Expr.h revision 1f0d0133b0e8d1f01f63951ee04927796b34740d
1868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)//
3868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
4868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)//
5f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// License. See LICENSE.TXT for details.
75d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
8f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)//===----------------------------------------------------------------------===//
95d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
10868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)//  This file defines the Expr interface and subclasses.
11868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)//
12a36e5920737c6adbddd3e43b760e5de8431db6e0Torne (Richard Coles)//===----------------------------------------------------------------------===//
13f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)
14868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)#ifndef LLVM_CLANG_AST_EXPR_H
15868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)#define LLVM_CLANG_AST_EXPR_H
16a36e5920737c6adbddd3e43b760e5de8431db6e0Torne (Richard Coles)
17868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)#include "clang/AST/APValue.h"
18868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)#include "clang/AST/Stmt.h"
19868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)#include "clang/AST/Type.h"
20868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)#include "llvm/ADT/APSInt.h"
211320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci#include "llvm/ADT/APFloat.h"
22868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)#include "llvm/ADT/SmallVector.h"
23868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)#include <vector>
241320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci
25868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)namespace clang {
26868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  class ASTContext;
27868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  class APValue;
281320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  class Decl;
29868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  class IdentifierInfo;
30868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  class ParmVarDecl;
31868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  class NamedDecl;
32868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  class ValueDecl;
33868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  class BlockDecl;
346d86b77056ed63eb6871182f42a9fd5f07550f90Torne (Richard Coles)  class CXXOperatorCallExpr;
35868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  class CXXMemberCallExpr;
36868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)
37868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)/// Expr - This represents one expression.  Note that Expr's are subclasses of
38868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)/// Stmt.  This allows an expression to be transparently used any place a Stmt
39868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)/// is required.
40868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)///
411320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucciclass Expr : public Stmt {
42868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  QualType TR;
4323730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)
4423730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)  /// TypeDependent - Whether this expression is type-dependent
4523730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)  /// (C++ [temp.dep.expr]).
4623730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)  bool TypeDependent : 1;
4723730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)
4823730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)  /// ValueDependent - Whether this expression is value-dependent
4923730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)  /// (C++ [temp.dep.constexpr]).
5023730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)  bool ValueDependent : 1;
5123730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)
5223730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)protected:
531320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  // FIXME: Eventually, this constructor should go away and we should
5423730a6e56a168d1879203e4b3819bb36e3d8f1fTorne (Richard Coles)  // require every subclass to provide type/value-dependence
55868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  // information.
56868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  Expr(StmtClass SC, QualType T)
571320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    setType(T);
59f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)  }
603551c9c881056c480085172ff9840cab31610854Torne (Richard Coles)
613551c9c881056c480085172ff9840cab31610854Torne (Richard Coles)  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    setType(T);
64f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)  }
65f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)
66868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  /// \brief Construct an empty expression.
67868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
681320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci
69868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)public:
70868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)  QualType getType() const { return TR; }
71a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  void setType(QualType t) {
72f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    // In C++, the type of an expression is always adjusted so that it
735d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    // will not have reference type an expression will never have
746d86b77056ed63eb6871182f42a9fd5f07550f90Torne (Richard Coles)    // reference type (C++ [expr]p6). Use
751320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    // QualType::getNonReferenceType() to retrieve the non-reference
766d86b77056ed63eb6871182f42a9fd5f07550f90Torne (Richard Coles)    // type. Additionally, inspect Expr::isLvalue to determine whether
776d86b77056ed63eb6871182f42a9fd5f07550f90Torne (Richard Coles)    // an expression that is adjusted in this manner should be
786d86b77056ed63eb6871182f42a9fd5f07550f90Torne (Richard Coles)    // considered an lvalue.
796d86b77056ed63eb6871182f42a9fd5f07550f90Torne (Richard Coles)    assert((TR.isNull() || !TR->isReferenceType()) &&
805d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)           "Expressions can't have reference type");
815d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
825d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    TR = t;
835d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  }
845d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
855d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// isValueDependent - Determines whether this expression is
865d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
875d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// array bound of "Chars" in the following example is
885d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// value-dependent.
895d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// @code
905d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// template<int Size, char (&Chars)[Size]> struct meta_string;
915d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// @endcode
925d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  bool isValueDependent() const { return ValueDependent; }
935d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
945d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// \brief Set whether this expression is value-dependent or not.
955d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  void setValueDependent(bool VD) { ValueDependent = VD; }
965d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
975d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// isTypeDependent - Determines whether this expression is
985d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// type-dependent (C++ [temp.dep.expr]), which means that its type
995d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// could change from one template instantiation to the next. For
1005d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// example, the expressions "x" and "x + y" are type-dependent in
1015d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// the following code, but "y" is not type-dependent:
1025d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// @code
1035d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// template<typename T>
1045d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// void add(T x, int y) {
1055d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  ///   x + y;
1065d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// }
1075d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// @endcode
1085d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  bool isTypeDependent() const { return TypeDependent; }
1095d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1105d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// \brief Set whether this expression is type-dependent or not.
1115d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  void setTypeDependent(bool TD) { TypeDependent = TD; }
1125d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1135d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// SourceLocation tokens are not useful in isolation - they are low level
1145d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// value objects created/interpreted by SourceManager. We assume AST
1155d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// clients will have a pointer to the respective SourceManager.
1165d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  virtual SourceRange getSourceRange() const = 0;
1175d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1185d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// getExprLoc - Return the preferred location for the arrow when diagnosing
1195d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// a problem with a generic expression.
1205d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  virtual SourceLocation getExprLoc() const { return getLocStart(); }
1215d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
1225d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// isUnusedResultAWarning - Return true if this immediate expression should
1235d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
1245d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// with location to warn on and the source range[s] to report with the
1255d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  /// warning.
126  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
127                              SourceRange &R2) const;
128
129  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
130  /// incomplete type other than void. Nonarray expressions that can be lvalues:
131  ///  - name, where name must be a variable
132  ///  - e[i]
133  ///  - (e), where e must be an lvalue
134  ///  - e.name, where e must be an lvalue
135  ///  - e->name
136  ///  - *e, the type of e cannot be a function type
137  ///  - string-constant
138  ///  - reference type [C++ [expr]]
139  ///
140  enum isLvalueResult {
141    LV_Valid,
142    LV_NotObjectType,
143    LV_IncompleteVoidType,
144    LV_DuplicateVectorComponents,
145    LV_InvalidExpression,
146    LV_MemberFunction
147  };
148  isLvalueResult isLvalue(ASTContext &Ctx) const;
149
150  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
151  /// does not have an incomplete type, does not have a const-qualified type,
152  /// and if it is a structure or union, does not have any member (including,
153  /// recursively, any member or element of all contained aggregates or unions)
154  /// with a const-qualified type.
155  ///
156  /// \param Loc [in] [out] - A source location which *may* be filled
157  /// in with the location of the expression making this a
158  /// non-modifiable lvalue, if specified.
159  enum isModifiableLvalueResult {
160    MLV_Valid,
161    MLV_NotObjectType,
162    MLV_IncompleteVoidType,
163    MLV_DuplicateVectorComponents,
164    MLV_InvalidExpression,
165    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
166    MLV_IncompleteType,
167    MLV_ConstQualified,
168    MLV_ArrayType,
169    MLV_NotBlockQualified,
170    MLV_ReadonlyProperty,
171    MLV_NoSetterProperty,
172    MLV_MemberFunction
173  };
174  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
175                                              SourceLocation *Loc = 0) const;
176
177  bool isBitField();
178
179  /// getIntegerConstantExprValue() - Return the value of an integer
180  /// constant expression. The expression must be a valid integer
181  /// constant expression as determined by isIntegerConstantExpr.
182  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
183    llvm::APSInt X;
184    bool success = isIntegerConstantExpr(X, Ctx);
185    success = success;
186    assert(success && "Illegal argument to getIntegerConstantExpr");
187    return X;
188  }
189
190  /// isIntegerConstantExpr - Return true if this expression is a valid integer
191  /// constant expression, and, if so, return its value in Result.  If not a
192  /// valid i-c-e, return false and fill in Loc (if specified) with the location
193  /// of the invalid expression.
194  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
195                             SourceLocation *Loc = 0,
196                             bool isEvaluated = true) const;
197  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
198                             SourceLocation *Loc = 0,
199                             bool isEvaluated = true) const;
200  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
201    llvm::APSInt X;
202    return isIntegerConstantExpr(X, Ctx, Loc);
203  }
204  /// isConstantInitializer - Returns true if this expression is a constant
205  /// initializer, which can be emitted at compile-time.
206  bool isConstantInitializer(ASTContext &Ctx) const;
207
208  /// EvalResult is a struct with detailed info about an evaluated expression.
209  struct EvalResult {
210    /// Val - This is the value the expression can be folded to.
211    APValue Val;
212
213    /// HasSideEffects - Whether the evaluated expression has side effects.
214    /// For example, (f() && 0) can be folded, but it still has side effects.
215    bool HasSideEffects;
216
217    /// Diag - If the expression is unfoldable, then Diag contains a note
218    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
219    /// position for the error, and DiagExpr is the expression that caused
220    /// the error.
221    /// If the expression is foldable, but not an integer constant expression,
222    /// Diag contains a note diagnostic that describes why it isn't an integer
223    /// constant expression. If the expression *is* an integer constant
224    /// expression, then Diag will be zero.
225    unsigned Diag;
226    const Expr *DiagExpr;
227    SourceLocation DiagLoc;
228
229    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
230  };
231
232  /// Evaluate - Return true if this is a constant which we can fold using
233  /// any crazy technique (that has nothing to do with language standards) that
234  /// we want to.  If this function returns true, it returns the folded constant
235  /// in Result.
236  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
237
238  /// isEvaluatable - Call Evaluate to see if this expression can be constant
239  /// folded, but discard the result.
240  bool isEvaluatable(ASTContext &Ctx) const;
241
242  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
243  /// must be called on an expression that constant folds to an integer.
244  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
245
246  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
247  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
248
249  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
250  /// integer constant expression with the value zero, or if this is one that is
251  /// cast to void*.
252  bool isNullPointerConstant(ASTContext &Ctx) const;
253
254  /// hasGlobalStorage - Return true if this expression has static storage
255  /// duration.  This means that the address of this expression is a link-time
256  /// constant.
257  bool hasGlobalStorage() const;
258
259  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
260  /// write barrier.
261  bool isOBJCGCCandidate() const;
262
263  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
264  ///  its subexpression.  If that subexpression is also a ParenExpr,
265  ///  then this method recursively returns its subexpression, and so forth.
266  ///  Otherwise, the method returns the current Expr.
267  Expr* IgnoreParens();
268
269  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
270  /// or CastExprs, returning their operand.
271  Expr *IgnoreParenCasts();
272
273  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
274  /// value (including ptr->int casts of the same size).  Strip off any
275  /// ParenExpr or CastExprs, returning their operand.
276  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
277
278  const Expr* IgnoreParens() const {
279    return const_cast<Expr*>(this)->IgnoreParens();
280  }
281  const Expr *IgnoreParenCasts() const {
282    return const_cast<Expr*>(this)->IgnoreParenCasts();
283  }
284  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
285    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
286  }
287
288  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
289  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
290
291  static bool classof(const Stmt *T) {
292    return T->getStmtClass() >= firstExprConstant &&
293           T->getStmtClass() <= lastExprConstant;
294  }
295  static bool classof(const Expr *) { return true; }
296
297  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
298    return cast<Expr>(Stmt::Create(D, C));
299  }
300};
301
302
303//===----------------------------------------------------------------------===//
304// Primary Expressions.
305//===----------------------------------------------------------------------===//
306
307/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
308/// enum, etc.
309class DeclRefExpr : public Expr {
310  NamedDecl *D;
311  SourceLocation Loc;
312
313protected:
314  // FIXME: Eventually, this constructor will go away and all subclasses
315  // will have to provide the type- and value-dependent flags.
316  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
317    Expr(SC, t), D(d), Loc(l) {}
318
319  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
320              bool VD) :
321    Expr(SC, t, TD, VD), D(d), Loc(l) {}
322
323public:
324  // FIXME: Eventually, this constructor will go away and all clients
325  // will have to provide the type- and value-dependent flags.
326  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
327    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
328
329  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
330    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
331
332  /// \brief Construct an empty declaration reference expression.
333  explicit DeclRefExpr(EmptyShell Empty)
334    : Expr(DeclRefExprClass, Empty) { }
335
336  NamedDecl *getDecl() { return D; }
337  const NamedDecl *getDecl() const { return D; }
338  void setDecl(NamedDecl *NewD) { D = NewD; }
339
340  SourceLocation getLocation() const { return Loc; }
341  void setLocation(SourceLocation L) { Loc = L; }
342  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
343
344  static bool classof(const Stmt *T) {
345    return T->getStmtClass() == DeclRefExprClass ||
346           T->getStmtClass() == CXXConditionDeclExprClass ||
347           T->getStmtClass() == QualifiedDeclRefExprClass;
348  }
349  static bool classof(const DeclRefExpr *) { return true; }
350
351  // Iterators
352  virtual child_iterator child_begin();
353  virtual child_iterator child_end();
354
355  virtual void EmitImpl(llvm::Serializer& S) const;
356  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
357};
358
359/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
360class PredefinedExpr : public Expr {
361public:
362  enum IdentType {
363    Func,
364    Function,
365    PrettyFunction
366  };
367
368private:
369  SourceLocation Loc;
370  IdentType Type;
371public:
372  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
373    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
374
375  /// \brief Construct an empty predefined expression.
376  explicit PredefinedExpr(EmptyShell Empty)
377    : Expr(PredefinedExprClass, Empty) { }
378
379  IdentType getIdentType() const { return Type; }
380  void setIdentType(IdentType IT) { Type = IT; }
381
382  SourceLocation getLocation() const { return Loc; }
383  void setLocation(SourceLocation L) { Loc = L; }
384
385  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
386
387  static bool classof(const Stmt *T) {
388    return T->getStmtClass() == PredefinedExprClass;
389  }
390  static bool classof(const PredefinedExpr *) { return true; }
391
392  // Iterators
393  virtual child_iterator child_begin();
394  virtual child_iterator child_end();
395
396  virtual void EmitImpl(llvm::Serializer& S) const;
397  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
398};
399
400class IntegerLiteral : public Expr {
401  llvm::APInt Value;
402  SourceLocation Loc;
403public:
404  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
405  // or UnsignedLongLongTy
406  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
407    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
408    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
409  }
410
411  /// \brief Construct an empty integer literal.
412  explicit IntegerLiteral(EmptyShell Empty)
413    : Expr(IntegerLiteralClass, Empty) { }
414
415  IntegerLiteral* Clone(ASTContext &C) const;
416
417  const llvm::APInt &getValue() const { return Value; }
418  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
419
420  /// \brief Retrieve the location of the literal.
421  SourceLocation getLocation() const { return Loc; }
422
423  void setValue(const llvm::APInt &Val) { Value = Val; }
424  void setLocation(SourceLocation Location) { Loc = Location; }
425
426  static bool classof(const Stmt *T) {
427    return T->getStmtClass() == IntegerLiteralClass;
428  }
429  static bool classof(const IntegerLiteral *) { return true; }
430
431  // Iterators
432  virtual child_iterator child_begin();
433  virtual child_iterator child_end();
434
435  virtual void EmitImpl(llvm::Serializer& S) const;
436  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
437};
438
439class CharacterLiteral : public Expr {
440  unsigned Value;
441  SourceLocation Loc;
442  bool IsWide;
443public:
444  // type should be IntTy
445  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
446    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
447  }
448
449  /// \brief Construct an empty character literal.
450  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
451
452  SourceLocation getLoc() const { return Loc; }
453  bool isWide() const { return IsWide; }
454
455  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
456
457  unsigned getValue() const { return Value; }
458
459  void setLocation(SourceLocation Location) { Loc = Location; }
460  void setWide(bool W) { IsWide = W; }
461  void setValue(unsigned Val) { Value = Val; }
462
463  static bool classof(const Stmt *T) {
464    return T->getStmtClass() == CharacterLiteralClass;
465  }
466  static bool classof(const CharacterLiteral *) { return true; }
467
468  // Iterators
469  virtual child_iterator child_begin();
470  virtual child_iterator child_end();
471
472  virtual void EmitImpl(llvm::Serializer& S) const;
473  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
474};
475
476class FloatingLiteral : public Expr {
477  llvm::APFloat Value;
478  bool IsExact : 1;
479  SourceLocation Loc;
480public:
481  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
482                  QualType Type, SourceLocation L)
483    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
484
485  /// \brief Construct an empty floating-point literal.
486  FloatingLiteral(EmptyShell Empty)
487    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
488
489  const llvm::APFloat &getValue() const { return Value; }
490  void setValue(const llvm::APFloat &Val) { Value = Val; }
491
492  bool isExact() const { return IsExact; }
493  void setExact(bool E) { IsExact = E; }
494
495  /// getValueAsApproximateDouble - This returns the value as an inaccurate
496  /// double.  Note that this may cause loss of precision, but is useful for
497  /// debugging dumps, etc.
498  double getValueAsApproximateDouble() const;
499
500  SourceLocation getLocation() const { return Loc; }
501  void setLocation(SourceLocation L) { Loc = L; }
502
503  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
504
505  static bool classof(const Stmt *T) {
506    return T->getStmtClass() == FloatingLiteralClass;
507  }
508  static bool classof(const FloatingLiteral *) { return true; }
509
510  // Iterators
511  virtual child_iterator child_begin();
512  virtual child_iterator child_end();
513
514  virtual void EmitImpl(llvm::Serializer& S) const;
515  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
516};
517
518/// ImaginaryLiteral - We support imaginary integer and floating point literals,
519/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
520/// IntegerLiteral classes.  Instances of this class always have a Complex type
521/// whose element type matches the subexpression.
522///
523class ImaginaryLiteral : public Expr {
524  Stmt *Val;
525public:
526  ImaginaryLiteral(Expr *val, QualType Ty)
527    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
528
529  const Expr *getSubExpr() const { return cast<Expr>(Val); }
530  Expr *getSubExpr() { return cast<Expr>(Val); }
531
532  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
533  static bool classof(const Stmt *T) {
534    return T->getStmtClass() == ImaginaryLiteralClass;
535  }
536  static bool classof(const ImaginaryLiteral *) { return true; }
537
538  // Iterators
539  virtual child_iterator child_begin();
540  virtual child_iterator child_end();
541
542  virtual void EmitImpl(llvm::Serializer& S) const;
543  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
544};
545
546/// StringLiteral - This represents a string literal expression, e.g. "foo"
547/// or L"bar" (wide strings).  The actual string is returned by getStrData()
548/// is NOT null-terminated, and the length of the string is determined by
549/// calling getByteLength().  The C type for a string is always a
550/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
551/// not.
552///
553/// Note that strings in C can be formed by concatenation of multiple string
554/// literal pptokens in translation phase #6.  This keeps track of the locations
555/// of each of these pieces.
556///
557/// Strings in C can also be truncated and extended by assigning into arrays,
558/// e.g. with constructs like:
559///   char X[2] = "foobar";
560/// In this case, getByteLength() will return 6, but the string literal will
561/// have type "char[2]".
562class StringLiteral : public Expr {
563  const char *StrData;
564  unsigned ByteLength;
565  bool IsWide;
566  unsigned NumConcatenated;
567  SourceLocation TokLocs[1];
568
569  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
570public:
571  /// This is the "fully general" constructor that allows representation of
572  /// strings formed from multiple concatenated tokens.
573  static StringLiteral *Create(ASTContext &C, const char *StrData,
574                               unsigned ByteLength, bool Wide, QualType Ty,
575                               const SourceLocation *Loc, unsigned NumStrs);
576
577  /// Simple constructor for string literals made from one token.
578  static StringLiteral *Create(ASTContext &C, const char *StrData,
579                               unsigned ByteLength,
580                               bool Wide, QualType Ty, SourceLocation Loc) {
581    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
582  }
583
584  /// \brief Construct an empty string literal.
585  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
586
587  StringLiteral* Clone(ASTContext &C) const;
588  void Destroy(ASTContext &C);
589
590  const char *getStrData() const { return StrData; }
591  unsigned getByteLength() const { return ByteLength; }
592
593  /// \brief Sets the string data to the given string data.
594  void setStrData(ASTContext &C, const char *Str, unsigned Len);
595
596  bool isWide() const { return IsWide; }
597  void setWide(bool W) { IsWide = W; }
598
599  bool containsNonAsciiOrNull() const {
600    for (unsigned i = 0; i < getByteLength(); ++i)
601      if (!isascii(getStrData()[i]) || !getStrData()[i])
602        return true;
603    return false;
604  }
605  /// getNumConcatenated - Get the number of string literal tokens that were
606  /// concatenated in translation phase #6 to form this string literal.
607  unsigned getNumConcatenated() const { return NumConcatenated; }
608
609  SourceLocation getStrTokenLoc(unsigned TokNum) const {
610    assert(TokNum < NumConcatenated && "Invalid tok number");
611    return TokLocs[TokNum];
612  }
613  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
614    assert(TokNum < NumConcatenated && "Invalid tok number");
615    TokLocs[TokNum] = L;
616  }
617
618  typedef const SourceLocation *tokloc_iterator;
619  tokloc_iterator tokloc_begin() const { return TokLocs; }
620  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
621
622  virtual SourceRange getSourceRange() const {
623    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
624  }
625  static bool classof(const Stmt *T) {
626    return T->getStmtClass() == StringLiteralClass;
627  }
628  static bool classof(const StringLiteral *) { return true; }
629
630  // Iterators
631  virtual child_iterator child_begin();
632  virtual child_iterator child_end();
633
634  virtual void EmitImpl(llvm::Serializer& S) const;
635  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
636};
637
638/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
639/// AST node is only formed if full location information is requested.
640class ParenExpr : public Expr {
641  SourceLocation L, R;
642  Stmt *Val;
643public:
644  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
645    : Expr(ParenExprClass, val->getType(),
646           val->isTypeDependent(), val->isValueDependent()),
647      L(l), R(r), Val(val) {}
648
649  /// \brief Construct an empty parenthesized expression.
650  explicit ParenExpr(EmptyShell Empty)
651    : Expr(ParenExprClass, Empty) { }
652
653  const Expr *getSubExpr() const { return cast<Expr>(Val); }
654  Expr *getSubExpr() { return cast<Expr>(Val); }
655  void setSubExpr(Expr *E) { Val = E; }
656
657  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
658
659  /// \brief Get the location of the left parentheses '('.
660  SourceLocation getLParen() const { return L; }
661  void setLParen(SourceLocation Loc) { L = Loc; }
662
663  /// \brief Get the location of the right parentheses ')'.
664  SourceLocation getRParen() const { return R; }
665  void setRParen(SourceLocation Loc) { R = Loc; }
666
667  static bool classof(const Stmt *T) {
668    return T->getStmtClass() == ParenExprClass;
669  }
670  static bool classof(const ParenExpr *) { return true; }
671
672  // Iterators
673  virtual child_iterator child_begin();
674  virtual child_iterator child_end();
675
676  virtual void EmitImpl(llvm::Serializer& S) const;
677  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
678};
679
680
681/// UnaryOperator - This represents the unary-expression's (except sizeof and
682/// alignof), the postinc/postdec operators from postfix-expression, and various
683/// extensions.
684///
685/// Notes on various nodes:
686///
687/// Real/Imag - These return the real/imag part of a complex operand.  If
688///   applied to a non-complex value, the former returns its operand and the
689///   later returns zero in the type of the operand.
690///
691/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
692///   subexpression is a compound literal with the various MemberExpr and
693///   ArraySubscriptExpr's applied to it.
694///
695class UnaryOperator : public Expr {
696public:
697  // Note that additions to this should also update the StmtVisitor class.
698  enum Opcode {
699    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
700    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
701    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
702    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
703    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
704    Real, Imag,       // "__real expr"/"__imag expr" Extension.
705    Extension,        // __extension__ marker.
706    OffsetOf          // __builtin_offsetof
707  };
708private:
709  Stmt *Val;
710  Opcode Opc;
711  SourceLocation Loc;
712public:
713
714  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
715    : Expr(UnaryOperatorClass, type,
716           input->isTypeDependent() && opc != OffsetOf,
717           input->isValueDependent()),
718      Val(input), Opc(opc), Loc(l) {}
719
720  /// \brief Build an empty unary operator.
721  explicit UnaryOperator(EmptyShell Empty)
722    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
723
724  Opcode getOpcode() const { return Opc; }
725  void setOpcode(Opcode O) { Opc = O; }
726
727  Expr *getSubExpr() const { return cast<Expr>(Val); }
728  void setSubExpr(Expr *E) { Val = E; }
729
730  /// getOperatorLoc - Return the location of the operator.
731  SourceLocation getOperatorLoc() const { return Loc; }
732  void setOperatorLoc(SourceLocation L) { Loc = L; }
733
734  /// isPostfix - Return true if this is a postfix operation, like x++.
735  static bool isPostfix(Opcode Op) {
736    return Op == PostInc || Op == PostDec;
737  }
738
739  /// isPostfix - Return true if this is a prefix operation, like --x.
740  static bool isPrefix(Opcode Op) {
741    return Op == PreInc || Op == PreDec;
742  }
743
744  bool isPrefix() const { return isPrefix(Opc); }
745  bool isPostfix() const { return isPostfix(Opc); }
746  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
747  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
748  bool isOffsetOfOp() const { return Opc == OffsetOf; }
749  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
750
751  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
752  /// corresponds to, e.g. "sizeof" or "[pre]++"
753  static const char *getOpcodeStr(Opcode Op);
754
755  /// \brief Retrieve the unary opcode that corresponds to the given
756  /// overloaded operator.
757  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
758
759  /// \brief Retrieve the overloaded operator kind that corresponds to
760  /// the given unary opcode.
761  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
762
763  virtual SourceRange getSourceRange() const {
764    if (isPostfix())
765      return SourceRange(Val->getLocStart(), Loc);
766    else
767      return SourceRange(Loc, Val->getLocEnd());
768  }
769  virtual SourceLocation getExprLoc() const { return Loc; }
770
771  static bool classof(const Stmt *T) {
772    return T->getStmtClass() == UnaryOperatorClass;
773  }
774  static bool classof(const UnaryOperator *) { return true; }
775
776  // Iterators
777  virtual child_iterator child_begin();
778  virtual child_iterator child_end();
779
780  virtual void EmitImpl(llvm::Serializer& S) const;
781  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
782};
783
784/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
785/// types and expressions.
786class SizeOfAlignOfExpr : public Expr {
787  bool isSizeof : 1;  // true if sizeof, false if alignof.
788  bool isType : 1;    // true if operand is a type, false if an expression
789  union {
790    void *Ty;
791    Stmt *Ex;
792  } Argument;
793  SourceLocation OpLoc, RParenLoc;
794public:
795  SizeOfAlignOfExpr(bool issizeof, QualType T,
796                    QualType resultType, SourceLocation op,
797                    SourceLocation rp) :
798      Expr(SizeOfAlignOfExprClass, resultType,
799           false, // Never type-dependent (C++ [temp.dep.expr]p3).
800           // Value-dependent if the argument is type-dependent.
801           T->isDependentType()),
802      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
803    Argument.Ty = T.getAsOpaquePtr();
804  }
805
806  SizeOfAlignOfExpr(bool issizeof, Expr *E,
807                    QualType resultType, SourceLocation op,
808                    SourceLocation rp) :
809      Expr(SizeOfAlignOfExprClass, resultType,
810           false, // Never type-dependent (C++ [temp.dep.expr]p3).
811           // Value-dependent if the argument is type-dependent.
812           E->isTypeDependent()),
813      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
814    Argument.Ex = E;
815  }
816
817  /// \brief Construct an empty sizeof/alignof expression.
818  explicit SizeOfAlignOfExpr(EmptyShell Empty)
819    : Expr(SizeOfAlignOfExprClass, Empty) { }
820
821  virtual void Destroy(ASTContext& C);
822
823  bool isSizeOf() const { return isSizeof; }
824  void setSizeof(bool S) { isSizeof = S; }
825
826  bool isArgumentType() const { return isType; }
827  QualType getArgumentType() const {
828    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
829    return QualType::getFromOpaquePtr(Argument.Ty);
830  }
831  Expr *getArgumentExpr() {
832    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
833    return static_cast<Expr*>(Argument.Ex);
834  }
835  const Expr *getArgumentExpr() const {
836    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
837  }
838
839  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
840  void setArgument(QualType T) {
841    Argument.Ty = T.getAsOpaquePtr();
842    isType = true;
843  }
844
845  /// Gets the argument type, or the type of the argument expression, whichever
846  /// is appropriate.
847  QualType getTypeOfArgument() const {
848    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
849  }
850
851  SourceLocation getOperatorLoc() const { return OpLoc; }
852  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
853
854  SourceLocation getRParenLoc() const { return RParenLoc; }
855  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
856
857  virtual SourceRange getSourceRange() const {
858    return SourceRange(OpLoc, RParenLoc);
859  }
860
861  static bool classof(const Stmt *T) {
862    return T->getStmtClass() == SizeOfAlignOfExprClass;
863  }
864  static bool classof(const SizeOfAlignOfExpr *) { return true; }
865
866  // Iterators
867  virtual child_iterator child_begin();
868  virtual child_iterator child_end();
869
870  virtual void EmitImpl(llvm::Serializer& S) const;
871  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
872};
873
874//===----------------------------------------------------------------------===//
875// Postfix Operators.
876//===----------------------------------------------------------------------===//
877
878/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
879class ArraySubscriptExpr : public Expr {
880  enum { LHS, RHS, END_EXPR=2 };
881  Stmt* SubExprs[END_EXPR];
882  SourceLocation RBracketLoc;
883public:
884  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
885                     SourceLocation rbracketloc)
886  : Expr(ArraySubscriptExprClass, t,
887         lhs->isTypeDependent() || rhs->isTypeDependent(),
888         lhs->isValueDependent() || rhs->isValueDependent()),
889    RBracketLoc(rbracketloc) {
890    SubExprs[LHS] = lhs;
891    SubExprs[RHS] = rhs;
892  }
893
894  /// An array access can be written A[4] or 4[A] (both are equivalent).
895  /// - getBase() and getIdx() always present the normalized view: A[4].
896  ///    In this case getBase() returns "A" and getIdx() returns "4".
897  /// - getLHS() and getRHS() present the syntactic view. e.g. for
898  ///    4[A] getLHS() returns "4".
899  /// Note: Because vector element access is also written A[4] we must
900  /// predicate the format conversion in getBase and getIdx only on the
901  /// the type of the RHS, as it is possible for the LHS to be a vector of
902  /// integer type
903  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
904  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
905
906  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
907  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
908
909  Expr *getBase() {
910    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
911  }
912
913  const Expr *getBase() const {
914    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
915  }
916
917  Expr *getIdx() {
918    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
919  }
920
921  const Expr *getIdx() const {
922    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
923  }
924
925  virtual SourceRange getSourceRange() const {
926    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
927  }
928
929  SourceLocation getRBracketLoc() const { return RBracketLoc; }
930  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
931
932  static bool classof(const Stmt *T) {
933    return T->getStmtClass() == ArraySubscriptExprClass;
934  }
935  static bool classof(const ArraySubscriptExpr *) { return true; }
936
937  // Iterators
938  virtual child_iterator child_begin();
939  virtual child_iterator child_end();
940
941  virtual void EmitImpl(llvm::Serializer& S) const;
942  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
943};
944
945
946/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
947/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
948/// while its subclasses may represent alternative syntax that (semantically)
949/// results in a function call. For example, CXXOperatorCallExpr is
950/// a subclass for overloaded operator calls that use operator syntax, e.g.,
951/// "str1 + str2" to resolve to a function call.
952class CallExpr : public Expr {
953  enum { FN=0, ARGS_START=1 };
954  Stmt **SubExprs;
955  unsigned NumArgs;
956  SourceLocation RParenLoc;
957
958  // This version of the ctor is for deserialization.
959  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
960           SourceLocation rparenloc)
961  : Expr(SC,t), SubExprs(subexprs),
962    NumArgs(numargs), RParenLoc(rparenloc) {}
963
964protected:
965  // This version of the constructor is for derived classes.
966  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
967           QualType t, SourceLocation rparenloc);
968
969public:
970  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
971           SourceLocation rparenloc);
972
973  /// \brief Build an empty call expression.
974  CallExpr(ASTContext &C, EmptyShell Empty);
975
976  ~CallExpr() {}
977
978  void Destroy(ASTContext& C);
979
980  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
981  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
982  void setCallee(Expr *F) { SubExprs[FN] = F; }
983
984  /// getNumArgs - Return the number of actual arguments to this call.
985  ///
986  unsigned getNumArgs() const { return NumArgs; }
987
988  /// getArg - Return the specified argument.
989  Expr *getArg(unsigned Arg) {
990    assert(Arg < NumArgs && "Arg access out of range!");
991    return cast<Expr>(SubExprs[Arg+ARGS_START]);
992  }
993  const Expr *getArg(unsigned Arg) const {
994    assert(Arg < NumArgs && "Arg access out of range!");
995    return cast<Expr>(SubExprs[Arg+ARGS_START]);
996  }
997
998  /// setArg - Set the specified argument.
999  void setArg(unsigned Arg, Expr *ArgExpr) {
1000    assert(Arg < NumArgs && "Arg access out of range!");
1001    SubExprs[Arg+ARGS_START] = ArgExpr;
1002  }
1003
1004  /// setNumArgs - This changes the number of arguments present in this call.
1005  /// Any orphaned expressions are deleted by this, and any new operands are set
1006  /// to null.
1007  void setNumArgs(ASTContext& C, unsigned NumArgs);
1008
1009  typedef ExprIterator arg_iterator;
1010  typedef ConstExprIterator const_arg_iterator;
1011
1012  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1013  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1014  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1015  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1016
1017  /// getNumCommas - Return the number of commas that must have been present in
1018  /// this function call.
1019  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1020
1021  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1022  /// not, return 0.
1023  unsigned isBuiltinCall(ASTContext &Context) const;
1024
1025  SourceLocation getRParenLoc() const { return RParenLoc; }
1026  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1027
1028  virtual SourceRange getSourceRange() const {
1029    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1030  }
1031
1032  static bool classof(const Stmt *T) {
1033    return T->getStmtClass() == CallExprClass ||
1034           T->getStmtClass() == CXXOperatorCallExprClass ||
1035           T->getStmtClass() == CXXMemberCallExprClass;
1036  }
1037  static bool classof(const CallExpr *) { return true; }
1038  static bool classof(const CXXOperatorCallExpr *) { return true; }
1039  static bool classof(const CXXMemberCallExpr *) { return true; }
1040
1041  // Iterators
1042  virtual child_iterator child_begin();
1043  virtual child_iterator child_end();
1044
1045  virtual void EmitImpl(llvm::Serializer& S) const;
1046  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
1047                              StmtClass SC);
1048};
1049
1050/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1051///
1052class MemberExpr : public Expr {
1053  /// Base - the expression for the base pointer or structure references.  In
1054  /// X.F, this is "X".
1055  Stmt *Base;
1056
1057  /// MemberDecl - This is the decl being referenced by the field/member name.
1058  /// In X.F, this is the decl referenced by F.
1059  NamedDecl *MemberDecl;
1060
1061  /// MemberLoc - This is the location of the member name.
1062  SourceLocation MemberLoc;
1063
1064  /// IsArrow - True if this is "X->F", false if this is "X.F".
1065  bool IsArrow;
1066public:
1067  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1068             QualType ty)
1069    : Expr(MemberExprClass, ty),
1070      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
1071
1072  /// \brief Build an empty member reference expression.
1073  explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }
1074
1075  void setBase(Expr *E) { Base = E; }
1076  Expr *getBase() const { return cast<Expr>(Base); }
1077
1078  /// \brief Retrieve the member declaration to which this expression refers.
1079  ///
1080  /// The returned declaration will either be a FieldDecl or (in C++)
1081  /// a CXXMethodDecl.
1082  NamedDecl *getMemberDecl() const { return MemberDecl; }
1083  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1084
1085  bool isArrow() const { return IsArrow; }
1086  void setArrow(bool A) { IsArrow = A; }
1087
1088  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1089  /// location of 'F'.
1090  SourceLocation getMemberLoc() const { return MemberLoc; }
1091  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1092
1093  virtual SourceRange getSourceRange() const {
1094    return SourceRange(getBase()->getLocStart(), MemberLoc);
1095  }
1096
1097  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1098
1099  static bool classof(const Stmt *T) {
1100    return T->getStmtClass() == MemberExprClass;
1101  }
1102  static bool classof(const MemberExpr *) { return true; }
1103
1104  // Iterators
1105  virtual child_iterator child_begin();
1106  virtual child_iterator child_end();
1107
1108  virtual void EmitImpl(llvm::Serializer& S) const;
1109  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1110};
1111
1112/// CompoundLiteralExpr - [C99 6.5.2.5]
1113///
1114class CompoundLiteralExpr : public Expr {
1115  /// LParenLoc - If non-null, this is the location of the left paren in a
1116  /// compound literal like "(int){4}".  This can be null if this is a
1117  /// synthesized compound expression.
1118  SourceLocation LParenLoc;
1119  Stmt *Init;
1120  bool FileScope;
1121public:
1122  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1123                      bool fileScope)
1124    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1125      FileScope(fileScope) {}
1126
1127  const Expr *getInitializer() const { return cast<Expr>(Init); }
1128  Expr *getInitializer() { return cast<Expr>(Init); }
1129
1130  bool isFileScope() const { return FileScope; }
1131
1132  SourceLocation getLParenLoc() const { return LParenLoc; }
1133
1134  virtual SourceRange getSourceRange() const {
1135    // FIXME: Init should never be null.
1136    if (!Init)
1137      return SourceRange();
1138    if (LParenLoc.isInvalid())
1139      return Init->getSourceRange();
1140    return SourceRange(LParenLoc, Init->getLocEnd());
1141  }
1142
1143  static bool classof(const Stmt *T) {
1144    return T->getStmtClass() == CompoundLiteralExprClass;
1145  }
1146  static bool classof(const CompoundLiteralExpr *) { return true; }
1147
1148  // Iterators
1149  virtual child_iterator child_begin();
1150  virtual child_iterator child_end();
1151
1152  virtual void EmitImpl(llvm::Serializer& S) const;
1153  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1154};
1155
1156/// CastExpr - Base class for type casts, including both implicit
1157/// casts (ImplicitCastExpr) and explicit casts that have some
1158/// representation in the source code (ExplicitCastExpr's derived
1159/// classes).
1160class CastExpr : public Expr {
1161  Stmt *Op;
1162protected:
1163  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1164    Expr(SC, ty,
1165         // Cast expressions are type-dependent if the type is
1166         // dependent (C++ [temp.dep.expr]p3).
1167         ty->isDependentType(),
1168         // Cast expressions are value-dependent if the type is
1169         // dependent or if the subexpression is value-dependent.
1170         ty->isDependentType() || (op && op->isValueDependent())),
1171    Op(op) {}
1172
1173  /// \brief Construct an empty cast.
1174  CastExpr(StmtClass SC, EmptyShell Empty)
1175    : Expr(SC, Empty) { }
1176
1177public:
1178  Expr *getSubExpr() { return cast<Expr>(Op); }
1179  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1180  void setSubExpr(Expr *E) { Op = E; }
1181
1182  static bool classof(const Stmt *T) {
1183    StmtClass SC = T->getStmtClass();
1184    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1185      return true;
1186
1187    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1188      return true;
1189
1190    return false;
1191  }
1192  static bool classof(const CastExpr *) { return true; }
1193
1194  // Iterators
1195  virtual child_iterator child_begin();
1196  virtual child_iterator child_end();
1197};
1198
1199/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1200/// conversions, which have no direct representation in the original
1201/// source code. For example: converting T[]->T*, void f()->void
1202/// (*f)(), float->double, short->int, etc.
1203///
1204/// In C, implicit casts always produce rvalues. However, in C++, an
1205/// implicit cast whose result is being bound to a reference will be
1206/// an lvalue. For example:
1207///
1208/// @code
1209/// class Base { };
1210/// class Derived : public Base { };
1211/// void f(Derived d) {
1212///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1213/// }
1214/// @endcode
1215class ImplicitCastExpr : public CastExpr {
1216  /// LvalueCast - Whether this cast produces an lvalue.
1217  bool LvalueCast;
1218
1219public:
1220  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1221    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1222
1223  /// \brief Construct an empty implicit cast.
1224  explicit ImplicitCastExpr(EmptyShell Shell)
1225    : CastExpr(ImplicitCastExprClass, Shell) { }
1226
1227
1228  virtual SourceRange getSourceRange() const {
1229    return getSubExpr()->getSourceRange();
1230  }
1231
1232  /// isLvalueCast - Whether this cast produces an lvalue.
1233  bool isLvalueCast() const { return LvalueCast; }
1234
1235  /// setLvalueCast - Set whether this cast produces an lvalue.
1236  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1237
1238  static bool classof(const Stmt *T) {
1239    return T->getStmtClass() == ImplicitCastExprClass;
1240  }
1241  static bool classof(const ImplicitCastExpr *) { return true; }
1242
1243  virtual void EmitImpl(llvm::Serializer& S) const;
1244  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1245};
1246
1247/// ExplicitCastExpr - An explicit cast written in the source
1248/// code.
1249///
1250/// This class is effectively an abstract class, because it provides
1251/// the basic representation of an explicitly-written cast without
1252/// specifying which kind of cast (C cast, functional cast, static
1253/// cast, etc.) was written; specific derived classes represent the
1254/// particular style of cast and its location information.
1255///
1256/// Unlike implicit casts, explicit cast nodes have two different
1257/// types: the type that was written into the source code, and the
1258/// actual type of the expression as determined by semantic
1259/// analysis. These types may differ slightly. For example, in C++ one
1260/// can cast to a reference type, which indicates that the resulting
1261/// expression will be an lvalue. The reference type, however, will
1262/// not be used as the type of the expression.
1263class ExplicitCastExpr : public CastExpr {
1264  /// TypeAsWritten - The type that this expression is casting to, as
1265  /// written in the source code.
1266  QualType TypeAsWritten;
1267
1268protected:
1269  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1270    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1271
1272  /// \brief Construct an empty explicit cast.
1273  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1274    : CastExpr(SC, Shell) { }
1275
1276public:
1277  /// getTypeAsWritten - Returns the type that this expression is
1278  /// casting to, as written in the source code.
1279  QualType getTypeAsWritten() const { return TypeAsWritten; }
1280  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1281
1282  static bool classof(const Stmt *T) {
1283    StmtClass SC = T->getStmtClass();
1284    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1285      return true;
1286    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1287      return true;
1288
1289    return false;
1290  }
1291  static bool classof(const ExplicitCastExpr *) { return true; }
1292};
1293
1294/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1295/// cast in C++ (C++ [expr.cast]), which uses the syntax
1296/// (Type)expr. For example: @c (int)f.
1297class CStyleCastExpr : public ExplicitCastExpr {
1298  SourceLocation LPLoc; // the location of the left paren
1299  SourceLocation RPLoc; // the location of the right paren
1300public:
1301  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1302                    SourceLocation l, SourceLocation r) :
1303    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1304    LPLoc(l), RPLoc(r) {}
1305
1306  /// \brief Construct an empty C-style explicit cast.
1307  explicit CStyleCastExpr(EmptyShell Shell)
1308    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1309
1310  SourceLocation getLParenLoc() const { return LPLoc; }
1311  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1312
1313  SourceLocation getRParenLoc() const { return RPLoc; }
1314  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1315
1316  virtual SourceRange getSourceRange() const {
1317    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1318  }
1319  static bool classof(const Stmt *T) {
1320    return T->getStmtClass() == CStyleCastExprClass;
1321  }
1322  static bool classof(const CStyleCastExpr *) { return true; }
1323
1324  virtual void EmitImpl(llvm::Serializer& S) const;
1325  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1326};
1327
1328/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1329///
1330/// This expression node kind describes a builtin binary operation,
1331/// such as "x + y" for integer values "x" and "y". The operands will
1332/// already have been converted to appropriate types (e.g., by
1333/// performing promotions or conversions).
1334///
1335/// In C++, where operators may be overloaded, a different kind of
1336/// expression node (CXXOperatorCallExpr) is used to express the
1337/// invocation of an overloaded operator with operator syntax. Within
1338/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1339/// used to store an expression "x + y" depends on the subexpressions
1340/// for x and y. If neither x or y is type-dependent, and the "+"
1341/// operator resolves to a built-in operation, BinaryOperator will be
1342/// used to express the computation (x and y may still be
1343/// value-dependent). If either x or y is type-dependent, or if the
1344/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1345/// be used to express the computation.
1346class BinaryOperator : public Expr {
1347public:
1348  enum Opcode {
1349    // Operators listed in order of precedence.
1350    // Note that additions to this should also update the StmtVisitor class.
1351    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1352    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1353    Add, Sub,         // [C99 6.5.6] Additive operators.
1354    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1355    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1356    EQ, NE,           // [C99 6.5.9] Equality operators.
1357    And,              // [C99 6.5.10] Bitwise AND operator.
1358    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1359    Or,               // [C99 6.5.12] Bitwise OR operator.
1360    LAnd,             // [C99 6.5.13] Logical AND operator.
1361    LOr,              // [C99 6.5.14] Logical OR operator.
1362    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1363    DivAssign, RemAssign,
1364    AddAssign, SubAssign,
1365    ShlAssign, ShrAssign,
1366    AndAssign, XorAssign,
1367    OrAssign,
1368    Comma             // [C99 6.5.17] Comma operator.
1369  };
1370private:
1371  enum { LHS, RHS, END_EXPR };
1372  Stmt* SubExprs[END_EXPR];
1373  Opcode Opc;
1374  SourceLocation OpLoc;
1375public:
1376
1377  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1378                 SourceLocation opLoc)
1379    : Expr(BinaryOperatorClass, ResTy,
1380           lhs->isTypeDependent() || rhs->isTypeDependent(),
1381           lhs->isValueDependent() || rhs->isValueDependent()),
1382      Opc(opc), OpLoc(opLoc) {
1383    SubExprs[LHS] = lhs;
1384    SubExprs[RHS] = rhs;
1385    assert(!isCompoundAssignmentOp() &&
1386           "Use ArithAssignBinaryOperator for compound assignments");
1387  }
1388
1389  /// \brief Construct an empty binary operator.
1390  explicit BinaryOperator(EmptyShell Empty)
1391    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1392
1393  SourceLocation getOperatorLoc() const { return OpLoc; }
1394  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1395
1396  Opcode getOpcode() const { return Opc; }
1397  void setOpcode(Opcode O) { Opc = O; }
1398
1399  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1400  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1401  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1402  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1403
1404  virtual SourceRange getSourceRange() const {
1405    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1406  }
1407
1408  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1409  /// corresponds to, e.g. "<<=".
1410  static const char *getOpcodeStr(Opcode Op);
1411
1412  /// \brief Retrieve the binary opcode that corresponds to the given
1413  /// overloaded operator.
1414  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1415
1416  /// \brief Retrieve the overloaded operator kind that corresponds to
1417  /// the given binary opcode.
1418  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1419
1420  /// predicates to categorize the respective opcodes.
1421  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1422  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1423  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1424  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1425
1426  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1427  bool isRelationalOp() const { return isRelationalOp(Opc); }
1428
1429  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1430  bool isEqualityOp() const { return isEqualityOp(Opc); }
1431
1432  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1433  bool isLogicalOp() const { return isLogicalOp(Opc); }
1434
1435  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1436  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1437  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1438
1439  static bool classof(const Stmt *S) {
1440    return S->getStmtClass() == BinaryOperatorClass ||
1441           S->getStmtClass() == CompoundAssignOperatorClass;
1442  }
1443  static bool classof(const BinaryOperator *) { return true; }
1444
1445  // Iterators
1446  virtual child_iterator child_begin();
1447  virtual child_iterator child_end();
1448
1449  virtual void EmitImpl(llvm::Serializer& S) const;
1450  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1451
1452protected:
1453  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1454                 SourceLocation oploc, bool dead)
1455    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1456    SubExprs[LHS] = lhs;
1457    SubExprs[RHS] = rhs;
1458  }
1459};
1460
1461/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1462/// track of the type the operation is performed in.  Due to the semantics of
1463/// these operators, the operands are promoted, the aritmetic performed, an
1464/// implicit conversion back to the result type done, then the assignment takes
1465/// place.  This captures the intermediate type which the computation is done
1466/// in.
1467class CompoundAssignOperator : public BinaryOperator {
1468  QualType ComputationLHSType;
1469  QualType ComputationResultType;
1470public:
1471  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1472                         QualType ResType, QualType CompLHSType,
1473                         QualType CompResultType,
1474                         SourceLocation OpLoc)
1475    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1476      ComputationLHSType(CompLHSType),
1477      ComputationResultType(CompResultType) {
1478    assert(isCompoundAssignmentOp() &&
1479           "Only should be used for compound assignments");
1480  }
1481
1482  // The two computation types are the type the LHS is converted
1483  // to for the computation and the type of the result; the two are
1484  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1485  QualType getComputationLHSType() const { return ComputationLHSType; }
1486  QualType getComputationResultType() const { return ComputationResultType; }
1487
1488  static bool classof(const CompoundAssignOperator *) { return true; }
1489  static bool classof(const Stmt *S) {
1490    return S->getStmtClass() == CompoundAssignOperatorClass;
1491  }
1492
1493  virtual void EmitImpl(llvm::Serializer& S) const;
1494  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1495                                            ASTContext& C);
1496};
1497
1498/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1499/// GNU "missing LHS" extension is in use.
1500///
1501class ConditionalOperator : public Expr {
1502  enum { COND, LHS, RHS, END_EXPR };
1503  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1504public:
1505  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1506    : Expr(ConditionalOperatorClass, t,
1507           // FIXME: the type of the conditional operator doesn't
1508           // depend on the type of the conditional, but the standard
1509           // seems to imply that it could. File a bug!
1510           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1511           (cond->isValueDependent() ||
1512            (lhs && lhs->isValueDependent()) ||
1513            (rhs && rhs->isValueDependent()))) {
1514    SubExprs[COND] = cond;
1515    SubExprs[LHS] = lhs;
1516    SubExprs[RHS] = rhs;
1517  }
1518
1519  // getCond - Return the expression representing the condition for
1520  //  the ?: operator.
1521  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1522
1523  // getTrueExpr - Return the subexpression representing the value of the ?:
1524  //  expression if the condition evaluates to true.  In most cases this value
1525  //  will be the same as getLHS() except a GCC extension allows the left
1526  //  subexpression to be omitted, and instead of the condition be returned.
1527  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1528  //  is only evaluated once.
1529  Expr *getTrueExpr() const {
1530    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1531  }
1532
1533  // getTrueExpr - Return the subexpression representing the value of the ?:
1534  // expression if the condition evaluates to false. This is the same as getRHS.
1535  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1536
1537  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1538  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1539
1540  virtual SourceRange getSourceRange() const {
1541    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1542  }
1543  static bool classof(const Stmt *T) {
1544    return T->getStmtClass() == ConditionalOperatorClass;
1545  }
1546  static bool classof(const ConditionalOperator *) { return true; }
1547
1548  // Iterators
1549  virtual child_iterator child_begin();
1550  virtual child_iterator child_end();
1551
1552  virtual void EmitImpl(llvm::Serializer& S) const;
1553  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1554};
1555
1556/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1557class AddrLabelExpr : public Expr {
1558  SourceLocation AmpAmpLoc, LabelLoc;
1559  LabelStmt *Label;
1560public:
1561  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1562                QualType t)
1563    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1564
1565  virtual SourceRange getSourceRange() const {
1566    return SourceRange(AmpAmpLoc, LabelLoc);
1567  }
1568
1569  LabelStmt *getLabel() const { return Label; }
1570
1571  static bool classof(const Stmt *T) {
1572    return T->getStmtClass() == AddrLabelExprClass;
1573  }
1574  static bool classof(const AddrLabelExpr *) { return true; }
1575
1576  // Iterators
1577  virtual child_iterator child_begin();
1578  virtual child_iterator child_end();
1579
1580  virtual void EmitImpl(llvm::Serializer& S) const;
1581  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1582};
1583
1584/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1585/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1586/// takes the value of the last subexpression.
1587class StmtExpr : public Expr {
1588  Stmt *SubStmt;
1589  SourceLocation LParenLoc, RParenLoc;
1590public:
1591  StmtExpr(CompoundStmt *substmt, QualType T,
1592           SourceLocation lp, SourceLocation rp) :
1593    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1594
1595  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1596  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1597
1598  virtual SourceRange getSourceRange() const {
1599    return SourceRange(LParenLoc, RParenLoc);
1600  }
1601
1602  SourceLocation getLParenLoc() const { return LParenLoc; }
1603  SourceLocation getRParenLoc() const { return RParenLoc; }
1604
1605  static bool classof(const Stmt *T) {
1606    return T->getStmtClass() == StmtExprClass;
1607  }
1608  static bool classof(const StmtExpr *) { return true; }
1609
1610  // Iterators
1611  virtual child_iterator child_begin();
1612  virtual child_iterator child_end();
1613
1614  virtual void EmitImpl(llvm::Serializer& S) const;
1615  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1616};
1617
1618/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1619/// This AST node represents a function that returns 1 if two *types* (not
1620/// expressions) are compatible. The result of this built-in function can be
1621/// used in integer constant expressions.
1622class TypesCompatibleExpr : public Expr {
1623  QualType Type1;
1624  QualType Type2;
1625  SourceLocation BuiltinLoc, RParenLoc;
1626public:
1627  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1628                      QualType t1, QualType t2, SourceLocation RP) :
1629    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1630    BuiltinLoc(BLoc), RParenLoc(RP) {}
1631
1632  QualType getArgType1() const { return Type1; }
1633  QualType getArgType2() const { return Type2; }
1634
1635  virtual SourceRange getSourceRange() const {
1636    return SourceRange(BuiltinLoc, RParenLoc);
1637  }
1638  static bool classof(const Stmt *T) {
1639    return T->getStmtClass() == TypesCompatibleExprClass;
1640  }
1641  static bool classof(const TypesCompatibleExpr *) { return true; }
1642
1643  // Iterators
1644  virtual child_iterator child_begin();
1645  virtual child_iterator child_end();
1646
1647  virtual void EmitImpl(llvm::Serializer& S) const;
1648  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1649};
1650
1651/// ShuffleVectorExpr - clang-specific builtin-in function
1652/// __builtin_shufflevector.
1653/// This AST node represents a operator that does a constant
1654/// shuffle, similar to LLVM's shufflevector instruction. It takes
1655/// two vectors and a variable number of constant indices,
1656/// and returns the appropriately shuffled vector.
1657class ShuffleVectorExpr : public Expr {
1658  SourceLocation BuiltinLoc, RParenLoc;
1659
1660  // SubExprs - the list of values passed to the __builtin_shufflevector
1661  // function. The first two are vectors, and the rest are constant
1662  // indices.  The number of values in this list is always
1663  // 2+the number of indices in the vector type.
1664  Stmt **SubExprs;
1665  unsigned NumExprs;
1666
1667public:
1668  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1669                    QualType Type, SourceLocation BLoc,
1670                    SourceLocation RP) :
1671    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1672    RParenLoc(RP), NumExprs(nexpr) {
1673
1674    SubExprs = new Stmt*[nexpr];
1675    for (unsigned i = 0; i < nexpr; i++)
1676      SubExprs[i] = args[i];
1677  }
1678
1679  virtual SourceRange getSourceRange() const {
1680    return SourceRange(BuiltinLoc, RParenLoc);
1681  }
1682  static bool classof(const Stmt *T) {
1683    return T->getStmtClass() == ShuffleVectorExprClass;
1684  }
1685  static bool classof(const ShuffleVectorExpr *) { return true; }
1686
1687  ~ShuffleVectorExpr() {
1688    delete [] SubExprs;
1689  }
1690
1691  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1692  /// constant expression, the actual arguments passed in, and the function
1693  /// pointers.
1694  unsigned getNumSubExprs() const { return NumExprs; }
1695
1696  /// getExpr - Return the Expr at the specified index.
1697  Expr *getExpr(unsigned Index) {
1698    assert((Index < NumExprs) && "Arg access out of range!");
1699    return cast<Expr>(SubExprs[Index]);
1700  }
1701  const Expr *getExpr(unsigned Index) const {
1702    assert((Index < NumExprs) && "Arg access out of range!");
1703    return cast<Expr>(SubExprs[Index]);
1704  }
1705
1706  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1707    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1708    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1709  }
1710
1711  // Iterators
1712  virtual child_iterator child_begin();
1713  virtual child_iterator child_end();
1714
1715  virtual void EmitImpl(llvm::Serializer& S) const;
1716  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1717};
1718
1719/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1720/// This AST node is similar to the conditional operator (?:) in C, with
1721/// the following exceptions:
1722/// - the test expression must be a integer constant expression.
1723/// - the expression returned acts like the chosen subexpression in every
1724///   visible way: the type is the same as that of the chosen subexpression,
1725///   and all predicates (whether it's an l-value, whether it's an integer
1726///   constant expression, etc.) return the same result as for the chosen
1727///   sub-expression.
1728class ChooseExpr : public Expr {
1729  enum { COND, LHS, RHS, END_EXPR };
1730  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1731  SourceLocation BuiltinLoc, RParenLoc;
1732public:
1733  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1734             SourceLocation RP)
1735    : Expr(ChooseExprClass, t),
1736      BuiltinLoc(BLoc), RParenLoc(RP) {
1737      SubExprs[COND] = cond;
1738      SubExprs[LHS] = lhs;
1739      SubExprs[RHS] = rhs;
1740    }
1741
1742  /// isConditionTrue - Return whether the condition is true (i.e. not
1743  /// equal to zero).
1744  bool isConditionTrue(ASTContext &C) const;
1745
1746  /// getChosenSubExpr - Return the subexpression chosen according to the
1747  /// condition.
1748  Expr *getChosenSubExpr(ASTContext &C) const {
1749    return isConditionTrue(C) ? getLHS() : getRHS();
1750  }
1751
1752  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1753  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1754  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1755
1756  virtual SourceRange getSourceRange() const {
1757    return SourceRange(BuiltinLoc, RParenLoc);
1758  }
1759  static bool classof(const Stmt *T) {
1760    return T->getStmtClass() == ChooseExprClass;
1761  }
1762  static bool classof(const ChooseExpr *) { return true; }
1763
1764  // Iterators
1765  virtual child_iterator child_begin();
1766  virtual child_iterator child_end();
1767
1768  virtual void EmitImpl(llvm::Serializer& S) const;
1769  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1770};
1771
1772/// GNUNullExpr - Implements the GNU __null extension, which is a name
1773/// for a null pointer constant that has integral type (e.g., int or
1774/// long) and is the same size and alignment as a pointer. The __null
1775/// extension is typically only used by system headers, which define
1776/// NULL as __null in C++ rather than using 0 (which is an integer
1777/// that may not match the size of a pointer).
1778class GNUNullExpr : public Expr {
1779  /// TokenLoc - The location of the __null keyword.
1780  SourceLocation TokenLoc;
1781
1782public:
1783  GNUNullExpr(QualType Ty, SourceLocation Loc)
1784    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1785
1786  /// getTokenLocation - The location of the __null token.
1787  SourceLocation getTokenLocation() const { return TokenLoc; }
1788
1789  virtual SourceRange getSourceRange() const {
1790    return SourceRange(TokenLoc);
1791  }
1792  static bool classof(const Stmt *T) {
1793    return T->getStmtClass() == GNUNullExprClass;
1794  }
1795  static bool classof(const GNUNullExpr *) { return true; }
1796
1797  // Iterators
1798  virtual child_iterator child_begin();
1799  virtual child_iterator child_end();
1800
1801  virtual void EmitImpl(llvm::Serializer& S) const;
1802  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1803};
1804
1805/// VAArgExpr, used for the builtin function __builtin_va_start.
1806class VAArgExpr : public Expr {
1807  Stmt *Val;
1808  SourceLocation BuiltinLoc, RParenLoc;
1809public:
1810  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1811    : Expr(VAArgExprClass, t),
1812      Val(e),
1813      BuiltinLoc(BLoc),
1814      RParenLoc(RPLoc) { }
1815
1816  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1817  Expr *getSubExpr() { return cast<Expr>(Val); }
1818  virtual SourceRange getSourceRange() const {
1819    return SourceRange(BuiltinLoc, RParenLoc);
1820  }
1821  static bool classof(const Stmt *T) {
1822    return T->getStmtClass() == VAArgExprClass;
1823  }
1824  static bool classof(const VAArgExpr *) { return true; }
1825
1826  // Iterators
1827  virtual child_iterator child_begin();
1828  virtual child_iterator child_end();
1829
1830  virtual void EmitImpl(llvm::Serializer& S) const;
1831  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1832};
1833
1834/// @brief Describes an C or C++ initializer list.
1835///
1836/// InitListExpr describes an initializer list, which can be used to
1837/// initialize objects of different types, including
1838/// struct/class/union types, arrays, and vectors. For example:
1839///
1840/// @code
1841/// struct foo x = { 1, { 2, 3 } };
1842/// @endcode
1843///
1844/// Prior to semantic analysis, an initializer list will represent the
1845/// initializer list as written by the user, but will have the
1846/// placeholder type "void". This initializer list is called the
1847/// syntactic form of the initializer, and may contain C99 designated
1848/// initializers (represented as DesignatedInitExprs), initializations
1849/// of subobject members without explicit braces, and so on. Clients
1850/// interested in the original syntax of the initializer list should
1851/// use the syntactic form of the initializer list.
1852///
1853/// After semantic analysis, the initializer list will represent the
1854/// semantic form of the initializer, where the initializations of all
1855/// subobjects are made explicit with nested InitListExpr nodes and
1856/// C99 designators have been eliminated by placing the designated
1857/// initializations into the subobject they initialize. Additionally,
1858/// any "holes" in the initialization, where no initializer has been
1859/// specified for a particular subobject, will be replaced with
1860/// implicitly-generated ImplicitValueInitExpr expressions that
1861/// value-initialize the subobjects. Note, however, that the
1862/// initializer lists may still have fewer initializers than there are
1863/// elements to initialize within the object.
1864///
1865/// Given the semantic form of the initializer list, one can retrieve
1866/// the original syntactic form of that initializer list (if it
1867/// exists) using getSyntacticForm(). Since many initializer lists
1868/// have the same syntactic and semantic forms, getSyntacticForm() may
1869/// return NULL, indicating that the current initializer list also
1870/// serves as its syntactic form.
1871class InitListExpr : public Expr {
1872  std::vector<Stmt *> InitExprs;
1873  SourceLocation LBraceLoc, RBraceLoc;
1874
1875  /// Contains the initializer list that describes the syntactic form
1876  /// written in the source code.
1877  InitListExpr *SyntacticForm;
1878
1879  /// If this initializer list initializes a union, specifies which
1880  /// field within the union will be initialized.
1881  FieldDecl *UnionFieldInit;
1882
1883  /// Whether this initializer list originally had a GNU array-range
1884  /// designator in it. This is a temporary marker used by CodeGen.
1885  bool HadArrayRangeDesignator;
1886
1887public:
1888  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1889               SourceLocation rbraceloc);
1890
1891  unsigned getNumInits() const { return InitExprs.size(); }
1892
1893  const Expr* getInit(unsigned Init) const {
1894    assert(Init < getNumInits() && "Initializer access out of range!");
1895    return cast_or_null<Expr>(InitExprs[Init]);
1896  }
1897
1898  Expr* getInit(unsigned Init) {
1899    assert(Init < getNumInits() && "Initializer access out of range!");
1900    return cast_or_null<Expr>(InitExprs[Init]);
1901  }
1902
1903  void setInit(unsigned Init, Expr *expr) {
1904    assert(Init < getNumInits() && "Initializer access out of range!");
1905    InitExprs[Init] = expr;
1906  }
1907
1908  /// \brief Reserve space for some number of initializers.
1909  void reserveInits(unsigned NumInits);
1910
1911  /// @brief Specify the number of initializers
1912  ///
1913  /// If there are more than @p NumInits initializers, the remaining
1914  /// initializers will be destroyed. If there are fewer than @p
1915  /// NumInits initializers, NULL expressions will be added for the
1916  /// unknown initializers.
1917  void resizeInits(ASTContext &Context, unsigned NumInits);
1918
1919  /// @brief Updates the initializer at index @p Init with the new
1920  /// expression @p expr, and returns the old expression at that
1921  /// location.
1922  ///
1923  /// When @p Init is out of range for this initializer list, the
1924  /// initializer list will be extended with NULL expressions to
1925  /// accomodate the new entry.
1926  Expr *updateInit(unsigned Init, Expr *expr);
1927
1928  /// \brief If this initializes a union, specifies which field in the
1929  /// union to initialize.
1930  ///
1931  /// Typically, this field is the first named field within the
1932  /// union. However, a designated initializer can specify the
1933  /// initialization of a different field within the union.
1934  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1935  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1936
1937  // Explicit InitListExpr's originate from source code (and have valid source
1938  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1939  bool isExplicit() {
1940    return LBraceLoc.isValid() && RBraceLoc.isValid();
1941  }
1942
1943  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1944
1945  /// @brief Retrieve the initializer list that describes the
1946  /// syntactic form of the initializer.
1947  ///
1948  ///
1949  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1950  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1951
1952  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1953  void sawArrayRangeDesignator() {
1954    HadArrayRangeDesignator = true;
1955  }
1956
1957  virtual SourceRange getSourceRange() const {
1958    return SourceRange(LBraceLoc, RBraceLoc);
1959  }
1960  static bool classof(const Stmt *T) {
1961    return T->getStmtClass() == InitListExprClass;
1962  }
1963  static bool classof(const InitListExpr *) { return true; }
1964
1965  // Iterators
1966  virtual child_iterator child_begin();
1967  virtual child_iterator child_end();
1968
1969  typedef std::vector<Stmt *>::iterator iterator;
1970  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1971
1972  iterator begin() { return InitExprs.begin(); }
1973  iterator end() { return InitExprs.end(); }
1974  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1975  reverse_iterator rend() { return InitExprs.rend(); }
1976
1977  // Serailization.
1978  virtual void EmitImpl(llvm::Serializer& S) const;
1979  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1980
1981private:
1982  // Used by serializer.
1983  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1984};
1985
1986/// @brief Represents a C99 designated initializer expression.
1987///
1988/// A designated initializer expression (C99 6.7.8) contains one or
1989/// more designators (which can be field designators, array
1990/// designators, or GNU array-range designators) followed by an
1991/// expression that initializes the field or element(s) that the
1992/// designators refer to. For example, given:
1993///
1994/// @code
1995/// struct point {
1996///   double x;
1997///   double y;
1998/// };
1999/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2000/// @endcode
2001///
2002/// The InitListExpr contains three DesignatedInitExprs, the first of
2003/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2004/// designators, one array designator for @c [2] followed by one field
2005/// designator for @c .y. The initalization expression will be 1.0.
2006class DesignatedInitExpr : public Expr {
2007public:
2008  /// \brief Forward declaration of the Designator class.
2009  class Designator;
2010
2011private:
2012  /// The location of the '=' or ':' prior to the actual initializer
2013  /// expression.
2014  SourceLocation EqualOrColonLoc;
2015
2016  /// Whether this designated initializer used the GNU deprecated
2017  /// syntax rather than the C99 '=' syntax.
2018  bool GNUSyntax : 1;
2019
2020  /// The number of designators in this initializer expression.
2021  unsigned NumDesignators : 15;
2022
2023  /// \brief The designators in this designated initialization
2024  /// expression.
2025  Designator *Designators;
2026
2027  /// The number of subexpressions of this initializer expression,
2028  /// which contains both the initializer and any additional
2029  /// expressions used by array and array-range designators.
2030  unsigned NumSubExprs : 16;
2031
2032
2033  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2034                     const Designator *Designators,
2035                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2036                     unsigned NumSubExprs);
2037
2038public:
2039  /// A field designator, e.g., ".x".
2040  struct FieldDesignator {
2041    /// Refers to the field that is being initialized. The low bit
2042    /// of this field determines whether this is actually a pointer
2043    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2044    /// initially constructed, a field designator will store an
2045    /// IdentifierInfo*. After semantic analysis has resolved that
2046    /// name, the field designator will instead store a FieldDecl*.
2047    uintptr_t NameOrField;
2048
2049    /// The location of the '.' in the designated initializer.
2050    unsigned DotLoc;
2051
2052    /// The location of the field name in the designated initializer.
2053    unsigned FieldLoc;
2054  };
2055
2056  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2057  struct ArrayOrRangeDesignator {
2058    /// Location of the first index expression within the designated
2059    /// initializer expression's list of subexpressions.
2060    unsigned Index;
2061    /// The location of the '[' starting the array range designator.
2062    unsigned LBracketLoc;
2063    /// The location of the ellipsis separating the start and end
2064    /// indices. Only valid for GNU array-range designators.
2065    unsigned EllipsisLoc;
2066    /// The location of the ']' terminating the array range designator.
2067    unsigned RBracketLoc;
2068  };
2069
2070  /// @brief Represents a single C99 designator.
2071  ///
2072  /// @todo This class is infuriatingly similar to clang::Designator,
2073  /// but minor differences (storing indices vs. storing pointers)
2074  /// keep us from reusing it. Try harder, later, to rectify these
2075  /// differences.
2076  class Designator {
2077    /// @brief The kind of designator this describes.
2078    enum {
2079      FieldDesignator,
2080      ArrayDesignator,
2081      ArrayRangeDesignator
2082    } Kind;
2083
2084    union {
2085      /// A field designator, e.g., ".x".
2086      struct FieldDesignator Field;
2087      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2088      struct ArrayOrRangeDesignator ArrayOrRange;
2089    };
2090    friend class DesignatedInitExpr;
2091
2092  public:
2093    Designator() {}
2094
2095    /// @brief Initializes a field designator.
2096    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2097               SourceLocation FieldLoc)
2098      : Kind(FieldDesignator) {
2099      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2100      Field.DotLoc = DotLoc.getRawEncoding();
2101      Field.FieldLoc = FieldLoc.getRawEncoding();
2102    }
2103
2104    /// @brief Initializes an array designator.
2105    Designator(unsigned Index, SourceLocation LBracketLoc,
2106               SourceLocation RBracketLoc)
2107      : Kind(ArrayDesignator) {
2108      ArrayOrRange.Index = Index;
2109      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2110      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2111      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2112    }
2113
2114    /// @brief Initializes a GNU array-range designator.
2115    Designator(unsigned Index, SourceLocation LBracketLoc,
2116               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2117      : Kind(ArrayRangeDesignator) {
2118      ArrayOrRange.Index = Index;
2119      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2120      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2121      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2122    }
2123
2124    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2125    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2126    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2127
2128    IdentifierInfo * getFieldName();
2129
2130    FieldDecl *getField() {
2131      assert(Kind == FieldDesignator && "Only valid on a field designator");
2132      if (Field.NameOrField & 0x01)
2133        return 0;
2134      else
2135        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2136    }
2137
2138    void setField(FieldDecl *FD) {
2139      assert(Kind == FieldDesignator && "Only valid on a field designator");
2140      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2141    }
2142
2143    SourceLocation getDotLoc() const {
2144      assert(Kind == FieldDesignator && "Only valid on a field designator");
2145      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2146    }
2147
2148    SourceLocation getFieldLoc() const {
2149      assert(Kind == FieldDesignator && "Only valid on a field designator");
2150      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2151    }
2152
2153    SourceLocation getLBracketLoc() const {
2154      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2155             "Only valid on an array or array-range designator");
2156      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2157    }
2158
2159    SourceLocation getRBracketLoc() const {
2160      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2161             "Only valid on an array or array-range designator");
2162      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2163    }
2164
2165    SourceLocation getEllipsisLoc() const {
2166      assert(Kind == ArrayRangeDesignator &&
2167             "Only valid on an array-range designator");
2168      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2169    }
2170
2171    SourceLocation getStartLocation() const {
2172      if (Kind == FieldDesignator)
2173        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2174      else
2175        return getLBracketLoc();
2176    }
2177  };
2178
2179  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2180                                    unsigned NumDesignators,
2181                                    Expr **IndexExprs, unsigned NumIndexExprs,
2182                                    SourceLocation EqualOrColonLoc,
2183                                    bool GNUSyntax, Expr *Init);
2184
2185  /// @brief Returns the number of designators in this initializer.
2186  unsigned size() const { return NumDesignators; }
2187
2188  // Iterator access to the designators.
2189  typedef Designator* designators_iterator;
2190  designators_iterator designators_begin() { return Designators; }
2191  designators_iterator designators_end() {
2192    return Designators + NumDesignators;
2193  }
2194
2195  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2196
2197  Expr *getArrayIndex(const Designator& D);
2198  Expr *getArrayRangeStart(const Designator& D);
2199  Expr *getArrayRangeEnd(const Designator& D);
2200
2201  /// @brief Retrieve the location of the '=' that precedes the
2202  /// initializer value itself, if present.
2203  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2204
2205  /// @brief Determines whether this designated initializer used the
2206  /// deprecated GNU syntax for designated initializers.
2207  bool usesGNUSyntax() const { return GNUSyntax; }
2208
2209  /// @brief Retrieve the initializer value.
2210  Expr *getInit() const {
2211    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2212  }
2213
2214  void setInit(Expr *init) {
2215    *child_begin() = init;
2216  }
2217
2218  /// \brief Replaces the designator at index @p Idx with the series
2219  /// of designators in [First, Last).
2220  void ExpandDesignator(unsigned Idx, const Designator *First,
2221                        const Designator *Last);
2222
2223  virtual SourceRange getSourceRange() const;
2224
2225  virtual void Destroy(ASTContext &C);
2226
2227  static bool classof(const Stmt *T) {
2228    return T->getStmtClass() == DesignatedInitExprClass;
2229  }
2230  static bool classof(const DesignatedInitExpr *) { return true; }
2231
2232  // Iterators
2233  virtual child_iterator child_begin();
2234  virtual child_iterator child_end();
2235};
2236
2237/// \brief Represents an implicitly-generated value initialization of
2238/// an object of a given type.
2239///
2240/// Implicit value initializations occur within semantic initializer
2241/// list expressions (InitListExpr) as placeholders for subobject
2242/// initializations not explicitly specified by the user.
2243///
2244/// \see InitListExpr
2245class ImplicitValueInitExpr : public Expr {
2246public:
2247  explicit ImplicitValueInitExpr(QualType ty)
2248    : Expr(ImplicitValueInitExprClass, ty) { }
2249
2250  static bool classof(const Stmt *T) {
2251    return T->getStmtClass() == ImplicitValueInitExprClass;
2252  }
2253  static bool classof(const ImplicitValueInitExpr *) { return true; }
2254
2255  virtual SourceRange getSourceRange() const {
2256    return SourceRange();
2257  }
2258
2259  // Iterators
2260  virtual child_iterator child_begin();
2261  virtual child_iterator child_end();
2262};
2263
2264//===----------------------------------------------------------------------===//
2265// Clang Extensions
2266//===----------------------------------------------------------------------===//
2267
2268
2269/// ExtVectorElementExpr - This represents access to specific elements of a
2270/// vector, and may occur on the left hand side or right hand side.  For example
2271/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2272///
2273/// Note that the base may have either vector or pointer to vector type, just
2274/// like a struct field reference.
2275///
2276class ExtVectorElementExpr : public Expr {
2277  Stmt *Base;
2278  IdentifierInfo &Accessor;
2279  SourceLocation AccessorLoc;
2280public:
2281  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2282                       SourceLocation loc)
2283    : Expr(ExtVectorElementExprClass, ty),
2284      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2285
2286  const Expr *getBase() const { return cast<Expr>(Base); }
2287  Expr *getBase() { return cast<Expr>(Base); }
2288
2289  IdentifierInfo &getAccessor() const { return Accessor; }
2290
2291  /// getNumElements - Get the number of components being selected.
2292  unsigned getNumElements() const;
2293
2294  /// containsDuplicateElements - Return true if any element access is
2295  /// repeated.
2296  bool containsDuplicateElements() const;
2297
2298  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2299  /// aggregate Constant of ConstantInt(s).
2300  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2301
2302  virtual SourceRange getSourceRange() const {
2303    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2304  }
2305
2306  /// isArrow - Return true if the base expression is a pointer to vector,
2307  /// return false if the base expression is a vector.
2308  bool isArrow() const;
2309
2310  static bool classof(const Stmt *T) {
2311    return T->getStmtClass() == ExtVectorElementExprClass;
2312  }
2313  static bool classof(const ExtVectorElementExpr *) { return true; }
2314
2315  // Iterators
2316  virtual child_iterator child_begin();
2317  virtual child_iterator child_end();
2318
2319  virtual void EmitImpl(llvm::Serializer& S) const;
2320  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2321};
2322
2323
2324/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2325/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2326class BlockExpr : public Expr {
2327protected:
2328  BlockDecl *TheBlock;
2329  bool HasBlockDeclRefExprs;
2330public:
2331  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2332    : Expr(BlockExprClass, ty),
2333      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2334
2335  const BlockDecl *getBlockDecl() const { return TheBlock; }
2336  BlockDecl *getBlockDecl() { return TheBlock; }
2337
2338  // Convenience functions for probing the underlying BlockDecl.
2339  SourceLocation getCaretLocation() const;
2340  const Stmt *getBody() const;
2341  Stmt *getBody();
2342
2343  virtual SourceRange getSourceRange() const {
2344    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2345  }
2346
2347  /// getFunctionType - Return the underlying function type for this block.
2348  const FunctionType *getFunctionType() const;
2349
2350  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2351  /// contained inside.
2352  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2353
2354  static bool classof(const Stmt *T) {
2355    return T->getStmtClass() == BlockExprClass;
2356  }
2357  static bool classof(const BlockExpr *) { return true; }
2358
2359  // Iterators
2360  virtual child_iterator child_begin();
2361  virtual child_iterator child_end();
2362
2363  virtual void EmitImpl(llvm::Serializer& S) const;
2364  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2365};
2366
2367/// BlockDeclRefExpr - A reference to a declared variable, function,
2368/// enum, etc.
2369class BlockDeclRefExpr : public Expr {
2370  ValueDecl *D;
2371  SourceLocation Loc;
2372  bool IsByRef;
2373public:
2374  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2375       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2376
2377  ValueDecl *getDecl() { return D; }
2378  const ValueDecl *getDecl() const { return D; }
2379  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2380
2381  bool isByRef() const { return IsByRef; }
2382
2383  static bool classof(const Stmt *T) {
2384    return T->getStmtClass() == BlockDeclRefExprClass;
2385  }
2386  static bool classof(const BlockDeclRefExpr *) { return true; }
2387
2388  // Iterators
2389  virtual child_iterator child_begin();
2390  virtual child_iterator child_end();
2391
2392  virtual void EmitImpl(llvm::Serializer& S) const;
2393  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2394};
2395
2396}  // end namespace clang
2397
2398#endif
2399