Expr.h revision 200121569dc6cff10a1fb6ed7500098770b9dd25
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <vector>
29
30namespace clang {
31  class ASTContext;
32  class APValue;
33  class Decl;
34  class IdentifierInfo;
35  class ParmVarDecl;
36  class NamedDecl;
37  class ValueDecl;
38  class BlockDecl;
39  class CXXBaseSpecifier;
40  class CXXOperatorCallExpr;
41  class CXXMemberCallExpr;
42  class TemplateArgumentLoc;
43  class TemplateArgumentListInfo;
44
45/// \brief A simple array of base specifiers.
46typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
47
48/// Expr - This represents one expression.  Note that Expr's are subclasses of
49/// Stmt.  This allows an expression to be transparently used any place a Stmt
50/// is required.
51///
52class Expr : public Stmt {
53  QualType TR;
54
55  virtual void ANCHOR(); // key function.
56protected:
57  /// TypeDependent - Whether this expression is type-dependent
58  /// (C++ [temp.dep.expr]).
59  bool TypeDependent : 1;
60
61  /// ValueDependent - Whether this expression is value-dependent
62  /// (C++ [temp.dep.constexpr]).
63  bool ValueDependent : 1;
64
65  /// ValueKind - The value classification of this expression.
66  /// Only actually used by certain subclasses.
67  unsigned ValueKind : 2;
68
69  enum { BitsRemaining = 28 };
70
71  Expr(StmtClass SC, QualType T, bool TD, bool VD)
72    : Stmt(SC), TypeDependent(TD), ValueDependent(VD), ValueKind(0) {
73    setType(T);
74  }
75
76  /// \brief Construct an empty expression.
77  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
78
79public:
80  /// \brief Increases the reference count for this expression.
81  ///
82  /// Invoke the Retain() operation when this expression
83  /// is being shared by another owner.
84  Expr *Retain() {
85    Stmt::Retain();
86    return this;
87  }
88
89  QualType getType() const { return TR; }
90  void setType(QualType t) {
91    // In C++, the type of an expression is always adjusted so that it
92    // will not have reference type an expression will never have
93    // reference type (C++ [expr]p6). Use
94    // QualType::getNonReferenceType() to retrieve the non-reference
95    // type. Additionally, inspect Expr::isLvalue to determine whether
96    // an expression that is adjusted in this manner should be
97    // considered an lvalue.
98    assert((t.isNull() || !t->isReferenceType()) &&
99           "Expressions can't have reference type");
100
101    TR = t;
102  }
103
104  /// isValueDependent - Determines whether this expression is
105  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
106  /// array bound of "Chars" in the following example is
107  /// value-dependent.
108  /// @code
109  /// template<int Size, char (&Chars)[Size]> struct meta_string;
110  /// @endcode
111  bool isValueDependent() const { return ValueDependent; }
112
113  /// \brief Set whether this expression is value-dependent or not.
114  void setValueDependent(bool VD) { ValueDependent = VD; }
115
116  /// isTypeDependent - Determines whether this expression is
117  /// type-dependent (C++ [temp.dep.expr]), which means that its type
118  /// could change from one template instantiation to the next. For
119  /// example, the expressions "x" and "x + y" are type-dependent in
120  /// the following code, but "y" is not type-dependent:
121  /// @code
122  /// template<typename T>
123  /// void add(T x, int y) {
124  ///   x + y;
125  /// }
126  /// @endcode
127  bool isTypeDependent() const { return TypeDependent; }
128
129  /// \brief Set whether this expression is type-dependent or not.
130  void setTypeDependent(bool TD) { TypeDependent = TD; }
131
132  /// SourceLocation tokens are not useful in isolation - they are low level
133  /// value objects created/interpreted by SourceManager. We assume AST
134  /// clients will have a pointer to the respective SourceManager.
135  virtual SourceRange getSourceRange() const = 0;
136
137  /// getExprLoc - Return the preferred location for the arrow when diagnosing
138  /// a problem with a generic expression.
139  virtual SourceLocation getExprLoc() const { return getLocStart(); }
140
141  /// isUnusedResultAWarning - Return true if this immediate expression should
142  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
143  /// with location to warn on and the source range[s] to report with the
144  /// warning.
145  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
146                              SourceRange &R2, ASTContext &Ctx) const;
147
148  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
149  /// incomplete type other than void. Nonarray expressions that can be lvalues:
150  ///  - name, where name must be a variable
151  ///  - e[i]
152  ///  - (e), where e must be an lvalue
153  ///  - e.name, where e must be an lvalue
154  ///  - e->name
155  ///  - *e, the type of e cannot be a function type
156  ///  - string-constant
157  ///  - reference type [C++ [expr]]
158  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
159  ///
160  enum isLvalueResult {
161    LV_Valid,
162    LV_NotObjectType,
163    LV_IncompleteVoidType,
164    LV_DuplicateVectorComponents,
165    LV_InvalidExpression,
166    LV_MemberFunction,
167    LV_SubObjCPropertySetting,
168    LV_ClassTemporary
169  };
170  isLvalueResult isLvalue(ASTContext &Ctx) const;
171
172  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
173  /// does not have an incomplete type, does not have a const-qualified type,
174  /// and if it is a structure or union, does not have any member (including,
175  /// recursively, any member or element of all contained aggregates or unions)
176  /// with a const-qualified type.
177  ///
178  /// \param Loc [in] [out] - A source location which *may* be filled
179  /// in with the location of the expression making this a
180  /// non-modifiable lvalue, if specified.
181  enum isModifiableLvalueResult {
182    MLV_Valid,
183    MLV_NotObjectType,
184    MLV_IncompleteVoidType,
185    MLV_DuplicateVectorComponents,
186    MLV_InvalidExpression,
187    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
188    MLV_IncompleteType,
189    MLV_ConstQualified,
190    MLV_ArrayType,
191    MLV_NotBlockQualified,
192    MLV_ReadonlyProperty,
193    MLV_NoSetterProperty,
194    MLV_MemberFunction,
195    MLV_SubObjCPropertySetting,
196    MLV_ClassTemporary
197  };
198  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
199                                              SourceLocation *Loc = 0) const;
200
201  /// \brief The return type of classify(). Represents the C++0x expression
202  ///        taxonomy.
203  class Classification {
204  public:
205    /// \brief The various classification results. Most of these mean prvalue.
206    enum Kinds {
207      CL_LValue,
208      CL_XValue,
209      CL_Function, // Functions cannot be lvalues in C.
210      CL_Void, // Void cannot be an lvalue in C.
211      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
212      CL_MemberFunction, // An expression referring to a member function
213      CL_SubObjCPropertySetting,
214      CL_ClassTemporary, // A prvalue of class type
215      CL_PRValue // A prvalue for any other reason, of any other type
216    };
217    /// \brief The results of modification testing.
218    enum ModifiableType {
219      CM_Untested, // testModifiable was false.
220      CM_Modifiable,
221      CM_RValue, // Not modifiable because it's an rvalue
222      CM_Function, // Not modifiable because it's a function; C++ only
223      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
224      CM_NotBlockQualified, // Not captured in the closure
225      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
226      CM_ConstQualified,
227      CM_ArrayType,
228      CM_IncompleteType
229    };
230
231  private:
232    friend class Expr;
233
234    unsigned short Kind;
235    unsigned short Modifiable;
236
237    explicit Classification(Kinds k, ModifiableType m)
238      : Kind(k), Modifiable(m)
239    {}
240
241  public:
242    Classification() {}
243
244    Kinds getKind() const { return static_cast<Kinds>(Kind); }
245    ModifiableType getModifiable() const {
246      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
247      return static_cast<ModifiableType>(Modifiable);
248    }
249    bool isLValue() const { return Kind == CL_LValue; }
250    bool isXValue() const { return Kind == CL_XValue; }
251    bool isGLValue() const { return Kind <= CL_XValue; }
252    bool isPRValue() const { return Kind >= CL_Function; }
253    bool isRValue() const { return Kind >= CL_XValue; }
254    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
255  };
256  /// \brief classify - Classify this expression according to the C++0x
257  ///        expression taxonomy.
258  ///
259  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
260  /// old lvalue vs rvalue. This function determines the type of expression this
261  /// is. There are three expression types:
262  /// - lvalues are classical lvalues as in C++03.
263  /// - prvalues are equivalent to rvalues in C++03.
264  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
265  ///   function returning an rvalue reference.
266  /// lvalues and xvalues are collectively referred to as glvalues, while
267  /// prvalues and xvalues together form rvalues.
268  Classification Classify(ASTContext &Ctx) const {
269    return ClassifyImpl(Ctx, 0);
270  }
271
272  /// \brief classifyModifiable - Classify this expression according to the
273  ///        C++0x expression taxonomy, and see if it is valid on the left side
274  ///        of an assignment.
275  ///
276  /// This function extends classify in that it also tests whether the
277  /// expression is modifiable (C99 6.3.2.1p1).
278  /// \param Loc A source location that might be filled with a relevant location
279  ///            if the expression is not modifiable.
280  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
281    return ClassifyImpl(Ctx, &Loc);
282  }
283
284private:
285  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
286
287public:
288
289  /// \brief If this expression refers to a bit-field, retrieve the
290  /// declaration of that bit-field.
291  FieldDecl *getBitField();
292
293  const FieldDecl *getBitField() const {
294    return const_cast<Expr*>(this)->getBitField();
295  }
296
297  /// \brief Returns whether this expression refers to a vector element.
298  bool refersToVectorElement() const;
299
300  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
301  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
302  /// but also int expressions which are produced by things like comparisons in
303  /// C.
304  bool isKnownToHaveBooleanValue() const;
305
306  /// isIntegerConstantExpr - Return true if this expression is a valid integer
307  /// constant expression, and, if so, return its value in Result.  If not a
308  /// valid i-c-e, return false and fill in Loc (if specified) with the location
309  /// of the invalid expression.
310  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
311                             SourceLocation *Loc = 0,
312                             bool isEvaluated = true) const;
313  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
314    llvm::APSInt X;
315    return isIntegerConstantExpr(X, Ctx, Loc);
316  }
317  /// isConstantInitializer - Returns true if this expression is a constant
318  /// initializer, which can be emitted at compile-time.
319  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
320
321  /// EvalResult is a struct with detailed info about an evaluated expression.
322  struct EvalResult {
323    /// Val - This is the value the expression can be folded to.
324    APValue Val;
325
326    /// HasSideEffects - Whether the evaluated expression has side effects.
327    /// For example, (f() && 0) can be folded, but it still has side effects.
328    bool HasSideEffects;
329
330    /// Diag - If the expression is unfoldable, then Diag contains a note
331    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
332    /// position for the error, and DiagExpr is the expression that caused
333    /// the error.
334    /// If the expression is foldable, but not an integer constant expression,
335    /// Diag contains a note diagnostic that describes why it isn't an integer
336    /// constant expression. If the expression *is* an integer constant
337    /// expression, then Diag will be zero.
338    unsigned Diag;
339    const Expr *DiagExpr;
340    SourceLocation DiagLoc;
341
342    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
343
344    // isGlobalLValue - Return true if the evaluated lvalue expression
345    // is global.
346    bool isGlobalLValue() const;
347    // hasSideEffects - Return true if the evaluated expression has
348    // side effects.
349    bool hasSideEffects() const {
350      return HasSideEffects;
351    }
352  };
353
354  /// Evaluate - Return true if this is a constant which we can fold using
355  /// any crazy technique (that has nothing to do with language standards) that
356  /// we want to.  If this function returns true, it returns the folded constant
357  /// in Result.
358  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
359
360  /// EvaluateAsBooleanCondition - Return true if this is a constant
361  /// which we we can fold and convert to a boolean condition using
362  /// any crazy technique that we want to.
363  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
364
365  /// isEvaluatable - Call Evaluate to see if this expression can be constant
366  /// folded, but discard the result.
367  bool isEvaluatable(ASTContext &Ctx) const;
368
369  /// HasSideEffects - This routine returns true for all those expressions
370  /// which must be evaluated each time and must not be optimization away
371  /// or evaluated at compile time. Example is a function call, volatile
372  /// variable read.
373  bool HasSideEffects(ASTContext &Ctx) const;
374
375  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
376  /// must be called on an expression that constant folds to an integer.
377  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
378
379  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
380  /// with link time known address.
381  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
382
383  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
384  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
385
386  /// \brief Enumeration used to describe how \c isNullPointerConstant()
387  /// should cope with value-dependent expressions.
388  enum NullPointerConstantValueDependence {
389    /// \brief Specifies that the expression should never be value-dependent.
390    NPC_NeverValueDependent = 0,
391
392    /// \brief Specifies that a value-dependent expression of integral or
393    /// dependent type should be considered a null pointer constant.
394    NPC_ValueDependentIsNull,
395
396    /// \brief Specifies that a value-dependent expression should be considered
397    /// to never be a null pointer constant.
398    NPC_ValueDependentIsNotNull
399  };
400
401  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
402  /// integer constant expression with the value zero, or if this is one that is
403  /// cast to void*.
404  bool isNullPointerConstant(ASTContext &Ctx,
405                             NullPointerConstantValueDependence NPC) const;
406
407  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
408  /// write barrier.
409  bool isOBJCGCCandidate(ASTContext &Ctx) const;
410
411  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
412  ///  its subexpression.  If that subexpression is also a ParenExpr,
413  ///  then this method recursively returns its subexpression, and so forth.
414  ///  Otherwise, the method returns the current Expr.
415  Expr *IgnoreParens();
416
417  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
418  /// or CastExprs, returning their operand.
419  Expr *IgnoreParenCasts();
420
421  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
422  /// ParenExpr or ImplicitCastExprs, returning their operand.
423  Expr *IgnoreParenImpCasts();
424
425  const Expr *IgnoreParenImpCasts() const {
426    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
427  }
428
429  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
430  /// value (including ptr->int casts of the same size).  Strip off any
431  /// ParenExpr or CastExprs, returning their operand.
432  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
433
434  /// \brief Determine whether this expression is a default function argument.
435  ///
436  /// Default arguments are implicitly generated in the abstract syntax tree
437  /// by semantic analysis for function calls, object constructions, etc. in
438  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
439  /// this routine also looks through any implicit casts to determine whether
440  /// the expression is a default argument.
441  bool isDefaultArgument() const;
442
443  /// \brief Determine whether this expression directly creates a
444  /// temporary object (of class type).
445  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
446
447  /// \brief If this expression directly creates a temporary object of
448  /// class type, return the expression that actually constructs that
449  /// temporary object.
450  const Expr *getTemporaryObject() const;
451
452  const Expr *IgnoreParens() const {
453    return const_cast<Expr*>(this)->IgnoreParens();
454  }
455  const Expr *IgnoreParenCasts() const {
456    return const_cast<Expr*>(this)->IgnoreParenCasts();
457  }
458  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
459    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
460  }
461
462  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
463  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
464
465  static bool classof(const Stmt *T) {
466    return T->getStmtClass() >= firstExprConstant &&
467           T->getStmtClass() <= lastExprConstant;
468  }
469  static bool classof(const Expr *) { return true; }
470};
471
472
473//===----------------------------------------------------------------------===//
474// Primary Expressions.
475//===----------------------------------------------------------------------===//
476
477/// \brief Represents the qualifier that may precede a C++ name, e.g., the
478/// "std::" in "std::sort".
479struct NameQualifier {
480  /// \brief The nested name specifier.
481  NestedNameSpecifier *NNS;
482
483  /// \brief The source range covered by the nested name specifier.
484  SourceRange Range;
485};
486
487/// \brief Represents an explicit template argument list in C++, e.g.,
488/// the "<int>" in "sort<int>".
489struct ExplicitTemplateArgumentList {
490  /// \brief The source location of the left angle bracket ('<');
491  SourceLocation LAngleLoc;
492
493  /// \brief The source location of the right angle bracket ('>');
494  SourceLocation RAngleLoc;
495
496  /// \brief The number of template arguments in TemplateArgs.
497  /// The actual template arguments (if any) are stored after the
498  /// ExplicitTemplateArgumentList structure.
499  unsigned NumTemplateArgs;
500
501  /// \brief Retrieve the template arguments
502  TemplateArgumentLoc *getTemplateArgs() {
503    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
504  }
505
506  /// \brief Retrieve the template arguments
507  const TemplateArgumentLoc *getTemplateArgs() const {
508    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
509  }
510
511  void initializeFrom(const TemplateArgumentListInfo &List);
512  void copyInto(TemplateArgumentListInfo &List) const;
513  static std::size_t sizeFor(unsigned NumTemplateArgs);
514  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
515};
516
517/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
518/// enum, etc.
519class DeclRefExpr : public Expr {
520  enum {
521    // Flag on DecoratedD that specifies when this declaration reference
522    // expression has a C++ nested-name-specifier.
523    HasQualifierFlag = 0x01,
524    // Flag on DecoratedD that specifies when this declaration reference
525    // expression has an explicit C++ template argument list.
526    HasExplicitTemplateArgumentListFlag = 0x02
527  };
528
529  // DecoratedD - The declaration that we are referencing, plus two bits to
530  // indicate whether (1) the declaration's name was explicitly qualified and
531  // (2) the declaration's name was followed by an explicit template
532  // argument list.
533  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
534
535  // Loc - The location of the declaration name itself.
536  SourceLocation Loc;
537
538  /// DNLoc - Provides source/type location info for the
539  /// declaration name embedded in DecoratedD.
540  DeclarationNameLoc DNLoc;
541
542  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
543  NameQualifier *getNameQualifier() {
544    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
545      return 0;
546
547    return reinterpret_cast<NameQualifier *> (this + 1);
548  }
549
550  /// \brief Retrieve the qualifier that preceded the member name, if any.
551  const NameQualifier *getNameQualifier() const {
552    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
553  }
554
555  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
556              ValueDecl *D, SourceLocation NameLoc,
557              const TemplateArgumentListInfo *TemplateArgs,
558              QualType T);
559
560  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
561              ValueDecl *D, const DeclarationNameInfo &NameInfo,
562              const TemplateArgumentListInfo *TemplateArgs,
563              QualType T);
564
565  /// \brief Construct an empty declaration reference expression.
566  explicit DeclRefExpr(EmptyShell Empty)
567    : Expr(DeclRefExprClass, Empty) { }
568
569  /// \brief Computes the type- and value-dependence flags for this
570  /// declaration reference expression.
571  void computeDependence();
572
573public:
574  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
575    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
576    computeDependence();
577  }
578
579  static DeclRefExpr *Create(ASTContext &Context,
580                             NestedNameSpecifier *Qualifier,
581                             SourceRange QualifierRange,
582                             ValueDecl *D,
583                             SourceLocation NameLoc,
584                             QualType T,
585                             const TemplateArgumentListInfo *TemplateArgs = 0);
586
587  static DeclRefExpr *Create(ASTContext &Context,
588                             NestedNameSpecifier *Qualifier,
589                             SourceRange QualifierRange,
590                             ValueDecl *D,
591                             const DeclarationNameInfo &NameInfo,
592                             QualType T,
593                             const TemplateArgumentListInfo *TemplateArgs = 0);
594
595  /// \brief Construct an empty declaration reference expression.
596  static DeclRefExpr *CreateEmpty(ASTContext &Context,
597                                  bool HasQualifier, unsigned NumTemplateArgs);
598
599  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
600  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
601  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
602
603  DeclarationNameInfo getNameInfo() const {
604    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
605  }
606
607  SourceLocation getLocation() const { return Loc; }
608  void setLocation(SourceLocation L) { Loc = L; }
609  virtual SourceRange getSourceRange() const;
610
611  /// \brief Determine whether this declaration reference was preceded by a
612  /// C++ nested-name-specifier, e.g., \c N::foo.
613  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
614
615  /// \brief If the name was qualified, retrieves the source range of
616  /// the nested-name-specifier that precedes the name. Otherwise,
617  /// returns an empty source range.
618  SourceRange getQualifierRange() const {
619    if (!hasQualifier())
620      return SourceRange();
621
622    return getNameQualifier()->Range;
623  }
624
625  /// \brief If the name was qualified, retrieves the nested-name-specifier
626  /// that precedes the name. Otherwise, returns NULL.
627  NestedNameSpecifier *getQualifier() const {
628    if (!hasQualifier())
629      return 0;
630
631    return getNameQualifier()->NNS;
632  }
633
634  bool hasExplicitTemplateArgs() const {
635    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
636  }
637
638  /// \brief Retrieve the explicit template argument list that followed the
639  /// member template name.
640  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
641    assert(hasExplicitTemplateArgs());
642
643    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
644      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
645
646    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
647                                                      getNameQualifier() + 1);
648  }
649
650  /// \brief Retrieve the explicit template argument list that followed the
651  /// member template name.
652  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
653    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
654  }
655
656  /// \brief Retrieves the optional explicit template arguments.
657  /// This points to the same data as getExplicitTemplateArgs(), but
658  /// returns null if there are no explicit template arguments.
659  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
660    if (!hasExplicitTemplateArgs()) return 0;
661    return &getExplicitTemplateArgs();
662  }
663
664  /// \brief Copies the template arguments (if present) into the given
665  /// structure.
666  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
667    if (hasExplicitTemplateArgs())
668      getExplicitTemplateArgs().copyInto(List);
669  }
670
671  /// \brief Retrieve the location of the left angle bracket following the
672  /// member name ('<'), if any.
673  SourceLocation getLAngleLoc() const {
674    if (!hasExplicitTemplateArgs())
675      return SourceLocation();
676
677    return getExplicitTemplateArgs().LAngleLoc;
678  }
679
680  /// \brief Retrieve the template arguments provided as part of this
681  /// template-id.
682  const TemplateArgumentLoc *getTemplateArgs() const {
683    if (!hasExplicitTemplateArgs())
684      return 0;
685
686    return getExplicitTemplateArgs().getTemplateArgs();
687  }
688
689  /// \brief Retrieve the number of template arguments provided as part of this
690  /// template-id.
691  unsigned getNumTemplateArgs() const {
692    if (!hasExplicitTemplateArgs())
693      return 0;
694
695    return getExplicitTemplateArgs().NumTemplateArgs;
696  }
697
698  /// \brief Retrieve the location of the right angle bracket following the
699  /// template arguments ('>').
700  SourceLocation getRAngleLoc() const {
701    if (!hasExplicitTemplateArgs())
702      return SourceLocation();
703
704    return getExplicitTemplateArgs().RAngleLoc;
705  }
706
707  static bool classof(const Stmt *T) {
708    return T->getStmtClass() == DeclRefExprClass;
709  }
710  static bool classof(const DeclRefExpr *) { return true; }
711
712  // Iterators
713  virtual child_iterator child_begin();
714  virtual child_iterator child_end();
715
716  friend class ASTStmtReader;
717  friend class ASTStmtWriter;
718};
719
720/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
721class PredefinedExpr : public Expr {
722public:
723  enum IdentType {
724    Func,
725    Function,
726    PrettyFunction,
727    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
728    /// 'virtual' keyword is omitted for virtual member functions.
729    PrettyFunctionNoVirtual
730  };
731
732private:
733  SourceLocation Loc;
734  IdentType Type;
735public:
736  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
737    : Expr(PredefinedExprClass, type, type->isDependentType(),
738           type->isDependentType()), Loc(l), Type(IT) {}
739
740  /// \brief Construct an empty predefined expression.
741  explicit PredefinedExpr(EmptyShell Empty)
742    : Expr(PredefinedExprClass, Empty) { }
743
744  IdentType getIdentType() const { return Type; }
745  void setIdentType(IdentType IT) { Type = IT; }
746
747  SourceLocation getLocation() const { return Loc; }
748  void setLocation(SourceLocation L) { Loc = L; }
749
750  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
751
752  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
753
754  static bool classof(const Stmt *T) {
755    return T->getStmtClass() == PredefinedExprClass;
756  }
757  static bool classof(const PredefinedExpr *) { return true; }
758
759  // Iterators
760  virtual child_iterator child_begin();
761  virtual child_iterator child_end();
762};
763
764/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
765/// leaking memory.
766///
767/// For large floats/integers, APFloat/APInt will allocate memory from the heap
768/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
769/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
770/// the APFloat/APInt values will never get freed. APNumericStorage uses
771/// ASTContext's allocator for memory allocation.
772class APNumericStorage {
773  unsigned BitWidth;
774  union {
775    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
776    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
777  };
778
779  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
780
781  APNumericStorage(const APNumericStorage&); // do not implement
782  APNumericStorage& operator=(const APNumericStorage&); // do not implement
783
784protected:
785  APNumericStorage() : BitWidth(0), VAL(0) { }
786
787  llvm::APInt getIntValue() const {
788    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
789    if (NumWords > 1)
790      return llvm::APInt(BitWidth, NumWords, pVal);
791    else
792      return llvm::APInt(BitWidth, VAL);
793  }
794  void setIntValue(ASTContext &C, const llvm::APInt &Val);
795};
796
797class APIntStorage : public APNumericStorage {
798public:
799  llvm::APInt getValue() const { return getIntValue(); }
800  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
801};
802
803class APFloatStorage : public APNumericStorage {
804public:
805  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
806  void setValue(ASTContext &C, const llvm::APFloat &Val) {
807    setIntValue(C, Val.bitcastToAPInt());
808  }
809};
810
811class IntegerLiteral : public Expr {
812  APIntStorage Num;
813  SourceLocation Loc;
814
815  /// \brief Construct an empty integer literal.
816  explicit IntegerLiteral(EmptyShell Empty)
817    : Expr(IntegerLiteralClass, Empty) { }
818
819public:
820  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
821  // or UnsignedLongLongTy
822  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
823                 QualType type, SourceLocation l)
824    : Expr(IntegerLiteralClass, type, false, false), Loc(l) {
825    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
826    setValue(C, V);
827  }
828
829  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
830  // or UnsignedLongLongTy
831  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
832                                QualType type, SourceLocation l);
833  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
834
835  llvm::APInt getValue() const { return Num.getValue(); }
836  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
837
838  /// \brief Retrieve the location of the literal.
839  SourceLocation getLocation() const { return Loc; }
840
841  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
842  void setLocation(SourceLocation Location) { Loc = Location; }
843
844  static bool classof(const Stmt *T) {
845    return T->getStmtClass() == IntegerLiteralClass;
846  }
847  static bool classof(const IntegerLiteral *) { return true; }
848
849  // Iterators
850  virtual child_iterator child_begin();
851  virtual child_iterator child_end();
852};
853
854class CharacterLiteral : public Expr {
855  unsigned Value;
856  SourceLocation Loc;
857  bool IsWide;
858public:
859  // type should be IntTy
860  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
861    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
862      IsWide(iswide) {
863  }
864
865  /// \brief Construct an empty character literal.
866  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
867
868  SourceLocation getLocation() const { return Loc; }
869  bool isWide() const { return IsWide; }
870
871  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
872
873  unsigned getValue() const { return Value; }
874
875  void setLocation(SourceLocation Location) { Loc = Location; }
876  void setWide(bool W) { IsWide = W; }
877  void setValue(unsigned Val) { Value = Val; }
878
879  static bool classof(const Stmt *T) {
880    return T->getStmtClass() == CharacterLiteralClass;
881  }
882  static bool classof(const CharacterLiteral *) { return true; }
883
884  // Iterators
885  virtual child_iterator child_begin();
886  virtual child_iterator child_end();
887};
888
889class FloatingLiteral : public Expr {
890  APFloatStorage Num;
891  bool IsExact : 1;
892  SourceLocation Loc;
893
894  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
895                  QualType Type, SourceLocation L)
896    : Expr(FloatingLiteralClass, Type, false, false),
897      IsExact(isexact), Loc(L) {
898    setValue(C, V);
899  }
900
901  /// \brief Construct an empty floating-point literal.
902  explicit FloatingLiteral(EmptyShell Empty)
903    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
904
905public:
906  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
907                                 bool isexact, QualType Type, SourceLocation L);
908  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
909
910  llvm::APFloat getValue() const { return Num.getValue(); }
911  void setValue(ASTContext &C, const llvm::APFloat &Val) {
912    Num.setValue(C, Val);
913  }
914
915  bool isExact() const { return IsExact; }
916  void setExact(bool E) { IsExact = E; }
917
918  /// getValueAsApproximateDouble - This returns the value as an inaccurate
919  /// double.  Note that this may cause loss of precision, but is useful for
920  /// debugging dumps, etc.
921  double getValueAsApproximateDouble() const;
922
923  SourceLocation getLocation() const { return Loc; }
924  void setLocation(SourceLocation L) { Loc = L; }
925
926  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
927
928  static bool classof(const Stmt *T) {
929    return T->getStmtClass() == FloatingLiteralClass;
930  }
931  static bool classof(const FloatingLiteral *) { return true; }
932
933  // Iterators
934  virtual child_iterator child_begin();
935  virtual child_iterator child_end();
936};
937
938/// ImaginaryLiteral - We support imaginary integer and floating point literals,
939/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
940/// IntegerLiteral classes.  Instances of this class always have a Complex type
941/// whose element type matches the subexpression.
942///
943class ImaginaryLiteral : public Expr {
944  Stmt *Val;
945public:
946  ImaginaryLiteral(Expr *val, QualType Ty)
947    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
948
949  /// \brief Build an empty imaginary literal.
950  explicit ImaginaryLiteral(EmptyShell Empty)
951    : Expr(ImaginaryLiteralClass, Empty) { }
952
953  const Expr *getSubExpr() const { return cast<Expr>(Val); }
954  Expr *getSubExpr() { return cast<Expr>(Val); }
955  void setSubExpr(Expr *E) { Val = E; }
956
957  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
958  static bool classof(const Stmt *T) {
959    return T->getStmtClass() == ImaginaryLiteralClass;
960  }
961  static bool classof(const ImaginaryLiteral *) { return true; }
962
963  // Iterators
964  virtual child_iterator child_begin();
965  virtual child_iterator child_end();
966};
967
968/// StringLiteral - This represents a string literal expression, e.g. "foo"
969/// or L"bar" (wide strings).  The actual string is returned by getStrData()
970/// is NOT null-terminated, and the length of the string is determined by
971/// calling getByteLength().  The C type for a string is always a
972/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
973/// not.
974///
975/// Note that strings in C can be formed by concatenation of multiple string
976/// literal pptokens in translation phase #6.  This keeps track of the locations
977/// of each of these pieces.
978///
979/// Strings in C can also be truncated and extended by assigning into arrays,
980/// e.g. with constructs like:
981///   char X[2] = "foobar";
982/// In this case, getByteLength() will return 6, but the string literal will
983/// have type "char[2]".
984class StringLiteral : public Expr {
985  const char *StrData;
986  unsigned ByteLength;
987  bool IsWide;
988  unsigned NumConcatenated;
989  SourceLocation TokLocs[1];
990
991  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
992
993public:
994  /// This is the "fully general" constructor that allows representation of
995  /// strings formed from multiple concatenated tokens.
996  static StringLiteral *Create(ASTContext &C, const char *StrData,
997                               unsigned ByteLength, bool Wide, QualType Ty,
998                               const SourceLocation *Loc, unsigned NumStrs);
999
1000  /// Simple constructor for string literals made from one token.
1001  static StringLiteral *Create(ASTContext &C, const char *StrData,
1002                               unsigned ByteLength,
1003                               bool Wide, QualType Ty, SourceLocation Loc) {
1004    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1005  }
1006
1007  /// \brief Construct an empty string literal.
1008  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1009
1010  llvm::StringRef getString() const {
1011    return llvm::StringRef(StrData, ByteLength);
1012  }
1013
1014  unsigned getByteLength() const { return ByteLength; }
1015
1016  /// \brief Sets the string data to the given string data.
1017  void setString(ASTContext &C, llvm::StringRef Str);
1018
1019  bool isWide() const { return IsWide; }
1020  void setWide(bool W) { IsWide = W; }
1021
1022  bool containsNonAsciiOrNull() const {
1023    llvm::StringRef Str = getString();
1024    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1025      if (!isascii(Str[i]) || !Str[i])
1026        return true;
1027    return false;
1028  }
1029  /// getNumConcatenated - Get the number of string literal tokens that were
1030  /// concatenated in translation phase #6 to form this string literal.
1031  unsigned getNumConcatenated() const { return NumConcatenated; }
1032
1033  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1034    assert(TokNum < NumConcatenated && "Invalid tok number");
1035    return TokLocs[TokNum];
1036  }
1037  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1038    assert(TokNum < NumConcatenated && "Invalid tok number");
1039    TokLocs[TokNum] = L;
1040  }
1041
1042  typedef const SourceLocation *tokloc_iterator;
1043  tokloc_iterator tokloc_begin() const { return TokLocs; }
1044  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1045
1046  virtual SourceRange getSourceRange() const {
1047    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1048  }
1049  static bool classof(const Stmt *T) {
1050    return T->getStmtClass() == StringLiteralClass;
1051  }
1052  static bool classof(const StringLiteral *) { return true; }
1053
1054  // Iterators
1055  virtual child_iterator child_begin();
1056  virtual child_iterator child_end();
1057};
1058
1059/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1060/// AST node is only formed if full location information is requested.
1061class ParenExpr : public Expr {
1062  SourceLocation L, R;
1063  Stmt *Val;
1064public:
1065  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1066    : Expr(ParenExprClass, val->getType(),
1067           val->isTypeDependent(), val->isValueDependent()),
1068      L(l), R(r), Val(val) {}
1069
1070  /// \brief Construct an empty parenthesized expression.
1071  explicit ParenExpr(EmptyShell Empty)
1072    : Expr(ParenExprClass, Empty) { }
1073
1074  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1075  Expr *getSubExpr() { return cast<Expr>(Val); }
1076  void setSubExpr(Expr *E) { Val = E; }
1077
1078  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1079
1080  /// \brief Get the location of the left parentheses '('.
1081  SourceLocation getLParen() const { return L; }
1082  void setLParen(SourceLocation Loc) { L = Loc; }
1083
1084  /// \brief Get the location of the right parentheses ')'.
1085  SourceLocation getRParen() const { return R; }
1086  void setRParen(SourceLocation Loc) { R = Loc; }
1087
1088  static bool classof(const Stmt *T) {
1089    return T->getStmtClass() == ParenExprClass;
1090  }
1091  static bool classof(const ParenExpr *) { return true; }
1092
1093  // Iterators
1094  virtual child_iterator child_begin();
1095  virtual child_iterator child_end();
1096};
1097
1098
1099/// UnaryOperator - This represents the unary-expression's (except sizeof and
1100/// alignof), the postinc/postdec operators from postfix-expression, and various
1101/// extensions.
1102///
1103/// Notes on various nodes:
1104///
1105/// Real/Imag - These return the real/imag part of a complex operand.  If
1106///   applied to a non-complex value, the former returns its operand and the
1107///   later returns zero in the type of the operand.
1108///
1109class UnaryOperator : public Expr {
1110public:
1111  typedef UnaryOperatorKind Opcode;
1112
1113private:
1114  unsigned Opc : 5;
1115  SourceLocation Loc;
1116  Stmt *Val;
1117public:
1118
1119  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1120    : Expr(UnaryOperatorClass, type,
1121           input->isTypeDependent() || type->isDependentType(),
1122           input->isValueDependent()),
1123      Opc(opc), Loc(l), Val(input) {}
1124
1125  /// \brief Build an empty unary operator.
1126  explicit UnaryOperator(EmptyShell Empty)
1127    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1128
1129  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1130  void setOpcode(Opcode O) { Opc = O; }
1131
1132  Expr *getSubExpr() const { return cast<Expr>(Val); }
1133  void setSubExpr(Expr *E) { Val = E; }
1134
1135  /// getOperatorLoc - Return the location of the operator.
1136  SourceLocation getOperatorLoc() const { return Loc; }
1137  void setOperatorLoc(SourceLocation L) { Loc = L; }
1138
1139  /// isPostfix - Return true if this is a postfix operation, like x++.
1140  static bool isPostfix(Opcode Op) {
1141    return Op == UO_PostInc || Op == UO_PostDec;
1142  }
1143
1144  /// isPostfix - Return true if this is a prefix operation, like --x.
1145  static bool isPrefix(Opcode Op) {
1146    return Op == UO_PreInc || Op == UO_PreDec;
1147  }
1148
1149  bool isPrefix() const { return isPrefix(getOpcode()); }
1150  bool isPostfix() const { return isPostfix(getOpcode()); }
1151  bool isIncrementOp() const {
1152    return Opc == UO_PreInc || Opc == UO_PostInc;
1153  }
1154  bool isIncrementDecrementOp() const {
1155    return Opc <= UO_PreDec;
1156  }
1157  static bool isArithmeticOp(Opcode Op) {
1158    return Op >= UO_Plus && Op <= UO_LNot;
1159  }
1160  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1161
1162  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1163  /// corresponds to, e.g. "sizeof" or "[pre]++"
1164  static const char *getOpcodeStr(Opcode Op);
1165
1166  /// \brief Retrieve the unary opcode that corresponds to the given
1167  /// overloaded operator.
1168  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1169
1170  /// \brief Retrieve the overloaded operator kind that corresponds to
1171  /// the given unary opcode.
1172  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1173
1174  virtual SourceRange getSourceRange() const {
1175    if (isPostfix())
1176      return SourceRange(Val->getLocStart(), Loc);
1177    else
1178      return SourceRange(Loc, Val->getLocEnd());
1179  }
1180  virtual SourceLocation getExprLoc() const { return Loc; }
1181
1182  static bool classof(const Stmt *T) {
1183    return T->getStmtClass() == UnaryOperatorClass;
1184  }
1185  static bool classof(const UnaryOperator *) { return true; }
1186
1187  // Iterators
1188  virtual child_iterator child_begin();
1189  virtual child_iterator child_end();
1190};
1191
1192/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1193/// offsetof(record-type, member-designator). For example, given:
1194/// @code
1195/// struct S {
1196///   float f;
1197///   double d;
1198/// };
1199/// struct T {
1200///   int i;
1201///   struct S s[10];
1202/// };
1203/// @endcode
1204/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1205
1206class OffsetOfExpr : public Expr {
1207public:
1208  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1209  class OffsetOfNode {
1210  public:
1211    /// \brief The kind of offsetof node we have.
1212    enum Kind {
1213      /// \brief An index into an array.
1214      Array = 0x00,
1215      /// \brief A field.
1216      Field = 0x01,
1217      /// \brief A field in a dependent type, known only by its name.
1218      Identifier = 0x02,
1219      /// \brief An implicit indirection through a C++ base class, when the
1220      /// field found is in a base class.
1221      Base = 0x03
1222    };
1223
1224  private:
1225    enum { MaskBits = 2, Mask = 0x03 };
1226
1227    /// \brief The source range that covers this part of the designator.
1228    SourceRange Range;
1229
1230    /// \brief The data describing the designator, which comes in three
1231    /// different forms, depending on the lower two bits.
1232    ///   - An unsigned index into the array of Expr*'s stored after this node
1233    ///     in memory, for [constant-expression] designators.
1234    ///   - A FieldDecl*, for references to a known field.
1235    ///   - An IdentifierInfo*, for references to a field with a given name
1236    ///     when the class type is dependent.
1237    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1238    ///     base class.
1239    uintptr_t Data;
1240
1241  public:
1242    /// \brief Create an offsetof node that refers to an array element.
1243    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1244                 SourceLocation RBracketLoc)
1245      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1246
1247    /// \brief Create an offsetof node that refers to a field.
1248    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1249                 SourceLocation NameLoc)
1250      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1251        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1252
1253    /// \brief Create an offsetof node that refers to an identifier.
1254    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1255                 SourceLocation NameLoc)
1256      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1257        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1258
1259    /// \brief Create an offsetof node that refers into a C++ base class.
1260    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1261      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1262
1263    /// \brief Determine what kind of offsetof node this is.
1264    Kind getKind() const {
1265      return static_cast<Kind>(Data & Mask);
1266    }
1267
1268    /// \brief For an array element node, returns the index into the array
1269    /// of expressions.
1270    unsigned getArrayExprIndex() const {
1271      assert(getKind() == Array);
1272      return Data >> 2;
1273    }
1274
1275    /// \brief For a field offsetof node, returns the field.
1276    FieldDecl *getField() const {
1277      assert(getKind() == Field);
1278      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1279    }
1280
1281    /// \brief For a field or identifier offsetof node, returns the name of
1282    /// the field.
1283    IdentifierInfo *getFieldName() const;
1284
1285    /// \brief For a base class node, returns the base specifier.
1286    CXXBaseSpecifier *getBase() const {
1287      assert(getKind() == Base);
1288      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1289    }
1290
1291    /// \brief Retrieve the source range that covers this offsetof node.
1292    ///
1293    /// For an array element node, the source range contains the locations of
1294    /// the square brackets. For a field or identifier node, the source range
1295    /// contains the location of the period (if there is one) and the
1296    /// identifier.
1297    SourceRange getRange() const { return Range; }
1298  };
1299
1300private:
1301
1302  SourceLocation OperatorLoc, RParenLoc;
1303  // Base type;
1304  TypeSourceInfo *TSInfo;
1305  // Number of sub-components (i.e. instances of OffsetOfNode).
1306  unsigned NumComps;
1307  // Number of sub-expressions (i.e. array subscript expressions).
1308  unsigned NumExprs;
1309
1310  OffsetOfExpr(ASTContext &C, QualType type,
1311               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1312               OffsetOfNode* compsPtr, unsigned numComps,
1313               Expr** exprsPtr, unsigned numExprs,
1314               SourceLocation RParenLoc);
1315
1316  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1317    : Expr(OffsetOfExprClass, EmptyShell()),
1318      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1319
1320public:
1321
1322  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1323                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1324                              OffsetOfNode* compsPtr, unsigned numComps,
1325                              Expr** exprsPtr, unsigned numExprs,
1326                              SourceLocation RParenLoc);
1327
1328  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1329                                   unsigned NumComps, unsigned NumExprs);
1330
1331  /// getOperatorLoc - Return the location of the operator.
1332  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1333  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1334
1335  /// \brief Return the location of the right parentheses.
1336  SourceLocation getRParenLoc() const { return RParenLoc; }
1337  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1338
1339  TypeSourceInfo *getTypeSourceInfo() const {
1340    return TSInfo;
1341  }
1342  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1343    TSInfo = tsi;
1344  }
1345
1346  const OffsetOfNode &getComponent(unsigned Idx) {
1347    assert(Idx < NumComps && "Subscript out of range");
1348    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1349  }
1350
1351  void setComponent(unsigned Idx, OffsetOfNode ON) {
1352    assert(Idx < NumComps && "Subscript out of range");
1353    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1354  }
1355
1356  unsigned getNumComponents() const {
1357    return NumComps;
1358  }
1359
1360  Expr* getIndexExpr(unsigned Idx) {
1361    assert(Idx < NumExprs && "Subscript out of range");
1362    return reinterpret_cast<Expr **>(
1363                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1364  }
1365
1366  void setIndexExpr(unsigned Idx, Expr* E) {
1367    assert(Idx < NumComps && "Subscript out of range");
1368    reinterpret_cast<Expr **>(
1369                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1370  }
1371
1372  unsigned getNumExpressions() const {
1373    return NumExprs;
1374  }
1375
1376  virtual SourceRange getSourceRange() const {
1377    return SourceRange(OperatorLoc, RParenLoc);
1378  }
1379
1380  static bool classof(const Stmt *T) {
1381    return T->getStmtClass() == OffsetOfExprClass;
1382  }
1383
1384  static bool classof(const OffsetOfExpr *) { return true; }
1385
1386  // Iterators
1387  virtual child_iterator child_begin();
1388  virtual child_iterator child_end();
1389};
1390
1391/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1392/// types and expressions.
1393class SizeOfAlignOfExpr : public Expr {
1394  bool isSizeof : 1;  // true if sizeof, false if alignof.
1395  bool isType : 1;    // true if operand is a type, false if an expression
1396  union {
1397    TypeSourceInfo *Ty;
1398    Stmt *Ex;
1399  } Argument;
1400  SourceLocation OpLoc, RParenLoc;
1401
1402public:
1403  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1404                    QualType resultType, SourceLocation op,
1405                    SourceLocation rp) :
1406      Expr(SizeOfAlignOfExprClass, resultType,
1407           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1408           // Value-dependent if the argument is type-dependent.
1409           TInfo->getType()->isDependentType()),
1410      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1411    Argument.Ty = TInfo;
1412  }
1413
1414  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1415                    QualType resultType, SourceLocation op,
1416                    SourceLocation rp) :
1417      Expr(SizeOfAlignOfExprClass, resultType,
1418           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1419           // Value-dependent if the argument is type-dependent.
1420           E->isTypeDependent()),
1421      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1422    Argument.Ex = E;
1423  }
1424
1425  /// \brief Construct an empty sizeof/alignof expression.
1426  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1427    : Expr(SizeOfAlignOfExprClass, Empty) { }
1428
1429  bool isSizeOf() const { return isSizeof; }
1430  void setSizeof(bool S) { isSizeof = S; }
1431
1432  bool isArgumentType() const { return isType; }
1433  QualType getArgumentType() const {
1434    return getArgumentTypeInfo()->getType();
1435  }
1436  TypeSourceInfo *getArgumentTypeInfo() const {
1437    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1438    return Argument.Ty;
1439  }
1440  Expr *getArgumentExpr() {
1441    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1442    return static_cast<Expr*>(Argument.Ex);
1443  }
1444  const Expr *getArgumentExpr() const {
1445    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1446  }
1447
1448  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1449  void setArgument(TypeSourceInfo *TInfo) {
1450    Argument.Ty = TInfo;
1451    isType = true;
1452  }
1453
1454  /// Gets the argument type, or the type of the argument expression, whichever
1455  /// is appropriate.
1456  QualType getTypeOfArgument() const {
1457    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1458  }
1459
1460  SourceLocation getOperatorLoc() const { return OpLoc; }
1461  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1462
1463  SourceLocation getRParenLoc() const { return RParenLoc; }
1464  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1465
1466  virtual SourceRange getSourceRange() const {
1467    return SourceRange(OpLoc, RParenLoc);
1468  }
1469
1470  static bool classof(const Stmt *T) {
1471    return T->getStmtClass() == SizeOfAlignOfExprClass;
1472  }
1473  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1474
1475  // Iterators
1476  virtual child_iterator child_begin();
1477  virtual child_iterator child_end();
1478};
1479
1480//===----------------------------------------------------------------------===//
1481// Postfix Operators.
1482//===----------------------------------------------------------------------===//
1483
1484/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1485class ArraySubscriptExpr : public Expr {
1486  enum { LHS, RHS, END_EXPR=2 };
1487  Stmt* SubExprs[END_EXPR];
1488  SourceLocation RBracketLoc;
1489public:
1490  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1491                     SourceLocation rbracketloc)
1492  : Expr(ArraySubscriptExprClass, t,
1493         lhs->isTypeDependent() || rhs->isTypeDependent(),
1494         lhs->isValueDependent() || rhs->isValueDependent()),
1495    RBracketLoc(rbracketloc) {
1496    SubExprs[LHS] = lhs;
1497    SubExprs[RHS] = rhs;
1498  }
1499
1500  /// \brief Create an empty array subscript expression.
1501  explicit ArraySubscriptExpr(EmptyShell Shell)
1502    : Expr(ArraySubscriptExprClass, Shell) { }
1503
1504  /// An array access can be written A[4] or 4[A] (both are equivalent).
1505  /// - getBase() and getIdx() always present the normalized view: A[4].
1506  ///    In this case getBase() returns "A" and getIdx() returns "4".
1507  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1508  ///    4[A] getLHS() returns "4".
1509  /// Note: Because vector element access is also written A[4] we must
1510  /// predicate the format conversion in getBase and getIdx only on the
1511  /// the type of the RHS, as it is possible for the LHS to be a vector of
1512  /// integer type
1513  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1514  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1515  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1516
1517  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1518  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1519  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1520
1521  Expr *getBase() {
1522    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1523  }
1524
1525  const Expr *getBase() const {
1526    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1527  }
1528
1529  Expr *getIdx() {
1530    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1531  }
1532
1533  const Expr *getIdx() const {
1534    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1535  }
1536
1537  virtual SourceRange getSourceRange() const {
1538    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1539  }
1540
1541  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1542  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1543
1544  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1545
1546  static bool classof(const Stmt *T) {
1547    return T->getStmtClass() == ArraySubscriptExprClass;
1548  }
1549  static bool classof(const ArraySubscriptExpr *) { return true; }
1550
1551  // Iterators
1552  virtual child_iterator child_begin();
1553  virtual child_iterator child_end();
1554};
1555
1556
1557/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1558/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1559/// while its subclasses may represent alternative syntax that (semantically)
1560/// results in a function call. For example, CXXOperatorCallExpr is
1561/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1562/// "str1 + str2" to resolve to a function call.
1563class CallExpr : public Expr {
1564  enum { FN=0, ARGS_START=1 };
1565  Stmt **SubExprs;
1566  unsigned NumArgs;
1567  SourceLocation RParenLoc;
1568
1569protected:
1570  // This version of the constructor is for derived classes.
1571  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1572           QualType t, SourceLocation rparenloc);
1573
1574public:
1575  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1576           SourceLocation rparenloc);
1577
1578  /// \brief Build an empty call expression.
1579  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1580
1581  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1582  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1583  void setCallee(Expr *F) { SubExprs[FN] = F; }
1584
1585  Decl *getCalleeDecl();
1586  const Decl *getCalleeDecl() const {
1587    return const_cast<CallExpr*>(this)->getCalleeDecl();
1588  }
1589
1590  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1591  FunctionDecl *getDirectCallee();
1592  const FunctionDecl *getDirectCallee() const {
1593    return const_cast<CallExpr*>(this)->getDirectCallee();
1594  }
1595
1596  /// getNumArgs - Return the number of actual arguments to this call.
1597  ///
1598  unsigned getNumArgs() const { return NumArgs; }
1599
1600  /// getArg - Return the specified argument.
1601  Expr *getArg(unsigned Arg) {
1602    assert(Arg < NumArgs && "Arg access out of range!");
1603    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1604  }
1605  const Expr *getArg(unsigned Arg) const {
1606    assert(Arg < NumArgs && "Arg access out of range!");
1607    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1608  }
1609
1610  /// setArg - Set the specified argument.
1611  void setArg(unsigned Arg, Expr *ArgExpr) {
1612    assert(Arg < NumArgs && "Arg access out of range!");
1613    SubExprs[Arg+ARGS_START] = ArgExpr;
1614  }
1615
1616  /// setNumArgs - This changes the number of arguments present in this call.
1617  /// Any orphaned expressions are deleted by this, and any new operands are set
1618  /// to null.
1619  void setNumArgs(ASTContext& C, unsigned NumArgs);
1620
1621  typedef ExprIterator arg_iterator;
1622  typedef ConstExprIterator const_arg_iterator;
1623
1624  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1625  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1626  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1627  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1628
1629  /// getNumCommas - Return the number of commas that must have been present in
1630  /// this function call.
1631  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1632
1633  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1634  /// not, return 0.
1635  unsigned isBuiltinCall(ASTContext &Context) const;
1636
1637  /// getCallReturnType - Get the return type of the call expr. This is not
1638  /// always the type of the expr itself, if the return type is a reference
1639  /// type.
1640  QualType getCallReturnType() const;
1641
1642  SourceLocation getRParenLoc() const { return RParenLoc; }
1643  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1644
1645  virtual SourceRange getSourceRange() const {
1646    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1647  }
1648
1649  static bool classof(const Stmt *T) {
1650    return T->getStmtClass() >= firstCallExprConstant &&
1651           T->getStmtClass() <= lastCallExprConstant;
1652  }
1653  static bool classof(const CallExpr *) { return true; }
1654
1655  // Iterators
1656  virtual child_iterator child_begin();
1657  virtual child_iterator child_end();
1658};
1659
1660/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1661///
1662class MemberExpr : public Expr {
1663  /// Extra data stored in some member expressions.
1664  struct MemberNameQualifier : public NameQualifier {
1665    DeclAccessPair FoundDecl;
1666  };
1667
1668  /// Base - the expression for the base pointer or structure references.  In
1669  /// X.F, this is "X".
1670  Stmt *Base;
1671
1672  /// MemberDecl - This is the decl being referenced by the field/member name.
1673  /// In X.F, this is the decl referenced by F.
1674  ValueDecl *MemberDecl;
1675
1676  /// MemberLoc - This is the location of the member name.
1677  SourceLocation MemberLoc;
1678
1679  /// MemberDNLoc - Provides source/type location info for the
1680  /// declaration name embedded in MemberDecl.
1681  DeclarationNameLoc MemberDNLoc;
1682
1683  /// IsArrow - True if this is "X->F", false if this is "X.F".
1684  bool IsArrow : 1;
1685
1686  /// \brief True if this member expression used a nested-name-specifier to
1687  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1688  /// declaration.  When true, a MemberNameQualifier
1689  /// structure is allocated immediately after the MemberExpr.
1690  bool HasQualifierOrFoundDecl : 1;
1691
1692  /// \brief True if this member expression specified a template argument list
1693  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1694  /// structure (and its TemplateArguments) are allocated immediately after
1695  /// the MemberExpr or, if the member expression also has a qualifier, after
1696  /// the MemberNameQualifier structure.
1697  bool HasExplicitTemplateArgumentList : 1;
1698
1699  /// \brief Retrieve the qualifier that preceded the member name, if any.
1700  MemberNameQualifier *getMemberQualifier() {
1701    assert(HasQualifierOrFoundDecl);
1702    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1703  }
1704
1705  /// \brief Retrieve the qualifier that preceded the member name, if any.
1706  const MemberNameQualifier *getMemberQualifier() const {
1707    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1708  }
1709
1710public:
1711  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1712             const DeclarationNameInfo &NameInfo, QualType ty)
1713    : Expr(MemberExprClass, ty,
1714           base->isTypeDependent(), base->isValueDependent()),
1715      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1716      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1717      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1718    assert(memberdecl->getDeclName() == NameInfo.getName());
1719  }
1720
1721  // NOTE: this constructor should be used only when it is known that
1722  // the member name can not provide additional syntactic info
1723  // (i.e., source locations for C++ operator names or type source info
1724  // for constructors, destructors and conversion oeprators).
1725  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1726             SourceLocation l, QualType ty)
1727    : Expr(MemberExprClass, ty,
1728           base->isTypeDependent(), base->isValueDependent()),
1729      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1730      IsArrow(isarrow),
1731      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1732
1733  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1734                            NestedNameSpecifier *qual, SourceRange qualrange,
1735                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1736                            DeclarationNameInfo MemberNameInfo,
1737                            const TemplateArgumentListInfo *targs,
1738                            QualType ty);
1739
1740  void setBase(Expr *E) { Base = E; }
1741  Expr *getBase() const { return cast<Expr>(Base); }
1742
1743  /// \brief Retrieve the member declaration to which this expression refers.
1744  ///
1745  /// The returned declaration will either be a FieldDecl or (in C++)
1746  /// a CXXMethodDecl.
1747  ValueDecl *getMemberDecl() const { return MemberDecl; }
1748  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1749
1750  /// \brief Retrieves the declaration found by lookup.
1751  DeclAccessPair getFoundDecl() const {
1752    if (!HasQualifierOrFoundDecl)
1753      return DeclAccessPair::make(getMemberDecl(),
1754                                  getMemberDecl()->getAccess());
1755    return getMemberQualifier()->FoundDecl;
1756  }
1757
1758  /// \brief Determines whether this member expression actually had
1759  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1760  /// x->Base::foo.
1761  bool hasQualifier() const { return getQualifier() != 0; }
1762
1763  /// \brief If the member name was qualified, retrieves the source range of
1764  /// the nested-name-specifier that precedes the member name. Otherwise,
1765  /// returns an empty source range.
1766  SourceRange getQualifierRange() const {
1767    if (!HasQualifierOrFoundDecl)
1768      return SourceRange();
1769
1770    return getMemberQualifier()->Range;
1771  }
1772
1773  /// \brief If the member name was qualified, retrieves the
1774  /// nested-name-specifier that precedes the member name. Otherwise, returns
1775  /// NULL.
1776  NestedNameSpecifier *getQualifier() const {
1777    if (!HasQualifierOrFoundDecl)
1778      return 0;
1779
1780    return getMemberQualifier()->NNS;
1781  }
1782
1783  /// \brief Determines whether this member expression actually had a C++
1784  /// template argument list explicitly specified, e.g., x.f<int>.
1785  bool hasExplicitTemplateArgs() const {
1786    return HasExplicitTemplateArgumentList;
1787  }
1788
1789  /// \brief Copies the template arguments (if present) into the given
1790  /// structure.
1791  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1792    if (hasExplicitTemplateArgs())
1793      getExplicitTemplateArgs().copyInto(List);
1794  }
1795
1796  /// \brief Retrieve the explicit template argument list that
1797  /// follow the member template name.  This must only be called on an
1798  /// expression with explicit template arguments.
1799  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1800    assert(HasExplicitTemplateArgumentList);
1801    if (!HasQualifierOrFoundDecl)
1802      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1803
1804    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
1805                                                      getMemberQualifier() + 1);
1806  }
1807
1808  /// \brief Retrieve the explicit template argument list that
1809  /// followed the member template name.  This must only be called on
1810  /// an expression with explicit template arguments.
1811  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1812    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
1813  }
1814
1815  /// \brief Retrieves the optional explicit template arguments.
1816  /// This points to the same data as getExplicitTemplateArgs(), but
1817  /// returns null if there are no explicit template arguments.
1818  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
1819    if (!hasExplicitTemplateArgs()) return 0;
1820    return &getExplicitTemplateArgs();
1821  }
1822
1823  /// \brief Retrieve the location of the left angle bracket following the
1824  /// member name ('<'), if any.
1825  SourceLocation getLAngleLoc() const {
1826    if (!HasExplicitTemplateArgumentList)
1827      return SourceLocation();
1828
1829    return getExplicitTemplateArgs().LAngleLoc;
1830  }
1831
1832  /// \brief Retrieve the template arguments provided as part of this
1833  /// template-id.
1834  const TemplateArgumentLoc *getTemplateArgs() const {
1835    if (!HasExplicitTemplateArgumentList)
1836      return 0;
1837
1838    return getExplicitTemplateArgs().getTemplateArgs();
1839  }
1840
1841  /// \brief Retrieve the number of template arguments provided as part of this
1842  /// template-id.
1843  unsigned getNumTemplateArgs() const {
1844    if (!HasExplicitTemplateArgumentList)
1845      return 0;
1846
1847    return getExplicitTemplateArgs().NumTemplateArgs;
1848  }
1849
1850  /// \brief Retrieve the location of the right angle bracket following the
1851  /// template arguments ('>').
1852  SourceLocation getRAngleLoc() const {
1853    if (!HasExplicitTemplateArgumentList)
1854      return SourceLocation();
1855
1856    return getExplicitTemplateArgs().RAngleLoc;
1857  }
1858
1859  /// \brief Retrieve the member declaration name info.
1860  DeclarationNameInfo getMemberNameInfo() const {
1861    return DeclarationNameInfo(MemberDecl->getDeclName(),
1862                               MemberLoc, MemberDNLoc);
1863  }
1864
1865  bool isArrow() const { return IsArrow; }
1866  void setArrow(bool A) { IsArrow = A; }
1867
1868  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1869  /// location of 'F'.
1870  SourceLocation getMemberLoc() const { return MemberLoc; }
1871  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1872
1873  virtual SourceRange getSourceRange() const {
1874    // If we have an implicit base (like a C++ implicit this),
1875    // make sure not to return its location
1876    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1877      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1878
1879    SourceLocation BaseLoc = getBase()->getLocStart();
1880    if (BaseLoc.isInvalid())
1881      return SourceRange(MemberLoc, EndLoc);
1882    return SourceRange(BaseLoc, EndLoc);
1883  }
1884
1885  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1886
1887  static bool classof(const Stmt *T) {
1888    return T->getStmtClass() == MemberExprClass;
1889  }
1890  static bool classof(const MemberExpr *) { return true; }
1891
1892  // Iterators
1893  virtual child_iterator child_begin();
1894  virtual child_iterator child_end();
1895};
1896
1897/// CompoundLiteralExpr - [C99 6.5.2.5]
1898///
1899class CompoundLiteralExpr : public Expr {
1900  /// LParenLoc - If non-null, this is the location of the left paren in a
1901  /// compound literal like "(int){4}".  This can be null if this is a
1902  /// synthesized compound expression.
1903  SourceLocation LParenLoc;
1904
1905  /// The type as written.  This can be an incomplete array type, in
1906  /// which case the actual expression type will be different.
1907  TypeSourceInfo *TInfo;
1908  Stmt *Init;
1909  bool FileScope;
1910public:
1911  // FIXME: Can compound literals be value-dependent?
1912  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1913                      QualType T, Expr *init, bool fileScope)
1914    : Expr(CompoundLiteralExprClass, T,
1915           tinfo->getType()->isDependentType(), false),
1916      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1917
1918  /// \brief Construct an empty compound literal.
1919  explicit CompoundLiteralExpr(EmptyShell Empty)
1920    : Expr(CompoundLiteralExprClass, Empty) { }
1921
1922  const Expr *getInitializer() const { return cast<Expr>(Init); }
1923  Expr *getInitializer() { return cast<Expr>(Init); }
1924  void setInitializer(Expr *E) { Init = E; }
1925
1926  bool isFileScope() const { return FileScope; }
1927  void setFileScope(bool FS) { FileScope = FS; }
1928
1929  SourceLocation getLParenLoc() const { return LParenLoc; }
1930  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1931
1932  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1933  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1934
1935  virtual SourceRange getSourceRange() const {
1936    // FIXME: Init should never be null.
1937    if (!Init)
1938      return SourceRange();
1939    if (LParenLoc.isInvalid())
1940      return Init->getSourceRange();
1941    return SourceRange(LParenLoc, Init->getLocEnd());
1942  }
1943
1944  static bool classof(const Stmt *T) {
1945    return T->getStmtClass() == CompoundLiteralExprClass;
1946  }
1947  static bool classof(const CompoundLiteralExpr *) { return true; }
1948
1949  // Iterators
1950  virtual child_iterator child_begin();
1951  virtual child_iterator child_end();
1952};
1953
1954/// CastExpr - Base class for type casts, including both implicit
1955/// casts (ImplicitCastExpr) and explicit casts that have some
1956/// representation in the source code (ExplicitCastExpr's derived
1957/// classes).
1958class CastExpr : public Expr {
1959public:
1960  typedef clang::CastKind CastKind;
1961
1962private:
1963  unsigned Kind : 5;
1964  unsigned BasePathSize : BitsRemaining - 5;
1965  Stmt *Op;
1966
1967  void CheckBasePath() const {
1968#ifndef NDEBUG
1969    switch (getCastKind()) {
1970    case CK_DerivedToBase:
1971    case CK_UncheckedDerivedToBase:
1972    case CK_DerivedToBaseMemberPointer:
1973    case CK_BaseToDerived:
1974    case CK_BaseToDerivedMemberPointer:
1975      assert(!path_empty() && "Cast kind should have a base path!");
1976      break;
1977
1978    // These should not have an inheritance path.
1979    case CK_Unknown:
1980    case CK_BitCast:
1981    case CK_LValueBitCast:
1982    case CK_NoOp:
1983    case CK_Dynamic:
1984    case CK_ToUnion:
1985    case CK_ArrayToPointerDecay:
1986    case CK_FunctionToPointerDecay:
1987    case CK_NullToMemberPointer:
1988    case CK_UserDefinedConversion:
1989    case CK_ConstructorConversion:
1990    case CK_IntegralToPointer:
1991    case CK_PointerToIntegral:
1992    case CK_ToVoid:
1993    case CK_VectorSplat:
1994    case CK_IntegralCast:
1995    case CK_IntegralToFloating:
1996    case CK_FloatingToIntegral:
1997    case CK_FloatingCast:
1998    case CK_MemberPointerToBoolean:
1999    case CK_AnyPointerToObjCPointerCast:
2000    case CK_AnyPointerToBlockPointerCast:
2001    case CK_ObjCObjectLValueCast:
2002      assert(path_empty() && "Cast kind should not have a base path!");
2003      break;
2004    }
2005#endif
2006  }
2007
2008  const CXXBaseSpecifier * const *path_buffer() const {
2009    return const_cast<CastExpr*>(this)->path_buffer();
2010  }
2011  CXXBaseSpecifier **path_buffer();
2012
2013protected:
2014  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
2015           unsigned BasePathSize) :
2016    Expr(SC, ty,
2017         // Cast expressions are type-dependent if the type is
2018         // dependent (C++ [temp.dep.expr]p3).
2019         ty->isDependentType(),
2020         // Cast expressions are value-dependent if the type is
2021         // dependent or if the subexpression is value-dependent.
2022         ty->isDependentType() || (op && op->isValueDependent())),
2023    Kind(kind), BasePathSize(BasePathSize), Op(op) {
2024    CheckBasePath();
2025  }
2026
2027  /// \brief Construct an empty cast.
2028  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2029    : Expr(SC, Empty), BasePathSize(BasePathSize) { }
2030
2031public:
2032  CastKind getCastKind() const { return static_cast<CastKind>(Kind); }
2033  void setCastKind(CastKind K) { Kind = K; }
2034  const char *getCastKindName() const;
2035
2036  Expr *getSubExpr() { return cast<Expr>(Op); }
2037  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2038  void setSubExpr(Expr *E) { Op = E; }
2039
2040  /// \brief Retrieve the cast subexpression as it was written in the source
2041  /// code, looking through any implicit casts or other intermediate nodes
2042  /// introduced by semantic analysis.
2043  Expr *getSubExprAsWritten();
2044  const Expr *getSubExprAsWritten() const {
2045    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2046  }
2047
2048  typedef CXXBaseSpecifier **path_iterator;
2049  typedef const CXXBaseSpecifier * const *path_const_iterator;
2050  bool path_empty() const { return BasePathSize == 0; }
2051  unsigned path_size() const { return BasePathSize; }
2052  path_iterator path_begin() { return path_buffer(); }
2053  path_iterator path_end() { return path_buffer() + path_size(); }
2054  path_const_iterator path_begin() const { return path_buffer(); }
2055  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2056
2057  void setCastPath(const CXXCastPath &Path);
2058
2059  static bool classof(const Stmt *T) {
2060    return T->getStmtClass() >= firstCastExprConstant &&
2061           T->getStmtClass() <= lastCastExprConstant;
2062  }
2063  static bool classof(const CastExpr *) { return true; }
2064
2065  // Iterators
2066  virtual child_iterator child_begin();
2067  virtual child_iterator child_end();
2068};
2069
2070/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2071/// conversions, which have no direct representation in the original
2072/// source code. For example: converting T[]->T*, void f()->void
2073/// (*f)(), float->double, short->int, etc.
2074///
2075/// In C, implicit casts always produce rvalues. However, in C++, an
2076/// implicit cast whose result is being bound to a reference will be
2077/// an lvalue or xvalue. For example:
2078///
2079/// @code
2080/// class Base { };
2081/// class Derived : public Base { };
2082/// Derived &&ref();
2083/// void f(Derived d) {
2084///   Base& b = d; // initializer is an ImplicitCastExpr
2085///                // to an lvalue of type Base
2086///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2087///                     // to an xvalue of type Base
2088/// }
2089/// @endcode
2090class ImplicitCastExpr : public CastExpr {
2091private:
2092  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2093                   unsigned BasePathLength, ExprValueKind VK)
2094    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePathLength) {
2095    ValueKind = VK;
2096  }
2097
2098  /// \brief Construct an empty implicit cast.
2099  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2100    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2101
2102public:
2103  enum OnStack_t { OnStack };
2104  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2105                   ExprValueKind VK)
2106    : CastExpr(ImplicitCastExprClass, ty, kind, op, 0) {
2107    ValueKind = VK;
2108  }
2109
2110  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2111                                  CastKind Kind, Expr *Operand,
2112                                  const CXXCastPath *BasePath,
2113                                  ExprValueKind Cat);
2114
2115  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2116
2117  virtual SourceRange getSourceRange() const {
2118    return getSubExpr()->getSourceRange();
2119  }
2120
2121  /// getValueKind - The value kind that this cast produces.
2122  ExprValueKind getValueKind() const {
2123    return static_cast<ExprValueKind>(ValueKind);
2124  }
2125
2126  /// setValueKind - Set the value kind this cast produces.
2127  void setValueKind(ExprValueKind Cat) { ValueKind = Cat; }
2128
2129  static bool classof(const Stmt *T) {
2130    return T->getStmtClass() == ImplicitCastExprClass;
2131  }
2132  static bool classof(const ImplicitCastExpr *) { return true; }
2133};
2134
2135/// ExplicitCastExpr - An explicit cast written in the source
2136/// code.
2137///
2138/// This class is effectively an abstract class, because it provides
2139/// the basic representation of an explicitly-written cast without
2140/// specifying which kind of cast (C cast, functional cast, static
2141/// cast, etc.) was written; specific derived classes represent the
2142/// particular style of cast and its location information.
2143///
2144/// Unlike implicit casts, explicit cast nodes have two different
2145/// types: the type that was written into the source code, and the
2146/// actual type of the expression as determined by semantic
2147/// analysis. These types may differ slightly. For example, in C++ one
2148/// can cast to a reference type, which indicates that the resulting
2149/// expression will be an lvalue or xvalue. The reference type, however,
2150/// will not be used as the type of the expression.
2151class ExplicitCastExpr : public CastExpr {
2152  /// TInfo - Source type info for the (written) type
2153  /// this expression is casting to.
2154  TypeSourceInfo *TInfo;
2155
2156protected:
2157  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2158                   Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy)
2159    : CastExpr(SC, exprTy, kind, op, PathSize), TInfo(writtenTy) {}
2160
2161  /// \brief Construct an empty explicit cast.
2162  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2163    : CastExpr(SC, Shell, PathSize) { }
2164
2165public:
2166  /// getTypeInfoAsWritten - Returns the type source info for the type
2167  /// that this expression is casting to.
2168  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2169  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2170
2171  /// getTypeAsWritten - Returns the type that this expression is
2172  /// casting to, as written in the source code.
2173  QualType getTypeAsWritten() const { return TInfo->getType(); }
2174
2175  static bool classof(const Stmt *T) {
2176     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2177            T->getStmtClass() <= lastExplicitCastExprConstant;
2178  }
2179  static bool classof(const ExplicitCastExpr *) { return true; }
2180};
2181
2182/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2183/// cast in C++ (C++ [expr.cast]), which uses the syntax
2184/// (Type)expr. For example: @c (int)f.
2185class CStyleCastExpr : public ExplicitCastExpr {
2186  SourceLocation LPLoc; // the location of the left paren
2187  SourceLocation RPLoc; // the location of the right paren
2188
2189  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2190                 unsigned PathSize, TypeSourceInfo *writtenTy,
2191                 SourceLocation l, SourceLocation r)
2192    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, PathSize,
2193                       writtenTy), LPLoc(l), RPLoc(r) {}
2194
2195  /// \brief Construct an empty C-style explicit cast.
2196  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2197    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2198
2199public:
2200  static CStyleCastExpr *Create(ASTContext &Context, QualType T, CastKind K,
2201                                Expr *Op, const CXXCastPath *BasePath,
2202                                TypeSourceInfo *WrittenTy, SourceLocation L,
2203                                SourceLocation R);
2204
2205  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2206
2207  SourceLocation getLParenLoc() const { return LPLoc; }
2208  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2209
2210  SourceLocation getRParenLoc() const { return RPLoc; }
2211  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2212
2213  virtual SourceRange getSourceRange() const {
2214    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2215  }
2216  static bool classof(const Stmt *T) {
2217    return T->getStmtClass() == CStyleCastExprClass;
2218  }
2219  static bool classof(const CStyleCastExpr *) { return true; }
2220};
2221
2222/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2223///
2224/// This expression node kind describes a builtin binary operation,
2225/// such as "x + y" for integer values "x" and "y". The operands will
2226/// already have been converted to appropriate types (e.g., by
2227/// performing promotions or conversions).
2228///
2229/// In C++, where operators may be overloaded, a different kind of
2230/// expression node (CXXOperatorCallExpr) is used to express the
2231/// invocation of an overloaded operator with operator syntax. Within
2232/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2233/// used to store an expression "x + y" depends on the subexpressions
2234/// for x and y. If neither x or y is type-dependent, and the "+"
2235/// operator resolves to a built-in operation, BinaryOperator will be
2236/// used to express the computation (x and y may still be
2237/// value-dependent). If either x or y is type-dependent, or if the
2238/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2239/// be used to express the computation.
2240class BinaryOperator : public Expr {
2241public:
2242  typedef BinaryOperatorKind Opcode;
2243
2244private:
2245  unsigned Opc : 6;
2246  SourceLocation OpLoc;
2247
2248  enum { LHS, RHS, END_EXPR };
2249  Stmt* SubExprs[END_EXPR];
2250public:
2251
2252  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2253                 SourceLocation opLoc)
2254    : Expr(BinaryOperatorClass, ResTy,
2255           lhs->isTypeDependent() || rhs->isTypeDependent(),
2256           lhs->isValueDependent() || rhs->isValueDependent()),
2257      Opc(opc), OpLoc(opLoc) {
2258    SubExprs[LHS] = lhs;
2259    SubExprs[RHS] = rhs;
2260    assert(!isCompoundAssignmentOp() &&
2261           "Use ArithAssignBinaryOperator for compound assignments");
2262  }
2263
2264  /// \brief Construct an empty binary operator.
2265  explicit BinaryOperator(EmptyShell Empty)
2266    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2267
2268  SourceLocation getOperatorLoc() const { return OpLoc; }
2269  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2270
2271  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2272  void setOpcode(Opcode O) { Opc = O; }
2273
2274  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2275  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2276  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2277  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2278
2279  virtual SourceRange getSourceRange() const {
2280    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2281  }
2282
2283  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2284  /// corresponds to, e.g. "<<=".
2285  static const char *getOpcodeStr(Opcode Op);
2286
2287  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2288
2289  /// \brief Retrieve the binary opcode that corresponds to the given
2290  /// overloaded operator.
2291  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2292
2293  /// \brief Retrieve the overloaded operator kind that corresponds to
2294  /// the given binary opcode.
2295  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2296
2297  /// predicates to categorize the respective opcodes.
2298  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2299  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2300  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2301  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2302  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2303  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2304
2305  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2306  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2307
2308  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2309  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2310
2311  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2312  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2313
2314  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2315  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2316
2317  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2318  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2319
2320  bool isAssignmentOp() const { return Opc >= BO_Assign && Opc <= BO_OrAssign; }
2321  bool isCompoundAssignmentOp() const {
2322    return Opc > BO_Assign && Opc <= BO_OrAssign;
2323  }
2324  bool isShiftAssignOp() const {
2325    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2326  }
2327
2328  static bool classof(const Stmt *S) {
2329    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2330           S->getStmtClass() <= lastBinaryOperatorConstant;
2331  }
2332  static bool classof(const BinaryOperator *) { return true; }
2333
2334  // Iterators
2335  virtual child_iterator child_begin();
2336  virtual child_iterator child_end();
2337
2338protected:
2339  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2340                 SourceLocation opLoc, bool dead)
2341    : Expr(CompoundAssignOperatorClass, ResTy,
2342           lhs->isTypeDependent() || rhs->isTypeDependent(),
2343           lhs->isValueDependent() || rhs->isValueDependent()),
2344      Opc(opc), OpLoc(opLoc) {
2345    SubExprs[LHS] = lhs;
2346    SubExprs[RHS] = rhs;
2347  }
2348
2349  BinaryOperator(StmtClass SC, EmptyShell Empty)
2350    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2351};
2352
2353/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2354/// track of the type the operation is performed in.  Due to the semantics of
2355/// these operators, the operands are promoted, the aritmetic performed, an
2356/// implicit conversion back to the result type done, then the assignment takes
2357/// place.  This captures the intermediate type which the computation is done
2358/// in.
2359class CompoundAssignOperator : public BinaryOperator {
2360  QualType ComputationLHSType;
2361  QualType ComputationResultType;
2362public:
2363  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2364                         QualType ResType, QualType CompLHSType,
2365                         QualType CompResultType,
2366                         SourceLocation OpLoc)
2367    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2368      ComputationLHSType(CompLHSType),
2369      ComputationResultType(CompResultType) {
2370    assert(isCompoundAssignmentOp() &&
2371           "Only should be used for compound assignments");
2372  }
2373
2374  /// \brief Build an empty compound assignment operator expression.
2375  explicit CompoundAssignOperator(EmptyShell Empty)
2376    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2377
2378  // The two computation types are the type the LHS is converted
2379  // to for the computation and the type of the result; the two are
2380  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2381  QualType getComputationLHSType() const { return ComputationLHSType; }
2382  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2383
2384  QualType getComputationResultType() const { return ComputationResultType; }
2385  void setComputationResultType(QualType T) { ComputationResultType = T; }
2386
2387  static bool classof(const CompoundAssignOperator *) { return true; }
2388  static bool classof(const Stmt *S) {
2389    return S->getStmtClass() == CompoundAssignOperatorClass;
2390  }
2391};
2392
2393/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2394/// GNU "missing LHS" extension is in use.
2395///
2396class ConditionalOperator : public Expr {
2397  enum { COND, LHS, RHS, END_EXPR };
2398  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2399  Stmt* Save;
2400  SourceLocation QuestionLoc, ColonLoc;
2401public:
2402  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2403                      SourceLocation CLoc, Expr *rhs, Expr *save, QualType t)
2404    : Expr(ConditionalOperatorClass, t,
2405           // FIXME: the type of the conditional operator doesn't
2406           // depend on the type of the conditional, but the standard
2407           // seems to imply that it could. File a bug!
2408           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2409           (cond->isValueDependent() ||
2410            (lhs && lhs->isValueDependent()) ||
2411            (rhs && rhs->isValueDependent()))),
2412      QuestionLoc(QLoc),
2413      ColonLoc(CLoc) {
2414    SubExprs[COND] = cond;
2415    SubExprs[LHS] = lhs;
2416    SubExprs[RHS] = rhs;
2417    Save = save;
2418  }
2419
2420  /// \brief Build an empty conditional operator.
2421  explicit ConditionalOperator(EmptyShell Empty)
2422    : Expr(ConditionalOperatorClass, Empty) { }
2423
2424  // getCond - Return the expression representing the condition for
2425  //  the ?: operator.
2426  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2427  void setCond(Expr *E) { SubExprs[COND] = E; }
2428
2429  // getTrueExpr - Return the subexpression representing the value of the ?:
2430  //  expression if the condition evaluates to true.
2431  Expr *getTrueExpr() const {
2432    return cast<Expr>(!Save ? SubExprs[LHS] : SubExprs[COND]);
2433  }
2434
2435  // getFalseExpr - Return the subexpression representing the value of the ?:
2436  // expression if the condition evaluates to false. This is the same as getRHS.
2437  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2438
2439  // getSaveExpr - In most cases this value will be null. Except a GCC extension
2440  // allows the left subexpression to be omitted, and instead of that condition
2441  // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
2442  // expression "x" is only evaluated once. Under this senario, this function
2443  // returns the original, non-converted condition expression for the ?:operator
2444  Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2445
2446  Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
2447  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2448
2449  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2450  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2451
2452  Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2453  void setSAVE(Expr *E) { Save = E; }
2454
2455  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2456  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2457
2458  SourceLocation getColonLoc() const { return ColonLoc; }
2459  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2460
2461  virtual SourceRange getSourceRange() const {
2462    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2463  }
2464  static bool classof(const Stmt *T) {
2465    return T->getStmtClass() == ConditionalOperatorClass;
2466  }
2467  static bool classof(const ConditionalOperator *) { return true; }
2468
2469  // Iterators
2470  virtual child_iterator child_begin();
2471  virtual child_iterator child_end();
2472};
2473
2474/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2475class AddrLabelExpr : public Expr {
2476  SourceLocation AmpAmpLoc, LabelLoc;
2477  LabelStmt *Label;
2478public:
2479  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2480                QualType t)
2481    : Expr(AddrLabelExprClass, t, false, false),
2482      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2483
2484  /// \brief Build an empty address of a label expression.
2485  explicit AddrLabelExpr(EmptyShell Empty)
2486    : Expr(AddrLabelExprClass, Empty) { }
2487
2488  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2489  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2490  SourceLocation getLabelLoc() const { return LabelLoc; }
2491  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2492
2493  virtual SourceRange getSourceRange() const {
2494    return SourceRange(AmpAmpLoc, LabelLoc);
2495  }
2496
2497  LabelStmt *getLabel() const { return Label; }
2498  void setLabel(LabelStmt *S) { Label = S; }
2499
2500  static bool classof(const Stmt *T) {
2501    return T->getStmtClass() == AddrLabelExprClass;
2502  }
2503  static bool classof(const AddrLabelExpr *) { return true; }
2504
2505  // Iterators
2506  virtual child_iterator child_begin();
2507  virtual child_iterator child_end();
2508};
2509
2510/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2511/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2512/// takes the value of the last subexpression.
2513class StmtExpr : public Expr {
2514  Stmt *SubStmt;
2515  SourceLocation LParenLoc, RParenLoc;
2516public:
2517  // FIXME: Does type-dependence need to be computed differently?
2518  StmtExpr(CompoundStmt *substmt, QualType T,
2519           SourceLocation lp, SourceLocation rp) :
2520    Expr(StmtExprClass, T, T->isDependentType(), false),
2521    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2522
2523  /// \brief Build an empty statement expression.
2524  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2525
2526  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2527  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2528  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2529
2530  virtual SourceRange getSourceRange() const {
2531    return SourceRange(LParenLoc, RParenLoc);
2532  }
2533
2534  SourceLocation getLParenLoc() const { return LParenLoc; }
2535  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2536  SourceLocation getRParenLoc() const { return RParenLoc; }
2537  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2538
2539  static bool classof(const Stmt *T) {
2540    return T->getStmtClass() == StmtExprClass;
2541  }
2542  static bool classof(const StmtExpr *) { return true; }
2543
2544  // Iterators
2545  virtual child_iterator child_begin();
2546  virtual child_iterator child_end();
2547};
2548
2549/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2550/// This AST node represents a function that returns 1 if two *types* (not
2551/// expressions) are compatible. The result of this built-in function can be
2552/// used in integer constant expressions.
2553class TypesCompatibleExpr : public Expr {
2554  TypeSourceInfo *TInfo1;
2555  TypeSourceInfo *TInfo2;
2556  SourceLocation BuiltinLoc, RParenLoc;
2557public:
2558  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2559                      TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
2560                      SourceLocation RP) :
2561    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2562    TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2563
2564  /// \brief Build an empty __builtin_type_compatible_p expression.
2565  explicit TypesCompatibleExpr(EmptyShell Empty)
2566    : Expr(TypesCompatibleExprClass, Empty) { }
2567
2568  TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
2569  void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
2570  TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
2571  void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
2572
2573  QualType getArgType1() const { return TInfo1->getType(); }
2574  QualType getArgType2() const { return TInfo2->getType(); }
2575
2576  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2577  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2578
2579  SourceLocation getRParenLoc() const { return RParenLoc; }
2580  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2581
2582  virtual SourceRange getSourceRange() const {
2583    return SourceRange(BuiltinLoc, RParenLoc);
2584  }
2585  static bool classof(const Stmt *T) {
2586    return T->getStmtClass() == TypesCompatibleExprClass;
2587  }
2588  static bool classof(const TypesCompatibleExpr *) { return true; }
2589
2590  // Iterators
2591  virtual child_iterator child_begin();
2592  virtual child_iterator child_end();
2593};
2594
2595/// ShuffleVectorExpr - clang-specific builtin-in function
2596/// __builtin_shufflevector.
2597/// This AST node represents a operator that does a constant
2598/// shuffle, similar to LLVM's shufflevector instruction. It takes
2599/// two vectors and a variable number of constant indices,
2600/// and returns the appropriately shuffled vector.
2601class ShuffleVectorExpr : public Expr {
2602  SourceLocation BuiltinLoc, RParenLoc;
2603
2604  // SubExprs - the list of values passed to the __builtin_shufflevector
2605  // function. The first two are vectors, and the rest are constant
2606  // indices.  The number of values in this list is always
2607  // 2+the number of indices in the vector type.
2608  Stmt **SubExprs;
2609  unsigned NumExprs;
2610
2611public:
2612  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2613  // to be computed differently?
2614  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2615                    QualType Type, SourceLocation BLoc,
2616                    SourceLocation RP) :
2617    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2618    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2619
2620    SubExprs = new (C) Stmt*[nexpr];
2621    for (unsigned i = 0; i < nexpr; i++)
2622      SubExprs[i] = args[i];
2623  }
2624
2625  /// \brief Build an empty vector-shuffle expression.
2626  explicit ShuffleVectorExpr(EmptyShell Empty)
2627    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2628
2629  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2630  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2631
2632  SourceLocation getRParenLoc() const { return RParenLoc; }
2633  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2634
2635  virtual SourceRange getSourceRange() const {
2636    return SourceRange(BuiltinLoc, RParenLoc);
2637  }
2638  static bool classof(const Stmt *T) {
2639    return T->getStmtClass() == ShuffleVectorExprClass;
2640  }
2641  static bool classof(const ShuffleVectorExpr *) { return true; }
2642
2643  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2644  /// constant expression, the actual arguments passed in, and the function
2645  /// pointers.
2646  unsigned getNumSubExprs() const { return NumExprs; }
2647
2648  /// getExpr - Return the Expr at the specified index.
2649  Expr *getExpr(unsigned Index) {
2650    assert((Index < NumExprs) && "Arg access out of range!");
2651    return cast<Expr>(SubExprs[Index]);
2652  }
2653  const Expr *getExpr(unsigned Index) const {
2654    assert((Index < NumExprs) && "Arg access out of range!");
2655    return cast<Expr>(SubExprs[Index]);
2656  }
2657
2658  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2659
2660  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2661    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2662    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2663  }
2664
2665  // Iterators
2666  virtual child_iterator child_begin();
2667  virtual child_iterator child_end();
2668};
2669
2670/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2671/// This AST node is similar to the conditional operator (?:) in C, with
2672/// the following exceptions:
2673/// - the test expression must be a integer constant expression.
2674/// - the expression returned acts like the chosen subexpression in every
2675///   visible way: the type is the same as that of the chosen subexpression,
2676///   and all predicates (whether it's an l-value, whether it's an integer
2677///   constant expression, etc.) return the same result as for the chosen
2678///   sub-expression.
2679class ChooseExpr : public Expr {
2680  enum { COND, LHS, RHS, END_EXPR };
2681  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2682  SourceLocation BuiltinLoc, RParenLoc;
2683public:
2684  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2685             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2686    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2687      BuiltinLoc(BLoc), RParenLoc(RP) {
2688      SubExprs[COND] = cond;
2689      SubExprs[LHS] = lhs;
2690      SubExprs[RHS] = rhs;
2691    }
2692
2693  /// \brief Build an empty __builtin_choose_expr.
2694  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2695
2696  /// isConditionTrue - Return whether the condition is true (i.e. not
2697  /// equal to zero).
2698  bool isConditionTrue(ASTContext &C) const;
2699
2700  /// getChosenSubExpr - Return the subexpression chosen according to the
2701  /// condition.
2702  Expr *getChosenSubExpr(ASTContext &C) const {
2703    return isConditionTrue(C) ? getLHS() : getRHS();
2704  }
2705
2706  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2707  void setCond(Expr *E) { SubExprs[COND] = E; }
2708  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2709  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2710  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2711  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2712
2713  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2714  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2715
2716  SourceLocation getRParenLoc() const { return RParenLoc; }
2717  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2718
2719  virtual SourceRange getSourceRange() const {
2720    return SourceRange(BuiltinLoc, RParenLoc);
2721  }
2722  static bool classof(const Stmt *T) {
2723    return T->getStmtClass() == ChooseExprClass;
2724  }
2725  static bool classof(const ChooseExpr *) { return true; }
2726
2727  // Iterators
2728  virtual child_iterator child_begin();
2729  virtual child_iterator child_end();
2730};
2731
2732/// GNUNullExpr - Implements the GNU __null extension, which is a name
2733/// for a null pointer constant that has integral type (e.g., int or
2734/// long) and is the same size and alignment as a pointer. The __null
2735/// extension is typically only used by system headers, which define
2736/// NULL as __null in C++ rather than using 0 (which is an integer
2737/// that may not match the size of a pointer).
2738class GNUNullExpr : public Expr {
2739  /// TokenLoc - The location of the __null keyword.
2740  SourceLocation TokenLoc;
2741
2742public:
2743  GNUNullExpr(QualType Ty, SourceLocation Loc)
2744    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2745
2746  /// \brief Build an empty GNU __null expression.
2747  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2748
2749  /// getTokenLocation - The location of the __null token.
2750  SourceLocation getTokenLocation() const { return TokenLoc; }
2751  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2752
2753  virtual SourceRange getSourceRange() const {
2754    return SourceRange(TokenLoc);
2755  }
2756  static bool classof(const Stmt *T) {
2757    return T->getStmtClass() == GNUNullExprClass;
2758  }
2759  static bool classof(const GNUNullExpr *) { return true; }
2760
2761  // Iterators
2762  virtual child_iterator child_begin();
2763  virtual child_iterator child_end();
2764};
2765
2766/// VAArgExpr, used for the builtin function __builtin_va_arg.
2767class VAArgExpr : public Expr {
2768  Stmt *Val;
2769  TypeSourceInfo *TInfo;
2770  SourceLocation BuiltinLoc, RParenLoc;
2771public:
2772  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2773            SourceLocation RPLoc, QualType t)
2774    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2775      Val(e), TInfo(TInfo),
2776      BuiltinLoc(BLoc),
2777      RParenLoc(RPLoc) { }
2778
2779  /// \brief Create an empty __builtin_va_arg expression.
2780  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2781
2782  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2783  Expr *getSubExpr() { return cast<Expr>(Val); }
2784  void setSubExpr(Expr *E) { Val = E; }
2785
2786  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2787  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2788
2789  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2790  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2791
2792  SourceLocation getRParenLoc() const { return RParenLoc; }
2793  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2794
2795  virtual SourceRange getSourceRange() const {
2796    return SourceRange(BuiltinLoc, RParenLoc);
2797  }
2798  static bool classof(const Stmt *T) {
2799    return T->getStmtClass() == VAArgExprClass;
2800  }
2801  static bool classof(const VAArgExpr *) { return true; }
2802
2803  // Iterators
2804  virtual child_iterator child_begin();
2805  virtual child_iterator child_end();
2806};
2807
2808/// @brief Describes an C or C++ initializer list.
2809///
2810/// InitListExpr describes an initializer list, which can be used to
2811/// initialize objects of different types, including
2812/// struct/class/union types, arrays, and vectors. For example:
2813///
2814/// @code
2815/// struct foo x = { 1, { 2, 3 } };
2816/// @endcode
2817///
2818/// Prior to semantic analysis, an initializer list will represent the
2819/// initializer list as written by the user, but will have the
2820/// placeholder type "void". This initializer list is called the
2821/// syntactic form of the initializer, and may contain C99 designated
2822/// initializers (represented as DesignatedInitExprs), initializations
2823/// of subobject members without explicit braces, and so on. Clients
2824/// interested in the original syntax of the initializer list should
2825/// use the syntactic form of the initializer list.
2826///
2827/// After semantic analysis, the initializer list will represent the
2828/// semantic form of the initializer, where the initializations of all
2829/// subobjects are made explicit with nested InitListExpr nodes and
2830/// C99 designators have been eliminated by placing the designated
2831/// initializations into the subobject they initialize. Additionally,
2832/// any "holes" in the initialization, where no initializer has been
2833/// specified for a particular subobject, will be replaced with
2834/// implicitly-generated ImplicitValueInitExpr expressions that
2835/// value-initialize the subobjects. Note, however, that the
2836/// initializer lists may still have fewer initializers than there are
2837/// elements to initialize within the object.
2838///
2839/// Given the semantic form of the initializer list, one can retrieve
2840/// the original syntactic form of that initializer list (if it
2841/// exists) using getSyntacticForm(). Since many initializer lists
2842/// have the same syntactic and semantic forms, getSyntacticForm() may
2843/// return NULL, indicating that the current initializer list also
2844/// serves as its syntactic form.
2845class InitListExpr : public Expr {
2846  // FIXME: Eliminate this vector in favor of ASTContext allocation
2847  typedef ASTVector<Stmt *> InitExprsTy;
2848  InitExprsTy InitExprs;
2849  SourceLocation LBraceLoc, RBraceLoc;
2850
2851  /// Contains the initializer list that describes the syntactic form
2852  /// written in the source code.
2853  InitListExpr *SyntacticForm;
2854
2855  /// If this initializer list initializes a union, specifies which
2856  /// field within the union will be initialized.
2857  FieldDecl *UnionFieldInit;
2858
2859  /// Whether this initializer list originally had a GNU array-range
2860  /// designator in it. This is a temporary marker used by CodeGen.
2861  bool HadArrayRangeDesignator;
2862
2863public:
2864  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2865               Expr **initexprs, unsigned numinits,
2866               SourceLocation rbraceloc);
2867
2868  /// \brief Build an empty initializer list.
2869  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2870    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2871
2872  unsigned getNumInits() const { return InitExprs.size(); }
2873
2874  const Expr* getInit(unsigned Init) const {
2875    assert(Init < getNumInits() && "Initializer access out of range!");
2876    return cast_or_null<Expr>(InitExprs[Init]);
2877  }
2878
2879  Expr* getInit(unsigned Init) {
2880    assert(Init < getNumInits() && "Initializer access out of range!");
2881    return cast_or_null<Expr>(InitExprs[Init]);
2882  }
2883
2884  void setInit(unsigned Init, Expr *expr) {
2885    assert(Init < getNumInits() && "Initializer access out of range!");
2886    InitExprs[Init] = expr;
2887  }
2888
2889  /// \brief Reserve space for some number of initializers.
2890  void reserveInits(ASTContext &C, unsigned NumInits);
2891
2892  /// @brief Specify the number of initializers
2893  ///
2894  /// If there are more than @p NumInits initializers, the remaining
2895  /// initializers will be destroyed. If there are fewer than @p
2896  /// NumInits initializers, NULL expressions will be added for the
2897  /// unknown initializers.
2898  void resizeInits(ASTContext &Context, unsigned NumInits);
2899
2900  /// @brief Updates the initializer at index @p Init with the new
2901  /// expression @p expr, and returns the old expression at that
2902  /// location.
2903  ///
2904  /// When @p Init is out of range for this initializer list, the
2905  /// initializer list will be extended with NULL expressions to
2906  /// accomodate the new entry.
2907  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2908
2909  /// \brief If this initializes a union, specifies which field in the
2910  /// union to initialize.
2911  ///
2912  /// Typically, this field is the first named field within the
2913  /// union. However, a designated initializer can specify the
2914  /// initialization of a different field within the union.
2915  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2916  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2917
2918  // Explicit InitListExpr's originate from source code (and have valid source
2919  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2920  bool isExplicit() {
2921    return LBraceLoc.isValid() && RBraceLoc.isValid();
2922  }
2923
2924  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2925  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2926  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2927  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2928
2929  /// @brief Retrieve the initializer list that describes the
2930  /// syntactic form of the initializer.
2931  ///
2932  ///
2933  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2934  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2935
2936  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2937  void sawArrayRangeDesignator(bool ARD = true) {
2938    HadArrayRangeDesignator = ARD;
2939  }
2940
2941  virtual SourceRange getSourceRange() const {
2942    return SourceRange(LBraceLoc, RBraceLoc);
2943  }
2944  static bool classof(const Stmt *T) {
2945    return T->getStmtClass() == InitListExprClass;
2946  }
2947  static bool classof(const InitListExpr *) { return true; }
2948
2949  // Iterators
2950  virtual child_iterator child_begin();
2951  virtual child_iterator child_end();
2952
2953  typedef InitExprsTy::iterator iterator;
2954  typedef InitExprsTy::const_iterator const_iterator;
2955  typedef InitExprsTy::reverse_iterator reverse_iterator;
2956  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
2957
2958  iterator begin() { return InitExprs.begin(); }
2959  const_iterator begin() const { return InitExprs.begin(); }
2960  iterator end() { return InitExprs.end(); }
2961  const_iterator end() const { return InitExprs.end(); }
2962  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2963  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
2964  reverse_iterator rend() { return InitExprs.rend(); }
2965  const_reverse_iterator rend() const { return InitExprs.rend(); }
2966};
2967
2968/// @brief Represents a C99 designated initializer expression.
2969///
2970/// A designated initializer expression (C99 6.7.8) contains one or
2971/// more designators (which can be field designators, array
2972/// designators, or GNU array-range designators) followed by an
2973/// expression that initializes the field or element(s) that the
2974/// designators refer to. For example, given:
2975///
2976/// @code
2977/// struct point {
2978///   double x;
2979///   double y;
2980/// };
2981/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2982/// @endcode
2983///
2984/// The InitListExpr contains three DesignatedInitExprs, the first of
2985/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2986/// designators, one array designator for @c [2] followed by one field
2987/// designator for @c .y. The initalization expression will be 1.0.
2988class DesignatedInitExpr : public Expr {
2989public:
2990  /// \brief Forward declaration of the Designator class.
2991  class Designator;
2992
2993private:
2994  /// The location of the '=' or ':' prior to the actual initializer
2995  /// expression.
2996  SourceLocation EqualOrColonLoc;
2997
2998  /// Whether this designated initializer used the GNU deprecated
2999  /// syntax rather than the C99 '=' syntax.
3000  bool GNUSyntax : 1;
3001
3002  /// The number of designators in this initializer expression.
3003  unsigned NumDesignators : 15;
3004
3005  /// \brief The designators in this designated initialization
3006  /// expression.
3007  Designator *Designators;
3008
3009  /// The number of subexpressions of this initializer expression,
3010  /// which contains both the initializer and any additional
3011  /// expressions used by array and array-range designators.
3012  unsigned NumSubExprs : 16;
3013
3014
3015  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3016                     const Designator *Designators,
3017                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3018                     Expr **IndexExprs, unsigned NumIndexExprs,
3019                     Expr *Init);
3020
3021  explicit DesignatedInitExpr(unsigned NumSubExprs)
3022    : Expr(DesignatedInitExprClass, EmptyShell()),
3023      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3024
3025public:
3026  /// A field designator, e.g., ".x".
3027  struct FieldDesignator {
3028    /// Refers to the field that is being initialized. The low bit
3029    /// of this field determines whether this is actually a pointer
3030    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3031    /// initially constructed, a field designator will store an
3032    /// IdentifierInfo*. After semantic analysis has resolved that
3033    /// name, the field designator will instead store a FieldDecl*.
3034    uintptr_t NameOrField;
3035
3036    /// The location of the '.' in the designated initializer.
3037    unsigned DotLoc;
3038
3039    /// The location of the field name in the designated initializer.
3040    unsigned FieldLoc;
3041  };
3042
3043  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3044  struct ArrayOrRangeDesignator {
3045    /// Location of the first index expression within the designated
3046    /// initializer expression's list of subexpressions.
3047    unsigned Index;
3048    /// The location of the '[' starting the array range designator.
3049    unsigned LBracketLoc;
3050    /// The location of the ellipsis separating the start and end
3051    /// indices. Only valid for GNU array-range designators.
3052    unsigned EllipsisLoc;
3053    /// The location of the ']' terminating the array range designator.
3054    unsigned RBracketLoc;
3055  };
3056
3057  /// @brief Represents a single C99 designator.
3058  ///
3059  /// @todo This class is infuriatingly similar to clang::Designator,
3060  /// but minor differences (storing indices vs. storing pointers)
3061  /// keep us from reusing it. Try harder, later, to rectify these
3062  /// differences.
3063  class Designator {
3064    /// @brief The kind of designator this describes.
3065    enum {
3066      FieldDesignator,
3067      ArrayDesignator,
3068      ArrayRangeDesignator
3069    } Kind;
3070
3071    union {
3072      /// A field designator, e.g., ".x".
3073      struct FieldDesignator Field;
3074      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3075      struct ArrayOrRangeDesignator ArrayOrRange;
3076    };
3077    friend class DesignatedInitExpr;
3078
3079  public:
3080    Designator() {}
3081
3082    /// @brief Initializes a field designator.
3083    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3084               SourceLocation FieldLoc)
3085      : Kind(FieldDesignator) {
3086      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3087      Field.DotLoc = DotLoc.getRawEncoding();
3088      Field.FieldLoc = FieldLoc.getRawEncoding();
3089    }
3090
3091    /// @brief Initializes an array designator.
3092    Designator(unsigned Index, SourceLocation LBracketLoc,
3093               SourceLocation RBracketLoc)
3094      : Kind(ArrayDesignator) {
3095      ArrayOrRange.Index = Index;
3096      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3097      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3098      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3099    }
3100
3101    /// @brief Initializes a GNU array-range designator.
3102    Designator(unsigned Index, SourceLocation LBracketLoc,
3103               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3104      : Kind(ArrayRangeDesignator) {
3105      ArrayOrRange.Index = Index;
3106      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3107      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3108      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3109    }
3110
3111    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3112    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3113    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3114
3115    IdentifierInfo * getFieldName();
3116
3117    FieldDecl *getField() {
3118      assert(Kind == FieldDesignator && "Only valid on a field designator");
3119      if (Field.NameOrField & 0x01)
3120        return 0;
3121      else
3122        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3123    }
3124
3125    void setField(FieldDecl *FD) {
3126      assert(Kind == FieldDesignator && "Only valid on a field designator");
3127      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3128    }
3129
3130    SourceLocation getDotLoc() const {
3131      assert(Kind == FieldDesignator && "Only valid on a field designator");
3132      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3133    }
3134
3135    SourceLocation getFieldLoc() const {
3136      assert(Kind == FieldDesignator && "Only valid on a field designator");
3137      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3138    }
3139
3140    SourceLocation getLBracketLoc() const {
3141      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3142             "Only valid on an array or array-range designator");
3143      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3144    }
3145
3146    SourceLocation getRBracketLoc() const {
3147      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3148             "Only valid on an array or array-range designator");
3149      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3150    }
3151
3152    SourceLocation getEllipsisLoc() const {
3153      assert(Kind == ArrayRangeDesignator &&
3154             "Only valid on an array-range designator");
3155      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3156    }
3157
3158    unsigned getFirstExprIndex() const {
3159      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3160             "Only valid on an array or array-range designator");
3161      return ArrayOrRange.Index;
3162    }
3163
3164    SourceLocation getStartLocation() const {
3165      if (Kind == FieldDesignator)
3166        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3167      else
3168        return getLBracketLoc();
3169    }
3170  };
3171
3172  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3173                                    unsigned NumDesignators,
3174                                    Expr **IndexExprs, unsigned NumIndexExprs,
3175                                    SourceLocation EqualOrColonLoc,
3176                                    bool GNUSyntax, Expr *Init);
3177
3178  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3179
3180  /// @brief Returns the number of designators in this initializer.
3181  unsigned size() const { return NumDesignators; }
3182
3183  // Iterator access to the designators.
3184  typedef Designator* designators_iterator;
3185  designators_iterator designators_begin() { return Designators; }
3186  designators_iterator designators_end() {
3187    return Designators + NumDesignators;
3188  }
3189
3190  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3191
3192  void setDesignators(ASTContext &C, const Designator *Desigs,
3193                      unsigned NumDesigs);
3194
3195  Expr *getArrayIndex(const Designator& D);
3196  Expr *getArrayRangeStart(const Designator& D);
3197  Expr *getArrayRangeEnd(const Designator& D);
3198
3199  /// @brief Retrieve the location of the '=' that precedes the
3200  /// initializer value itself, if present.
3201  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3202  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3203
3204  /// @brief Determines whether this designated initializer used the
3205  /// deprecated GNU syntax for designated initializers.
3206  bool usesGNUSyntax() const { return GNUSyntax; }
3207  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3208
3209  /// @brief Retrieve the initializer value.
3210  Expr *getInit() const {
3211    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3212  }
3213
3214  void setInit(Expr *init) {
3215    *child_begin() = init;
3216  }
3217
3218  /// \brief Retrieve the total number of subexpressions in this
3219  /// designated initializer expression, including the actual
3220  /// initialized value and any expressions that occur within array
3221  /// and array-range designators.
3222  unsigned getNumSubExprs() const { return NumSubExprs; }
3223
3224  Expr *getSubExpr(unsigned Idx) {
3225    assert(Idx < NumSubExprs && "Subscript out of range");
3226    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3227    Ptr += sizeof(DesignatedInitExpr);
3228    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3229  }
3230
3231  void setSubExpr(unsigned Idx, Expr *E) {
3232    assert(Idx < NumSubExprs && "Subscript out of range");
3233    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3234    Ptr += sizeof(DesignatedInitExpr);
3235    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3236  }
3237
3238  /// \brief Replaces the designator at index @p Idx with the series
3239  /// of designators in [First, Last).
3240  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3241                        const Designator *Last);
3242
3243  virtual SourceRange getSourceRange() const;
3244
3245  static bool classof(const Stmt *T) {
3246    return T->getStmtClass() == DesignatedInitExprClass;
3247  }
3248  static bool classof(const DesignatedInitExpr *) { return true; }
3249
3250  // Iterators
3251  virtual child_iterator child_begin();
3252  virtual child_iterator child_end();
3253};
3254
3255/// \brief Represents an implicitly-generated value initialization of
3256/// an object of a given type.
3257///
3258/// Implicit value initializations occur within semantic initializer
3259/// list expressions (InitListExpr) as placeholders for subobject
3260/// initializations not explicitly specified by the user.
3261///
3262/// \see InitListExpr
3263class ImplicitValueInitExpr : public Expr {
3264public:
3265  explicit ImplicitValueInitExpr(QualType ty)
3266    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3267
3268  /// \brief Construct an empty implicit value initialization.
3269  explicit ImplicitValueInitExpr(EmptyShell Empty)
3270    : Expr(ImplicitValueInitExprClass, Empty) { }
3271
3272  static bool classof(const Stmt *T) {
3273    return T->getStmtClass() == ImplicitValueInitExprClass;
3274  }
3275  static bool classof(const ImplicitValueInitExpr *) { return true; }
3276
3277  virtual SourceRange getSourceRange() const {
3278    return SourceRange();
3279  }
3280
3281  // Iterators
3282  virtual child_iterator child_begin();
3283  virtual child_iterator child_end();
3284};
3285
3286
3287class ParenListExpr : public Expr {
3288  Stmt **Exprs;
3289  unsigned NumExprs;
3290  SourceLocation LParenLoc, RParenLoc;
3291
3292public:
3293  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3294                unsigned numexprs, SourceLocation rparenloc);
3295
3296  /// \brief Build an empty paren list.
3297  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3298
3299  unsigned getNumExprs() const { return NumExprs; }
3300
3301  const Expr* getExpr(unsigned Init) const {
3302    assert(Init < getNumExprs() && "Initializer access out of range!");
3303    return cast_or_null<Expr>(Exprs[Init]);
3304  }
3305
3306  Expr* getExpr(unsigned Init) {
3307    assert(Init < getNumExprs() && "Initializer access out of range!");
3308    return cast_or_null<Expr>(Exprs[Init]);
3309  }
3310
3311  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3312
3313  SourceLocation getLParenLoc() const { return LParenLoc; }
3314  SourceLocation getRParenLoc() const { return RParenLoc; }
3315
3316  virtual SourceRange getSourceRange() const {
3317    return SourceRange(LParenLoc, RParenLoc);
3318  }
3319  static bool classof(const Stmt *T) {
3320    return T->getStmtClass() == ParenListExprClass;
3321  }
3322  static bool classof(const ParenListExpr *) { return true; }
3323
3324  // Iterators
3325  virtual child_iterator child_begin();
3326  virtual child_iterator child_end();
3327
3328  friend class ASTStmtReader;
3329  friend class ASTStmtWriter;
3330};
3331
3332
3333//===----------------------------------------------------------------------===//
3334// Clang Extensions
3335//===----------------------------------------------------------------------===//
3336
3337
3338/// ExtVectorElementExpr - This represents access to specific elements of a
3339/// vector, and may occur on the left hand side or right hand side.  For example
3340/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3341///
3342/// Note that the base may have either vector or pointer to vector type, just
3343/// like a struct field reference.
3344///
3345class ExtVectorElementExpr : public Expr {
3346  Stmt *Base;
3347  IdentifierInfo *Accessor;
3348  SourceLocation AccessorLoc;
3349public:
3350  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3351                       SourceLocation loc)
3352    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3353           base->isValueDependent()),
3354      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3355
3356  /// \brief Build an empty vector element expression.
3357  explicit ExtVectorElementExpr(EmptyShell Empty)
3358    : Expr(ExtVectorElementExprClass, Empty) { }
3359
3360  const Expr *getBase() const { return cast<Expr>(Base); }
3361  Expr *getBase() { return cast<Expr>(Base); }
3362  void setBase(Expr *E) { Base = E; }
3363
3364  IdentifierInfo &getAccessor() const { return *Accessor; }
3365  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3366
3367  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3368  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3369
3370  /// getNumElements - Get the number of components being selected.
3371  unsigned getNumElements() const;
3372
3373  /// containsDuplicateElements - Return true if any element access is
3374  /// repeated.
3375  bool containsDuplicateElements() const;
3376
3377  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3378  /// aggregate Constant of ConstantInt(s).
3379  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3380
3381  virtual SourceRange getSourceRange() const {
3382    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3383  }
3384
3385  /// isArrow - Return true if the base expression is a pointer to vector,
3386  /// return false if the base expression is a vector.
3387  bool isArrow() const;
3388
3389  static bool classof(const Stmt *T) {
3390    return T->getStmtClass() == ExtVectorElementExprClass;
3391  }
3392  static bool classof(const ExtVectorElementExpr *) { return true; }
3393
3394  // Iterators
3395  virtual child_iterator child_begin();
3396  virtual child_iterator child_end();
3397};
3398
3399
3400/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3401/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3402class BlockExpr : public Expr {
3403protected:
3404  BlockDecl *TheBlock;
3405  bool HasBlockDeclRefExprs;
3406public:
3407  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3408    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3409      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3410
3411  /// \brief Build an empty block expression.
3412  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3413
3414  const BlockDecl *getBlockDecl() const { return TheBlock; }
3415  BlockDecl *getBlockDecl() { return TheBlock; }
3416  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3417
3418  // Convenience functions for probing the underlying BlockDecl.
3419  SourceLocation getCaretLocation() const;
3420  const Stmt *getBody() const;
3421  Stmt *getBody();
3422
3423  virtual SourceRange getSourceRange() const {
3424    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3425  }
3426
3427  /// getFunctionType - Return the underlying function type for this block.
3428  const FunctionType *getFunctionType() const;
3429
3430  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3431  /// inside of the block that reference values outside the block.
3432  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3433  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3434
3435  static bool classof(const Stmt *T) {
3436    return T->getStmtClass() == BlockExprClass;
3437  }
3438  static bool classof(const BlockExpr *) { return true; }
3439
3440  // Iterators
3441  virtual child_iterator child_begin();
3442  virtual child_iterator child_end();
3443};
3444
3445/// BlockDeclRefExpr - A reference to a declared variable, function,
3446/// enum, etc.
3447class BlockDeclRefExpr : public Expr {
3448  ValueDecl *D;
3449  SourceLocation Loc;
3450  bool IsByRef : 1;
3451  bool ConstQualAdded : 1;
3452  Stmt *CopyConstructorVal;
3453public:
3454  // FIXME: Fix type/value dependence!
3455  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3456                   bool constAdded = false,
3457                   Stmt *copyConstructorVal = 0)
3458  : Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false),
3459    D(d), Loc(l), IsByRef(ByRef),
3460    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3461
3462  // \brief Build an empty reference to a declared variable in a
3463  // block.
3464  explicit BlockDeclRefExpr(EmptyShell Empty)
3465    : Expr(BlockDeclRefExprClass, Empty) { }
3466
3467  ValueDecl *getDecl() { return D; }
3468  const ValueDecl *getDecl() const { return D; }
3469  void setDecl(ValueDecl *VD) { D = VD; }
3470
3471  SourceLocation getLocation() const { return Loc; }
3472  void setLocation(SourceLocation L) { Loc = L; }
3473
3474  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3475
3476  bool isByRef() const { return IsByRef; }
3477  void setByRef(bool BR) { IsByRef = BR; }
3478
3479  bool isConstQualAdded() const { return ConstQualAdded; }
3480  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3481
3482  const Expr *getCopyConstructorExpr() const
3483    { return cast_or_null<Expr>(CopyConstructorVal); }
3484  Expr *getCopyConstructorExpr()
3485    { return cast_or_null<Expr>(CopyConstructorVal); }
3486  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3487
3488  static bool classof(const Stmt *T) {
3489    return T->getStmtClass() == BlockDeclRefExprClass;
3490  }
3491  static bool classof(const BlockDeclRefExpr *) { return true; }
3492
3493  // Iterators
3494  virtual child_iterator child_begin();
3495  virtual child_iterator child_end();
3496};
3497
3498}  // end namespace clang
3499
3500#endif
3501