Expr.h revision 2b334bb3126a67895813e49e6228dad4aec0b4d6
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include <vector>
27
28namespace clang {
29  class ASTContext;
30  class APValue;
31  class Decl;
32  class IdentifierInfo;
33  class ParmVarDecl;
34  class NamedDecl;
35  class ValueDecl;
36  class BlockDecl;
37  class CXXOperatorCallExpr;
38  class CXXMemberCallExpr;
39  class TemplateArgumentLoc;
40  class TemplateArgumentListInfo;
41
42/// Expr - This represents one expression.  Note that Expr's are subclasses of
43/// Stmt.  This allows an expression to be transparently used any place a Stmt
44/// is required.
45///
46class Expr : public Stmt {
47  QualType TR;
48
49protected:
50  /// TypeDependent - Whether this expression is type-dependent
51  /// (C++ [temp.dep.expr]).
52  bool TypeDependent : 1;
53
54  /// ValueDependent - Whether this expression is value-dependent
55  /// (C++ [temp.dep.constexpr]).
56  bool ValueDependent : 1;
57
58  Expr(StmtClass SC, QualType T, bool TD, bool VD)
59    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
60    setType(T);
61  }
62
63  /// \brief Construct an empty expression.
64  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
65
66public:
67  /// \brief Increases the reference count for this expression.
68  ///
69  /// Invoke the Retain() operation when this expression
70  /// is being shared by another owner.
71  Expr *Retain() {
72    Stmt::Retain();
73    return this;
74  }
75
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) { ValueDependent = VD; }
102
103  /// isTypeDependent - Determines whether this expression is
104  /// type-dependent (C++ [temp.dep.expr]), which means that its type
105  /// could change from one template instantiation to the next. For
106  /// example, the expressions "x" and "x + y" are type-dependent in
107  /// the following code, but "y" is not type-dependent:
108  /// @code
109  /// template<typename T>
110  /// void add(T x, int y) {
111  ///   x + y;
112  /// }
113  /// @endcode
114  bool isTypeDependent() const { return TypeDependent; }
115
116  /// \brief Set whether this expression is type-dependent or not.
117  void setTypeDependent(bool TD) { TypeDependent = TD; }
118
119  /// SourceLocation tokens are not useful in isolation - they are low level
120  /// value objects created/interpreted by SourceManager. We assume AST
121  /// clients will have a pointer to the respective SourceManager.
122  virtual SourceRange getSourceRange() const = 0;
123
124  /// getExprLoc - Return the preferred location for the arrow when diagnosing
125  /// a problem with a generic expression.
126  virtual SourceLocation getExprLoc() const { return getLocStart(); }
127
128  /// isUnusedResultAWarning - Return true if this immediate expression should
129  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
130  /// with location to warn on and the source range[s] to report with the
131  /// warning.
132  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
133                              SourceRange &R2, ASTContext &Ctx) const;
134
135  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
136  /// incomplete type other than void. Nonarray expressions that can be lvalues:
137  ///  - name, where name must be a variable
138  ///  - e[i]
139  ///  - (e), where e must be an lvalue
140  ///  - e.name, where e must be an lvalue
141  ///  - e->name
142  ///  - *e, the type of e cannot be a function type
143  ///  - string-constant
144  ///  - reference type [C++ [expr]]
145  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
146  ///
147  enum isLvalueResult {
148    LV_Valid,
149    LV_NotObjectType,
150    LV_IncompleteVoidType,
151    LV_DuplicateVectorComponents,
152    LV_InvalidExpression,
153    LV_MemberFunction,
154    LV_SubObjCPropertySetting,
155    LV_ClassTemporary
156  };
157  isLvalueResult isLvalue(ASTContext &Ctx) const;
158
159  // Same as above, but excluding checks for non-object and void types in C
160  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
161
162  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
163  /// does not have an incomplete type, does not have a const-qualified type,
164  /// and if it is a structure or union, does not have any member (including,
165  /// recursively, any member or element of all contained aggregates or unions)
166  /// with a const-qualified type.
167  ///
168  /// \param Loc [in] [out] - A source location which *may* be filled
169  /// in with the location of the expression making this a
170  /// non-modifiable lvalue, if specified.
171  enum isModifiableLvalueResult {
172    MLV_Valid,
173    MLV_NotObjectType,
174    MLV_IncompleteVoidType,
175    MLV_DuplicateVectorComponents,
176    MLV_InvalidExpression,
177    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
178    MLV_IncompleteType,
179    MLV_ConstQualified,
180    MLV_ArrayType,
181    MLV_NotBlockQualified,
182    MLV_ReadonlyProperty,
183    MLV_NoSetterProperty,
184    MLV_MemberFunction,
185    MLV_SubObjCPropertySetting,
186    MLV_ClassTemporary
187  };
188  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
189                                              SourceLocation *Loc = 0) const;
190
191  /// \brief If this expression refers to a bit-field, retrieve the
192  /// declaration of that bit-field.
193  FieldDecl *getBitField();
194
195  const FieldDecl *getBitField() const {
196    return const_cast<Expr*>(this)->getBitField();
197  }
198
199  /// \brief Returns whether this expression refers to a vector element.
200  bool refersToVectorElement() const;
201
202  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
203  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
204  /// but also int expressions which are produced by things like comparisons in
205  /// C.
206  bool isKnownToHaveBooleanValue() const;
207
208  /// isIntegerConstantExpr - Return true if this expression is a valid integer
209  /// constant expression, and, if so, return its value in Result.  If not a
210  /// valid i-c-e, return false and fill in Loc (if specified) with the location
211  /// of the invalid expression.
212  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
213                             SourceLocation *Loc = 0,
214                             bool isEvaluated = true) const;
215  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
216    llvm::APSInt X;
217    return isIntegerConstantExpr(X, Ctx, Loc);
218  }
219  /// isConstantInitializer - Returns true if this expression is a constant
220  /// initializer, which can be emitted at compile-time.
221  bool isConstantInitializer(ASTContext &Ctx) const;
222
223  /// EvalResult is a struct with detailed info about an evaluated expression.
224  struct EvalResult {
225    /// Val - This is the value the expression can be folded to.
226    APValue Val;
227
228    /// HasSideEffects - Whether the evaluated expression has side effects.
229    /// For example, (f() && 0) can be folded, but it still has side effects.
230    bool HasSideEffects;
231
232    /// Diag - If the expression is unfoldable, then Diag contains a note
233    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
234    /// position for the error, and DiagExpr is the expression that caused
235    /// the error.
236    /// If the expression is foldable, but not an integer constant expression,
237    /// Diag contains a note diagnostic that describes why it isn't an integer
238    /// constant expression. If the expression *is* an integer constant
239    /// expression, then Diag will be zero.
240    unsigned Diag;
241    const Expr *DiagExpr;
242    SourceLocation DiagLoc;
243
244    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
245  };
246
247  /// Evaluate - Return true if this is a constant which we can fold using
248  /// any crazy technique (that has nothing to do with language standards) that
249  /// we want to.  If this function returns true, it returns the folded constant
250  /// in Result.
251  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
252
253  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
254  /// stack based objects.
255  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
256
257  /// EvaluateAsBooleanCondition - Return true if this is a constant
258  /// which we we can fold and convert to a boolean condition using
259  /// any crazy technique that we want to.
260  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
261
262  /// isEvaluatable - Call Evaluate to see if this expression can be constant
263  /// folded, but discard the result.
264  bool isEvaluatable(ASTContext &Ctx) const;
265
266  /// HasSideEffects - This routine returns true for all those expressions
267  /// which must be evaluated each time and must not be optimization away
268  /// or evaluated at compile time. Example is a function call, volatile
269  /// variable read.
270  bool HasSideEffects(ASTContext &Ctx) const;
271
272  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
273  /// must be called on an expression that constant folds to an integer.
274  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
275
276  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
277  /// with link time known address.
278  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
279
280  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
281  /// also succeeds on stack based, immutable address lvalues.
282  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
283
284  /// \brief Enumeration used to describe how \c isNullPointerConstant()
285  /// should cope with value-dependent expressions.
286  enum NullPointerConstantValueDependence {
287    /// \brief Specifies that the expression should never be value-dependent.
288    NPC_NeverValueDependent = 0,
289
290    /// \brief Specifies that a value-dependent expression of integral or
291    /// dependent type should be considered a null pointer constant.
292    NPC_ValueDependentIsNull,
293
294    /// \brief Specifies that a value-dependent expression should be considered
295    /// to never be a null pointer constant.
296    NPC_ValueDependentIsNotNull
297  };
298
299  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
300  /// integer constant expression with the value zero, or if this is one that is
301  /// cast to void*.
302  bool isNullPointerConstant(ASTContext &Ctx,
303                             NullPointerConstantValueDependence NPC) const;
304
305  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
306  /// write barrier.
307  bool isOBJCGCCandidate(ASTContext &Ctx) const;
308
309  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
310  ///  its subexpression.  If that subexpression is also a ParenExpr,
311  ///  then this method recursively returns its subexpression, and so forth.
312  ///  Otherwise, the method returns the current Expr.
313  Expr *IgnoreParens();
314
315  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
316  /// or CastExprs, returning their operand.
317  Expr *IgnoreParenCasts();
318
319  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
320  /// value (including ptr->int casts of the same size).  Strip off any
321  /// ParenExpr or CastExprs, returning their operand.
322  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
323
324  /// \brief Determine whether this expression is a default function argument.
325  ///
326  /// Default arguments are implicitly generated in the abstract syntax tree
327  /// by semantic analysis for function calls, object constructions, etc. in
328  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
329  /// this routine also looks through any implicit casts to determine whether
330  /// the expression is a default argument.
331  bool isDefaultArgument() const;
332
333  /// \brief Determine whether this expression directly creates a
334  /// temporary object (of class type).
335  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
336
337  /// \brief If this expression directly creates a temporary object of
338  /// class type, return the expression that actually constructs that
339  /// temporary object.
340  const Expr *getTemporaryObject() const;
341
342  const Expr *IgnoreParens() const {
343    return const_cast<Expr*>(this)->IgnoreParens();
344  }
345  const Expr *IgnoreParenCasts() const {
346    return const_cast<Expr*>(this)->IgnoreParenCasts();
347  }
348  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
349    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
350  }
351
352  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
353  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
354
355  static bool classof(const Stmt *T) {
356    return T->getStmtClass() >= firstExprConstant &&
357           T->getStmtClass() <= lastExprConstant;
358  }
359  static bool classof(const Expr *) { return true; }
360};
361
362
363//===----------------------------------------------------------------------===//
364// Primary Expressions.
365//===----------------------------------------------------------------------===//
366
367/// \brief Represents the qualifier that may precede a C++ name, e.g., the
368/// "std::" in "std::sort".
369struct NameQualifier {
370  /// \brief The nested name specifier.
371  NestedNameSpecifier *NNS;
372
373  /// \brief The source range covered by the nested name specifier.
374  SourceRange Range;
375};
376
377/// \brief Represents an explicit template argument list in C++, e.g.,
378/// the "<int>" in "sort<int>".
379struct ExplicitTemplateArgumentList {
380  /// \brief The source location of the left angle bracket ('<');
381  SourceLocation LAngleLoc;
382
383  /// \brief The source location of the right angle bracket ('>');
384  SourceLocation RAngleLoc;
385
386  /// \brief The number of template arguments in TemplateArgs.
387  /// The actual template arguments (if any) are stored after the
388  /// ExplicitTemplateArgumentList structure.
389  unsigned NumTemplateArgs;
390
391  /// \brief Retrieve the template arguments
392  TemplateArgumentLoc *getTemplateArgs() {
393    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
394  }
395
396  /// \brief Retrieve the template arguments
397  const TemplateArgumentLoc *getTemplateArgs() const {
398    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
399  }
400
401  void initializeFrom(const TemplateArgumentListInfo &List);
402  void copyInto(TemplateArgumentListInfo &List) const;
403  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
404};
405
406/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
407/// enum, etc.
408class DeclRefExpr : public Expr {
409  enum {
410    // Flag on DecoratedD that specifies when this declaration reference
411    // expression has a C++ nested-name-specifier.
412    HasQualifierFlag = 0x01,
413    // Flag on DecoratedD that specifies when this declaration reference
414    // expression has an explicit C++ template argument list.
415    HasExplicitTemplateArgumentListFlag = 0x02
416  };
417
418  // DecoratedD - The declaration that we are referencing, plus two bits to
419  // indicate whether (1) the declaration's name was explicitly qualified and
420  // (2) the declaration's name was followed by an explicit template
421  // argument list.
422  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
423
424  // Loc - The location of the declaration name itself.
425  SourceLocation Loc;
426
427  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
428  NameQualifier *getNameQualifier() {
429    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
430      return 0;
431
432    return reinterpret_cast<NameQualifier *> (this + 1);
433  }
434
435  /// \brief Retrieve the qualifier that preceded the member name, if any.
436  const NameQualifier *getNameQualifier() const {
437    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
438  }
439
440  /// \brief Retrieve the explicit template argument list that followed the
441  /// member template name, if any.
442  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
443    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
444      return 0;
445
446    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
447      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
448
449    return reinterpret_cast<ExplicitTemplateArgumentList *>(
450                                                      getNameQualifier() + 1);
451  }
452
453  /// \brief Retrieve the explicit template argument list that followed the
454  /// member template name, if any.
455  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
456    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
457  }
458
459  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
460              ValueDecl *D, SourceLocation NameLoc,
461              const TemplateArgumentListInfo *TemplateArgs,
462              QualType T);
463
464protected:
465  /// \brief Computes the type- and value-dependence flags for this
466  /// declaration reference expression.
467  void computeDependence();
468
469  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
470    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
471    computeDependence();
472  }
473
474public:
475  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
476    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
477    computeDependence();
478  }
479
480  /// \brief Construct an empty declaration reference expression.
481  explicit DeclRefExpr(EmptyShell Empty)
482    : Expr(DeclRefExprClass, Empty) { }
483
484  static DeclRefExpr *Create(ASTContext &Context,
485                             NestedNameSpecifier *Qualifier,
486                             SourceRange QualifierRange,
487                             ValueDecl *D,
488                             SourceLocation NameLoc,
489                             QualType T,
490                             const TemplateArgumentListInfo *TemplateArgs = 0);
491
492  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
493  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
494  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
495
496  SourceLocation getLocation() const { return Loc; }
497  void setLocation(SourceLocation L) { Loc = L; }
498  virtual SourceRange getSourceRange() const;
499
500  /// \brief Determine whether this declaration reference was preceded by a
501  /// C++ nested-name-specifier, e.g., \c N::foo.
502  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
503
504  /// \brief If the name was qualified, retrieves the source range of
505  /// the nested-name-specifier that precedes the name. Otherwise,
506  /// returns an empty source range.
507  SourceRange getQualifierRange() const {
508    if (!hasQualifier())
509      return SourceRange();
510
511    return getNameQualifier()->Range;
512  }
513
514  /// \brief If the name was qualified, retrieves the nested-name-specifier
515  /// that precedes the name. Otherwise, returns NULL.
516  NestedNameSpecifier *getQualifier() const {
517    if (!hasQualifier())
518      return 0;
519
520    return getNameQualifier()->NNS;
521  }
522
523  /// \brief Determines whether this member expression actually had a C++
524  /// template argument list explicitly specified, e.g., x.f<int>.
525  bool hasExplicitTemplateArgumentList() const {
526    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
527  }
528
529  /// \brief Copies the template arguments (if present) into the given
530  /// structure.
531  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
532    if (hasExplicitTemplateArgumentList())
533      getExplicitTemplateArgumentList()->copyInto(List);
534  }
535
536  /// \brief Retrieve the location of the left angle bracket following the
537  /// member name ('<'), if any.
538  SourceLocation getLAngleLoc() const {
539    if (!hasExplicitTemplateArgumentList())
540      return SourceLocation();
541
542    return getExplicitTemplateArgumentList()->LAngleLoc;
543  }
544
545  /// \brief Retrieve the template arguments provided as part of this
546  /// template-id.
547  const TemplateArgumentLoc *getTemplateArgs() const {
548    if (!hasExplicitTemplateArgumentList())
549      return 0;
550
551    return getExplicitTemplateArgumentList()->getTemplateArgs();
552  }
553
554  /// \brief Retrieve the number of template arguments provided as part of this
555  /// template-id.
556  unsigned getNumTemplateArgs() const {
557    if (!hasExplicitTemplateArgumentList())
558      return 0;
559
560    return getExplicitTemplateArgumentList()->NumTemplateArgs;
561  }
562
563  /// \brief Retrieve the location of the right angle bracket following the
564  /// template arguments ('>').
565  SourceLocation getRAngleLoc() const {
566    if (!hasExplicitTemplateArgumentList())
567      return SourceLocation();
568
569    return getExplicitTemplateArgumentList()->RAngleLoc;
570  }
571
572  static bool classof(const Stmt *T) {
573    return T->getStmtClass() == DeclRefExprClass;
574  }
575  static bool classof(const DeclRefExpr *) { return true; }
576
577  // Iterators
578  virtual child_iterator child_begin();
579  virtual child_iterator child_end();
580};
581
582/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
583class PredefinedExpr : public Expr {
584public:
585  enum IdentType {
586    Func,
587    Function,
588    PrettyFunction,
589    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
590    /// 'virtual' keyword is omitted for virtual member functions.
591    PrettyFunctionNoVirtual
592  };
593
594private:
595  SourceLocation Loc;
596  IdentType Type;
597public:
598  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
599    : Expr(PredefinedExprClass, type, type->isDependentType(),
600           type->isDependentType()), Loc(l), Type(IT) {}
601
602  /// \brief Construct an empty predefined expression.
603  explicit PredefinedExpr(EmptyShell Empty)
604    : Expr(PredefinedExprClass, Empty) { }
605
606  IdentType getIdentType() const { return Type; }
607  void setIdentType(IdentType IT) { Type = IT; }
608
609  SourceLocation getLocation() const { return Loc; }
610  void setLocation(SourceLocation L) { Loc = L; }
611
612  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
613
614  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
615
616  static bool classof(const Stmt *T) {
617    return T->getStmtClass() == PredefinedExprClass;
618  }
619  static bool classof(const PredefinedExpr *) { return true; }
620
621  // Iterators
622  virtual child_iterator child_begin();
623  virtual child_iterator child_end();
624};
625
626class IntegerLiteral : public Expr {
627  llvm::APInt Value;
628  SourceLocation Loc;
629public:
630  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
631  // or UnsignedLongLongTy
632  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
633    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
634    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
635  }
636
637  /// \brief Construct an empty integer literal.
638  explicit IntegerLiteral(EmptyShell Empty)
639    : Expr(IntegerLiteralClass, Empty) { }
640
641  const llvm::APInt &getValue() const { return Value; }
642  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
643
644  /// \brief Retrieve the location of the literal.
645  SourceLocation getLocation() const { return Loc; }
646
647  void setValue(const llvm::APInt &Val) { Value = Val; }
648  void setLocation(SourceLocation Location) { Loc = Location; }
649
650  static bool classof(const Stmt *T) {
651    return T->getStmtClass() == IntegerLiteralClass;
652  }
653  static bool classof(const IntegerLiteral *) { return true; }
654
655  // Iterators
656  virtual child_iterator child_begin();
657  virtual child_iterator child_end();
658};
659
660class CharacterLiteral : public Expr {
661  unsigned Value;
662  SourceLocation Loc;
663  bool IsWide;
664public:
665  // type should be IntTy
666  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
667    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
668      IsWide(iswide) {
669  }
670
671  /// \brief Construct an empty character literal.
672  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
673
674  SourceLocation getLocation() const { return Loc; }
675  bool isWide() const { return IsWide; }
676
677  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
678
679  unsigned getValue() const { return Value; }
680
681  void setLocation(SourceLocation Location) { Loc = Location; }
682  void setWide(bool W) { IsWide = W; }
683  void setValue(unsigned Val) { Value = Val; }
684
685  static bool classof(const Stmt *T) {
686    return T->getStmtClass() == CharacterLiteralClass;
687  }
688  static bool classof(const CharacterLiteral *) { return true; }
689
690  // Iterators
691  virtual child_iterator child_begin();
692  virtual child_iterator child_end();
693};
694
695class FloatingLiteral : public Expr {
696  llvm::APFloat Value;
697  bool IsExact : 1;
698  SourceLocation Loc;
699public:
700  FloatingLiteral(const llvm::APFloat &V, bool isexact,
701                  QualType Type, SourceLocation L)
702    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
703      IsExact(isexact), Loc(L) {}
704
705  /// \brief Construct an empty floating-point literal.
706  explicit FloatingLiteral(EmptyShell Empty)
707    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
708
709  const llvm::APFloat &getValue() const { return Value; }
710  void setValue(const llvm::APFloat &Val) { Value = Val; }
711
712  bool isExact() const { return IsExact; }
713  void setExact(bool E) { IsExact = E; }
714
715  /// getValueAsApproximateDouble - This returns the value as an inaccurate
716  /// double.  Note that this may cause loss of precision, but is useful for
717  /// debugging dumps, etc.
718  double getValueAsApproximateDouble() const;
719
720  SourceLocation getLocation() const { return Loc; }
721  void setLocation(SourceLocation L) { Loc = L; }
722
723  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
724
725  static bool classof(const Stmt *T) {
726    return T->getStmtClass() == FloatingLiteralClass;
727  }
728  static bool classof(const FloatingLiteral *) { return true; }
729
730  // Iterators
731  virtual child_iterator child_begin();
732  virtual child_iterator child_end();
733};
734
735/// ImaginaryLiteral - We support imaginary integer and floating point literals,
736/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
737/// IntegerLiteral classes.  Instances of this class always have a Complex type
738/// whose element type matches the subexpression.
739///
740class ImaginaryLiteral : public Expr {
741  Stmt *Val;
742public:
743  ImaginaryLiteral(Expr *val, QualType Ty)
744    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
745
746  /// \brief Build an empty imaginary literal.
747  explicit ImaginaryLiteral(EmptyShell Empty)
748    : Expr(ImaginaryLiteralClass, Empty) { }
749
750  const Expr *getSubExpr() const { return cast<Expr>(Val); }
751  Expr *getSubExpr() { return cast<Expr>(Val); }
752  void setSubExpr(Expr *E) { Val = E; }
753
754  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
755  static bool classof(const Stmt *T) {
756    return T->getStmtClass() == ImaginaryLiteralClass;
757  }
758  static bool classof(const ImaginaryLiteral *) { return true; }
759
760  // Iterators
761  virtual child_iterator child_begin();
762  virtual child_iterator child_end();
763};
764
765/// StringLiteral - This represents a string literal expression, e.g. "foo"
766/// or L"bar" (wide strings).  The actual string is returned by getStrData()
767/// is NOT null-terminated, and the length of the string is determined by
768/// calling getByteLength().  The C type for a string is always a
769/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
770/// not.
771///
772/// Note that strings in C can be formed by concatenation of multiple string
773/// literal pptokens in translation phase #6.  This keeps track of the locations
774/// of each of these pieces.
775///
776/// Strings in C can also be truncated and extended by assigning into arrays,
777/// e.g. with constructs like:
778///   char X[2] = "foobar";
779/// In this case, getByteLength() will return 6, but the string literal will
780/// have type "char[2]".
781class StringLiteral : public Expr {
782  const char *StrData;
783  unsigned ByteLength;
784  bool IsWide;
785  unsigned NumConcatenated;
786  SourceLocation TokLocs[1];
787
788  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
789
790protected:
791  virtual void DoDestroy(ASTContext &C);
792
793public:
794  /// This is the "fully general" constructor that allows representation of
795  /// strings formed from multiple concatenated tokens.
796  static StringLiteral *Create(ASTContext &C, const char *StrData,
797                               unsigned ByteLength, bool Wide, QualType Ty,
798                               const SourceLocation *Loc, unsigned NumStrs);
799
800  /// Simple constructor for string literals made from one token.
801  static StringLiteral *Create(ASTContext &C, const char *StrData,
802                               unsigned ByteLength,
803                               bool Wide, QualType Ty, SourceLocation Loc) {
804    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
805  }
806
807  /// \brief Construct an empty string literal.
808  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
809
810  llvm::StringRef getString() const {
811    return llvm::StringRef(StrData, ByteLength);
812  }
813  // FIXME: These are deprecated, replace with StringRef.
814  const char *getStrData() const { return StrData; }
815  unsigned getByteLength() const { return ByteLength; }
816
817  /// \brief Sets the string data to the given string data.
818  void setString(ASTContext &C, llvm::StringRef Str);
819
820  bool isWide() const { return IsWide; }
821  void setWide(bool W) { IsWide = W; }
822
823  bool containsNonAsciiOrNull() const {
824    llvm::StringRef Str = getString();
825    for (unsigned i = 0, e = Str.size(); i != e; ++i)
826      if (!isascii(Str[i]) || !Str[i])
827        return true;
828    return false;
829  }
830  /// getNumConcatenated - Get the number of string literal tokens that were
831  /// concatenated in translation phase #6 to form this string literal.
832  unsigned getNumConcatenated() const { return NumConcatenated; }
833
834  SourceLocation getStrTokenLoc(unsigned TokNum) const {
835    assert(TokNum < NumConcatenated && "Invalid tok number");
836    return TokLocs[TokNum];
837  }
838  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
839    assert(TokNum < NumConcatenated && "Invalid tok number");
840    TokLocs[TokNum] = L;
841  }
842
843  typedef const SourceLocation *tokloc_iterator;
844  tokloc_iterator tokloc_begin() const { return TokLocs; }
845  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
846
847  virtual SourceRange getSourceRange() const {
848    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
849  }
850  static bool classof(const Stmt *T) {
851    return T->getStmtClass() == StringLiteralClass;
852  }
853  static bool classof(const StringLiteral *) { return true; }
854
855  // Iterators
856  virtual child_iterator child_begin();
857  virtual child_iterator child_end();
858};
859
860/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
861/// AST node is only formed if full location information is requested.
862class ParenExpr : public Expr {
863  SourceLocation L, R;
864  Stmt *Val;
865public:
866  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
867    : Expr(ParenExprClass, val->getType(),
868           val->isTypeDependent(), val->isValueDependent()),
869      L(l), R(r), Val(val) {}
870
871  /// \brief Construct an empty parenthesized expression.
872  explicit ParenExpr(EmptyShell Empty)
873    : Expr(ParenExprClass, Empty) { }
874
875  const Expr *getSubExpr() const { return cast<Expr>(Val); }
876  Expr *getSubExpr() { return cast<Expr>(Val); }
877  void setSubExpr(Expr *E) { Val = E; }
878
879  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
880
881  /// \brief Get the location of the left parentheses '('.
882  SourceLocation getLParen() const { return L; }
883  void setLParen(SourceLocation Loc) { L = Loc; }
884
885  /// \brief Get the location of the right parentheses ')'.
886  SourceLocation getRParen() const { return R; }
887  void setRParen(SourceLocation Loc) { R = Loc; }
888
889  static bool classof(const Stmt *T) {
890    return T->getStmtClass() == ParenExprClass;
891  }
892  static bool classof(const ParenExpr *) { return true; }
893
894  // Iterators
895  virtual child_iterator child_begin();
896  virtual child_iterator child_end();
897};
898
899
900/// UnaryOperator - This represents the unary-expression's (except sizeof and
901/// alignof), the postinc/postdec operators from postfix-expression, and various
902/// extensions.
903///
904/// Notes on various nodes:
905///
906/// Real/Imag - These return the real/imag part of a complex operand.  If
907///   applied to a non-complex value, the former returns its operand and the
908///   later returns zero in the type of the operand.
909///
910/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
911///   subexpression is a compound literal with the various MemberExpr and
912///   ArraySubscriptExpr's applied to it.
913///
914class UnaryOperator : public Expr {
915public:
916  // Note that additions to this should also update the StmtVisitor class.
917  enum Opcode {
918    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
919    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
920    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
921    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
922    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
923    Real, Imag,       // "__real expr"/"__imag expr" Extension.
924    Extension,        // __extension__ marker.
925    OffsetOf          // __builtin_offsetof
926  };
927private:
928  Stmt *Val;
929  Opcode Opc;
930  SourceLocation Loc;
931public:
932
933  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
934    : Expr(UnaryOperatorClass, type,
935           input->isTypeDependent() && opc != OffsetOf,
936           input->isValueDependent()),
937      Val(input), Opc(opc), Loc(l) {}
938
939  /// \brief Build an empty unary operator.
940  explicit UnaryOperator(EmptyShell Empty)
941    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
942
943  Opcode getOpcode() const { return Opc; }
944  void setOpcode(Opcode O) { Opc = O; }
945
946  Expr *getSubExpr() const { return cast<Expr>(Val); }
947  void setSubExpr(Expr *E) { Val = E; }
948
949  /// getOperatorLoc - Return the location of the operator.
950  SourceLocation getOperatorLoc() const { return Loc; }
951  void setOperatorLoc(SourceLocation L) { Loc = L; }
952
953  /// isPostfix - Return true if this is a postfix operation, like x++.
954  static bool isPostfix(Opcode Op) {
955    return Op == PostInc || Op == PostDec;
956  }
957
958  /// isPostfix - Return true if this is a prefix operation, like --x.
959  static bool isPrefix(Opcode Op) {
960    return Op == PreInc || Op == PreDec;
961  }
962
963  bool isPrefix() const { return isPrefix(Opc); }
964  bool isPostfix() const { return isPostfix(Opc); }
965  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
966  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
967  bool isOffsetOfOp() const { return Opc == OffsetOf; }
968  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
969  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
970
971  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
972  /// corresponds to, e.g. "sizeof" or "[pre]++"
973  static const char *getOpcodeStr(Opcode Op);
974
975  /// \brief Retrieve the unary opcode that corresponds to the given
976  /// overloaded operator.
977  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
978
979  /// \brief Retrieve the overloaded operator kind that corresponds to
980  /// the given unary opcode.
981  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
982
983  virtual SourceRange getSourceRange() const {
984    if (isPostfix())
985      return SourceRange(Val->getLocStart(), Loc);
986    else
987      return SourceRange(Loc, Val->getLocEnd());
988  }
989  virtual SourceLocation getExprLoc() const { return Loc; }
990
991  static bool classof(const Stmt *T) {
992    return T->getStmtClass() == UnaryOperatorClass;
993  }
994  static bool classof(const UnaryOperator *) { return true; }
995
996  // Iterators
997  virtual child_iterator child_begin();
998  virtual child_iterator child_end();
999};
1000
1001/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1002/// types and expressions.
1003class SizeOfAlignOfExpr : public Expr {
1004  bool isSizeof : 1;  // true if sizeof, false if alignof.
1005  bool isType : 1;    // true if operand is a type, false if an expression
1006  union {
1007    TypeSourceInfo *Ty;
1008    Stmt *Ex;
1009  } Argument;
1010  SourceLocation OpLoc, RParenLoc;
1011
1012protected:
1013  virtual void DoDestroy(ASTContext& C);
1014
1015public:
1016  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1017                    QualType resultType, SourceLocation op,
1018                    SourceLocation rp) :
1019      Expr(SizeOfAlignOfExprClass, resultType,
1020           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1021           // Value-dependent if the argument is type-dependent.
1022           TInfo->getType()->isDependentType()),
1023      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1024    Argument.Ty = TInfo;
1025  }
1026
1027  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1028                    QualType resultType, SourceLocation op,
1029                    SourceLocation rp) :
1030      Expr(SizeOfAlignOfExprClass, resultType,
1031           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1032           // Value-dependent if the argument is type-dependent.
1033           E->isTypeDependent()),
1034      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1035    Argument.Ex = E;
1036  }
1037
1038  /// \brief Construct an empty sizeof/alignof expression.
1039  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1040    : Expr(SizeOfAlignOfExprClass, Empty) { }
1041
1042  bool isSizeOf() const { return isSizeof; }
1043  void setSizeof(bool S) { isSizeof = S; }
1044
1045  bool isArgumentType() const { return isType; }
1046  QualType getArgumentType() const {
1047    return getArgumentTypeInfo()->getType();
1048  }
1049  TypeSourceInfo *getArgumentTypeInfo() const {
1050    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1051    return Argument.Ty;
1052  }
1053  Expr *getArgumentExpr() {
1054    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1055    return static_cast<Expr*>(Argument.Ex);
1056  }
1057  const Expr *getArgumentExpr() const {
1058    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1059  }
1060
1061  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1062  void setArgument(TypeSourceInfo *TInfo) {
1063    Argument.Ty = TInfo;
1064    isType = true;
1065  }
1066
1067  /// Gets the argument type, or the type of the argument expression, whichever
1068  /// is appropriate.
1069  QualType getTypeOfArgument() const {
1070    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1071  }
1072
1073  SourceLocation getOperatorLoc() const { return OpLoc; }
1074  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1075
1076  SourceLocation getRParenLoc() const { return RParenLoc; }
1077  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1078
1079  virtual SourceRange getSourceRange() const {
1080    return SourceRange(OpLoc, RParenLoc);
1081  }
1082
1083  static bool classof(const Stmt *T) {
1084    return T->getStmtClass() == SizeOfAlignOfExprClass;
1085  }
1086  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1087
1088  // Iterators
1089  virtual child_iterator child_begin();
1090  virtual child_iterator child_end();
1091};
1092
1093//===----------------------------------------------------------------------===//
1094// Postfix Operators.
1095//===----------------------------------------------------------------------===//
1096
1097/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1098class ArraySubscriptExpr : public Expr {
1099  enum { LHS, RHS, END_EXPR=2 };
1100  Stmt* SubExprs[END_EXPR];
1101  SourceLocation RBracketLoc;
1102public:
1103  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1104                     SourceLocation rbracketloc)
1105  : Expr(ArraySubscriptExprClass, t,
1106         lhs->isTypeDependent() || rhs->isTypeDependent(),
1107         lhs->isValueDependent() || rhs->isValueDependent()),
1108    RBracketLoc(rbracketloc) {
1109    SubExprs[LHS] = lhs;
1110    SubExprs[RHS] = rhs;
1111  }
1112
1113  /// \brief Create an empty array subscript expression.
1114  explicit ArraySubscriptExpr(EmptyShell Shell)
1115    : Expr(ArraySubscriptExprClass, Shell) { }
1116
1117  /// An array access can be written A[4] or 4[A] (both are equivalent).
1118  /// - getBase() and getIdx() always present the normalized view: A[4].
1119  ///    In this case getBase() returns "A" and getIdx() returns "4".
1120  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1121  ///    4[A] getLHS() returns "4".
1122  /// Note: Because vector element access is also written A[4] we must
1123  /// predicate the format conversion in getBase and getIdx only on the
1124  /// the type of the RHS, as it is possible for the LHS to be a vector of
1125  /// integer type
1126  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1127  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1128  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1129
1130  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1131  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1132  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1133
1134  Expr *getBase() {
1135    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1136  }
1137
1138  const Expr *getBase() const {
1139    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1140  }
1141
1142  Expr *getIdx() {
1143    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1144  }
1145
1146  const Expr *getIdx() const {
1147    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1148  }
1149
1150  virtual SourceRange getSourceRange() const {
1151    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1152  }
1153
1154  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1155  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1156
1157  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1158
1159  static bool classof(const Stmt *T) {
1160    return T->getStmtClass() == ArraySubscriptExprClass;
1161  }
1162  static bool classof(const ArraySubscriptExpr *) { return true; }
1163
1164  // Iterators
1165  virtual child_iterator child_begin();
1166  virtual child_iterator child_end();
1167};
1168
1169
1170/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1171/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1172/// while its subclasses may represent alternative syntax that (semantically)
1173/// results in a function call. For example, CXXOperatorCallExpr is
1174/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1175/// "str1 + str2" to resolve to a function call.
1176class CallExpr : public Expr {
1177  enum { FN=0, ARGS_START=1 };
1178  Stmt **SubExprs;
1179  unsigned NumArgs;
1180  SourceLocation RParenLoc;
1181
1182protected:
1183  // This version of the constructor is for derived classes.
1184  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1185           QualType t, SourceLocation rparenloc);
1186
1187  virtual void DoDestroy(ASTContext& C);
1188
1189public:
1190  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1191           SourceLocation rparenloc);
1192
1193  /// \brief Build an empty call expression.
1194  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1195
1196  ~CallExpr() {}
1197
1198  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1199  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1200  void setCallee(Expr *F) { SubExprs[FN] = F; }
1201
1202  Decl *getCalleeDecl();
1203  const Decl *getCalleeDecl() const {
1204    return const_cast<CallExpr*>(this)->getCalleeDecl();
1205  }
1206
1207  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1208  FunctionDecl *getDirectCallee();
1209  const FunctionDecl *getDirectCallee() const {
1210    return const_cast<CallExpr*>(this)->getDirectCallee();
1211  }
1212
1213  /// getNumArgs - Return the number of actual arguments to this call.
1214  ///
1215  unsigned getNumArgs() const { return NumArgs; }
1216
1217  /// getArg - Return the specified argument.
1218  Expr *getArg(unsigned Arg) {
1219    assert(Arg < NumArgs && "Arg access out of range!");
1220    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1221  }
1222  const Expr *getArg(unsigned Arg) const {
1223    assert(Arg < NumArgs && "Arg access out of range!");
1224    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1225  }
1226
1227  /// setArg - Set the specified argument.
1228  void setArg(unsigned Arg, Expr *ArgExpr) {
1229    assert(Arg < NumArgs && "Arg access out of range!");
1230    SubExprs[Arg+ARGS_START] = ArgExpr;
1231  }
1232
1233  /// setNumArgs - This changes the number of arguments present in this call.
1234  /// Any orphaned expressions are deleted by this, and any new operands are set
1235  /// to null.
1236  void setNumArgs(ASTContext& C, unsigned NumArgs);
1237
1238  typedef ExprIterator arg_iterator;
1239  typedef ConstExprIterator const_arg_iterator;
1240
1241  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1242  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1243  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1244  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1245
1246  /// getNumCommas - Return the number of commas that must have been present in
1247  /// this function call.
1248  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1249
1250  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1251  /// not, return 0.
1252  unsigned isBuiltinCall(ASTContext &Context) const;
1253
1254  /// getCallReturnType - Get the return type of the call expr. This is not
1255  /// always the type of the expr itself, if the return type is a reference
1256  /// type.
1257  QualType getCallReturnType() const;
1258
1259  SourceLocation getRParenLoc() const { return RParenLoc; }
1260  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1261
1262  virtual SourceRange getSourceRange() const {
1263    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1264  }
1265
1266  static bool classof(const Stmt *T) {
1267    return T->getStmtClass() == CallExprClass ||
1268           T->getStmtClass() == CXXOperatorCallExprClass ||
1269           T->getStmtClass() == CXXMemberCallExprClass;
1270  }
1271  static bool classof(const CallExpr *) { return true; }
1272  static bool classof(const CXXOperatorCallExpr *) { return true; }
1273  static bool classof(const CXXMemberCallExpr *) { return true; }
1274
1275  // Iterators
1276  virtual child_iterator child_begin();
1277  virtual child_iterator child_end();
1278};
1279
1280/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1281///
1282class MemberExpr : public Expr {
1283  /// Extra data stored in some member expressions.
1284  struct MemberNameQualifier : public NameQualifier {
1285    DeclAccessPair FoundDecl;
1286  };
1287
1288  /// Base - the expression for the base pointer or structure references.  In
1289  /// X.F, this is "X".
1290  Stmt *Base;
1291
1292  /// MemberDecl - This is the decl being referenced by the field/member name.
1293  /// In X.F, this is the decl referenced by F.
1294  ValueDecl *MemberDecl;
1295
1296  /// MemberLoc - This is the location of the member name.
1297  SourceLocation MemberLoc;
1298
1299  /// IsArrow - True if this is "X->F", false if this is "X.F".
1300  bool IsArrow : 1;
1301
1302  /// \brief True if this member expression used a nested-name-specifier to
1303  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1304  /// declaration.  When true, a MemberNameQualifier
1305  /// structure is allocated immediately after the MemberExpr.
1306  bool HasQualifierOrFoundDecl : 1;
1307
1308  /// \brief True if this member expression specified a template argument list
1309  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1310  /// structure (and its TemplateArguments) are allocated immediately after
1311  /// the MemberExpr or, if the member expression also has a qualifier, after
1312  /// the MemberNameQualifier structure.
1313  bool HasExplicitTemplateArgumentList : 1;
1314
1315  /// \brief Retrieve the qualifier that preceded the member name, if any.
1316  MemberNameQualifier *getMemberQualifier() {
1317    assert(HasQualifierOrFoundDecl);
1318    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1319  }
1320
1321  /// \brief Retrieve the qualifier that preceded the member name, if any.
1322  const MemberNameQualifier *getMemberQualifier() const {
1323    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1324  }
1325
1326  /// \brief Retrieve the explicit template argument list that followed the
1327  /// member template name, if any.
1328  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1329    if (!HasExplicitTemplateArgumentList)
1330      return 0;
1331
1332    if (!HasQualifierOrFoundDecl)
1333      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1334
1335    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1336                                                      getMemberQualifier() + 1);
1337  }
1338
1339  /// \brief Retrieve the explicit template argument list that followed the
1340  /// member template name, if any.
1341  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1342    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1343  }
1344
1345public:
1346  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1347             SourceLocation l, QualType ty)
1348    : Expr(MemberExprClass, ty,
1349           base->isTypeDependent(), base->isValueDependent()),
1350      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1351      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1352
1353  /// \brief Build an empty member reference expression.
1354  explicit MemberExpr(EmptyShell Empty)
1355    : Expr(MemberExprClass, Empty), HasQualifierOrFoundDecl(false),
1356      HasExplicitTemplateArgumentList(false) { }
1357
1358  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1359                            NestedNameSpecifier *qual, SourceRange qualrange,
1360                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1361                            SourceLocation l,
1362                            const TemplateArgumentListInfo *targs,
1363                            QualType ty);
1364
1365  void setBase(Expr *E) { Base = E; }
1366  Expr *getBase() const { return cast<Expr>(Base); }
1367
1368  /// \brief Retrieve the member declaration to which this expression refers.
1369  ///
1370  /// The returned declaration will either be a FieldDecl or (in C++)
1371  /// a CXXMethodDecl.
1372  ValueDecl *getMemberDecl() const { return MemberDecl; }
1373  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1374
1375  /// \brief Retrieves the declaration found by lookup.
1376  DeclAccessPair getFoundDecl() const {
1377    if (!HasQualifierOrFoundDecl)
1378      return DeclAccessPair::make(getMemberDecl(),
1379                                  getMemberDecl()->getAccess());
1380    return getMemberQualifier()->FoundDecl;
1381  }
1382
1383  /// \brief Determines whether this member expression actually had
1384  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1385  /// x->Base::foo.
1386  bool hasQualifier() const { return getQualifier() != 0; }
1387
1388  /// \brief If the member name was qualified, retrieves the source range of
1389  /// the nested-name-specifier that precedes the member name. Otherwise,
1390  /// returns an empty source range.
1391  SourceRange getQualifierRange() const {
1392    if (!HasQualifierOrFoundDecl)
1393      return SourceRange();
1394
1395    return getMemberQualifier()->Range;
1396  }
1397
1398  /// \brief If the member name was qualified, retrieves the
1399  /// nested-name-specifier that precedes the member name. Otherwise, returns
1400  /// NULL.
1401  NestedNameSpecifier *getQualifier() const {
1402    if (!HasQualifierOrFoundDecl)
1403      return 0;
1404
1405    return getMemberQualifier()->NNS;
1406  }
1407
1408  /// \brief Determines whether this member expression actually had a C++
1409  /// template argument list explicitly specified, e.g., x.f<int>.
1410  bool hasExplicitTemplateArgumentList() const {
1411    return HasExplicitTemplateArgumentList;
1412  }
1413
1414  /// \brief Copies the template arguments (if present) into the given
1415  /// structure.
1416  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1417    if (hasExplicitTemplateArgumentList())
1418      getExplicitTemplateArgumentList()->copyInto(List);
1419  }
1420
1421  /// \brief Retrieve the location of the left angle bracket following the
1422  /// member name ('<'), if any.
1423  SourceLocation getLAngleLoc() const {
1424    if (!HasExplicitTemplateArgumentList)
1425      return SourceLocation();
1426
1427    return getExplicitTemplateArgumentList()->LAngleLoc;
1428  }
1429
1430  /// \brief Retrieve the template arguments provided as part of this
1431  /// template-id.
1432  const TemplateArgumentLoc *getTemplateArgs() const {
1433    if (!HasExplicitTemplateArgumentList)
1434      return 0;
1435
1436    return getExplicitTemplateArgumentList()->getTemplateArgs();
1437  }
1438
1439  /// \brief Retrieve the number of template arguments provided as part of this
1440  /// template-id.
1441  unsigned getNumTemplateArgs() const {
1442    if (!HasExplicitTemplateArgumentList)
1443      return 0;
1444
1445    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1446  }
1447
1448  /// \brief Retrieve the location of the right angle bracket following the
1449  /// template arguments ('>').
1450  SourceLocation getRAngleLoc() const {
1451    if (!HasExplicitTemplateArgumentList)
1452      return SourceLocation();
1453
1454    return getExplicitTemplateArgumentList()->RAngleLoc;
1455  }
1456
1457  bool isArrow() const { return IsArrow; }
1458  void setArrow(bool A) { IsArrow = A; }
1459
1460  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1461  /// location of 'F'.
1462  SourceLocation getMemberLoc() const { return MemberLoc; }
1463  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1464
1465  virtual SourceRange getSourceRange() const {
1466    // If we have an implicit base (like a C++ implicit this),
1467    // make sure not to return its location
1468    SourceLocation EndLoc = MemberLoc;
1469    if (HasExplicitTemplateArgumentList)
1470      EndLoc = getRAngleLoc();
1471
1472    SourceLocation BaseLoc = getBase()->getLocStart();
1473    if (BaseLoc.isInvalid())
1474      return SourceRange(MemberLoc, EndLoc);
1475    return SourceRange(BaseLoc, EndLoc);
1476  }
1477
1478  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1479
1480  static bool classof(const Stmt *T) {
1481    return T->getStmtClass() == MemberExprClass;
1482  }
1483  static bool classof(const MemberExpr *) { return true; }
1484
1485  // Iterators
1486  virtual child_iterator child_begin();
1487  virtual child_iterator child_end();
1488};
1489
1490/// CompoundLiteralExpr - [C99 6.5.2.5]
1491///
1492class CompoundLiteralExpr : public Expr {
1493  /// LParenLoc - If non-null, this is the location of the left paren in a
1494  /// compound literal like "(int){4}".  This can be null if this is a
1495  /// synthesized compound expression.
1496  SourceLocation LParenLoc;
1497
1498  /// The type as written.  This can be an incomplete array type, in
1499  /// which case the actual expression type will be different.
1500  TypeSourceInfo *TInfo;
1501  Stmt *Init;
1502  bool FileScope;
1503public:
1504  // FIXME: Can compound literals be value-dependent?
1505  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1506                      QualType T, Expr *init, bool fileScope)
1507    : Expr(CompoundLiteralExprClass, T,
1508           tinfo->getType()->isDependentType(), false),
1509      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1510
1511  /// \brief Construct an empty compound literal.
1512  explicit CompoundLiteralExpr(EmptyShell Empty)
1513    : Expr(CompoundLiteralExprClass, Empty) { }
1514
1515  const Expr *getInitializer() const { return cast<Expr>(Init); }
1516  Expr *getInitializer() { return cast<Expr>(Init); }
1517  void setInitializer(Expr *E) { Init = E; }
1518
1519  bool isFileScope() const { return FileScope; }
1520  void setFileScope(bool FS) { FileScope = FS; }
1521
1522  SourceLocation getLParenLoc() const { return LParenLoc; }
1523  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1524
1525  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1526  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1527
1528  virtual SourceRange getSourceRange() const {
1529    // FIXME: Init should never be null.
1530    if (!Init)
1531      return SourceRange();
1532    if (LParenLoc.isInvalid())
1533      return Init->getSourceRange();
1534    return SourceRange(LParenLoc, Init->getLocEnd());
1535  }
1536
1537  static bool classof(const Stmt *T) {
1538    return T->getStmtClass() == CompoundLiteralExprClass;
1539  }
1540  static bool classof(const CompoundLiteralExpr *) { return true; }
1541
1542  // Iterators
1543  virtual child_iterator child_begin();
1544  virtual child_iterator child_end();
1545};
1546
1547/// CastExpr - Base class for type casts, including both implicit
1548/// casts (ImplicitCastExpr) and explicit casts that have some
1549/// representation in the source code (ExplicitCastExpr's derived
1550/// classes).
1551class CastExpr : public Expr {
1552public:
1553  /// CastKind - the kind of cast this represents.
1554  enum CastKind {
1555    /// CK_Unknown - Unknown cast kind.
1556    /// FIXME: The goal is to get rid of this and make all casts have a
1557    /// kind so that the AST client doesn't have to try to figure out what's
1558    /// going on.
1559    CK_Unknown,
1560
1561    /// CK_BitCast - Used for reinterpret_cast.
1562    CK_BitCast,
1563
1564    /// CK_NoOp - Used for const_cast.
1565    CK_NoOp,
1566
1567    /// CK_BaseToDerived - Base to derived class casts.
1568    CK_BaseToDerived,
1569
1570    /// CK_DerivedToBase - Derived to base class casts.
1571    CK_DerivedToBase,
1572
1573    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1574    /// assume that the derived pointer is not null.
1575    CK_UncheckedDerivedToBase,
1576
1577    /// CK_Dynamic - Dynamic cast.
1578    CK_Dynamic,
1579
1580    /// CK_ToUnion - Cast to union (GCC extension).
1581    CK_ToUnion,
1582
1583    /// CK_ArrayToPointerDecay - Array to pointer decay.
1584    CK_ArrayToPointerDecay,
1585
1586    // CK_FunctionToPointerDecay - Function to pointer decay.
1587    CK_FunctionToPointerDecay,
1588
1589    /// CK_NullToMemberPointer - Null pointer to member pointer.
1590    CK_NullToMemberPointer,
1591
1592    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1593    /// member pointer in derived class.
1594    CK_BaseToDerivedMemberPointer,
1595
1596    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1597    /// member pointer in base class.
1598    CK_DerivedToBaseMemberPointer,
1599
1600    /// CK_UserDefinedConversion - Conversion using a user defined type
1601    /// conversion function.
1602    CK_UserDefinedConversion,
1603
1604    /// CK_ConstructorConversion - Conversion by constructor
1605    CK_ConstructorConversion,
1606
1607    /// CK_IntegralToPointer - Integral to pointer
1608    CK_IntegralToPointer,
1609
1610    /// CK_PointerToIntegral - Pointer to integral
1611    CK_PointerToIntegral,
1612
1613    /// CK_ToVoid - Cast to void.
1614    CK_ToVoid,
1615
1616    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1617    /// vector type with the same element type as the src type. Splats the
1618    /// src expression into the destination expression.
1619    CK_VectorSplat,
1620
1621    /// CK_IntegralCast - Casting between integral types of different size.
1622    CK_IntegralCast,
1623
1624    /// CK_IntegralToFloating - Integral to floating point.
1625    CK_IntegralToFloating,
1626
1627    /// CK_FloatingToIntegral - Floating point to integral.
1628    CK_FloatingToIntegral,
1629
1630    /// CK_FloatingCast - Casting between floating types of different size.
1631    CK_FloatingCast,
1632
1633    /// CK_MemberPointerToBoolean - Member pointer to boolean
1634    CK_MemberPointerToBoolean,
1635
1636    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1637    /// pointer
1638    CK_AnyPointerToObjCPointerCast,
1639    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1640    /// pointer
1641    CK_AnyPointerToBlockPointerCast
1642
1643  };
1644
1645private:
1646  CastKind Kind;
1647  Stmt *Op;
1648protected:
1649  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op) :
1650    Expr(SC, ty,
1651         // Cast expressions are type-dependent if the type is
1652         // dependent (C++ [temp.dep.expr]p3).
1653         ty->isDependentType(),
1654         // Cast expressions are value-dependent if the type is
1655         // dependent or if the subexpression is value-dependent.
1656         ty->isDependentType() || (op && op->isValueDependent())),
1657    Kind(kind), Op(op) {}
1658
1659  /// \brief Construct an empty cast.
1660  CastExpr(StmtClass SC, EmptyShell Empty)
1661    : Expr(SC, Empty) { }
1662
1663public:
1664  CastKind getCastKind() const { return Kind; }
1665  void setCastKind(CastKind K) { Kind = K; }
1666  const char *getCastKindName() const;
1667
1668  Expr *getSubExpr() { return cast<Expr>(Op); }
1669  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1670  void setSubExpr(Expr *E) { Op = E; }
1671
1672  /// \brief Retrieve the cast subexpression as it was written in the source
1673  /// code, looking through any implicit casts or other intermediate nodes
1674  /// introduced by semantic analysis.
1675  Expr *getSubExprAsWritten();
1676  const Expr *getSubExprAsWritten() const {
1677    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
1678  }
1679
1680  static bool classof(const Stmt *T) {
1681    StmtClass SC = T->getStmtClass();
1682    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1683      return true;
1684
1685    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1686      return true;
1687
1688    return false;
1689  }
1690  static bool classof(const CastExpr *) { return true; }
1691
1692  // Iterators
1693  virtual child_iterator child_begin();
1694  virtual child_iterator child_end();
1695};
1696
1697/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1698/// conversions, which have no direct representation in the original
1699/// source code. For example: converting T[]->T*, void f()->void
1700/// (*f)(), float->double, short->int, etc.
1701///
1702/// In C, implicit casts always produce rvalues. However, in C++, an
1703/// implicit cast whose result is being bound to a reference will be
1704/// an lvalue. For example:
1705///
1706/// @code
1707/// class Base { };
1708/// class Derived : public Base { };
1709/// void f(Derived d) {
1710///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1711/// }
1712/// @endcode
1713class ImplicitCastExpr : public CastExpr {
1714  /// LvalueCast - Whether this cast produces an lvalue.
1715  bool LvalueCast;
1716
1717public:
1718  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, bool Lvalue) :
1719    CastExpr(ImplicitCastExprClass, ty, kind, op), LvalueCast(Lvalue) { }
1720
1721  /// \brief Construct an empty implicit cast.
1722  explicit ImplicitCastExpr(EmptyShell Shell)
1723    : CastExpr(ImplicitCastExprClass, Shell) { }
1724
1725
1726  virtual SourceRange getSourceRange() const {
1727    return getSubExpr()->getSourceRange();
1728  }
1729
1730  /// isLvalueCast - Whether this cast produces an lvalue.
1731  bool isLvalueCast() const { return LvalueCast; }
1732
1733  /// setLvalueCast - Set whether this cast produces an lvalue.
1734  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1735
1736  static bool classof(const Stmt *T) {
1737    return T->getStmtClass() == ImplicitCastExprClass;
1738  }
1739  static bool classof(const ImplicitCastExpr *) { return true; }
1740};
1741
1742/// ExplicitCastExpr - An explicit cast written in the source
1743/// code.
1744///
1745/// This class is effectively an abstract class, because it provides
1746/// the basic representation of an explicitly-written cast without
1747/// specifying which kind of cast (C cast, functional cast, static
1748/// cast, etc.) was written; specific derived classes represent the
1749/// particular style of cast and its location information.
1750///
1751/// Unlike implicit casts, explicit cast nodes have two different
1752/// types: the type that was written into the source code, and the
1753/// actual type of the expression as determined by semantic
1754/// analysis. These types may differ slightly. For example, in C++ one
1755/// can cast to a reference type, which indicates that the resulting
1756/// expression will be an lvalue. The reference type, however, will
1757/// not be used as the type of the expression.
1758class ExplicitCastExpr : public CastExpr {
1759  /// TInfo - Source type info for the (written) type
1760  /// this expression is casting to.
1761  TypeSourceInfo *TInfo;
1762
1763protected:
1764  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
1765                   Expr *op, TypeSourceInfo *writtenTy)
1766    : CastExpr(SC, exprTy, kind, op), TInfo(writtenTy) {}
1767
1768  /// \brief Construct an empty explicit cast.
1769  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1770    : CastExpr(SC, Shell) { }
1771
1772public:
1773  /// getTypeInfoAsWritten - Returns the type source info for the type
1774  /// that this expression is casting to.
1775  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
1776  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
1777
1778  /// getTypeAsWritten - Returns the type that this expression is
1779  /// casting to, as written in the source code.
1780  QualType getTypeAsWritten() const { return TInfo->getType(); }
1781
1782  static bool classof(const Stmt *T) {
1783    StmtClass SC = T->getStmtClass();
1784    if (SC >= CStyleCastExprClass && SC <= CStyleCastExprClass)
1785      return true;
1786    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1787      return true;
1788
1789    return false;
1790  }
1791  static bool classof(const ExplicitCastExpr *) { return true; }
1792};
1793
1794/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1795/// cast in C++ (C++ [expr.cast]), which uses the syntax
1796/// (Type)expr. For example: @c (int)f.
1797class CStyleCastExpr : public ExplicitCastExpr {
1798  SourceLocation LPLoc; // the location of the left paren
1799  SourceLocation RPLoc; // the location of the right paren
1800public:
1801  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
1802                 TypeSourceInfo *writtenTy,
1803                 SourceLocation l, SourceLocation r) :
1804    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1805    LPLoc(l), RPLoc(r) {}
1806
1807  /// \brief Construct an empty C-style explicit cast.
1808  explicit CStyleCastExpr(EmptyShell Shell)
1809    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1810
1811  SourceLocation getLParenLoc() const { return LPLoc; }
1812  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1813
1814  SourceLocation getRParenLoc() const { return RPLoc; }
1815  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1816
1817  virtual SourceRange getSourceRange() const {
1818    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1819  }
1820  static bool classof(const Stmt *T) {
1821    return T->getStmtClass() == CStyleCastExprClass;
1822  }
1823  static bool classof(const CStyleCastExpr *) { return true; }
1824};
1825
1826/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1827///
1828/// This expression node kind describes a builtin binary operation,
1829/// such as "x + y" for integer values "x" and "y". The operands will
1830/// already have been converted to appropriate types (e.g., by
1831/// performing promotions or conversions).
1832///
1833/// In C++, where operators may be overloaded, a different kind of
1834/// expression node (CXXOperatorCallExpr) is used to express the
1835/// invocation of an overloaded operator with operator syntax. Within
1836/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1837/// used to store an expression "x + y" depends on the subexpressions
1838/// for x and y. If neither x or y is type-dependent, and the "+"
1839/// operator resolves to a built-in operation, BinaryOperator will be
1840/// used to express the computation (x and y may still be
1841/// value-dependent). If either x or y is type-dependent, or if the
1842/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1843/// be used to express the computation.
1844class BinaryOperator : public Expr {
1845public:
1846  enum Opcode {
1847    // Operators listed in order of precedence.
1848    // Note that additions to this should also update the StmtVisitor class.
1849    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1850    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1851    Add, Sub,         // [C99 6.5.6] Additive operators.
1852    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1853    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1854    EQ, NE,           // [C99 6.5.9] Equality operators.
1855    And,              // [C99 6.5.10] Bitwise AND operator.
1856    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1857    Or,               // [C99 6.5.12] Bitwise OR operator.
1858    LAnd,             // [C99 6.5.13] Logical AND operator.
1859    LOr,              // [C99 6.5.14] Logical OR operator.
1860    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1861    DivAssign, RemAssign,
1862    AddAssign, SubAssign,
1863    ShlAssign, ShrAssign,
1864    AndAssign, XorAssign,
1865    OrAssign,
1866    Comma             // [C99 6.5.17] Comma operator.
1867  };
1868private:
1869  enum { LHS, RHS, END_EXPR };
1870  Stmt* SubExprs[END_EXPR];
1871  Opcode Opc;
1872  SourceLocation OpLoc;
1873public:
1874
1875  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1876                 SourceLocation opLoc)
1877    : Expr(BinaryOperatorClass, ResTy,
1878           lhs->isTypeDependent() || rhs->isTypeDependent(),
1879           lhs->isValueDependent() || rhs->isValueDependent()),
1880      Opc(opc), OpLoc(opLoc) {
1881    SubExprs[LHS] = lhs;
1882    SubExprs[RHS] = rhs;
1883    assert(!isCompoundAssignmentOp() &&
1884           "Use ArithAssignBinaryOperator for compound assignments");
1885  }
1886
1887  /// \brief Construct an empty binary operator.
1888  explicit BinaryOperator(EmptyShell Empty)
1889    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1890
1891  SourceLocation getOperatorLoc() const { return OpLoc; }
1892  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1893
1894  Opcode getOpcode() const { return Opc; }
1895  void setOpcode(Opcode O) { Opc = O; }
1896
1897  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1898  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1899  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1900  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1901
1902  virtual SourceRange getSourceRange() const {
1903    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1904  }
1905
1906  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1907  /// corresponds to, e.g. "<<=".
1908  static const char *getOpcodeStr(Opcode Op);
1909
1910  /// \brief Retrieve the binary opcode that corresponds to the given
1911  /// overloaded operator.
1912  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1913
1914  /// \brief Retrieve the overloaded operator kind that corresponds to
1915  /// the given binary opcode.
1916  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1917
1918  /// predicates to categorize the respective opcodes.
1919  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1920  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1921  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
1922  bool isShiftOp() const { return isShiftOp(Opc); }
1923
1924  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
1925  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
1926
1927  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1928  bool isRelationalOp() const { return isRelationalOp(Opc); }
1929
1930  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1931  bool isEqualityOp() const { return isEqualityOp(Opc); }
1932
1933  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
1934  bool isComparisonOp() const { return isComparisonOp(Opc); }
1935
1936  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1937  bool isLogicalOp() const { return isLogicalOp(Opc); }
1938
1939  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1940  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1941  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1942
1943  static bool classof(const Stmt *S) {
1944    return S->getStmtClass() == BinaryOperatorClass ||
1945           S->getStmtClass() == CompoundAssignOperatorClass;
1946  }
1947  static bool classof(const BinaryOperator *) { return true; }
1948
1949  // Iterators
1950  virtual child_iterator child_begin();
1951  virtual child_iterator child_end();
1952
1953protected:
1954  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1955                 SourceLocation opLoc, bool dead)
1956    : Expr(CompoundAssignOperatorClass, ResTy,
1957           lhs->isTypeDependent() || rhs->isTypeDependent(),
1958           lhs->isValueDependent() || rhs->isValueDependent()),
1959      Opc(opc), OpLoc(opLoc) {
1960    SubExprs[LHS] = lhs;
1961    SubExprs[RHS] = rhs;
1962  }
1963
1964  BinaryOperator(StmtClass SC, EmptyShell Empty)
1965    : Expr(SC, Empty), Opc(MulAssign) { }
1966};
1967
1968/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1969/// track of the type the operation is performed in.  Due to the semantics of
1970/// these operators, the operands are promoted, the aritmetic performed, an
1971/// implicit conversion back to the result type done, then the assignment takes
1972/// place.  This captures the intermediate type which the computation is done
1973/// in.
1974class CompoundAssignOperator : public BinaryOperator {
1975  QualType ComputationLHSType;
1976  QualType ComputationResultType;
1977public:
1978  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1979                         QualType ResType, QualType CompLHSType,
1980                         QualType CompResultType,
1981                         SourceLocation OpLoc)
1982    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1983      ComputationLHSType(CompLHSType),
1984      ComputationResultType(CompResultType) {
1985    assert(isCompoundAssignmentOp() &&
1986           "Only should be used for compound assignments");
1987  }
1988
1989  /// \brief Build an empty compound assignment operator expression.
1990  explicit CompoundAssignOperator(EmptyShell Empty)
1991    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1992
1993  // The two computation types are the type the LHS is converted
1994  // to for the computation and the type of the result; the two are
1995  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1996  QualType getComputationLHSType() const { return ComputationLHSType; }
1997  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1998
1999  QualType getComputationResultType() const { return ComputationResultType; }
2000  void setComputationResultType(QualType T) { ComputationResultType = T; }
2001
2002  static bool classof(const CompoundAssignOperator *) { return true; }
2003  static bool classof(const Stmt *S) {
2004    return S->getStmtClass() == CompoundAssignOperatorClass;
2005  }
2006};
2007
2008/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2009/// GNU "missing LHS" extension is in use.
2010///
2011class ConditionalOperator : public Expr {
2012  enum { COND, LHS, RHS, END_EXPR };
2013  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2014  SourceLocation QuestionLoc, ColonLoc;
2015public:
2016  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2017                      SourceLocation CLoc, Expr *rhs, QualType t)
2018    : Expr(ConditionalOperatorClass, t,
2019           // FIXME: the type of the conditional operator doesn't
2020           // depend on the type of the conditional, but the standard
2021           // seems to imply that it could. File a bug!
2022           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2023           (cond->isValueDependent() ||
2024            (lhs && lhs->isValueDependent()) ||
2025            (rhs && rhs->isValueDependent()))),
2026      QuestionLoc(QLoc),
2027      ColonLoc(CLoc) {
2028    SubExprs[COND] = cond;
2029    SubExprs[LHS] = lhs;
2030    SubExprs[RHS] = rhs;
2031  }
2032
2033  /// \brief Build an empty conditional operator.
2034  explicit ConditionalOperator(EmptyShell Empty)
2035    : Expr(ConditionalOperatorClass, Empty) { }
2036
2037  // getCond - Return the expression representing the condition for
2038  //  the ?: operator.
2039  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2040  void setCond(Expr *E) { SubExprs[COND] = E; }
2041
2042  // getTrueExpr - Return the subexpression representing the value of the ?:
2043  //  expression if the condition evaluates to true.  In most cases this value
2044  //  will be the same as getLHS() except a GCC extension allows the left
2045  //  subexpression to be omitted, and instead of the condition be returned.
2046  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2047  //  is only evaluated once.
2048  Expr *getTrueExpr() const {
2049    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2050  }
2051
2052  // getTrueExpr - Return the subexpression representing the value of the ?:
2053  // expression if the condition evaluates to false. This is the same as getRHS.
2054  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2055
2056  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2057  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2058
2059  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2060  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2061
2062  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2063  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2064
2065  SourceLocation getColonLoc() const { return ColonLoc; }
2066  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2067
2068  virtual SourceRange getSourceRange() const {
2069    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2070  }
2071  static bool classof(const Stmt *T) {
2072    return T->getStmtClass() == ConditionalOperatorClass;
2073  }
2074  static bool classof(const ConditionalOperator *) { return true; }
2075
2076  // Iterators
2077  virtual child_iterator child_begin();
2078  virtual child_iterator child_end();
2079};
2080
2081/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2082class AddrLabelExpr : public Expr {
2083  SourceLocation AmpAmpLoc, LabelLoc;
2084  LabelStmt *Label;
2085public:
2086  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2087                QualType t)
2088    : Expr(AddrLabelExprClass, t, false, false),
2089      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2090
2091  /// \brief Build an empty address of a label expression.
2092  explicit AddrLabelExpr(EmptyShell Empty)
2093    : Expr(AddrLabelExprClass, Empty) { }
2094
2095  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2096  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2097  SourceLocation getLabelLoc() const { return LabelLoc; }
2098  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2099
2100  virtual SourceRange getSourceRange() const {
2101    return SourceRange(AmpAmpLoc, LabelLoc);
2102  }
2103
2104  LabelStmt *getLabel() const { return Label; }
2105  void setLabel(LabelStmt *S) { Label = S; }
2106
2107  static bool classof(const Stmt *T) {
2108    return T->getStmtClass() == AddrLabelExprClass;
2109  }
2110  static bool classof(const AddrLabelExpr *) { return true; }
2111
2112  // Iterators
2113  virtual child_iterator child_begin();
2114  virtual child_iterator child_end();
2115};
2116
2117/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2118/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2119/// takes the value of the last subexpression.
2120class StmtExpr : public Expr {
2121  Stmt *SubStmt;
2122  SourceLocation LParenLoc, RParenLoc;
2123public:
2124  // FIXME: Does type-dependence need to be computed differently?
2125  StmtExpr(CompoundStmt *substmt, QualType T,
2126           SourceLocation lp, SourceLocation rp) :
2127    Expr(StmtExprClass, T, T->isDependentType(), false),
2128    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2129
2130  /// \brief Build an empty statement expression.
2131  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2132
2133  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2134  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2135  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2136
2137  virtual SourceRange getSourceRange() const {
2138    return SourceRange(LParenLoc, RParenLoc);
2139  }
2140
2141  SourceLocation getLParenLoc() const { return LParenLoc; }
2142  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2143  SourceLocation getRParenLoc() const { return RParenLoc; }
2144  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2145
2146  static bool classof(const Stmt *T) {
2147    return T->getStmtClass() == StmtExprClass;
2148  }
2149  static bool classof(const StmtExpr *) { return true; }
2150
2151  // Iterators
2152  virtual child_iterator child_begin();
2153  virtual child_iterator child_end();
2154};
2155
2156/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2157/// This AST node represents a function that returns 1 if two *types* (not
2158/// expressions) are compatible. The result of this built-in function can be
2159/// used in integer constant expressions.
2160class TypesCompatibleExpr : public Expr {
2161  QualType Type1;
2162  QualType Type2;
2163  SourceLocation BuiltinLoc, RParenLoc;
2164public:
2165  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2166                      QualType t1, QualType t2, SourceLocation RP) :
2167    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2168    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2169
2170  /// \brief Build an empty __builtin_type_compatible_p expression.
2171  explicit TypesCompatibleExpr(EmptyShell Empty)
2172    : Expr(TypesCompatibleExprClass, Empty) { }
2173
2174  QualType getArgType1() const { return Type1; }
2175  void setArgType1(QualType T) { Type1 = T; }
2176  QualType getArgType2() const { return Type2; }
2177  void setArgType2(QualType T) { Type2 = T; }
2178
2179  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2180  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2181
2182  SourceLocation getRParenLoc() const { return RParenLoc; }
2183  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2184
2185  virtual SourceRange getSourceRange() const {
2186    return SourceRange(BuiltinLoc, RParenLoc);
2187  }
2188  static bool classof(const Stmt *T) {
2189    return T->getStmtClass() == TypesCompatibleExprClass;
2190  }
2191  static bool classof(const TypesCompatibleExpr *) { return true; }
2192
2193  // Iterators
2194  virtual child_iterator child_begin();
2195  virtual child_iterator child_end();
2196};
2197
2198/// ShuffleVectorExpr - clang-specific builtin-in function
2199/// __builtin_shufflevector.
2200/// This AST node represents a operator that does a constant
2201/// shuffle, similar to LLVM's shufflevector instruction. It takes
2202/// two vectors and a variable number of constant indices,
2203/// and returns the appropriately shuffled vector.
2204class ShuffleVectorExpr : public Expr {
2205  SourceLocation BuiltinLoc, RParenLoc;
2206
2207  // SubExprs - the list of values passed to the __builtin_shufflevector
2208  // function. The first two are vectors, and the rest are constant
2209  // indices.  The number of values in this list is always
2210  // 2+the number of indices in the vector type.
2211  Stmt **SubExprs;
2212  unsigned NumExprs;
2213
2214protected:
2215  virtual void DoDestroy(ASTContext &C);
2216
2217public:
2218  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2219  // to be computed differently?
2220  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2221                    QualType Type, SourceLocation BLoc,
2222                    SourceLocation RP) :
2223    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2224    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2225
2226    SubExprs = new (C) Stmt*[nexpr];
2227    for (unsigned i = 0; i < nexpr; i++)
2228      SubExprs[i] = args[i];
2229  }
2230
2231  /// \brief Build an empty vector-shuffle expression.
2232  explicit ShuffleVectorExpr(EmptyShell Empty)
2233    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2234
2235  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2236  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2237
2238  SourceLocation getRParenLoc() const { return RParenLoc; }
2239  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2240
2241  virtual SourceRange getSourceRange() const {
2242    return SourceRange(BuiltinLoc, RParenLoc);
2243  }
2244  static bool classof(const Stmt *T) {
2245    return T->getStmtClass() == ShuffleVectorExprClass;
2246  }
2247  static bool classof(const ShuffleVectorExpr *) { return true; }
2248
2249  ~ShuffleVectorExpr() {}
2250
2251  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2252  /// constant expression, the actual arguments passed in, and the function
2253  /// pointers.
2254  unsigned getNumSubExprs() const { return NumExprs; }
2255
2256  /// getExpr - Return the Expr at the specified index.
2257  Expr *getExpr(unsigned Index) {
2258    assert((Index < NumExprs) && "Arg access out of range!");
2259    return cast<Expr>(SubExprs[Index]);
2260  }
2261  const Expr *getExpr(unsigned Index) const {
2262    assert((Index < NumExprs) && "Arg access out of range!");
2263    return cast<Expr>(SubExprs[Index]);
2264  }
2265
2266  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2267
2268  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2269    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2270    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2271  }
2272
2273  // Iterators
2274  virtual child_iterator child_begin();
2275  virtual child_iterator child_end();
2276};
2277
2278/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2279/// This AST node is similar to the conditional operator (?:) in C, with
2280/// the following exceptions:
2281/// - the test expression must be a integer constant expression.
2282/// - the expression returned acts like the chosen subexpression in every
2283///   visible way: the type is the same as that of the chosen subexpression,
2284///   and all predicates (whether it's an l-value, whether it's an integer
2285///   constant expression, etc.) return the same result as for the chosen
2286///   sub-expression.
2287class ChooseExpr : public Expr {
2288  enum { COND, LHS, RHS, END_EXPR };
2289  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2290  SourceLocation BuiltinLoc, RParenLoc;
2291public:
2292  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2293             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2294    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2295      BuiltinLoc(BLoc), RParenLoc(RP) {
2296      SubExprs[COND] = cond;
2297      SubExprs[LHS] = lhs;
2298      SubExprs[RHS] = rhs;
2299    }
2300
2301  /// \brief Build an empty __builtin_choose_expr.
2302  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2303
2304  /// isConditionTrue - Return whether the condition is true (i.e. not
2305  /// equal to zero).
2306  bool isConditionTrue(ASTContext &C) const;
2307
2308  /// getChosenSubExpr - Return the subexpression chosen according to the
2309  /// condition.
2310  Expr *getChosenSubExpr(ASTContext &C) const {
2311    return isConditionTrue(C) ? getLHS() : getRHS();
2312  }
2313
2314  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2315  void setCond(Expr *E) { SubExprs[COND] = E; }
2316  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2317  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2318  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2319  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2320
2321  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2322  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2323
2324  SourceLocation getRParenLoc() const { return RParenLoc; }
2325  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2326
2327  virtual SourceRange getSourceRange() const {
2328    return SourceRange(BuiltinLoc, RParenLoc);
2329  }
2330  static bool classof(const Stmt *T) {
2331    return T->getStmtClass() == ChooseExprClass;
2332  }
2333  static bool classof(const ChooseExpr *) { return true; }
2334
2335  // Iterators
2336  virtual child_iterator child_begin();
2337  virtual child_iterator child_end();
2338};
2339
2340/// GNUNullExpr - Implements the GNU __null extension, which is a name
2341/// for a null pointer constant that has integral type (e.g., int or
2342/// long) and is the same size and alignment as a pointer. The __null
2343/// extension is typically only used by system headers, which define
2344/// NULL as __null in C++ rather than using 0 (which is an integer
2345/// that may not match the size of a pointer).
2346class GNUNullExpr : public Expr {
2347  /// TokenLoc - The location of the __null keyword.
2348  SourceLocation TokenLoc;
2349
2350public:
2351  GNUNullExpr(QualType Ty, SourceLocation Loc)
2352    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2353
2354  /// \brief Build an empty GNU __null expression.
2355  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2356
2357  /// getTokenLocation - The location of the __null token.
2358  SourceLocation getTokenLocation() const { return TokenLoc; }
2359  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2360
2361  virtual SourceRange getSourceRange() const {
2362    return SourceRange(TokenLoc);
2363  }
2364  static bool classof(const Stmt *T) {
2365    return T->getStmtClass() == GNUNullExprClass;
2366  }
2367  static bool classof(const GNUNullExpr *) { return true; }
2368
2369  // Iterators
2370  virtual child_iterator child_begin();
2371  virtual child_iterator child_end();
2372};
2373
2374/// VAArgExpr, used for the builtin function __builtin_va_arg.
2375class VAArgExpr : public Expr {
2376  Stmt *Val;
2377  SourceLocation BuiltinLoc, RParenLoc;
2378public:
2379  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2380    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2381      Val(e),
2382      BuiltinLoc(BLoc),
2383      RParenLoc(RPLoc) { }
2384
2385  /// \brief Create an empty __builtin_va_arg expression.
2386  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2387
2388  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2389  Expr *getSubExpr() { return cast<Expr>(Val); }
2390  void setSubExpr(Expr *E) { Val = E; }
2391
2392  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2393  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2394
2395  SourceLocation getRParenLoc() const { return RParenLoc; }
2396  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2397
2398  virtual SourceRange getSourceRange() const {
2399    return SourceRange(BuiltinLoc, RParenLoc);
2400  }
2401  static bool classof(const Stmt *T) {
2402    return T->getStmtClass() == VAArgExprClass;
2403  }
2404  static bool classof(const VAArgExpr *) { return true; }
2405
2406  // Iterators
2407  virtual child_iterator child_begin();
2408  virtual child_iterator child_end();
2409};
2410
2411/// @brief Describes an C or C++ initializer list.
2412///
2413/// InitListExpr describes an initializer list, which can be used to
2414/// initialize objects of different types, including
2415/// struct/class/union types, arrays, and vectors. For example:
2416///
2417/// @code
2418/// struct foo x = { 1, { 2, 3 } };
2419/// @endcode
2420///
2421/// Prior to semantic analysis, an initializer list will represent the
2422/// initializer list as written by the user, but will have the
2423/// placeholder type "void". This initializer list is called the
2424/// syntactic form of the initializer, and may contain C99 designated
2425/// initializers (represented as DesignatedInitExprs), initializations
2426/// of subobject members without explicit braces, and so on. Clients
2427/// interested in the original syntax of the initializer list should
2428/// use the syntactic form of the initializer list.
2429///
2430/// After semantic analysis, the initializer list will represent the
2431/// semantic form of the initializer, where the initializations of all
2432/// subobjects are made explicit with nested InitListExpr nodes and
2433/// C99 designators have been eliminated by placing the designated
2434/// initializations into the subobject they initialize. Additionally,
2435/// any "holes" in the initialization, where no initializer has been
2436/// specified for a particular subobject, will be replaced with
2437/// implicitly-generated ImplicitValueInitExpr expressions that
2438/// value-initialize the subobjects. Note, however, that the
2439/// initializer lists may still have fewer initializers than there are
2440/// elements to initialize within the object.
2441///
2442/// Given the semantic form of the initializer list, one can retrieve
2443/// the original syntactic form of that initializer list (if it
2444/// exists) using getSyntacticForm(). Since many initializer lists
2445/// have the same syntactic and semantic forms, getSyntacticForm() may
2446/// return NULL, indicating that the current initializer list also
2447/// serves as its syntactic form.
2448class InitListExpr : public Expr {
2449  // FIXME: Eliminate this vector in favor of ASTContext allocation
2450  typedef ASTVector<Stmt *> InitExprsTy;
2451  InitExprsTy InitExprs;
2452  SourceLocation LBraceLoc, RBraceLoc;
2453
2454  /// Contains the initializer list that describes the syntactic form
2455  /// written in the source code.
2456  InitListExpr *SyntacticForm;
2457
2458  /// If this initializer list initializes a union, specifies which
2459  /// field within the union will be initialized.
2460  FieldDecl *UnionFieldInit;
2461
2462  /// Whether this initializer list originally had a GNU array-range
2463  /// designator in it. This is a temporary marker used by CodeGen.
2464  bool HadArrayRangeDesignator;
2465
2466public:
2467  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2468               Expr **initexprs, unsigned numinits,
2469               SourceLocation rbraceloc);
2470
2471  /// \brief Build an empty initializer list.
2472  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2473    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2474
2475  unsigned getNumInits() const { return InitExprs.size(); }
2476
2477  const Expr* getInit(unsigned Init) const {
2478    assert(Init < getNumInits() && "Initializer access out of range!");
2479    return cast_or_null<Expr>(InitExprs[Init]);
2480  }
2481
2482  Expr* getInit(unsigned Init) {
2483    assert(Init < getNumInits() && "Initializer access out of range!");
2484    return cast_or_null<Expr>(InitExprs[Init]);
2485  }
2486
2487  void setInit(unsigned Init, Expr *expr) {
2488    assert(Init < getNumInits() && "Initializer access out of range!");
2489    InitExprs[Init] = expr;
2490  }
2491
2492  /// \brief Reserve space for some number of initializers.
2493  void reserveInits(ASTContext &C, unsigned NumInits);
2494
2495  /// @brief Specify the number of initializers
2496  ///
2497  /// If there are more than @p NumInits initializers, the remaining
2498  /// initializers will be destroyed. If there are fewer than @p
2499  /// NumInits initializers, NULL expressions will be added for the
2500  /// unknown initializers.
2501  void resizeInits(ASTContext &Context, unsigned NumInits);
2502
2503  /// @brief Updates the initializer at index @p Init with the new
2504  /// expression @p expr, and returns the old expression at that
2505  /// location.
2506  ///
2507  /// When @p Init is out of range for this initializer list, the
2508  /// initializer list will be extended with NULL expressions to
2509  /// accomodate the new entry.
2510  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2511
2512  /// \brief If this initializes a union, specifies which field in the
2513  /// union to initialize.
2514  ///
2515  /// Typically, this field is the first named field within the
2516  /// union. However, a designated initializer can specify the
2517  /// initialization of a different field within the union.
2518  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2519  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2520
2521  // Explicit InitListExpr's originate from source code (and have valid source
2522  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2523  bool isExplicit() {
2524    return LBraceLoc.isValid() && RBraceLoc.isValid();
2525  }
2526
2527  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2528  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2529  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2530  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2531
2532  /// @brief Retrieve the initializer list that describes the
2533  /// syntactic form of the initializer.
2534  ///
2535  ///
2536  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2537  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2538
2539  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2540  void sawArrayRangeDesignator(bool ARD = true) {
2541    HadArrayRangeDesignator = ARD;
2542  }
2543
2544  virtual SourceRange getSourceRange() const {
2545    return SourceRange(LBraceLoc, RBraceLoc);
2546  }
2547  static bool classof(const Stmt *T) {
2548    return T->getStmtClass() == InitListExprClass;
2549  }
2550  static bool classof(const InitListExpr *) { return true; }
2551
2552  // Iterators
2553  virtual child_iterator child_begin();
2554  virtual child_iterator child_end();
2555
2556  typedef InitExprsTy::iterator iterator;
2557  typedef InitExprsTy::reverse_iterator reverse_iterator;
2558
2559  iterator begin() { return InitExprs.begin(); }
2560  iterator end() { return InitExprs.end(); }
2561  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2562  reverse_iterator rend() { return InitExprs.rend(); }
2563};
2564
2565/// @brief Represents a C99 designated initializer expression.
2566///
2567/// A designated initializer expression (C99 6.7.8) contains one or
2568/// more designators (which can be field designators, array
2569/// designators, or GNU array-range designators) followed by an
2570/// expression that initializes the field or element(s) that the
2571/// designators refer to. For example, given:
2572///
2573/// @code
2574/// struct point {
2575///   double x;
2576///   double y;
2577/// };
2578/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2579/// @endcode
2580///
2581/// The InitListExpr contains three DesignatedInitExprs, the first of
2582/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2583/// designators, one array designator for @c [2] followed by one field
2584/// designator for @c .y. The initalization expression will be 1.0.
2585class DesignatedInitExpr : public Expr {
2586public:
2587  /// \brief Forward declaration of the Designator class.
2588  class Designator;
2589
2590private:
2591  /// The location of the '=' or ':' prior to the actual initializer
2592  /// expression.
2593  SourceLocation EqualOrColonLoc;
2594
2595  /// Whether this designated initializer used the GNU deprecated
2596  /// syntax rather than the C99 '=' syntax.
2597  bool GNUSyntax : 1;
2598
2599  /// The number of designators in this initializer expression.
2600  unsigned NumDesignators : 15;
2601
2602  /// \brief The designators in this designated initialization
2603  /// expression.
2604  Designator *Designators;
2605
2606  /// The number of subexpressions of this initializer expression,
2607  /// which contains both the initializer and any additional
2608  /// expressions used by array and array-range designators.
2609  unsigned NumSubExprs : 16;
2610
2611
2612  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2613                     const Designator *Designators,
2614                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2615                     Expr **IndexExprs, unsigned NumIndexExprs,
2616                     Expr *Init);
2617
2618  explicit DesignatedInitExpr(unsigned NumSubExprs)
2619    : Expr(DesignatedInitExprClass, EmptyShell()),
2620      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2621
2622protected:
2623  virtual void DoDestroy(ASTContext &C);
2624
2625  void DestroyDesignators(ASTContext &C);
2626
2627public:
2628  /// A field designator, e.g., ".x".
2629  struct FieldDesignator {
2630    /// Refers to the field that is being initialized. The low bit
2631    /// of this field determines whether this is actually a pointer
2632    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2633    /// initially constructed, a field designator will store an
2634    /// IdentifierInfo*. After semantic analysis has resolved that
2635    /// name, the field designator will instead store a FieldDecl*.
2636    uintptr_t NameOrField;
2637
2638    /// The location of the '.' in the designated initializer.
2639    unsigned DotLoc;
2640
2641    /// The location of the field name in the designated initializer.
2642    unsigned FieldLoc;
2643  };
2644
2645  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2646  struct ArrayOrRangeDesignator {
2647    /// Location of the first index expression within the designated
2648    /// initializer expression's list of subexpressions.
2649    unsigned Index;
2650    /// The location of the '[' starting the array range designator.
2651    unsigned LBracketLoc;
2652    /// The location of the ellipsis separating the start and end
2653    /// indices. Only valid for GNU array-range designators.
2654    unsigned EllipsisLoc;
2655    /// The location of the ']' terminating the array range designator.
2656    unsigned RBracketLoc;
2657  };
2658
2659  /// @brief Represents a single C99 designator.
2660  ///
2661  /// @todo This class is infuriatingly similar to clang::Designator,
2662  /// but minor differences (storing indices vs. storing pointers)
2663  /// keep us from reusing it. Try harder, later, to rectify these
2664  /// differences.
2665  class Designator {
2666    /// @brief The kind of designator this describes.
2667    enum {
2668      FieldDesignator,
2669      ArrayDesignator,
2670      ArrayRangeDesignator
2671    } Kind;
2672
2673    union {
2674      /// A field designator, e.g., ".x".
2675      struct FieldDesignator Field;
2676      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2677      struct ArrayOrRangeDesignator ArrayOrRange;
2678    };
2679    friend class DesignatedInitExpr;
2680
2681  public:
2682    Designator() {}
2683
2684    /// @brief Initializes a field designator.
2685    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2686               SourceLocation FieldLoc)
2687      : Kind(FieldDesignator) {
2688      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2689      Field.DotLoc = DotLoc.getRawEncoding();
2690      Field.FieldLoc = FieldLoc.getRawEncoding();
2691    }
2692
2693    /// @brief Initializes an array designator.
2694    Designator(unsigned Index, SourceLocation LBracketLoc,
2695               SourceLocation RBracketLoc)
2696      : Kind(ArrayDesignator) {
2697      ArrayOrRange.Index = Index;
2698      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2699      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2700      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2701    }
2702
2703    /// @brief Initializes a GNU array-range designator.
2704    Designator(unsigned Index, SourceLocation LBracketLoc,
2705               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2706      : Kind(ArrayRangeDesignator) {
2707      ArrayOrRange.Index = Index;
2708      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2709      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2710      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2711    }
2712
2713    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2714    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2715    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2716
2717    IdentifierInfo * getFieldName();
2718
2719    FieldDecl *getField() {
2720      assert(Kind == FieldDesignator && "Only valid on a field designator");
2721      if (Field.NameOrField & 0x01)
2722        return 0;
2723      else
2724        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2725    }
2726
2727    void setField(FieldDecl *FD) {
2728      assert(Kind == FieldDesignator && "Only valid on a field designator");
2729      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2730    }
2731
2732    SourceLocation getDotLoc() const {
2733      assert(Kind == FieldDesignator && "Only valid on a field designator");
2734      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2735    }
2736
2737    SourceLocation getFieldLoc() const {
2738      assert(Kind == FieldDesignator && "Only valid on a field designator");
2739      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2740    }
2741
2742    SourceLocation getLBracketLoc() const {
2743      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2744             "Only valid on an array or array-range designator");
2745      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2746    }
2747
2748    SourceLocation getRBracketLoc() const {
2749      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2750             "Only valid on an array or array-range designator");
2751      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2752    }
2753
2754    SourceLocation getEllipsisLoc() const {
2755      assert(Kind == ArrayRangeDesignator &&
2756             "Only valid on an array-range designator");
2757      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2758    }
2759
2760    unsigned getFirstExprIndex() const {
2761      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2762             "Only valid on an array or array-range designator");
2763      return ArrayOrRange.Index;
2764    }
2765
2766    SourceLocation getStartLocation() const {
2767      if (Kind == FieldDesignator)
2768        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2769      else
2770        return getLBracketLoc();
2771    }
2772  };
2773
2774  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2775                                    unsigned NumDesignators,
2776                                    Expr **IndexExprs, unsigned NumIndexExprs,
2777                                    SourceLocation EqualOrColonLoc,
2778                                    bool GNUSyntax, Expr *Init);
2779
2780  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2781
2782  /// @brief Returns the number of designators in this initializer.
2783  unsigned size() const { return NumDesignators; }
2784
2785  // Iterator access to the designators.
2786  typedef Designator* designators_iterator;
2787  designators_iterator designators_begin() { return Designators; }
2788  designators_iterator designators_end() {
2789    return Designators + NumDesignators;
2790  }
2791
2792  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2793
2794  void setDesignators(ASTContext &C, const Designator *Desigs,
2795                      unsigned NumDesigs);
2796
2797  Expr *getArrayIndex(const Designator& D);
2798  Expr *getArrayRangeStart(const Designator& D);
2799  Expr *getArrayRangeEnd(const Designator& D);
2800
2801  /// @brief Retrieve the location of the '=' that precedes the
2802  /// initializer value itself, if present.
2803  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2804  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2805
2806  /// @brief Determines whether this designated initializer used the
2807  /// deprecated GNU syntax for designated initializers.
2808  bool usesGNUSyntax() const { return GNUSyntax; }
2809  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2810
2811  /// @brief Retrieve the initializer value.
2812  Expr *getInit() const {
2813    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2814  }
2815
2816  void setInit(Expr *init) {
2817    *child_begin() = init;
2818  }
2819
2820  /// \brief Retrieve the total number of subexpressions in this
2821  /// designated initializer expression, including the actual
2822  /// initialized value and any expressions that occur within array
2823  /// and array-range designators.
2824  unsigned getNumSubExprs() const { return NumSubExprs; }
2825
2826  Expr *getSubExpr(unsigned Idx) {
2827    assert(Idx < NumSubExprs && "Subscript out of range");
2828    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2829    Ptr += sizeof(DesignatedInitExpr);
2830    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2831  }
2832
2833  void setSubExpr(unsigned Idx, Expr *E) {
2834    assert(Idx < NumSubExprs && "Subscript out of range");
2835    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2836    Ptr += sizeof(DesignatedInitExpr);
2837    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2838  }
2839
2840  /// \brief Replaces the designator at index @p Idx with the series
2841  /// of designators in [First, Last).
2842  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
2843                        const Designator *Last);
2844
2845  virtual SourceRange getSourceRange() const;
2846
2847  static bool classof(const Stmt *T) {
2848    return T->getStmtClass() == DesignatedInitExprClass;
2849  }
2850  static bool classof(const DesignatedInitExpr *) { return true; }
2851
2852  // Iterators
2853  virtual child_iterator child_begin();
2854  virtual child_iterator child_end();
2855};
2856
2857/// \brief Represents an implicitly-generated value initialization of
2858/// an object of a given type.
2859///
2860/// Implicit value initializations occur within semantic initializer
2861/// list expressions (InitListExpr) as placeholders for subobject
2862/// initializations not explicitly specified by the user.
2863///
2864/// \see InitListExpr
2865class ImplicitValueInitExpr : public Expr {
2866public:
2867  explicit ImplicitValueInitExpr(QualType ty)
2868    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
2869
2870  /// \brief Construct an empty implicit value initialization.
2871  explicit ImplicitValueInitExpr(EmptyShell Empty)
2872    : Expr(ImplicitValueInitExprClass, Empty) { }
2873
2874  static bool classof(const Stmt *T) {
2875    return T->getStmtClass() == ImplicitValueInitExprClass;
2876  }
2877  static bool classof(const ImplicitValueInitExpr *) { return true; }
2878
2879  virtual SourceRange getSourceRange() const {
2880    return SourceRange();
2881  }
2882
2883  // Iterators
2884  virtual child_iterator child_begin();
2885  virtual child_iterator child_end();
2886};
2887
2888
2889class ParenListExpr : public Expr {
2890  Stmt **Exprs;
2891  unsigned NumExprs;
2892  SourceLocation LParenLoc, RParenLoc;
2893
2894protected:
2895  virtual void DoDestroy(ASTContext& C);
2896
2897public:
2898  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2899                unsigned numexprs, SourceLocation rparenloc);
2900
2901  ~ParenListExpr() {}
2902
2903  /// \brief Build an empty paren list.
2904  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2905
2906  unsigned getNumExprs() const { return NumExprs; }
2907
2908  const Expr* getExpr(unsigned Init) const {
2909    assert(Init < getNumExprs() && "Initializer access out of range!");
2910    return cast_or_null<Expr>(Exprs[Init]);
2911  }
2912
2913  Expr* getExpr(unsigned Init) {
2914    assert(Init < getNumExprs() && "Initializer access out of range!");
2915    return cast_or_null<Expr>(Exprs[Init]);
2916  }
2917
2918  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2919
2920  SourceLocation getLParenLoc() const { return LParenLoc; }
2921  SourceLocation getRParenLoc() const { return RParenLoc; }
2922
2923  virtual SourceRange getSourceRange() const {
2924    return SourceRange(LParenLoc, RParenLoc);
2925  }
2926  static bool classof(const Stmt *T) {
2927    return T->getStmtClass() == ParenListExprClass;
2928  }
2929  static bool classof(const ParenListExpr *) { return true; }
2930
2931  // Iterators
2932  virtual child_iterator child_begin();
2933  virtual child_iterator child_end();
2934};
2935
2936
2937//===----------------------------------------------------------------------===//
2938// Clang Extensions
2939//===----------------------------------------------------------------------===//
2940
2941
2942/// ExtVectorElementExpr - This represents access to specific elements of a
2943/// vector, and may occur on the left hand side or right hand side.  For example
2944/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2945///
2946/// Note that the base may have either vector or pointer to vector type, just
2947/// like a struct field reference.
2948///
2949class ExtVectorElementExpr : public Expr {
2950  Stmt *Base;
2951  IdentifierInfo *Accessor;
2952  SourceLocation AccessorLoc;
2953public:
2954  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2955                       SourceLocation loc)
2956    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
2957           base->isValueDependent()),
2958      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2959
2960  /// \brief Build an empty vector element expression.
2961  explicit ExtVectorElementExpr(EmptyShell Empty)
2962    : Expr(ExtVectorElementExprClass, Empty) { }
2963
2964  const Expr *getBase() const { return cast<Expr>(Base); }
2965  Expr *getBase() { return cast<Expr>(Base); }
2966  void setBase(Expr *E) { Base = E; }
2967
2968  IdentifierInfo &getAccessor() const { return *Accessor; }
2969  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2970
2971  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2972  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2973
2974  /// getNumElements - Get the number of components being selected.
2975  unsigned getNumElements() const;
2976
2977  /// containsDuplicateElements - Return true if any element access is
2978  /// repeated.
2979  bool containsDuplicateElements() const;
2980
2981  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2982  /// aggregate Constant of ConstantInt(s).
2983  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2984
2985  virtual SourceRange getSourceRange() const {
2986    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2987  }
2988
2989  /// isArrow - Return true if the base expression is a pointer to vector,
2990  /// return false if the base expression is a vector.
2991  bool isArrow() const;
2992
2993  static bool classof(const Stmt *T) {
2994    return T->getStmtClass() == ExtVectorElementExprClass;
2995  }
2996  static bool classof(const ExtVectorElementExpr *) { return true; }
2997
2998  // Iterators
2999  virtual child_iterator child_begin();
3000  virtual child_iterator child_end();
3001};
3002
3003
3004/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3005/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3006class BlockExpr : public Expr {
3007protected:
3008  BlockDecl *TheBlock;
3009  bool HasBlockDeclRefExprs;
3010public:
3011  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3012    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3013      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3014
3015  /// \brief Build an empty block expression.
3016  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3017
3018  const BlockDecl *getBlockDecl() const { return TheBlock; }
3019  BlockDecl *getBlockDecl() { return TheBlock; }
3020  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3021
3022  // Convenience functions for probing the underlying BlockDecl.
3023  SourceLocation getCaretLocation() const;
3024  const Stmt *getBody() const;
3025  Stmt *getBody();
3026
3027  virtual SourceRange getSourceRange() const {
3028    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3029  }
3030
3031  /// getFunctionType - Return the underlying function type for this block.
3032  const FunctionType *getFunctionType() const;
3033
3034  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3035  /// inside of the block that reference values outside the block.
3036  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3037  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3038
3039  static bool classof(const Stmt *T) {
3040    return T->getStmtClass() == BlockExprClass;
3041  }
3042  static bool classof(const BlockExpr *) { return true; }
3043
3044  // Iterators
3045  virtual child_iterator child_begin();
3046  virtual child_iterator child_end();
3047};
3048
3049/// BlockDeclRefExpr - A reference to a declared variable, function,
3050/// enum, etc.
3051class BlockDeclRefExpr : public Expr {
3052  ValueDecl *D;
3053  SourceLocation Loc;
3054  bool IsByRef : 1;
3055  bool ConstQualAdded : 1;
3056public:
3057  // FIXME: Fix type/value dependence!
3058  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3059                   bool constAdded = false)
3060  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3061    ConstQualAdded(constAdded) {}
3062
3063  // \brief Build an empty reference to a declared variable in a
3064  // block.
3065  explicit BlockDeclRefExpr(EmptyShell Empty)
3066    : Expr(BlockDeclRefExprClass, Empty) { }
3067
3068  ValueDecl *getDecl() { return D; }
3069  const ValueDecl *getDecl() const { return D; }
3070  void setDecl(ValueDecl *VD) { D = VD; }
3071
3072  SourceLocation getLocation() const { return Loc; }
3073  void setLocation(SourceLocation L) { Loc = L; }
3074
3075  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3076
3077  bool isByRef() const { return IsByRef; }
3078  void setByRef(bool BR) { IsByRef = BR; }
3079
3080  bool isConstQualAdded() const { return ConstQualAdded; }
3081  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3082
3083  static bool classof(const Stmt *T) {
3084    return T->getStmtClass() == BlockDeclRefExprClass;
3085  }
3086  static bool classof(const BlockDeclRefExpr *) { return true; }
3087
3088  // Iterators
3089  virtual child_iterator child_begin();
3090  virtual child_iterator child_end();
3091};
3092
3093}  // end namespace clang
3094
3095#endif
3096