Expr.h revision 2cad900202561cdda18ea6cc51ddbf3e20e3c23a
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "clang/AST/UsuallyTinyPtrVector.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include <vector>
28
29namespace clang {
30  class ASTContext;
31  class APValue;
32  class Decl;
33  class IdentifierInfo;
34  class ParmVarDecl;
35  class NamedDecl;
36  class ValueDecl;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXOperatorCallExpr;
40  class CXXMemberCallExpr;
41  class TemplateArgumentLoc;
42  class TemplateArgumentListInfo;
43
44/// \brief A simple array of base specifiers.
45typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
46
47/// Expr - This represents one expression.  Note that Expr's are subclasses of
48/// Stmt.  This allows an expression to be transparently used any place a Stmt
49/// is required.
50///
51class Expr : public Stmt {
52  QualType TR;
53
54  virtual void ANCHOR(); // key function.
55protected:
56  /// TypeDependent - Whether this expression is type-dependent
57  /// (C++ [temp.dep.expr]).
58  bool TypeDependent : 1;
59
60  /// ValueDependent - Whether this expression is value-dependent
61  /// (C++ [temp.dep.constexpr]).
62  bool ValueDependent : 1;
63
64  enum { BitsRemaining = 30 };
65
66  Expr(StmtClass SC, QualType T, bool TD, bool VD)
67    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
68    setType(T);
69  }
70
71  /// \brief Construct an empty expression.
72  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
73
74public:
75  /// \brief Increases the reference count for this expression.
76  ///
77  /// Invoke the Retain() operation when this expression
78  /// is being shared by another owner.
79  Expr *Retain() {
80    Stmt::Retain();
81    return this;
82  }
83
84  QualType getType() const { return TR; }
85  void setType(QualType t) {
86    // In C++, the type of an expression is always adjusted so that it
87    // will not have reference type an expression will never have
88    // reference type (C++ [expr]p6). Use
89    // QualType::getNonReferenceType() to retrieve the non-reference
90    // type. Additionally, inspect Expr::isLvalue to determine whether
91    // an expression that is adjusted in this manner should be
92    // considered an lvalue.
93    assert((t.isNull() || !t->isReferenceType()) &&
94           "Expressions can't have reference type");
95
96    TR = t;
97  }
98
99  /// isValueDependent - Determines whether this expression is
100  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
101  /// array bound of "Chars" in the following example is
102  /// value-dependent.
103  /// @code
104  /// template<int Size, char (&Chars)[Size]> struct meta_string;
105  /// @endcode
106  bool isValueDependent() const { return ValueDependent; }
107
108  /// \brief Set whether this expression is value-dependent or not.
109  void setValueDependent(bool VD) { ValueDependent = VD; }
110
111  /// isTypeDependent - Determines whether this expression is
112  /// type-dependent (C++ [temp.dep.expr]), which means that its type
113  /// could change from one template instantiation to the next. For
114  /// example, the expressions "x" and "x + y" are type-dependent in
115  /// the following code, but "y" is not type-dependent:
116  /// @code
117  /// template<typename T>
118  /// void add(T x, int y) {
119  ///   x + y;
120  /// }
121  /// @endcode
122  bool isTypeDependent() const { return TypeDependent; }
123
124  /// \brief Set whether this expression is type-dependent or not.
125  void setTypeDependent(bool TD) { TypeDependent = TD; }
126
127  /// SourceLocation tokens are not useful in isolation - they are low level
128  /// value objects created/interpreted by SourceManager. We assume AST
129  /// clients will have a pointer to the respective SourceManager.
130  virtual SourceRange getSourceRange() const = 0;
131
132  /// getExprLoc - Return the preferred location for the arrow when diagnosing
133  /// a problem with a generic expression.
134  virtual SourceLocation getExprLoc() const { return getLocStart(); }
135
136  /// isUnusedResultAWarning - Return true if this immediate expression should
137  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
138  /// with location to warn on and the source range[s] to report with the
139  /// warning.
140  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
141                              SourceRange &R2, ASTContext &Ctx) const;
142
143  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
144  /// incomplete type other than void. Nonarray expressions that can be lvalues:
145  ///  - name, where name must be a variable
146  ///  - e[i]
147  ///  - (e), where e must be an lvalue
148  ///  - e.name, where e must be an lvalue
149  ///  - e->name
150  ///  - *e, the type of e cannot be a function type
151  ///  - string-constant
152  ///  - reference type [C++ [expr]]
153  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
154  ///
155  enum isLvalueResult {
156    LV_Valid,
157    LV_NotObjectType,
158    LV_IncompleteVoidType,
159    LV_DuplicateVectorComponents,
160    LV_InvalidExpression,
161    LV_MemberFunction,
162    LV_SubObjCPropertySetting,
163    LV_ClassTemporary
164  };
165  isLvalueResult isLvalue(ASTContext &Ctx) const;
166
167  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
168  /// does not have an incomplete type, does not have a const-qualified type,
169  /// and if it is a structure or union, does not have any member (including,
170  /// recursively, any member or element of all contained aggregates or unions)
171  /// with a const-qualified type.
172  ///
173  /// \param Loc [in] [out] - A source location which *may* be filled
174  /// in with the location of the expression making this a
175  /// non-modifiable lvalue, if specified.
176  enum isModifiableLvalueResult {
177    MLV_Valid,
178    MLV_NotObjectType,
179    MLV_IncompleteVoidType,
180    MLV_DuplicateVectorComponents,
181    MLV_InvalidExpression,
182    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
183    MLV_IncompleteType,
184    MLV_ConstQualified,
185    MLV_ArrayType,
186    MLV_NotBlockQualified,
187    MLV_ReadonlyProperty,
188    MLV_NoSetterProperty,
189    MLV_MemberFunction,
190    MLV_SubObjCPropertySetting,
191    MLV_ClassTemporary
192  };
193  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
194                                              SourceLocation *Loc = 0) const;
195
196  /// \brief The return type of classify(). Represents the C++0x expression
197  ///        taxonomy.
198  class Classification {
199  public:
200    /// \brief The various classification results. Most of these mean prvalue.
201    enum Kinds {
202      CL_LValue,
203      CL_XValue,
204      CL_Function, // Functions cannot be lvalues in C.
205      CL_Void, // Void cannot be an lvalue in C.
206      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
207      CL_MemberFunction, // An expression referring to a member function
208      CL_SubObjCPropertySetting,
209      CL_ClassTemporary, // A prvalue of class type
210      CL_PRValue // A prvalue for any other reason, of any other type
211    };
212    /// \brief The results of modification testing.
213    enum ModifiableType {
214      CM_Untested, // testModifiable was false.
215      CM_Modifiable,
216      CM_RValue, // Not modifiable because it's an rvalue
217      CM_Function, // Not modifiable because it's a function; C++ only
218      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
219      CM_NotBlockQualified, // Not captured in the closure
220      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
221      CM_ConstQualified,
222      CM_ArrayType,
223      CM_IncompleteType
224    };
225
226  private:
227    friend class Expr;
228
229    unsigned short Kind;
230    unsigned short Modifiable;
231
232    explicit Classification(Kinds k, ModifiableType m)
233      : Kind(k), Modifiable(m)
234    {}
235
236  public:
237    Classification() {}
238
239    Kinds getKind() const { return static_cast<Kinds>(Kind); }
240    ModifiableType getModifiable() const {
241      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
242      return static_cast<ModifiableType>(Modifiable);
243    }
244    bool isLValue() const { return Kind == CL_LValue; }
245    bool isXValue() const { return Kind == CL_XValue; }
246    bool isGLValue() const { return Kind <= CL_XValue; }
247    bool isPRValue() const { return Kind >= CL_Function; }
248    bool isRValue() const { return Kind >= CL_XValue; }
249    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
250  };
251  /// \brief classify - Classify this expression according to the C++0x
252  ///        expression taxonomy.
253  ///
254  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
255  /// old lvalue vs rvalue. This function determines the type of expression this
256  /// is. There are three expression types:
257  /// - lvalues are classical lvalues as in C++03.
258  /// - prvalues are equivalent to rvalues in C++03.
259  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
260  ///   function returning an rvalue reference.
261  /// lvalues and xvalues are collectively referred to as glvalues, while
262  /// prvalues and xvalues together form rvalues.
263  Classification Classify(ASTContext &Ctx) const {
264    return ClassifyImpl(Ctx, 0);
265  }
266
267  /// \brief classifyModifiable - Classify this expression according to the
268  ///        C++0x expression taxonomy, and see if it is valid on the left side
269  ///        of an assignment.
270  ///
271  /// This function extends classify in that it also tests whether the
272  /// expression is modifiable (C99 6.3.2.1p1).
273  /// \param Loc A source location that might be filled with a relevant location
274  ///            if the expression is not modifiable.
275  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
276    return ClassifyImpl(Ctx, &Loc);
277  }
278
279private:
280  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
281
282public:
283
284  /// \brief If this expression refers to a bit-field, retrieve the
285  /// declaration of that bit-field.
286  FieldDecl *getBitField();
287
288  const FieldDecl *getBitField() const {
289    return const_cast<Expr*>(this)->getBitField();
290  }
291
292  /// \brief Returns whether this expression refers to a vector element.
293  bool refersToVectorElement() const;
294
295  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
296  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
297  /// but also int expressions which are produced by things like comparisons in
298  /// C.
299  bool isKnownToHaveBooleanValue() const;
300
301  /// isIntegerConstantExpr - Return true if this expression is a valid integer
302  /// constant expression, and, if so, return its value in Result.  If not a
303  /// valid i-c-e, return false and fill in Loc (if specified) with the location
304  /// of the invalid expression.
305  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
306                             SourceLocation *Loc = 0,
307                             bool isEvaluated = true) const;
308  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
309    llvm::APSInt X;
310    return isIntegerConstantExpr(X, Ctx, Loc);
311  }
312  /// isConstantInitializer - Returns true if this expression is a constant
313  /// initializer, which can be emitted at compile-time.
314  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
315
316  /// EvalResult is a struct with detailed info about an evaluated expression.
317  struct EvalResult {
318    /// Val - This is the value the expression can be folded to.
319    APValue Val;
320
321    /// HasSideEffects - Whether the evaluated expression has side effects.
322    /// For example, (f() && 0) can be folded, but it still has side effects.
323    bool HasSideEffects;
324
325    /// Diag - If the expression is unfoldable, then Diag contains a note
326    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
327    /// position for the error, and DiagExpr is the expression that caused
328    /// the error.
329    /// If the expression is foldable, but not an integer constant expression,
330    /// Diag contains a note diagnostic that describes why it isn't an integer
331    /// constant expression. If the expression *is* an integer constant
332    /// expression, then Diag will be zero.
333    unsigned Diag;
334    const Expr *DiagExpr;
335    SourceLocation DiagLoc;
336
337    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
338
339    // isGlobalLValue - Return true if the evaluated lvalue expression
340    // is global.
341    bool isGlobalLValue() const;
342    // hasSideEffects - Return true if the evaluated expression has
343    // side effects.
344    bool hasSideEffects() const {
345      return HasSideEffects;
346    }
347  };
348
349  /// Evaluate - Return true if this is a constant which we can fold using
350  /// any crazy technique (that has nothing to do with language standards) that
351  /// we want to.  If this function returns true, it returns the folded constant
352  /// in Result.
353  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
354
355  /// EvaluateAsBooleanCondition - Return true if this is a constant
356  /// which we we can fold and convert to a boolean condition using
357  /// any crazy technique that we want to.
358  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
359
360  /// isEvaluatable - Call Evaluate to see if this expression can be constant
361  /// folded, but discard the result.
362  bool isEvaluatable(ASTContext &Ctx) const;
363
364  /// HasSideEffects - This routine returns true for all those expressions
365  /// which must be evaluated each time and must not be optimization away
366  /// or evaluated at compile time. Example is a function call, volatile
367  /// variable read.
368  bool HasSideEffects(ASTContext &Ctx) const;
369
370  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
371  /// must be called on an expression that constant folds to an integer.
372  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
373
374  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
375  /// with link time known address.
376  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
377
378  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
379  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
380
381  /// \brief Enumeration used to describe how \c isNullPointerConstant()
382  /// should cope with value-dependent expressions.
383  enum NullPointerConstantValueDependence {
384    /// \brief Specifies that the expression should never be value-dependent.
385    NPC_NeverValueDependent = 0,
386
387    /// \brief Specifies that a value-dependent expression of integral or
388    /// dependent type should be considered a null pointer constant.
389    NPC_ValueDependentIsNull,
390
391    /// \brief Specifies that a value-dependent expression should be considered
392    /// to never be a null pointer constant.
393    NPC_ValueDependentIsNotNull
394  };
395
396  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
397  /// integer constant expression with the value zero, or if this is one that is
398  /// cast to void*.
399  bool isNullPointerConstant(ASTContext &Ctx,
400                             NullPointerConstantValueDependence NPC) const;
401
402  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
403  /// write barrier.
404  bool isOBJCGCCandidate(ASTContext &Ctx) const;
405
406  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
407  ///  its subexpression.  If that subexpression is also a ParenExpr,
408  ///  then this method recursively returns its subexpression, and so forth.
409  ///  Otherwise, the method returns the current Expr.
410  Expr *IgnoreParens();
411
412  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
413  /// or CastExprs, returning their operand.
414  Expr *IgnoreParenCasts();
415
416  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
417  /// ParenExpr or ImplicitCastExprs, returning their operand.
418  Expr *IgnoreParenImpCasts();
419
420  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
421  /// value (including ptr->int casts of the same size).  Strip off any
422  /// ParenExpr or CastExprs, returning their operand.
423  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
424
425  /// \brief Determine whether this expression is a default function argument.
426  ///
427  /// Default arguments are implicitly generated in the abstract syntax tree
428  /// by semantic analysis for function calls, object constructions, etc. in
429  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
430  /// this routine also looks through any implicit casts to determine whether
431  /// the expression is a default argument.
432  bool isDefaultArgument() const;
433
434  /// \brief Determine whether this expression directly creates a
435  /// temporary object (of class type).
436  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
437
438  /// \brief If this expression directly creates a temporary object of
439  /// class type, return the expression that actually constructs that
440  /// temporary object.
441  const Expr *getTemporaryObject() const;
442
443  const Expr *IgnoreParens() const {
444    return const_cast<Expr*>(this)->IgnoreParens();
445  }
446  const Expr *IgnoreParenCasts() const {
447    return const_cast<Expr*>(this)->IgnoreParenCasts();
448  }
449  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
450    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
451  }
452
453  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
454  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
455
456  static bool classof(const Stmt *T) {
457    return T->getStmtClass() >= firstExprConstant &&
458           T->getStmtClass() <= lastExprConstant;
459  }
460  static bool classof(const Expr *) { return true; }
461};
462
463
464//===----------------------------------------------------------------------===//
465// Primary Expressions.
466//===----------------------------------------------------------------------===//
467
468/// \brief Represents the qualifier that may precede a C++ name, e.g., the
469/// "std::" in "std::sort".
470struct NameQualifier {
471  /// \brief The nested name specifier.
472  NestedNameSpecifier *NNS;
473
474  /// \brief The source range covered by the nested name specifier.
475  SourceRange Range;
476};
477
478/// \brief Represents an explicit template argument list in C++, e.g.,
479/// the "<int>" in "sort<int>".
480struct ExplicitTemplateArgumentList {
481  /// \brief The source location of the left angle bracket ('<');
482  SourceLocation LAngleLoc;
483
484  /// \brief The source location of the right angle bracket ('>');
485  SourceLocation RAngleLoc;
486
487  /// \brief The number of template arguments in TemplateArgs.
488  /// The actual template arguments (if any) are stored after the
489  /// ExplicitTemplateArgumentList structure.
490  unsigned NumTemplateArgs;
491
492  /// \brief Retrieve the template arguments
493  TemplateArgumentLoc *getTemplateArgs() {
494    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
495  }
496
497  /// \brief Retrieve the template arguments
498  const TemplateArgumentLoc *getTemplateArgs() const {
499    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
500  }
501
502  void initializeFrom(const TemplateArgumentListInfo &List);
503  void copyInto(TemplateArgumentListInfo &List) const;
504  static std::size_t sizeFor(unsigned NumTemplateArgs);
505  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
506};
507
508/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
509/// enum, etc.
510class DeclRefExpr : public Expr {
511  enum {
512    // Flag on DecoratedD that specifies when this declaration reference
513    // expression has a C++ nested-name-specifier.
514    HasQualifierFlag = 0x01,
515    // Flag on DecoratedD that specifies when this declaration reference
516    // expression has an explicit C++ template argument list.
517    HasExplicitTemplateArgumentListFlag = 0x02
518  };
519
520  // DecoratedD - The declaration that we are referencing, plus two bits to
521  // indicate whether (1) the declaration's name was explicitly qualified and
522  // (2) the declaration's name was followed by an explicit template
523  // argument list.
524  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
525
526  // Loc - The location of the declaration name itself.
527  SourceLocation Loc;
528
529  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
530  NameQualifier *getNameQualifier() {
531    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
532      return 0;
533
534    return reinterpret_cast<NameQualifier *> (this + 1);
535  }
536
537  /// \brief Retrieve the qualifier that preceded the member name, if any.
538  const NameQualifier *getNameQualifier() const {
539    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
540  }
541
542  /// \brief Retrieve the explicit template argument list that followed the
543  /// member template name, if any.
544  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
545    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
546      return 0;
547
548    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
549      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
550
551    return reinterpret_cast<ExplicitTemplateArgumentList *>(
552                                                      getNameQualifier() + 1);
553  }
554
555  /// \brief Retrieve the explicit template argument list that followed the
556  /// member template name, if any.
557  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
558    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
559  }
560
561  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
562              ValueDecl *D, SourceLocation NameLoc,
563              const TemplateArgumentListInfo *TemplateArgs,
564              QualType T);
565
566  /// \brief Construct an empty declaration reference expression.
567  explicit DeclRefExpr(EmptyShell Empty)
568    : Expr(DeclRefExprClass, Empty) { }
569
570  /// \brief Computes the type- and value-dependence flags for this
571  /// declaration reference expression.
572  void computeDependence();
573
574public:
575  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
576    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
577    computeDependence();
578  }
579
580  static DeclRefExpr *Create(ASTContext &Context,
581                             NestedNameSpecifier *Qualifier,
582                             SourceRange QualifierRange,
583                             ValueDecl *D,
584                             SourceLocation NameLoc,
585                             QualType T,
586                             const TemplateArgumentListInfo *TemplateArgs = 0);
587
588  /// \brief Construct an empty declaration reference expression.
589  static DeclRefExpr *CreateEmpty(ASTContext &Context,
590                                  bool HasQualifier, unsigned NumTemplateArgs);
591
592  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
593  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
594  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
595
596  SourceLocation getLocation() const { return Loc; }
597  void setLocation(SourceLocation L) { Loc = L; }
598  virtual SourceRange getSourceRange() const;
599
600  /// \brief Determine whether this declaration reference was preceded by a
601  /// C++ nested-name-specifier, e.g., \c N::foo.
602  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
603
604  /// \brief If the name was qualified, retrieves the source range of
605  /// the nested-name-specifier that precedes the name. Otherwise,
606  /// returns an empty source range.
607  SourceRange getQualifierRange() const {
608    if (!hasQualifier())
609      return SourceRange();
610
611    return getNameQualifier()->Range;
612  }
613
614  /// \brief If the name was qualified, retrieves the nested-name-specifier
615  /// that precedes the name. Otherwise, returns NULL.
616  NestedNameSpecifier *getQualifier() const {
617    if (!hasQualifier())
618      return 0;
619
620    return getNameQualifier()->NNS;
621  }
622
623  /// \brief Determines whether this member expression actually had a C++
624  /// template argument list explicitly specified, e.g., x.f<int>.
625  bool hasExplicitTemplateArgumentList() const {
626    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
627  }
628
629  /// \brief Copies the template arguments (if present) into the given
630  /// structure.
631  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
632    if (hasExplicitTemplateArgumentList())
633      getExplicitTemplateArgumentList()->copyInto(List);
634  }
635
636  /// \brief Retrieve the location of the left angle bracket following the
637  /// member name ('<'), if any.
638  SourceLocation getLAngleLoc() const {
639    if (!hasExplicitTemplateArgumentList())
640      return SourceLocation();
641
642    return getExplicitTemplateArgumentList()->LAngleLoc;
643  }
644
645  /// \brief Retrieve the template arguments provided as part of this
646  /// template-id.
647  const TemplateArgumentLoc *getTemplateArgs() const {
648    if (!hasExplicitTemplateArgumentList())
649      return 0;
650
651    return getExplicitTemplateArgumentList()->getTemplateArgs();
652  }
653
654  /// \brief Retrieve the number of template arguments provided as part of this
655  /// template-id.
656  unsigned getNumTemplateArgs() const {
657    if (!hasExplicitTemplateArgumentList())
658      return 0;
659
660    return getExplicitTemplateArgumentList()->NumTemplateArgs;
661  }
662
663  /// \brief Retrieve the location of the right angle bracket following the
664  /// template arguments ('>').
665  SourceLocation getRAngleLoc() const {
666    if (!hasExplicitTemplateArgumentList())
667      return SourceLocation();
668
669    return getExplicitTemplateArgumentList()->RAngleLoc;
670  }
671
672  static bool classof(const Stmt *T) {
673    return T->getStmtClass() == DeclRefExprClass;
674  }
675  static bool classof(const DeclRefExpr *) { return true; }
676
677  // Iterators
678  virtual child_iterator child_begin();
679  virtual child_iterator child_end();
680
681  friend class PCHStmtReader;
682  friend class PCHStmtWriter;
683};
684
685/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
686class PredefinedExpr : public Expr {
687public:
688  enum IdentType {
689    Func,
690    Function,
691    PrettyFunction,
692    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
693    /// 'virtual' keyword is omitted for virtual member functions.
694    PrettyFunctionNoVirtual
695  };
696
697private:
698  SourceLocation Loc;
699  IdentType Type;
700public:
701  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
702    : Expr(PredefinedExprClass, type, type->isDependentType(),
703           type->isDependentType()), Loc(l), Type(IT) {}
704
705  /// \brief Construct an empty predefined expression.
706  explicit PredefinedExpr(EmptyShell Empty)
707    : Expr(PredefinedExprClass, Empty) { }
708
709  IdentType getIdentType() const { return Type; }
710  void setIdentType(IdentType IT) { Type = IT; }
711
712  SourceLocation getLocation() const { return Loc; }
713  void setLocation(SourceLocation L) { Loc = L; }
714
715  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
716
717  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
718
719  static bool classof(const Stmt *T) {
720    return T->getStmtClass() == PredefinedExprClass;
721  }
722  static bool classof(const PredefinedExpr *) { return true; }
723
724  // Iterators
725  virtual child_iterator child_begin();
726  virtual child_iterator child_end();
727};
728
729class IntegerLiteral : public Expr {
730  llvm::APInt Value;
731  SourceLocation Loc;
732public:
733  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
734  // or UnsignedLongLongTy
735  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
736    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
737    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
738  }
739
740  /// \brief Construct an empty integer literal.
741  explicit IntegerLiteral(EmptyShell Empty)
742    : Expr(IntegerLiteralClass, Empty) { }
743
744  const llvm::APInt &getValue() const { return Value; }
745  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
746
747  /// \brief Retrieve the location of the literal.
748  SourceLocation getLocation() const { return Loc; }
749
750  void setValue(const llvm::APInt &Val) { Value = Val; }
751  void setLocation(SourceLocation Location) { Loc = Location; }
752
753  static bool classof(const Stmt *T) {
754    return T->getStmtClass() == IntegerLiteralClass;
755  }
756  static bool classof(const IntegerLiteral *) { return true; }
757
758  // Iterators
759  virtual child_iterator child_begin();
760  virtual child_iterator child_end();
761};
762
763class CharacterLiteral : public Expr {
764  unsigned Value;
765  SourceLocation Loc;
766  bool IsWide;
767public:
768  // type should be IntTy
769  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
770    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
771      IsWide(iswide) {
772  }
773
774  /// \brief Construct an empty character literal.
775  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
776
777  SourceLocation getLocation() const { return Loc; }
778  bool isWide() const { return IsWide; }
779
780  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
781
782  unsigned getValue() const { return Value; }
783
784  void setLocation(SourceLocation Location) { Loc = Location; }
785  void setWide(bool W) { IsWide = W; }
786  void setValue(unsigned Val) { Value = Val; }
787
788  static bool classof(const Stmt *T) {
789    return T->getStmtClass() == CharacterLiteralClass;
790  }
791  static bool classof(const CharacterLiteral *) { return true; }
792
793  // Iterators
794  virtual child_iterator child_begin();
795  virtual child_iterator child_end();
796};
797
798class FloatingLiteral : public Expr {
799  llvm::APFloat Value;
800  bool IsExact : 1;
801  SourceLocation Loc;
802public:
803  FloatingLiteral(const llvm::APFloat &V, bool isexact,
804                  QualType Type, SourceLocation L)
805    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
806      IsExact(isexact), Loc(L) {}
807
808  /// \brief Construct an empty floating-point literal.
809  explicit FloatingLiteral(EmptyShell Empty)
810    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
811
812  const llvm::APFloat &getValue() const { return Value; }
813  void setValue(const llvm::APFloat &Val) { Value = Val; }
814
815  bool isExact() const { return IsExact; }
816  void setExact(bool E) { IsExact = E; }
817
818  /// getValueAsApproximateDouble - This returns the value as an inaccurate
819  /// double.  Note that this may cause loss of precision, but is useful for
820  /// debugging dumps, etc.
821  double getValueAsApproximateDouble() const;
822
823  SourceLocation getLocation() const { return Loc; }
824  void setLocation(SourceLocation L) { Loc = L; }
825
826  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
827
828  static bool classof(const Stmt *T) {
829    return T->getStmtClass() == FloatingLiteralClass;
830  }
831  static bool classof(const FloatingLiteral *) { return true; }
832
833  // Iterators
834  virtual child_iterator child_begin();
835  virtual child_iterator child_end();
836};
837
838/// ImaginaryLiteral - We support imaginary integer and floating point literals,
839/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
840/// IntegerLiteral classes.  Instances of this class always have a Complex type
841/// whose element type matches the subexpression.
842///
843class ImaginaryLiteral : public Expr {
844  Stmt *Val;
845public:
846  ImaginaryLiteral(Expr *val, QualType Ty)
847    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
848
849  /// \brief Build an empty imaginary literal.
850  explicit ImaginaryLiteral(EmptyShell Empty)
851    : Expr(ImaginaryLiteralClass, Empty) { }
852
853  const Expr *getSubExpr() const { return cast<Expr>(Val); }
854  Expr *getSubExpr() { return cast<Expr>(Val); }
855  void setSubExpr(Expr *E) { Val = E; }
856
857  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
858  static bool classof(const Stmt *T) {
859    return T->getStmtClass() == ImaginaryLiteralClass;
860  }
861  static bool classof(const ImaginaryLiteral *) { return true; }
862
863  // Iterators
864  virtual child_iterator child_begin();
865  virtual child_iterator child_end();
866};
867
868/// StringLiteral - This represents a string literal expression, e.g. "foo"
869/// or L"bar" (wide strings).  The actual string is returned by getStrData()
870/// is NOT null-terminated, and the length of the string is determined by
871/// calling getByteLength().  The C type for a string is always a
872/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
873/// not.
874///
875/// Note that strings in C can be formed by concatenation of multiple string
876/// literal pptokens in translation phase #6.  This keeps track of the locations
877/// of each of these pieces.
878///
879/// Strings in C can also be truncated and extended by assigning into arrays,
880/// e.g. with constructs like:
881///   char X[2] = "foobar";
882/// In this case, getByteLength() will return 6, but the string literal will
883/// have type "char[2]".
884class StringLiteral : public Expr {
885  const char *StrData;
886  unsigned ByteLength;
887  bool IsWide;
888  unsigned NumConcatenated;
889  SourceLocation TokLocs[1];
890
891  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
892
893public:
894  /// This is the "fully general" constructor that allows representation of
895  /// strings formed from multiple concatenated tokens.
896  static StringLiteral *Create(ASTContext &C, const char *StrData,
897                               unsigned ByteLength, bool Wide, QualType Ty,
898                               const SourceLocation *Loc, unsigned NumStrs);
899
900  /// Simple constructor for string literals made from one token.
901  static StringLiteral *Create(ASTContext &C, const char *StrData,
902                               unsigned ByteLength,
903                               bool Wide, QualType Ty, SourceLocation Loc) {
904    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
905  }
906
907  /// \brief Construct an empty string literal.
908  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
909
910  llvm::StringRef getString() const {
911    return llvm::StringRef(StrData, ByteLength);
912  }
913  // FIXME: These are deprecated, replace with StringRef.
914  const char *getStrData() const { return StrData; }
915  unsigned getByteLength() const { return ByteLength; }
916
917  /// \brief Sets the string data to the given string data.
918  void setString(ASTContext &C, llvm::StringRef Str);
919
920  bool isWide() const { return IsWide; }
921  void setWide(bool W) { IsWide = W; }
922
923  bool containsNonAsciiOrNull() const {
924    llvm::StringRef Str = getString();
925    for (unsigned i = 0, e = Str.size(); i != e; ++i)
926      if (!isascii(Str[i]) || !Str[i])
927        return true;
928    return false;
929  }
930  /// getNumConcatenated - Get the number of string literal tokens that were
931  /// concatenated in translation phase #6 to form this string literal.
932  unsigned getNumConcatenated() const { return NumConcatenated; }
933
934  SourceLocation getStrTokenLoc(unsigned TokNum) const {
935    assert(TokNum < NumConcatenated && "Invalid tok number");
936    return TokLocs[TokNum];
937  }
938  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
939    assert(TokNum < NumConcatenated && "Invalid tok number");
940    TokLocs[TokNum] = L;
941  }
942
943  typedef const SourceLocation *tokloc_iterator;
944  tokloc_iterator tokloc_begin() const { return TokLocs; }
945  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
946
947  virtual SourceRange getSourceRange() const {
948    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
949  }
950  static bool classof(const Stmt *T) {
951    return T->getStmtClass() == StringLiteralClass;
952  }
953  static bool classof(const StringLiteral *) { return true; }
954
955  // Iterators
956  virtual child_iterator child_begin();
957  virtual child_iterator child_end();
958};
959
960/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
961/// AST node is only formed if full location information is requested.
962class ParenExpr : public Expr {
963  SourceLocation L, R;
964  Stmt *Val;
965public:
966  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
967    : Expr(ParenExprClass, val->getType(),
968           val->isTypeDependent(), val->isValueDependent()),
969      L(l), R(r), Val(val) {}
970
971  /// \brief Construct an empty parenthesized expression.
972  explicit ParenExpr(EmptyShell Empty)
973    : Expr(ParenExprClass, Empty) { }
974
975  const Expr *getSubExpr() const { return cast<Expr>(Val); }
976  Expr *getSubExpr() { return cast<Expr>(Val); }
977  void setSubExpr(Expr *E) { Val = E; }
978
979  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
980
981  /// \brief Get the location of the left parentheses '('.
982  SourceLocation getLParen() const { return L; }
983  void setLParen(SourceLocation Loc) { L = Loc; }
984
985  /// \brief Get the location of the right parentheses ')'.
986  SourceLocation getRParen() const { return R; }
987  void setRParen(SourceLocation Loc) { R = Loc; }
988
989  static bool classof(const Stmt *T) {
990    return T->getStmtClass() == ParenExprClass;
991  }
992  static bool classof(const ParenExpr *) { return true; }
993
994  // Iterators
995  virtual child_iterator child_begin();
996  virtual child_iterator child_end();
997};
998
999
1000/// UnaryOperator - This represents the unary-expression's (except sizeof and
1001/// alignof), the postinc/postdec operators from postfix-expression, and various
1002/// extensions.
1003///
1004/// Notes on various nodes:
1005///
1006/// Real/Imag - These return the real/imag part of a complex operand.  If
1007///   applied to a non-complex value, the former returns its operand and the
1008///   later returns zero in the type of the operand.
1009///
1010/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
1011///   subexpression is a compound literal with the various MemberExpr and
1012///   ArraySubscriptExpr's applied to it. (This is only used in C)
1013///
1014class UnaryOperator : public Expr {
1015public:
1016  // Note that additions to this should also update the StmtVisitor class.
1017  enum Opcode {
1018    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
1019    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
1020    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
1021    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
1022    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
1023    Real, Imag,       // "__real expr"/"__imag expr" Extension.
1024    Extension,        // __extension__ marker.
1025    OffsetOf          // __builtin_offsetof
1026  };
1027private:
1028  Stmt *Val;
1029  Opcode Opc;
1030  SourceLocation Loc;
1031public:
1032
1033  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1034    : Expr(UnaryOperatorClass, type,
1035           opc != OffsetOf && (input->isTypeDependent() ||
1036                               type->isDependentType()),
1037           input->isValueDependent()),
1038      Val(input), Opc(opc), Loc(l) {}
1039
1040  /// \brief Build an empty unary operator.
1041  explicit UnaryOperator(EmptyShell Empty)
1042    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
1043
1044  Opcode getOpcode() const { return Opc; }
1045  void setOpcode(Opcode O) { Opc = O; }
1046
1047  Expr *getSubExpr() const { return cast<Expr>(Val); }
1048  void setSubExpr(Expr *E) { Val = E; }
1049
1050  /// getOperatorLoc - Return the location of the operator.
1051  SourceLocation getOperatorLoc() const { return Loc; }
1052  void setOperatorLoc(SourceLocation L) { Loc = L; }
1053
1054  /// isPostfix - Return true if this is a postfix operation, like x++.
1055  static bool isPostfix(Opcode Op) {
1056    return Op == PostInc || Op == PostDec;
1057  }
1058
1059  /// isPostfix - Return true if this is a prefix operation, like --x.
1060  static bool isPrefix(Opcode Op) {
1061    return Op == PreInc || Op == PreDec;
1062  }
1063
1064  bool isPrefix() const { return isPrefix(Opc); }
1065  bool isPostfix() const { return isPostfix(Opc); }
1066  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
1067  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
1068  bool isOffsetOfOp() const { return Opc == OffsetOf; }
1069  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
1070  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
1071
1072  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1073  /// corresponds to, e.g. "sizeof" or "[pre]++"
1074  static const char *getOpcodeStr(Opcode Op);
1075
1076  /// \brief Retrieve the unary opcode that corresponds to the given
1077  /// overloaded operator.
1078  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1079
1080  /// \brief Retrieve the overloaded operator kind that corresponds to
1081  /// the given unary opcode.
1082  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1083
1084  virtual SourceRange getSourceRange() const {
1085    if (isPostfix())
1086      return SourceRange(Val->getLocStart(), Loc);
1087    else
1088      return SourceRange(Loc, Val->getLocEnd());
1089  }
1090  virtual SourceLocation getExprLoc() const { return Loc; }
1091
1092  static bool classof(const Stmt *T) {
1093    return T->getStmtClass() == UnaryOperatorClass;
1094  }
1095  static bool classof(const UnaryOperator *) { return true; }
1096
1097  // Iterators
1098  virtual child_iterator child_begin();
1099  virtual child_iterator child_end();
1100};
1101
1102/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1103/// offsetof(record-type, member-designator). For example, given:
1104/// @code
1105/// struct S {
1106///   float f;
1107///   double d;
1108/// };
1109/// struct T {
1110///   int i;
1111///   struct S s[10];
1112/// };
1113/// @endcode
1114/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1115
1116class OffsetOfExpr : public Expr {
1117public:
1118  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1119  class OffsetOfNode {
1120  public:
1121    /// \brief The kind of offsetof node we have.
1122    enum Kind {
1123      /// \brief An index into an array.
1124      Array = 0x00,
1125      /// \brief A field.
1126      Field = 0x01,
1127      /// \brief A field in a dependent type, known only by its name.
1128      Identifier = 0x02,
1129      /// \brief An implicit indirection through a C++ base class, when the
1130      /// field found is in a base class.
1131      Base = 0x03
1132    };
1133
1134  private:
1135    enum { MaskBits = 2, Mask = 0x03 };
1136
1137    /// \brief The source range that covers this part of the designator.
1138    SourceRange Range;
1139
1140    /// \brief The data describing the designator, which comes in three
1141    /// different forms, depending on the lower two bits.
1142    ///   - An unsigned index into the array of Expr*'s stored after this node
1143    ///     in memory, for [constant-expression] designators.
1144    ///   - A FieldDecl*, for references to a known field.
1145    ///   - An IdentifierInfo*, for references to a field with a given name
1146    ///     when the class type is dependent.
1147    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1148    ///     base class.
1149    uintptr_t Data;
1150
1151  public:
1152    /// \brief Create an offsetof node that refers to an array element.
1153    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1154                 SourceLocation RBracketLoc)
1155      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1156
1157    /// \brief Create an offsetof node that refers to a field.
1158    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1159                 SourceLocation NameLoc)
1160      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1161        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1162
1163    /// \brief Create an offsetof node that refers to an identifier.
1164    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1165                 SourceLocation NameLoc)
1166      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1167        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1168
1169    /// \brief Create an offsetof node that refers into a C++ base class.
1170    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1171      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1172
1173    /// \brief Determine what kind of offsetof node this is.
1174    Kind getKind() const {
1175      return static_cast<Kind>(Data & Mask);
1176    }
1177
1178    /// \brief For an array element node, returns the index into the array
1179    /// of expressions.
1180    unsigned getArrayExprIndex() const {
1181      assert(getKind() == Array);
1182      return Data >> 2;
1183    }
1184
1185    /// \brief For a field offsetof node, returns the field.
1186    FieldDecl *getField() const {
1187      assert(getKind() == Field);
1188      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1189    }
1190
1191    /// \brief For a field or identifier offsetof node, returns the name of
1192    /// the field.
1193    IdentifierInfo *getFieldName() const;
1194
1195    /// \brief For a base class node, returns the base specifier.
1196    CXXBaseSpecifier *getBase() const {
1197      assert(getKind() == Base);
1198      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1199    }
1200
1201    /// \brief Retrieve the source range that covers this offsetof node.
1202    ///
1203    /// For an array element node, the source range contains the locations of
1204    /// the square brackets. For a field or identifier node, the source range
1205    /// contains the location of the period (if there is one) and the
1206    /// identifier.
1207    SourceRange getRange() const { return Range; }
1208  };
1209
1210private:
1211
1212  SourceLocation OperatorLoc, RParenLoc;
1213  // Base type;
1214  TypeSourceInfo *TSInfo;
1215  // Number of sub-components (i.e. instances of OffsetOfNode).
1216  unsigned NumComps;
1217  // Number of sub-expressions (i.e. array subscript expressions).
1218  unsigned NumExprs;
1219
1220  OffsetOfExpr(ASTContext &C, QualType type,
1221               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1222               OffsetOfNode* compsPtr, unsigned numComps,
1223               Expr** exprsPtr, unsigned numExprs,
1224               SourceLocation RParenLoc);
1225
1226  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1227    : Expr(OffsetOfExprClass, EmptyShell()),
1228      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1229
1230public:
1231
1232  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1233                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1234                              OffsetOfNode* compsPtr, unsigned numComps,
1235                              Expr** exprsPtr, unsigned numExprs,
1236                              SourceLocation RParenLoc);
1237
1238  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1239                                   unsigned NumComps, unsigned NumExprs);
1240
1241  /// getOperatorLoc - Return the location of the operator.
1242  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1243  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1244
1245  /// \brief Return the location of the right parentheses.
1246  SourceLocation getRParenLoc() const { return RParenLoc; }
1247  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1248
1249  TypeSourceInfo *getTypeSourceInfo() const {
1250    return TSInfo;
1251  }
1252  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1253    TSInfo = tsi;
1254  }
1255
1256  const OffsetOfNode &getComponent(unsigned Idx) {
1257    assert(Idx < NumComps && "Subscript out of range");
1258    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1259  }
1260
1261  void setComponent(unsigned Idx, OffsetOfNode ON) {
1262    assert(Idx < NumComps && "Subscript out of range");
1263    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1264  }
1265
1266  unsigned getNumComponents() const {
1267    return NumComps;
1268  }
1269
1270  Expr* getIndexExpr(unsigned Idx) {
1271    assert(Idx < NumExprs && "Subscript out of range");
1272    return reinterpret_cast<Expr **>(
1273                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1274  }
1275
1276  void setIndexExpr(unsigned Idx, Expr* E) {
1277    assert(Idx < NumComps && "Subscript out of range");
1278    reinterpret_cast<Expr **>(
1279                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1280  }
1281
1282  unsigned getNumExpressions() const {
1283    return NumExprs;
1284  }
1285
1286  virtual SourceRange getSourceRange() const {
1287    return SourceRange(OperatorLoc, RParenLoc);
1288  }
1289
1290  static bool classof(const Stmt *T) {
1291    return T->getStmtClass() == OffsetOfExprClass;
1292  }
1293
1294  static bool classof(const OffsetOfExpr *) { return true; }
1295
1296  // Iterators
1297  virtual child_iterator child_begin();
1298  virtual child_iterator child_end();
1299};
1300
1301/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1302/// types and expressions.
1303class SizeOfAlignOfExpr : public Expr {
1304  bool isSizeof : 1;  // true if sizeof, false if alignof.
1305  bool isType : 1;    // true if operand is a type, false if an expression
1306  union {
1307    TypeSourceInfo *Ty;
1308    Stmt *Ex;
1309  } Argument;
1310  SourceLocation OpLoc, RParenLoc;
1311
1312public:
1313  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1314                    QualType resultType, SourceLocation op,
1315                    SourceLocation rp) :
1316      Expr(SizeOfAlignOfExprClass, resultType,
1317           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1318           // Value-dependent if the argument is type-dependent.
1319           TInfo->getType()->isDependentType()),
1320      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1321    Argument.Ty = TInfo;
1322  }
1323
1324  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1325                    QualType resultType, SourceLocation op,
1326                    SourceLocation rp) :
1327      Expr(SizeOfAlignOfExprClass, resultType,
1328           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1329           // Value-dependent if the argument is type-dependent.
1330           E->isTypeDependent()),
1331      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1332    Argument.Ex = E;
1333  }
1334
1335  /// \brief Construct an empty sizeof/alignof expression.
1336  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1337    : Expr(SizeOfAlignOfExprClass, Empty) { }
1338
1339  bool isSizeOf() const { return isSizeof; }
1340  void setSizeof(bool S) { isSizeof = S; }
1341
1342  bool isArgumentType() const { return isType; }
1343  QualType getArgumentType() const {
1344    return getArgumentTypeInfo()->getType();
1345  }
1346  TypeSourceInfo *getArgumentTypeInfo() const {
1347    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1348    return Argument.Ty;
1349  }
1350  Expr *getArgumentExpr() {
1351    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1352    return static_cast<Expr*>(Argument.Ex);
1353  }
1354  const Expr *getArgumentExpr() const {
1355    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1356  }
1357
1358  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1359  void setArgument(TypeSourceInfo *TInfo) {
1360    Argument.Ty = TInfo;
1361    isType = true;
1362  }
1363
1364  /// Gets the argument type, or the type of the argument expression, whichever
1365  /// is appropriate.
1366  QualType getTypeOfArgument() const {
1367    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1368  }
1369
1370  SourceLocation getOperatorLoc() const { return OpLoc; }
1371  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1372
1373  SourceLocation getRParenLoc() const { return RParenLoc; }
1374  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1375
1376  virtual SourceRange getSourceRange() const {
1377    return SourceRange(OpLoc, RParenLoc);
1378  }
1379
1380  static bool classof(const Stmt *T) {
1381    return T->getStmtClass() == SizeOfAlignOfExprClass;
1382  }
1383  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1384
1385  // Iterators
1386  virtual child_iterator child_begin();
1387  virtual child_iterator child_end();
1388};
1389
1390//===----------------------------------------------------------------------===//
1391// Postfix Operators.
1392//===----------------------------------------------------------------------===//
1393
1394/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1395class ArraySubscriptExpr : public Expr {
1396  enum { LHS, RHS, END_EXPR=2 };
1397  Stmt* SubExprs[END_EXPR];
1398  SourceLocation RBracketLoc;
1399public:
1400  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1401                     SourceLocation rbracketloc)
1402  : Expr(ArraySubscriptExprClass, t,
1403         lhs->isTypeDependent() || rhs->isTypeDependent(),
1404         lhs->isValueDependent() || rhs->isValueDependent()),
1405    RBracketLoc(rbracketloc) {
1406    SubExprs[LHS] = lhs;
1407    SubExprs[RHS] = rhs;
1408  }
1409
1410  /// \brief Create an empty array subscript expression.
1411  explicit ArraySubscriptExpr(EmptyShell Shell)
1412    : Expr(ArraySubscriptExprClass, Shell) { }
1413
1414  /// An array access can be written A[4] or 4[A] (both are equivalent).
1415  /// - getBase() and getIdx() always present the normalized view: A[4].
1416  ///    In this case getBase() returns "A" and getIdx() returns "4".
1417  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1418  ///    4[A] getLHS() returns "4".
1419  /// Note: Because vector element access is also written A[4] we must
1420  /// predicate the format conversion in getBase and getIdx only on the
1421  /// the type of the RHS, as it is possible for the LHS to be a vector of
1422  /// integer type
1423  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1424  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1425  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1426
1427  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1428  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1429  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1430
1431  Expr *getBase() {
1432    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1433  }
1434
1435  const Expr *getBase() const {
1436    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1437  }
1438
1439  Expr *getIdx() {
1440    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1441  }
1442
1443  const Expr *getIdx() const {
1444    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1445  }
1446
1447  virtual SourceRange getSourceRange() const {
1448    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1449  }
1450
1451  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1452  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1453
1454  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1455
1456  static bool classof(const Stmt *T) {
1457    return T->getStmtClass() == ArraySubscriptExprClass;
1458  }
1459  static bool classof(const ArraySubscriptExpr *) { return true; }
1460
1461  // Iterators
1462  virtual child_iterator child_begin();
1463  virtual child_iterator child_end();
1464};
1465
1466
1467/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1468/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1469/// while its subclasses may represent alternative syntax that (semantically)
1470/// results in a function call. For example, CXXOperatorCallExpr is
1471/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1472/// "str1 + str2" to resolve to a function call.
1473class CallExpr : public Expr {
1474  enum { FN=0, ARGS_START=1 };
1475  Stmt **SubExprs;
1476  unsigned NumArgs;
1477  SourceLocation RParenLoc;
1478
1479protected:
1480  // This version of the constructor is for derived classes.
1481  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1482           QualType t, SourceLocation rparenloc);
1483
1484public:
1485  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1486           SourceLocation rparenloc);
1487
1488  /// \brief Build an empty call expression.
1489  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1490
1491  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1492  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1493  void setCallee(Expr *F) { SubExprs[FN] = F; }
1494
1495  Decl *getCalleeDecl();
1496  const Decl *getCalleeDecl() const {
1497    return const_cast<CallExpr*>(this)->getCalleeDecl();
1498  }
1499
1500  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1501  FunctionDecl *getDirectCallee();
1502  const FunctionDecl *getDirectCallee() const {
1503    return const_cast<CallExpr*>(this)->getDirectCallee();
1504  }
1505
1506  /// getNumArgs - Return the number of actual arguments to this call.
1507  ///
1508  unsigned getNumArgs() const { return NumArgs; }
1509
1510  /// getArg - Return the specified argument.
1511  Expr *getArg(unsigned Arg) {
1512    assert(Arg < NumArgs && "Arg access out of range!");
1513    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1514  }
1515  const Expr *getArg(unsigned Arg) const {
1516    assert(Arg < NumArgs && "Arg access out of range!");
1517    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1518  }
1519
1520  /// setArg - Set the specified argument.
1521  void setArg(unsigned Arg, Expr *ArgExpr) {
1522    assert(Arg < NumArgs && "Arg access out of range!");
1523    SubExprs[Arg+ARGS_START] = ArgExpr;
1524  }
1525
1526  /// setNumArgs - This changes the number of arguments present in this call.
1527  /// Any orphaned expressions are deleted by this, and any new operands are set
1528  /// to null.
1529  void setNumArgs(ASTContext& C, unsigned NumArgs);
1530
1531  typedef ExprIterator arg_iterator;
1532  typedef ConstExprIterator const_arg_iterator;
1533
1534  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1535  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1536  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1537  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1538
1539  /// getNumCommas - Return the number of commas that must have been present in
1540  /// this function call.
1541  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1542
1543  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1544  /// not, return 0.
1545  unsigned isBuiltinCall(ASTContext &Context) const;
1546
1547  /// getCallReturnType - Get the return type of the call expr. This is not
1548  /// always the type of the expr itself, if the return type is a reference
1549  /// type.
1550  QualType getCallReturnType() const;
1551
1552  SourceLocation getRParenLoc() const { return RParenLoc; }
1553  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1554
1555  virtual SourceRange getSourceRange() const {
1556    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1557  }
1558
1559  static bool classof(const Stmt *T) {
1560    return T->getStmtClass() >= firstCallExprConstant &&
1561           T->getStmtClass() <= lastCallExprConstant;
1562  }
1563  static bool classof(const CallExpr *) { return true; }
1564
1565  // Iterators
1566  virtual child_iterator child_begin();
1567  virtual child_iterator child_end();
1568};
1569
1570/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1571///
1572class MemberExpr : public Expr {
1573  /// Extra data stored in some member expressions.
1574  struct MemberNameQualifier : public NameQualifier {
1575    DeclAccessPair FoundDecl;
1576  };
1577
1578  /// Base - the expression for the base pointer or structure references.  In
1579  /// X.F, this is "X".
1580  Stmt *Base;
1581
1582  /// MemberDecl - This is the decl being referenced by the field/member name.
1583  /// In X.F, this is the decl referenced by F.
1584  ValueDecl *MemberDecl;
1585
1586  /// MemberLoc - This is the location of the member name.
1587  SourceLocation MemberLoc;
1588
1589  /// IsArrow - True if this is "X->F", false if this is "X.F".
1590  bool IsArrow : 1;
1591
1592  /// \brief True if this member expression used a nested-name-specifier to
1593  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1594  /// declaration.  When true, a MemberNameQualifier
1595  /// structure is allocated immediately after the MemberExpr.
1596  bool HasQualifierOrFoundDecl : 1;
1597
1598  /// \brief True if this member expression specified a template argument list
1599  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1600  /// structure (and its TemplateArguments) are allocated immediately after
1601  /// the MemberExpr or, if the member expression also has a qualifier, after
1602  /// the MemberNameQualifier structure.
1603  bool HasExplicitTemplateArgumentList : 1;
1604
1605  /// \brief Retrieve the qualifier that preceded the member name, if any.
1606  MemberNameQualifier *getMemberQualifier() {
1607    assert(HasQualifierOrFoundDecl);
1608    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1609  }
1610
1611  /// \brief Retrieve the qualifier that preceded the member name, if any.
1612  const MemberNameQualifier *getMemberQualifier() const {
1613    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1614  }
1615
1616  /// \brief Retrieve the explicit template argument list that followed the
1617  /// member template name, if any.
1618  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1619    if (!HasExplicitTemplateArgumentList)
1620      return 0;
1621
1622    if (!HasQualifierOrFoundDecl)
1623      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1624
1625    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1626                                                      getMemberQualifier() + 1);
1627  }
1628
1629  /// \brief Retrieve the explicit template argument list that followed the
1630  /// member template name, if any.
1631  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1632    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1633  }
1634
1635public:
1636  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1637             SourceLocation l, QualType ty)
1638    : Expr(MemberExprClass, ty,
1639           base->isTypeDependent(), base->isValueDependent()),
1640      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1641      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1642
1643  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1644                            NestedNameSpecifier *qual, SourceRange qualrange,
1645                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1646                            SourceLocation l,
1647                            const TemplateArgumentListInfo *targs,
1648                            QualType ty);
1649
1650  void setBase(Expr *E) { Base = E; }
1651  Expr *getBase() const { return cast<Expr>(Base); }
1652
1653  /// \brief Retrieve the member declaration to which this expression refers.
1654  ///
1655  /// The returned declaration will either be a FieldDecl or (in C++)
1656  /// a CXXMethodDecl.
1657  ValueDecl *getMemberDecl() const { return MemberDecl; }
1658  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1659
1660  /// \brief Retrieves the declaration found by lookup.
1661  DeclAccessPair getFoundDecl() const {
1662    if (!HasQualifierOrFoundDecl)
1663      return DeclAccessPair::make(getMemberDecl(),
1664                                  getMemberDecl()->getAccess());
1665    return getMemberQualifier()->FoundDecl;
1666  }
1667
1668  /// \brief Determines whether this member expression actually had
1669  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1670  /// x->Base::foo.
1671  bool hasQualifier() const { return getQualifier() != 0; }
1672
1673  /// \brief If the member name was qualified, retrieves the source range of
1674  /// the nested-name-specifier that precedes the member name. Otherwise,
1675  /// returns an empty source range.
1676  SourceRange getQualifierRange() const {
1677    if (!HasQualifierOrFoundDecl)
1678      return SourceRange();
1679
1680    return getMemberQualifier()->Range;
1681  }
1682
1683  /// \brief If the member name was qualified, retrieves the
1684  /// nested-name-specifier that precedes the member name. Otherwise, returns
1685  /// NULL.
1686  NestedNameSpecifier *getQualifier() const {
1687    if (!HasQualifierOrFoundDecl)
1688      return 0;
1689
1690    return getMemberQualifier()->NNS;
1691  }
1692
1693  /// \brief Determines whether this member expression actually had a C++
1694  /// template argument list explicitly specified, e.g., x.f<int>.
1695  bool hasExplicitTemplateArgumentList() const {
1696    return HasExplicitTemplateArgumentList;
1697  }
1698
1699  /// \brief Copies the template arguments (if present) into the given
1700  /// structure.
1701  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1702    if (hasExplicitTemplateArgumentList())
1703      getExplicitTemplateArgumentList()->copyInto(List);
1704  }
1705
1706  /// \brief Retrieve the location of the left angle bracket following the
1707  /// member name ('<'), if any.
1708  SourceLocation getLAngleLoc() const {
1709    if (!HasExplicitTemplateArgumentList)
1710      return SourceLocation();
1711
1712    return getExplicitTemplateArgumentList()->LAngleLoc;
1713  }
1714
1715  /// \brief Retrieve the template arguments provided as part of this
1716  /// template-id.
1717  const TemplateArgumentLoc *getTemplateArgs() const {
1718    if (!HasExplicitTemplateArgumentList)
1719      return 0;
1720
1721    return getExplicitTemplateArgumentList()->getTemplateArgs();
1722  }
1723
1724  /// \brief Retrieve the number of template arguments provided as part of this
1725  /// template-id.
1726  unsigned getNumTemplateArgs() const {
1727    if (!HasExplicitTemplateArgumentList)
1728      return 0;
1729
1730    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1731  }
1732
1733  /// \brief Retrieve the location of the right angle bracket following the
1734  /// template arguments ('>').
1735  SourceLocation getRAngleLoc() const {
1736    if (!HasExplicitTemplateArgumentList)
1737      return SourceLocation();
1738
1739    return getExplicitTemplateArgumentList()->RAngleLoc;
1740  }
1741
1742  bool isArrow() const { return IsArrow; }
1743  void setArrow(bool A) { IsArrow = A; }
1744
1745  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1746  /// location of 'F'.
1747  SourceLocation getMemberLoc() const { return MemberLoc; }
1748  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1749
1750  virtual SourceRange getSourceRange() const {
1751    // If we have an implicit base (like a C++ implicit this),
1752    // make sure not to return its location
1753    SourceLocation EndLoc = MemberLoc;
1754    if (HasExplicitTemplateArgumentList)
1755      EndLoc = getRAngleLoc();
1756
1757    SourceLocation BaseLoc = getBase()->getLocStart();
1758    if (BaseLoc.isInvalid())
1759      return SourceRange(MemberLoc, EndLoc);
1760    return SourceRange(BaseLoc, EndLoc);
1761  }
1762
1763  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1764
1765  static bool classof(const Stmt *T) {
1766    return T->getStmtClass() == MemberExprClass;
1767  }
1768  static bool classof(const MemberExpr *) { return true; }
1769
1770  // Iterators
1771  virtual child_iterator child_begin();
1772  virtual child_iterator child_end();
1773};
1774
1775/// CompoundLiteralExpr - [C99 6.5.2.5]
1776///
1777class CompoundLiteralExpr : public Expr {
1778  /// LParenLoc - If non-null, this is the location of the left paren in a
1779  /// compound literal like "(int){4}".  This can be null if this is a
1780  /// synthesized compound expression.
1781  SourceLocation LParenLoc;
1782
1783  /// The type as written.  This can be an incomplete array type, in
1784  /// which case the actual expression type will be different.
1785  TypeSourceInfo *TInfo;
1786  Stmt *Init;
1787  bool FileScope;
1788public:
1789  // FIXME: Can compound literals be value-dependent?
1790  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1791                      QualType T, Expr *init, bool fileScope)
1792    : Expr(CompoundLiteralExprClass, T,
1793           tinfo->getType()->isDependentType(), false),
1794      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1795
1796  /// \brief Construct an empty compound literal.
1797  explicit CompoundLiteralExpr(EmptyShell Empty)
1798    : Expr(CompoundLiteralExprClass, Empty) { }
1799
1800  const Expr *getInitializer() const { return cast<Expr>(Init); }
1801  Expr *getInitializer() { return cast<Expr>(Init); }
1802  void setInitializer(Expr *E) { Init = E; }
1803
1804  bool isFileScope() const { return FileScope; }
1805  void setFileScope(bool FS) { FileScope = FS; }
1806
1807  SourceLocation getLParenLoc() const { return LParenLoc; }
1808  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1809
1810  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1811  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1812
1813  virtual SourceRange getSourceRange() const {
1814    // FIXME: Init should never be null.
1815    if (!Init)
1816      return SourceRange();
1817    if (LParenLoc.isInvalid())
1818      return Init->getSourceRange();
1819    return SourceRange(LParenLoc, Init->getLocEnd());
1820  }
1821
1822  static bool classof(const Stmt *T) {
1823    return T->getStmtClass() == CompoundLiteralExprClass;
1824  }
1825  static bool classof(const CompoundLiteralExpr *) { return true; }
1826
1827  // Iterators
1828  virtual child_iterator child_begin();
1829  virtual child_iterator child_end();
1830};
1831
1832/// CastExpr - Base class for type casts, including both implicit
1833/// casts (ImplicitCastExpr) and explicit casts that have some
1834/// representation in the source code (ExplicitCastExpr's derived
1835/// classes).
1836class CastExpr : public Expr {
1837public:
1838  /// CastKind - the kind of cast this represents.
1839  enum CastKind {
1840    /// CK_Unknown - Unknown cast kind.
1841    /// FIXME: The goal is to get rid of this and make all casts have a
1842    /// kind so that the AST client doesn't have to try to figure out what's
1843    /// going on.
1844    CK_Unknown,
1845
1846    /// CK_BitCast - Used for reinterpret_cast.
1847    CK_BitCast,
1848
1849    /// CK_LValueBitCast - Used for reinterpret_cast of expressions to
1850    /// a reference type.
1851    CK_LValueBitCast,
1852
1853    /// CK_NoOp - Used for const_cast.
1854    CK_NoOp,
1855
1856    /// CK_BaseToDerived - Base to derived class casts.
1857    CK_BaseToDerived,
1858
1859    /// CK_DerivedToBase - Derived to base class casts.
1860    CK_DerivedToBase,
1861
1862    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1863    /// assume that the derived pointer is not null.
1864    CK_UncheckedDerivedToBase,
1865
1866    /// CK_Dynamic - Dynamic cast.
1867    CK_Dynamic,
1868
1869    /// CK_ToUnion - Cast to union (GCC extension).
1870    CK_ToUnion,
1871
1872    /// CK_ArrayToPointerDecay - Array to pointer decay.
1873    CK_ArrayToPointerDecay,
1874
1875    // CK_FunctionToPointerDecay - Function to pointer decay.
1876    CK_FunctionToPointerDecay,
1877
1878    /// CK_NullToMemberPointer - Null pointer to member pointer.
1879    CK_NullToMemberPointer,
1880
1881    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1882    /// member pointer in derived class.
1883    CK_BaseToDerivedMemberPointer,
1884
1885    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1886    /// member pointer in base class.
1887    CK_DerivedToBaseMemberPointer,
1888
1889    /// CK_UserDefinedConversion - Conversion using a user defined type
1890    /// conversion function.
1891    CK_UserDefinedConversion,
1892
1893    /// CK_ConstructorConversion - Conversion by constructor
1894    CK_ConstructorConversion,
1895
1896    /// CK_IntegralToPointer - Integral to pointer
1897    CK_IntegralToPointer,
1898
1899    /// CK_PointerToIntegral - Pointer to integral
1900    CK_PointerToIntegral,
1901
1902    /// CK_ToVoid - Cast to void.
1903    CK_ToVoid,
1904
1905    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1906    /// vector type with the same element type as the src type. Splats the
1907    /// src expression into the destination expression.
1908    CK_VectorSplat,
1909
1910    /// CK_IntegralCast - Casting between integral types of different size.
1911    CK_IntegralCast,
1912
1913    /// CK_IntegralToFloating - Integral to floating point.
1914    CK_IntegralToFloating,
1915
1916    /// CK_FloatingToIntegral - Floating point to integral.
1917    CK_FloatingToIntegral,
1918
1919    /// CK_FloatingCast - Casting between floating types of different size.
1920    CK_FloatingCast,
1921
1922    /// CK_MemberPointerToBoolean - Member pointer to boolean
1923    CK_MemberPointerToBoolean,
1924
1925    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1926    /// pointer
1927    CK_AnyPointerToObjCPointerCast,
1928    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1929    /// pointer
1930    CK_AnyPointerToBlockPointerCast,
1931
1932    /// \brief Converting between two Objective-C object types, which
1933    /// can occur when performing reference binding to an Objective-C
1934    /// object.
1935    CK_ObjCObjectLValueCast
1936  };
1937
1938private:
1939  unsigned Kind : 5;
1940  unsigned BasePathSize : BitsRemaining - 5;
1941  Stmt *Op;
1942
1943  void CheckBasePath() const {
1944#ifndef NDEBUG
1945    switch (getCastKind()) {
1946    case CK_DerivedToBase:
1947    case CK_UncheckedDerivedToBase:
1948    case CK_DerivedToBaseMemberPointer:
1949    case CK_BaseToDerived:
1950    case CK_BaseToDerivedMemberPointer:
1951      assert(!path_empty() && "Cast kind should have a base path!");
1952      break;
1953
1954    // These should not have an inheritance path.
1955    case CK_Unknown:
1956    case CK_BitCast:
1957    case CK_LValueBitCast:
1958    case CK_NoOp:
1959    case CK_Dynamic:
1960    case CK_ToUnion:
1961    case CK_ArrayToPointerDecay:
1962    case CK_FunctionToPointerDecay:
1963    case CK_NullToMemberPointer:
1964    case CK_UserDefinedConversion:
1965    case CK_ConstructorConversion:
1966    case CK_IntegralToPointer:
1967    case CK_PointerToIntegral:
1968    case CK_ToVoid:
1969    case CK_VectorSplat:
1970    case CK_IntegralCast:
1971    case CK_IntegralToFloating:
1972    case CK_FloatingToIntegral:
1973    case CK_FloatingCast:
1974    case CK_MemberPointerToBoolean:
1975    case CK_AnyPointerToObjCPointerCast:
1976    case CK_AnyPointerToBlockPointerCast:
1977    case CK_ObjCObjectLValueCast:
1978      assert(path_empty() && "Cast kind should not have a base path!");
1979      break;
1980    }
1981#endif
1982  }
1983
1984  const CXXBaseSpecifier * const *path_buffer() const {
1985    return const_cast<CastExpr*>(this)->path_buffer();
1986  }
1987  CXXBaseSpecifier **path_buffer();
1988
1989protected:
1990  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
1991           unsigned BasePathSize) :
1992    Expr(SC, ty,
1993         // Cast expressions are type-dependent if the type is
1994         // dependent (C++ [temp.dep.expr]p3).
1995         ty->isDependentType(),
1996         // Cast expressions are value-dependent if the type is
1997         // dependent or if the subexpression is value-dependent.
1998         ty->isDependentType() || (op && op->isValueDependent())),
1999    Kind(kind), BasePathSize(BasePathSize), Op(op) {
2000    CheckBasePath();
2001  }
2002
2003  /// \brief Construct an empty cast.
2004  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2005    : Expr(SC, Empty), BasePathSize(BasePathSize) { }
2006
2007public:
2008  CastKind getCastKind() const { return static_cast<CastKind>(Kind); }
2009  void setCastKind(CastKind K) { Kind = K; }
2010  const char *getCastKindName() const;
2011
2012  Expr *getSubExpr() { return cast<Expr>(Op); }
2013  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2014  void setSubExpr(Expr *E) { Op = E; }
2015
2016  /// \brief Retrieve the cast subexpression as it was written in the source
2017  /// code, looking through any implicit casts or other intermediate nodes
2018  /// introduced by semantic analysis.
2019  Expr *getSubExprAsWritten();
2020  const Expr *getSubExprAsWritten() const {
2021    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2022  }
2023
2024  typedef CXXBaseSpecifier **path_iterator;
2025  typedef const CXXBaseSpecifier * const *path_const_iterator;
2026  bool path_empty() const { return BasePathSize == 0; }
2027  unsigned path_size() const { return BasePathSize; }
2028  path_iterator path_begin() { return path_buffer(); }
2029  path_iterator path_end() { return path_buffer() + path_size(); }
2030  path_const_iterator path_begin() const { return path_buffer(); }
2031  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2032
2033  void setCastPath(const CXXCastPath &Path);
2034
2035  static bool classof(const Stmt *T) {
2036    return T->getStmtClass() >= firstCastExprConstant &&
2037           T->getStmtClass() <= lastCastExprConstant;
2038  }
2039  static bool classof(const CastExpr *) { return true; }
2040
2041  // Iterators
2042  virtual child_iterator child_begin();
2043  virtual child_iterator child_end();
2044};
2045
2046/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2047/// conversions, which have no direct representation in the original
2048/// source code. For example: converting T[]->T*, void f()->void
2049/// (*f)(), float->double, short->int, etc.
2050///
2051/// In C, implicit casts always produce rvalues. However, in C++, an
2052/// implicit cast whose result is being bound to a reference will be
2053/// an lvalue or xvalue. For example:
2054///
2055/// @code
2056/// class Base { };
2057/// class Derived : public Base { };
2058/// Derived &&ref();
2059/// void f(Derived d) {
2060///   Base& b = d; // initializer is an ImplicitCastExpr
2061///                // to an lvalue of type Base
2062///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2063///                     // to an xvalue of type Base
2064/// }
2065/// @endcode
2066class ImplicitCastExpr : public CastExpr {
2067public:
2068  enum ResultCategory {
2069    RValue, LValue, XValue
2070  };
2071
2072private:
2073  /// Category - The category this cast produces.
2074  ResultCategory Category;
2075
2076  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2077                   unsigned BasePathLength, ResultCategory Cat)
2078    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePathLength),
2079      Category(Cat) { }
2080
2081  /// \brief Construct an empty implicit cast.
2082  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2083    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2084
2085public:
2086  enum OnStack_t { OnStack };
2087  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2088                   ResultCategory Cat)
2089    : CastExpr(ImplicitCastExprClass, ty, kind, op, 0),
2090      Category(Cat) { }
2091
2092  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2093                                  CastKind Kind, Expr *Operand,
2094                                  const CXXCastPath *BasePath,
2095                                  ResultCategory Cat);
2096
2097  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2098
2099  virtual SourceRange getSourceRange() const {
2100    return getSubExpr()->getSourceRange();
2101  }
2102
2103  /// getCategory - The value category this cast produces.
2104  ResultCategory getCategory() const { return Category; }
2105
2106  /// setCategory - Set the value category this cast produces.
2107  void setCategory(ResultCategory Cat) { Category = Cat; }
2108
2109  static bool classof(const Stmt *T) {
2110    return T->getStmtClass() == ImplicitCastExprClass;
2111  }
2112  static bool classof(const ImplicitCastExpr *) { return true; }
2113};
2114
2115/// ExplicitCastExpr - An explicit cast written in the source
2116/// code.
2117///
2118/// This class is effectively an abstract class, because it provides
2119/// the basic representation of an explicitly-written cast without
2120/// specifying which kind of cast (C cast, functional cast, static
2121/// cast, etc.) was written; specific derived classes represent the
2122/// particular style of cast and its location information.
2123///
2124/// Unlike implicit casts, explicit cast nodes have two different
2125/// types: the type that was written into the source code, and the
2126/// actual type of the expression as determined by semantic
2127/// analysis. These types may differ slightly. For example, in C++ one
2128/// can cast to a reference type, which indicates that the resulting
2129/// expression will be an lvalue or xvalue. The reference type, however,
2130/// will not be used as the type of the expression.
2131class ExplicitCastExpr : public CastExpr {
2132  /// TInfo - Source type info for the (written) type
2133  /// this expression is casting to.
2134  TypeSourceInfo *TInfo;
2135
2136protected:
2137  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2138                   Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy)
2139    : CastExpr(SC, exprTy, kind, op, PathSize), TInfo(writtenTy) {}
2140
2141  /// \brief Construct an empty explicit cast.
2142  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2143    : CastExpr(SC, Shell, PathSize) { }
2144
2145public:
2146  /// getTypeInfoAsWritten - Returns the type source info for the type
2147  /// that this expression is casting to.
2148  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2149  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2150
2151  /// getTypeAsWritten - Returns the type that this expression is
2152  /// casting to, as written in the source code.
2153  QualType getTypeAsWritten() const { return TInfo->getType(); }
2154
2155  static bool classof(const Stmt *T) {
2156     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2157            T->getStmtClass() <= lastExplicitCastExprConstant;
2158  }
2159  static bool classof(const ExplicitCastExpr *) { return true; }
2160};
2161
2162/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2163/// cast in C++ (C++ [expr.cast]), which uses the syntax
2164/// (Type)expr. For example: @c (int)f.
2165class CStyleCastExpr : public ExplicitCastExpr {
2166  SourceLocation LPLoc; // the location of the left paren
2167  SourceLocation RPLoc; // the location of the right paren
2168
2169  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2170                 unsigned PathSize, TypeSourceInfo *writtenTy,
2171                 SourceLocation l, SourceLocation r)
2172    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, PathSize,
2173                       writtenTy), LPLoc(l), RPLoc(r) {}
2174
2175  /// \brief Construct an empty C-style explicit cast.
2176  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2177    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2178
2179public:
2180  static CStyleCastExpr *Create(ASTContext &Context, QualType T, CastKind K,
2181                                Expr *Op, const CXXCastPath *BasePath,
2182                                TypeSourceInfo *WrittenTy, SourceLocation L,
2183                                SourceLocation R);
2184
2185  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2186
2187  SourceLocation getLParenLoc() const { return LPLoc; }
2188  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2189
2190  SourceLocation getRParenLoc() const { return RPLoc; }
2191  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2192
2193  virtual SourceRange getSourceRange() const {
2194    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2195  }
2196  static bool classof(const Stmt *T) {
2197    return T->getStmtClass() == CStyleCastExprClass;
2198  }
2199  static bool classof(const CStyleCastExpr *) { return true; }
2200};
2201
2202/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2203///
2204/// This expression node kind describes a builtin binary operation,
2205/// such as "x + y" for integer values "x" and "y". The operands will
2206/// already have been converted to appropriate types (e.g., by
2207/// performing promotions or conversions).
2208///
2209/// In C++, where operators may be overloaded, a different kind of
2210/// expression node (CXXOperatorCallExpr) is used to express the
2211/// invocation of an overloaded operator with operator syntax. Within
2212/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2213/// used to store an expression "x + y" depends on the subexpressions
2214/// for x and y. If neither x or y is type-dependent, and the "+"
2215/// operator resolves to a built-in operation, BinaryOperator will be
2216/// used to express the computation (x and y may still be
2217/// value-dependent). If either x or y is type-dependent, or if the
2218/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2219/// be used to express the computation.
2220class BinaryOperator : public Expr {
2221public:
2222  enum Opcode {
2223    // Operators listed in order of precedence.
2224    // Note that additions to this should also update the StmtVisitor class.
2225    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2226    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2227    Add, Sub,         // [C99 6.5.6] Additive operators.
2228    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2229    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2230    EQ, NE,           // [C99 6.5.9] Equality operators.
2231    And,              // [C99 6.5.10] Bitwise AND operator.
2232    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2233    Or,               // [C99 6.5.12] Bitwise OR operator.
2234    LAnd,             // [C99 6.5.13] Logical AND operator.
2235    LOr,              // [C99 6.5.14] Logical OR operator.
2236    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2237    DivAssign, RemAssign,
2238    AddAssign, SubAssign,
2239    ShlAssign, ShrAssign,
2240    AndAssign, XorAssign,
2241    OrAssign,
2242    Comma             // [C99 6.5.17] Comma operator.
2243  };
2244private:
2245  enum { LHS, RHS, END_EXPR };
2246  Stmt* SubExprs[END_EXPR];
2247  Opcode Opc;
2248  SourceLocation OpLoc;
2249public:
2250
2251  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2252                 SourceLocation opLoc)
2253    : Expr(BinaryOperatorClass, ResTy,
2254           lhs->isTypeDependent() || rhs->isTypeDependent(),
2255           lhs->isValueDependent() || rhs->isValueDependent()),
2256      Opc(opc), OpLoc(opLoc) {
2257    SubExprs[LHS] = lhs;
2258    SubExprs[RHS] = rhs;
2259    assert(!isCompoundAssignmentOp() &&
2260           "Use ArithAssignBinaryOperator for compound assignments");
2261  }
2262
2263  /// \brief Construct an empty binary operator.
2264  explicit BinaryOperator(EmptyShell Empty)
2265    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2266
2267  SourceLocation getOperatorLoc() const { return OpLoc; }
2268  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2269
2270  Opcode getOpcode() const { return Opc; }
2271  void setOpcode(Opcode O) { Opc = O; }
2272
2273  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2274  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2275  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2276  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2277
2278  virtual SourceRange getSourceRange() const {
2279    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2280  }
2281
2282  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2283  /// corresponds to, e.g. "<<=".
2284  static const char *getOpcodeStr(Opcode Op);
2285
2286  const char *getOpcodeStr() const { return getOpcodeStr(Opc); }
2287
2288  /// \brief Retrieve the binary opcode that corresponds to the given
2289  /// overloaded operator.
2290  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2291
2292  /// \brief Retrieve the overloaded operator kind that corresponds to
2293  /// the given binary opcode.
2294  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2295
2296  /// predicates to categorize the respective opcodes.
2297  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2298  static bool isAdditiveOp(Opcode Opc) { return Opc == Add || Opc == Sub; }
2299  bool isAdditiveOp() const { return isAdditiveOp(Opc); }
2300  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2301  bool isShiftOp() const { return isShiftOp(Opc); }
2302
2303  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2304  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2305
2306  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2307  bool isRelationalOp() const { return isRelationalOp(Opc); }
2308
2309  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2310  bool isEqualityOp() const { return isEqualityOp(Opc); }
2311
2312  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2313  bool isComparisonOp() const { return isComparisonOp(Opc); }
2314
2315  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2316  bool isLogicalOp() const { return isLogicalOp(Opc); }
2317
2318  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2319  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2320  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2321
2322  static bool classof(const Stmt *S) {
2323    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2324           S->getStmtClass() <= lastBinaryOperatorConstant;
2325  }
2326  static bool classof(const BinaryOperator *) { return true; }
2327
2328  // Iterators
2329  virtual child_iterator child_begin();
2330  virtual child_iterator child_end();
2331
2332protected:
2333  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2334                 SourceLocation opLoc, bool dead)
2335    : Expr(CompoundAssignOperatorClass, ResTy,
2336           lhs->isTypeDependent() || rhs->isTypeDependent(),
2337           lhs->isValueDependent() || rhs->isValueDependent()),
2338      Opc(opc), OpLoc(opLoc) {
2339    SubExprs[LHS] = lhs;
2340    SubExprs[RHS] = rhs;
2341  }
2342
2343  BinaryOperator(StmtClass SC, EmptyShell Empty)
2344    : Expr(SC, Empty), Opc(MulAssign) { }
2345};
2346
2347/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2348/// track of the type the operation is performed in.  Due to the semantics of
2349/// these operators, the operands are promoted, the aritmetic performed, an
2350/// implicit conversion back to the result type done, then the assignment takes
2351/// place.  This captures the intermediate type which the computation is done
2352/// in.
2353class CompoundAssignOperator : public BinaryOperator {
2354  QualType ComputationLHSType;
2355  QualType ComputationResultType;
2356public:
2357  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2358                         QualType ResType, QualType CompLHSType,
2359                         QualType CompResultType,
2360                         SourceLocation OpLoc)
2361    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2362      ComputationLHSType(CompLHSType),
2363      ComputationResultType(CompResultType) {
2364    assert(isCompoundAssignmentOp() &&
2365           "Only should be used for compound assignments");
2366  }
2367
2368  /// \brief Build an empty compound assignment operator expression.
2369  explicit CompoundAssignOperator(EmptyShell Empty)
2370    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2371
2372  // The two computation types are the type the LHS is converted
2373  // to for the computation and the type of the result; the two are
2374  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2375  QualType getComputationLHSType() const { return ComputationLHSType; }
2376  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2377
2378  QualType getComputationResultType() const { return ComputationResultType; }
2379  void setComputationResultType(QualType T) { ComputationResultType = T; }
2380
2381  static bool classof(const CompoundAssignOperator *) { return true; }
2382  static bool classof(const Stmt *S) {
2383    return S->getStmtClass() == CompoundAssignOperatorClass;
2384  }
2385};
2386
2387/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2388/// GNU "missing LHS" extension is in use.
2389///
2390class ConditionalOperator : public Expr {
2391  enum { COND, LHS, RHS, END_EXPR };
2392  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2393  SourceLocation QuestionLoc, ColonLoc;
2394public:
2395  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2396                      SourceLocation CLoc, Expr *rhs, QualType t)
2397    : Expr(ConditionalOperatorClass, t,
2398           // FIXME: the type of the conditional operator doesn't
2399           // depend on the type of the conditional, but the standard
2400           // seems to imply that it could. File a bug!
2401           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2402           (cond->isValueDependent() ||
2403            (lhs && lhs->isValueDependent()) ||
2404            (rhs && rhs->isValueDependent()))),
2405      QuestionLoc(QLoc),
2406      ColonLoc(CLoc) {
2407    SubExprs[COND] = cond;
2408    SubExprs[LHS] = lhs;
2409    SubExprs[RHS] = rhs;
2410  }
2411
2412  /// \brief Build an empty conditional operator.
2413  explicit ConditionalOperator(EmptyShell Empty)
2414    : Expr(ConditionalOperatorClass, Empty) { }
2415
2416  // getCond - Return the expression representing the condition for
2417  //  the ?: operator.
2418  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2419  void setCond(Expr *E) { SubExprs[COND] = E; }
2420
2421  // getTrueExpr - Return the subexpression representing the value of the ?:
2422  //  expression if the condition evaluates to true.  In most cases this value
2423  //  will be the same as getLHS() except a GCC extension allows the left
2424  //  subexpression to be omitted, and instead of the condition be returned.
2425  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2426  //  is only evaluated once.
2427  Expr *getTrueExpr() const {
2428    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2429  }
2430
2431  // getTrueExpr - Return the subexpression representing the value of the ?:
2432  // expression if the condition evaluates to false. This is the same as getRHS.
2433  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2434
2435  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2436  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2437
2438  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2439  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2440
2441  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2442  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2443
2444  SourceLocation getColonLoc() const { return ColonLoc; }
2445  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2446
2447  virtual SourceRange getSourceRange() const {
2448    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2449  }
2450  static bool classof(const Stmt *T) {
2451    return T->getStmtClass() == ConditionalOperatorClass;
2452  }
2453  static bool classof(const ConditionalOperator *) { return true; }
2454
2455  // Iterators
2456  virtual child_iterator child_begin();
2457  virtual child_iterator child_end();
2458};
2459
2460/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2461class AddrLabelExpr : public Expr {
2462  SourceLocation AmpAmpLoc, LabelLoc;
2463  LabelStmt *Label;
2464public:
2465  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2466                QualType t)
2467    : Expr(AddrLabelExprClass, t, false, false),
2468      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2469
2470  /// \brief Build an empty address of a label expression.
2471  explicit AddrLabelExpr(EmptyShell Empty)
2472    : Expr(AddrLabelExprClass, Empty) { }
2473
2474  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2475  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2476  SourceLocation getLabelLoc() const { return LabelLoc; }
2477  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2478
2479  virtual SourceRange getSourceRange() const {
2480    return SourceRange(AmpAmpLoc, LabelLoc);
2481  }
2482
2483  LabelStmt *getLabel() const { return Label; }
2484  void setLabel(LabelStmt *S) { Label = S; }
2485
2486  static bool classof(const Stmt *T) {
2487    return T->getStmtClass() == AddrLabelExprClass;
2488  }
2489  static bool classof(const AddrLabelExpr *) { return true; }
2490
2491  // Iterators
2492  virtual child_iterator child_begin();
2493  virtual child_iterator child_end();
2494};
2495
2496/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2497/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2498/// takes the value of the last subexpression.
2499class StmtExpr : public Expr {
2500  Stmt *SubStmt;
2501  SourceLocation LParenLoc, RParenLoc;
2502public:
2503  // FIXME: Does type-dependence need to be computed differently?
2504  StmtExpr(CompoundStmt *substmt, QualType T,
2505           SourceLocation lp, SourceLocation rp) :
2506    Expr(StmtExprClass, T, T->isDependentType(), false),
2507    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2508
2509  /// \brief Build an empty statement expression.
2510  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2511
2512  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2513  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2514  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2515
2516  virtual SourceRange getSourceRange() const {
2517    return SourceRange(LParenLoc, RParenLoc);
2518  }
2519
2520  SourceLocation getLParenLoc() const { return LParenLoc; }
2521  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2522  SourceLocation getRParenLoc() const { return RParenLoc; }
2523  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2524
2525  static bool classof(const Stmt *T) {
2526    return T->getStmtClass() == StmtExprClass;
2527  }
2528  static bool classof(const StmtExpr *) { return true; }
2529
2530  // Iterators
2531  virtual child_iterator child_begin();
2532  virtual child_iterator child_end();
2533};
2534
2535/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2536/// This AST node represents a function that returns 1 if two *types* (not
2537/// expressions) are compatible. The result of this built-in function can be
2538/// used in integer constant expressions.
2539class TypesCompatibleExpr : public Expr {
2540  TypeSourceInfo *TInfo1;
2541  TypeSourceInfo *TInfo2;
2542  SourceLocation BuiltinLoc, RParenLoc;
2543public:
2544  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2545                      TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
2546                      SourceLocation RP) :
2547    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2548    TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2549
2550  /// \brief Build an empty __builtin_type_compatible_p expression.
2551  explicit TypesCompatibleExpr(EmptyShell Empty)
2552    : Expr(TypesCompatibleExprClass, Empty) { }
2553
2554  TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
2555  void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
2556  TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
2557  void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
2558
2559  QualType getArgType1() const { return TInfo1->getType(); }
2560  QualType getArgType2() const { return TInfo2->getType(); }
2561
2562  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2563  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2564
2565  SourceLocation getRParenLoc() const { return RParenLoc; }
2566  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2567
2568  virtual SourceRange getSourceRange() const {
2569    return SourceRange(BuiltinLoc, RParenLoc);
2570  }
2571  static bool classof(const Stmt *T) {
2572    return T->getStmtClass() == TypesCompatibleExprClass;
2573  }
2574  static bool classof(const TypesCompatibleExpr *) { return true; }
2575
2576  // Iterators
2577  virtual child_iterator child_begin();
2578  virtual child_iterator child_end();
2579};
2580
2581/// ShuffleVectorExpr - clang-specific builtin-in function
2582/// __builtin_shufflevector.
2583/// This AST node represents a operator that does a constant
2584/// shuffle, similar to LLVM's shufflevector instruction. It takes
2585/// two vectors and a variable number of constant indices,
2586/// and returns the appropriately shuffled vector.
2587class ShuffleVectorExpr : public Expr {
2588  SourceLocation BuiltinLoc, RParenLoc;
2589
2590  // SubExprs - the list of values passed to the __builtin_shufflevector
2591  // function. The first two are vectors, and the rest are constant
2592  // indices.  The number of values in this list is always
2593  // 2+the number of indices in the vector type.
2594  Stmt **SubExprs;
2595  unsigned NumExprs;
2596
2597public:
2598  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2599  // to be computed differently?
2600  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2601                    QualType Type, SourceLocation BLoc,
2602                    SourceLocation RP) :
2603    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2604    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2605
2606    SubExprs = new (C) Stmt*[nexpr];
2607    for (unsigned i = 0; i < nexpr; i++)
2608      SubExprs[i] = args[i];
2609  }
2610
2611  /// \brief Build an empty vector-shuffle expression.
2612  explicit ShuffleVectorExpr(EmptyShell Empty)
2613    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2614
2615  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2616  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2617
2618  SourceLocation getRParenLoc() const { return RParenLoc; }
2619  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2620
2621  virtual SourceRange getSourceRange() const {
2622    return SourceRange(BuiltinLoc, RParenLoc);
2623  }
2624  static bool classof(const Stmt *T) {
2625    return T->getStmtClass() == ShuffleVectorExprClass;
2626  }
2627  static bool classof(const ShuffleVectorExpr *) { return true; }
2628
2629  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2630  /// constant expression, the actual arguments passed in, and the function
2631  /// pointers.
2632  unsigned getNumSubExprs() const { return NumExprs; }
2633
2634  /// getExpr - Return the Expr at the specified index.
2635  Expr *getExpr(unsigned Index) {
2636    assert((Index < NumExprs) && "Arg access out of range!");
2637    return cast<Expr>(SubExprs[Index]);
2638  }
2639  const Expr *getExpr(unsigned Index) const {
2640    assert((Index < NumExprs) && "Arg access out of range!");
2641    return cast<Expr>(SubExprs[Index]);
2642  }
2643
2644  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2645
2646  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2647    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2648    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2649  }
2650
2651  // Iterators
2652  virtual child_iterator child_begin();
2653  virtual child_iterator child_end();
2654};
2655
2656/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2657/// This AST node is similar to the conditional operator (?:) in C, with
2658/// the following exceptions:
2659/// - the test expression must be a integer constant expression.
2660/// - the expression returned acts like the chosen subexpression in every
2661///   visible way: the type is the same as that of the chosen subexpression,
2662///   and all predicates (whether it's an l-value, whether it's an integer
2663///   constant expression, etc.) return the same result as for the chosen
2664///   sub-expression.
2665class ChooseExpr : public Expr {
2666  enum { COND, LHS, RHS, END_EXPR };
2667  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2668  SourceLocation BuiltinLoc, RParenLoc;
2669public:
2670  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2671             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2672    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2673      BuiltinLoc(BLoc), RParenLoc(RP) {
2674      SubExprs[COND] = cond;
2675      SubExprs[LHS] = lhs;
2676      SubExprs[RHS] = rhs;
2677    }
2678
2679  /// \brief Build an empty __builtin_choose_expr.
2680  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2681
2682  /// isConditionTrue - Return whether the condition is true (i.e. not
2683  /// equal to zero).
2684  bool isConditionTrue(ASTContext &C) const;
2685
2686  /// getChosenSubExpr - Return the subexpression chosen according to the
2687  /// condition.
2688  Expr *getChosenSubExpr(ASTContext &C) const {
2689    return isConditionTrue(C) ? getLHS() : getRHS();
2690  }
2691
2692  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2693  void setCond(Expr *E) { SubExprs[COND] = E; }
2694  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2695  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2696  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2697  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2698
2699  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2700  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2701
2702  SourceLocation getRParenLoc() const { return RParenLoc; }
2703  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2704
2705  virtual SourceRange getSourceRange() const {
2706    return SourceRange(BuiltinLoc, RParenLoc);
2707  }
2708  static bool classof(const Stmt *T) {
2709    return T->getStmtClass() == ChooseExprClass;
2710  }
2711  static bool classof(const ChooseExpr *) { return true; }
2712
2713  // Iterators
2714  virtual child_iterator child_begin();
2715  virtual child_iterator child_end();
2716};
2717
2718/// GNUNullExpr - Implements the GNU __null extension, which is a name
2719/// for a null pointer constant that has integral type (e.g., int or
2720/// long) and is the same size and alignment as a pointer. The __null
2721/// extension is typically only used by system headers, which define
2722/// NULL as __null in C++ rather than using 0 (which is an integer
2723/// that may not match the size of a pointer).
2724class GNUNullExpr : public Expr {
2725  /// TokenLoc - The location of the __null keyword.
2726  SourceLocation TokenLoc;
2727
2728public:
2729  GNUNullExpr(QualType Ty, SourceLocation Loc)
2730    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2731
2732  /// \brief Build an empty GNU __null expression.
2733  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2734
2735  /// getTokenLocation - The location of the __null token.
2736  SourceLocation getTokenLocation() const { return TokenLoc; }
2737  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2738
2739  virtual SourceRange getSourceRange() const {
2740    return SourceRange(TokenLoc);
2741  }
2742  static bool classof(const Stmt *T) {
2743    return T->getStmtClass() == GNUNullExprClass;
2744  }
2745  static bool classof(const GNUNullExpr *) { return true; }
2746
2747  // Iterators
2748  virtual child_iterator child_begin();
2749  virtual child_iterator child_end();
2750};
2751
2752/// VAArgExpr, used for the builtin function __builtin_va_arg.
2753class VAArgExpr : public Expr {
2754  Stmt *Val;
2755  TypeSourceInfo *TInfo;
2756  SourceLocation BuiltinLoc, RParenLoc;
2757public:
2758  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2759            SourceLocation RPLoc, QualType t)
2760    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2761      Val(e), TInfo(TInfo),
2762      BuiltinLoc(BLoc),
2763      RParenLoc(RPLoc) { }
2764
2765  /// \brief Create an empty __builtin_va_arg expression.
2766  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2767
2768  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2769  Expr *getSubExpr() { return cast<Expr>(Val); }
2770  void setSubExpr(Expr *E) { Val = E; }
2771
2772  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2773  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2774
2775  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2776  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2777
2778  SourceLocation getRParenLoc() const { return RParenLoc; }
2779  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2780
2781  virtual SourceRange getSourceRange() const {
2782    return SourceRange(BuiltinLoc, RParenLoc);
2783  }
2784  static bool classof(const Stmt *T) {
2785    return T->getStmtClass() == VAArgExprClass;
2786  }
2787  static bool classof(const VAArgExpr *) { return true; }
2788
2789  // Iterators
2790  virtual child_iterator child_begin();
2791  virtual child_iterator child_end();
2792};
2793
2794/// @brief Describes an C or C++ initializer list.
2795///
2796/// InitListExpr describes an initializer list, which can be used to
2797/// initialize objects of different types, including
2798/// struct/class/union types, arrays, and vectors. For example:
2799///
2800/// @code
2801/// struct foo x = { 1, { 2, 3 } };
2802/// @endcode
2803///
2804/// Prior to semantic analysis, an initializer list will represent the
2805/// initializer list as written by the user, but will have the
2806/// placeholder type "void". This initializer list is called the
2807/// syntactic form of the initializer, and may contain C99 designated
2808/// initializers (represented as DesignatedInitExprs), initializations
2809/// of subobject members without explicit braces, and so on. Clients
2810/// interested in the original syntax of the initializer list should
2811/// use the syntactic form of the initializer list.
2812///
2813/// After semantic analysis, the initializer list will represent the
2814/// semantic form of the initializer, where the initializations of all
2815/// subobjects are made explicit with nested InitListExpr nodes and
2816/// C99 designators have been eliminated by placing the designated
2817/// initializations into the subobject they initialize. Additionally,
2818/// any "holes" in the initialization, where no initializer has been
2819/// specified for a particular subobject, will be replaced with
2820/// implicitly-generated ImplicitValueInitExpr expressions that
2821/// value-initialize the subobjects. Note, however, that the
2822/// initializer lists may still have fewer initializers than there are
2823/// elements to initialize within the object.
2824///
2825/// Given the semantic form of the initializer list, one can retrieve
2826/// the original syntactic form of that initializer list (if it
2827/// exists) using getSyntacticForm(). Since many initializer lists
2828/// have the same syntactic and semantic forms, getSyntacticForm() may
2829/// return NULL, indicating that the current initializer list also
2830/// serves as its syntactic form.
2831class InitListExpr : public Expr {
2832  // FIXME: Eliminate this vector in favor of ASTContext allocation
2833  typedef ASTVector<Stmt *> InitExprsTy;
2834  InitExprsTy InitExprs;
2835  SourceLocation LBraceLoc, RBraceLoc;
2836
2837  /// Contains the initializer list that describes the syntactic form
2838  /// written in the source code.
2839  InitListExpr *SyntacticForm;
2840
2841  /// If this initializer list initializes a union, specifies which
2842  /// field within the union will be initialized.
2843  FieldDecl *UnionFieldInit;
2844
2845  /// Whether this initializer list originally had a GNU array-range
2846  /// designator in it. This is a temporary marker used by CodeGen.
2847  bool HadArrayRangeDesignator;
2848
2849public:
2850  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2851               Expr **initexprs, unsigned numinits,
2852               SourceLocation rbraceloc);
2853
2854  /// \brief Build an empty initializer list.
2855  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2856    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2857
2858  unsigned getNumInits() const { return InitExprs.size(); }
2859
2860  const Expr* getInit(unsigned Init) const {
2861    assert(Init < getNumInits() && "Initializer access out of range!");
2862    return cast_or_null<Expr>(InitExprs[Init]);
2863  }
2864
2865  Expr* getInit(unsigned Init) {
2866    assert(Init < getNumInits() && "Initializer access out of range!");
2867    return cast_or_null<Expr>(InitExprs[Init]);
2868  }
2869
2870  void setInit(unsigned Init, Expr *expr) {
2871    assert(Init < getNumInits() && "Initializer access out of range!");
2872    InitExprs[Init] = expr;
2873  }
2874
2875  /// \brief Reserve space for some number of initializers.
2876  void reserveInits(ASTContext &C, unsigned NumInits);
2877
2878  /// @brief Specify the number of initializers
2879  ///
2880  /// If there are more than @p NumInits initializers, the remaining
2881  /// initializers will be destroyed. If there are fewer than @p
2882  /// NumInits initializers, NULL expressions will be added for the
2883  /// unknown initializers.
2884  void resizeInits(ASTContext &Context, unsigned NumInits);
2885
2886  /// @brief Updates the initializer at index @p Init with the new
2887  /// expression @p expr, and returns the old expression at that
2888  /// location.
2889  ///
2890  /// When @p Init is out of range for this initializer list, the
2891  /// initializer list will be extended with NULL expressions to
2892  /// accomodate the new entry.
2893  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2894
2895  /// \brief If this initializes a union, specifies which field in the
2896  /// union to initialize.
2897  ///
2898  /// Typically, this field is the first named field within the
2899  /// union. However, a designated initializer can specify the
2900  /// initialization of a different field within the union.
2901  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2902  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2903
2904  // Explicit InitListExpr's originate from source code (and have valid source
2905  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2906  bool isExplicit() {
2907    return LBraceLoc.isValid() && RBraceLoc.isValid();
2908  }
2909
2910  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2911  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2912  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2913  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2914
2915  /// @brief Retrieve the initializer list that describes the
2916  /// syntactic form of the initializer.
2917  ///
2918  ///
2919  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2920  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2921
2922  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2923  void sawArrayRangeDesignator(bool ARD = true) {
2924    HadArrayRangeDesignator = ARD;
2925  }
2926
2927  virtual SourceRange getSourceRange() const {
2928    return SourceRange(LBraceLoc, RBraceLoc);
2929  }
2930  static bool classof(const Stmt *T) {
2931    return T->getStmtClass() == InitListExprClass;
2932  }
2933  static bool classof(const InitListExpr *) { return true; }
2934
2935  // Iterators
2936  virtual child_iterator child_begin();
2937  virtual child_iterator child_end();
2938
2939  typedef InitExprsTy::iterator iterator;
2940  typedef InitExprsTy::const_iterator const_iterator;
2941  typedef InitExprsTy::reverse_iterator reverse_iterator;
2942  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
2943
2944  iterator begin() { return InitExprs.begin(); }
2945  const_iterator begin() const { return InitExprs.begin(); }
2946  iterator end() { return InitExprs.end(); }
2947  const_iterator end() const { return InitExprs.end(); }
2948  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2949  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
2950  reverse_iterator rend() { return InitExprs.rend(); }
2951  const_reverse_iterator rend() const { return InitExprs.rend(); }
2952};
2953
2954/// @brief Represents a C99 designated initializer expression.
2955///
2956/// A designated initializer expression (C99 6.7.8) contains one or
2957/// more designators (which can be field designators, array
2958/// designators, or GNU array-range designators) followed by an
2959/// expression that initializes the field or element(s) that the
2960/// designators refer to. For example, given:
2961///
2962/// @code
2963/// struct point {
2964///   double x;
2965///   double y;
2966/// };
2967/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2968/// @endcode
2969///
2970/// The InitListExpr contains three DesignatedInitExprs, the first of
2971/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2972/// designators, one array designator for @c [2] followed by one field
2973/// designator for @c .y. The initalization expression will be 1.0.
2974class DesignatedInitExpr : public Expr {
2975public:
2976  /// \brief Forward declaration of the Designator class.
2977  class Designator;
2978
2979private:
2980  /// The location of the '=' or ':' prior to the actual initializer
2981  /// expression.
2982  SourceLocation EqualOrColonLoc;
2983
2984  /// Whether this designated initializer used the GNU deprecated
2985  /// syntax rather than the C99 '=' syntax.
2986  bool GNUSyntax : 1;
2987
2988  /// The number of designators in this initializer expression.
2989  unsigned NumDesignators : 15;
2990
2991  /// \brief The designators in this designated initialization
2992  /// expression.
2993  Designator *Designators;
2994
2995  /// The number of subexpressions of this initializer expression,
2996  /// which contains both the initializer and any additional
2997  /// expressions used by array and array-range designators.
2998  unsigned NumSubExprs : 16;
2999
3000
3001  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3002                     const Designator *Designators,
3003                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3004                     Expr **IndexExprs, unsigned NumIndexExprs,
3005                     Expr *Init);
3006
3007  explicit DesignatedInitExpr(unsigned NumSubExprs)
3008    : Expr(DesignatedInitExprClass, EmptyShell()),
3009      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3010
3011public:
3012  /// A field designator, e.g., ".x".
3013  struct FieldDesignator {
3014    /// Refers to the field that is being initialized. The low bit
3015    /// of this field determines whether this is actually a pointer
3016    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3017    /// initially constructed, a field designator will store an
3018    /// IdentifierInfo*. After semantic analysis has resolved that
3019    /// name, the field designator will instead store a FieldDecl*.
3020    uintptr_t NameOrField;
3021
3022    /// The location of the '.' in the designated initializer.
3023    unsigned DotLoc;
3024
3025    /// The location of the field name in the designated initializer.
3026    unsigned FieldLoc;
3027  };
3028
3029  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3030  struct ArrayOrRangeDesignator {
3031    /// Location of the first index expression within the designated
3032    /// initializer expression's list of subexpressions.
3033    unsigned Index;
3034    /// The location of the '[' starting the array range designator.
3035    unsigned LBracketLoc;
3036    /// The location of the ellipsis separating the start and end
3037    /// indices. Only valid for GNU array-range designators.
3038    unsigned EllipsisLoc;
3039    /// The location of the ']' terminating the array range designator.
3040    unsigned RBracketLoc;
3041  };
3042
3043  /// @brief Represents a single C99 designator.
3044  ///
3045  /// @todo This class is infuriatingly similar to clang::Designator,
3046  /// but minor differences (storing indices vs. storing pointers)
3047  /// keep us from reusing it. Try harder, later, to rectify these
3048  /// differences.
3049  class Designator {
3050    /// @brief The kind of designator this describes.
3051    enum {
3052      FieldDesignator,
3053      ArrayDesignator,
3054      ArrayRangeDesignator
3055    } Kind;
3056
3057    union {
3058      /// A field designator, e.g., ".x".
3059      struct FieldDesignator Field;
3060      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3061      struct ArrayOrRangeDesignator ArrayOrRange;
3062    };
3063    friend class DesignatedInitExpr;
3064
3065  public:
3066    Designator() {}
3067
3068    /// @brief Initializes a field designator.
3069    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3070               SourceLocation FieldLoc)
3071      : Kind(FieldDesignator) {
3072      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3073      Field.DotLoc = DotLoc.getRawEncoding();
3074      Field.FieldLoc = FieldLoc.getRawEncoding();
3075    }
3076
3077    /// @brief Initializes an array designator.
3078    Designator(unsigned Index, SourceLocation LBracketLoc,
3079               SourceLocation RBracketLoc)
3080      : Kind(ArrayDesignator) {
3081      ArrayOrRange.Index = Index;
3082      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3083      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3084      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3085    }
3086
3087    /// @brief Initializes a GNU array-range designator.
3088    Designator(unsigned Index, SourceLocation LBracketLoc,
3089               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3090      : Kind(ArrayRangeDesignator) {
3091      ArrayOrRange.Index = Index;
3092      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3093      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3094      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3095    }
3096
3097    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3098    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3099    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3100
3101    IdentifierInfo * getFieldName();
3102
3103    FieldDecl *getField() {
3104      assert(Kind == FieldDesignator && "Only valid on a field designator");
3105      if (Field.NameOrField & 0x01)
3106        return 0;
3107      else
3108        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3109    }
3110
3111    void setField(FieldDecl *FD) {
3112      assert(Kind == FieldDesignator && "Only valid on a field designator");
3113      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3114    }
3115
3116    SourceLocation getDotLoc() const {
3117      assert(Kind == FieldDesignator && "Only valid on a field designator");
3118      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3119    }
3120
3121    SourceLocation getFieldLoc() const {
3122      assert(Kind == FieldDesignator && "Only valid on a field designator");
3123      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3124    }
3125
3126    SourceLocation getLBracketLoc() const {
3127      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3128             "Only valid on an array or array-range designator");
3129      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3130    }
3131
3132    SourceLocation getRBracketLoc() const {
3133      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3134             "Only valid on an array or array-range designator");
3135      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3136    }
3137
3138    SourceLocation getEllipsisLoc() const {
3139      assert(Kind == ArrayRangeDesignator &&
3140             "Only valid on an array-range designator");
3141      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3142    }
3143
3144    unsigned getFirstExprIndex() const {
3145      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3146             "Only valid on an array or array-range designator");
3147      return ArrayOrRange.Index;
3148    }
3149
3150    SourceLocation getStartLocation() const {
3151      if (Kind == FieldDesignator)
3152        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3153      else
3154        return getLBracketLoc();
3155    }
3156  };
3157
3158  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3159                                    unsigned NumDesignators,
3160                                    Expr **IndexExprs, unsigned NumIndexExprs,
3161                                    SourceLocation EqualOrColonLoc,
3162                                    bool GNUSyntax, Expr *Init);
3163
3164  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3165
3166  /// @brief Returns the number of designators in this initializer.
3167  unsigned size() const { return NumDesignators; }
3168
3169  // Iterator access to the designators.
3170  typedef Designator* designators_iterator;
3171  designators_iterator designators_begin() { return Designators; }
3172  designators_iterator designators_end() {
3173    return Designators + NumDesignators;
3174  }
3175
3176  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3177
3178  void setDesignators(ASTContext &C, const Designator *Desigs,
3179                      unsigned NumDesigs);
3180
3181  Expr *getArrayIndex(const Designator& D);
3182  Expr *getArrayRangeStart(const Designator& D);
3183  Expr *getArrayRangeEnd(const Designator& D);
3184
3185  /// @brief Retrieve the location of the '=' that precedes the
3186  /// initializer value itself, if present.
3187  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3188  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3189
3190  /// @brief Determines whether this designated initializer used the
3191  /// deprecated GNU syntax for designated initializers.
3192  bool usesGNUSyntax() const { return GNUSyntax; }
3193  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3194
3195  /// @brief Retrieve the initializer value.
3196  Expr *getInit() const {
3197    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3198  }
3199
3200  void setInit(Expr *init) {
3201    *child_begin() = init;
3202  }
3203
3204  /// \brief Retrieve the total number of subexpressions in this
3205  /// designated initializer expression, including the actual
3206  /// initialized value and any expressions that occur within array
3207  /// and array-range designators.
3208  unsigned getNumSubExprs() const { return NumSubExprs; }
3209
3210  Expr *getSubExpr(unsigned Idx) {
3211    assert(Idx < NumSubExprs && "Subscript out of range");
3212    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3213    Ptr += sizeof(DesignatedInitExpr);
3214    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3215  }
3216
3217  void setSubExpr(unsigned Idx, Expr *E) {
3218    assert(Idx < NumSubExprs && "Subscript out of range");
3219    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3220    Ptr += sizeof(DesignatedInitExpr);
3221    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3222  }
3223
3224  /// \brief Replaces the designator at index @p Idx with the series
3225  /// of designators in [First, Last).
3226  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3227                        const Designator *Last);
3228
3229  virtual SourceRange getSourceRange() const;
3230
3231  static bool classof(const Stmt *T) {
3232    return T->getStmtClass() == DesignatedInitExprClass;
3233  }
3234  static bool classof(const DesignatedInitExpr *) { return true; }
3235
3236  // Iterators
3237  virtual child_iterator child_begin();
3238  virtual child_iterator child_end();
3239};
3240
3241/// \brief Represents an implicitly-generated value initialization of
3242/// an object of a given type.
3243///
3244/// Implicit value initializations occur within semantic initializer
3245/// list expressions (InitListExpr) as placeholders for subobject
3246/// initializations not explicitly specified by the user.
3247///
3248/// \see InitListExpr
3249class ImplicitValueInitExpr : public Expr {
3250public:
3251  explicit ImplicitValueInitExpr(QualType ty)
3252    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3253
3254  /// \brief Construct an empty implicit value initialization.
3255  explicit ImplicitValueInitExpr(EmptyShell Empty)
3256    : Expr(ImplicitValueInitExprClass, Empty) { }
3257
3258  static bool classof(const Stmt *T) {
3259    return T->getStmtClass() == ImplicitValueInitExprClass;
3260  }
3261  static bool classof(const ImplicitValueInitExpr *) { return true; }
3262
3263  virtual SourceRange getSourceRange() const {
3264    return SourceRange();
3265  }
3266
3267  // Iterators
3268  virtual child_iterator child_begin();
3269  virtual child_iterator child_end();
3270};
3271
3272
3273class ParenListExpr : public Expr {
3274  Stmt **Exprs;
3275  unsigned NumExprs;
3276  SourceLocation LParenLoc, RParenLoc;
3277
3278public:
3279  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3280                unsigned numexprs, SourceLocation rparenloc);
3281
3282  /// \brief Build an empty paren list.
3283  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3284
3285  unsigned getNumExprs() const { return NumExprs; }
3286
3287  const Expr* getExpr(unsigned Init) const {
3288    assert(Init < getNumExprs() && "Initializer access out of range!");
3289    return cast_or_null<Expr>(Exprs[Init]);
3290  }
3291
3292  Expr* getExpr(unsigned Init) {
3293    assert(Init < getNumExprs() && "Initializer access out of range!");
3294    return cast_or_null<Expr>(Exprs[Init]);
3295  }
3296
3297  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3298
3299  SourceLocation getLParenLoc() const { return LParenLoc; }
3300  SourceLocation getRParenLoc() const { return RParenLoc; }
3301
3302  virtual SourceRange getSourceRange() const {
3303    return SourceRange(LParenLoc, RParenLoc);
3304  }
3305  static bool classof(const Stmt *T) {
3306    return T->getStmtClass() == ParenListExprClass;
3307  }
3308  static bool classof(const ParenListExpr *) { return true; }
3309
3310  // Iterators
3311  virtual child_iterator child_begin();
3312  virtual child_iterator child_end();
3313
3314  friend class PCHStmtReader;
3315  friend class PCHStmtWriter;
3316};
3317
3318
3319//===----------------------------------------------------------------------===//
3320// Clang Extensions
3321//===----------------------------------------------------------------------===//
3322
3323
3324/// ExtVectorElementExpr - This represents access to specific elements of a
3325/// vector, and may occur on the left hand side or right hand side.  For example
3326/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3327///
3328/// Note that the base may have either vector or pointer to vector type, just
3329/// like a struct field reference.
3330///
3331class ExtVectorElementExpr : public Expr {
3332  Stmt *Base;
3333  IdentifierInfo *Accessor;
3334  SourceLocation AccessorLoc;
3335public:
3336  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3337                       SourceLocation loc)
3338    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3339           base->isValueDependent()),
3340      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3341
3342  /// \brief Build an empty vector element expression.
3343  explicit ExtVectorElementExpr(EmptyShell Empty)
3344    : Expr(ExtVectorElementExprClass, Empty) { }
3345
3346  const Expr *getBase() const { return cast<Expr>(Base); }
3347  Expr *getBase() { return cast<Expr>(Base); }
3348  void setBase(Expr *E) { Base = E; }
3349
3350  IdentifierInfo &getAccessor() const { return *Accessor; }
3351  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3352
3353  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3354  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3355
3356  /// getNumElements - Get the number of components being selected.
3357  unsigned getNumElements() const;
3358
3359  /// containsDuplicateElements - Return true if any element access is
3360  /// repeated.
3361  bool containsDuplicateElements() const;
3362
3363  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3364  /// aggregate Constant of ConstantInt(s).
3365  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3366
3367  virtual SourceRange getSourceRange() const {
3368    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3369  }
3370
3371  /// isArrow - Return true if the base expression is a pointer to vector,
3372  /// return false if the base expression is a vector.
3373  bool isArrow() const;
3374
3375  static bool classof(const Stmt *T) {
3376    return T->getStmtClass() == ExtVectorElementExprClass;
3377  }
3378  static bool classof(const ExtVectorElementExpr *) { return true; }
3379
3380  // Iterators
3381  virtual child_iterator child_begin();
3382  virtual child_iterator child_end();
3383};
3384
3385
3386/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3387/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3388class BlockExpr : public Expr {
3389protected:
3390  BlockDecl *TheBlock;
3391  bool HasBlockDeclRefExprs;
3392public:
3393  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3394    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3395      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3396
3397  /// \brief Build an empty block expression.
3398  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3399
3400  const BlockDecl *getBlockDecl() const { return TheBlock; }
3401  BlockDecl *getBlockDecl() { return TheBlock; }
3402  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3403
3404  // Convenience functions for probing the underlying BlockDecl.
3405  SourceLocation getCaretLocation() const;
3406  const Stmt *getBody() const;
3407  Stmt *getBody();
3408
3409  virtual SourceRange getSourceRange() const {
3410    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3411  }
3412
3413  /// getFunctionType - Return the underlying function type for this block.
3414  const FunctionType *getFunctionType() const;
3415
3416  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3417  /// inside of the block that reference values outside the block.
3418  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3419  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3420
3421  static bool classof(const Stmt *T) {
3422    return T->getStmtClass() == BlockExprClass;
3423  }
3424  static bool classof(const BlockExpr *) { return true; }
3425
3426  // Iterators
3427  virtual child_iterator child_begin();
3428  virtual child_iterator child_end();
3429};
3430
3431/// BlockDeclRefExpr - A reference to a declared variable, function,
3432/// enum, etc.
3433class BlockDeclRefExpr : public Expr {
3434  ValueDecl *D;
3435  SourceLocation Loc;
3436  bool IsByRef : 1;
3437  bool ConstQualAdded : 1;
3438  Stmt *CopyConstructorVal;
3439public:
3440  // FIXME: Fix type/value dependence!
3441  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3442                   bool constAdded = false,
3443                   Stmt *copyConstructorVal = 0)
3444  : Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false),
3445    D(d), Loc(l), IsByRef(ByRef),
3446    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3447
3448  // \brief Build an empty reference to a declared variable in a
3449  // block.
3450  explicit BlockDeclRefExpr(EmptyShell Empty)
3451    : Expr(BlockDeclRefExprClass, Empty) { }
3452
3453  ValueDecl *getDecl() { return D; }
3454  const ValueDecl *getDecl() const { return D; }
3455  void setDecl(ValueDecl *VD) { D = VD; }
3456
3457  SourceLocation getLocation() const { return Loc; }
3458  void setLocation(SourceLocation L) { Loc = L; }
3459
3460  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3461
3462  bool isByRef() const { return IsByRef; }
3463  void setByRef(bool BR) { IsByRef = BR; }
3464
3465  bool isConstQualAdded() const { return ConstQualAdded; }
3466  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3467
3468  const Expr *getCopyConstructorExpr() const
3469    { return cast_or_null<Expr>(CopyConstructorVal); }
3470  Expr *getCopyConstructorExpr()
3471    { return cast_or_null<Expr>(CopyConstructorVal); }
3472  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3473
3474  static bool classof(const Stmt *T) {
3475    return T->getStmtClass() == BlockDeclRefExprClass;
3476  }
3477  static bool classof(const BlockDeclRefExpr *) { return true; }
3478
3479  // Iterators
3480  virtual child_iterator child_begin();
3481  virtual child_iterator child_end();
3482};
3483
3484}  // end namespace clang
3485
3486#endif
3487