Expr.h revision 2c9a03f3b249e4d9d76eadf758a33142adc4d0a4
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <cctype>
29#include <vector>
30
31namespace clang {
32  class ASTContext;
33  class APValue;
34  class Decl;
35  class IdentifierInfo;
36  class ParmVarDecl;
37  class NamedDecl;
38  class ValueDecl;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXOperatorCallExpr;
42  class CXXMemberCallExpr;
43  class ObjCPropertyRefExpr;
44  class TemplateArgumentLoc;
45  class TemplateArgumentListInfo;
46
47/// \brief A simple array of base specifiers.
48typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
49
50/// Expr - This represents one expression.  Note that Expr's are subclasses of
51/// Stmt.  This allows an expression to be transparently used any place a Stmt
52/// is required.
53///
54class Expr : public Stmt {
55  QualType TR;
56
57  virtual void ANCHOR(); // key function.
58
59protected:
60  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
61       bool TD, bool VD, bool ContainsUnexpandedParameterPack) : Stmt(SC) {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.ValueKind = VK;
65    ExprBits.ObjectKind = OK;
66    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
67    setType(T);
68  }
69
70  /// \brief Construct an empty expression.
71  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
72
73public:
74  QualType getType() const { return TR; }
75  void setType(QualType t) {
76    // In C++, the type of an expression is always adjusted so that it
77    // will not have reference type an expression will never have
78    // reference type (C++ [expr]p6). Use
79    // QualType::getNonReferenceType() to retrieve the non-reference
80    // type. Additionally, inspect Expr::isLvalue to determine whether
81    // an expression that is adjusted in this manner should be
82    // considered an lvalue.
83    assert((t.isNull() || !t->isReferenceType()) &&
84           "Expressions can't have reference type");
85
86    TR = t;
87  }
88
89  /// isValueDependent - Determines whether this expression is
90  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
91  /// array bound of "Chars" in the following example is
92  /// value-dependent.
93  /// @code
94  /// template<int Size, char (&Chars)[Size]> struct meta_string;
95  /// @endcode
96  bool isValueDependent() const { return ExprBits.ValueDependent; }
97
98  /// \brief Set whether this expression is value-dependent or not.
99  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
100
101  /// isTypeDependent - Determines whether this expression is
102  /// type-dependent (C++ [temp.dep.expr]), which means that its type
103  /// could change from one template instantiation to the next. For
104  /// example, the expressions "x" and "x + y" are type-dependent in
105  /// the following code, but "y" is not type-dependent:
106  /// @code
107  /// template<typename T>
108  /// void add(T x, int y) {
109  ///   x + y;
110  /// }
111  /// @endcode
112  bool isTypeDependent() const { return ExprBits.TypeDependent; }
113
114  /// \brief Set whether this expression is type-dependent or not.
115  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
116
117  /// \brief Whether this expression contains an unexpanded parameter
118  /// pack (for C++0x variadic templates).
119  ///
120  /// Given the following function template:
121  ///
122  /// \code
123  /// template<typename F, typename ...Types>
124  /// void forward(const F &f, Types &&...args) {
125  ///   f(static_cast<Types&&>(args)...);
126  /// }
127  /// \endcode
128  ///
129  /// The expressions \c args and \c static_cast<Types&&>(args) both
130  /// contain parameter packs.
131  bool containsUnexpandedParameterPack() const {
132    return ExprBits.ContainsUnexpandedParameterPack;
133  }
134
135  /// \brief Set the bit that describes whether this expression
136  /// contains an unexpanded parameter pack.
137  void setContainsUnexpandedParameterPack(bool PP = true) {
138    ExprBits.ContainsUnexpandedParameterPack = PP;
139  }
140
141  /// SourceLocation tokens are not useful in isolation - they are low level
142  /// value objects created/interpreted by SourceManager. We assume AST
143  /// clients will have a pointer to the respective SourceManager.
144  virtual SourceRange getSourceRange() const = 0;
145
146  /// getExprLoc - Return the preferred location for the arrow when diagnosing
147  /// a problem with a generic expression.
148  virtual SourceLocation getExprLoc() const { return getLocStart(); }
149
150  /// isUnusedResultAWarning - Return true if this immediate expression should
151  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
152  /// with location to warn on and the source range[s] to report with the
153  /// warning.
154  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
155                              SourceRange &R2, ASTContext &Ctx) const;
156
157  /// isLValue - True if this expression is an "l-value" according to
158  /// the rules of the current language.  C and C++ give somewhat
159  /// different rules for this concept, but in general, the result of
160  /// an l-value expression identifies a specific object whereas the
161  /// result of an r-value expression is a value detached from any
162  /// specific storage.
163  ///
164  /// C++0x divides the concept of "r-value" into pure r-values
165  /// ("pr-values") and so-called expiring values ("x-values"), which
166  /// identify specific objects that can be safely cannibalized for
167  /// their resources.  This is an unfortunate abuse of terminology on
168  /// the part of the C++ committee.  In Clang, when we say "r-value",
169  /// we generally mean a pr-value.
170  bool isLValue() const { return getValueKind() == VK_LValue; }
171  bool isRValue() const { return getValueKind() == VK_RValue; }
172  bool isXValue() const { return getValueKind() == VK_XValue; }
173  bool isGLValue() const { return getValueKind() != VK_RValue; }
174
175  enum LValueClassification {
176    LV_Valid,
177    LV_NotObjectType,
178    LV_IncompleteVoidType,
179    LV_DuplicateVectorComponents,
180    LV_InvalidExpression,
181    LV_MemberFunction,
182    LV_SubObjCPropertySetting,
183    LV_ClassTemporary
184  };
185  /// Reasons why an expression might not be an l-value.
186  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
187
188  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
189  /// does not have an incomplete type, does not have a const-qualified type,
190  /// and if it is a structure or union, does not have any member (including,
191  /// recursively, any member or element of all contained aggregates or unions)
192  /// with a const-qualified type.
193  ///
194  /// \param Loc [in] [out] - A source location which *may* be filled
195  /// in with the location of the expression making this a
196  /// non-modifiable lvalue, if specified.
197  enum isModifiableLvalueResult {
198    MLV_Valid,
199    MLV_NotObjectType,
200    MLV_IncompleteVoidType,
201    MLV_DuplicateVectorComponents,
202    MLV_InvalidExpression,
203    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
204    MLV_IncompleteType,
205    MLV_ConstQualified,
206    MLV_ArrayType,
207    MLV_NotBlockQualified,
208    MLV_ReadonlyProperty,
209    MLV_NoSetterProperty,
210    MLV_MemberFunction,
211    MLV_SubObjCPropertySetting,
212    MLV_ClassTemporary
213  };
214  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
215                                              SourceLocation *Loc = 0) const;
216
217  /// \brief The return type of classify(). Represents the C++0x expression
218  ///        taxonomy.
219  class Classification {
220  public:
221    /// \brief The various classification results. Most of these mean prvalue.
222    enum Kinds {
223      CL_LValue,
224      CL_XValue,
225      CL_Function, // Functions cannot be lvalues in C.
226      CL_Void, // Void cannot be an lvalue in C.
227      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
228      CL_MemberFunction, // An expression referring to a member function
229      CL_SubObjCPropertySetting,
230      CL_ClassTemporary, // A prvalue of class type
231      CL_PRValue // A prvalue for any other reason, of any other type
232    };
233    /// \brief The results of modification testing.
234    enum ModifiableType {
235      CM_Untested, // testModifiable was false.
236      CM_Modifiable,
237      CM_RValue, // Not modifiable because it's an rvalue
238      CM_Function, // Not modifiable because it's a function; C++ only
239      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
240      CM_NotBlockQualified, // Not captured in the closure
241      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
242      CM_ConstQualified,
243      CM_ArrayType,
244      CM_IncompleteType
245    };
246
247  private:
248    friend class Expr;
249
250    unsigned short Kind;
251    unsigned short Modifiable;
252
253    explicit Classification(Kinds k, ModifiableType m)
254      : Kind(k), Modifiable(m)
255    {}
256
257  public:
258    Classification() {}
259
260    Kinds getKind() const { return static_cast<Kinds>(Kind); }
261    ModifiableType getModifiable() const {
262      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
263      return static_cast<ModifiableType>(Modifiable);
264    }
265    bool isLValue() const { return Kind == CL_LValue; }
266    bool isXValue() const { return Kind == CL_XValue; }
267    bool isGLValue() const { return Kind <= CL_XValue; }
268    bool isPRValue() const { return Kind >= CL_Function; }
269    bool isRValue() const { return Kind >= CL_XValue; }
270    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
271
272    /// \brief Create a simple, modifiably lvalue
273    static Classification makeSimpleLValue() {
274      return Classification(CL_LValue, CM_Modifiable);
275    }
276
277  };
278  /// \brief Classify - Classify this expression according to the C++0x
279  ///        expression taxonomy.
280  ///
281  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
282  /// old lvalue vs rvalue. This function determines the type of expression this
283  /// is. There are three expression types:
284  /// - lvalues are classical lvalues as in C++03.
285  /// - prvalues are equivalent to rvalues in C++03.
286  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
287  ///   function returning an rvalue reference.
288  /// lvalues and xvalues are collectively referred to as glvalues, while
289  /// prvalues and xvalues together form rvalues.
290  Classification Classify(ASTContext &Ctx) const {
291    return ClassifyImpl(Ctx, 0);
292  }
293
294  /// \brief ClassifyModifiable - Classify this expression according to the
295  ///        C++0x expression taxonomy, and see if it is valid on the left side
296  ///        of an assignment.
297  ///
298  /// This function extends classify in that it also tests whether the
299  /// expression is modifiable (C99 6.3.2.1p1).
300  /// \param Loc A source location that might be filled with a relevant location
301  ///            if the expression is not modifiable.
302  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
303    return ClassifyImpl(Ctx, &Loc);
304  }
305
306  /// getValueKindForType - Given a formal return or parameter type,
307  /// give its value kind.
308  static ExprValueKind getValueKindForType(QualType T) {
309    if (const ReferenceType *RT = T->getAs<ReferenceType>())
310      return (isa<LValueReferenceType>(RT)
311                ? VK_LValue
312                : (RT->getPointeeType()->isFunctionType()
313                     ? VK_LValue : VK_XValue));
314    return VK_RValue;
315  }
316
317  /// getValueKind - The value kind that this expression produces.
318  ExprValueKind getValueKind() const {
319    return static_cast<ExprValueKind>(ExprBits.ValueKind);
320  }
321
322  /// getObjectKind - The object kind that this expression produces.
323  /// Object kinds are meaningful only for expressions that yield an
324  /// l-value or x-value.
325  ExprObjectKind getObjectKind() const {
326    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
327  }
328
329  /// setValueKind - Set the value kind produced by this expression.
330  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
331
332  /// setObjectKind - Set the object kind produced by this expression.
333  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
334
335private:
336  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
337
338public:
339
340  /// \brief If this expression refers to a bit-field, retrieve the
341  /// declaration of that bit-field.
342  FieldDecl *getBitField();
343
344  const FieldDecl *getBitField() const {
345    return const_cast<Expr*>(this)->getBitField();
346  }
347
348  /// \brief If this expression is an l-value for an Objective C
349  /// property, find the underlying property reference expression.
350  const ObjCPropertyRefExpr *getObjCProperty() const;
351
352  /// \brief Returns whether this expression refers to a vector element.
353  bool refersToVectorElement() const;
354
355  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
356  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
357  /// but also int expressions which are produced by things like comparisons in
358  /// C.
359  bool isKnownToHaveBooleanValue() const;
360
361  /// isIntegerConstantExpr - Return true if this expression is a valid integer
362  /// constant expression, and, if so, return its value in Result.  If not a
363  /// valid i-c-e, return false and fill in Loc (if specified) with the location
364  /// of the invalid expression.
365  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
366                             SourceLocation *Loc = 0,
367                             bool isEvaluated = true) const;
368  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
369    llvm::APSInt X;
370    return isIntegerConstantExpr(X, Ctx, Loc);
371  }
372  /// isConstantInitializer - Returns true if this expression is a constant
373  /// initializer, which can be emitted at compile-time.
374  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
375
376  /// EvalResult is a struct with detailed info about an evaluated expression.
377  struct EvalResult {
378    /// Val - This is the value the expression can be folded to.
379    APValue Val;
380
381    /// HasSideEffects - Whether the evaluated expression has side effects.
382    /// For example, (f() && 0) can be folded, but it still has side effects.
383    bool HasSideEffects;
384
385    /// Diag - If the expression is unfoldable, then Diag contains a note
386    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
387    /// position for the error, and DiagExpr is the expression that caused
388    /// the error.
389    /// If the expression is foldable, but not an integer constant expression,
390    /// Diag contains a note diagnostic that describes why it isn't an integer
391    /// constant expression. If the expression *is* an integer constant
392    /// expression, then Diag will be zero.
393    unsigned Diag;
394    const Expr *DiagExpr;
395    SourceLocation DiagLoc;
396
397    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
398
399    // isGlobalLValue - Return true if the evaluated lvalue expression
400    // is global.
401    bool isGlobalLValue() const;
402    // hasSideEffects - Return true if the evaluated expression has
403    // side effects.
404    bool hasSideEffects() const {
405      return HasSideEffects;
406    }
407  };
408
409  /// Evaluate - Return true if this is a constant which we can fold using
410  /// any crazy technique (that has nothing to do with language standards) that
411  /// we want to.  If this function returns true, it returns the folded constant
412  /// in Result.
413  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
414
415  /// EvaluateAsBooleanCondition - Return true if this is a constant
416  /// which we we can fold and convert to a boolean condition using
417  /// any crazy technique that we want to.
418  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
419
420  /// isEvaluatable - Call Evaluate to see if this expression can be constant
421  /// folded, but discard the result.
422  bool isEvaluatable(const ASTContext &Ctx) const;
423
424  /// HasSideEffects - This routine returns true for all those expressions
425  /// which must be evaluated each time and must not be optimized away
426  /// or evaluated at compile time. Example is a function call, volatile
427  /// variable read.
428  bool HasSideEffects(const ASTContext &Ctx) const;
429
430  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
431  /// must be called on an expression that constant folds to an integer.
432  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
433
434  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
435  /// with link time known address.
436  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
437
438  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
439  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
440
441  /// \brief Enumeration used to describe how \c isNullPointerConstant()
442  /// should cope with value-dependent expressions.
443  enum NullPointerConstantValueDependence {
444    /// \brief Specifies that the expression should never be value-dependent.
445    NPC_NeverValueDependent = 0,
446
447    /// \brief Specifies that a value-dependent expression of integral or
448    /// dependent type should be considered a null pointer constant.
449    NPC_ValueDependentIsNull,
450
451    /// \brief Specifies that a value-dependent expression should be considered
452    /// to never be a null pointer constant.
453    NPC_ValueDependentIsNotNull
454  };
455
456  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
457  /// integer constant expression with the value zero, or if this is one that is
458  /// cast to void*.
459  bool isNullPointerConstant(ASTContext &Ctx,
460                             NullPointerConstantValueDependence NPC) const;
461
462  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
463  /// write barrier.
464  bool isOBJCGCCandidate(ASTContext &Ctx) const;
465
466  /// \brief Returns true if this expression is a bound member function.
467  bool isBoundMemberFunction(ASTContext &Ctx) const;
468
469  /// \brief Result type of CanThrow().
470  enum CanThrowResult {
471    CT_Cannot,
472    CT_Dependent,
473    CT_Can
474  };
475  /// \brief Test if this expression, if evaluated, might throw, according to
476  ///        the rules of C++ [expr.unary.noexcept].
477  CanThrowResult CanThrow(ASTContext &C) const;
478
479  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
480  ///  its subexpression.  If that subexpression is also a ParenExpr,
481  ///  then this method recursively returns its subexpression, and so forth.
482  ///  Otherwise, the method returns the current Expr.
483  Expr *IgnoreParens();
484
485  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
486  /// or CastExprs, returning their operand.
487  Expr *IgnoreParenCasts();
488
489  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
490  /// ParenExpr or ImplicitCastExprs, returning their operand.
491  Expr *IgnoreParenImpCasts();
492
493  const Expr *IgnoreParenImpCasts() const {
494    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
495  }
496
497  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
498  /// CastExprs that represent lvalue casts, returning their operand.
499  Expr *IgnoreParenLValueCasts();
500
501  const Expr *IgnoreParenLValueCasts() const {
502    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
503  }
504
505  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
506  /// value (including ptr->int casts of the same size).  Strip off any
507  /// ParenExpr or CastExprs, returning their operand.
508  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
509
510  /// \brief Determine whether this expression is a default function argument.
511  ///
512  /// Default arguments are implicitly generated in the abstract syntax tree
513  /// by semantic analysis for function calls, object constructions, etc. in
514  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
515  /// this routine also looks through any implicit casts to determine whether
516  /// the expression is a default argument.
517  bool isDefaultArgument() const;
518
519  /// \brief Determine whether the result of this expression is a
520  /// temporary object of the given class type.
521  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
522
523  const Expr *IgnoreParens() const {
524    return const_cast<Expr*>(this)->IgnoreParens();
525  }
526  const Expr *IgnoreParenCasts() const {
527    return const_cast<Expr*>(this)->IgnoreParenCasts();
528  }
529  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
530    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
531  }
532
533  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
534  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
535
536  static bool classof(const Stmt *T) {
537    return T->getStmtClass() >= firstExprConstant &&
538           T->getStmtClass() <= lastExprConstant;
539  }
540  static bool classof(const Expr *) { return true; }
541};
542
543
544//===----------------------------------------------------------------------===//
545// Primary Expressions.
546//===----------------------------------------------------------------------===//
547
548/// \brief Represents the qualifier that may precede a C++ name, e.g., the
549/// "std::" in "std::sort".
550struct NameQualifier {
551  /// \brief The nested name specifier.
552  NestedNameSpecifier *NNS;
553
554  /// \brief The source range covered by the nested name specifier.
555  SourceRange Range;
556};
557
558/// \brief Represents an explicit template argument list in C++, e.g.,
559/// the "<int>" in "sort<int>".
560struct ExplicitTemplateArgumentList {
561  /// \brief The source location of the left angle bracket ('<');
562  SourceLocation LAngleLoc;
563
564  /// \brief The source location of the right angle bracket ('>');
565  SourceLocation RAngleLoc;
566
567  /// \brief The number of template arguments in TemplateArgs.
568  /// The actual template arguments (if any) are stored after the
569  /// ExplicitTemplateArgumentList structure.
570  unsigned NumTemplateArgs;
571
572  /// \brief Retrieve the template arguments
573  TemplateArgumentLoc *getTemplateArgs() {
574    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
575  }
576
577  /// \brief Retrieve the template arguments
578  const TemplateArgumentLoc *getTemplateArgs() const {
579    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
580  }
581
582  void initializeFrom(const TemplateArgumentListInfo &List);
583  void initializeFrom(const TemplateArgumentListInfo &List,
584                      bool &Dependent, bool &ContainsUnexpandedParameterPack);
585  void copyInto(TemplateArgumentListInfo &List) const;
586  static std::size_t sizeFor(unsigned NumTemplateArgs);
587  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
588};
589
590/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
591/// enum, etc.
592class DeclRefExpr : public Expr {
593  enum {
594    // Flag on DecoratedD that specifies when this declaration reference
595    // expression has a C++ nested-name-specifier.
596    HasQualifierFlag = 0x01,
597    // Flag on DecoratedD that specifies when this declaration reference
598    // expression has an explicit C++ template argument list.
599    HasExplicitTemplateArgumentListFlag = 0x02
600  };
601
602  // DecoratedD - The declaration that we are referencing, plus two bits to
603  // indicate whether (1) the declaration's name was explicitly qualified and
604  // (2) the declaration's name was followed by an explicit template
605  // argument list.
606  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
607
608  // Loc - The location of the declaration name itself.
609  SourceLocation Loc;
610
611  /// DNLoc - Provides source/type location info for the
612  /// declaration name embedded in DecoratedD.
613  DeclarationNameLoc DNLoc;
614
615  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
616  NameQualifier *getNameQualifier() {
617    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
618      return 0;
619
620    return reinterpret_cast<NameQualifier *> (this + 1);
621  }
622
623  /// \brief Retrieve the qualifier that preceded the member name, if any.
624  const NameQualifier *getNameQualifier() const {
625    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
626  }
627
628  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
629              ValueDecl *D, SourceLocation NameLoc,
630              const TemplateArgumentListInfo *TemplateArgs,
631              QualType T, ExprValueKind VK);
632
633  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
634              ValueDecl *D, const DeclarationNameInfo &NameInfo,
635              const TemplateArgumentListInfo *TemplateArgs,
636              QualType T, ExprValueKind VK);
637
638  /// \brief Construct an empty declaration reference expression.
639  explicit DeclRefExpr(EmptyShell Empty)
640    : Expr(DeclRefExprClass, Empty) { }
641
642  /// \brief Computes the type- and value-dependence flags for this
643  /// declaration reference expression.
644  void computeDependence();
645
646public:
647  DeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK, SourceLocation l) :
648    Expr(DeclRefExprClass, t, VK, OK_Ordinary, false, false, false),
649    DecoratedD(d, 0), Loc(l) {
650    computeDependence();
651  }
652
653  static DeclRefExpr *Create(ASTContext &Context,
654                             NestedNameSpecifier *Qualifier,
655                             SourceRange QualifierRange,
656                             ValueDecl *D,
657                             SourceLocation NameLoc,
658                             QualType T, ExprValueKind VK,
659                             const TemplateArgumentListInfo *TemplateArgs = 0);
660
661  static DeclRefExpr *Create(ASTContext &Context,
662                             NestedNameSpecifier *Qualifier,
663                             SourceRange QualifierRange,
664                             ValueDecl *D,
665                             const DeclarationNameInfo &NameInfo,
666                             QualType T, ExprValueKind VK,
667                             const TemplateArgumentListInfo *TemplateArgs = 0);
668
669  /// \brief Construct an empty declaration reference expression.
670  static DeclRefExpr *CreateEmpty(ASTContext &Context,
671                                  bool HasQualifier, unsigned NumTemplateArgs);
672
673  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
674  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
675  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
676
677  DeclarationNameInfo getNameInfo() const {
678    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
679  }
680
681  SourceLocation getLocation() const { return Loc; }
682  void setLocation(SourceLocation L) { Loc = L; }
683  virtual SourceRange getSourceRange() const;
684
685  /// \brief Determine whether this declaration reference was preceded by a
686  /// C++ nested-name-specifier, e.g., \c N::foo.
687  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
688
689  /// \brief If the name was qualified, retrieves the source range of
690  /// the nested-name-specifier that precedes the name. Otherwise,
691  /// returns an empty source range.
692  SourceRange getQualifierRange() const {
693    if (!hasQualifier())
694      return SourceRange();
695
696    return getNameQualifier()->Range;
697  }
698
699  /// \brief If the name was qualified, retrieves the nested-name-specifier
700  /// that precedes the name. Otherwise, returns NULL.
701  NestedNameSpecifier *getQualifier() const {
702    if (!hasQualifier())
703      return 0;
704
705    return getNameQualifier()->NNS;
706  }
707
708  bool hasExplicitTemplateArgs() const {
709    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
710  }
711
712  /// \brief Retrieve the explicit template argument list that followed the
713  /// member template name.
714  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
715    assert(hasExplicitTemplateArgs());
716
717    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
718      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
719
720    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
721                                                      getNameQualifier() + 1);
722  }
723
724  /// \brief Retrieve the explicit template argument list that followed the
725  /// member template name.
726  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
727    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
728  }
729
730  /// \brief Retrieves the optional explicit template arguments.
731  /// This points to the same data as getExplicitTemplateArgs(), but
732  /// returns null if there are no explicit template arguments.
733  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
734    if (!hasExplicitTemplateArgs()) return 0;
735    return &getExplicitTemplateArgs();
736  }
737
738  /// \brief Copies the template arguments (if present) into the given
739  /// structure.
740  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
741    if (hasExplicitTemplateArgs())
742      getExplicitTemplateArgs().copyInto(List);
743  }
744
745  /// \brief Retrieve the location of the left angle bracket following the
746  /// member name ('<'), if any.
747  SourceLocation getLAngleLoc() const {
748    if (!hasExplicitTemplateArgs())
749      return SourceLocation();
750
751    return getExplicitTemplateArgs().LAngleLoc;
752  }
753
754  /// \brief Retrieve the template arguments provided as part of this
755  /// template-id.
756  const TemplateArgumentLoc *getTemplateArgs() const {
757    if (!hasExplicitTemplateArgs())
758      return 0;
759
760    return getExplicitTemplateArgs().getTemplateArgs();
761  }
762
763  /// \brief Retrieve the number of template arguments provided as part of this
764  /// template-id.
765  unsigned getNumTemplateArgs() const {
766    if (!hasExplicitTemplateArgs())
767      return 0;
768
769    return getExplicitTemplateArgs().NumTemplateArgs;
770  }
771
772  /// \brief Retrieve the location of the right angle bracket following the
773  /// template arguments ('>').
774  SourceLocation getRAngleLoc() const {
775    if (!hasExplicitTemplateArgs())
776      return SourceLocation();
777
778    return getExplicitTemplateArgs().RAngleLoc;
779  }
780
781  static bool classof(const Stmt *T) {
782    return T->getStmtClass() == DeclRefExprClass;
783  }
784  static bool classof(const DeclRefExpr *) { return true; }
785
786  // Iterators
787  virtual child_iterator child_begin();
788  virtual child_iterator child_end();
789
790  friend class ASTStmtReader;
791  friend class ASTStmtWriter;
792};
793
794/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
795class PredefinedExpr : public Expr {
796public:
797  enum IdentType {
798    Func,
799    Function,
800    PrettyFunction,
801    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
802    /// 'virtual' keyword is omitted for virtual member functions.
803    PrettyFunctionNoVirtual
804  };
805
806private:
807  SourceLocation Loc;
808  IdentType Type;
809public:
810  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
811    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
812           type->isDependentType(), type->isDependentType(),
813           /*ContainsUnexpandedParameterPack=*/false),
814      Loc(l), Type(IT) {}
815
816  /// \brief Construct an empty predefined expression.
817  explicit PredefinedExpr(EmptyShell Empty)
818    : Expr(PredefinedExprClass, Empty) { }
819
820  IdentType getIdentType() const { return Type; }
821  void setIdentType(IdentType IT) { Type = IT; }
822
823  SourceLocation getLocation() const { return Loc; }
824  void setLocation(SourceLocation L) { Loc = L; }
825
826  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
827
828  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
829
830  static bool classof(const Stmt *T) {
831    return T->getStmtClass() == PredefinedExprClass;
832  }
833  static bool classof(const PredefinedExpr *) { return true; }
834
835  // Iterators
836  virtual child_iterator child_begin();
837  virtual child_iterator child_end();
838};
839
840/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
841/// leaking memory.
842///
843/// For large floats/integers, APFloat/APInt will allocate memory from the heap
844/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
845/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
846/// the APFloat/APInt values will never get freed. APNumericStorage uses
847/// ASTContext's allocator for memory allocation.
848class APNumericStorage {
849  unsigned BitWidth;
850  union {
851    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
852    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
853  };
854
855  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
856
857  APNumericStorage(const APNumericStorage&); // do not implement
858  APNumericStorage& operator=(const APNumericStorage&); // do not implement
859
860protected:
861  APNumericStorage() : BitWidth(0), VAL(0) { }
862
863  llvm::APInt getIntValue() const {
864    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
865    if (NumWords > 1)
866      return llvm::APInt(BitWidth, NumWords, pVal);
867    else
868      return llvm::APInt(BitWidth, VAL);
869  }
870  void setIntValue(ASTContext &C, const llvm::APInt &Val);
871};
872
873class APIntStorage : public APNumericStorage {
874public:
875  llvm::APInt getValue() const { return getIntValue(); }
876  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
877};
878
879class APFloatStorage : public APNumericStorage {
880public:
881  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
882  void setValue(ASTContext &C, const llvm::APFloat &Val) {
883    setIntValue(C, Val.bitcastToAPInt());
884  }
885};
886
887class IntegerLiteral : public Expr {
888  APIntStorage Num;
889  SourceLocation Loc;
890
891  /// \brief Construct an empty integer literal.
892  explicit IntegerLiteral(EmptyShell Empty)
893    : Expr(IntegerLiteralClass, Empty) { }
894
895public:
896  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
897  // or UnsignedLongLongTy
898  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
899                 QualType type, SourceLocation l)
900    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
901           false),
902      Loc(l) {
903    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
904    setValue(C, V);
905  }
906
907  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
908  // or UnsignedLongLongTy
909  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
910                                QualType type, SourceLocation l);
911  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
912
913  llvm::APInt getValue() const { return Num.getValue(); }
914  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
915
916  /// \brief Retrieve the location of the literal.
917  SourceLocation getLocation() const { return Loc; }
918
919  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
920  void setLocation(SourceLocation Location) { Loc = Location; }
921
922  static bool classof(const Stmt *T) {
923    return T->getStmtClass() == IntegerLiteralClass;
924  }
925  static bool classof(const IntegerLiteral *) { return true; }
926
927  // Iterators
928  virtual child_iterator child_begin();
929  virtual child_iterator child_end();
930};
931
932class CharacterLiteral : public Expr {
933  unsigned Value;
934  SourceLocation Loc;
935  bool IsWide;
936public:
937  // type should be IntTy
938  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
939    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
940           false),
941      Value(value), Loc(l), IsWide(iswide) {
942  }
943
944  /// \brief Construct an empty character literal.
945  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
946
947  SourceLocation getLocation() const { return Loc; }
948  bool isWide() const { return IsWide; }
949
950  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
951
952  unsigned getValue() const { return Value; }
953
954  void setLocation(SourceLocation Location) { Loc = Location; }
955  void setWide(bool W) { IsWide = W; }
956  void setValue(unsigned Val) { Value = Val; }
957
958  static bool classof(const Stmt *T) {
959    return T->getStmtClass() == CharacterLiteralClass;
960  }
961  static bool classof(const CharacterLiteral *) { return true; }
962
963  // Iterators
964  virtual child_iterator child_begin();
965  virtual child_iterator child_end();
966};
967
968class FloatingLiteral : public Expr {
969  APFloatStorage Num;
970  bool IsExact : 1;
971  SourceLocation Loc;
972
973  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
974                  QualType Type, SourceLocation L)
975    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
976           false),
977      IsExact(isexact), Loc(L) {
978    setValue(C, V);
979  }
980
981  /// \brief Construct an empty floating-point literal.
982  explicit FloatingLiteral(EmptyShell Empty)
983    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
984
985public:
986  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
987                                 bool isexact, QualType Type, SourceLocation L);
988  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
989
990  llvm::APFloat getValue() const { return Num.getValue(); }
991  void setValue(ASTContext &C, const llvm::APFloat &Val) {
992    Num.setValue(C, Val);
993  }
994
995  bool isExact() const { return IsExact; }
996  void setExact(bool E) { IsExact = E; }
997
998  /// getValueAsApproximateDouble - This returns the value as an inaccurate
999  /// double.  Note that this may cause loss of precision, but is useful for
1000  /// debugging dumps, etc.
1001  double getValueAsApproximateDouble() const;
1002
1003  SourceLocation getLocation() const { return Loc; }
1004  void setLocation(SourceLocation L) { Loc = L; }
1005
1006  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
1007
1008  static bool classof(const Stmt *T) {
1009    return T->getStmtClass() == FloatingLiteralClass;
1010  }
1011  static bool classof(const FloatingLiteral *) { return true; }
1012
1013  // Iterators
1014  virtual child_iterator child_begin();
1015  virtual child_iterator child_end();
1016};
1017
1018/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1019/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1020/// IntegerLiteral classes.  Instances of this class always have a Complex type
1021/// whose element type matches the subexpression.
1022///
1023class ImaginaryLiteral : public Expr {
1024  Stmt *Val;
1025public:
1026  ImaginaryLiteral(Expr *val, QualType Ty)
1027    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1028           false),
1029      Val(val) {}
1030
1031  /// \brief Build an empty imaginary literal.
1032  explicit ImaginaryLiteral(EmptyShell Empty)
1033    : Expr(ImaginaryLiteralClass, Empty) { }
1034
1035  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1036  Expr *getSubExpr() { return cast<Expr>(Val); }
1037  void setSubExpr(Expr *E) { Val = E; }
1038
1039  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
1040  static bool classof(const Stmt *T) {
1041    return T->getStmtClass() == ImaginaryLiteralClass;
1042  }
1043  static bool classof(const ImaginaryLiteral *) { return true; }
1044
1045  // Iterators
1046  virtual child_iterator child_begin();
1047  virtual child_iterator child_end();
1048};
1049
1050/// StringLiteral - This represents a string literal expression, e.g. "foo"
1051/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1052/// is NOT null-terminated, and the length of the string is determined by
1053/// calling getByteLength().  The C type for a string is always a
1054/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1055/// not.
1056///
1057/// Note that strings in C can be formed by concatenation of multiple string
1058/// literal pptokens in translation phase #6.  This keeps track of the locations
1059/// of each of these pieces.
1060///
1061/// Strings in C can also be truncated and extended by assigning into arrays,
1062/// e.g. with constructs like:
1063///   char X[2] = "foobar";
1064/// In this case, getByteLength() will return 6, but the string literal will
1065/// have type "char[2]".
1066class StringLiteral : public Expr {
1067  const char *StrData;
1068  unsigned ByteLength;
1069  bool IsWide;
1070  unsigned NumConcatenated;
1071  SourceLocation TokLocs[1];
1072
1073  StringLiteral(QualType Ty) :
1074    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false) {}
1075
1076public:
1077  /// This is the "fully general" constructor that allows representation of
1078  /// strings formed from multiple concatenated tokens.
1079  static StringLiteral *Create(ASTContext &C, const char *StrData,
1080                               unsigned ByteLength, bool Wide, QualType Ty,
1081                               const SourceLocation *Loc, unsigned NumStrs);
1082
1083  /// Simple constructor for string literals made from one token.
1084  static StringLiteral *Create(ASTContext &C, const char *StrData,
1085                               unsigned ByteLength,
1086                               bool Wide, QualType Ty, SourceLocation Loc) {
1087    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1088  }
1089
1090  /// \brief Construct an empty string literal.
1091  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1092
1093  llvm::StringRef getString() const {
1094    return llvm::StringRef(StrData, ByteLength);
1095  }
1096
1097  unsigned getByteLength() const { return ByteLength; }
1098
1099  /// \brief Sets the string data to the given string data.
1100  void setString(ASTContext &C, llvm::StringRef Str);
1101
1102  bool isWide() const { return IsWide; }
1103  void setWide(bool W) { IsWide = W; }
1104
1105  bool containsNonAsciiOrNull() const {
1106    llvm::StringRef Str = getString();
1107    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1108      if (!isascii(Str[i]) || !Str[i])
1109        return true;
1110    return false;
1111  }
1112  /// getNumConcatenated - Get the number of string literal tokens that were
1113  /// concatenated in translation phase #6 to form this string literal.
1114  unsigned getNumConcatenated() const { return NumConcatenated; }
1115
1116  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1117    assert(TokNum < NumConcatenated && "Invalid tok number");
1118    return TokLocs[TokNum];
1119  }
1120  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1121    assert(TokNum < NumConcatenated && "Invalid tok number");
1122    TokLocs[TokNum] = L;
1123  }
1124
1125  /// getLocationOfByte - Return a source location that points to the specified
1126  /// byte of this string literal.
1127  ///
1128  /// Strings are amazingly complex.  They can be formed from multiple tokens
1129  /// and can have escape sequences in them in addition to the usual trigraph
1130  /// and escaped newline business.  This routine handles this complexity.
1131  ///
1132  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1133                                   const LangOptions &Features,
1134                                   const TargetInfo &Target) const;
1135
1136  typedef const SourceLocation *tokloc_iterator;
1137  tokloc_iterator tokloc_begin() const { return TokLocs; }
1138  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1139
1140  virtual SourceRange getSourceRange() const {
1141    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1142  }
1143  static bool classof(const Stmt *T) {
1144    return T->getStmtClass() == StringLiteralClass;
1145  }
1146  static bool classof(const StringLiteral *) { return true; }
1147
1148  // Iterators
1149  virtual child_iterator child_begin();
1150  virtual child_iterator child_end();
1151};
1152
1153/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1154/// AST node is only formed if full location information is requested.
1155class ParenExpr : public Expr {
1156  SourceLocation L, R;
1157  Stmt *Val;
1158public:
1159  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1160    : Expr(ParenExprClass, val->getType(),
1161           val->getValueKind(), val->getObjectKind(),
1162           val->isTypeDependent(), val->isValueDependent(),
1163           val->containsUnexpandedParameterPack()),
1164      L(l), R(r), Val(val) {}
1165
1166  /// \brief Construct an empty parenthesized expression.
1167  explicit ParenExpr(EmptyShell Empty)
1168    : Expr(ParenExprClass, Empty) { }
1169
1170  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1171  Expr *getSubExpr() { return cast<Expr>(Val); }
1172  void setSubExpr(Expr *E) { Val = E; }
1173
1174  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1175
1176  /// \brief Get the location of the left parentheses '('.
1177  SourceLocation getLParen() const { return L; }
1178  void setLParen(SourceLocation Loc) { L = Loc; }
1179
1180  /// \brief Get the location of the right parentheses ')'.
1181  SourceLocation getRParen() const { return R; }
1182  void setRParen(SourceLocation Loc) { R = Loc; }
1183
1184  static bool classof(const Stmt *T) {
1185    return T->getStmtClass() == ParenExprClass;
1186  }
1187  static bool classof(const ParenExpr *) { return true; }
1188
1189  // Iterators
1190  virtual child_iterator child_begin();
1191  virtual child_iterator child_end();
1192};
1193
1194
1195/// UnaryOperator - This represents the unary-expression's (except sizeof and
1196/// alignof), the postinc/postdec operators from postfix-expression, and various
1197/// extensions.
1198///
1199/// Notes on various nodes:
1200///
1201/// Real/Imag - These return the real/imag part of a complex operand.  If
1202///   applied to a non-complex value, the former returns its operand and the
1203///   later returns zero in the type of the operand.
1204///
1205class UnaryOperator : public Expr {
1206public:
1207  typedef UnaryOperatorKind Opcode;
1208
1209private:
1210  unsigned Opc : 5;
1211  SourceLocation Loc;
1212  Stmt *Val;
1213public:
1214
1215  UnaryOperator(Expr *input, Opcode opc, QualType type,
1216                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1217    : Expr(UnaryOperatorClass, type, VK, OK,
1218           input->isTypeDependent() || type->isDependentType(),
1219           input->isValueDependent(),
1220           input->containsUnexpandedParameterPack()),
1221      Opc(opc), Loc(l), Val(input) {}
1222
1223  /// \brief Build an empty unary operator.
1224  explicit UnaryOperator(EmptyShell Empty)
1225    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1226
1227  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1228  void setOpcode(Opcode O) { Opc = O; }
1229
1230  Expr *getSubExpr() const { return cast<Expr>(Val); }
1231  void setSubExpr(Expr *E) { Val = E; }
1232
1233  /// getOperatorLoc - Return the location of the operator.
1234  SourceLocation getOperatorLoc() const { return Loc; }
1235  void setOperatorLoc(SourceLocation L) { Loc = L; }
1236
1237  /// isPostfix - Return true if this is a postfix operation, like x++.
1238  static bool isPostfix(Opcode Op) {
1239    return Op == UO_PostInc || Op == UO_PostDec;
1240  }
1241
1242  /// isPrefix - Return true if this is a prefix operation, like --x.
1243  static bool isPrefix(Opcode Op) {
1244    return Op == UO_PreInc || Op == UO_PreDec;
1245  }
1246
1247  bool isPrefix() const { return isPrefix(getOpcode()); }
1248  bool isPostfix() const { return isPostfix(getOpcode()); }
1249  bool isIncrementOp() const {
1250    return Opc == UO_PreInc || Opc == UO_PostInc;
1251  }
1252  bool isIncrementDecrementOp() const {
1253    return Opc <= UO_PreDec;
1254  }
1255  static bool isArithmeticOp(Opcode Op) {
1256    return Op >= UO_Plus && Op <= UO_LNot;
1257  }
1258  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1259
1260  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1261  /// corresponds to, e.g. "sizeof" or "[pre]++"
1262  static const char *getOpcodeStr(Opcode Op);
1263
1264  /// \brief Retrieve the unary opcode that corresponds to the given
1265  /// overloaded operator.
1266  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1267
1268  /// \brief Retrieve the overloaded operator kind that corresponds to
1269  /// the given unary opcode.
1270  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1271
1272  virtual SourceRange getSourceRange() const {
1273    if (isPostfix())
1274      return SourceRange(Val->getLocStart(), Loc);
1275    else
1276      return SourceRange(Loc, Val->getLocEnd());
1277  }
1278  virtual SourceLocation getExprLoc() const { return Loc; }
1279
1280  static bool classof(const Stmt *T) {
1281    return T->getStmtClass() == UnaryOperatorClass;
1282  }
1283  static bool classof(const UnaryOperator *) { return true; }
1284
1285  // Iterators
1286  virtual child_iterator child_begin();
1287  virtual child_iterator child_end();
1288};
1289
1290/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1291/// offsetof(record-type, member-designator). For example, given:
1292/// @code
1293/// struct S {
1294///   float f;
1295///   double d;
1296/// };
1297/// struct T {
1298///   int i;
1299///   struct S s[10];
1300/// };
1301/// @endcode
1302/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1303
1304class OffsetOfExpr : public Expr {
1305public:
1306  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1307  class OffsetOfNode {
1308  public:
1309    /// \brief The kind of offsetof node we have.
1310    enum Kind {
1311      /// \brief An index into an array.
1312      Array = 0x00,
1313      /// \brief A field.
1314      Field = 0x01,
1315      /// \brief A field in a dependent type, known only by its name.
1316      Identifier = 0x02,
1317      /// \brief An implicit indirection through a C++ base class, when the
1318      /// field found is in a base class.
1319      Base = 0x03
1320    };
1321
1322  private:
1323    enum { MaskBits = 2, Mask = 0x03 };
1324
1325    /// \brief The source range that covers this part of the designator.
1326    SourceRange Range;
1327
1328    /// \brief The data describing the designator, which comes in three
1329    /// different forms, depending on the lower two bits.
1330    ///   - An unsigned index into the array of Expr*'s stored after this node
1331    ///     in memory, for [constant-expression] designators.
1332    ///   - A FieldDecl*, for references to a known field.
1333    ///   - An IdentifierInfo*, for references to a field with a given name
1334    ///     when the class type is dependent.
1335    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1336    ///     base class.
1337    uintptr_t Data;
1338
1339  public:
1340    /// \brief Create an offsetof node that refers to an array element.
1341    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1342                 SourceLocation RBracketLoc)
1343      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1344
1345    /// \brief Create an offsetof node that refers to a field.
1346    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1347                 SourceLocation NameLoc)
1348      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1349        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1350
1351    /// \brief Create an offsetof node that refers to an identifier.
1352    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1353                 SourceLocation NameLoc)
1354      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1355        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1356
1357    /// \brief Create an offsetof node that refers into a C++ base class.
1358    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1359      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1360
1361    /// \brief Determine what kind of offsetof node this is.
1362    Kind getKind() const {
1363      return static_cast<Kind>(Data & Mask);
1364    }
1365
1366    /// \brief For an array element node, returns the index into the array
1367    /// of expressions.
1368    unsigned getArrayExprIndex() const {
1369      assert(getKind() == Array);
1370      return Data >> 2;
1371    }
1372
1373    /// \brief For a field offsetof node, returns the field.
1374    FieldDecl *getField() const {
1375      assert(getKind() == Field);
1376      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1377    }
1378
1379    /// \brief For a field or identifier offsetof node, returns the name of
1380    /// the field.
1381    IdentifierInfo *getFieldName() const;
1382
1383    /// \brief For a base class node, returns the base specifier.
1384    CXXBaseSpecifier *getBase() const {
1385      assert(getKind() == Base);
1386      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1387    }
1388
1389    /// \brief Retrieve the source range that covers this offsetof node.
1390    ///
1391    /// For an array element node, the source range contains the locations of
1392    /// the square brackets. For a field or identifier node, the source range
1393    /// contains the location of the period (if there is one) and the
1394    /// identifier.
1395    SourceRange getRange() const { return Range; }
1396  };
1397
1398private:
1399
1400  SourceLocation OperatorLoc, RParenLoc;
1401  // Base type;
1402  TypeSourceInfo *TSInfo;
1403  // Number of sub-components (i.e. instances of OffsetOfNode).
1404  unsigned NumComps;
1405  // Number of sub-expressions (i.e. array subscript expressions).
1406  unsigned NumExprs;
1407
1408  OffsetOfExpr(ASTContext &C, QualType type,
1409               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1410               OffsetOfNode* compsPtr, unsigned numComps,
1411               Expr** exprsPtr, unsigned numExprs,
1412               SourceLocation RParenLoc);
1413
1414  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1415    : Expr(OffsetOfExprClass, EmptyShell()),
1416      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1417
1418public:
1419
1420  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1421                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1422                              OffsetOfNode* compsPtr, unsigned numComps,
1423                              Expr** exprsPtr, unsigned numExprs,
1424                              SourceLocation RParenLoc);
1425
1426  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1427                                   unsigned NumComps, unsigned NumExprs);
1428
1429  /// getOperatorLoc - Return the location of the operator.
1430  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1431  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1432
1433  /// \brief Return the location of the right parentheses.
1434  SourceLocation getRParenLoc() const { return RParenLoc; }
1435  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1436
1437  TypeSourceInfo *getTypeSourceInfo() const {
1438    return TSInfo;
1439  }
1440  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1441    TSInfo = tsi;
1442  }
1443
1444  const OffsetOfNode &getComponent(unsigned Idx) {
1445    assert(Idx < NumComps && "Subscript out of range");
1446    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1447  }
1448
1449  void setComponent(unsigned Idx, OffsetOfNode ON) {
1450    assert(Idx < NumComps && "Subscript out of range");
1451    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1452  }
1453
1454  unsigned getNumComponents() const {
1455    return NumComps;
1456  }
1457
1458  Expr* getIndexExpr(unsigned Idx) {
1459    assert(Idx < NumExprs && "Subscript out of range");
1460    return reinterpret_cast<Expr **>(
1461                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1462  }
1463
1464  void setIndexExpr(unsigned Idx, Expr* E) {
1465    assert(Idx < NumComps && "Subscript out of range");
1466    reinterpret_cast<Expr **>(
1467                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1468  }
1469
1470  unsigned getNumExpressions() const {
1471    return NumExprs;
1472  }
1473
1474  virtual SourceRange getSourceRange() const {
1475    return SourceRange(OperatorLoc, RParenLoc);
1476  }
1477
1478  static bool classof(const Stmt *T) {
1479    return T->getStmtClass() == OffsetOfExprClass;
1480  }
1481
1482  static bool classof(const OffsetOfExpr *) { return true; }
1483
1484  // Iterators
1485  virtual child_iterator child_begin();
1486  virtual child_iterator child_end();
1487};
1488
1489/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1490/// types and expressions.
1491class SizeOfAlignOfExpr : public Expr {
1492  bool isSizeof : 1;  // true if sizeof, false if alignof.
1493  bool isType : 1;    // true if operand is a type, false if an expression
1494  union {
1495    TypeSourceInfo *Ty;
1496    Stmt *Ex;
1497  } Argument;
1498  SourceLocation OpLoc, RParenLoc;
1499
1500public:
1501  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1502                    QualType resultType, SourceLocation op,
1503                    SourceLocation rp) :
1504      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1505           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1506           // Value-dependent if the argument is type-dependent.
1507           TInfo->getType()->isDependentType(),
1508           TInfo->getType()->containsUnexpandedParameterPack()),
1509      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1510    Argument.Ty = TInfo;
1511  }
1512
1513  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1514                    QualType resultType, SourceLocation op,
1515                    SourceLocation rp) :
1516      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1517           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1518           // Value-dependent if the argument is type-dependent.
1519           E->isTypeDependent(),
1520           E->containsUnexpandedParameterPack()),
1521      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1522    Argument.Ex = E;
1523  }
1524
1525  /// \brief Construct an empty sizeof/alignof expression.
1526  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1527    : Expr(SizeOfAlignOfExprClass, Empty) { }
1528
1529  bool isSizeOf() const { return isSizeof; }
1530  void setSizeof(bool S) { isSizeof = S; }
1531
1532  bool isArgumentType() const { return isType; }
1533  QualType getArgumentType() const {
1534    return getArgumentTypeInfo()->getType();
1535  }
1536  TypeSourceInfo *getArgumentTypeInfo() const {
1537    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1538    return Argument.Ty;
1539  }
1540  Expr *getArgumentExpr() {
1541    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1542    return static_cast<Expr*>(Argument.Ex);
1543  }
1544  const Expr *getArgumentExpr() const {
1545    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1546  }
1547
1548  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1549  void setArgument(TypeSourceInfo *TInfo) {
1550    Argument.Ty = TInfo;
1551    isType = true;
1552  }
1553
1554  /// Gets the argument type, or the type of the argument expression, whichever
1555  /// is appropriate.
1556  QualType getTypeOfArgument() const {
1557    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1558  }
1559
1560  SourceLocation getOperatorLoc() const { return OpLoc; }
1561  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1562
1563  SourceLocation getRParenLoc() const { return RParenLoc; }
1564  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1565
1566  virtual SourceRange getSourceRange() const {
1567    return SourceRange(OpLoc, RParenLoc);
1568  }
1569
1570  static bool classof(const Stmt *T) {
1571    return T->getStmtClass() == SizeOfAlignOfExprClass;
1572  }
1573  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1574
1575  // Iterators
1576  virtual child_iterator child_begin();
1577  virtual child_iterator child_end();
1578};
1579
1580//===----------------------------------------------------------------------===//
1581// Postfix Operators.
1582//===----------------------------------------------------------------------===//
1583
1584/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1585class ArraySubscriptExpr : public Expr {
1586  enum { LHS, RHS, END_EXPR=2 };
1587  Stmt* SubExprs[END_EXPR];
1588  SourceLocation RBracketLoc;
1589public:
1590  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1591                     ExprValueKind VK, ExprObjectKind OK,
1592                     SourceLocation rbracketloc)
1593  : Expr(ArraySubscriptExprClass, t, VK, OK,
1594         lhs->isTypeDependent() || rhs->isTypeDependent(),
1595         lhs->isValueDependent() || rhs->isValueDependent(),
1596         (lhs->containsUnexpandedParameterPack() ||
1597          rhs->containsUnexpandedParameterPack())),
1598    RBracketLoc(rbracketloc) {
1599    SubExprs[LHS] = lhs;
1600    SubExprs[RHS] = rhs;
1601  }
1602
1603  /// \brief Create an empty array subscript expression.
1604  explicit ArraySubscriptExpr(EmptyShell Shell)
1605    : Expr(ArraySubscriptExprClass, Shell) { }
1606
1607  /// An array access can be written A[4] or 4[A] (both are equivalent).
1608  /// - getBase() and getIdx() always present the normalized view: A[4].
1609  ///    In this case getBase() returns "A" and getIdx() returns "4".
1610  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1611  ///    4[A] getLHS() returns "4".
1612  /// Note: Because vector element access is also written A[4] we must
1613  /// predicate the format conversion in getBase and getIdx only on the
1614  /// the type of the RHS, as it is possible for the LHS to be a vector of
1615  /// integer type
1616  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1617  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1618  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1619
1620  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1621  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1622  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1623
1624  Expr *getBase() {
1625    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1626  }
1627
1628  const Expr *getBase() const {
1629    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1630  }
1631
1632  Expr *getIdx() {
1633    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1634  }
1635
1636  const Expr *getIdx() const {
1637    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1638  }
1639
1640  virtual SourceRange getSourceRange() const {
1641    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1642  }
1643
1644  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1645  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1646
1647  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1648
1649  static bool classof(const Stmt *T) {
1650    return T->getStmtClass() == ArraySubscriptExprClass;
1651  }
1652  static bool classof(const ArraySubscriptExpr *) { return true; }
1653
1654  // Iterators
1655  virtual child_iterator child_begin();
1656  virtual child_iterator child_end();
1657};
1658
1659
1660/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1661/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1662/// while its subclasses may represent alternative syntax that (semantically)
1663/// results in a function call. For example, CXXOperatorCallExpr is
1664/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1665/// "str1 + str2" to resolve to a function call.
1666class CallExpr : public Expr {
1667  enum { FN=0, ARGS_START=1 };
1668  Stmt **SubExprs;
1669  unsigned NumArgs;
1670  SourceLocation RParenLoc;
1671
1672protected:
1673  // This version of the constructor is for derived classes.
1674  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1675           QualType t, ExprValueKind VK, SourceLocation rparenloc);
1676
1677public:
1678  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1679           ExprValueKind VK, SourceLocation rparenloc);
1680
1681  /// \brief Build an empty call expression.
1682  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1683
1684  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1685  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1686  void setCallee(Expr *F) { SubExprs[FN] = F; }
1687
1688  Decl *getCalleeDecl();
1689  const Decl *getCalleeDecl() const {
1690    return const_cast<CallExpr*>(this)->getCalleeDecl();
1691  }
1692
1693  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1694  FunctionDecl *getDirectCallee();
1695  const FunctionDecl *getDirectCallee() const {
1696    return const_cast<CallExpr*>(this)->getDirectCallee();
1697  }
1698
1699  /// getNumArgs - Return the number of actual arguments to this call.
1700  ///
1701  unsigned getNumArgs() const { return NumArgs; }
1702
1703  /// \brief Retrieve the call arguments.
1704  Expr **getArgs() { return reinterpret_cast<Expr **>(SubExprs + ARGS_START); }
1705
1706  /// getArg - Return the specified argument.
1707  Expr *getArg(unsigned Arg) {
1708    assert(Arg < NumArgs && "Arg access out of range!");
1709    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1710  }
1711  const Expr *getArg(unsigned Arg) const {
1712    assert(Arg < NumArgs && "Arg access out of range!");
1713    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1714  }
1715
1716  /// setArg - Set the specified argument.
1717  void setArg(unsigned Arg, Expr *ArgExpr) {
1718    assert(Arg < NumArgs && "Arg access out of range!");
1719    SubExprs[Arg+ARGS_START] = ArgExpr;
1720  }
1721
1722  /// setNumArgs - This changes the number of arguments present in this call.
1723  /// Any orphaned expressions are deleted by this, and any new operands are set
1724  /// to null.
1725  void setNumArgs(ASTContext& C, unsigned NumArgs);
1726
1727  typedef ExprIterator arg_iterator;
1728  typedef ConstExprIterator const_arg_iterator;
1729
1730  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1731  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1732  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1733  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1734
1735  /// getNumCommas - Return the number of commas that must have been present in
1736  /// this function call.
1737  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1738
1739  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1740  /// not, return 0.
1741  unsigned isBuiltinCall(const ASTContext &Context) const;
1742
1743  /// getCallReturnType - Get the return type of the call expr. This is not
1744  /// always the type of the expr itself, if the return type is a reference
1745  /// type.
1746  QualType getCallReturnType() const;
1747
1748  SourceLocation getRParenLoc() const { return RParenLoc; }
1749  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1750
1751  virtual SourceRange getSourceRange() const {
1752    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1753  }
1754
1755  static bool classof(const Stmt *T) {
1756    return T->getStmtClass() >= firstCallExprConstant &&
1757           T->getStmtClass() <= lastCallExprConstant;
1758  }
1759  static bool classof(const CallExpr *) { return true; }
1760
1761  // Iterators
1762  virtual child_iterator child_begin();
1763  virtual child_iterator child_end();
1764};
1765
1766/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1767///
1768class MemberExpr : public Expr {
1769  /// Extra data stored in some member expressions.
1770  struct MemberNameQualifier : public NameQualifier {
1771    DeclAccessPair FoundDecl;
1772  };
1773
1774  /// Base - the expression for the base pointer or structure references.  In
1775  /// X.F, this is "X".
1776  Stmt *Base;
1777
1778  /// MemberDecl - This is the decl being referenced by the field/member name.
1779  /// In X.F, this is the decl referenced by F.
1780  ValueDecl *MemberDecl;
1781
1782  /// MemberLoc - This is the location of the member name.
1783  SourceLocation MemberLoc;
1784
1785  /// MemberDNLoc - Provides source/type location info for the
1786  /// declaration name embedded in MemberDecl.
1787  DeclarationNameLoc MemberDNLoc;
1788
1789  /// IsArrow - True if this is "X->F", false if this is "X.F".
1790  bool IsArrow : 1;
1791
1792  /// \brief True if this member expression used a nested-name-specifier to
1793  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1794  /// declaration.  When true, a MemberNameQualifier
1795  /// structure is allocated immediately after the MemberExpr.
1796  bool HasQualifierOrFoundDecl : 1;
1797
1798  /// \brief True if this member expression specified a template argument list
1799  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1800  /// structure (and its TemplateArguments) are allocated immediately after
1801  /// the MemberExpr or, if the member expression also has a qualifier, after
1802  /// the MemberNameQualifier structure.
1803  bool HasExplicitTemplateArgumentList : 1;
1804
1805  /// \brief Retrieve the qualifier that preceded the member name, if any.
1806  MemberNameQualifier *getMemberQualifier() {
1807    assert(HasQualifierOrFoundDecl);
1808    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1809  }
1810
1811  /// \brief Retrieve the qualifier that preceded the member name, if any.
1812  const MemberNameQualifier *getMemberQualifier() const {
1813    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1814  }
1815
1816public:
1817  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1818             const DeclarationNameInfo &NameInfo, QualType ty,
1819             ExprValueKind VK, ExprObjectKind OK)
1820    : Expr(MemberExprClass, ty, VK, OK,
1821           base->isTypeDependent(), base->isValueDependent(),
1822           base->containsUnexpandedParameterPack()),
1823      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1824      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1825      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1826    assert(memberdecl->getDeclName() == NameInfo.getName());
1827  }
1828
1829  // NOTE: this constructor should be used only when it is known that
1830  // the member name can not provide additional syntactic info
1831  // (i.e., source locations for C++ operator names or type source info
1832  // for constructors, destructors and conversion oeprators).
1833  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1834             SourceLocation l, QualType ty,
1835             ExprValueKind VK, ExprObjectKind OK)
1836    : Expr(MemberExprClass, ty, VK, OK,
1837           base->isTypeDependent(), base->isValueDependent(),
1838           base->containsUnexpandedParameterPack()),
1839      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1840      IsArrow(isarrow),
1841      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1842
1843  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1844                            NestedNameSpecifier *qual, SourceRange qualrange,
1845                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1846                            DeclarationNameInfo MemberNameInfo,
1847                            const TemplateArgumentListInfo *targs,
1848                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1849
1850  void setBase(Expr *E) { Base = E; }
1851  Expr *getBase() const { return cast<Expr>(Base); }
1852
1853  /// \brief Retrieve the member declaration to which this expression refers.
1854  ///
1855  /// The returned declaration will either be a FieldDecl or (in C++)
1856  /// a CXXMethodDecl.
1857  ValueDecl *getMemberDecl() const { return MemberDecl; }
1858  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1859
1860  /// \brief Retrieves the declaration found by lookup.
1861  DeclAccessPair getFoundDecl() const {
1862    if (!HasQualifierOrFoundDecl)
1863      return DeclAccessPair::make(getMemberDecl(),
1864                                  getMemberDecl()->getAccess());
1865    return getMemberQualifier()->FoundDecl;
1866  }
1867
1868  /// \brief Determines whether this member expression actually had
1869  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1870  /// x->Base::foo.
1871  bool hasQualifier() const { return getQualifier() != 0; }
1872
1873  /// \brief If the member name was qualified, retrieves the source range of
1874  /// the nested-name-specifier that precedes the member name. Otherwise,
1875  /// returns an empty source range.
1876  SourceRange getQualifierRange() const {
1877    if (!HasQualifierOrFoundDecl)
1878      return SourceRange();
1879
1880    return getMemberQualifier()->Range;
1881  }
1882
1883  /// \brief If the member name was qualified, retrieves the
1884  /// nested-name-specifier that precedes the member name. Otherwise, returns
1885  /// NULL.
1886  NestedNameSpecifier *getQualifier() const {
1887    if (!HasQualifierOrFoundDecl)
1888      return 0;
1889
1890    return getMemberQualifier()->NNS;
1891  }
1892
1893  /// \brief Determines whether this member expression actually had a C++
1894  /// template argument list explicitly specified, e.g., x.f<int>.
1895  bool hasExplicitTemplateArgs() const {
1896    return HasExplicitTemplateArgumentList;
1897  }
1898
1899  /// \brief Copies the template arguments (if present) into the given
1900  /// structure.
1901  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1902    if (hasExplicitTemplateArgs())
1903      getExplicitTemplateArgs().copyInto(List);
1904  }
1905
1906  /// \brief Retrieve the explicit template argument list that
1907  /// follow the member template name.  This must only be called on an
1908  /// expression with explicit template arguments.
1909  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1910    assert(HasExplicitTemplateArgumentList);
1911    if (!HasQualifierOrFoundDecl)
1912      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1913
1914    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
1915                                                      getMemberQualifier() + 1);
1916  }
1917
1918  /// \brief Retrieve the explicit template argument list that
1919  /// followed the member template name.  This must only be called on
1920  /// an expression with explicit template arguments.
1921  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1922    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
1923  }
1924
1925  /// \brief Retrieves the optional explicit template arguments.
1926  /// This points to the same data as getExplicitTemplateArgs(), but
1927  /// returns null if there are no explicit template arguments.
1928  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
1929    if (!hasExplicitTemplateArgs()) return 0;
1930    return &getExplicitTemplateArgs();
1931  }
1932
1933  /// \brief Retrieve the location of the left angle bracket following the
1934  /// member name ('<'), if any.
1935  SourceLocation getLAngleLoc() const {
1936    if (!HasExplicitTemplateArgumentList)
1937      return SourceLocation();
1938
1939    return getExplicitTemplateArgs().LAngleLoc;
1940  }
1941
1942  /// \brief Retrieve the template arguments provided as part of this
1943  /// template-id.
1944  const TemplateArgumentLoc *getTemplateArgs() const {
1945    if (!HasExplicitTemplateArgumentList)
1946      return 0;
1947
1948    return getExplicitTemplateArgs().getTemplateArgs();
1949  }
1950
1951  /// \brief Retrieve the number of template arguments provided as part of this
1952  /// template-id.
1953  unsigned getNumTemplateArgs() const {
1954    if (!HasExplicitTemplateArgumentList)
1955      return 0;
1956
1957    return getExplicitTemplateArgs().NumTemplateArgs;
1958  }
1959
1960  /// \brief Retrieve the location of the right angle bracket following the
1961  /// template arguments ('>').
1962  SourceLocation getRAngleLoc() const {
1963    if (!HasExplicitTemplateArgumentList)
1964      return SourceLocation();
1965
1966    return getExplicitTemplateArgs().RAngleLoc;
1967  }
1968
1969  /// \brief Retrieve the member declaration name info.
1970  DeclarationNameInfo getMemberNameInfo() const {
1971    return DeclarationNameInfo(MemberDecl->getDeclName(),
1972                               MemberLoc, MemberDNLoc);
1973  }
1974
1975  bool isArrow() const { return IsArrow; }
1976  void setArrow(bool A) { IsArrow = A; }
1977
1978  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1979  /// location of 'F'.
1980  SourceLocation getMemberLoc() const { return MemberLoc; }
1981  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1982
1983  virtual SourceRange getSourceRange() const {
1984    // If we have an implicit base (like a C++ implicit this),
1985    // make sure not to return its location
1986    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1987      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1988
1989    SourceLocation BaseLoc = getBase()->getLocStart();
1990    if (BaseLoc.isInvalid())
1991      return SourceRange(MemberLoc, EndLoc);
1992    return SourceRange(BaseLoc, EndLoc);
1993  }
1994
1995  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1996
1997  static bool classof(const Stmt *T) {
1998    return T->getStmtClass() == MemberExprClass;
1999  }
2000  static bool classof(const MemberExpr *) { return true; }
2001
2002  // Iterators
2003  virtual child_iterator child_begin();
2004  virtual child_iterator child_end();
2005
2006  friend class ASTReader;
2007  friend class ASTStmtWriter;
2008};
2009
2010/// CompoundLiteralExpr - [C99 6.5.2.5]
2011///
2012class CompoundLiteralExpr : public Expr {
2013  /// LParenLoc - If non-null, this is the location of the left paren in a
2014  /// compound literal like "(int){4}".  This can be null if this is a
2015  /// synthesized compound expression.
2016  SourceLocation LParenLoc;
2017
2018  /// The type as written.  This can be an incomplete array type, in
2019  /// which case the actual expression type will be different.
2020  TypeSourceInfo *TInfo;
2021  Stmt *Init;
2022  bool FileScope;
2023public:
2024  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2025                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2026    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2027           tinfo->getType()->isDependentType(),
2028           init->isValueDependent(),
2029           init->containsUnexpandedParameterPack()),
2030      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2031
2032  /// \brief Construct an empty compound literal.
2033  explicit CompoundLiteralExpr(EmptyShell Empty)
2034    : Expr(CompoundLiteralExprClass, Empty) { }
2035
2036  const Expr *getInitializer() const { return cast<Expr>(Init); }
2037  Expr *getInitializer() { return cast<Expr>(Init); }
2038  void setInitializer(Expr *E) { Init = E; }
2039
2040  bool isFileScope() const { return FileScope; }
2041  void setFileScope(bool FS) { FileScope = FS; }
2042
2043  SourceLocation getLParenLoc() const { return LParenLoc; }
2044  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2045
2046  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2047  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2048
2049  virtual SourceRange getSourceRange() const {
2050    // FIXME: Init should never be null.
2051    if (!Init)
2052      return SourceRange();
2053    if (LParenLoc.isInvalid())
2054      return Init->getSourceRange();
2055    return SourceRange(LParenLoc, Init->getLocEnd());
2056  }
2057
2058  static bool classof(const Stmt *T) {
2059    return T->getStmtClass() == CompoundLiteralExprClass;
2060  }
2061  static bool classof(const CompoundLiteralExpr *) { return true; }
2062
2063  // Iterators
2064  virtual child_iterator child_begin();
2065  virtual child_iterator child_end();
2066};
2067
2068/// CastExpr - Base class for type casts, including both implicit
2069/// casts (ImplicitCastExpr) and explicit casts that have some
2070/// representation in the source code (ExplicitCastExpr's derived
2071/// classes).
2072class CastExpr : public Expr {
2073public:
2074  typedef clang::CastKind CastKind;
2075
2076private:
2077  Stmt *Op;
2078
2079  void CheckCastConsistency() const {
2080#ifndef NDEBUG
2081    switch (getCastKind()) {
2082    case CK_DerivedToBase:
2083    case CK_UncheckedDerivedToBase:
2084    case CK_DerivedToBaseMemberPointer:
2085    case CK_BaseToDerived:
2086    case CK_BaseToDerivedMemberPointer:
2087      assert(!path_empty() && "Cast kind should have a base path!");
2088      break;
2089
2090    // These should not have an inheritance path.
2091    case CK_BitCast:
2092    case CK_Dynamic:
2093    case CK_ToUnion:
2094    case CK_ArrayToPointerDecay:
2095    case CK_FunctionToPointerDecay:
2096    case CK_NullToMemberPointer:
2097    case CK_NullToPointer:
2098    case CK_ConstructorConversion:
2099    case CK_IntegralToPointer:
2100    case CK_PointerToIntegral:
2101    case CK_ToVoid:
2102    case CK_VectorSplat:
2103    case CK_IntegralCast:
2104    case CK_IntegralToFloating:
2105    case CK_FloatingToIntegral:
2106    case CK_FloatingCast:
2107    case CK_AnyPointerToObjCPointerCast:
2108    case CK_AnyPointerToBlockPointerCast:
2109    case CK_ObjCObjectLValueCast:
2110    case CK_FloatingRealToComplex:
2111    case CK_FloatingComplexToReal:
2112    case CK_FloatingComplexCast:
2113    case CK_FloatingComplexToIntegralComplex:
2114    case CK_IntegralRealToComplex:
2115    case CK_IntegralComplexToReal:
2116    case CK_IntegralComplexCast:
2117    case CK_IntegralComplexToFloatingComplex:
2118      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2119      // fallthrough to check for null base path
2120
2121    case CK_Dependent:
2122    case CK_LValueToRValue:
2123    case CK_GetObjCProperty:
2124    case CK_NoOp:
2125    case CK_PointerToBoolean:
2126    case CK_IntegralToBoolean:
2127    case CK_FloatingToBoolean:
2128    case CK_MemberPointerToBoolean:
2129    case CK_FloatingComplexToBoolean:
2130    case CK_IntegralComplexToBoolean:
2131    case CK_LValueBitCast:            // -> bool&
2132    case CK_UserDefinedConversion:    // operator bool()
2133      assert(path_empty() && "Cast kind should not have a base path!");
2134      break;
2135    }
2136#endif
2137  }
2138
2139  const CXXBaseSpecifier * const *path_buffer() const {
2140    return const_cast<CastExpr*>(this)->path_buffer();
2141  }
2142  CXXBaseSpecifier **path_buffer();
2143
2144protected:
2145  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2146           const CastKind kind, Expr *op, unsigned BasePathSize) :
2147    Expr(SC, ty, VK, OK_Ordinary,
2148         // Cast expressions are type-dependent if the type is
2149         // dependent (C++ [temp.dep.expr]p3).
2150         ty->isDependentType(),
2151         // Cast expressions are value-dependent if the type is
2152         // dependent or if the subexpression is value-dependent.
2153         ty->isDependentType() || (op && op->isValueDependent()),
2154         (ty->containsUnexpandedParameterPack() ||
2155          op->containsUnexpandedParameterPack())),
2156    Op(op) {
2157    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2158    CastExprBits.Kind = kind;
2159    CastExprBits.BasePathSize = BasePathSize;
2160    CheckCastConsistency();
2161  }
2162
2163  /// \brief Construct an empty cast.
2164  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2165    : Expr(SC, Empty) {
2166    CastExprBits.BasePathSize = BasePathSize;
2167  }
2168
2169public:
2170  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2171  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2172  const char *getCastKindName() const;
2173
2174  Expr *getSubExpr() { return cast<Expr>(Op); }
2175  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2176  void setSubExpr(Expr *E) { Op = E; }
2177
2178  /// \brief Retrieve the cast subexpression as it was written in the source
2179  /// code, looking through any implicit casts or other intermediate nodes
2180  /// introduced by semantic analysis.
2181  Expr *getSubExprAsWritten();
2182  const Expr *getSubExprAsWritten() const {
2183    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2184  }
2185
2186  typedef CXXBaseSpecifier **path_iterator;
2187  typedef const CXXBaseSpecifier * const *path_const_iterator;
2188  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2189  unsigned path_size() const { return CastExprBits.BasePathSize; }
2190  path_iterator path_begin() { return path_buffer(); }
2191  path_iterator path_end() { return path_buffer() + path_size(); }
2192  path_const_iterator path_begin() const { return path_buffer(); }
2193  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2194
2195  void setCastPath(const CXXCastPath &Path);
2196
2197  static bool classof(const Stmt *T) {
2198    return T->getStmtClass() >= firstCastExprConstant &&
2199           T->getStmtClass() <= lastCastExprConstant;
2200  }
2201  static bool classof(const CastExpr *) { return true; }
2202
2203  // Iterators
2204  virtual child_iterator child_begin();
2205  virtual child_iterator child_end();
2206};
2207
2208/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2209/// conversions, which have no direct representation in the original
2210/// source code. For example: converting T[]->T*, void f()->void
2211/// (*f)(), float->double, short->int, etc.
2212///
2213/// In C, implicit casts always produce rvalues. However, in C++, an
2214/// implicit cast whose result is being bound to a reference will be
2215/// an lvalue or xvalue. For example:
2216///
2217/// @code
2218/// class Base { };
2219/// class Derived : public Base { };
2220/// Derived &&ref();
2221/// void f(Derived d) {
2222///   Base& b = d; // initializer is an ImplicitCastExpr
2223///                // to an lvalue of type Base
2224///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2225///                     // to an xvalue of type Base
2226/// }
2227/// @endcode
2228class ImplicitCastExpr : public CastExpr {
2229private:
2230  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2231                   unsigned BasePathLength, ExprValueKind VK)
2232    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2233  }
2234
2235  /// \brief Construct an empty implicit cast.
2236  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2237    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2238
2239public:
2240  enum OnStack_t { OnStack };
2241  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2242                   ExprValueKind VK)
2243    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2244  }
2245
2246  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2247                                  CastKind Kind, Expr *Operand,
2248                                  const CXXCastPath *BasePath,
2249                                  ExprValueKind Cat);
2250
2251  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2252
2253  virtual SourceRange getSourceRange() const {
2254    return getSubExpr()->getSourceRange();
2255  }
2256
2257  static bool classof(const Stmt *T) {
2258    return T->getStmtClass() == ImplicitCastExprClass;
2259  }
2260  static bool classof(const ImplicitCastExpr *) { return true; }
2261};
2262
2263/// ExplicitCastExpr - An explicit cast written in the source
2264/// code.
2265///
2266/// This class is effectively an abstract class, because it provides
2267/// the basic representation of an explicitly-written cast without
2268/// specifying which kind of cast (C cast, functional cast, static
2269/// cast, etc.) was written; specific derived classes represent the
2270/// particular style of cast and its location information.
2271///
2272/// Unlike implicit casts, explicit cast nodes have two different
2273/// types: the type that was written into the source code, and the
2274/// actual type of the expression as determined by semantic
2275/// analysis. These types may differ slightly. For example, in C++ one
2276/// can cast to a reference type, which indicates that the resulting
2277/// expression will be an lvalue or xvalue. The reference type, however,
2278/// will not be used as the type of the expression.
2279class ExplicitCastExpr : public CastExpr {
2280  /// TInfo - Source type info for the (written) type
2281  /// this expression is casting to.
2282  TypeSourceInfo *TInfo;
2283
2284protected:
2285  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2286                   CastKind kind, Expr *op, unsigned PathSize,
2287                   TypeSourceInfo *writtenTy)
2288    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2289
2290  /// \brief Construct an empty explicit cast.
2291  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2292    : CastExpr(SC, Shell, PathSize) { }
2293
2294public:
2295  /// getTypeInfoAsWritten - Returns the type source info for the type
2296  /// that this expression is casting to.
2297  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2298  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2299
2300  /// getTypeAsWritten - Returns the type that this expression is
2301  /// casting to, as written in the source code.
2302  QualType getTypeAsWritten() const { return TInfo->getType(); }
2303
2304  static bool classof(const Stmt *T) {
2305     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2306            T->getStmtClass() <= lastExplicitCastExprConstant;
2307  }
2308  static bool classof(const ExplicitCastExpr *) { return true; }
2309};
2310
2311/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2312/// cast in C++ (C++ [expr.cast]), which uses the syntax
2313/// (Type)expr. For example: @c (int)f.
2314class CStyleCastExpr : public ExplicitCastExpr {
2315  SourceLocation LPLoc; // the location of the left paren
2316  SourceLocation RPLoc; // the location of the right paren
2317
2318  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2319                 unsigned PathSize, TypeSourceInfo *writtenTy,
2320                 SourceLocation l, SourceLocation r)
2321    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2322                       writtenTy), LPLoc(l), RPLoc(r) {}
2323
2324  /// \brief Construct an empty C-style explicit cast.
2325  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2326    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2327
2328public:
2329  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2330                                ExprValueKind VK, CastKind K,
2331                                Expr *Op, const CXXCastPath *BasePath,
2332                                TypeSourceInfo *WrittenTy, SourceLocation L,
2333                                SourceLocation R);
2334
2335  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2336
2337  SourceLocation getLParenLoc() const { return LPLoc; }
2338  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2339
2340  SourceLocation getRParenLoc() const { return RPLoc; }
2341  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2342
2343  virtual SourceRange getSourceRange() const {
2344    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2345  }
2346  static bool classof(const Stmt *T) {
2347    return T->getStmtClass() == CStyleCastExprClass;
2348  }
2349  static bool classof(const CStyleCastExpr *) { return true; }
2350};
2351
2352/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2353///
2354/// This expression node kind describes a builtin binary operation,
2355/// such as "x + y" for integer values "x" and "y". The operands will
2356/// already have been converted to appropriate types (e.g., by
2357/// performing promotions or conversions).
2358///
2359/// In C++, where operators may be overloaded, a different kind of
2360/// expression node (CXXOperatorCallExpr) is used to express the
2361/// invocation of an overloaded operator with operator syntax. Within
2362/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2363/// used to store an expression "x + y" depends on the subexpressions
2364/// for x and y. If neither x or y is type-dependent, and the "+"
2365/// operator resolves to a built-in operation, BinaryOperator will be
2366/// used to express the computation (x and y may still be
2367/// value-dependent). If either x or y is type-dependent, or if the
2368/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2369/// be used to express the computation.
2370class BinaryOperator : public Expr {
2371public:
2372  typedef BinaryOperatorKind Opcode;
2373
2374private:
2375  unsigned Opc : 6;
2376  SourceLocation OpLoc;
2377
2378  enum { LHS, RHS, END_EXPR };
2379  Stmt* SubExprs[END_EXPR];
2380public:
2381
2382  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2383                 ExprValueKind VK, ExprObjectKind OK,
2384                 SourceLocation opLoc)
2385    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2386           lhs->isTypeDependent() || rhs->isTypeDependent(),
2387           lhs->isValueDependent() || rhs->isValueDependent(),
2388           (lhs->containsUnexpandedParameterPack() ||
2389            rhs->containsUnexpandedParameterPack())),
2390      Opc(opc), OpLoc(opLoc) {
2391    SubExprs[LHS] = lhs;
2392    SubExprs[RHS] = rhs;
2393    assert(!isCompoundAssignmentOp() &&
2394           "Use ArithAssignBinaryOperator for compound assignments");
2395  }
2396
2397  /// \brief Construct an empty binary operator.
2398  explicit BinaryOperator(EmptyShell Empty)
2399    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2400
2401  SourceLocation getOperatorLoc() const { return OpLoc; }
2402  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2403
2404  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2405  void setOpcode(Opcode O) { Opc = O; }
2406
2407  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2408  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2409  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2410  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2411
2412  virtual SourceRange getSourceRange() const {
2413    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2414  }
2415
2416  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2417  /// corresponds to, e.g. "<<=".
2418  static const char *getOpcodeStr(Opcode Op);
2419
2420  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2421
2422  /// \brief Retrieve the binary opcode that corresponds to the given
2423  /// overloaded operator.
2424  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2425
2426  /// \brief Retrieve the overloaded operator kind that corresponds to
2427  /// the given binary opcode.
2428  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2429
2430  /// predicates to categorize the respective opcodes.
2431  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2432  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2433  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2434  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2435  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2436  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2437
2438  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2439  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2440
2441  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2442  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2443
2444  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2445  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2446
2447  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2448  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2449
2450  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2451  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2452
2453  static bool isAssignmentOp(Opcode Opc) {
2454    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2455  }
2456  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2457
2458  static bool isCompoundAssignmentOp(Opcode Opc) {
2459    return Opc > BO_Assign && Opc <= BO_OrAssign;
2460  }
2461  bool isCompoundAssignmentOp() const {
2462    return isCompoundAssignmentOp(getOpcode());
2463  }
2464
2465  static bool isShiftAssignOp(Opcode Opc) {
2466    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2467  }
2468  bool isShiftAssignOp() const {
2469    return isShiftAssignOp(getOpcode());
2470  }
2471
2472  static bool classof(const Stmt *S) {
2473    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2474           S->getStmtClass() <= lastBinaryOperatorConstant;
2475  }
2476  static bool classof(const BinaryOperator *) { return true; }
2477
2478  // Iterators
2479  virtual child_iterator child_begin();
2480  virtual child_iterator child_end();
2481
2482protected:
2483  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2484                 ExprValueKind VK, ExprObjectKind OK,
2485                 SourceLocation opLoc, bool dead)
2486    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2487           lhs->isTypeDependent() || rhs->isTypeDependent(),
2488           lhs->isValueDependent() || rhs->isValueDependent(),
2489           (lhs->containsUnexpandedParameterPack() ||
2490            rhs->containsUnexpandedParameterPack())),
2491      Opc(opc), OpLoc(opLoc) {
2492    SubExprs[LHS] = lhs;
2493    SubExprs[RHS] = rhs;
2494  }
2495
2496  BinaryOperator(StmtClass SC, EmptyShell Empty)
2497    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2498};
2499
2500/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2501/// track of the type the operation is performed in.  Due to the semantics of
2502/// these operators, the operands are promoted, the aritmetic performed, an
2503/// implicit conversion back to the result type done, then the assignment takes
2504/// place.  This captures the intermediate type which the computation is done
2505/// in.
2506class CompoundAssignOperator : public BinaryOperator {
2507  QualType ComputationLHSType;
2508  QualType ComputationResultType;
2509public:
2510  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2511                         ExprValueKind VK, ExprObjectKind OK,
2512                         QualType CompLHSType, QualType CompResultType,
2513                         SourceLocation OpLoc)
2514    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2515      ComputationLHSType(CompLHSType),
2516      ComputationResultType(CompResultType) {
2517    assert(isCompoundAssignmentOp() &&
2518           "Only should be used for compound assignments");
2519  }
2520
2521  /// \brief Build an empty compound assignment operator expression.
2522  explicit CompoundAssignOperator(EmptyShell Empty)
2523    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2524
2525  // The two computation types are the type the LHS is converted
2526  // to for the computation and the type of the result; the two are
2527  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2528  QualType getComputationLHSType() const { return ComputationLHSType; }
2529  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2530
2531  QualType getComputationResultType() const { return ComputationResultType; }
2532  void setComputationResultType(QualType T) { ComputationResultType = T; }
2533
2534  static bool classof(const CompoundAssignOperator *) { return true; }
2535  static bool classof(const Stmt *S) {
2536    return S->getStmtClass() == CompoundAssignOperatorClass;
2537  }
2538};
2539
2540/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2541/// GNU "missing LHS" extension is in use.
2542///
2543class ConditionalOperator : public Expr {
2544  enum { COND, LHS, RHS, END_EXPR };
2545  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2546  Stmt* Save;
2547  SourceLocation QuestionLoc, ColonLoc;
2548public:
2549  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2550                      SourceLocation CLoc, Expr *rhs, Expr *save,
2551                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2552    : Expr(ConditionalOperatorClass, t, VK, OK,
2553           // FIXME: the type of the conditional operator doesn't
2554           // depend on the type of the conditional, but the standard
2555           // seems to imply that it could. File a bug!
2556           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2557           (cond->isValueDependent() ||
2558            (lhs && lhs->isValueDependent()) ||
2559            (rhs && rhs->isValueDependent())),
2560           (cond->containsUnexpandedParameterPack() ||
2561            (lhs && lhs->containsUnexpandedParameterPack()) ||
2562            (rhs && rhs->containsUnexpandedParameterPack()))),
2563      QuestionLoc(QLoc),
2564      ColonLoc(CLoc) {
2565    SubExprs[COND] = cond;
2566    SubExprs[LHS] = lhs;
2567    SubExprs[RHS] = rhs;
2568    Save = save;
2569  }
2570
2571  /// \brief Build an empty conditional operator.
2572  explicit ConditionalOperator(EmptyShell Empty)
2573    : Expr(ConditionalOperatorClass, Empty) { }
2574
2575  // getCond - Return the expression representing the condition for
2576  //  the ?: operator.
2577  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2578  void setCond(Expr *E) { SubExprs[COND] = E; }
2579
2580  // getTrueExpr - Return the subexpression representing the value of the ?:
2581  //  expression if the condition evaluates to true.
2582  Expr *getTrueExpr() const {
2583    return cast<Expr>(SubExprs[LHS]);
2584  }
2585
2586  // getFalseExpr - Return the subexpression representing the value of the ?:
2587  // expression if the condition evaluates to false. This is the same as getRHS.
2588  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2589
2590  // getSaveExpr - In most cases this value will be null. Except a GCC extension
2591  // allows the left subexpression to be omitted, and instead of that condition
2592  // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
2593  // expression "x" is only evaluated once. Under this senario, this function
2594  // returns the original, non-converted condition expression for the ?:operator
2595  Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2596
2597  Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
2598  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2599
2600  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2601  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2602
2603  Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2604  void setSAVE(Expr *E) { Save = E; }
2605
2606  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2607  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2608
2609  SourceLocation getColonLoc() const { return ColonLoc; }
2610  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2611
2612  virtual SourceRange getSourceRange() const {
2613    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2614  }
2615  static bool classof(const Stmt *T) {
2616    return T->getStmtClass() == ConditionalOperatorClass;
2617  }
2618  static bool classof(const ConditionalOperator *) { return true; }
2619
2620  // Iterators
2621  virtual child_iterator child_begin();
2622  virtual child_iterator child_end();
2623};
2624
2625/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2626class AddrLabelExpr : public Expr {
2627  SourceLocation AmpAmpLoc, LabelLoc;
2628  LabelStmt *Label;
2629public:
2630  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2631                QualType t)
2632    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false),
2633      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2634
2635  /// \brief Build an empty address of a label expression.
2636  explicit AddrLabelExpr(EmptyShell Empty)
2637    : Expr(AddrLabelExprClass, Empty) { }
2638
2639  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2640  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2641  SourceLocation getLabelLoc() const { return LabelLoc; }
2642  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2643
2644  virtual SourceRange getSourceRange() const {
2645    return SourceRange(AmpAmpLoc, LabelLoc);
2646  }
2647
2648  LabelStmt *getLabel() const { return Label; }
2649  void setLabel(LabelStmt *S) { Label = S; }
2650
2651  static bool classof(const Stmt *T) {
2652    return T->getStmtClass() == AddrLabelExprClass;
2653  }
2654  static bool classof(const AddrLabelExpr *) { return true; }
2655
2656  // Iterators
2657  virtual child_iterator child_begin();
2658  virtual child_iterator child_end();
2659};
2660
2661/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2662/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2663/// takes the value of the last subexpression.
2664///
2665/// A StmtExpr is always an r-value; values "returned" out of a
2666/// StmtExpr will be copied.
2667class StmtExpr : public Expr {
2668  Stmt *SubStmt;
2669  SourceLocation LParenLoc, RParenLoc;
2670public:
2671  // FIXME: Does type-dependence need to be computed differently?
2672  StmtExpr(CompoundStmt *substmt, QualType T,
2673           SourceLocation lp, SourceLocation rp) :
2674    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2675         T->isDependentType(), false, false),
2676    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2677
2678  /// \brief Build an empty statement expression.
2679  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2680
2681  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2682  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2683  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2684
2685  virtual SourceRange getSourceRange() const {
2686    return SourceRange(LParenLoc, RParenLoc);
2687  }
2688
2689  SourceLocation getLParenLoc() const { return LParenLoc; }
2690  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2691  SourceLocation getRParenLoc() const { return RParenLoc; }
2692  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2693
2694  static bool classof(const Stmt *T) {
2695    return T->getStmtClass() == StmtExprClass;
2696  }
2697  static bool classof(const StmtExpr *) { return true; }
2698
2699  // Iterators
2700  virtual child_iterator child_begin();
2701  virtual child_iterator child_end();
2702};
2703
2704
2705/// ShuffleVectorExpr - clang-specific builtin-in function
2706/// __builtin_shufflevector.
2707/// This AST node represents a operator that does a constant
2708/// shuffle, similar to LLVM's shufflevector instruction. It takes
2709/// two vectors and a variable number of constant indices,
2710/// and returns the appropriately shuffled vector.
2711class ShuffleVectorExpr : public Expr {
2712  SourceLocation BuiltinLoc, RParenLoc;
2713
2714  // SubExprs - the list of values passed to the __builtin_shufflevector
2715  // function. The first two are vectors, and the rest are constant
2716  // indices.  The number of values in this list is always
2717  // 2+the number of indices in the vector type.
2718  Stmt **SubExprs;
2719  unsigned NumExprs;
2720
2721public:
2722  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2723                    QualType Type, SourceLocation BLoc,
2724                    SourceLocation RP);
2725
2726  /// \brief Build an empty vector-shuffle expression.
2727  explicit ShuffleVectorExpr(EmptyShell Empty)
2728    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2729
2730  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2731  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2732
2733  SourceLocation getRParenLoc() const { return RParenLoc; }
2734  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2735
2736  virtual SourceRange getSourceRange() const {
2737    return SourceRange(BuiltinLoc, RParenLoc);
2738  }
2739  static bool classof(const Stmt *T) {
2740    return T->getStmtClass() == ShuffleVectorExprClass;
2741  }
2742  static bool classof(const ShuffleVectorExpr *) { return true; }
2743
2744  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2745  /// constant expression, the actual arguments passed in, and the function
2746  /// pointers.
2747  unsigned getNumSubExprs() const { return NumExprs; }
2748
2749  /// \brief Retrieve the array of expressions.
2750  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
2751
2752  /// getExpr - Return the Expr at the specified index.
2753  Expr *getExpr(unsigned Index) {
2754    assert((Index < NumExprs) && "Arg access out of range!");
2755    return cast<Expr>(SubExprs[Index]);
2756  }
2757  const Expr *getExpr(unsigned Index) const {
2758    assert((Index < NumExprs) && "Arg access out of range!");
2759    return cast<Expr>(SubExprs[Index]);
2760  }
2761
2762  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2763
2764  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2765    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2766    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2767  }
2768
2769  // Iterators
2770  virtual child_iterator child_begin();
2771  virtual child_iterator child_end();
2772};
2773
2774/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2775/// This AST node is similar to the conditional operator (?:) in C, with
2776/// the following exceptions:
2777/// - the test expression must be a integer constant expression.
2778/// - the expression returned acts like the chosen subexpression in every
2779///   visible way: the type is the same as that of the chosen subexpression,
2780///   and all predicates (whether it's an l-value, whether it's an integer
2781///   constant expression, etc.) return the same result as for the chosen
2782///   sub-expression.
2783class ChooseExpr : public Expr {
2784  enum { COND, LHS, RHS, END_EXPR };
2785  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2786  SourceLocation BuiltinLoc, RParenLoc;
2787public:
2788  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
2789             QualType t, ExprValueKind VK, ExprObjectKind OK,
2790             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2791    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
2792           (cond->containsUnexpandedParameterPack() ||
2793            lhs->containsUnexpandedParameterPack() ||
2794            rhs->containsUnexpandedParameterPack())),
2795      BuiltinLoc(BLoc), RParenLoc(RP) {
2796      SubExprs[COND] = cond;
2797      SubExprs[LHS] = lhs;
2798      SubExprs[RHS] = rhs;
2799    }
2800
2801  /// \brief Build an empty __builtin_choose_expr.
2802  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2803
2804  /// isConditionTrue - Return whether the condition is true (i.e. not
2805  /// equal to zero).
2806  bool isConditionTrue(const ASTContext &C) const;
2807
2808  /// getChosenSubExpr - Return the subexpression chosen according to the
2809  /// condition.
2810  Expr *getChosenSubExpr(const ASTContext &C) const {
2811    return isConditionTrue(C) ? getLHS() : getRHS();
2812  }
2813
2814  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2815  void setCond(Expr *E) { SubExprs[COND] = E; }
2816  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2817  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2818  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2819  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2820
2821  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2822  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2823
2824  SourceLocation getRParenLoc() const { return RParenLoc; }
2825  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2826
2827  virtual SourceRange getSourceRange() const {
2828    return SourceRange(BuiltinLoc, RParenLoc);
2829  }
2830  static bool classof(const Stmt *T) {
2831    return T->getStmtClass() == ChooseExprClass;
2832  }
2833  static bool classof(const ChooseExpr *) { return true; }
2834
2835  // Iterators
2836  virtual child_iterator child_begin();
2837  virtual child_iterator child_end();
2838};
2839
2840/// GNUNullExpr - Implements the GNU __null extension, which is a name
2841/// for a null pointer constant that has integral type (e.g., int or
2842/// long) and is the same size and alignment as a pointer. The __null
2843/// extension is typically only used by system headers, which define
2844/// NULL as __null in C++ rather than using 0 (which is an integer
2845/// that may not match the size of a pointer).
2846class GNUNullExpr : public Expr {
2847  /// TokenLoc - The location of the __null keyword.
2848  SourceLocation TokenLoc;
2849
2850public:
2851  GNUNullExpr(QualType Ty, SourceLocation Loc)
2852    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false),
2853      TokenLoc(Loc) { }
2854
2855  /// \brief Build an empty GNU __null expression.
2856  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2857
2858  /// getTokenLocation - The location of the __null token.
2859  SourceLocation getTokenLocation() const { return TokenLoc; }
2860  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2861
2862  virtual SourceRange getSourceRange() const {
2863    return SourceRange(TokenLoc);
2864  }
2865  static bool classof(const Stmt *T) {
2866    return T->getStmtClass() == GNUNullExprClass;
2867  }
2868  static bool classof(const GNUNullExpr *) { return true; }
2869
2870  // Iterators
2871  virtual child_iterator child_begin();
2872  virtual child_iterator child_end();
2873};
2874
2875/// VAArgExpr, used for the builtin function __builtin_va_arg.
2876class VAArgExpr : public Expr {
2877  Stmt *Val;
2878  TypeSourceInfo *TInfo;
2879  SourceLocation BuiltinLoc, RParenLoc;
2880public:
2881  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2882            SourceLocation RPLoc, QualType t)
2883    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
2884           t->isDependentType(), false,
2885           (TInfo->getType()->containsUnexpandedParameterPack() ||
2886            e->containsUnexpandedParameterPack())),
2887      Val(e), TInfo(TInfo),
2888      BuiltinLoc(BLoc),
2889      RParenLoc(RPLoc) { }
2890
2891  /// \brief Create an empty __builtin_va_arg expression.
2892  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2893
2894  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2895  Expr *getSubExpr() { return cast<Expr>(Val); }
2896  void setSubExpr(Expr *E) { Val = E; }
2897
2898  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2899  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2900
2901  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2902  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2903
2904  SourceLocation getRParenLoc() const { return RParenLoc; }
2905  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2906
2907  virtual SourceRange getSourceRange() const {
2908    return SourceRange(BuiltinLoc, RParenLoc);
2909  }
2910  static bool classof(const Stmt *T) {
2911    return T->getStmtClass() == VAArgExprClass;
2912  }
2913  static bool classof(const VAArgExpr *) { return true; }
2914
2915  // Iterators
2916  virtual child_iterator child_begin();
2917  virtual child_iterator child_end();
2918};
2919
2920/// @brief Describes an C or C++ initializer list.
2921///
2922/// InitListExpr describes an initializer list, which can be used to
2923/// initialize objects of different types, including
2924/// struct/class/union types, arrays, and vectors. For example:
2925///
2926/// @code
2927/// struct foo x = { 1, { 2, 3 } };
2928/// @endcode
2929///
2930/// Prior to semantic analysis, an initializer list will represent the
2931/// initializer list as written by the user, but will have the
2932/// placeholder type "void". This initializer list is called the
2933/// syntactic form of the initializer, and may contain C99 designated
2934/// initializers (represented as DesignatedInitExprs), initializations
2935/// of subobject members without explicit braces, and so on. Clients
2936/// interested in the original syntax of the initializer list should
2937/// use the syntactic form of the initializer list.
2938///
2939/// After semantic analysis, the initializer list will represent the
2940/// semantic form of the initializer, where the initializations of all
2941/// subobjects are made explicit with nested InitListExpr nodes and
2942/// C99 designators have been eliminated by placing the designated
2943/// initializations into the subobject they initialize. Additionally,
2944/// any "holes" in the initialization, where no initializer has been
2945/// specified for a particular subobject, will be replaced with
2946/// implicitly-generated ImplicitValueInitExpr expressions that
2947/// value-initialize the subobjects. Note, however, that the
2948/// initializer lists may still have fewer initializers than there are
2949/// elements to initialize within the object.
2950///
2951/// Given the semantic form of the initializer list, one can retrieve
2952/// the original syntactic form of that initializer list (if it
2953/// exists) using getSyntacticForm(). Since many initializer lists
2954/// have the same syntactic and semantic forms, getSyntacticForm() may
2955/// return NULL, indicating that the current initializer list also
2956/// serves as its syntactic form.
2957class InitListExpr : public Expr {
2958  // FIXME: Eliminate this vector in favor of ASTContext allocation
2959  typedef ASTVector<Stmt *> InitExprsTy;
2960  InitExprsTy InitExprs;
2961  SourceLocation LBraceLoc, RBraceLoc;
2962
2963  /// Contains the initializer list that describes the syntactic form
2964  /// written in the source code.
2965  InitListExpr *SyntacticForm;
2966
2967  /// If this initializer list initializes a union, specifies which
2968  /// field within the union will be initialized.
2969  FieldDecl *UnionFieldInit;
2970
2971  /// Whether this initializer list originally had a GNU array-range
2972  /// designator in it. This is a temporary marker used by CodeGen.
2973  bool HadArrayRangeDesignator;
2974
2975public:
2976  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2977               Expr **initexprs, unsigned numinits,
2978               SourceLocation rbraceloc);
2979
2980  /// \brief Build an empty initializer list.
2981  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2982    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2983
2984  unsigned getNumInits() const { return InitExprs.size(); }
2985
2986  /// \brief Retrieve the set of initializers.
2987  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
2988
2989  const Expr *getInit(unsigned Init) const {
2990    assert(Init < getNumInits() && "Initializer access out of range!");
2991    return cast_or_null<Expr>(InitExprs[Init]);
2992  }
2993
2994  Expr *getInit(unsigned Init) {
2995    assert(Init < getNumInits() && "Initializer access out of range!");
2996    return cast_or_null<Expr>(InitExprs[Init]);
2997  }
2998
2999  void setInit(unsigned Init, Expr *expr) {
3000    assert(Init < getNumInits() && "Initializer access out of range!");
3001    InitExprs[Init] = expr;
3002  }
3003
3004  /// \brief Reserve space for some number of initializers.
3005  void reserveInits(ASTContext &C, unsigned NumInits);
3006
3007  /// @brief Specify the number of initializers
3008  ///
3009  /// If there are more than @p NumInits initializers, the remaining
3010  /// initializers will be destroyed. If there are fewer than @p
3011  /// NumInits initializers, NULL expressions will be added for the
3012  /// unknown initializers.
3013  void resizeInits(ASTContext &Context, unsigned NumInits);
3014
3015  /// @brief Updates the initializer at index @p Init with the new
3016  /// expression @p expr, and returns the old expression at that
3017  /// location.
3018  ///
3019  /// When @p Init is out of range for this initializer list, the
3020  /// initializer list will be extended with NULL expressions to
3021  /// accomodate the new entry.
3022  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3023
3024  /// \brief If this initializes a union, specifies which field in the
3025  /// union to initialize.
3026  ///
3027  /// Typically, this field is the first named field within the
3028  /// union. However, a designated initializer can specify the
3029  /// initialization of a different field within the union.
3030  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
3031  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
3032
3033  // Explicit InitListExpr's originate from source code (and have valid source
3034  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3035  bool isExplicit() {
3036    return LBraceLoc.isValid() && RBraceLoc.isValid();
3037  }
3038
3039  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3040  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3041  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3042  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3043
3044  /// @brief Retrieve the initializer list that describes the
3045  /// syntactic form of the initializer.
3046  ///
3047  ///
3048  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3049  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3050
3051  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3052  void sawArrayRangeDesignator(bool ARD = true) {
3053    HadArrayRangeDesignator = ARD;
3054  }
3055
3056  virtual SourceRange getSourceRange() const;
3057
3058  static bool classof(const Stmt *T) {
3059    return T->getStmtClass() == InitListExprClass;
3060  }
3061  static bool classof(const InitListExpr *) { return true; }
3062
3063  // Iterators
3064  virtual child_iterator child_begin();
3065  virtual child_iterator child_end();
3066
3067  typedef InitExprsTy::iterator iterator;
3068  typedef InitExprsTy::const_iterator const_iterator;
3069  typedef InitExprsTy::reverse_iterator reverse_iterator;
3070  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3071
3072  iterator begin() { return InitExprs.begin(); }
3073  const_iterator begin() const { return InitExprs.begin(); }
3074  iterator end() { return InitExprs.end(); }
3075  const_iterator end() const { return InitExprs.end(); }
3076  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3077  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3078  reverse_iterator rend() { return InitExprs.rend(); }
3079  const_reverse_iterator rend() const { return InitExprs.rend(); }
3080};
3081
3082/// @brief Represents a C99 designated initializer expression.
3083///
3084/// A designated initializer expression (C99 6.7.8) contains one or
3085/// more designators (which can be field designators, array
3086/// designators, or GNU array-range designators) followed by an
3087/// expression that initializes the field or element(s) that the
3088/// designators refer to. For example, given:
3089///
3090/// @code
3091/// struct point {
3092///   double x;
3093///   double y;
3094/// };
3095/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3096/// @endcode
3097///
3098/// The InitListExpr contains three DesignatedInitExprs, the first of
3099/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3100/// designators, one array designator for @c [2] followed by one field
3101/// designator for @c .y. The initalization expression will be 1.0.
3102class DesignatedInitExpr : public Expr {
3103public:
3104  /// \brief Forward declaration of the Designator class.
3105  class Designator;
3106
3107private:
3108  /// The location of the '=' or ':' prior to the actual initializer
3109  /// expression.
3110  SourceLocation EqualOrColonLoc;
3111
3112  /// Whether this designated initializer used the GNU deprecated
3113  /// syntax rather than the C99 '=' syntax.
3114  bool GNUSyntax : 1;
3115
3116  /// The number of designators in this initializer expression.
3117  unsigned NumDesignators : 15;
3118
3119  /// \brief The designators in this designated initialization
3120  /// expression.
3121  Designator *Designators;
3122
3123  /// The number of subexpressions of this initializer expression,
3124  /// which contains both the initializer and any additional
3125  /// expressions used by array and array-range designators.
3126  unsigned NumSubExprs : 16;
3127
3128
3129  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3130                     const Designator *Designators,
3131                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3132                     Expr **IndexExprs, unsigned NumIndexExprs,
3133                     Expr *Init);
3134
3135  explicit DesignatedInitExpr(unsigned NumSubExprs)
3136    : Expr(DesignatedInitExprClass, EmptyShell()),
3137      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3138
3139public:
3140  /// A field designator, e.g., ".x".
3141  struct FieldDesignator {
3142    /// Refers to the field that is being initialized. The low bit
3143    /// of this field determines whether this is actually a pointer
3144    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3145    /// initially constructed, a field designator will store an
3146    /// IdentifierInfo*. After semantic analysis has resolved that
3147    /// name, the field designator will instead store a FieldDecl*.
3148    uintptr_t NameOrField;
3149
3150    /// The location of the '.' in the designated initializer.
3151    unsigned DotLoc;
3152
3153    /// The location of the field name in the designated initializer.
3154    unsigned FieldLoc;
3155  };
3156
3157  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3158  struct ArrayOrRangeDesignator {
3159    /// Location of the first index expression within the designated
3160    /// initializer expression's list of subexpressions.
3161    unsigned Index;
3162    /// The location of the '[' starting the array range designator.
3163    unsigned LBracketLoc;
3164    /// The location of the ellipsis separating the start and end
3165    /// indices. Only valid for GNU array-range designators.
3166    unsigned EllipsisLoc;
3167    /// The location of the ']' terminating the array range designator.
3168    unsigned RBracketLoc;
3169  };
3170
3171  /// @brief Represents a single C99 designator.
3172  ///
3173  /// @todo This class is infuriatingly similar to clang::Designator,
3174  /// but minor differences (storing indices vs. storing pointers)
3175  /// keep us from reusing it. Try harder, later, to rectify these
3176  /// differences.
3177  class Designator {
3178    /// @brief The kind of designator this describes.
3179    enum {
3180      FieldDesignator,
3181      ArrayDesignator,
3182      ArrayRangeDesignator
3183    } Kind;
3184
3185    union {
3186      /// A field designator, e.g., ".x".
3187      struct FieldDesignator Field;
3188      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3189      struct ArrayOrRangeDesignator ArrayOrRange;
3190    };
3191    friend class DesignatedInitExpr;
3192
3193  public:
3194    Designator() {}
3195
3196    /// @brief Initializes a field designator.
3197    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3198               SourceLocation FieldLoc)
3199      : Kind(FieldDesignator) {
3200      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3201      Field.DotLoc = DotLoc.getRawEncoding();
3202      Field.FieldLoc = FieldLoc.getRawEncoding();
3203    }
3204
3205    /// @brief Initializes an array designator.
3206    Designator(unsigned Index, SourceLocation LBracketLoc,
3207               SourceLocation RBracketLoc)
3208      : Kind(ArrayDesignator) {
3209      ArrayOrRange.Index = Index;
3210      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3211      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3212      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3213    }
3214
3215    /// @brief Initializes a GNU array-range designator.
3216    Designator(unsigned Index, SourceLocation LBracketLoc,
3217               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3218      : Kind(ArrayRangeDesignator) {
3219      ArrayOrRange.Index = Index;
3220      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3221      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3222      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3223    }
3224
3225    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3226    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3227    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3228
3229    IdentifierInfo * getFieldName();
3230
3231    FieldDecl *getField() {
3232      assert(Kind == FieldDesignator && "Only valid on a field designator");
3233      if (Field.NameOrField & 0x01)
3234        return 0;
3235      else
3236        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3237    }
3238
3239    void setField(FieldDecl *FD) {
3240      assert(Kind == FieldDesignator && "Only valid on a field designator");
3241      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3242    }
3243
3244    SourceLocation getDotLoc() const {
3245      assert(Kind == FieldDesignator && "Only valid on a field designator");
3246      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3247    }
3248
3249    SourceLocation getFieldLoc() const {
3250      assert(Kind == FieldDesignator && "Only valid on a field designator");
3251      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3252    }
3253
3254    SourceLocation getLBracketLoc() const {
3255      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3256             "Only valid on an array or array-range designator");
3257      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3258    }
3259
3260    SourceLocation getRBracketLoc() const {
3261      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3262             "Only valid on an array or array-range designator");
3263      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3264    }
3265
3266    SourceLocation getEllipsisLoc() const {
3267      assert(Kind == ArrayRangeDesignator &&
3268             "Only valid on an array-range designator");
3269      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3270    }
3271
3272    unsigned getFirstExprIndex() const {
3273      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3274             "Only valid on an array or array-range designator");
3275      return ArrayOrRange.Index;
3276    }
3277
3278    SourceLocation getStartLocation() const {
3279      if (Kind == FieldDesignator)
3280        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3281      else
3282        return getLBracketLoc();
3283    }
3284  };
3285
3286  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3287                                    unsigned NumDesignators,
3288                                    Expr **IndexExprs, unsigned NumIndexExprs,
3289                                    SourceLocation EqualOrColonLoc,
3290                                    bool GNUSyntax, Expr *Init);
3291
3292  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3293
3294  /// @brief Returns the number of designators in this initializer.
3295  unsigned size() const { return NumDesignators; }
3296
3297  // Iterator access to the designators.
3298  typedef Designator* designators_iterator;
3299  designators_iterator designators_begin() { return Designators; }
3300  designators_iterator designators_end() {
3301    return Designators + NumDesignators;
3302  }
3303
3304  typedef std::reverse_iterator<designators_iterator>
3305          reverse_designators_iterator;
3306  reverse_designators_iterator designators_rbegin() {
3307    return reverse_designators_iterator(designators_end());
3308  }
3309  reverse_designators_iterator designators_rend() {
3310    return reverse_designators_iterator(designators_begin());
3311  }
3312
3313  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3314
3315  void setDesignators(ASTContext &C, const Designator *Desigs,
3316                      unsigned NumDesigs);
3317
3318  Expr *getArrayIndex(const Designator& D);
3319  Expr *getArrayRangeStart(const Designator& D);
3320  Expr *getArrayRangeEnd(const Designator& D);
3321
3322  /// @brief Retrieve the location of the '=' that precedes the
3323  /// initializer value itself, if present.
3324  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3325  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3326
3327  /// @brief Determines whether this designated initializer used the
3328  /// deprecated GNU syntax for designated initializers.
3329  bool usesGNUSyntax() const { return GNUSyntax; }
3330  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3331
3332  /// @brief Retrieve the initializer value.
3333  Expr *getInit() const {
3334    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3335  }
3336
3337  void setInit(Expr *init) {
3338    *child_begin() = init;
3339  }
3340
3341  /// \brief Retrieve the total number of subexpressions in this
3342  /// designated initializer expression, including the actual
3343  /// initialized value and any expressions that occur within array
3344  /// and array-range designators.
3345  unsigned getNumSubExprs() const { return NumSubExprs; }
3346
3347  Expr *getSubExpr(unsigned Idx) {
3348    assert(Idx < NumSubExprs && "Subscript out of range");
3349    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3350    Ptr += sizeof(DesignatedInitExpr);
3351    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3352  }
3353
3354  void setSubExpr(unsigned Idx, Expr *E) {
3355    assert(Idx < NumSubExprs && "Subscript out of range");
3356    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3357    Ptr += sizeof(DesignatedInitExpr);
3358    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3359  }
3360
3361  /// \brief Replaces the designator at index @p Idx with the series
3362  /// of designators in [First, Last).
3363  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3364                        const Designator *Last);
3365
3366  virtual SourceRange getSourceRange() const;
3367
3368  static bool classof(const Stmt *T) {
3369    return T->getStmtClass() == DesignatedInitExprClass;
3370  }
3371  static bool classof(const DesignatedInitExpr *) { return true; }
3372
3373  // Iterators
3374  virtual child_iterator child_begin();
3375  virtual child_iterator child_end();
3376};
3377
3378/// \brief Represents an implicitly-generated value initialization of
3379/// an object of a given type.
3380///
3381/// Implicit value initializations occur within semantic initializer
3382/// list expressions (InitListExpr) as placeholders for subobject
3383/// initializations not explicitly specified by the user.
3384///
3385/// \see InitListExpr
3386class ImplicitValueInitExpr : public Expr {
3387public:
3388  explicit ImplicitValueInitExpr(QualType ty)
3389    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3390           false, false, false) { }
3391
3392  /// \brief Construct an empty implicit value initialization.
3393  explicit ImplicitValueInitExpr(EmptyShell Empty)
3394    : Expr(ImplicitValueInitExprClass, Empty) { }
3395
3396  static bool classof(const Stmt *T) {
3397    return T->getStmtClass() == ImplicitValueInitExprClass;
3398  }
3399  static bool classof(const ImplicitValueInitExpr *) { return true; }
3400
3401  virtual SourceRange getSourceRange() const {
3402    return SourceRange();
3403  }
3404
3405  // Iterators
3406  virtual child_iterator child_begin();
3407  virtual child_iterator child_end();
3408};
3409
3410
3411class ParenListExpr : public Expr {
3412  Stmt **Exprs;
3413  unsigned NumExprs;
3414  SourceLocation LParenLoc, RParenLoc;
3415
3416public:
3417  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3418                unsigned numexprs, SourceLocation rparenloc);
3419
3420  /// \brief Build an empty paren list.
3421  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3422
3423  unsigned getNumExprs() const { return NumExprs; }
3424
3425  const Expr* getExpr(unsigned Init) const {
3426    assert(Init < getNumExprs() && "Initializer access out of range!");
3427    return cast_or_null<Expr>(Exprs[Init]);
3428  }
3429
3430  Expr* getExpr(unsigned Init) {
3431    assert(Init < getNumExprs() && "Initializer access out of range!");
3432    return cast_or_null<Expr>(Exprs[Init]);
3433  }
3434
3435  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3436
3437  SourceLocation getLParenLoc() const { return LParenLoc; }
3438  SourceLocation getRParenLoc() const { return RParenLoc; }
3439
3440  virtual SourceRange getSourceRange() const {
3441    return SourceRange(LParenLoc, RParenLoc);
3442  }
3443  static bool classof(const Stmt *T) {
3444    return T->getStmtClass() == ParenListExprClass;
3445  }
3446  static bool classof(const ParenListExpr *) { return true; }
3447
3448  // Iterators
3449  virtual child_iterator child_begin();
3450  virtual child_iterator child_end();
3451
3452  friend class ASTStmtReader;
3453  friend class ASTStmtWriter;
3454};
3455
3456
3457//===----------------------------------------------------------------------===//
3458// Clang Extensions
3459//===----------------------------------------------------------------------===//
3460
3461
3462/// ExtVectorElementExpr - This represents access to specific elements of a
3463/// vector, and may occur on the left hand side or right hand side.  For example
3464/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3465///
3466/// Note that the base may have either vector or pointer to vector type, just
3467/// like a struct field reference.
3468///
3469class ExtVectorElementExpr : public Expr {
3470  Stmt *Base;
3471  IdentifierInfo *Accessor;
3472  SourceLocation AccessorLoc;
3473public:
3474  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3475                       IdentifierInfo &accessor, SourceLocation loc)
3476    : Expr(ExtVectorElementExprClass, ty, VK,
3477           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3478           base->isTypeDependent(), base->isValueDependent(),
3479           base->containsUnexpandedParameterPack()),
3480      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3481
3482  /// \brief Build an empty vector element expression.
3483  explicit ExtVectorElementExpr(EmptyShell Empty)
3484    : Expr(ExtVectorElementExprClass, Empty) { }
3485
3486  const Expr *getBase() const { return cast<Expr>(Base); }
3487  Expr *getBase() { return cast<Expr>(Base); }
3488  void setBase(Expr *E) { Base = E; }
3489
3490  IdentifierInfo &getAccessor() const { return *Accessor; }
3491  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3492
3493  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3494  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3495
3496  /// getNumElements - Get the number of components being selected.
3497  unsigned getNumElements() const;
3498
3499  /// containsDuplicateElements - Return true if any element access is
3500  /// repeated.
3501  bool containsDuplicateElements() const;
3502
3503  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3504  /// aggregate Constant of ConstantInt(s).
3505  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3506
3507  virtual SourceRange getSourceRange() const {
3508    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3509  }
3510
3511  /// isArrow - Return true if the base expression is a pointer to vector,
3512  /// return false if the base expression is a vector.
3513  bool isArrow() const;
3514
3515  static bool classof(const Stmt *T) {
3516    return T->getStmtClass() == ExtVectorElementExprClass;
3517  }
3518  static bool classof(const ExtVectorElementExpr *) { return true; }
3519
3520  // Iterators
3521  virtual child_iterator child_begin();
3522  virtual child_iterator child_end();
3523};
3524
3525
3526/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3527/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3528class BlockExpr : public Expr {
3529protected:
3530  BlockDecl *TheBlock;
3531  bool HasBlockDeclRefExprs;
3532public:
3533  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3534    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3535           ty->isDependentType(), false, false),
3536      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3537
3538  /// \brief Build an empty block expression.
3539  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3540
3541  const BlockDecl *getBlockDecl() const { return TheBlock; }
3542  BlockDecl *getBlockDecl() { return TheBlock; }
3543  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3544
3545  // Convenience functions for probing the underlying BlockDecl.
3546  SourceLocation getCaretLocation() const;
3547  const Stmt *getBody() const;
3548  Stmt *getBody();
3549
3550  virtual SourceRange getSourceRange() const {
3551    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3552  }
3553
3554  /// getFunctionType - Return the underlying function type for this block.
3555  const FunctionType *getFunctionType() const;
3556
3557  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3558  /// inside of the block that reference values outside the block.
3559  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3560  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3561
3562  static bool classof(const Stmt *T) {
3563    return T->getStmtClass() == BlockExprClass;
3564  }
3565  static bool classof(const BlockExpr *) { return true; }
3566
3567  // Iterators
3568  virtual child_iterator child_begin();
3569  virtual child_iterator child_end();
3570};
3571
3572/// BlockDeclRefExpr - A reference to a declared variable, function,
3573/// enum, etc.
3574class BlockDeclRefExpr : public Expr {
3575  ValueDecl *D;
3576  SourceLocation Loc;
3577  bool IsByRef : 1;
3578  bool ConstQualAdded : 1;
3579  Stmt *CopyConstructorVal;
3580public:
3581  BlockDeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK,
3582                   SourceLocation l, bool ByRef, bool constAdded = false,
3583                   Stmt *copyConstructorVal = 0);
3584
3585  // \brief Build an empty reference to a declared variable in a
3586  // block.
3587  explicit BlockDeclRefExpr(EmptyShell Empty)
3588    : Expr(BlockDeclRefExprClass, Empty) { }
3589
3590  ValueDecl *getDecl() { return D; }
3591  const ValueDecl *getDecl() const { return D; }
3592  void setDecl(ValueDecl *VD) { D = VD; }
3593
3594  SourceLocation getLocation() const { return Loc; }
3595  void setLocation(SourceLocation L) { Loc = L; }
3596
3597  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3598
3599  bool isByRef() const { return IsByRef; }
3600  void setByRef(bool BR) { IsByRef = BR; }
3601
3602  bool isConstQualAdded() const { return ConstQualAdded; }
3603  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3604
3605  const Expr *getCopyConstructorExpr() const
3606    { return cast_or_null<Expr>(CopyConstructorVal); }
3607  Expr *getCopyConstructorExpr()
3608    { return cast_or_null<Expr>(CopyConstructorVal); }
3609  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3610
3611  static bool classof(const Stmt *T) {
3612    return T->getStmtClass() == BlockDeclRefExprClass;
3613  }
3614  static bool classof(const BlockDeclRefExpr *) { return true; }
3615
3616  // Iterators
3617  virtual child_iterator child_begin();
3618  virtual child_iterator child_end();
3619};
3620
3621/// OpaqueValueExpr - An expression referring to an opaque object of a
3622/// fixed type and value class.  These don't correspond to concrete
3623/// syntax; instead they're used to express operations (usually copy
3624/// operations) on values whose source is generally obvious from
3625/// context.
3626class OpaqueValueExpr : public Expr {
3627  friend class ASTStmtReader;
3628public:
3629  OpaqueValueExpr(QualType T, ExprValueKind VK, ExprObjectKind OK = OK_Ordinary)
3630    : Expr(OpaqueValueExprClass, T, VK, OK,
3631           T->isDependentType(), T->isDependentType(), false) {
3632  }
3633
3634  explicit OpaqueValueExpr(EmptyShell Empty)
3635    : Expr(OpaqueValueExprClass, Empty) { }
3636
3637  virtual SourceRange getSourceRange() const;
3638  virtual child_iterator child_begin();
3639  virtual child_iterator child_end();
3640
3641  static bool classof(const Stmt *T) {
3642    return T->getStmtClass() == OpaqueValueExprClass;
3643  }
3644  static bool classof(const OpaqueValueExpr *) { return true; }
3645};
3646
3647}  // end namespace clang
3648
3649#endif
3650