExprs[END_EXPR];
2589public:
2590
2591  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2592                 ExprValueKind VK, ExprObjectKind OK,
2593                 SourceLocation opLoc)
2594    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2595           lhs->isTypeDependent() || rhs->isTypeDependent(),
2596           lhs->isValueDependent() || rhs->isValueDependent(),
2597           (lhs->isInstantiationDependent() ||
2598            rhs->isInstantiationDependent()),
2599           (lhs->containsUnexpandedParameterPack() ||
2600            rhs->containsUnexpandedParameterPack())),
2601      Opc(opc), OpLoc(opLoc) {
2602    SubExprs[LHS] = lhs;
2603    SubExprs[RHS] = rhs;
2604    assert(!isCompoundAssignmentOp() &&
2605           "Use ArithAssignBinaryOperator for compound assignments");
2606  }
2607
2608  /// \brief Construct an empty binary operator.
2609  explicit BinaryOperator(EmptyShell Empty)
2610    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2611
2612  SourceLocation getOperatorLoc() const { return OpLoc; }
2613  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2614
2615  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2616  void setOpcode(Opcode O) { Opc = O; }
2617
2618  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2619  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2620  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2621  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2622
2623  SourceRange getSourceRange() const {
2624    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2625  }
2626
2627  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2628  /// corresponds to, e.g. "<<=".
2629  static const char *getOpcodeStr(Opcode Op);
2630
2631  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2632
2633  /// \brief Retrieve the binary opcode that corresponds to the given
2634  /// overloaded operator.
2635  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2636
2637  /// \brief Retrieve the overloaded operator kind that corresponds to
2638  /// the given binary opcode.
2639  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2640
2641  /// predicates to categorize the respective opcodes.
2642  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2643  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2644  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2645  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2646  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2647  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2648
2649  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2650  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2651
2652  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2653  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2654
2655  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2656  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2657
2658  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2659  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2660
2661  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2662  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2663
2664  static bool isAssignmentOp(Opcode Opc) {
2665    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2666  }
2667  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2668
2669  static bool isCompoundAssignmentOp(Opcode Opc) {
2670    return Opc > BO_Assign && Opc <= BO_OrAssign;
2671  }
2672  bool isCompoundAssignmentOp() const {
2673    return isCompoundAssignmentOp(getOpcode());
2674  }
2675
2676  static bool isShiftAssignOp(Opcode Opc) {
2677    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2678  }
2679  bool isShiftAssignOp() const {
2680    return isShiftAssignOp(getOpcode());
2681  }
2682
2683  static bool classof(const Stmt *S) {
2684    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2685           S->getStmtClass() <= lastBinaryOperatorConstant;
2686  }
2687  static bool classof(const BinaryOperator *) { return true; }
2688
2689  // Iterators
2690  child_range children() {
2691    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2692  }
2693
2694protected:
2695  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2696                 ExprValueKind VK, ExprObjectKind OK,
2697                 SourceLocation opLoc, bool dead)
2698    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2699           lhs->isTypeDependent() || rhs->isTypeDependent(),
2700           lhs->isValueDependent() || rhs->isValueDependent(),
2701           (lhs->isInstantiationDependent() ||
2702            rhs->isInstantiationDependent()),
2703           (lhs->containsUnexpandedParameterPack() ||
2704            rhs->containsUnexpandedParameterPack())),
2705      Opc(opc), OpLoc(opLoc) {
2706    SubExprs[LHS] = lhs;
2707    SubExprs[RHS] = rhs;
2708  }
2709
2710  BinaryOperator(StmtClass SC, EmptyShell Empty)
2711    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2712};
2713
2714/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2715/// track of the type the operation is performed in.  Due to the semantics of
2716/// these operators, the operands are promoted, the arithmetic performed, an
2717/// implicit conversion back to the result type done, then the assignment takes
2718/// place.  This captures the intermediate type which the computation is done
2719/// in.
2720class CompoundAssignOperator : public BinaryOperator {
2721  QualType ComputationLHSType;
2722  QualType ComputationResultType;
2723public:
2724  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2725                         ExprValueKind VK, ExprObjectKind OK,
2726                         QualType CompLHSType, QualType CompResultType,
2727                         SourceLocation OpLoc)
2728    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2729      ComputationLHSType(CompLHSType),
2730      ComputationResultType(CompResultType) {
2731    assert(isCompoundAssignmentOp() &&
2732           "Only should be used for compound assignments");
2733  }
2734
2735  /// \brief Build an empty compound assignment operator expression.
2736  explicit CompoundAssignOperator(EmptyShell Empty)
2737    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2738
2739  // The two computation types are the type the LHS is converted
2740  // to for the computation and the type of the result; the two are
2741  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2742  QualType getComputationLHSType() const { return ComputationLHSType; }
2743  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2744
2745  QualType getComputationResultType() const { return ComputationResultType; }
2746  void setComputationResultType(QualType T) { ComputationResultType = T; }
2747
2748  static bool classof(const CompoundAssignOperator *) { return true; }
2749  static bool classof(const Stmt *S) {
2750    return S->getStmtClass() == CompoundAssignOperatorClass;
2751  }
2752};
2753
2754/// AbstractConditionalOperator - An abstract base class for
2755/// ConditionalOperator and BinaryConditionalOperator.
2756class AbstractConditionalOperator : public Expr {
2757  SourceLocation QuestionLoc, ColonLoc;
2758  friend class ASTStmtReader;
2759
2760protected:
2761  AbstractConditionalOperator(StmtClass SC, QualType T,
2762                              ExprValueKind VK, ExprObjectKind OK,
2763                              bool TD, bool VD, bool ID,
2764                              bool ContainsUnexpandedParameterPack,
2765                              SourceLocation qloc,
2766                              SourceLocation cloc)
2767    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2768      QuestionLoc(qloc), ColonLoc(cloc) {}
2769
2770  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2771    : Expr(SC, Empty) { }
2772
2773public:
2774  // getCond - Return the expression representing the condition for
2775  //   the ?: operator.
2776  Expr *getCond() const;
2777
2778  // getTrueExpr - Return the subexpression representing the value of
2779  //   the expression if the condition evaluates to true.
2780  Expr *getTrueExpr() const;
2781
2782  // getFalseExpr - Return the subexpression representing the value of
2783  //   the expression if the condition evaluates to false.  This is
2784  //   the same as getRHS.
2785  Expr *getFalseExpr() const;
2786
2787  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2788  SourceLocation getColonLoc() const { return ColonLoc; }
2789
2790  static bool classof(const Stmt *T) {
2791    return T->getStmtClass() == ConditionalOperatorClass ||
2792           T->getStmtClass() == BinaryConditionalOperatorClass;
2793  }
2794  static bool classof(const AbstractConditionalOperator *) { return true; }
2795};
2796
2797/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2798/// middle" extension is a BinaryConditionalOperator.
2799class ConditionalOperator : public AbstractConditionalOperator {
2800  enum { COND, LHS, RHS, END_EXPR };
2801  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2802
2803  friend class ASTStmtReader;
2804public:
2805  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2806                      SourceLocation CLoc, Expr *rhs,
2807                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2808    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2809           // FIXME: the type of the conditional operator doesn't
2810           // depend on the type of the conditional, but the standard
2811           // seems to imply that it could. File a bug!
2812           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2813           (cond->isValueDependent() || lhs->isValueDependent() ||
2814            rhs->isValueDependent()),
2815           (cond->isInstantiationDependent() ||
2816            lhs->isInstantiationDependent() ||
2817            rhs->isInstantiationDependent()),
2818           (cond->containsUnexpandedParameterPack() ||
2819            lhs->containsUnexpandedParameterPack() ||
2820            rhs->containsUnexpandedParameterPack()),
2821                                  QLoc, CLoc) {
2822    SubExprs[COND] = cond;
2823    SubExprs[LHS] = lhs;
2824    SubExprs[RHS] = rhs;
2825  }
2826
2827  /// \brief Build an empty conditional operator.
2828  explicit ConditionalOperator(EmptyShell Empty)
2829    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2830
2831  // getCond - Return the expression representing the condition for
2832  //   the ?: operator.
2833  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2834
2835  // getTrueExpr - Return the subexpression representing the value of
2836  //   the expression if the condition evaluates to true.
2837  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2838
2839  // getFalseExpr - Return the subexpression representing the value of
2840  //   the expression if the condition evaluates to false.  This is
2841  //   the same as getRHS.
2842  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2843
2844  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2845  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2846
2847  SourceRange getSourceRange() const {
2848    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2849  }
2850  static bool classof(const Stmt *T) {
2851    return T->getStmtClass() == ConditionalOperatorClass;
2852  }
2853  static bool classof(const ConditionalOperator *) { return true; }
2854
2855  // Iterators
2856  child_range children() {
2857    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2858  }
2859};
2860
2861/// BinaryConditionalOperator - The GNU extension to the conditional
2862/// operator which allows the middle operand to be omitted.
2863///
2864/// This is a different expression kind on the assumption that almost
2865/// every client ends up needing to know that these are different.
2866class BinaryConditionalOperator : public AbstractConditionalOperator {
2867  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2868
2869  /// - the common condition/left-hand-side expression, which will be
2870  ///   evaluated as the opaque value
2871  /// - the condition, expressed in terms of the opaque value
2872  /// - the left-hand-side, expressed in terms of the opaque value
2873  /// - the right-hand-side
2874  Stmt *SubExprs[NUM_SUBEXPRS];
2875  OpaqueValueExpr *OpaqueValue;
2876
2877  friend class ASTStmtReader;
2878public:
2879  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2880                            Expr *cond, Expr *lhs, Expr *rhs,
2881                            SourceLocation qloc, SourceLocation cloc,
2882                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2883    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2884           (common->isTypeDependent() || rhs->isTypeDependent()),
2885           (common->isValueDependent() || rhs->isValueDependent()),
2886           (common->isInstantiationDependent() ||
2887            rhs->isInstantiationDependent()),
2888           (common->containsUnexpandedParameterPack() ||
2889            rhs->containsUnexpandedParameterPack()),
2890                                  qloc, cloc),
2891      OpaqueValue(opaqueValue) {
2892    SubExprs[COMMON] = common;
2893    SubExprs[COND] = cond;
2894    SubExprs[LHS] = lhs;
2895    SubExprs[RHS] = rhs;
2896
2897    OpaqueValue->setSourceExpr(common);
2898  }
2899
2900  /// \brief Build an empty conditional operator.
2901  explicit BinaryConditionalOperator(EmptyShell Empty)
2902    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2903
2904  /// \brief getCommon - Return the common expression, written to the
2905  ///   left of the condition.  The opaque value will be bound to the
2906  ///   result of this expression.
2907  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2908
2909  /// \brief getOpaqueValue - Return the opaque value placeholder.
2910  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2911
2912  /// \brief getCond - Return the condition expression; this is defined
2913  ///   in terms of the opaque value.
2914  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2915
2916  /// \brief getTrueExpr - Return the subexpression which will be
2917  ///   evaluated if the condition evaluates to true;  this is defined
2918  ///   in terms of the opaque value.
2919  Expr *getTrueExpr() const {
2920    return cast<Expr>(SubExprs[LHS]);
2921  }
2922
2923  /// \brief getFalseExpr - Return the subexpression which will be
2924  ///   evaluated if the condnition evaluates to false; this is
2925  ///   defined in terms of the opaque value.
2926  Expr *getFalseExpr() const {
2927    return cast<Expr>(SubExprs[RHS]);
2928  }
2929
2930  SourceRange getSourceRange() const {
2931    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2932  }
2933  static bool classof(const Stmt *T) {
2934    return T->getStmtClass() == BinaryConditionalOperatorClass;
2935  }
2936  static bool classof(const BinaryConditionalOperator *) { return true; }
2937
2938  // Iterators
2939  child_range children() {
2940    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2941  }
2942};
2943
2944inline Expr *AbstractConditionalOperator::getCond() const {
2945  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2946    return co->getCond();
2947  return cast<BinaryConditionalOperator>(this)->getCond();
2948}
2949
2950inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2951  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2952    return co->getTrueExpr();
2953  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2954}
2955
2956inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2957  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2958    return co->getFalseExpr();
2959  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2960}
2961
2962/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2963class AddrLabelExpr : public Expr {
2964  SourceLocation AmpAmpLoc, LabelLoc;
2965  LabelDecl *Label;
2966public:
2967  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2968                QualType t)
2969    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
2970           false),
2971      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2972
2973  /// \brief Build an empty address of a label expression.
2974  explicit AddrLabelExpr(EmptyShell Empty)
2975    : Expr(AddrLabelExprClass, Empty) { }
2976
2977  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2978  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2979  SourceLocation getLabelLoc() const { return LabelLoc; }
2980  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2981
2982  SourceRange getSourceRange() const {
2983    return SourceRange(AmpAmpLoc, LabelLoc);
2984  }
2985
2986  LabelDecl *getLabel() const { return Label; }
2987  void setLabel(LabelDecl *L) { Label = L; }
2988
2989  static bool classof(const Stmt *T) {
2990    return T->getStmtClass() == AddrLabelExprClass;
2991  }
2992  static bool classof(const AddrLabelExpr *) { return true; }
2993
2994  // Iterators
2995  child_range children() { return child_range(); }
2996};
2997
2998/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2999/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3000/// takes the value of the last subexpression.
3001///
3002/// A StmtExpr is always an r-value; values "returned" out of a
3003/// StmtExpr will be copied.
3004class StmtExpr : public Expr {
3005  Stmt *SubStmt;
3006  SourceLocation LParenLoc, RParenLoc;
3007public:
3008  // FIXME: Does type-dependence need to be computed differently?
3009  // FIXME: Do we need to compute instantiation instantiation-dependence for
3010  // statements? (ugh!)
3011  StmtExpr(CompoundStmt *substmt, QualType T,
3012           SourceLocation lp, SourceLocation rp) :
3013    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3014         T->isDependentType(), false, false, false),
3015    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3016
3017  /// \brief Build an empty statement expression.
3018  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3019
3020  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3021  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3022  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3023
3024  SourceRange getSourceRange() const {
3025    return SourceRange(LParenLoc, RParenLoc);
3026  }
3027
3028  SourceLocation getLParenLoc() const { return LParenLoc; }
3029  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3030  SourceLocation getRParenLoc() const { return RParenLoc; }
3031  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3032
3033  static bool classof(const Stmt *T) {
3034    return T->getStmtClass() == StmtExprClass;
3035  }
3036  static bool classof(const StmtExpr *) { return true; }
3037
3038  // Iterators
3039  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3040};
3041
3042
3043/// ShuffleVectorExpr - clang-specific builtin-in function
3044/// __builtin_shufflevector.
3045/// This AST node represents a operator that does a constant
3046/// shuffle, similar to LLVM's shufflevector instruction. It takes
3047/// two vectors and a variable number of constant indices,
3048/// and returns the appropriately shuffled vector.
3049class ShuffleVectorExpr : public Expr {
3050  SourceLocation BuiltinLoc, RParenLoc;
3051
3052  // SubExprs - the list of values passed to the __builtin_shufflevector
3053  // function. The first two are vectors, and the rest are constant
3054  // indices.  The number of values in this list is always
3055  // 2+the number of indices in the vector type.
3056  Stmt **SubExprs;
3057  unsigned NumExprs;
3058
3059public:
3060  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3061                    QualType Type, SourceLocation BLoc,
3062                    SourceLocation RP);
3063
3064  /// \brief Build an empty vector-shuffle expression.
3065  explicit ShuffleVectorExpr(EmptyShell Empty)
3066    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3067
3068  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3069  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3070
3071  SourceLocation getRParenLoc() const { return RParenLoc; }
3072  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3073
3074  SourceRange getSourceRange() const {
3075    return SourceRange(BuiltinLoc, RParenLoc);
3076  }
3077  static bool classof(const Stmt *T) {
3078    return T->getStmtClass() == ShuffleVectorExprClass;
3079  }
3080  static bool classof(const ShuffleVectorExpr *) { return true; }
3081
3082  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3083  /// constant expression, the actual arguments passed in, and the function
3084  /// pointers.
3085  unsigned getNumSubExprs() const { return NumExprs; }
3086
3087  /// \brief Retrieve the array of expressions.
3088  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3089
3090  /// getExpr - Return the Expr at the specified index.
3091  Expr *getExpr(unsigned Index) {
3092    assert((Index < NumExprs) && "Arg access out of range!");
3093    return cast<Expr>(SubExprs[Index]);
3094  }
3095  const Expr *getExpr(unsigned Index) const {
3096    assert((Index < NumExprs) && "Arg access out of range!");
3097    return cast<Expr>(SubExprs[Index]);
3098  }
3099
3100  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3101
3102  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3103    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3104    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
3105  }
3106
3107  // Iterators
3108  child_range children() {
3109    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3110  }
3111};
3112
3113/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3114/// This AST node is similar to the conditional operator (?:) in C, with
3115/// the following exceptions:
3116/// - the test expression must be a integer constant expression.
3117/// - the expression returned acts like the chosen subexpression in every
3118///   visible way: the type is the same as that of the chosen subexpression,
3119///   and all predicates (whether it's an l-value, whether it's an integer
3120///   constant expression, etc.) return the same result as for the chosen
3121///   sub-expression.
3122class ChooseExpr : public Expr {
3123  enum { COND, LHS, RHS, END_EXPR };
3124  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3125  SourceLocation BuiltinLoc, RParenLoc;
3126public:
3127  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3128             QualType t, ExprValueKind VK, ExprObjectKind OK,
3129             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3130    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3131           (cond->isInstantiationDependent() ||
3132            lhs->isInstantiationDependent() ||
3133            rhs->isInstantiationDependent()),
3134           (cond->containsUnexpandedParameterPack() ||
3135            lhs->containsUnexpandedParameterPack() ||
3136            rhs->containsUnexpandedParameterPack())),
3137      BuiltinLoc(BLoc), RParenLoc(RP) {
3138      SubExprs[COND] = cond;
3139      SubExprs[LHS] = lhs;
3140      SubExprs[RHS] = rhs;
3141    }
3142
3143  /// \brief Build an empty __builtin_choose_expr.
3144  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3145
3146  /// isConditionTrue - Return whether the condition is true (i.e. not
3147  /// equal to zero).
3148  bool isConditionTrue(const ASTContext &C) const;
3149
3150  /// getChosenSubExpr - Return the subexpression chosen according to the
3151  /// condition.
3152  Expr *getChosenSubExpr(const ASTContext &C) const {
3153    return isConditionTrue(C) ? getLHS() : getRHS();
3154  }
3155
3156  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3157  void setCond(Expr *E) { SubExprs[COND] = E; }
3158  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3159  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3160  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3161  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3162
3163  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3164  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3165
3166  SourceLocation getRParenLoc() const { return RParenLoc; }
3167  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3168
3169  SourceRange getSourceRange() const {
3170    return SourceRange(BuiltinLoc, RParenLoc);
3171  }
3172  static bool classof(const Stmt *T) {
3173    return T->getStmtClass() == ChooseExprClass;
3174  }
3175  static bool classof(const ChooseExpr *) { return true; }
3176
3177  // Iterators
3178  child_range children() {
3179    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3180  }
3181};
3182
3183/// GNUNullExpr - Implements the GNU __null extension, which is a name
3184/// for a null pointer constant that has integral type (e.g., int or
3185/// long) and is the same size and alignment as a pointer. The __null
3186/// extension is typically only used by system headers, which define
3187/// NULL as __null in C++ rather than using 0 (which is an integer
3188/// that may not match the size of a pointer).
3189class GNUNullExpr : public Expr {
3190  /// TokenLoc - The location of the __null keyword.
3191  SourceLocation TokenLoc;
3192
3193public:
3194  GNUNullExpr(QualType Ty, SourceLocation Loc)
3195    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3196           false),
3197      TokenLoc(Loc) { }
3198
3199  /// \brief Build an empty GNU __null expression.
3200  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3201
3202  /// getTokenLocation - The location of the __null token.
3203  SourceLocation getTokenLocation() const { return TokenLoc; }
3204  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3205
3206  SourceRange getSourceRange() const {
3207    return SourceRange(TokenLoc);
3208  }
3209  static bool classof(const Stmt *T) {
3210    return T->getStmtClass() == GNUNullExprClass;
3211  }
3212  static bool classof(const GNUNullExpr *) { return true; }
3213
3214  // Iterators
3215  child_range children() { return child_range(); }
3216};
3217
3218/// VAArgExpr, used for the builtin function __builtin_va_arg.
3219class VAArgExpr : public Expr {
3220  Stmt *Val;
3221  TypeSourceInfo *TInfo;
3222  SourceLocation BuiltinLoc, RParenLoc;
3223public:
3224  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3225            SourceLocation RPLoc, QualType t)
3226    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3227           t->isDependentType(), false,
3228           (TInfo->getType()->isInstantiationDependentType() ||
3229            e->isInstantiationDependent()),
3230           (TInfo->getType()->containsUnexpandedParameterPack() ||
3231            e->containsUnexpandedParameterPack())),
3232      Val(e), TInfo(TInfo),
3233      BuiltinLoc(BLoc),
3234      RParenLoc(RPLoc) { }
3235
3236  /// \brief Create an empty __builtin_va_arg expression.
3237  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3238
3239  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3240  Expr *getSubExpr() { return cast<Expr>(Val); }
3241  void setSubExpr(Expr *E) { Val = E; }
3242
3243  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3244  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3245
3246  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3247  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3248
3249  SourceLocation getRParenLoc() const { return RParenLoc; }
3250  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3251
3252  SourceRange getSourceRange() const {
3253    return SourceRange(BuiltinLoc, RParenLoc);
3254  }
3255  static bool classof(const Stmt *T) {
3256    return T->getStmtClass() == VAArgExprClass;
3257  }
3258  static bool classof(const VAArgExpr *) { return true; }
3259
3260  // Iterators
3261  child_range children() { return child_range(&Val, &Val+1); }
3262};
3263
3264/// @brief Describes an C or C++ initializer list.
3265///
3266/// InitListExpr describes an initializer list, which can be used to
3267/// initialize objects of different types, including
3268/// struct/class/union types, arrays, and vectors. For example:
3269///
3270/// @code
3271/// struct foo x = { 1, { 2, 3 } };
3272/// @endcode
3273///
3274/// Prior to semantic analysis, an initializer list will represent the
3275/// initializer list as written by the user, but will have the
3276/// placeholder type "void". This initializer list is called the
3277/// syntactic form of the initializer, and may contain C99 designated
3278/// initializers (represented as DesignatedInitExprs), initializations
3279/// of subobject members without explicit braces, and so on. Clients
3280/// interested in the original syntax of the initializer list should
3281/// use the syntactic form of the initializer list.
3282///
3283/// After semantic analysis, the initializer list will represent the
3284/// semantic form of the initializer, where the initializations of all
3285/// subobjects are made explicit with nested InitListExpr nodes and
3286/// C99 designators have been eliminated by placing the designated
3287/// initializations into the subobject they initialize. Additionally,
3288/// any "holes" in the initialization, where no initializer has been
3289/// specified for a particular subobject, will be replaced with
3290/// implicitly-generated ImplicitValueInitExpr expressions that
3291/// value-initialize the subobjects. Note, however, that the
3292/// initializer lists may still have fewer initializers than there are
3293/// elements to initialize within the object.
3294///
3295/// Given the semantic form of the initializer list, one can retrieve
3296/// the original syntactic form of that initializer list (if it
3297/// exists) using getSyntacticForm(). Since many initializer lists
3298/// have the same syntactic and semantic forms, getSyntacticForm() may
3299/// return NULL, indicating that the current initializer list also
3300/// serves as its syntactic form.
3301class InitListExpr : public Expr {
3302  // FIXME: Eliminate this vector in favor of ASTContext allocation
3303  typedef ASTVector<Stmt *> InitExprsTy;
3304  InitExprsTy InitExprs;
3305  SourceLocation LBraceLoc, RBraceLoc;
3306
3307  /// Contains the initializer list that describes the syntactic form
3308  /// written in the source code.
3309  InitListExpr *SyntacticForm;
3310
3311  /// \brief Either:
3312  ///  If this initializer list initializes an array with more elements than
3313  ///  there are initializers in the list, specifies an expression to be used
3314  ///  for value initialization of the rest of the elements.
3315  /// Or
3316  ///  If this initializer list initializes a union, specifies which
3317  ///  field within the union will be initialized.
3318  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3319
3320  /// Whether this initializer list originally had a GNU array-range
3321  /// designator in it. This is a temporary marker used by CodeGen.
3322  bool HadArrayRangeDesignator;
3323
3324public:
3325  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3326               Expr **initexprs, unsigned numinits,
3327               SourceLocation rbraceloc);
3328
3329  /// \brief Build an empty initializer list.
3330  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3331    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3332
3333  unsigned getNumInits() const { return InitExprs.size(); }
3334
3335  /// \brief Retrieve the set of initializers.
3336  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3337
3338  const Expr *getInit(unsigned Init) const {
3339    assert(Init < getNumInits() && "Initializer access out of range!");
3340    return cast_or_null<Expr>(InitExprs[Init]);
3341  }
3342
3343  Expr *getInit(unsigned Init) {
3344    assert(Init < getNumInits() && "Initializer access out of range!");
3345    return cast_or_null<Expr>(InitExprs[Init]);
3346  }
3347
3348  void setInit(unsigned Init, Expr *expr) {
3349    assert(Init < getNumInits() && "Initializer access out of range!");
3350    InitExprs[Init] = expr;
3351  }
3352
3353  /// \brief Reserve space for some number of initializers.
3354  void reserveInits(ASTContext &C, unsigned NumInits);
3355
3356  /// @brief Specify the number of initializers
3357  ///
3358  /// If there are more than @p NumInits initializers, the remaining
3359  /// initializers will be destroyed. If there are fewer than @p
3360  /// NumInits initializers, NULL expressions will be added for the
3361  /// unknown initializers.
3362  void resizeInits(ASTContext &Context, unsigned NumInits);
3363
3364  /// @brief Updates the initializer at index @p Init with the new
3365  /// expression @p expr, and returns the old expression at that
3366  /// location.
3367  ///
3368  /// When @p Init is out of range for this initializer list, the
3369  /// initializer list will be extended with NULL expressions to
3370  /// accommodate the new entry.
3371  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3372
3373  /// \brief If this initializer list initializes an array with more elements
3374  /// than there are initializers in the list, specifies an expression to be
3375  /// used for value initialization of the rest of the elements.
3376  Expr *getArrayFiller() {
3377    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3378  }
3379  const Expr *getArrayFiller() const {
3380    return const_cast<InitListExpr *>(this)->getArrayFiller();
3381  }
3382  void setArrayFiller(Expr *filler);
3383
3384  /// \brief If this initializes a union, specifies which field in the
3385  /// union to initialize.
3386  ///
3387  /// Typically, this field is the first named field within the
3388  /// union. However, a designated initializer can specify the
3389  /// initialization of a different field within the union.
3390  FieldDecl *getInitializedFieldInUnion() {
3391    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3392  }
3393  const FieldDecl *getInitializedFieldInUnion() const {
3394    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3395  }
3396  void setInitializedFieldInUnion(FieldDecl *FD) {
3397    ArrayFillerOrUnionFieldInit = FD;
3398  }
3399
3400  // Explicit InitListExpr's originate from source code (and have valid source
3401  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3402  bool isExplicit() {
3403    return LBraceLoc.isValid() && RBraceLoc.isValid();
3404  }
3405
3406  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3407  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3408  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3409  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3410
3411  /// @brief Retrieve the initializer list that describes the
3412  /// syntactic form of the initializer.
3413  ///
3414  ///
3415  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3416  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3417
3418  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3419  void sawArrayRangeDesignator(bool ARD = true) {
3420    HadArrayRangeDesignator = ARD;
3421  }
3422
3423  SourceRange getSourceRange() const;
3424
3425  static bool classof(const Stmt *T) {
3426    return T->getStmtClass() == InitListExprClass;
3427  }
3428  static bool classof(const InitListExpr *) { return true; }
3429
3430  // Iterators
3431  child_range children() {
3432    if (InitExprs.empty()) return child_range();
3433    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3434  }
3435
3436  typedef InitExprsTy::iterator iterator;
3437  typedef InitExprsTy::const_iterator const_iterator;
3438  typedef InitExprsTy::reverse_iterator reverse_iterator;
3439  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3440
3441  iterator begin() { return InitExprs.begin(); }
3442  const_iterator begin() const { return InitExprs.begin(); }
3443  iterator end() { return InitExprs.end(); }
3444  const_iterator end() const { return InitExprs.end(); }
3445  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3446  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3447  reverse_iterator rend() { return InitExprs.rend(); }
3448  const_reverse_iterator rend() const { return InitExprs.rend(); }
3449
3450  friend class ASTStmtReader;
3451  friend class ASTStmtWriter;
3452};
3453
3454/// @brief Represents a C99 designated initializer expression.
3455///
3456/// A designated initializer expression (C99 6.7.8) contains one or
3457/// more designators (which can be field designators, array
3458/// designators, or GNU array-range designators) followed by an
3459/// expression that initializes the field or element(s) that the
3460/// designators refer to. For example, given:
3461///
3462/// @code
3463/// struct point {
3464///   double x;
3465///   double y;
3466/// };
3467/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3468/// @endcode
3469///
3470/// The InitListExpr contains three DesignatedInitExprs, the first of
3471/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3472/// designators, one array designator for @c [2] followed by one field
3473/// designator for @c .y. The initalization expression will be 1.0.
3474class DesignatedInitExpr : public Expr {
3475public:
3476  /// \brief Forward declaration of the Designator class.
3477  class Designator;
3478
3479private:
3480  /// The location of the '=' or ':' prior to the actual initializer
3481  /// expression.
3482  SourceLocation EqualOrColonLoc;
3483
3484  /// Whether this designated initializer used the GNU deprecated
3485  /// syntax rather than the C99 '=' syntax.
3486  bool GNUSyntax : 1;
3487
3488  /// The number of designators in this initializer expression.
3489  unsigned NumDesignators : 15;
3490
3491  /// \brief The designators in this designated initialization
3492  /// expression.
3493  Designator *Designators;
3494
3495  /// The number of subexpressions of this initializer expression,
3496  /// which contains both the initializer and any additional
3497  /// expressions used by array and array-range designators.
3498  unsigned NumSubExprs : 16;
3499
3500
3501  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3502                     const Designator *Designators,
3503                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3504                     Expr **IndexExprs, unsigned NumIndexExprs,
3505                     Expr *Init);
3506
3507  explicit DesignatedInitExpr(unsigned NumSubExprs)
3508    : Expr(DesignatedInitExprClass, EmptyShell()),
3509      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3510
3511public:
3512  /// A field designator, e.g., ".x".
3513  struct FieldDesignator {
3514    /// Refers to the field that is being initialized. The low bit
3515    /// of this field determines whether this is actually a pointer
3516    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3517    /// initially constructed, a field designator will store an
3518    /// IdentifierInfo*. After semantic analysis has resolved that
3519    /// name, the field designator will instead store a FieldDecl*.
3520    uintptr_t NameOrField;
3521
3522    /// The location of the '.' in the designated initializer.
3523    unsigned DotLoc;
3524
3525    /// The location of the field name in the designated initializer.
3526    unsigned FieldLoc;
3527  };
3528
3529  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3530  struct ArrayOrRangeDesignator {
3531    /// Location of the first index expression within the designated
3532    /// initializer expression's list of subexpressions.
3533    unsigned Index;
3534    /// The location of the '[' starting the array range designator.
3535    unsigned LBracketLoc;
3536    /// The location of the ellipsis separating the start and end
3537    /// indices. Only valid for GNU array-range designators.
3538    unsigned EllipsisLoc;
3539    /// The location of the ']' terminating the array range designator.
3540    unsigned RBracketLoc;
3541  };
3542
3543  /// @brief Represents a single C99 designator.
3544  ///
3545  /// @todo This class is infuriatingly similar to clang::Designator,
3546  /// but minor differences (storing indices vs. storing pointers)
3547  /// keep us from reusing it. Try harder, later, to rectify these
3548  /// differences.
3549  class Designator {
3550    /// @brief The kind of designator this describes.
3551    enum {
3552      FieldDesignator,
3553      ArrayDesignator,
3554      ArrayRangeDesignator
3555    } Kind;
3556
3557    union {
3558      /// A field designator, e.g., ".x".
3559      struct FieldDesignator Field;
3560      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3561      struct ArrayOrRangeDesignator ArrayOrRange;
3562    };
3563    friend class DesignatedInitExpr;
3564
3565  public:
3566    Designator() {}
3567
3568    /// @brief Initializes a field designator.
3569    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3570               SourceLocation FieldLoc)
3571      : Kind(FieldDesignator) {
3572      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3573      Field.DotLoc = DotLoc.getRawEncoding();
3574      Field.FieldLoc = FieldLoc.getRawEncoding();
3575    }
3576
3577    /// @brief Initializes an array designator.
3578    Designator(unsigned Index, SourceLocation LBracketLoc,
3579               SourceLocation RBracketLoc)
3580      : Kind(ArrayDesignator) {
3581      ArrayOrRange.Index = Index;
3582      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3583      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3584      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3585    }
3586
3587    /// @brief Initializes a GNU array-range designator.
3588    Designator(unsigned Index, SourceLocation LBracketLoc,
3589               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3590      : Kind(ArrayRangeDesignator) {
3591      ArrayOrRange.Index = Index;
3592      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3593      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3594      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3595    }
3596
3597    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3598    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3599    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3600
3601    IdentifierInfo *getFieldName() const;
3602
3603    FieldDecl *getField() const {
3604      assert(Kind == FieldDesignator && "Only valid on a field designator");
3605      if (Field.NameOrField & 0x01)
3606        return 0;
3607      else
3608        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3609    }
3610
3611    void setField(FieldDecl *FD) {
3612      assert(Kind == FieldDesignator && "Only valid on a field designator");
3613      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3614    }
3615
3616    SourceLocation getDotLoc() const {
3617      assert(Kind == FieldDesignator && "Only valid on a field designator");
3618      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3619    }
3620
3621    SourceLocation getFieldLoc() const {
3622      assert(Kind == FieldDesignator && "Only valid on a field designator");
3623      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3624    }
3625
3626    SourceLocation getLBracketLoc() const {
3627      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3628             "Only valid on an array or array-range designator");
3629      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3630    }
3631
3632    SourceLocation getRBracketLoc() const {
3633      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3634             "Only valid on an array or array-range designator");
3635      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3636    }
3637
3638    SourceLocation getEllipsisLoc() const {
3639      assert(Kind == ArrayRangeDesignator &&
3640             "Only valid on an array-range designator");
3641      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3642    }
3643
3644    unsigned getFirstExprIndex() const {
3645      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3646             "Only valid on an array or array-range designator");
3647      return ArrayOrRange.Index;
3648    }
3649
3650    SourceLocation getStartLocation() const {
3651      if (Kind == FieldDesignator)
3652        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3653      else
3654        return getLBracketLoc();
3655    }
3656    SourceLocation getEndLocation() const {
3657      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3658    }
3659    SourceRange getSourceRange() const {
3660      return SourceRange(getStartLocation(), getEndLocation());
3661    }
3662  };
3663
3664  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3665                                    unsigned NumDesignators,
3666                                    Expr **IndexExprs, unsigned NumIndexExprs,
3667                                    SourceLocation EqualOrColonLoc,
3668                                    bool GNUSyntax, Expr *Init);
3669
3670  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3671
3672  /// @brief Returns the number of designators in this initializer.
3673  unsigned size() const { return NumDesignators; }
3674
3675  // Iterator access to the designators.
3676  typedef Designator *designators_iterator;
3677  designators_iterator designators_begin() { return Designators; }
3678  designators_iterator designators_end() {
3679    return Designators + NumDesignators;
3680  }
3681
3682  typedef const Designator *const_designators_iterator;
3683  const_designators_iterator designators_begin() const { return Designators; }
3684  const_designators_iterator designators_end() const {
3685    return Designators + NumDesignators;
3686  }
3687
3688  typedef std::reverse_iterator<designators_iterator>
3689          reverse_designators_iterator;
3690  reverse_designators_iterator designators_rbegin() {
3691    return reverse_designators_iterator(designators_end());
3692  }
3693  reverse_designators_iterator designators_rend() {
3694    return reverse_designators_iterator(designators_begin());
3695  }
3696
3697  typedef std::reverse_iterator<const_designators_iterator>
3698          const_reverse_designators_iterator;
3699  const_reverse_designators_iterator designators_rbegin() const {
3700    return const_reverse_designators_iterator(designators_end());
3701  }
3702  const_reverse_designators_iterator designators_rend() const {
3703    return const_reverse_designators_iterator(designators_begin());
3704  }
3705
3706  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3707
3708  void setDesignators(ASTContext &C, const Designator *Desigs,
3709                      unsigned NumDesigs);
3710
3711  Expr *getArrayIndex(const Designator& D);
3712  Expr *getArrayRangeStart(const Designator& D);
3713  Expr *getArrayRangeEnd(const Designator& D);
3714
3715  /// @brief Retrieve the location of the '=' that precedes the
3716  /// initializer value itself, if present.
3717  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3718  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3719
3720  /// @brief Determines whether this designated initializer used the
3721  /// deprecated GNU syntax for designated initializers.
3722  bool usesGNUSyntax() const { return GNUSyntax; }
3723  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3724
3725  /// @brief Retrieve the initializer value.
3726  Expr *getInit() const {
3727    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3728  }
3729
3730  void setInit(Expr *init) {
3731    *child_begin() = init;
3732  }
3733
3734  /// \brief Retrieve the total number of subexpressions in this
3735  /// designated initializer expression, including the actual
3736  /// initialized value and any expressions that occur within array
3737  /// and array-range designators.
3738  unsigned getNumSubExprs() const { return NumSubExprs; }
3739
3740  Expr *getSubExpr(unsigned Idx) {
3741    assert(Idx < NumSubExprs && "Subscript out of range");
3742    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3743    Ptr += sizeof(DesignatedInitExpr);
3744    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3745  }
3746
3747  void setSubExpr(unsigned Idx, Expr *E) {
3748    assert(Idx < NumSubExprs && "Subscript out of range");
3749    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3750    Ptr += sizeof(DesignatedInitExpr);
3751    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3752  }
3753
3754  /// \brief Replaces the designator at index @p Idx with the series
3755  /// of designators in [First, Last).
3756  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3757                        const Designator *Last);
3758
3759  SourceRange getDesignatorsSourceRange() const;
3760
3761  SourceRange getSourceRange() const;
3762
3763  static bool classof(const Stmt *T) {
3764    return T->getStmtClass() == DesignatedInitExprClass;
3765  }
3766  static bool classof(const DesignatedInitExpr *) { return true; }
3767
3768  // Iterators
3769  child_range children() {
3770    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3771    return child_range(begin, begin + NumSubExprs);
3772  }
3773};
3774
3775/// \brief Represents an implicitly-generated value initialization of
3776/// an object of a given type.
3777///
3778/// Implicit value initializations occur within semantic initializer
3779/// list expressions (InitListExpr) as placeholders for subobject
3780/// initializations not explicitly specified by the user.
3781///
3782/// \see InitListExpr
3783class ImplicitValueInitExpr : public Expr {
3784public:
3785  explicit ImplicitValueInitExpr(QualType ty)
3786    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3787           false, false, ty->isInstantiationDependentType(), false) { }
3788
3789  /// \brief Construct an empty implicit value initialization.
3790  explicit ImplicitValueInitExpr(EmptyShell Empty)
3791    : Expr(ImplicitValueInitExprClass, Empty) { }
3792
3793  static bool classof(const Stmt *T) {
3794    return T->getStmtClass() == ImplicitValueInitExprClass;
3795  }
3796  static bool classof(const ImplicitValueInitExpr *) { return true; }
3797
3798  SourceRange getSourceRange() const {
3799    return SourceRange();
3800  }
3801
3802  // Iterators
3803  child_range children() { return child_range(); }
3804};
3805
3806
3807class ParenListExpr : public Expr {
3808  Stmt **Exprs;
3809  unsigned NumExprs;
3810  SourceLocation LParenLoc, RParenLoc;
3811
3812public:
3813  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3814                unsigned numexprs, SourceLocation rparenloc, QualType T);
3815
3816  /// \brief Build an empty paren list.
3817  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3818
3819  unsigned getNumExprs() const { return NumExprs; }
3820
3821  const Expr* getExpr(unsigned Init) const {
3822    assert(Init < getNumExprs() && "Initializer access out of range!");
3823    return cast_or_null<Expr>(Exprs[Init]);
3824  }
3825
3826  Expr* getExpr(unsigned Init) {
3827    assert(Init < getNumExprs() && "Initializer access out of range!");
3828    return cast_or_null<Expr>(Exprs[Init]);
3829  }
3830
3831  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3832
3833  SourceLocation getLParenLoc() const { return LParenLoc; }
3834  SourceLocation getRParenLoc() const { return RParenLoc; }
3835
3836  SourceRange getSourceRange() const {
3837    return SourceRange(LParenLoc, RParenLoc);
3838  }
3839  static bool classof(const Stmt *T) {
3840    return T->getStmtClass() == ParenListExprClass;
3841  }
3842  static bool classof(const ParenListExpr *) { return true; }
3843
3844  // Iterators
3845  child_range children() {
3846    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3847  }
3848
3849  friend class ASTStmtReader;
3850  friend class ASTStmtWriter;
3851};
3852
3853
3854/// \brief Represents a C1X generic selection.
3855///
3856/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3857/// expression, followed by one or more generic associations.  Each generic
3858/// association specifies a type name and an expression, or "default" and an
3859/// expression (in which case it is known as a default generic association).
3860/// The type and value of the generic selection are identical to those of its
3861/// result expression, which is defined as the expression in the generic
3862/// association with a type name that is compatible with the type of the
3863/// controlling expression, or the expression in the default generic association
3864/// if no types are compatible.  For example:
3865///
3866/// @code
3867/// _Generic(X, double: 1, float: 2, default: 3)
3868/// @endcode
3869///
3870/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3871/// or 3 if "hello".
3872///
3873/// As an extension, generic selections are allowed in C++, where the following
3874/// additional semantics apply:
3875///
3876/// Any generic selection whose controlling expression is type-dependent or
3877/// which names a dependent type in its association list is result-dependent,
3878/// which means that the choice of result expression is dependent.
3879/// Result-dependent generic associations are both type- and value-dependent.
3880class GenericSelectionExpr : public Expr {
3881  enum { CONTROLLING, END_EXPR };
3882  TypeSourceInfo **AssocTypes;
3883  Stmt **SubExprs;
3884  unsigned NumAssocs, ResultIndex;
3885  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3886
3887public:
3888  GenericSelectionExpr(ASTContext &Context,
3889                       SourceLocation GenericLoc, Expr *ControllingExpr,
3890                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3891                       unsigned NumAssocs, SourceLocation DefaultLoc,
3892                       SourceLocation RParenLoc,
3893                       bool ContainsUnexpandedParameterPack,
3894                       unsigned ResultIndex);
3895
3896  /// This constructor is used in the result-dependent case.
3897  GenericSelectionExpr(ASTContext &Context,
3898                       SourceLocation GenericLoc, Expr *ControllingExpr,
3899                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3900                       unsigned NumAssocs, SourceLocation DefaultLoc,
3901                       SourceLocation RParenLoc,
3902                       bool ContainsUnexpandedParameterPack);
3903
3904  explicit GenericSelectionExpr(EmptyShell Empty)
3905    : Expr(GenericSelectionExprClass, Empty) { }
3906
3907  unsigned getNumAssocs() const { return NumAssocs; }
3908
3909  SourceLocation getGenericLoc() const { return GenericLoc; }
3910  SourceLocation getDefaultLoc() const { return DefaultLoc; }
3911  SourceLocation getRParenLoc() const { return RParenLoc; }
3912
3913  const Expr *getAssocExpr(unsigned i) const {
3914    return cast<Expr>(SubExprs[END_EXPR+i]);
3915  }
3916  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
3917
3918  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
3919    return AssocTypes[i];
3920  }
3921  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
3922
3923  QualType getAssocType(unsigned i) const {
3924    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
3925      return TS->getType();
3926    else
3927      return QualType();
3928  }
3929
3930  const Expr *getControllingExpr() const {
3931    return cast<Expr>(SubExprs[CONTROLLING]);
3932  }
3933  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
3934
3935  /// Whether this generic selection is result-dependent.
3936  bool isResultDependent() const { return ResultIndex == -1U; }
3937
3938  /// The zero-based index of the result expression's generic association in
3939  /// the generic selection's association list.  Defined only if the
3940  /// generic selection is not result-dependent.
3941  unsigned getResultIndex() const {
3942    assert(!isResultDependent() && "Generic selection is result-dependent");
3943    return ResultIndex;
3944  }
3945
3946  /// The generic selection's result expression.  Defined only if the
3947  /// generic selection is not result-dependent.
3948  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
3949  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
3950
3951  SourceRange getSourceRange() const {
3952    return SourceRange(GenericLoc, RParenLoc);
3953  }
3954  static bool classof(const Stmt *T) {
3955    return T->getStmtClass() == GenericSelectionExprClass;
3956  }
3957  static bool classof(const GenericSelectionExpr *) { return true; }
3958
3959  child_range children() {
3960    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
3961  }
3962
3963  friend class ASTStmtReader;
3964};
3965
3966//===----------------------------------------------------------------------===//
3967// Clang Extensions
3968//===----------------------------------------------------------------------===//
3969
3970
3971/// ExtVectorElementExpr - This represents access to specific elements of a
3972/// vector, and may occur on the left hand side or right hand side.  For example
3973/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3974///
3975/// Note that the base may have either vector or pointer to vector type, just
3976/// like a struct field reference.
3977///
3978class ExtVectorElementExpr : public Expr {
3979  Stmt *Base;
3980  IdentifierInfo *Accessor;
3981  SourceLocation AccessorLoc;
3982public:
3983  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3984                       IdentifierInfo &accessor, SourceLocation loc)
3985    : Expr(ExtVectorElementExprClass, ty, VK,
3986           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3987           base->isTypeDependent(), base->isValueDependent(),
3988           base->isInstantiationDependent(),
3989           base->containsUnexpandedParameterPack()),
3990      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3991
3992  /// \brief Build an empty vector element expression.
3993  explicit ExtVectorElementExpr(EmptyShell Empty)
3994    : Expr(ExtVectorElementExprClass, Empty) { }
3995
3996  const Expr *getBase() const { return cast<Expr>(Base); }
3997  Expr *getBase() { return cast<Expr>(Base); }
3998  void setBase(Expr *E) { Base = E; }
3999
4000  IdentifierInfo &getAccessor() const { return *Accessor; }
4001  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4002
4003  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4004  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4005
4006  /// getNumElements - Get the number of components being selected.
4007  unsigned getNumElements() const;
4008
4009  /// containsDuplicateElements - Return true if any element access is
4010  /// repeated.
4011  bool containsDuplicateElements() const;
4012
4013  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4014  /// aggregate Constant of ConstantInt(s).
4015  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4016
4017  SourceRange getSourceRange() const {
4018    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4019  }
4020
4021  /// isArrow - Return true if the base expression is a pointer to vector,
4022  /// return false if the base expression is a vector.
4023  bool isArrow() const;
4024
4025  static bool classof(const Stmt *T) {
4026    return T->getStmtClass() == ExtVectorElementExprClass;
4027  }
4028  static bool classof(const ExtVectorElementExpr *) { return true; }
4029
4030  // Iterators
4031  child_range children() { return child_range(&Base, &Base+1); }
4032};
4033
4034
4035/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4036/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4037class BlockExpr : public Expr {
4038protected:
4039  BlockDecl *TheBlock;
4040public:
4041  BlockExpr(BlockDecl *BD, QualType ty)
4042    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4043           ty->isDependentType(), false,
4044           // FIXME: Check for instantiate-dependence in the statement?
4045           ty->isInstantiationDependentType(),
4046           false),
4047      TheBlock(BD) {}
4048
4049  /// \brief Build an empty block expression.
4050  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4051
4052  const BlockDecl *getBlockDecl() const { return TheBlock; }
4053  BlockDecl *getBlockDecl() { return TheBlock; }
4054  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4055
4056  // Convenience functions for probing the underlying BlockDecl.
4057  SourceLocation getCaretLocation() const;
4058  const Stmt *getBody() const;
4059  Stmt *getBody();
4060
4061  SourceRange getSourceRange() const {
4062    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4063  }
4064
4065  /// getFunctionType - Return the underlying function type for this block.
4066  const FunctionType *getFunctionType() const;
4067
4068  static bool classof(const Stmt *T) {
4069    return T->getStmtClass() == BlockExprClass;
4070  }
4071  static bool classof(const BlockExpr *) { return true; }
4072
4073  // Iterators
4074  child_range children() { return child_range(); }
4075};
4076
4077/// BlockDeclRefExpr - A reference to a local variable declared in an
4078/// enclosing scope.
4079class BlockDeclRefExpr : public Expr {
4080  VarDecl *D;
4081  SourceLocation Loc;
4082  bool IsByRef : 1;
4083  bool ConstQualAdded : 1;
4084public:
4085  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4086                   SourceLocation l, bool ByRef, bool constAdded = false);
4087
4088  // \brief Build an empty reference to a declared variable in a
4089  // block.
4090  explicit BlockDeclRefExpr(EmptyShell Empty)
4091    : Expr(BlockDeclRefExprClass, Empty) { }
4092
4093  VarDecl *getDecl() { return D; }
4094  const VarDecl *getDecl() const { return D; }
4095  void setDecl(VarDecl *VD) { D = VD; }
4096
4097  SourceLocation getLocation() const { return Loc; }
4098  void setLocation(SourceLocation L) { Loc = L; }
4099
4100  SourceRange getSourceRange() const { return SourceRange(Loc); }
4101
4102  bool isByRef() const { return IsByRef; }
4103  void setByRef(bool BR) { IsByRef = BR; }
4104
4105  bool isConstQualAdded() const { return ConstQualAdded; }
4106  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4107
4108  static bool classof(const Stmt *T) {
4109    return T->getStmtClass() == BlockDeclRefExprClass;
4110  }
4111  static bool classof(const BlockDeclRefExpr *) { return true; }
4112
4113  // Iterators
4114  child_range children() { return child_range(); }
4115};
4116
4117/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4118/// This AST node provides support for reinterpreting a type to another
4119/// type of the same size.
4120class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4121private:
4122  Stmt *SrcExpr;
4123  SourceLocation BuiltinLoc, RParenLoc;
4124
4125  friend class ASTReader;
4126  friend class ASTStmtReader;
4127  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4128
4129public:
4130  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4131             ExprValueKind VK, ExprObjectKind OK,
4132             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4133    : Expr(AsTypeExprClass, DstType, VK, OK,
4134           DstType->isDependentType(),
4135           DstType->isDependentType() || SrcExpr->isValueDependent(),
4136           (DstType->isInstantiationDependentType() ||
4137            SrcExpr->isInstantiationDependent()),
4138           (DstType->containsUnexpandedParameterPack() ||
4139            SrcExpr->containsUnexpandedParameterPack())),
4140  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4141
4142  /// getSrcExpr - Return the Expr to be converted.
4143  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4144
4145  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4146  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4147
4148  /// getRParenLoc - Return the location of final right parenthesis.
4149  SourceLocation getRParenLoc() const { return RParenLoc; }
4150
4151  SourceRange getSourceRange() const {
4152    return SourceRange(BuiltinLoc, RParenLoc);
4153  }
4154
4155  static bool classof(const Stmt *T) {
4156    return T->getStmtClass() == AsTypeExprClass;
4157  }
4158  static bool classof(const AsTypeExpr *) { return true; }
4159
4160  // Iterators
4161  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4162};
4163}  // end namespace clang
4164
4165#endif
4166