Expr.h revision 25d0a0f67d9e949ffbfc57bf487012f5cbfd886e
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include <cctype>
32
33namespace clang {
34  class ASTContext;
35  class APValue;
36  class Decl;
37  class IdentifierInfo;
38  class ParmVarDecl;
39  class NamedDecl;
40  class ValueDecl;
41  class BlockDecl;
42  class CXXBaseSpecifier;
43  class CXXOperatorCallExpr;
44  class CXXMemberCallExpr;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_NotBlockQualified,
240    MLV_ReadonlyProperty,
241    MLV_NoSetterProperty,
242    MLV_MemberFunction,
243    MLV_SubObjCPropertySetting,
244    MLV_InvalidMessageExpression,
245    MLV_ClassTemporary
246  };
247  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
248                                              SourceLocation *Loc = 0) const;
249
250  /// \brief The return type of classify(). Represents the C++0x expression
251  ///        taxonomy.
252  class Classification {
253  public:
254    /// \brief The various classification results. Most of these mean prvalue.
255    enum Kinds {
256      CL_LValue,
257      CL_XValue,
258      CL_Function, // Functions cannot be lvalues in C.
259      CL_Void, // Void cannot be an lvalue in C.
260      CL_AddressableVoid, // Void expression whose address can be taken in C.
261      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
262      CL_MemberFunction, // An expression referring to a member function
263      CL_SubObjCPropertySetting,
264      CL_ClassTemporary, // A prvalue of class type
265      CL_ObjCMessageRValue, // ObjC message is an rvalue
266      CL_PRValue // A prvalue for any other reason, of any other type
267    };
268    /// \brief The results of modification testing.
269    enum ModifiableType {
270      CM_Untested, // testModifiable was false.
271      CM_Modifiable,
272      CM_RValue, // Not modifiable because it's an rvalue
273      CM_Function, // Not modifiable because it's a function; C++ only
274      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
275      CM_NotBlockQualified, // Not captured in the closure
276      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
277      CM_ConstQualified,
278      CM_ArrayType,
279      CM_IncompleteType
280    };
281
282  private:
283    friend class Expr;
284
285    unsigned short Kind;
286    unsigned short Modifiable;
287
288    explicit Classification(Kinds k, ModifiableType m)
289      : Kind(k), Modifiable(m)
290    {}
291
292  public:
293    Classification() {}
294
295    Kinds getKind() const { return static_cast<Kinds>(Kind); }
296    ModifiableType getModifiable() const {
297      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
298      return static_cast<ModifiableType>(Modifiable);
299    }
300    bool isLValue() const { return Kind == CL_LValue; }
301    bool isXValue() const { return Kind == CL_XValue; }
302    bool isGLValue() const { return Kind <= CL_XValue; }
303    bool isPRValue() const { return Kind >= CL_Function; }
304    bool isRValue() const { return Kind >= CL_XValue; }
305    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
306
307    /// \brief Create a simple, modifiably lvalue
308    static Classification makeSimpleLValue() {
309      return Classification(CL_LValue, CM_Modifiable);
310    }
311
312  };
313  /// \brief Classify - Classify this expression according to the C++0x
314  ///        expression taxonomy.
315  ///
316  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
317  /// old lvalue vs rvalue. This function determines the type of expression this
318  /// is. There are three expression types:
319  /// - lvalues are classical lvalues as in C++03.
320  /// - prvalues are equivalent to rvalues in C++03.
321  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
322  ///   function returning an rvalue reference.
323  /// lvalues and xvalues are collectively referred to as glvalues, while
324  /// prvalues and xvalues together form rvalues.
325  Classification Classify(ASTContext &Ctx) const {
326    return ClassifyImpl(Ctx, 0);
327  }
328
329  /// \brief ClassifyModifiable - Classify this expression according to the
330  ///        C++0x expression taxonomy, and see if it is valid on the left side
331  ///        of an assignment.
332  ///
333  /// This function extends classify in that it also tests whether the
334  /// expression is modifiable (C99 6.3.2.1p1).
335  /// \param Loc A source location that might be filled with a relevant location
336  ///            if the expression is not modifiable.
337  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
338    return ClassifyImpl(Ctx, &Loc);
339  }
340
341  /// getValueKindForType - Given a formal return or parameter type,
342  /// give its value kind.
343  static ExprValueKind getValueKindForType(QualType T) {
344    if (const ReferenceType *RT = T->getAs<ReferenceType>())
345      return (isa<LValueReferenceType>(RT)
346                ? VK_LValue
347                : (RT->getPointeeType()->isFunctionType()
348                     ? VK_LValue : VK_XValue));
349    return VK_RValue;
350  }
351
352  /// getValueKind - The value kind that this expression produces.
353  ExprValueKind getValueKind() const {
354    return static_cast<ExprValueKind>(ExprBits.ValueKind);
355  }
356
357  /// getObjectKind - The object kind that this expression produces.
358  /// Object kinds are meaningful only for expressions that yield an
359  /// l-value or x-value.
360  ExprObjectKind getObjectKind() const {
361    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
362  }
363
364  bool isOrdinaryOrBitFieldObject() const {
365    ExprObjectKind OK = getObjectKind();
366    return (OK == OK_Ordinary || OK == OK_BitField);
367  }
368
369  /// setValueKind - Set the value kind produced by this expression.
370  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
371
372  /// setObjectKind - Set the object kind produced by this expression.
373  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
374
375private:
376  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
377
378public:
379
380  /// \brief If this expression refers to a bit-field, retrieve the
381  /// declaration of that bit-field.
382  FieldDecl *getBitField();
383
384  const FieldDecl *getBitField() const {
385    return const_cast<Expr*>(this)->getBitField();
386  }
387
388  /// \brief If this expression is an l-value for an Objective C
389  /// property, find the underlying property reference expression.
390  const ObjCPropertyRefExpr *getObjCProperty() const;
391
392  /// \brief Returns whether this expression refers to a vector element.
393  bool refersToVectorElement() const;
394
395  /// \brief Returns whether this expression has a placeholder type.
396  bool hasPlaceholderType() const {
397    return getType()->isPlaceholderType();
398  }
399
400  /// \brief Returns whether this expression has a specific placeholder type.
401  bool hasPlaceholderType(BuiltinType::Kind K) const {
402    assert(BuiltinType::isPlaceholderTypeKind(K));
403    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
404      return BT->getKind() == K;
405    return false;
406  }
407
408  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
409  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
410  /// but also int expressions which are produced by things like comparisons in
411  /// C.
412  bool isKnownToHaveBooleanValue() const;
413
414  /// isIntegerConstantExpr - Return true if this expression is a valid integer
415  /// constant expression, and, if so, return its value in Result.  If not a
416  /// valid i-c-e, return false and fill in Loc (if specified) with the location
417  /// of the invalid expression.
418  ///
419  /// Note: This does not perform the implicit conversions required by C++11
420  /// [expr.const]p5.
421  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
422                             SourceLocation *Loc = 0,
423                             bool isEvaluated = true) const;
424  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
425
426  /// isCXX98IntegralConstantExpr - Return true if this expression is an
427  /// integral constant expression in C++98. Can only be used in C++.
428  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
429
430  /// isCXX11ConstantExpr - Return true if this expression is a constant
431  /// expression in C++11. Can only be used in C++.
432  ///
433  /// Note: This does not perform the implicit conversions required by C++11
434  /// [expr.const]p5.
435  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
436                           SourceLocation *Loc = 0) const;
437
438  /// isPotentialConstantExpr - Return true if this function's definition
439  /// might be usable in a constant expression in C++11, if it were marked
440  /// constexpr. Return false if the function can never produce a constant
441  /// expression, along with diagnostics describing why not.
442  static bool isPotentialConstantExpr(const FunctionDecl *FD,
443                                      llvm::SmallVectorImpl<
444                                        PartialDiagnosticAt> &Diags);
445
446  /// isConstantInitializer - Returns true if this expression can be emitted to
447  /// IR as a constant, and thus can be used as a constant initializer in C.
448  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
449
450  /// EvalStatus is a struct with detailed info about an evaluation in progress.
451  struct EvalStatus {
452    /// HasSideEffects - Whether the evaluated expression has side effects.
453    /// For example, (f() && 0) can be folded, but it still has side effects.
454    bool HasSideEffects;
455
456    /// Diag - If this is non-null, it will be filled in with a stack of notes
457    /// indicating why evaluation failed (or why it failed to produce a constant
458    /// expression).
459    /// If the expression is unfoldable, the notes will indicate why it's not
460    /// foldable. If the expression is foldable, but not a constant expression,
461    /// the notes will describes why it isn't a constant expression. If the
462    /// expression *is* a constant expression, no notes will be produced.
463    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
464
465    EvalStatus() : HasSideEffects(false), Diag(0) {}
466
467    // hasSideEffects - Return true if the evaluated expression has
468    // side effects.
469    bool hasSideEffects() const {
470      return HasSideEffects;
471    }
472  };
473
474  /// EvalResult is a struct with detailed info about an evaluated expression.
475  struct EvalResult : EvalStatus {
476    /// Val - This is the value the expression can be folded to.
477    APValue Val;
478
479    // isGlobalLValue - Return true if the evaluated lvalue expression
480    // is global.
481    bool isGlobalLValue() const;
482  };
483
484  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
485  /// an rvalue using any crazy technique (that has nothing to do with language
486  /// standards) that we want to, even if the expression has side-effects. If
487  /// this function returns true, it returns the folded constant in Result. If
488  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
489  /// applied.
490  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
491
492  /// EvaluateAsBooleanCondition - Return true if this is a constant
493  /// which we we can fold and convert to a boolean condition using
494  /// any crazy technique that we want to, even if the expression has
495  /// side-effects.
496  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
497
498  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
499
500  /// EvaluateAsInt - Return true if this is a constant which we can fold and
501  /// convert to an integer, using any crazy technique that we want to.
502  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
503                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
504
505  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
506  /// constant folded without side-effects, but discard the result.
507  bool isEvaluatable(const ASTContext &Ctx) const;
508
509  /// HasSideEffects - This routine returns true for all those expressions
510  /// which must be evaluated each time and must not be optimized away
511  /// or evaluated at compile time. Example is a function call, volatile
512  /// variable read.
513  bool HasSideEffects(const ASTContext &Ctx) const;
514
515  /// \brief Determine whether this expression involves a call to any function
516  /// that is not trivial.
517  bool hasNonTrivialCall(ASTContext &Ctx);
518
519  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
520  /// integer. This must be called on an expression that constant folds to an
521  /// integer.
522  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
523
524  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
525  /// lvalue with link time known address, with no side-effects.
526  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
527
528  /// EvaluateAsInitializer - Evaluate an expression as if it were the
529  /// initializer of the given declaration. Returns true if the initializer
530  /// can be folded to a constant, and produces any relevant notes. In C++11,
531  /// notes will be produced if the expression is not a constant expression.
532  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
533                             const VarDecl *VD,
534                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
535
536  /// \brief Enumeration used to describe the kind of Null pointer constant
537  /// returned from \c isNullPointerConstant().
538  enum NullPointerConstantKind {
539    /// \brief Expression is not a Null pointer constant.
540    NPCK_NotNull = 0,
541
542    /// \brief Expression is a Null pointer constant built from a zero integer.
543    NPCK_ZeroInteger,
544
545    /// \brief Expression is a C++0X nullptr.
546    NPCK_CXX0X_nullptr,
547
548    /// \brief Expression is a GNU-style __null constant.
549    NPCK_GNUNull
550  };
551
552  /// \brief Enumeration used to describe how \c isNullPointerConstant()
553  /// should cope with value-dependent expressions.
554  enum NullPointerConstantValueDependence {
555    /// \brief Specifies that the expression should never be value-dependent.
556    NPC_NeverValueDependent = 0,
557
558    /// \brief Specifies that a value-dependent expression of integral or
559    /// dependent type should be considered a null pointer constant.
560    NPC_ValueDependentIsNull,
561
562    /// \brief Specifies that a value-dependent expression should be considered
563    /// to never be a null pointer constant.
564    NPC_ValueDependentIsNotNull
565  };
566
567  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
568  /// a Null pointer constant. The return value can further distinguish the
569  /// kind of NULL pointer constant that was detected.
570  NullPointerConstantKind isNullPointerConstant(
571      ASTContext &Ctx,
572      NullPointerConstantValueDependence NPC) const;
573
574  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
575  /// write barrier.
576  bool isOBJCGCCandidate(ASTContext &Ctx) const;
577
578  /// \brief Returns true if this expression is a bound member function.
579  bool isBoundMemberFunction(ASTContext &Ctx) const;
580
581  /// \brief Given an expression of bound-member type, find the type
582  /// of the member.  Returns null if this is an *overloaded* bound
583  /// member expression.
584  static QualType findBoundMemberType(const Expr *expr);
585
586  /// \brief Result type of CanThrow().
587  enum CanThrowResult {
588    CT_Cannot,
589    CT_Dependent,
590    CT_Can
591  };
592  /// \brief Test if this expression, if evaluated, might throw, according to
593  ///        the rules of C++ [expr.unary.noexcept].
594  CanThrowResult CanThrow(ASTContext &C) const;
595
596  /// IgnoreImpCasts - Skip past any implicit casts which might
597  /// surround this expression.  Only skips ImplicitCastExprs.
598  Expr *IgnoreImpCasts();
599
600  /// IgnoreImplicit - Skip past any implicit AST nodes which might
601  /// surround this expression.
602  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
603
604  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
605  ///  its subexpression.  If that subexpression is also a ParenExpr,
606  ///  then this method recursively returns its subexpression, and so forth.
607  ///  Otherwise, the method returns the current Expr.
608  Expr *IgnoreParens();
609
610  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
611  /// or CastExprs, returning their operand.
612  Expr *IgnoreParenCasts();
613
614  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
615  /// any ParenExpr or ImplicitCastExprs, returning their operand.
616  Expr *IgnoreParenImpCasts();
617
618  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
619  /// call to a conversion operator, return the argument.
620  Expr *IgnoreConversionOperator();
621
622  const Expr *IgnoreConversionOperator() const {
623    return const_cast<Expr*>(this)->IgnoreConversionOperator();
624  }
625
626  const Expr *IgnoreParenImpCasts() const {
627    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
628  }
629
630  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
631  /// CastExprs that represent lvalue casts, returning their operand.
632  Expr *IgnoreParenLValueCasts();
633
634  const Expr *IgnoreParenLValueCasts() const {
635    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
636  }
637
638  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
639  /// value (including ptr->int casts of the same size).  Strip off any
640  /// ParenExpr or CastExprs, returning their operand.
641  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
642
643  /// \brief Determine whether this expression is a default function argument.
644  ///
645  /// Default arguments are implicitly generated in the abstract syntax tree
646  /// by semantic analysis for function calls, object constructions, etc. in
647  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
648  /// this routine also looks through any implicit casts to determine whether
649  /// the expression is a default argument.
650  bool isDefaultArgument() const;
651
652  /// \brief Determine whether the result of this expression is a
653  /// temporary object of the given class type.
654  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
655
656  /// \brief Whether this expression is an implicit reference to 'this' in C++.
657  bool isImplicitCXXThis() const;
658
659  const Expr *IgnoreImpCasts() const {
660    return const_cast<Expr*>(this)->IgnoreImpCasts();
661  }
662  const Expr *IgnoreParens() const {
663    return const_cast<Expr*>(this)->IgnoreParens();
664  }
665  const Expr *IgnoreParenCasts() const {
666    return const_cast<Expr*>(this)->IgnoreParenCasts();
667  }
668  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
669    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
670  }
671
672  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
673  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
674
675  static bool classof(const Stmt *T) {
676    return T->getStmtClass() >= firstExprConstant &&
677           T->getStmtClass() <= lastExprConstant;
678  }
679  static bool classof(const Expr *) { return true; }
680};
681
682
683//===----------------------------------------------------------------------===//
684// Primary Expressions.
685//===----------------------------------------------------------------------===//
686
687/// OpaqueValueExpr - An expression referring to an opaque object of a
688/// fixed type and value class.  These don't correspond to concrete
689/// syntax; instead they're used to express operations (usually copy
690/// operations) on values whose source is generally obvious from
691/// context.
692class OpaqueValueExpr : public Expr {
693  friend class ASTStmtReader;
694  Expr *SourceExpr;
695  SourceLocation Loc;
696
697public:
698  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
699                  ExprObjectKind OK = OK_Ordinary)
700    : Expr(OpaqueValueExprClass, T, VK, OK,
701           T->isDependentType(), T->isDependentType(),
702           T->isInstantiationDependentType(),
703           false),
704      SourceExpr(0), Loc(Loc) {
705  }
706
707  /// Given an expression which invokes a copy constructor --- i.e.  a
708  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
709  /// find the OpaqueValueExpr that's the source of the construction.
710  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
711
712  explicit OpaqueValueExpr(EmptyShell Empty)
713    : Expr(OpaqueValueExprClass, Empty) { }
714
715  /// \brief Retrieve the location of this expression.
716  SourceLocation getLocation() const { return Loc; }
717
718  SourceRange getSourceRange() const {
719    if (SourceExpr) return SourceExpr->getSourceRange();
720    return Loc;
721  }
722  SourceLocation getExprLoc() const {
723    if (SourceExpr) return SourceExpr->getExprLoc();
724    return Loc;
725  }
726
727  child_range children() { return child_range(); }
728
729  /// The source expression of an opaque value expression is the
730  /// expression which originally generated the value.  This is
731  /// provided as a convenience for analyses that don't wish to
732  /// precisely model the execution behavior of the program.
733  ///
734  /// The source expression is typically set when building the
735  /// expression which binds the opaque value expression in the first
736  /// place.
737  Expr *getSourceExpr() const { return SourceExpr; }
738  void setSourceExpr(Expr *e) { SourceExpr = e; }
739
740  static bool classof(const Stmt *T) {
741    return T->getStmtClass() == OpaqueValueExprClass;
742  }
743  static bool classof(const OpaqueValueExpr *) { return true; }
744};
745
746/// \brief A reference to a declared variable, function, enum, etc.
747/// [C99 6.5.1p2]
748///
749/// This encodes all the information about how a declaration is referenced
750/// within an expression.
751///
752/// There are several optional constructs attached to DeclRefExprs only when
753/// they apply in order to conserve memory. These are laid out past the end of
754/// the object, and flags in the DeclRefExprBitfield track whether they exist:
755///
756///   DeclRefExprBits.HasQualifier:
757///       Specifies when this declaration reference expression has a C++
758///       nested-name-specifier.
759///   DeclRefExprBits.HasFoundDecl:
760///       Specifies when this declaration reference expression has a record of
761///       a NamedDecl (different from the referenced ValueDecl) which was found
762///       during name lookup and/or overload resolution.
763///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
764///       Specifies when this declaration reference expression has an explicit
765///       C++ template keyword and/or template argument list.
766class DeclRefExpr : public Expr {
767  /// \brief The declaration that we are referencing.
768  ValueDecl *D;
769
770  /// \brief The location of the declaration name itself.
771  SourceLocation Loc;
772
773  /// \brief Provides source/type location info for the declaration name
774  /// embedded in D.
775  DeclarationNameLoc DNLoc;
776
777  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
778  NestedNameSpecifierLoc &getInternalQualifierLoc() {
779    assert(hasQualifier());
780    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
781  }
782
783  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
784  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
785    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
786  }
787
788  /// \brief Test whether there is a distinct FoundDecl attached to the end of
789  /// this DRE.
790  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
791
792  /// \brief Helper to retrieve the optional NamedDecl through which this
793  /// reference occured.
794  NamedDecl *&getInternalFoundDecl() {
795    assert(hasFoundDecl());
796    if (hasQualifier())
797      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
798    return *reinterpret_cast<NamedDecl **>(this + 1);
799  }
800
801  /// \brief Helper to retrieve the optional NamedDecl through which this
802  /// reference occured.
803  NamedDecl *getInternalFoundDecl() const {
804    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
805  }
806
807  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
808              SourceLocation TemplateKWLoc,
809              ValueDecl *D, const DeclarationNameInfo &NameInfo,
810              NamedDecl *FoundD,
811              const TemplateArgumentListInfo *TemplateArgs,
812              QualType T, ExprValueKind VK);
813
814  /// \brief Construct an empty declaration reference expression.
815  explicit DeclRefExpr(EmptyShell Empty)
816    : Expr(DeclRefExprClass, Empty) { }
817
818  /// \brief Computes the type- and value-dependence flags for this
819  /// declaration reference expression.
820  void computeDependence();
821
822public:
823  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
824              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
825    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
826      D(D), Loc(L), DNLoc(LocInfo) {
827    DeclRefExprBits.HasQualifier = 0;
828    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
829    DeclRefExprBits.HasFoundDecl = 0;
830    DeclRefExprBits.HadMultipleCandidates = 0;
831    computeDependence();
832  }
833
834  static DeclRefExpr *Create(ASTContext &Context,
835                             NestedNameSpecifierLoc QualifierLoc,
836                             SourceLocation TemplateKWLoc,
837                             ValueDecl *D,
838                             SourceLocation NameLoc,
839                             QualType T, ExprValueKind VK,
840                             NamedDecl *FoundD = 0,
841                             const TemplateArgumentListInfo *TemplateArgs = 0);
842
843  static DeclRefExpr *Create(ASTContext &Context,
844                             NestedNameSpecifierLoc QualifierLoc,
845                             SourceLocation TemplateKWLoc,
846                             ValueDecl *D,
847                             const DeclarationNameInfo &NameInfo,
848                             QualType T, ExprValueKind VK,
849                             NamedDecl *FoundD = 0,
850                             const TemplateArgumentListInfo *TemplateArgs = 0);
851
852  /// \brief Construct an empty declaration reference expression.
853  static DeclRefExpr *CreateEmpty(ASTContext &Context,
854                                  bool HasQualifier,
855                                  bool HasFoundDecl,
856                                  bool HasTemplateKWAndArgsInfo,
857                                  unsigned NumTemplateArgs);
858
859  ValueDecl *getDecl() { return D; }
860  const ValueDecl *getDecl() const { return D; }
861  void setDecl(ValueDecl *NewD) { D = NewD; }
862
863  DeclarationNameInfo getNameInfo() const {
864    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
865  }
866
867  SourceLocation getLocation() const { return Loc; }
868  void setLocation(SourceLocation L) { Loc = L; }
869  SourceRange getSourceRange() const;
870
871  /// \brief Determine whether this declaration reference was preceded by a
872  /// C++ nested-name-specifier, e.g., \c N::foo.
873  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
874
875  /// \brief If the name was qualified, retrieves the nested-name-specifier
876  /// that precedes the name. Otherwise, returns NULL.
877  NestedNameSpecifier *getQualifier() const {
878    if (!hasQualifier())
879      return 0;
880
881    return getInternalQualifierLoc().getNestedNameSpecifier();
882  }
883
884  /// \brief If the name was qualified, retrieves the nested-name-specifier
885  /// that precedes the name, with source-location information.
886  NestedNameSpecifierLoc getQualifierLoc() const {
887    if (!hasQualifier())
888      return NestedNameSpecifierLoc();
889
890    return getInternalQualifierLoc();
891  }
892
893  /// \brief Get the NamedDecl through which this reference occured.
894  ///
895  /// This Decl may be different from the ValueDecl actually referred to in the
896  /// presence of using declarations, etc. It always returns non-NULL, and may
897  /// simple return the ValueDecl when appropriate.
898  NamedDecl *getFoundDecl() {
899    return hasFoundDecl() ? getInternalFoundDecl() : D;
900  }
901
902  /// \brief Get the NamedDecl through which this reference occurred.
903  /// See non-const variant.
904  const NamedDecl *getFoundDecl() const {
905    return hasFoundDecl() ? getInternalFoundDecl() : D;
906  }
907
908  bool hasTemplateKWAndArgsInfo() const {
909    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
910  }
911
912  /// \brief Return the optional template keyword and arguments info.
913  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
914    if (!hasTemplateKWAndArgsInfo())
915      return 0;
916
917    if (hasFoundDecl())
918      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
919        &getInternalFoundDecl() + 1);
920
921    if (hasQualifier())
922      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
923        &getInternalQualifierLoc() + 1);
924
925    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
926  }
927
928  /// \brief Return the optional template keyword and arguments info.
929  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
930    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
931  }
932
933  /// \brief Retrieve the location of the template keyword preceding
934  /// this name, if any.
935  SourceLocation getTemplateKeywordLoc() const {
936    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
937    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
938  }
939
940  /// \brief Retrieve the location of the left angle bracket starting the
941  /// explicit template argument list following the name, if any.
942  SourceLocation getLAngleLoc() const {
943    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
944    return getTemplateKWAndArgsInfo()->LAngleLoc;
945  }
946
947  /// \brief Retrieve the location of the right angle bracket ending the
948  /// explicit template argument list following the name, if any.
949  SourceLocation getRAngleLoc() const {
950    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
951    return getTemplateKWAndArgsInfo()->RAngleLoc;
952  }
953
954  /// \brief Determines whether the name in this declaration reference
955  /// was preceded by the template keyword.
956  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
957
958  /// \brief Determines whether this declaration reference was followed by an
959  /// explicit template argument list.
960  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
961
962  /// \brief Retrieve the explicit template argument list that followed the
963  /// member template name.
964  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
965    assert(hasExplicitTemplateArgs());
966    return *getTemplateKWAndArgsInfo();
967  }
968
969  /// \brief Retrieve the explicit template argument list that followed the
970  /// member template name.
971  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
972    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
973  }
974
975  /// \brief Retrieves the optional explicit template arguments.
976  /// This points to the same data as getExplicitTemplateArgs(), but
977  /// returns null if there are no explicit template arguments.
978  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
979    if (!hasExplicitTemplateArgs()) return 0;
980    return &getExplicitTemplateArgs();
981  }
982
983  /// \brief Copies the template arguments (if present) into the given
984  /// structure.
985  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
986    if (hasExplicitTemplateArgs())
987      getExplicitTemplateArgs().copyInto(List);
988  }
989
990  /// \brief Retrieve the template arguments provided as part of this
991  /// template-id.
992  const TemplateArgumentLoc *getTemplateArgs() const {
993    if (!hasExplicitTemplateArgs())
994      return 0;
995
996    return getExplicitTemplateArgs().getTemplateArgs();
997  }
998
999  /// \brief Retrieve the number of template arguments provided as part of this
1000  /// template-id.
1001  unsigned getNumTemplateArgs() const {
1002    if (!hasExplicitTemplateArgs())
1003      return 0;
1004
1005    return getExplicitTemplateArgs().NumTemplateArgs;
1006  }
1007
1008  /// \brief Returns true if this expression refers to a function that
1009  /// was resolved from an overloaded set having size greater than 1.
1010  bool hadMultipleCandidates() const {
1011    return DeclRefExprBits.HadMultipleCandidates;
1012  }
1013  /// \brief Sets the flag telling whether this expression refers to
1014  /// a function that was resolved from an overloaded set having size
1015  /// greater than 1.
1016  void setHadMultipleCandidates(bool V = true) {
1017    DeclRefExprBits.HadMultipleCandidates = V;
1018  }
1019
1020  static bool classof(const Stmt *T) {
1021    return T->getStmtClass() == DeclRefExprClass;
1022  }
1023  static bool classof(const DeclRefExpr *) { return true; }
1024
1025  // Iterators
1026  child_range children() { return child_range(); }
1027
1028  friend class ASTStmtReader;
1029  friend class ASTStmtWriter;
1030};
1031
1032/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1033class PredefinedExpr : public Expr {
1034public:
1035  enum IdentType {
1036    Func,
1037    Function,
1038    PrettyFunction,
1039    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1040    /// 'virtual' keyword is omitted for virtual member functions.
1041    PrettyFunctionNoVirtual
1042  };
1043
1044private:
1045  SourceLocation Loc;
1046  IdentType Type;
1047public:
1048  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1049    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1050           type->isDependentType(), type->isDependentType(),
1051           type->isInstantiationDependentType(),
1052           /*ContainsUnexpandedParameterPack=*/false),
1053      Loc(l), Type(IT) {}
1054
1055  /// \brief Construct an empty predefined expression.
1056  explicit PredefinedExpr(EmptyShell Empty)
1057    : Expr(PredefinedExprClass, Empty) { }
1058
1059  IdentType getIdentType() const { return Type; }
1060  void setIdentType(IdentType IT) { Type = IT; }
1061
1062  SourceLocation getLocation() const { return Loc; }
1063  void setLocation(SourceLocation L) { Loc = L; }
1064
1065  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1066
1067  SourceRange getSourceRange() const { return SourceRange(Loc); }
1068
1069  static bool classof(const Stmt *T) {
1070    return T->getStmtClass() == PredefinedExprClass;
1071  }
1072  static bool classof(const PredefinedExpr *) { return true; }
1073
1074  // Iterators
1075  child_range children() { return child_range(); }
1076};
1077
1078/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1079/// leaking memory.
1080///
1081/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1082/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1083/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1084/// the APFloat/APInt values will never get freed. APNumericStorage uses
1085/// ASTContext's allocator for memory allocation.
1086class APNumericStorage {
1087  unsigned BitWidth;
1088  union {
1089    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1090    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1091  };
1092
1093  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1094
1095  APNumericStorage(const APNumericStorage&); // do not implement
1096  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1097
1098protected:
1099  APNumericStorage() : BitWidth(0), VAL(0) { }
1100
1101  llvm::APInt getIntValue() const {
1102    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1103    if (NumWords > 1)
1104      return llvm::APInt(BitWidth, NumWords, pVal);
1105    else
1106      return llvm::APInt(BitWidth, VAL);
1107  }
1108  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1109};
1110
1111class APIntStorage : public APNumericStorage {
1112public:
1113  llvm::APInt getValue() const { return getIntValue(); }
1114  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1115};
1116
1117class APFloatStorage : public APNumericStorage {
1118public:
1119  llvm::APFloat getValue(bool IsIEEE) const {
1120    return llvm::APFloat(getIntValue(), IsIEEE);
1121  }
1122  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1123    setIntValue(C, Val.bitcastToAPInt());
1124  }
1125};
1126
1127class IntegerLiteral : public Expr {
1128  APIntStorage Num;
1129  SourceLocation Loc;
1130
1131  /// \brief Construct an empty integer literal.
1132  explicit IntegerLiteral(EmptyShell Empty)
1133    : Expr(IntegerLiteralClass, Empty) { }
1134
1135public:
1136  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1137  // or UnsignedLongLongTy
1138  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1139                 QualType type, SourceLocation l)
1140    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1141           false, false),
1142      Loc(l) {
1143    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1144    assert(V.getBitWidth() == C.getIntWidth(type) &&
1145           "Integer type is not the correct size for constant.");
1146    setValue(C, V);
1147  }
1148
1149  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1150  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1151  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1152  /// \param V - the value that the returned integer literal contains.
1153  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1154                                QualType type, SourceLocation l);
1155  /// \brief Returns a new empty integer literal.
1156  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1157
1158  llvm::APInt getValue() const { return Num.getValue(); }
1159  SourceRange getSourceRange() const { return SourceRange(Loc); }
1160
1161  /// \brief Retrieve the location of the literal.
1162  SourceLocation getLocation() const { return Loc; }
1163
1164  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1165  void setLocation(SourceLocation Location) { Loc = Location; }
1166
1167  static bool classof(const Stmt *T) {
1168    return T->getStmtClass() == IntegerLiteralClass;
1169  }
1170  static bool classof(const IntegerLiteral *) { return true; }
1171
1172  // Iterators
1173  child_range children() { return child_range(); }
1174};
1175
1176class CharacterLiteral : public Expr {
1177public:
1178  enum CharacterKind {
1179    Ascii,
1180    Wide,
1181    UTF16,
1182    UTF32
1183  };
1184
1185private:
1186  unsigned Value;
1187  SourceLocation Loc;
1188  unsigned Kind : 2;
1189public:
1190  // type should be IntTy
1191  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1192                   SourceLocation l)
1193    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1194           false, false),
1195      Value(value), Loc(l), Kind(kind) {
1196  }
1197
1198  /// \brief Construct an empty character literal.
1199  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1200
1201  SourceLocation getLocation() const { return Loc; }
1202  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1203
1204  SourceRange getSourceRange() const { return SourceRange(Loc); }
1205
1206  unsigned getValue() const { return Value; }
1207
1208  void setLocation(SourceLocation Location) { Loc = Location; }
1209  void setKind(CharacterKind kind) { Kind = kind; }
1210  void setValue(unsigned Val) { Value = Val; }
1211
1212  static bool classof(const Stmt *T) {
1213    return T->getStmtClass() == CharacterLiteralClass;
1214  }
1215  static bool classof(const CharacterLiteral *) { return true; }
1216
1217  // Iterators
1218  child_range children() { return child_range(); }
1219};
1220
1221class FloatingLiteral : public Expr {
1222  APFloatStorage Num;
1223  bool IsIEEE : 1; // Distinguishes between PPC128 and IEEE128.
1224  bool IsExact : 1;
1225  SourceLocation Loc;
1226
1227  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1228                  QualType Type, SourceLocation L)
1229    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1230           false, false),
1231      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1232             &llvm::APFloat::IEEEquad),
1233      IsExact(isexact), Loc(L) {
1234    setValue(C, V);
1235  }
1236
1237  /// \brief Construct an empty floating-point literal.
1238  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
1239    : Expr(FloatingLiteralClass, Empty),
1240      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1241             &llvm::APFloat::IEEEquad),
1242      IsExact(false) { }
1243
1244public:
1245  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1246                                 bool isexact, QualType Type, SourceLocation L);
1247  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1248
1249  llvm::APFloat getValue() const { return Num.getValue(IsIEEE); }
1250  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1251    Num.setValue(C, Val);
1252  }
1253
1254  bool isExact() const { return IsExact; }
1255  void setExact(bool E) { IsExact = E; }
1256
1257  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1258  /// double.  Note that this may cause loss of precision, but is useful for
1259  /// debugging dumps, etc.
1260  double getValueAsApproximateDouble() const;
1261
1262  SourceLocation getLocation() const { return Loc; }
1263  void setLocation(SourceLocation L) { Loc = L; }
1264
1265  SourceRange getSourceRange() const { return SourceRange(Loc); }
1266
1267  static bool classof(const Stmt *T) {
1268    return T->getStmtClass() == FloatingLiteralClass;
1269  }
1270  static bool classof(const FloatingLiteral *) { return true; }
1271
1272  // Iterators
1273  child_range children() { return child_range(); }
1274};
1275
1276/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1277/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1278/// IntegerLiteral classes.  Instances of this class always have a Complex type
1279/// whose element type matches the subexpression.
1280///
1281class ImaginaryLiteral : public Expr {
1282  Stmt *Val;
1283public:
1284  ImaginaryLiteral(Expr *val, QualType Ty)
1285    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1286           false, false),
1287      Val(val) {}
1288
1289  /// \brief Build an empty imaginary literal.
1290  explicit ImaginaryLiteral(EmptyShell Empty)
1291    : Expr(ImaginaryLiteralClass, Empty) { }
1292
1293  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1294  Expr *getSubExpr() { return cast<Expr>(Val); }
1295  void setSubExpr(Expr *E) { Val = E; }
1296
1297  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1298  static bool classof(const Stmt *T) {
1299    return T->getStmtClass() == ImaginaryLiteralClass;
1300  }
1301  static bool classof(const ImaginaryLiteral *) { return true; }
1302
1303  // Iterators
1304  child_range children() { return child_range(&Val, &Val+1); }
1305};
1306
1307/// StringLiteral - This represents a string literal expression, e.g. "foo"
1308/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1309/// is NOT null-terminated, and the length of the string is determined by
1310/// calling getByteLength().  The C type for a string is always a
1311/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1312/// not.
1313///
1314/// Note that strings in C can be formed by concatenation of multiple string
1315/// literal pptokens in translation phase #6.  This keeps track of the locations
1316/// of each of these pieces.
1317///
1318/// Strings in C can also be truncated and extended by assigning into arrays,
1319/// e.g. with constructs like:
1320///   char X[2] = "foobar";
1321/// In this case, getByteLength() will return 6, but the string literal will
1322/// have type "char[2]".
1323class StringLiteral : public Expr {
1324public:
1325  enum StringKind {
1326    Ascii,
1327    Wide,
1328    UTF8,
1329    UTF16,
1330    UTF32
1331  };
1332
1333private:
1334  friend class ASTStmtReader;
1335
1336  union {
1337    const char *asChar;
1338    const uint16_t *asUInt16;
1339    const uint32_t *asUInt32;
1340  } StrData;
1341  unsigned Length;
1342  unsigned CharByteWidth;
1343  unsigned NumConcatenated;
1344  unsigned Kind : 3;
1345  bool IsPascal : 1;
1346  SourceLocation TokLocs[1];
1347
1348  StringLiteral(QualType Ty) :
1349    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1350         false) {}
1351
1352  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1353
1354public:
1355  /// This is the "fully general" constructor that allows representation of
1356  /// strings formed from multiple concatenated tokens.
1357  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1358                               bool Pascal, QualType Ty,
1359                               const SourceLocation *Loc, unsigned NumStrs);
1360
1361  /// Simple constructor for string literals made from one token.
1362  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1363                               bool Pascal, QualType Ty,
1364                               SourceLocation Loc) {
1365    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1366  }
1367
1368  /// \brief Construct an empty string literal.
1369  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1370
1371  StringRef getString() const {
1372    assert(CharByteWidth==1
1373           && "This function is used in places that assume strings use char");
1374    return StringRef(StrData.asChar, getByteLength());
1375  }
1376
1377  /// Allow clients that need the byte representation, such as ASTWriterStmt
1378  /// ::VisitStringLiteral(), access.
1379  StringRef getBytes() const {
1380    // FIXME: StringRef may not be the right type to use as a result for this.
1381    if (CharByteWidth == 1)
1382      return StringRef(StrData.asChar, getByteLength());
1383    if (CharByteWidth == 4)
1384      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1385                       getByteLength());
1386    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1387    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1388                     getByteLength());
1389  }
1390
1391  uint32_t getCodeUnit(size_t i) const {
1392    assert(i < Length && "out of bounds access");
1393    if (CharByteWidth == 1)
1394      return static_cast<unsigned char>(StrData.asChar[i]);
1395    if (CharByteWidth == 4)
1396      return StrData.asUInt32[i];
1397    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1398    return StrData.asUInt16[i];
1399  }
1400
1401  unsigned getByteLength() const { return CharByteWidth*Length; }
1402  unsigned getLength() const { return Length; }
1403  unsigned getCharByteWidth() const { return CharByteWidth; }
1404
1405  /// \brief Sets the string data to the given string data.
1406  void setString(ASTContext &C, StringRef Str,
1407                 StringKind Kind, bool IsPascal);
1408
1409  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1410
1411
1412  bool isAscii() const { return Kind == Ascii; }
1413  bool isWide() const { return Kind == Wide; }
1414  bool isUTF8() const { return Kind == UTF8; }
1415  bool isUTF16() const { return Kind == UTF16; }
1416  bool isUTF32() const { return Kind == UTF32; }
1417  bool isPascal() const { return IsPascal; }
1418
1419  bool containsNonAsciiOrNull() const {
1420    StringRef Str = getString();
1421    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1422      if (!isascii(Str[i]) || !Str[i])
1423        return true;
1424    return false;
1425  }
1426
1427  /// getNumConcatenated - Get the number of string literal tokens that were
1428  /// concatenated in translation phase #6 to form this string literal.
1429  unsigned getNumConcatenated() const { return NumConcatenated; }
1430
1431  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1432    assert(TokNum < NumConcatenated && "Invalid tok number");
1433    return TokLocs[TokNum];
1434  }
1435  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1436    assert(TokNum < NumConcatenated && "Invalid tok number");
1437    TokLocs[TokNum] = L;
1438  }
1439
1440  /// getLocationOfByte - Return a source location that points to the specified
1441  /// byte of this string literal.
1442  ///
1443  /// Strings are amazingly complex.  They can be formed from multiple tokens
1444  /// and can have escape sequences in them in addition to the usual trigraph
1445  /// and escaped newline business.  This routine handles this complexity.
1446  ///
1447  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1448                                   const LangOptions &Features,
1449                                   const TargetInfo &Target) const;
1450
1451  typedef const SourceLocation *tokloc_iterator;
1452  tokloc_iterator tokloc_begin() const { return TokLocs; }
1453  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1454
1455  SourceRange getSourceRange() const {
1456    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1457  }
1458  static bool classof(const Stmt *T) {
1459    return T->getStmtClass() == StringLiteralClass;
1460  }
1461  static bool classof(const StringLiteral *) { return true; }
1462
1463  // Iterators
1464  child_range children() { return child_range(); }
1465};
1466
1467/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1468/// AST node is only formed if full location information is requested.
1469class ParenExpr : public Expr {
1470  SourceLocation L, R;
1471  Stmt *Val;
1472public:
1473  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1474    : Expr(ParenExprClass, val->getType(),
1475           val->getValueKind(), val->getObjectKind(),
1476           val->isTypeDependent(), val->isValueDependent(),
1477           val->isInstantiationDependent(),
1478           val->containsUnexpandedParameterPack()),
1479      L(l), R(r), Val(val) {}
1480
1481  /// \brief Construct an empty parenthesized expression.
1482  explicit ParenExpr(EmptyShell Empty)
1483    : Expr(ParenExprClass, Empty) { }
1484
1485  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1486  Expr *getSubExpr() { return cast<Expr>(Val); }
1487  void setSubExpr(Expr *E) { Val = E; }
1488
1489  SourceRange getSourceRange() const { return SourceRange(L, R); }
1490
1491  /// \brief Get the location of the left parentheses '('.
1492  SourceLocation getLParen() const { return L; }
1493  void setLParen(SourceLocation Loc) { L = Loc; }
1494
1495  /// \brief Get the location of the right parentheses ')'.
1496  SourceLocation getRParen() const { return R; }
1497  void setRParen(SourceLocation Loc) { R = Loc; }
1498
1499  static bool classof(const Stmt *T) {
1500    return T->getStmtClass() == ParenExprClass;
1501  }
1502  static bool classof(const ParenExpr *) { return true; }
1503
1504  // Iterators
1505  child_range children() { return child_range(&Val, &Val+1); }
1506};
1507
1508
1509/// UnaryOperator - This represents the unary-expression's (except sizeof and
1510/// alignof), the postinc/postdec operators from postfix-expression, and various
1511/// extensions.
1512///
1513/// Notes on various nodes:
1514///
1515/// Real/Imag - These return the real/imag part of a complex operand.  If
1516///   applied to a non-complex value, the former returns its operand and the
1517///   later returns zero in the type of the operand.
1518///
1519class UnaryOperator : public Expr {
1520public:
1521  typedef UnaryOperatorKind Opcode;
1522
1523private:
1524  unsigned Opc : 5;
1525  SourceLocation Loc;
1526  Stmt *Val;
1527public:
1528
1529  UnaryOperator(Expr *input, Opcode opc, QualType type,
1530                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1531    : Expr(UnaryOperatorClass, type, VK, OK,
1532           input->isTypeDependent() || type->isDependentType(),
1533           input->isValueDependent(),
1534           (input->isInstantiationDependent() ||
1535            type->isInstantiationDependentType()),
1536           input->containsUnexpandedParameterPack()),
1537      Opc(opc), Loc(l), Val(input) {}
1538
1539  /// \brief Build an empty unary operator.
1540  explicit UnaryOperator(EmptyShell Empty)
1541    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1542
1543  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1544  void setOpcode(Opcode O) { Opc = O; }
1545
1546  Expr *getSubExpr() const { return cast<Expr>(Val); }
1547  void setSubExpr(Expr *E) { Val = E; }
1548
1549  /// getOperatorLoc - Return the location of the operator.
1550  SourceLocation getOperatorLoc() const { return Loc; }
1551  void setOperatorLoc(SourceLocation L) { Loc = L; }
1552
1553  /// isPostfix - Return true if this is a postfix operation, like x++.
1554  static bool isPostfix(Opcode Op) {
1555    return Op == UO_PostInc || Op == UO_PostDec;
1556  }
1557
1558  /// isPrefix - Return true if this is a prefix operation, like --x.
1559  static bool isPrefix(Opcode Op) {
1560    return Op == UO_PreInc || Op == UO_PreDec;
1561  }
1562
1563  bool isPrefix() const { return isPrefix(getOpcode()); }
1564  bool isPostfix() const { return isPostfix(getOpcode()); }
1565
1566  static bool isIncrementOp(Opcode Op) {
1567    return Op == UO_PreInc || Op == UO_PostInc;
1568  }
1569  bool isIncrementOp() const {
1570    return isIncrementOp(getOpcode());
1571  }
1572
1573  static bool isDecrementOp(Opcode Op) {
1574    return Op == UO_PreDec || Op == UO_PostDec;
1575  }
1576  bool isDecrementOp() const {
1577    return isDecrementOp(getOpcode());
1578  }
1579
1580  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1581  bool isIncrementDecrementOp() const {
1582    return isIncrementDecrementOp(getOpcode());
1583  }
1584
1585  static bool isArithmeticOp(Opcode Op) {
1586    return Op >= UO_Plus && Op <= UO_LNot;
1587  }
1588  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1589
1590  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1591  /// corresponds to, e.g. "sizeof" or "[pre]++"
1592  static const char *getOpcodeStr(Opcode Op);
1593
1594  /// \brief Retrieve the unary opcode that corresponds to the given
1595  /// overloaded operator.
1596  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1597
1598  /// \brief Retrieve the overloaded operator kind that corresponds to
1599  /// the given unary opcode.
1600  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1601
1602  SourceRange getSourceRange() const {
1603    if (isPostfix())
1604      return SourceRange(Val->getLocStart(), Loc);
1605    else
1606      return SourceRange(Loc, Val->getLocEnd());
1607  }
1608  SourceLocation getExprLoc() const { return Loc; }
1609
1610  static bool classof(const Stmt *T) {
1611    return T->getStmtClass() == UnaryOperatorClass;
1612  }
1613  static bool classof(const UnaryOperator *) { return true; }
1614
1615  // Iterators
1616  child_range children() { return child_range(&Val, &Val+1); }
1617};
1618
1619/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1620/// offsetof(record-type, member-designator). For example, given:
1621/// @code
1622/// struct S {
1623///   float f;
1624///   double d;
1625/// };
1626/// struct T {
1627///   int i;
1628///   struct S s[10];
1629/// };
1630/// @endcode
1631/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1632
1633class OffsetOfExpr : public Expr {
1634public:
1635  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1636  class OffsetOfNode {
1637  public:
1638    /// \brief The kind of offsetof node we have.
1639    enum Kind {
1640      /// \brief An index into an array.
1641      Array = 0x00,
1642      /// \brief A field.
1643      Field = 0x01,
1644      /// \brief A field in a dependent type, known only by its name.
1645      Identifier = 0x02,
1646      /// \brief An implicit indirection through a C++ base class, when the
1647      /// field found is in a base class.
1648      Base = 0x03
1649    };
1650
1651  private:
1652    enum { MaskBits = 2, Mask = 0x03 };
1653
1654    /// \brief The source range that covers this part of the designator.
1655    SourceRange Range;
1656
1657    /// \brief The data describing the designator, which comes in three
1658    /// different forms, depending on the lower two bits.
1659    ///   - An unsigned index into the array of Expr*'s stored after this node
1660    ///     in memory, for [constant-expression] designators.
1661    ///   - A FieldDecl*, for references to a known field.
1662    ///   - An IdentifierInfo*, for references to a field with a given name
1663    ///     when the class type is dependent.
1664    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1665    ///     base class.
1666    uintptr_t Data;
1667
1668  public:
1669    /// \brief Create an offsetof node that refers to an array element.
1670    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1671                 SourceLocation RBracketLoc)
1672      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1673
1674    /// \brief Create an offsetof node that refers to a field.
1675    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1676                 SourceLocation NameLoc)
1677      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1678        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1679
1680    /// \brief Create an offsetof node that refers to an identifier.
1681    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1682                 SourceLocation NameLoc)
1683      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1684        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1685
1686    /// \brief Create an offsetof node that refers into a C++ base class.
1687    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1688      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1689
1690    /// \brief Determine what kind of offsetof node this is.
1691    Kind getKind() const {
1692      return static_cast<Kind>(Data & Mask);
1693    }
1694
1695    /// \brief For an array element node, returns the index into the array
1696    /// of expressions.
1697    unsigned getArrayExprIndex() const {
1698      assert(getKind() == Array);
1699      return Data >> 2;
1700    }
1701
1702    /// \brief For a field offsetof node, returns the field.
1703    FieldDecl *getField() const {
1704      assert(getKind() == Field);
1705      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1706    }
1707
1708    /// \brief For a field or identifier offsetof node, returns the name of
1709    /// the field.
1710    IdentifierInfo *getFieldName() const;
1711
1712    /// \brief For a base class node, returns the base specifier.
1713    CXXBaseSpecifier *getBase() const {
1714      assert(getKind() == Base);
1715      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1716    }
1717
1718    /// \brief Retrieve the source range that covers this offsetof node.
1719    ///
1720    /// For an array element node, the source range contains the locations of
1721    /// the square brackets. For a field or identifier node, the source range
1722    /// contains the location of the period (if there is one) and the
1723    /// identifier.
1724    SourceRange getSourceRange() const { return Range; }
1725  };
1726
1727private:
1728
1729  SourceLocation OperatorLoc, RParenLoc;
1730  // Base type;
1731  TypeSourceInfo *TSInfo;
1732  // Number of sub-components (i.e. instances of OffsetOfNode).
1733  unsigned NumComps;
1734  // Number of sub-expressions (i.e. array subscript expressions).
1735  unsigned NumExprs;
1736
1737  OffsetOfExpr(ASTContext &C, QualType type,
1738               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1739               OffsetOfNode* compsPtr, unsigned numComps,
1740               Expr** exprsPtr, unsigned numExprs,
1741               SourceLocation RParenLoc);
1742
1743  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1744    : Expr(OffsetOfExprClass, EmptyShell()),
1745      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1746
1747public:
1748
1749  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1750                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1751                              OffsetOfNode* compsPtr, unsigned numComps,
1752                              Expr** exprsPtr, unsigned numExprs,
1753                              SourceLocation RParenLoc);
1754
1755  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1756                                   unsigned NumComps, unsigned NumExprs);
1757
1758  /// getOperatorLoc - Return the location of the operator.
1759  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1760  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1761
1762  /// \brief Return the location of the right parentheses.
1763  SourceLocation getRParenLoc() const { return RParenLoc; }
1764  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1765
1766  TypeSourceInfo *getTypeSourceInfo() const {
1767    return TSInfo;
1768  }
1769  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1770    TSInfo = tsi;
1771  }
1772
1773  const OffsetOfNode &getComponent(unsigned Idx) const {
1774    assert(Idx < NumComps && "Subscript out of range");
1775    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1776  }
1777
1778  void setComponent(unsigned Idx, OffsetOfNode ON) {
1779    assert(Idx < NumComps && "Subscript out of range");
1780    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1781  }
1782
1783  unsigned getNumComponents() const {
1784    return NumComps;
1785  }
1786
1787  Expr* getIndexExpr(unsigned Idx) {
1788    assert(Idx < NumExprs && "Subscript out of range");
1789    return reinterpret_cast<Expr **>(
1790                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1791  }
1792  const Expr *getIndexExpr(unsigned Idx) const {
1793    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1794  }
1795
1796  void setIndexExpr(unsigned Idx, Expr* E) {
1797    assert(Idx < NumComps && "Subscript out of range");
1798    reinterpret_cast<Expr **>(
1799                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1800  }
1801
1802  unsigned getNumExpressions() const {
1803    return NumExprs;
1804  }
1805
1806  SourceRange getSourceRange() const {
1807    return SourceRange(OperatorLoc, RParenLoc);
1808  }
1809
1810  static bool classof(const Stmt *T) {
1811    return T->getStmtClass() == OffsetOfExprClass;
1812  }
1813
1814  static bool classof(const OffsetOfExpr *) { return true; }
1815
1816  // Iterators
1817  child_range children() {
1818    Stmt **begin =
1819      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1820                               + NumComps);
1821    return child_range(begin, begin + NumExprs);
1822  }
1823};
1824
1825/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1826/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1827/// vec_step (OpenCL 1.1 6.11.12).
1828class UnaryExprOrTypeTraitExpr : public Expr {
1829  unsigned Kind : 2;
1830  bool isType : 1;    // true if operand is a type, false if an expression
1831  union {
1832    TypeSourceInfo *Ty;
1833    Stmt *Ex;
1834  } Argument;
1835  SourceLocation OpLoc, RParenLoc;
1836
1837public:
1838  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1839                           QualType resultType, SourceLocation op,
1840                           SourceLocation rp) :
1841      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1842           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1843           // Value-dependent if the argument is type-dependent.
1844           TInfo->getType()->isDependentType(),
1845           TInfo->getType()->isInstantiationDependentType(),
1846           TInfo->getType()->containsUnexpandedParameterPack()),
1847      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1848    Argument.Ty = TInfo;
1849  }
1850
1851  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1852                           QualType resultType, SourceLocation op,
1853                           SourceLocation rp) :
1854      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1855           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1856           // Value-dependent if the argument is type-dependent.
1857           E->isTypeDependent(),
1858           E->isInstantiationDependent(),
1859           E->containsUnexpandedParameterPack()),
1860      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1861    Argument.Ex = E;
1862  }
1863
1864  /// \brief Construct an empty sizeof/alignof expression.
1865  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1866    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1867
1868  UnaryExprOrTypeTrait getKind() const {
1869    return static_cast<UnaryExprOrTypeTrait>(Kind);
1870  }
1871  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1872
1873  bool isArgumentType() const { return isType; }
1874  QualType getArgumentType() const {
1875    return getArgumentTypeInfo()->getType();
1876  }
1877  TypeSourceInfo *getArgumentTypeInfo() const {
1878    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1879    return Argument.Ty;
1880  }
1881  Expr *getArgumentExpr() {
1882    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1883    return static_cast<Expr*>(Argument.Ex);
1884  }
1885  const Expr *getArgumentExpr() const {
1886    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1887  }
1888
1889  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1890  void setArgument(TypeSourceInfo *TInfo) {
1891    Argument.Ty = TInfo;
1892    isType = true;
1893  }
1894
1895  /// Gets the argument type, or the type of the argument expression, whichever
1896  /// is appropriate.
1897  QualType getTypeOfArgument() const {
1898    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1899  }
1900
1901  SourceLocation getOperatorLoc() const { return OpLoc; }
1902  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1903
1904  SourceLocation getRParenLoc() const { return RParenLoc; }
1905  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1906
1907  SourceRange getSourceRange() const {
1908    return SourceRange(OpLoc, RParenLoc);
1909  }
1910
1911  static bool classof(const Stmt *T) {
1912    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1913  }
1914  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1915
1916  // Iterators
1917  child_range children();
1918};
1919
1920//===----------------------------------------------------------------------===//
1921// Postfix Operators.
1922//===----------------------------------------------------------------------===//
1923
1924/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1925class ArraySubscriptExpr : public Expr {
1926  enum { LHS, RHS, END_EXPR=2 };
1927  Stmt* SubExprs[END_EXPR];
1928  SourceLocation RBracketLoc;
1929public:
1930  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1931                     ExprValueKind VK, ExprObjectKind OK,
1932                     SourceLocation rbracketloc)
1933  : Expr(ArraySubscriptExprClass, t, VK, OK,
1934         lhs->isTypeDependent() || rhs->isTypeDependent(),
1935         lhs->isValueDependent() || rhs->isValueDependent(),
1936         (lhs->isInstantiationDependent() ||
1937          rhs->isInstantiationDependent()),
1938         (lhs->containsUnexpandedParameterPack() ||
1939          rhs->containsUnexpandedParameterPack())),
1940    RBracketLoc(rbracketloc) {
1941    SubExprs[LHS] = lhs;
1942    SubExprs[RHS] = rhs;
1943  }
1944
1945  /// \brief Create an empty array subscript expression.
1946  explicit ArraySubscriptExpr(EmptyShell Shell)
1947    : Expr(ArraySubscriptExprClass, Shell) { }
1948
1949  /// An array access can be written A[4] or 4[A] (both are equivalent).
1950  /// - getBase() and getIdx() always present the normalized view: A[4].
1951  ///    In this case getBase() returns "A" and getIdx() returns "4".
1952  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1953  ///    4[A] getLHS() returns "4".
1954  /// Note: Because vector element access is also written A[4] we must
1955  /// predicate the format conversion in getBase and getIdx only on the
1956  /// the type of the RHS, as it is possible for the LHS to be a vector of
1957  /// integer type
1958  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1959  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1960  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1961
1962  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1963  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1964  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1965
1966  Expr *getBase() {
1967    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1968  }
1969
1970  const Expr *getBase() const {
1971    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1972  }
1973
1974  Expr *getIdx() {
1975    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1976  }
1977
1978  const Expr *getIdx() const {
1979    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1980  }
1981
1982  SourceRange getSourceRange() const {
1983    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1984  }
1985
1986  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1987  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1988
1989  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1990
1991  static bool classof(const Stmt *T) {
1992    return T->getStmtClass() == ArraySubscriptExprClass;
1993  }
1994  static bool classof(const ArraySubscriptExpr *) { return true; }
1995
1996  // Iterators
1997  child_range children() {
1998    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1999  }
2000};
2001
2002
2003/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2004/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2005/// while its subclasses may represent alternative syntax that (semantically)
2006/// results in a function call. For example, CXXOperatorCallExpr is
2007/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2008/// "str1 + str2" to resolve to a function call.
2009class CallExpr : public Expr {
2010  enum { FN=0, PREARGS_START=1 };
2011  Stmt **SubExprs;
2012  unsigned NumArgs;
2013  SourceLocation RParenLoc;
2014
2015protected:
2016  // These versions of the constructor are for derived classes.
2017  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2018           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2019           SourceLocation rparenloc);
2020  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2021
2022  Stmt *getPreArg(unsigned i) {
2023    assert(i < getNumPreArgs() && "Prearg access out of range!");
2024    return SubExprs[PREARGS_START+i];
2025  }
2026  const Stmt *getPreArg(unsigned i) const {
2027    assert(i < getNumPreArgs() && "Prearg access out of range!");
2028    return SubExprs[PREARGS_START+i];
2029  }
2030  void setPreArg(unsigned i, Stmt *PreArg) {
2031    assert(i < getNumPreArgs() && "Prearg access out of range!");
2032    SubExprs[PREARGS_START+i] = PreArg;
2033  }
2034
2035  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2036
2037public:
2038  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2039           ExprValueKind VK, SourceLocation rparenloc);
2040
2041  /// \brief Build an empty call expression.
2042  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2043
2044  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2045  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2046  void setCallee(Expr *F) { SubExprs[FN] = F; }
2047
2048  Decl *getCalleeDecl();
2049  const Decl *getCalleeDecl() const {
2050    return const_cast<CallExpr*>(this)->getCalleeDecl();
2051  }
2052
2053  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2054  FunctionDecl *getDirectCallee();
2055  const FunctionDecl *getDirectCallee() const {
2056    return const_cast<CallExpr*>(this)->getDirectCallee();
2057  }
2058
2059  /// getNumArgs - Return the number of actual arguments to this call.
2060  ///
2061  unsigned getNumArgs() const { return NumArgs; }
2062
2063  /// \brief Retrieve the call arguments.
2064  Expr **getArgs() {
2065    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2066  }
2067  const Expr *const *getArgs() const {
2068    return const_cast<CallExpr*>(this)->getArgs();
2069  }
2070
2071  /// getArg - Return the specified argument.
2072  Expr *getArg(unsigned Arg) {
2073    assert(Arg < NumArgs && "Arg access out of range!");
2074    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2075  }
2076  const Expr *getArg(unsigned Arg) const {
2077    assert(Arg < NumArgs && "Arg access out of range!");
2078    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2079  }
2080
2081  /// setArg - Set the specified argument.
2082  void setArg(unsigned Arg, Expr *ArgExpr) {
2083    assert(Arg < NumArgs && "Arg access out of range!");
2084    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2085  }
2086
2087  /// setNumArgs - This changes the number of arguments present in this call.
2088  /// Any orphaned expressions are deleted by this, and any new operands are set
2089  /// to null.
2090  void setNumArgs(ASTContext& C, unsigned NumArgs);
2091
2092  typedef ExprIterator arg_iterator;
2093  typedef ConstExprIterator const_arg_iterator;
2094
2095  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2096  arg_iterator arg_end() {
2097    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2098  }
2099  const_arg_iterator arg_begin() const {
2100    return SubExprs+PREARGS_START+getNumPreArgs();
2101  }
2102  const_arg_iterator arg_end() const {
2103    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2104  }
2105
2106  /// getNumCommas - Return the number of commas that must have been present in
2107  /// this function call.
2108  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2109
2110  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2111  /// not, return 0.
2112  unsigned isBuiltinCall() const;
2113
2114  /// getCallReturnType - Get the return type of the call expr. This is not
2115  /// always the type of the expr itself, if the return type is a reference
2116  /// type.
2117  QualType getCallReturnType() const;
2118
2119  SourceLocation getRParenLoc() const { return RParenLoc; }
2120  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2121
2122  SourceRange getSourceRange() const;
2123
2124  static bool classof(const Stmt *T) {
2125    return T->getStmtClass() >= firstCallExprConstant &&
2126           T->getStmtClass() <= lastCallExprConstant;
2127  }
2128  static bool classof(const CallExpr *) { return true; }
2129
2130  // Iterators
2131  child_range children() {
2132    return child_range(&SubExprs[0],
2133                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2134  }
2135};
2136
2137/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2138///
2139class MemberExpr : public Expr {
2140  /// Extra data stored in some member expressions.
2141  struct MemberNameQualifier {
2142    /// \brief The nested-name-specifier that qualifies the name, including
2143    /// source-location information.
2144    NestedNameSpecifierLoc QualifierLoc;
2145
2146    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2147    /// name qualifiers.
2148    DeclAccessPair FoundDecl;
2149  };
2150
2151  /// Base - the expression for the base pointer or structure references.  In
2152  /// X.F, this is "X".
2153  Stmt *Base;
2154
2155  /// MemberDecl - This is the decl being referenced by the field/member name.
2156  /// In X.F, this is the decl referenced by F.
2157  ValueDecl *MemberDecl;
2158
2159  /// MemberLoc - This is the location of the member name.
2160  SourceLocation MemberLoc;
2161
2162  /// MemberDNLoc - Provides source/type location info for the
2163  /// declaration name embedded in MemberDecl.
2164  DeclarationNameLoc MemberDNLoc;
2165
2166  /// IsArrow - True if this is "X->F", false if this is "X.F".
2167  bool IsArrow : 1;
2168
2169  /// \brief True if this member expression used a nested-name-specifier to
2170  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2171  /// declaration.  When true, a MemberNameQualifier
2172  /// structure is allocated immediately after the MemberExpr.
2173  bool HasQualifierOrFoundDecl : 1;
2174
2175  /// \brief True if this member expression specified a template keyword
2176  /// and/or a template argument list explicitly, e.g., x->f<int>,
2177  /// x->template f, x->template f<int>.
2178  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2179  /// TemplateArguments (if any) are allocated immediately after
2180  /// the MemberExpr or, if the member expression also has a qualifier,
2181  /// after the MemberNameQualifier structure.
2182  bool HasTemplateKWAndArgsInfo : 1;
2183
2184  /// \brief True if this member expression refers to a method that
2185  /// was resolved from an overloaded set having size greater than 1.
2186  bool HadMultipleCandidates : 1;
2187
2188  /// \brief Retrieve the qualifier that preceded the member name, if any.
2189  MemberNameQualifier *getMemberQualifier() {
2190    assert(HasQualifierOrFoundDecl);
2191    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2192  }
2193
2194  /// \brief Retrieve the qualifier that preceded the member name, if any.
2195  const MemberNameQualifier *getMemberQualifier() const {
2196    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2197  }
2198
2199public:
2200  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2201             const DeclarationNameInfo &NameInfo, QualType ty,
2202             ExprValueKind VK, ExprObjectKind OK)
2203    : Expr(MemberExprClass, ty, VK, OK,
2204           base->isTypeDependent(),
2205           base->isValueDependent(),
2206           base->isInstantiationDependent(),
2207           base->containsUnexpandedParameterPack()),
2208      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2209      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2210      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2211      HadMultipleCandidates(false) {
2212    assert(memberdecl->getDeclName() == NameInfo.getName());
2213  }
2214
2215  // NOTE: this constructor should be used only when it is known that
2216  // the member name can not provide additional syntactic info
2217  // (i.e., source locations for C++ operator names or type source info
2218  // for constructors, destructors and conversion operators).
2219  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2220             SourceLocation l, QualType ty,
2221             ExprValueKind VK, ExprObjectKind OK)
2222    : Expr(MemberExprClass, ty, VK, OK,
2223           base->isTypeDependent(), base->isValueDependent(),
2224           base->isInstantiationDependent(),
2225           base->containsUnexpandedParameterPack()),
2226      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2227      IsArrow(isarrow),
2228      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2229      HadMultipleCandidates(false) {}
2230
2231  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2232                            NestedNameSpecifierLoc QualifierLoc,
2233                            SourceLocation TemplateKWLoc,
2234                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2235                            DeclarationNameInfo MemberNameInfo,
2236                            const TemplateArgumentListInfo *targs,
2237                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2238
2239  void setBase(Expr *E) { Base = E; }
2240  Expr *getBase() const { return cast<Expr>(Base); }
2241
2242  /// \brief Retrieve the member declaration to which this expression refers.
2243  ///
2244  /// The returned declaration will either be a FieldDecl or (in C++)
2245  /// a CXXMethodDecl.
2246  ValueDecl *getMemberDecl() const { return MemberDecl; }
2247  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2248
2249  /// \brief Retrieves the declaration found by lookup.
2250  DeclAccessPair getFoundDecl() const {
2251    if (!HasQualifierOrFoundDecl)
2252      return DeclAccessPair::make(getMemberDecl(),
2253                                  getMemberDecl()->getAccess());
2254    return getMemberQualifier()->FoundDecl;
2255  }
2256
2257  /// \brief Determines whether this member expression actually had
2258  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2259  /// x->Base::foo.
2260  bool hasQualifier() const { return getQualifier() != 0; }
2261
2262  /// \brief If the member name was qualified, retrieves the
2263  /// nested-name-specifier that precedes the member name. Otherwise, returns
2264  /// NULL.
2265  NestedNameSpecifier *getQualifier() const {
2266    if (!HasQualifierOrFoundDecl)
2267      return 0;
2268
2269    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2270  }
2271
2272  /// \brief If the member name was qualified, retrieves the
2273  /// nested-name-specifier that precedes the member name, with source-location
2274  /// information.
2275  NestedNameSpecifierLoc getQualifierLoc() const {
2276    if (!hasQualifier())
2277      return NestedNameSpecifierLoc();
2278
2279    return getMemberQualifier()->QualifierLoc;
2280  }
2281
2282  /// \brief Return the optional template keyword and arguments info.
2283  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2284    if (!HasTemplateKWAndArgsInfo)
2285      return 0;
2286
2287    if (!HasQualifierOrFoundDecl)
2288      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2289
2290    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2291                                                      getMemberQualifier() + 1);
2292  }
2293
2294  /// \brief Return the optional template keyword and arguments info.
2295  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2296    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2297  }
2298
2299  /// \brief Retrieve the location of the template keyword preceding
2300  /// the member name, if any.
2301  SourceLocation getTemplateKeywordLoc() const {
2302    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2303    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2304  }
2305
2306  /// \brief Retrieve the location of the left angle bracket starting the
2307  /// explicit template argument list following the member name, if any.
2308  SourceLocation getLAngleLoc() const {
2309    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2310    return getTemplateKWAndArgsInfo()->LAngleLoc;
2311  }
2312
2313  /// \brief Retrieve the location of the right angle bracket ending the
2314  /// explicit template argument list following the member name, if any.
2315  SourceLocation getRAngleLoc() const {
2316    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2317    return getTemplateKWAndArgsInfo()->RAngleLoc;
2318  }
2319
2320  /// Determines whether the member name was preceded by the template keyword.
2321  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2322
2323  /// \brief Determines whether the member name was followed by an
2324  /// explicit template argument list.
2325  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2326
2327  /// \brief Copies the template arguments (if present) into the given
2328  /// structure.
2329  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2330    if (hasExplicitTemplateArgs())
2331      getExplicitTemplateArgs().copyInto(List);
2332  }
2333
2334  /// \brief Retrieve the explicit template argument list that
2335  /// follow the member template name.  This must only be called on an
2336  /// expression with explicit template arguments.
2337  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2338    assert(hasExplicitTemplateArgs());
2339    return *getTemplateKWAndArgsInfo();
2340  }
2341
2342  /// \brief Retrieve the explicit template argument list that
2343  /// followed the member template name.  This must only be called on
2344  /// an expression with explicit template arguments.
2345  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2346    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2347  }
2348
2349  /// \brief Retrieves the optional explicit template arguments.
2350  /// This points to the same data as getExplicitTemplateArgs(), but
2351  /// returns null if there are no explicit template arguments.
2352  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2353    if (!hasExplicitTemplateArgs()) return 0;
2354    return &getExplicitTemplateArgs();
2355  }
2356
2357  /// \brief Retrieve the template arguments provided as part of this
2358  /// template-id.
2359  const TemplateArgumentLoc *getTemplateArgs() const {
2360    if (!hasExplicitTemplateArgs())
2361      return 0;
2362
2363    return getExplicitTemplateArgs().getTemplateArgs();
2364  }
2365
2366  /// \brief Retrieve the number of template arguments provided as part of this
2367  /// template-id.
2368  unsigned getNumTemplateArgs() const {
2369    if (!hasExplicitTemplateArgs())
2370      return 0;
2371
2372    return getExplicitTemplateArgs().NumTemplateArgs;
2373  }
2374
2375  /// \brief Retrieve the member declaration name info.
2376  DeclarationNameInfo getMemberNameInfo() const {
2377    return DeclarationNameInfo(MemberDecl->getDeclName(),
2378                               MemberLoc, MemberDNLoc);
2379  }
2380
2381  bool isArrow() const { return IsArrow; }
2382  void setArrow(bool A) { IsArrow = A; }
2383
2384  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2385  /// location of 'F'.
2386  SourceLocation getMemberLoc() const { return MemberLoc; }
2387  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2388
2389  SourceRange getSourceRange() const;
2390
2391  SourceLocation getExprLoc() const { return MemberLoc; }
2392
2393  /// \brief Determine whether the base of this explicit is implicit.
2394  bool isImplicitAccess() const {
2395    return getBase() && getBase()->isImplicitCXXThis();
2396  }
2397
2398  /// \brief Returns true if this member expression refers to a method that
2399  /// was resolved from an overloaded set having size greater than 1.
2400  bool hadMultipleCandidates() const {
2401    return HadMultipleCandidates;
2402  }
2403  /// \brief Sets the flag telling whether this expression refers to
2404  /// a method that was resolved from an overloaded set having size
2405  /// greater than 1.
2406  void setHadMultipleCandidates(bool V = true) {
2407    HadMultipleCandidates = V;
2408  }
2409
2410  static bool classof(const Stmt *T) {
2411    return T->getStmtClass() == MemberExprClass;
2412  }
2413  static bool classof(const MemberExpr *) { return true; }
2414
2415  // Iterators
2416  child_range children() { return child_range(&Base, &Base+1); }
2417
2418  friend class ASTReader;
2419  friend class ASTStmtWriter;
2420};
2421
2422/// CompoundLiteralExpr - [C99 6.5.2.5]
2423///
2424class CompoundLiteralExpr : public Expr {
2425  /// LParenLoc - If non-null, this is the location of the left paren in a
2426  /// compound literal like "(int){4}".  This can be null if this is a
2427  /// synthesized compound expression.
2428  SourceLocation LParenLoc;
2429
2430  /// The type as written.  This can be an incomplete array type, in
2431  /// which case the actual expression type will be different.
2432  TypeSourceInfo *TInfo;
2433  Stmt *Init;
2434  bool FileScope;
2435public:
2436  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2437                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2438    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2439           tinfo->getType()->isDependentType(),
2440           init->isValueDependent(),
2441           (init->isInstantiationDependent() ||
2442            tinfo->getType()->isInstantiationDependentType()),
2443           init->containsUnexpandedParameterPack()),
2444      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2445
2446  /// \brief Construct an empty compound literal.
2447  explicit CompoundLiteralExpr(EmptyShell Empty)
2448    : Expr(CompoundLiteralExprClass, Empty) { }
2449
2450  const Expr *getInitializer() const { return cast<Expr>(Init); }
2451  Expr *getInitializer() { return cast<Expr>(Init); }
2452  void setInitializer(Expr *E) { Init = E; }
2453
2454  bool isFileScope() const { return FileScope; }
2455  void setFileScope(bool FS) { FileScope = FS; }
2456
2457  SourceLocation getLParenLoc() const { return LParenLoc; }
2458  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2459
2460  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2461  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2462
2463  SourceRange getSourceRange() const {
2464    // FIXME: Init should never be null.
2465    if (!Init)
2466      return SourceRange();
2467    if (LParenLoc.isInvalid())
2468      return Init->getSourceRange();
2469    return SourceRange(LParenLoc, Init->getLocEnd());
2470  }
2471
2472  static bool classof(const Stmt *T) {
2473    return T->getStmtClass() == CompoundLiteralExprClass;
2474  }
2475  static bool classof(const CompoundLiteralExpr *) { return true; }
2476
2477  // Iterators
2478  child_range children() { return child_range(&Init, &Init+1); }
2479};
2480
2481/// CastExpr - Base class for type casts, including both implicit
2482/// casts (ImplicitCastExpr) and explicit casts that have some
2483/// representation in the source code (ExplicitCastExpr's derived
2484/// classes).
2485class CastExpr : public Expr {
2486public:
2487  typedef clang::CastKind CastKind;
2488
2489private:
2490  Stmt *Op;
2491
2492  void CheckCastConsistency() const;
2493
2494  const CXXBaseSpecifier * const *path_buffer() const {
2495    return const_cast<CastExpr*>(this)->path_buffer();
2496  }
2497  CXXBaseSpecifier **path_buffer();
2498
2499  void setBasePathSize(unsigned basePathSize) {
2500    CastExprBits.BasePathSize = basePathSize;
2501    assert(CastExprBits.BasePathSize == basePathSize &&
2502           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2503  }
2504
2505protected:
2506  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2507           const CastKind kind, Expr *op, unsigned BasePathSize) :
2508    Expr(SC, ty, VK, OK_Ordinary,
2509         // Cast expressions are type-dependent if the type is
2510         // dependent (C++ [temp.dep.expr]p3).
2511         ty->isDependentType(),
2512         // Cast expressions are value-dependent if the type is
2513         // dependent or if the subexpression is value-dependent.
2514         ty->isDependentType() || (op && op->isValueDependent()),
2515         (ty->isInstantiationDependentType() ||
2516          (op && op->isInstantiationDependent())),
2517         (ty->containsUnexpandedParameterPack() ||
2518          op->containsUnexpandedParameterPack())),
2519    Op(op) {
2520    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2521    CastExprBits.Kind = kind;
2522    setBasePathSize(BasePathSize);
2523#ifndef NDEBUG
2524    CheckCastConsistency();
2525#endif
2526  }
2527
2528  /// \brief Construct an empty cast.
2529  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2530    : Expr(SC, Empty) {
2531    setBasePathSize(BasePathSize);
2532  }
2533
2534public:
2535  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2536  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2537  const char *getCastKindName() const;
2538
2539  Expr *getSubExpr() { return cast<Expr>(Op); }
2540  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2541  void setSubExpr(Expr *E) { Op = E; }
2542
2543  /// \brief Retrieve the cast subexpression as it was written in the source
2544  /// code, looking through any implicit casts or other intermediate nodes
2545  /// introduced by semantic analysis.
2546  Expr *getSubExprAsWritten();
2547  const Expr *getSubExprAsWritten() const {
2548    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2549  }
2550
2551  typedef CXXBaseSpecifier **path_iterator;
2552  typedef const CXXBaseSpecifier * const *path_const_iterator;
2553  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2554  unsigned path_size() const { return CastExprBits.BasePathSize; }
2555  path_iterator path_begin() { return path_buffer(); }
2556  path_iterator path_end() { return path_buffer() + path_size(); }
2557  path_const_iterator path_begin() const { return path_buffer(); }
2558  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2559
2560  void setCastPath(const CXXCastPath &Path);
2561
2562  static bool classof(const Stmt *T) {
2563    return T->getStmtClass() >= firstCastExprConstant &&
2564           T->getStmtClass() <= lastCastExprConstant;
2565  }
2566  static bool classof(const CastExpr *) { return true; }
2567
2568  // Iterators
2569  child_range children() { return child_range(&Op, &Op+1); }
2570};
2571
2572/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2573/// conversions, which have no direct representation in the original
2574/// source code. For example: converting T[]->T*, void f()->void
2575/// (*f)(), float->double, short->int, etc.
2576///
2577/// In C, implicit casts always produce rvalues. However, in C++, an
2578/// implicit cast whose result is being bound to a reference will be
2579/// an lvalue or xvalue. For example:
2580///
2581/// @code
2582/// class Base { };
2583/// class Derived : public Base { };
2584/// Derived &&ref();
2585/// void f(Derived d) {
2586///   Base& b = d; // initializer is an ImplicitCastExpr
2587///                // to an lvalue of type Base
2588///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2589///                     // to an xvalue of type Base
2590/// }
2591/// @endcode
2592class ImplicitCastExpr : public CastExpr {
2593private:
2594  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2595                   unsigned BasePathLength, ExprValueKind VK)
2596    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2597  }
2598
2599  /// \brief Construct an empty implicit cast.
2600  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2601    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2602
2603public:
2604  enum OnStack_t { OnStack };
2605  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2606                   ExprValueKind VK)
2607    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2608  }
2609
2610  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2611                                  CastKind Kind, Expr *Operand,
2612                                  const CXXCastPath *BasePath,
2613                                  ExprValueKind Cat);
2614
2615  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2616
2617  SourceRange getSourceRange() const {
2618    return getSubExpr()->getSourceRange();
2619  }
2620
2621  static bool classof(const Stmt *T) {
2622    return T->getStmtClass() == ImplicitCastExprClass;
2623  }
2624  static bool classof(const ImplicitCastExpr *) { return true; }
2625};
2626
2627inline Expr *Expr::IgnoreImpCasts() {
2628  Expr *e = this;
2629  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2630    e = ice->getSubExpr();
2631  return e;
2632}
2633
2634/// ExplicitCastExpr - An explicit cast written in the source
2635/// code.
2636///
2637/// This class is effectively an abstract class, because it provides
2638/// the basic representation of an explicitly-written cast without
2639/// specifying which kind of cast (C cast, functional cast, static
2640/// cast, etc.) was written; specific derived classes represent the
2641/// particular style of cast and its location information.
2642///
2643/// Unlike implicit casts, explicit cast nodes have two different
2644/// types: the type that was written into the source code, and the
2645/// actual type of the expression as determined by semantic
2646/// analysis. These types may differ slightly. For example, in C++ one
2647/// can cast to a reference type, which indicates that the resulting
2648/// expression will be an lvalue or xvalue. The reference type, however,
2649/// will not be used as the type of the expression.
2650class ExplicitCastExpr : public CastExpr {
2651  /// TInfo - Source type info for the (written) type
2652  /// this expression is casting to.
2653  TypeSourceInfo *TInfo;
2654
2655protected:
2656  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2657                   CastKind kind, Expr *op, unsigned PathSize,
2658                   TypeSourceInfo *writtenTy)
2659    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2660
2661  /// \brief Construct an empty explicit cast.
2662  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2663    : CastExpr(SC, Shell, PathSize) { }
2664
2665public:
2666  /// getTypeInfoAsWritten - Returns the type source info for the type
2667  /// that this expression is casting to.
2668  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2669  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2670
2671  /// getTypeAsWritten - Returns the type that this expression is
2672  /// casting to, as written in the source code.
2673  QualType getTypeAsWritten() const { return TInfo->getType(); }
2674
2675  static bool classof(const Stmt *T) {
2676     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2677            T->getStmtClass() <= lastExplicitCastExprConstant;
2678  }
2679  static bool classof(const ExplicitCastExpr *) { return true; }
2680};
2681
2682/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2683/// cast in C++ (C++ [expr.cast]), which uses the syntax
2684/// (Type)expr. For example: @c (int)f.
2685class CStyleCastExpr : public ExplicitCastExpr {
2686  SourceLocation LPLoc; // the location of the left paren
2687  SourceLocation RPLoc; // the location of the right paren
2688
2689  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2690                 unsigned PathSize, TypeSourceInfo *writtenTy,
2691                 SourceLocation l, SourceLocation r)
2692    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2693                       writtenTy), LPLoc(l), RPLoc(r) {}
2694
2695  /// \brief Construct an empty C-style explicit cast.
2696  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2697    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2698
2699public:
2700  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2701                                ExprValueKind VK, CastKind K,
2702                                Expr *Op, const CXXCastPath *BasePath,
2703                                TypeSourceInfo *WrittenTy, SourceLocation L,
2704                                SourceLocation R);
2705
2706  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2707
2708  SourceLocation getLParenLoc() const { return LPLoc; }
2709  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2710
2711  SourceLocation getRParenLoc() const { return RPLoc; }
2712  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2713
2714  SourceRange getSourceRange() const {
2715    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2716  }
2717  static bool classof(const Stmt *T) {
2718    return T->getStmtClass() == CStyleCastExprClass;
2719  }
2720  static bool classof(const CStyleCastExpr *) { return true; }
2721};
2722
2723/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2724///
2725/// This expression node kind describes a builtin binary operation,
2726/// such as "x + y" for integer values "x" and "y". The operands will
2727/// already have been converted to appropriate types (e.g., by
2728/// performing promotions or conversions).
2729///
2730/// In C++, where operators may be overloaded, a different kind of
2731/// expression node (CXXOperatorCallExpr) is used to express the
2732/// invocation of an overloaded operator with operator syntax. Within
2733/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2734/// used to store an expression "x + y" depends on the subexpressions
2735/// for x and y. If neither x or y is type-dependent, and the "+"
2736/// operator resolves to a built-in operation, BinaryOperator will be
2737/// used to express the computation (x and y may still be
2738/// value-dependent). If either x or y is type-dependent, or if the
2739/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2740/// be used to express the computation.
2741class BinaryOperator : public Expr {
2742public:
2743  typedef BinaryOperatorKind Opcode;
2744
2745private:
2746  unsigned Opc : 6;
2747  SourceLocation OpLoc;
2748
2749  enum { LHS, RHS, END_EXPR };
2750  Stmt* SubExprs[END_EXPR];
2751public:
2752
2753  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2754                 ExprValueKind VK, ExprObjectKind OK,
2755                 SourceLocation opLoc)
2756    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2757           lhs->isTypeDependent() || rhs->isTypeDependent(),
2758           lhs->isValueDependent() || rhs->isValueDependent(),
2759           (lhs->isInstantiationDependent() ||
2760            rhs->isInstantiationDependent()),
2761           (lhs->containsUnexpandedParameterPack() ||
2762            rhs->containsUnexpandedParameterPack())),
2763      Opc(opc), OpLoc(opLoc) {
2764    SubExprs[LHS] = lhs;
2765    SubExprs[RHS] = rhs;
2766    assert(!isCompoundAssignmentOp() &&
2767           "Use ArithAssignBinaryOperator for compound assignments");
2768  }
2769
2770  /// \brief Construct an empty binary operator.
2771  explicit BinaryOperator(EmptyShell Empty)
2772    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2773
2774  SourceLocation getExprLoc() const { return OpLoc; }
2775  SourceLocation getOperatorLoc() const { return OpLoc; }
2776  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2777
2778  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2779  void setOpcode(Opcode O) { Opc = O; }
2780
2781  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2782  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2783  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2784  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2785
2786  SourceRange getSourceRange() const {
2787    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2788  }
2789
2790  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2791  /// corresponds to, e.g. "<<=".
2792  static const char *getOpcodeStr(Opcode Op);
2793
2794  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2795
2796  /// \brief Retrieve the binary opcode that corresponds to the given
2797  /// overloaded operator.
2798  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2799
2800  /// \brief Retrieve the overloaded operator kind that corresponds to
2801  /// the given binary opcode.
2802  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2803
2804  /// predicates to categorize the respective opcodes.
2805  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2806  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2807  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2808  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2809  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2810  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2811
2812  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2813  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2814
2815  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2816  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2817
2818  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2819  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2820
2821  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2822  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2823
2824  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2825  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2826
2827  static bool isAssignmentOp(Opcode Opc) {
2828    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2829  }
2830  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2831
2832  static bool isCompoundAssignmentOp(Opcode Opc) {
2833    return Opc > BO_Assign && Opc <= BO_OrAssign;
2834  }
2835  bool isCompoundAssignmentOp() const {
2836    return isCompoundAssignmentOp(getOpcode());
2837  }
2838  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2839    assert(isCompoundAssignmentOp(Opc));
2840    if (Opc >= BO_AndAssign)
2841      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2842    else
2843      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2844  }
2845
2846  static bool isShiftAssignOp(Opcode Opc) {
2847    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2848  }
2849  bool isShiftAssignOp() const {
2850    return isShiftAssignOp(getOpcode());
2851  }
2852
2853  static bool classof(const Stmt *S) {
2854    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2855           S->getStmtClass() <= lastBinaryOperatorConstant;
2856  }
2857  static bool classof(const BinaryOperator *) { return true; }
2858
2859  // Iterators
2860  child_range children() {
2861    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2862  }
2863
2864protected:
2865  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2866                 ExprValueKind VK, ExprObjectKind OK,
2867                 SourceLocation opLoc, bool dead)
2868    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2869           lhs->isTypeDependent() || rhs->isTypeDependent(),
2870           lhs->isValueDependent() || rhs->isValueDependent(),
2871           (lhs->isInstantiationDependent() ||
2872            rhs->isInstantiationDependent()),
2873           (lhs->containsUnexpandedParameterPack() ||
2874            rhs->containsUnexpandedParameterPack())),
2875      Opc(opc), OpLoc(opLoc) {
2876    SubExprs[LHS] = lhs;
2877    SubExprs[RHS] = rhs;
2878  }
2879
2880  BinaryOperator(StmtClass SC, EmptyShell Empty)
2881    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2882};
2883
2884/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2885/// track of the type the operation is performed in.  Due to the semantics of
2886/// these operators, the operands are promoted, the arithmetic performed, an
2887/// implicit conversion back to the result type done, then the assignment takes
2888/// place.  This captures the intermediate type which the computation is done
2889/// in.
2890class CompoundAssignOperator : public BinaryOperator {
2891  QualType ComputationLHSType;
2892  QualType ComputationResultType;
2893public:
2894  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2895                         ExprValueKind VK, ExprObjectKind OK,
2896                         QualType CompLHSType, QualType CompResultType,
2897                         SourceLocation OpLoc)
2898    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2899      ComputationLHSType(CompLHSType),
2900      ComputationResultType(CompResultType) {
2901    assert(isCompoundAssignmentOp() &&
2902           "Only should be used for compound assignments");
2903  }
2904
2905  /// \brief Build an empty compound assignment operator expression.
2906  explicit CompoundAssignOperator(EmptyShell Empty)
2907    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2908
2909  // The two computation types are the type the LHS is converted
2910  // to for the computation and the type of the result; the two are
2911  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2912  QualType getComputationLHSType() const { return ComputationLHSType; }
2913  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2914
2915  QualType getComputationResultType() const { return ComputationResultType; }
2916  void setComputationResultType(QualType T) { ComputationResultType = T; }
2917
2918  static bool classof(const CompoundAssignOperator *) { return true; }
2919  static bool classof(const Stmt *S) {
2920    return S->getStmtClass() == CompoundAssignOperatorClass;
2921  }
2922};
2923
2924/// AbstractConditionalOperator - An abstract base class for
2925/// ConditionalOperator and BinaryConditionalOperator.
2926class AbstractConditionalOperator : public Expr {
2927  SourceLocation QuestionLoc, ColonLoc;
2928  friend class ASTStmtReader;
2929
2930protected:
2931  AbstractConditionalOperator(StmtClass SC, QualType T,
2932                              ExprValueKind VK, ExprObjectKind OK,
2933                              bool TD, bool VD, bool ID,
2934                              bool ContainsUnexpandedParameterPack,
2935                              SourceLocation qloc,
2936                              SourceLocation cloc)
2937    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2938      QuestionLoc(qloc), ColonLoc(cloc) {}
2939
2940  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2941    : Expr(SC, Empty) { }
2942
2943public:
2944  // getCond - Return the expression representing the condition for
2945  //   the ?: operator.
2946  Expr *getCond() const;
2947
2948  // getTrueExpr - Return the subexpression representing the value of
2949  //   the expression if the condition evaluates to true.
2950  Expr *getTrueExpr() const;
2951
2952  // getFalseExpr - Return the subexpression representing the value of
2953  //   the expression if the condition evaluates to false.  This is
2954  //   the same as getRHS.
2955  Expr *getFalseExpr() const;
2956
2957  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2958  SourceLocation getColonLoc() const { return ColonLoc; }
2959
2960  static bool classof(const Stmt *T) {
2961    return T->getStmtClass() == ConditionalOperatorClass ||
2962           T->getStmtClass() == BinaryConditionalOperatorClass;
2963  }
2964  static bool classof(const AbstractConditionalOperator *) { return true; }
2965};
2966
2967/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2968/// middle" extension is a BinaryConditionalOperator.
2969class ConditionalOperator : public AbstractConditionalOperator {
2970  enum { COND, LHS, RHS, END_EXPR };
2971  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2972
2973  friend class ASTStmtReader;
2974public:
2975  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2976                      SourceLocation CLoc, Expr *rhs,
2977                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2978    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2979           // FIXME: the type of the conditional operator doesn't
2980           // depend on the type of the conditional, but the standard
2981           // seems to imply that it could. File a bug!
2982           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2983           (cond->isValueDependent() || lhs->isValueDependent() ||
2984            rhs->isValueDependent()),
2985           (cond->isInstantiationDependent() ||
2986            lhs->isInstantiationDependent() ||
2987            rhs->isInstantiationDependent()),
2988           (cond->containsUnexpandedParameterPack() ||
2989            lhs->containsUnexpandedParameterPack() ||
2990            rhs->containsUnexpandedParameterPack()),
2991                                  QLoc, CLoc) {
2992    SubExprs[COND] = cond;
2993    SubExprs[LHS] = lhs;
2994    SubExprs[RHS] = rhs;
2995  }
2996
2997  /// \brief Build an empty conditional operator.
2998  explicit ConditionalOperator(EmptyShell Empty)
2999    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3000
3001  // getCond - Return the expression representing the condition for
3002  //   the ?: operator.
3003  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3004
3005  // getTrueExpr - Return the subexpression representing the value of
3006  //   the expression if the condition evaluates to true.
3007  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3008
3009  // getFalseExpr - Return the subexpression representing the value of
3010  //   the expression if the condition evaluates to false.  This is
3011  //   the same as getRHS.
3012  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3013
3014  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3015  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3016
3017  SourceRange getSourceRange() const {
3018    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3019  }
3020  static bool classof(const Stmt *T) {
3021    return T->getStmtClass() == ConditionalOperatorClass;
3022  }
3023  static bool classof(const ConditionalOperator *) { return true; }
3024
3025  // Iterators
3026  child_range children() {
3027    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3028  }
3029};
3030
3031/// BinaryConditionalOperator - The GNU extension to the conditional
3032/// operator which allows the middle operand to be omitted.
3033///
3034/// This is a different expression kind on the assumption that almost
3035/// every client ends up needing to know that these are different.
3036class BinaryConditionalOperator : public AbstractConditionalOperator {
3037  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3038
3039  /// - the common condition/left-hand-side expression, which will be
3040  ///   evaluated as the opaque value
3041  /// - the condition, expressed in terms of the opaque value
3042  /// - the left-hand-side, expressed in terms of the opaque value
3043  /// - the right-hand-side
3044  Stmt *SubExprs[NUM_SUBEXPRS];
3045  OpaqueValueExpr *OpaqueValue;
3046
3047  friend class ASTStmtReader;
3048public:
3049  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3050                            Expr *cond, Expr *lhs, Expr *rhs,
3051                            SourceLocation qloc, SourceLocation cloc,
3052                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3053    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3054           (common->isTypeDependent() || rhs->isTypeDependent()),
3055           (common->isValueDependent() || rhs->isValueDependent()),
3056           (common->isInstantiationDependent() ||
3057            rhs->isInstantiationDependent()),
3058           (common->containsUnexpandedParameterPack() ||
3059            rhs->containsUnexpandedParameterPack()),
3060                                  qloc, cloc),
3061      OpaqueValue(opaqueValue) {
3062    SubExprs[COMMON] = common;
3063    SubExprs[COND] = cond;
3064    SubExprs[LHS] = lhs;
3065    SubExprs[RHS] = rhs;
3066
3067    OpaqueValue->setSourceExpr(common);
3068  }
3069
3070  /// \brief Build an empty conditional operator.
3071  explicit BinaryConditionalOperator(EmptyShell Empty)
3072    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3073
3074  /// \brief getCommon - Return the common expression, written to the
3075  ///   left of the condition.  The opaque value will be bound to the
3076  ///   result of this expression.
3077  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3078
3079  /// \brief getOpaqueValue - Return the opaque value placeholder.
3080  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3081
3082  /// \brief getCond - Return the condition expression; this is defined
3083  ///   in terms of the opaque value.
3084  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3085
3086  /// \brief getTrueExpr - Return the subexpression which will be
3087  ///   evaluated if the condition evaluates to true;  this is defined
3088  ///   in terms of the opaque value.
3089  Expr *getTrueExpr() const {
3090    return cast<Expr>(SubExprs[LHS]);
3091  }
3092
3093  /// \brief getFalseExpr - Return the subexpression which will be
3094  ///   evaluated if the condnition evaluates to false; this is
3095  ///   defined in terms of the opaque value.
3096  Expr *getFalseExpr() const {
3097    return cast<Expr>(SubExprs[RHS]);
3098  }
3099
3100  SourceRange getSourceRange() const {
3101    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3102  }
3103  static bool classof(const Stmt *T) {
3104    return T->getStmtClass() == BinaryConditionalOperatorClass;
3105  }
3106  static bool classof(const BinaryConditionalOperator *) { return true; }
3107
3108  // Iterators
3109  child_range children() {
3110    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3111  }
3112};
3113
3114inline Expr *AbstractConditionalOperator::getCond() const {
3115  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3116    return co->getCond();
3117  return cast<BinaryConditionalOperator>(this)->getCond();
3118}
3119
3120inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3121  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3122    return co->getTrueExpr();
3123  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3124}
3125
3126inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3127  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3128    return co->getFalseExpr();
3129  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3130}
3131
3132/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3133class AddrLabelExpr : public Expr {
3134  SourceLocation AmpAmpLoc, LabelLoc;
3135  LabelDecl *Label;
3136public:
3137  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3138                QualType t)
3139    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3140           false),
3141      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3142
3143  /// \brief Build an empty address of a label expression.
3144  explicit AddrLabelExpr(EmptyShell Empty)
3145    : Expr(AddrLabelExprClass, Empty) { }
3146
3147  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3148  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3149  SourceLocation getLabelLoc() const { return LabelLoc; }
3150  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3151
3152  SourceRange getSourceRange() const {
3153    return SourceRange(AmpAmpLoc, LabelLoc);
3154  }
3155
3156  LabelDecl *getLabel() const { return Label; }
3157  void setLabel(LabelDecl *L) { Label = L; }
3158
3159  static bool classof(const Stmt *T) {
3160    return T->getStmtClass() == AddrLabelExprClass;
3161  }
3162  static bool classof(const AddrLabelExpr *) { return true; }
3163
3164  // Iterators
3165  child_range children() { return child_range(); }
3166};
3167
3168/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3169/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3170/// takes the value of the last subexpression.
3171///
3172/// A StmtExpr is always an r-value; values "returned" out of a
3173/// StmtExpr will be copied.
3174class StmtExpr : public Expr {
3175  Stmt *SubStmt;
3176  SourceLocation LParenLoc, RParenLoc;
3177public:
3178  // FIXME: Does type-dependence need to be computed differently?
3179  // FIXME: Do we need to compute instantiation instantiation-dependence for
3180  // statements? (ugh!)
3181  StmtExpr(CompoundStmt *substmt, QualType T,
3182           SourceLocation lp, SourceLocation rp) :
3183    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3184         T->isDependentType(), false, false, false),
3185    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3186
3187  /// \brief Build an empty statement expression.
3188  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3189
3190  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3191  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3192  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3193
3194  SourceRange getSourceRange() const {
3195    return SourceRange(LParenLoc, RParenLoc);
3196  }
3197
3198  SourceLocation getLParenLoc() const { return LParenLoc; }
3199  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3200  SourceLocation getRParenLoc() const { return RParenLoc; }
3201  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3202
3203  static bool classof(const Stmt *T) {
3204    return T->getStmtClass() == StmtExprClass;
3205  }
3206  static bool classof(const StmtExpr *) { return true; }
3207
3208  // Iterators
3209  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3210};
3211
3212
3213/// ShuffleVectorExpr - clang-specific builtin-in function
3214/// __builtin_shufflevector.
3215/// This AST node represents a operator that does a constant
3216/// shuffle, similar to LLVM's shufflevector instruction. It takes
3217/// two vectors and a variable number of constant indices,
3218/// and returns the appropriately shuffled vector.
3219class ShuffleVectorExpr : public Expr {
3220  SourceLocation BuiltinLoc, RParenLoc;
3221
3222  // SubExprs - the list of values passed to the __builtin_shufflevector
3223  // function. The first two are vectors, and the rest are constant
3224  // indices.  The number of values in this list is always
3225  // 2+the number of indices in the vector type.
3226  Stmt **SubExprs;
3227  unsigned NumExprs;
3228
3229public:
3230  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3231                    QualType Type, SourceLocation BLoc,
3232                    SourceLocation RP);
3233
3234  /// \brief Build an empty vector-shuffle expression.
3235  explicit ShuffleVectorExpr(EmptyShell Empty)
3236    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3237
3238  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3239  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3240
3241  SourceLocation getRParenLoc() const { return RParenLoc; }
3242  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3243
3244  SourceRange getSourceRange() const {
3245    return SourceRange(BuiltinLoc, RParenLoc);
3246  }
3247  static bool classof(const Stmt *T) {
3248    return T->getStmtClass() == ShuffleVectorExprClass;
3249  }
3250  static bool classof(const ShuffleVectorExpr *) { return true; }
3251
3252  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3253  /// constant expression, the actual arguments passed in, and the function
3254  /// pointers.
3255  unsigned getNumSubExprs() const { return NumExprs; }
3256
3257  /// \brief Retrieve the array of expressions.
3258  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3259
3260  /// getExpr - Return the Expr at the specified index.
3261  Expr *getExpr(unsigned Index) {
3262    assert((Index < NumExprs) && "Arg access out of range!");
3263    return cast<Expr>(SubExprs[Index]);
3264  }
3265  const Expr *getExpr(unsigned Index) const {
3266    assert((Index < NumExprs) && "Arg access out of range!");
3267    return cast<Expr>(SubExprs[Index]);
3268  }
3269
3270  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3271
3272  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3273    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3274    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3275  }
3276
3277  // Iterators
3278  child_range children() {
3279    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3280  }
3281};
3282
3283/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3284/// This AST node is similar to the conditional operator (?:) in C, with
3285/// the following exceptions:
3286/// - the test expression must be a integer constant expression.
3287/// - the expression returned acts like the chosen subexpression in every
3288///   visible way: the type is the same as that of the chosen subexpression,
3289///   and all predicates (whether it's an l-value, whether it's an integer
3290///   constant expression, etc.) return the same result as for the chosen
3291///   sub-expression.
3292class ChooseExpr : public Expr {
3293  enum { COND, LHS, RHS, END_EXPR };
3294  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3295  SourceLocation BuiltinLoc, RParenLoc;
3296public:
3297  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3298             QualType t, ExprValueKind VK, ExprObjectKind OK,
3299             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3300    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3301           (cond->isInstantiationDependent() ||
3302            lhs->isInstantiationDependent() ||
3303            rhs->isInstantiationDependent()),
3304           (cond->containsUnexpandedParameterPack() ||
3305            lhs->containsUnexpandedParameterPack() ||
3306            rhs->containsUnexpandedParameterPack())),
3307      BuiltinLoc(BLoc), RParenLoc(RP) {
3308      SubExprs[COND] = cond;
3309      SubExprs[LHS] = lhs;
3310      SubExprs[RHS] = rhs;
3311    }
3312
3313  /// \brief Build an empty __builtin_choose_expr.
3314  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3315
3316  /// isConditionTrue - Return whether the condition is true (i.e. not
3317  /// equal to zero).
3318  bool isConditionTrue(const ASTContext &C) const;
3319
3320  /// getChosenSubExpr - Return the subexpression chosen according to the
3321  /// condition.
3322  Expr *getChosenSubExpr(const ASTContext &C) const {
3323    return isConditionTrue(C) ? getLHS() : getRHS();
3324  }
3325
3326  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3327  void setCond(Expr *E) { SubExprs[COND] = E; }
3328  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3329  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3330  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3331  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3332
3333  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3334  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3335
3336  SourceLocation getRParenLoc() const { return RParenLoc; }
3337  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3338
3339  SourceRange getSourceRange() const {
3340    return SourceRange(BuiltinLoc, RParenLoc);
3341  }
3342  static bool classof(const Stmt *T) {
3343    return T->getStmtClass() == ChooseExprClass;
3344  }
3345  static bool classof(const ChooseExpr *) { return true; }
3346
3347  // Iterators
3348  child_range children() {
3349    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3350  }
3351};
3352
3353/// GNUNullExpr - Implements the GNU __null extension, which is a name
3354/// for a null pointer constant that has integral type (e.g., int or
3355/// long) and is the same size and alignment as a pointer. The __null
3356/// extension is typically only used by system headers, which define
3357/// NULL as __null in C++ rather than using 0 (which is an integer
3358/// that may not match the size of a pointer).
3359class GNUNullExpr : public Expr {
3360  /// TokenLoc - The location of the __null keyword.
3361  SourceLocation TokenLoc;
3362
3363public:
3364  GNUNullExpr(QualType Ty, SourceLocation Loc)
3365    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3366           false),
3367      TokenLoc(Loc) { }
3368
3369  /// \brief Build an empty GNU __null expression.
3370  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3371
3372  /// getTokenLocation - The location of the __null token.
3373  SourceLocation getTokenLocation() const { return TokenLoc; }
3374  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3375
3376  SourceRange getSourceRange() const {
3377    return SourceRange(TokenLoc);
3378  }
3379  static bool classof(const Stmt *T) {
3380    return T->getStmtClass() == GNUNullExprClass;
3381  }
3382  static bool classof(const GNUNullExpr *) { return true; }
3383
3384  // Iterators
3385  child_range children() { return child_range(); }
3386};
3387
3388/// VAArgExpr, used for the builtin function __builtin_va_arg.
3389class VAArgExpr : public Expr {
3390  Stmt *Val;
3391  TypeSourceInfo *TInfo;
3392  SourceLocation BuiltinLoc, RParenLoc;
3393public:
3394  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3395            SourceLocation RPLoc, QualType t)
3396    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3397           t->isDependentType(), false,
3398           (TInfo->getType()->isInstantiationDependentType() ||
3399            e->isInstantiationDependent()),
3400           (TInfo->getType()->containsUnexpandedParameterPack() ||
3401            e->containsUnexpandedParameterPack())),
3402      Val(e), TInfo(TInfo),
3403      BuiltinLoc(BLoc),
3404      RParenLoc(RPLoc) { }
3405
3406  /// \brief Create an empty __builtin_va_arg expression.
3407  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3408
3409  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3410  Expr *getSubExpr() { return cast<Expr>(Val); }
3411  void setSubExpr(Expr *E) { Val = E; }
3412
3413  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3414  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3415
3416  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3417  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3418
3419  SourceLocation getRParenLoc() const { return RParenLoc; }
3420  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3421
3422  SourceRange getSourceRange() const {
3423    return SourceRange(BuiltinLoc, RParenLoc);
3424  }
3425  static bool classof(const Stmt *T) {
3426    return T->getStmtClass() == VAArgExprClass;
3427  }
3428  static bool classof(const VAArgExpr *) { return true; }
3429
3430  // Iterators
3431  child_range children() { return child_range(&Val, &Val+1); }
3432};
3433
3434/// @brief Describes an C or C++ initializer list.
3435///
3436/// InitListExpr describes an initializer list, which can be used to
3437/// initialize objects of different types, including
3438/// struct/class/union types, arrays, and vectors. For example:
3439///
3440/// @code
3441/// struct foo x = { 1, { 2, 3 } };
3442/// @endcode
3443///
3444/// Prior to semantic analysis, an initializer list will represent the
3445/// initializer list as written by the user, but will have the
3446/// placeholder type "void". This initializer list is called the
3447/// syntactic form of the initializer, and may contain C99 designated
3448/// initializers (represented as DesignatedInitExprs), initializations
3449/// of subobject members without explicit braces, and so on. Clients
3450/// interested in the original syntax of the initializer list should
3451/// use the syntactic form of the initializer list.
3452///
3453/// After semantic analysis, the initializer list will represent the
3454/// semantic form of the initializer, where the initializations of all
3455/// subobjects are made explicit with nested InitListExpr nodes and
3456/// C99 designators have been eliminated by placing the designated
3457/// initializations into the subobject they initialize. Additionally,
3458/// any "holes" in the initialization, where no initializer has been
3459/// specified for a particular subobject, will be replaced with
3460/// implicitly-generated ImplicitValueInitExpr expressions that
3461/// value-initialize the subobjects. Note, however, that the
3462/// initializer lists may still have fewer initializers than there are
3463/// elements to initialize within the object.
3464///
3465/// Given the semantic form of the initializer list, one can retrieve
3466/// the original syntactic form of that initializer list (if it
3467/// exists) using getSyntacticForm(). Since many initializer lists
3468/// have the same syntactic and semantic forms, getSyntacticForm() may
3469/// return NULL, indicating that the current initializer list also
3470/// serves as its syntactic form.
3471class InitListExpr : public Expr {
3472  // FIXME: Eliminate this vector in favor of ASTContext allocation
3473  typedef ASTVector<Stmt *> InitExprsTy;
3474  InitExprsTy InitExprs;
3475  SourceLocation LBraceLoc, RBraceLoc;
3476
3477  /// Contains the initializer list that describes the syntactic form
3478  /// written in the source code.
3479  InitListExpr *SyntacticForm;
3480
3481  /// \brief Either:
3482  ///  If this initializer list initializes an array with more elements than
3483  ///  there are initializers in the list, specifies an expression to be used
3484  ///  for value initialization of the rest of the elements.
3485  /// Or
3486  ///  If this initializer list initializes a union, specifies which
3487  ///  field within the union will be initialized.
3488  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3489
3490public:
3491  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3492               Expr **initexprs, unsigned numinits,
3493               SourceLocation rbraceloc);
3494
3495  /// \brief Build an empty initializer list.
3496  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3497    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3498
3499  unsigned getNumInits() const { return InitExprs.size(); }
3500
3501  /// \brief Retrieve the set of initializers.
3502  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3503
3504  const Expr *getInit(unsigned Init) const {
3505    assert(Init < getNumInits() && "Initializer access out of range!");
3506    return cast_or_null<Expr>(InitExprs[Init]);
3507  }
3508
3509  Expr *getInit(unsigned Init) {
3510    assert(Init < getNumInits() && "Initializer access out of range!");
3511    return cast_or_null<Expr>(InitExprs[Init]);
3512  }
3513
3514  void setInit(unsigned Init, Expr *expr) {
3515    assert(Init < getNumInits() && "Initializer access out of range!");
3516    InitExprs[Init] = expr;
3517  }
3518
3519  /// \brief Reserve space for some number of initializers.
3520  void reserveInits(ASTContext &C, unsigned NumInits);
3521
3522  /// @brief Specify the number of initializers
3523  ///
3524  /// If there are more than @p NumInits initializers, the remaining
3525  /// initializers will be destroyed. If there are fewer than @p
3526  /// NumInits initializers, NULL expressions will be added for the
3527  /// unknown initializers.
3528  void resizeInits(ASTContext &Context, unsigned NumInits);
3529
3530  /// @brief Updates the initializer at index @p Init with the new
3531  /// expression @p expr, and returns the old expression at that
3532  /// location.
3533  ///
3534  /// When @p Init is out of range for this initializer list, the
3535  /// initializer list will be extended with NULL expressions to
3536  /// accommodate the new entry.
3537  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3538
3539  /// \brief If this initializer list initializes an array with more elements
3540  /// than there are initializers in the list, specifies an expression to be
3541  /// used for value initialization of the rest of the elements.
3542  Expr *getArrayFiller() {
3543    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3544  }
3545  const Expr *getArrayFiller() const {
3546    return const_cast<InitListExpr *>(this)->getArrayFiller();
3547  }
3548  void setArrayFiller(Expr *filler);
3549
3550  /// \brief Return true if this is an array initializer and its array "filler"
3551  /// has been set.
3552  bool hasArrayFiller() const { return getArrayFiller(); }
3553
3554  /// \brief If this initializes a union, specifies which field in the
3555  /// union to initialize.
3556  ///
3557  /// Typically, this field is the first named field within the
3558  /// union. However, a designated initializer can specify the
3559  /// initialization of a different field within the union.
3560  FieldDecl *getInitializedFieldInUnion() {
3561    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3562  }
3563  const FieldDecl *getInitializedFieldInUnion() const {
3564    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3565  }
3566  void setInitializedFieldInUnion(FieldDecl *FD) {
3567    ArrayFillerOrUnionFieldInit = FD;
3568  }
3569
3570  // Explicit InitListExpr's originate from source code (and have valid source
3571  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3572  bool isExplicit() {
3573    return LBraceLoc.isValid() && RBraceLoc.isValid();
3574  }
3575
3576  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3577  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3578  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3579  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3580
3581  /// @brief Retrieve the initializer list that describes the
3582  /// syntactic form of the initializer.
3583  ///
3584  ///
3585  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3586  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3587
3588  bool hadArrayRangeDesignator() const {
3589    return InitListExprBits.HadArrayRangeDesignator != 0;
3590  }
3591  void sawArrayRangeDesignator(bool ARD = true) {
3592    InitListExprBits.HadArrayRangeDesignator = ARD;
3593  }
3594
3595  bool initializesStdInitializerList() const {
3596    return InitListExprBits.InitializesStdInitializerList != 0;
3597  }
3598  void setInitializesStdInitializerList(bool ISIL = true) {
3599    InitListExprBits.InitializesStdInitializerList = ISIL;
3600  }
3601
3602  SourceRange getSourceRange() const;
3603
3604  static bool classof(const Stmt *T) {
3605    return T->getStmtClass() == InitListExprClass;
3606  }
3607  static bool classof(const InitListExpr *) { return true; }
3608
3609  // Iterators
3610  child_range children() {
3611    if (InitExprs.empty()) return child_range();
3612    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3613  }
3614
3615  typedef InitExprsTy::iterator iterator;
3616  typedef InitExprsTy::const_iterator const_iterator;
3617  typedef InitExprsTy::reverse_iterator reverse_iterator;
3618  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3619
3620  iterator begin() { return InitExprs.begin(); }
3621  const_iterator begin() const { return InitExprs.begin(); }
3622  iterator end() { return InitExprs.end(); }
3623  const_iterator end() const { return InitExprs.end(); }
3624  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3625  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3626  reverse_iterator rend() { return InitExprs.rend(); }
3627  const_reverse_iterator rend() const { return InitExprs.rend(); }
3628
3629  friend class ASTStmtReader;
3630  friend class ASTStmtWriter;
3631};
3632
3633/// @brief Represents a C99 designated initializer expression.
3634///
3635/// A designated initializer expression (C99 6.7.8) contains one or
3636/// more designators (which can be field designators, array
3637/// designators, or GNU array-range designators) followed by an
3638/// expression that initializes the field or element(s) that the
3639/// designators refer to. For example, given:
3640///
3641/// @code
3642/// struct point {
3643///   double x;
3644///   double y;
3645/// };
3646/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3647/// @endcode
3648///
3649/// The InitListExpr contains three DesignatedInitExprs, the first of
3650/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3651/// designators, one array designator for @c [2] followed by one field
3652/// designator for @c .y. The initalization expression will be 1.0.
3653class DesignatedInitExpr : public Expr {
3654public:
3655  /// \brief Forward declaration of the Designator class.
3656  class Designator;
3657
3658private:
3659  /// The location of the '=' or ':' prior to the actual initializer
3660  /// expression.
3661  SourceLocation EqualOrColonLoc;
3662
3663  /// Whether this designated initializer used the GNU deprecated
3664  /// syntax rather than the C99 '=' syntax.
3665  bool GNUSyntax : 1;
3666
3667  /// The number of designators in this initializer expression.
3668  unsigned NumDesignators : 15;
3669
3670  /// \brief The designators in this designated initialization
3671  /// expression.
3672  Designator *Designators;
3673
3674  /// The number of subexpressions of this initializer expression,
3675  /// which contains both the initializer and any additional
3676  /// expressions used by array and array-range designators.
3677  unsigned NumSubExprs : 16;
3678
3679
3680  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3681                     const Designator *Designators,
3682                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3683                     Expr **IndexExprs, unsigned NumIndexExprs,
3684                     Expr *Init);
3685
3686  explicit DesignatedInitExpr(unsigned NumSubExprs)
3687    : Expr(DesignatedInitExprClass, EmptyShell()),
3688      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3689
3690public:
3691  /// A field designator, e.g., ".x".
3692  struct FieldDesignator {
3693    /// Refers to the field that is being initialized. The low bit
3694    /// of this field determines whether this is actually a pointer
3695    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3696    /// initially constructed, a field designator will store an
3697    /// IdentifierInfo*. After semantic analysis has resolved that
3698    /// name, the field designator will instead store a FieldDecl*.
3699    uintptr_t NameOrField;
3700
3701    /// The location of the '.' in the designated initializer.
3702    unsigned DotLoc;
3703
3704    /// The location of the field name in the designated initializer.
3705    unsigned FieldLoc;
3706  };
3707
3708  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3709  struct ArrayOrRangeDesignator {
3710    /// Location of the first index expression within the designated
3711    /// initializer expression's list of subexpressions.
3712    unsigned Index;
3713    /// The location of the '[' starting the array range designator.
3714    unsigned LBracketLoc;
3715    /// The location of the ellipsis separating the start and end
3716    /// indices. Only valid for GNU array-range designators.
3717    unsigned EllipsisLoc;
3718    /// The location of the ']' terminating the array range designator.
3719    unsigned RBracketLoc;
3720  };
3721
3722  /// @brief Represents a single C99 designator.
3723  ///
3724  /// @todo This class is infuriatingly similar to clang::Designator,
3725  /// but minor differences (storing indices vs. storing pointers)
3726  /// keep us from reusing it. Try harder, later, to rectify these
3727  /// differences.
3728  class Designator {
3729    /// @brief The kind of designator this describes.
3730    enum {
3731      FieldDesignator,
3732      ArrayDesignator,
3733      ArrayRangeDesignator
3734    } Kind;
3735
3736    union {
3737      /// A field designator, e.g., ".x".
3738      struct FieldDesignator Field;
3739      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3740      struct ArrayOrRangeDesignator ArrayOrRange;
3741    };
3742    friend class DesignatedInitExpr;
3743
3744  public:
3745    Designator() {}
3746
3747    /// @brief Initializes a field designator.
3748    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3749               SourceLocation FieldLoc)
3750      : Kind(FieldDesignator) {
3751      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3752      Field.DotLoc = DotLoc.getRawEncoding();
3753      Field.FieldLoc = FieldLoc.getRawEncoding();
3754    }
3755
3756    /// @brief Initializes an array designator.
3757    Designator(unsigned Index, SourceLocation LBracketLoc,
3758               SourceLocation RBracketLoc)
3759      : Kind(ArrayDesignator) {
3760      ArrayOrRange.Index = Index;
3761      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3762      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3763      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3764    }
3765
3766    /// @brief Initializes a GNU array-range designator.
3767    Designator(unsigned Index, SourceLocation LBracketLoc,
3768               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3769      : Kind(ArrayRangeDesignator) {
3770      ArrayOrRange.Index = Index;
3771      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3772      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3773      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3774    }
3775
3776    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3777    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3778    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3779
3780    IdentifierInfo *getFieldName() const;
3781
3782    FieldDecl *getField() const {
3783      assert(Kind == FieldDesignator && "Only valid on a field designator");
3784      if (Field.NameOrField & 0x01)
3785        return 0;
3786      else
3787        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3788    }
3789
3790    void setField(FieldDecl *FD) {
3791      assert(Kind == FieldDesignator && "Only valid on a field designator");
3792      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3793    }
3794
3795    SourceLocation getDotLoc() const {
3796      assert(Kind == FieldDesignator && "Only valid on a field designator");
3797      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3798    }
3799
3800    SourceLocation getFieldLoc() const {
3801      assert(Kind == FieldDesignator && "Only valid on a field designator");
3802      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3803    }
3804
3805    SourceLocation getLBracketLoc() const {
3806      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3807             "Only valid on an array or array-range designator");
3808      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3809    }
3810
3811    SourceLocation getRBracketLoc() const {
3812      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3813             "Only valid on an array or array-range designator");
3814      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3815    }
3816
3817    SourceLocation getEllipsisLoc() const {
3818      assert(Kind == ArrayRangeDesignator &&
3819             "Only valid on an array-range designator");
3820      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3821    }
3822
3823    unsigned getFirstExprIndex() const {
3824      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3825             "Only valid on an array or array-range designator");
3826      return ArrayOrRange.Index;
3827    }
3828
3829    SourceLocation getStartLocation() const {
3830      if (Kind == FieldDesignator)
3831        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3832      else
3833        return getLBracketLoc();
3834    }
3835    SourceLocation getEndLocation() const {
3836      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3837    }
3838    SourceRange getSourceRange() const {
3839      return SourceRange(getStartLocation(), getEndLocation());
3840    }
3841  };
3842
3843  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3844                                    unsigned NumDesignators,
3845                                    Expr **IndexExprs, unsigned NumIndexExprs,
3846                                    SourceLocation EqualOrColonLoc,
3847                                    bool GNUSyntax, Expr *Init);
3848
3849  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3850
3851  /// @brief Returns the number of designators in this initializer.
3852  unsigned size() const { return NumDesignators; }
3853
3854  // Iterator access to the designators.
3855  typedef Designator *designators_iterator;
3856  designators_iterator designators_begin() { return Designators; }
3857  designators_iterator designators_end() {
3858    return Designators + NumDesignators;
3859  }
3860
3861  typedef const Designator *const_designators_iterator;
3862  const_designators_iterator designators_begin() const { return Designators; }
3863  const_designators_iterator designators_end() const {
3864    return Designators + NumDesignators;
3865  }
3866
3867  typedef std::reverse_iterator<designators_iterator>
3868          reverse_designators_iterator;
3869  reverse_designators_iterator designators_rbegin() {
3870    return reverse_designators_iterator(designators_end());
3871  }
3872  reverse_designators_iterator designators_rend() {
3873    return reverse_designators_iterator(designators_begin());
3874  }
3875
3876  typedef std::reverse_iterator<const_designators_iterator>
3877          const_reverse_designators_iterator;
3878  const_reverse_designators_iterator designators_rbegin() const {
3879    return const_reverse_designators_iterator(designators_end());
3880  }
3881  const_reverse_designators_iterator designators_rend() const {
3882    return const_reverse_designators_iterator(designators_begin());
3883  }
3884
3885  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3886
3887  void setDesignators(ASTContext &C, const Designator *Desigs,
3888                      unsigned NumDesigs);
3889
3890  Expr *getArrayIndex(const Designator& D);
3891  Expr *getArrayRangeStart(const Designator& D);
3892  Expr *getArrayRangeEnd(const Designator& D);
3893
3894  /// @brief Retrieve the location of the '=' that precedes the
3895  /// initializer value itself, if present.
3896  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3897  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3898
3899  /// @brief Determines whether this designated initializer used the
3900  /// deprecated GNU syntax for designated initializers.
3901  bool usesGNUSyntax() const { return GNUSyntax; }
3902  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3903
3904  /// @brief Retrieve the initializer value.
3905  Expr *getInit() const {
3906    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3907  }
3908
3909  void setInit(Expr *init) {
3910    *child_begin() = init;
3911  }
3912
3913  /// \brief Retrieve the total number of subexpressions in this
3914  /// designated initializer expression, including the actual
3915  /// initialized value and any expressions that occur within array
3916  /// and array-range designators.
3917  unsigned getNumSubExprs() const { return NumSubExprs; }
3918
3919  Expr *getSubExpr(unsigned Idx) {
3920    assert(Idx < NumSubExprs && "Subscript out of range");
3921    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3922    Ptr += sizeof(DesignatedInitExpr);
3923    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3924  }
3925
3926  void setSubExpr(unsigned Idx, Expr *E) {
3927    assert(Idx < NumSubExprs && "Subscript out of range");
3928    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3929    Ptr += sizeof(DesignatedInitExpr);
3930    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3931  }
3932
3933  /// \brief Replaces the designator at index @p Idx with the series
3934  /// of designators in [First, Last).
3935  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3936                        const Designator *Last);
3937
3938  SourceRange getDesignatorsSourceRange() const;
3939
3940  SourceRange getSourceRange() const;
3941
3942  static bool classof(const Stmt *T) {
3943    return T->getStmtClass() == DesignatedInitExprClass;
3944  }
3945  static bool classof(const DesignatedInitExpr *) { return true; }
3946
3947  // Iterators
3948  child_range children() {
3949    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3950    return child_range(begin, begin + NumSubExprs);
3951  }
3952};
3953
3954/// \brief Represents an implicitly-generated value initialization of
3955/// an object of a given type.
3956///
3957/// Implicit value initializations occur within semantic initializer
3958/// list expressions (InitListExpr) as placeholders for subobject
3959/// initializations not explicitly specified by the user.
3960///
3961/// \see InitListExpr
3962class ImplicitValueInitExpr : public Expr {
3963public:
3964  explicit ImplicitValueInitExpr(QualType ty)
3965    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3966           false, false, ty->isInstantiationDependentType(), false) { }
3967
3968  /// \brief Construct an empty implicit value initialization.
3969  explicit ImplicitValueInitExpr(EmptyShell Empty)
3970    : Expr(ImplicitValueInitExprClass, Empty) { }
3971
3972  static bool classof(const Stmt *T) {
3973    return T->getStmtClass() == ImplicitValueInitExprClass;
3974  }
3975  static bool classof(const ImplicitValueInitExpr *) { return true; }
3976
3977  SourceRange getSourceRange() const {
3978    return SourceRange();
3979  }
3980
3981  // Iterators
3982  child_range children() { return child_range(); }
3983};
3984
3985
3986class ParenListExpr : public Expr {
3987  Stmt **Exprs;
3988  unsigned NumExprs;
3989  SourceLocation LParenLoc, RParenLoc;
3990
3991public:
3992  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3993                unsigned numexprs, SourceLocation rparenloc);
3994
3995  /// \brief Build an empty paren list.
3996  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3997
3998  unsigned getNumExprs() const { return NumExprs; }
3999
4000  const Expr* getExpr(unsigned Init) const {
4001    assert(Init < getNumExprs() && "Initializer access out of range!");
4002    return cast_or_null<Expr>(Exprs[Init]);
4003  }
4004
4005  Expr* getExpr(unsigned Init) {
4006    assert(Init < getNumExprs() && "Initializer access out of range!");
4007    return cast_or_null<Expr>(Exprs[Init]);
4008  }
4009
4010  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4011
4012  SourceLocation getLParenLoc() const { return LParenLoc; }
4013  SourceLocation getRParenLoc() const { return RParenLoc; }
4014
4015  SourceRange getSourceRange() const {
4016    return SourceRange(LParenLoc, RParenLoc);
4017  }
4018  static bool classof(const Stmt *T) {
4019    return T->getStmtClass() == ParenListExprClass;
4020  }
4021  static bool classof(const ParenListExpr *) { return true; }
4022
4023  // Iterators
4024  child_range children() {
4025    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4026  }
4027
4028  friend class ASTStmtReader;
4029  friend class ASTStmtWriter;
4030};
4031
4032
4033/// \brief Represents a C11 generic selection.
4034///
4035/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4036/// expression, followed by one or more generic associations.  Each generic
4037/// association specifies a type name and an expression, or "default" and an
4038/// expression (in which case it is known as a default generic association).
4039/// The type and value of the generic selection are identical to those of its
4040/// result expression, which is defined as the expression in the generic
4041/// association with a type name that is compatible with the type of the
4042/// controlling expression, or the expression in the default generic association
4043/// if no types are compatible.  For example:
4044///
4045/// @code
4046/// _Generic(X, double: 1, float: 2, default: 3)
4047/// @endcode
4048///
4049/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4050/// or 3 if "hello".
4051///
4052/// As an extension, generic selections are allowed in C++, where the following
4053/// additional semantics apply:
4054///
4055/// Any generic selection whose controlling expression is type-dependent or
4056/// which names a dependent type in its association list is result-dependent,
4057/// which means that the choice of result expression is dependent.
4058/// Result-dependent generic associations are both type- and value-dependent.
4059class GenericSelectionExpr : public Expr {
4060  enum { CONTROLLING, END_EXPR };
4061  TypeSourceInfo **AssocTypes;
4062  Stmt **SubExprs;
4063  unsigned NumAssocs, ResultIndex;
4064  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4065
4066public:
4067  GenericSelectionExpr(ASTContext &Context,
4068                       SourceLocation GenericLoc, Expr *ControllingExpr,
4069                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4070                       unsigned NumAssocs, SourceLocation DefaultLoc,
4071                       SourceLocation RParenLoc,
4072                       bool ContainsUnexpandedParameterPack,
4073                       unsigned ResultIndex);
4074
4075  /// This constructor is used in the result-dependent case.
4076  GenericSelectionExpr(ASTContext &Context,
4077                       SourceLocation GenericLoc, Expr *ControllingExpr,
4078                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4079                       unsigned NumAssocs, SourceLocation DefaultLoc,
4080                       SourceLocation RParenLoc,
4081                       bool ContainsUnexpandedParameterPack);
4082
4083  explicit GenericSelectionExpr(EmptyShell Empty)
4084    : Expr(GenericSelectionExprClass, Empty) { }
4085
4086  unsigned getNumAssocs() const { return NumAssocs; }
4087
4088  SourceLocation getGenericLoc() const { return GenericLoc; }
4089  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4090  SourceLocation getRParenLoc() const { return RParenLoc; }
4091
4092  const Expr *getAssocExpr(unsigned i) const {
4093    return cast<Expr>(SubExprs[END_EXPR+i]);
4094  }
4095  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4096
4097  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4098    return AssocTypes[i];
4099  }
4100  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4101
4102  QualType getAssocType(unsigned i) const {
4103    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4104      return TS->getType();
4105    else
4106      return QualType();
4107  }
4108
4109  const Expr *getControllingExpr() const {
4110    return cast<Expr>(SubExprs[CONTROLLING]);
4111  }
4112  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4113
4114  /// Whether this generic selection is result-dependent.
4115  bool isResultDependent() const { return ResultIndex == -1U; }
4116
4117  /// The zero-based index of the result expression's generic association in
4118  /// the generic selection's association list.  Defined only if the
4119  /// generic selection is not result-dependent.
4120  unsigned getResultIndex() const {
4121    assert(!isResultDependent() && "Generic selection is result-dependent");
4122    return ResultIndex;
4123  }
4124
4125  /// The generic selection's result expression.  Defined only if the
4126  /// generic selection is not result-dependent.
4127  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4128  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4129
4130  SourceRange getSourceRange() const {
4131    return SourceRange(GenericLoc, RParenLoc);
4132  }
4133  static bool classof(const Stmt *T) {
4134    return T->getStmtClass() == GenericSelectionExprClass;
4135  }
4136  static bool classof(const GenericSelectionExpr *) { return true; }
4137
4138  child_range children() {
4139    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4140  }
4141
4142  friend class ASTStmtReader;
4143};
4144
4145//===----------------------------------------------------------------------===//
4146// Clang Extensions
4147//===----------------------------------------------------------------------===//
4148
4149
4150/// ExtVectorElementExpr - This represents access to specific elements of a
4151/// vector, and may occur on the left hand side or right hand side.  For example
4152/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4153///
4154/// Note that the base may have either vector or pointer to vector type, just
4155/// like a struct field reference.
4156///
4157class ExtVectorElementExpr : public Expr {
4158  Stmt *Base;
4159  IdentifierInfo *Accessor;
4160  SourceLocation AccessorLoc;
4161public:
4162  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4163                       IdentifierInfo &accessor, SourceLocation loc)
4164    : Expr(ExtVectorElementExprClass, ty, VK,
4165           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4166           base->isTypeDependent(), base->isValueDependent(),
4167           base->isInstantiationDependent(),
4168           base->containsUnexpandedParameterPack()),
4169      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4170
4171  /// \brief Build an empty vector element expression.
4172  explicit ExtVectorElementExpr(EmptyShell Empty)
4173    : Expr(ExtVectorElementExprClass, Empty) { }
4174
4175  const Expr *getBase() const { return cast<Expr>(Base); }
4176  Expr *getBase() { return cast<Expr>(Base); }
4177  void setBase(Expr *E) { Base = E; }
4178
4179  IdentifierInfo &getAccessor() const { return *Accessor; }
4180  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4181
4182  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4183  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4184
4185  /// getNumElements - Get the number of components being selected.
4186  unsigned getNumElements() const;
4187
4188  /// containsDuplicateElements - Return true if any element access is
4189  /// repeated.
4190  bool containsDuplicateElements() const;
4191
4192  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4193  /// aggregate Constant of ConstantInt(s).
4194  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4195
4196  SourceRange getSourceRange() const {
4197    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4198  }
4199
4200  /// isArrow - Return true if the base expression is a pointer to vector,
4201  /// return false if the base expression is a vector.
4202  bool isArrow() const;
4203
4204  static bool classof(const Stmt *T) {
4205    return T->getStmtClass() == ExtVectorElementExprClass;
4206  }
4207  static bool classof(const ExtVectorElementExpr *) { return true; }
4208
4209  // Iterators
4210  child_range children() { return child_range(&Base, &Base+1); }
4211};
4212
4213
4214/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4215/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4216class BlockExpr : public Expr {
4217protected:
4218  BlockDecl *TheBlock;
4219public:
4220  BlockExpr(BlockDecl *BD, QualType ty)
4221    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4222           ty->isDependentType(), false,
4223           // FIXME: Check for instantiate-dependence in the statement?
4224           ty->isInstantiationDependentType(),
4225           false),
4226      TheBlock(BD) {}
4227
4228  /// \brief Build an empty block expression.
4229  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4230
4231  const BlockDecl *getBlockDecl() const { return TheBlock; }
4232  BlockDecl *getBlockDecl() { return TheBlock; }
4233  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4234
4235  // Convenience functions for probing the underlying BlockDecl.
4236  SourceLocation getCaretLocation() const;
4237  const Stmt *getBody() const;
4238  Stmt *getBody();
4239
4240  SourceRange getSourceRange() const {
4241    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4242  }
4243
4244  /// getFunctionType - Return the underlying function type for this block.
4245  const FunctionProtoType *getFunctionType() const;
4246
4247  static bool classof(const Stmt *T) {
4248    return T->getStmtClass() == BlockExprClass;
4249  }
4250  static bool classof(const BlockExpr *) { return true; }
4251
4252  // Iterators
4253  child_range children() { return child_range(); }
4254};
4255
4256/// BlockDeclRefExpr - A reference to a local variable declared in an
4257/// enclosing scope.
4258class BlockDeclRefExpr : public Expr {
4259  VarDecl *D;
4260  SourceLocation Loc;
4261  bool IsByRef : 1;
4262  bool ConstQualAdded : 1;
4263public:
4264  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4265                   SourceLocation l, bool ByRef, bool constAdded = false);
4266
4267  // \brief Build an empty reference to a declared variable in a
4268  // block.
4269  explicit BlockDeclRefExpr(EmptyShell Empty)
4270    : Expr(BlockDeclRefExprClass, Empty) { }
4271
4272  VarDecl *getDecl() { return D; }
4273  const VarDecl *getDecl() const { return D; }
4274  void setDecl(VarDecl *VD) { D = VD; }
4275
4276  SourceLocation getLocation() const { return Loc; }
4277  void setLocation(SourceLocation L) { Loc = L; }
4278
4279  SourceRange getSourceRange() const { return SourceRange(Loc); }
4280
4281  bool isByRef() const { return IsByRef; }
4282  void setByRef(bool BR) { IsByRef = BR; }
4283
4284  bool isConstQualAdded() const { return ConstQualAdded; }
4285  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4286
4287  static bool classof(const Stmt *T) {
4288    return T->getStmtClass() == BlockDeclRefExprClass;
4289  }
4290  static bool classof(const BlockDeclRefExpr *) { return true; }
4291
4292  // Iterators
4293  child_range children() { return child_range(); }
4294};
4295
4296/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4297/// This AST node provides support for reinterpreting a type to another
4298/// type of the same size.
4299class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4300private:
4301  Stmt *SrcExpr;
4302  SourceLocation BuiltinLoc, RParenLoc;
4303
4304  friend class ASTReader;
4305  friend class ASTStmtReader;
4306  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4307
4308public:
4309  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4310             ExprValueKind VK, ExprObjectKind OK,
4311             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4312    : Expr(AsTypeExprClass, DstType, VK, OK,
4313           DstType->isDependentType(),
4314           DstType->isDependentType() || SrcExpr->isValueDependent(),
4315           (DstType->isInstantiationDependentType() ||
4316            SrcExpr->isInstantiationDependent()),
4317           (DstType->containsUnexpandedParameterPack() ||
4318            SrcExpr->containsUnexpandedParameterPack())),
4319  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4320
4321  /// getSrcExpr - Return the Expr to be converted.
4322  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4323
4324  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4325  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4326
4327  /// getRParenLoc - Return the location of final right parenthesis.
4328  SourceLocation getRParenLoc() const { return RParenLoc; }
4329
4330  SourceRange getSourceRange() const {
4331    return SourceRange(BuiltinLoc, RParenLoc);
4332  }
4333
4334  static bool classof(const Stmt *T) {
4335    return T->getStmtClass() == AsTypeExprClass;
4336  }
4337  static bool classof(const AsTypeExpr *) { return true; }
4338
4339  // Iterators
4340  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4341};
4342
4343/// PseudoObjectExpr - An expression which accesses a pseudo-object
4344/// l-value.  A pseudo-object is an abstract object, accesses to which
4345/// are translated to calls.  The pseudo-object expression has a
4346/// syntactic form, which shows how the expression was actually
4347/// written in the source code, and a semantic form, which is a series
4348/// of expressions to be executed in order which detail how the
4349/// operation is actually evaluated.  Optionally, one of the semantic
4350/// forms may also provide a result value for the expression.
4351///
4352/// If any of the semantic-form expressions is an OpaqueValueExpr,
4353/// that OVE is required to have a source expression, and it is bound
4354/// to the result of that source expression.  Such OVEs may appear
4355/// only in subsequent semantic-form expressions and as
4356/// sub-expressions of the syntactic form.
4357///
4358/// PseudoObjectExpr should be used only when an operation can be
4359/// usefully described in terms of fairly simple rewrite rules on
4360/// objects and functions that are meant to be used by end-developers.
4361/// For example, under the Itanium ABI, dynamic casts are implemented
4362/// as a call to a runtime function called __dynamic_cast; using this
4363/// class to describe that would be inappropriate because that call is
4364/// not really part of the user-visible semantics, and instead the
4365/// cast is properly reflected in the AST and IR-generation has been
4366/// taught to generate the call as necessary.  In contrast, an
4367/// Objective-C property access is semantically defined to be
4368/// equivalent to a particular message send, and this is very much
4369/// part of the user model.  The name of this class encourages this
4370/// modelling design.
4371class PseudoObjectExpr : public Expr {
4372  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4373  // Always at least two, because the first sub-expression is the
4374  // syntactic form.
4375
4376  // PseudoObjectExprBits.ResultIndex - The index of the
4377  // sub-expression holding the result.  0 means the result is void,
4378  // which is unambiguous because it's the index of the syntactic
4379  // form.  Note that this is therefore 1 higher than the value passed
4380  // in to Create, which is an index within the semantic forms.
4381  // Note also that ASTStmtWriter assumes this encoding.
4382
4383  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4384  const Expr * const *getSubExprsBuffer() const {
4385    return reinterpret_cast<const Expr * const *>(this + 1);
4386  }
4387
4388  friend class ASTStmtReader;
4389
4390  PseudoObjectExpr(QualType type, ExprValueKind VK,
4391                   Expr *syntactic, ArrayRef<Expr*> semantic,
4392                   unsigned resultIndex);
4393
4394  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4395
4396  unsigned getNumSubExprs() const {
4397    return PseudoObjectExprBits.NumSubExprs;
4398  }
4399
4400public:
4401  /// NoResult - A value for the result index indicating that there is
4402  /// no semantic result.
4403  enum { NoResult = ~0U };
4404
4405  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4406                                  ArrayRef<Expr*> semantic,
4407                                  unsigned resultIndex);
4408
4409  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4410                                  unsigned numSemanticExprs);
4411
4412  /// Return the syntactic form of this expression, i.e. the
4413  /// expression it actually looks like.  Likely to be expressed in
4414  /// terms of OpaqueValueExprs bound in the semantic form.
4415  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4416  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4417
4418  /// Return the index of the result-bearing expression into the semantics
4419  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4420  unsigned getResultExprIndex() const {
4421    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4422    return PseudoObjectExprBits.ResultIndex - 1;
4423  }
4424
4425  /// Return the result-bearing expression, or null if there is none.
4426  Expr *getResultExpr() {
4427    if (PseudoObjectExprBits.ResultIndex == 0)
4428      return 0;
4429    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4430  }
4431  const Expr *getResultExpr() const {
4432    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4433  }
4434
4435  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4436
4437  typedef Expr * const *semantics_iterator;
4438  typedef const Expr * const *const_semantics_iterator;
4439  semantics_iterator semantics_begin() {
4440    return getSubExprsBuffer() + 1;
4441  }
4442  const_semantics_iterator semantics_begin() const {
4443    return getSubExprsBuffer() + 1;
4444  }
4445  semantics_iterator semantics_end() {
4446    return getSubExprsBuffer() + getNumSubExprs();
4447  }
4448  const_semantics_iterator semantics_end() const {
4449    return getSubExprsBuffer() + getNumSubExprs();
4450  }
4451  Expr *getSemanticExpr(unsigned index) {
4452    assert(index + 1 < getNumSubExprs());
4453    return getSubExprsBuffer()[index + 1];
4454  }
4455  const Expr *getSemanticExpr(unsigned index) const {
4456    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4457  }
4458
4459  SourceLocation getExprLoc() const {
4460    return getSyntacticForm()->getExprLoc();
4461  }
4462  SourceRange getSourceRange() const {
4463    return getSyntacticForm()->getSourceRange();
4464  }
4465
4466  child_range children() {
4467    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4468    return child_range(cs, cs + getNumSubExprs());
4469  }
4470
4471  static bool classof(const Stmt *T) {
4472    return T->getStmtClass() == PseudoObjectExprClass;
4473  }
4474  static bool classof(const PseudoObjectExpr *) { return true; }
4475};
4476
4477/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4478/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4479/// similarly-named C++0x instructions.  All of these instructions take one
4480/// primary pointer and at least one memory order.
4481class AtomicExpr : public Expr {
4482public:
4483  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4484                  Add, Sub, And, Or, Xor, Init };
4485private:
4486  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4487  Stmt* SubExprs[END_EXPR];
4488  unsigned NumSubExprs;
4489  SourceLocation BuiltinLoc, RParenLoc;
4490  AtomicOp Op;
4491
4492public:
4493  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4494             AtomicOp op, SourceLocation RP);
4495
4496  /// \brief Build an empty AtomicExpr.
4497  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4498
4499  Expr *getPtr() const {
4500    return cast<Expr>(SubExprs[PTR]);
4501  }
4502  void setPtr(Expr *E) {
4503    SubExprs[PTR] = E;
4504  }
4505  Expr *getOrder() const {
4506    return cast<Expr>(SubExprs[ORDER]);
4507  }
4508  void setOrder(Expr *E) {
4509    SubExprs[ORDER] = E;
4510  }
4511  Expr *getVal1() const {
4512    if (Op == Init)
4513      return cast<Expr>(SubExprs[ORDER]);
4514    assert(NumSubExprs >= 3);
4515    return cast<Expr>(SubExprs[VAL1]);
4516  }
4517  void setVal1(Expr *E) {
4518    if (Op == Init) {
4519      SubExprs[ORDER] = E;
4520      return;
4521    }
4522    assert(NumSubExprs >= 3);
4523    SubExprs[VAL1] = E;
4524  }
4525  Expr *getOrderFail() const {
4526    assert(NumSubExprs == 5);
4527    return cast<Expr>(SubExprs[ORDER_FAIL]);
4528  }
4529  void setOrderFail(Expr *E) {
4530    assert(NumSubExprs == 5);
4531    SubExprs[ORDER_FAIL] = E;
4532  }
4533  Expr *getVal2() const {
4534    assert(NumSubExprs == 5);
4535    return cast<Expr>(SubExprs[VAL2]);
4536  }
4537  void setVal2(Expr *E) {
4538    assert(NumSubExprs == 5);
4539    SubExprs[VAL2] = E;
4540  }
4541
4542  AtomicOp getOp() const { return Op; }
4543  void setOp(AtomicOp op) { Op = op; }
4544  unsigned getNumSubExprs() { return NumSubExprs; }
4545  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4546
4547  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4548
4549  bool isVolatile() const {
4550    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4551  }
4552
4553  bool isCmpXChg() const {
4554    return getOp() == AtomicExpr::CmpXchgStrong ||
4555           getOp() == AtomicExpr::CmpXchgWeak;
4556  }
4557
4558  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4559  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4560
4561  SourceLocation getRParenLoc() const { return RParenLoc; }
4562  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4563
4564  SourceRange getSourceRange() const {
4565    return SourceRange(BuiltinLoc, RParenLoc);
4566  }
4567  static bool classof(const Stmt *T) {
4568    return T->getStmtClass() == AtomicExprClass;
4569  }
4570  static bool classof(const AtomicExpr *) { return true; }
4571
4572  // Iterators
4573  child_range children() {
4574    return child_range(SubExprs, SubExprs+NumSubExprs);
4575  }
4576};
4577}  // end namespace clang
4578
4579#endif
4580