Expr.h revision 2d6744ff04c1690a1485178d550d2fab84a0270b
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
243  ///  its subexpression.  If that subexpression is also a ParenExpr,
244  ///  then this method recursively returns its subexpression, and so forth.
245  ///  Otherwise, the method returns the current Expr.
246  Expr* IgnoreParens();
247
248  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
249  /// or CastExprs, returning their operand.
250  Expr *IgnoreParenCasts();
251
252  const Expr* IgnoreParens() const {
253    return const_cast<Expr*>(this)->IgnoreParens();
254  }
255  const Expr *IgnoreParenCasts() const {
256    return const_cast<Expr*>(this)->IgnoreParenCasts();
257  }
258
259  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
260  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
261
262  static bool classof(const Stmt *T) {
263    return T->getStmtClass() >= firstExprConstant &&
264           T->getStmtClass() <= lastExprConstant;
265  }
266  static bool classof(const Expr *) { return true; }
267
268  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
269    return cast<Expr>(Stmt::Create(D, C));
270  }
271};
272
273
274//===----------------------------------------------------------------------===//
275// Primary Expressions.
276//===----------------------------------------------------------------------===//
277
278/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
279/// enum, etc.
280class DeclRefExpr : public Expr {
281  NamedDecl *D;
282  SourceLocation Loc;
283
284protected:
285  // FIXME: Eventually, this constructor will go away and all subclasses
286  // will have to provide the type- and value-dependent flags.
287  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
288    Expr(SC, t), D(d), Loc(l) {}
289
290  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
291              bool VD) :
292    Expr(SC, t, TD, VD), D(d), Loc(l) {}
293
294public:
295  // FIXME: Eventually, this constructor will go away and all clients
296  // will have to provide the type- and value-dependent flags.
297  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
298    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
299
300  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
301    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
302
303  NamedDecl *getDecl() { return D; }
304  const NamedDecl *getDecl() const { return D; }
305  void setDecl(NamedDecl *NewD) { D = NewD; }
306
307  SourceLocation getLocation() const { return Loc; }
308  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
309
310  static bool classof(const Stmt *T) {
311    return T->getStmtClass() == DeclRefExprClass ||
312           T->getStmtClass() == CXXConditionDeclExprClass ||
313           T->getStmtClass() == QualifiedDeclRefExprClass;
314  }
315  static bool classof(const DeclRefExpr *) { return true; }
316
317  // Iterators
318  virtual child_iterator child_begin();
319  virtual child_iterator child_end();
320
321  virtual void EmitImpl(llvm::Serializer& S) const;
322  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
323};
324
325/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
326class PredefinedExpr : public Expr {
327public:
328  enum IdentType {
329    Func,
330    Function,
331    PrettyFunction
332  };
333
334private:
335  SourceLocation Loc;
336  IdentType Type;
337public:
338  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
339    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
340
341  IdentType getIdentType() const { return Type; }
342
343  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
344
345  static bool classof(const Stmt *T) {
346    return T->getStmtClass() == PredefinedExprClass;
347  }
348  static bool classof(const PredefinedExpr *) { return true; }
349
350  // Iterators
351  virtual child_iterator child_begin();
352  virtual child_iterator child_end();
353
354  virtual void EmitImpl(llvm::Serializer& S) const;
355  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
356};
357
358class IntegerLiteral : public Expr {
359  llvm::APInt Value;
360  SourceLocation Loc;
361public:
362  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
363  // or UnsignedLongLongTy
364  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
365    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
366    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
367  }
368  const llvm::APInt &getValue() const { return Value; }
369  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
370
371  static bool classof(const Stmt *T) {
372    return T->getStmtClass() == IntegerLiteralClass;
373  }
374  static bool classof(const IntegerLiteral *) { return true; }
375
376  // Iterators
377  virtual child_iterator child_begin();
378  virtual child_iterator child_end();
379
380  virtual void EmitImpl(llvm::Serializer& S) const;
381  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
382};
383
384class CharacterLiteral : public Expr {
385  unsigned Value;
386  SourceLocation Loc;
387  bool IsWide;
388public:
389  // type should be IntTy
390  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
391    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
392  }
393  SourceLocation getLoc() const { return Loc; }
394  bool isWide() const { return IsWide; }
395
396  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
397
398  unsigned getValue() const { return Value; }
399
400  static bool classof(const Stmt *T) {
401    return T->getStmtClass() == CharacterLiteralClass;
402  }
403  static bool classof(const CharacterLiteral *) { return true; }
404
405  // Iterators
406  virtual child_iterator child_begin();
407  virtual child_iterator child_end();
408
409  virtual void EmitImpl(llvm::Serializer& S) const;
410  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
411};
412
413class FloatingLiteral : public Expr {
414  llvm::APFloat Value;
415  bool IsExact : 1;
416  SourceLocation Loc;
417public:
418  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
419                  QualType Type, SourceLocation L)
420    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
421
422  const llvm::APFloat &getValue() const { return Value; }
423
424  bool isExact() const { return IsExact; }
425
426  /// getValueAsApproximateDouble - This returns the value as an inaccurate
427  /// double.  Note that this may cause loss of precision, but is useful for
428  /// debugging dumps, etc.
429  double getValueAsApproximateDouble() const;
430
431  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
432
433  static bool classof(const Stmt *T) {
434    return T->getStmtClass() == FloatingLiteralClass;
435  }
436  static bool classof(const FloatingLiteral *) { return true; }
437
438  // Iterators
439  virtual child_iterator child_begin();
440  virtual child_iterator child_end();
441
442  virtual void EmitImpl(llvm::Serializer& S) const;
443  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
444};
445
446/// ImaginaryLiteral - We support imaginary integer and floating point literals,
447/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
448/// IntegerLiteral classes.  Instances of this class always have a Complex type
449/// whose element type matches the subexpression.
450///
451class ImaginaryLiteral : public Expr {
452  Stmt *Val;
453public:
454  ImaginaryLiteral(Expr *val, QualType Ty)
455    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
456
457  const Expr *getSubExpr() const { return cast<Expr>(Val); }
458  Expr *getSubExpr() { return cast<Expr>(Val); }
459
460  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
461  static bool classof(const Stmt *T) {
462    return T->getStmtClass() == ImaginaryLiteralClass;
463  }
464  static bool classof(const ImaginaryLiteral *) { return true; }
465
466  // Iterators
467  virtual child_iterator child_begin();
468  virtual child_iterator child_end();
469
470  virtual void EmitImpl(llvm::Serializer& S) const;
471  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
472};
473
474/// StringLiteral - This represents a string literal expression, e.g. "foo"
475/// or L"bar" (wide strings).  The actual string is returned by getStrData()
476/// is NOT null-terminated, and the length of the string is determined by
477/// calling getByteLength().  The C type for a string is always a
478/// ConstantArrayType.
479class StringLiteral : public Expr {
480  const char *StrData;
481  unsigned ByteLength;
482  bool IsWide;
483  // if the StringLiteral was composed using token pasting, both locations
484  // are needed. If not (the common case), firstTokLoc == lastTokLoc.
485  // FIXME: if space becomes an issue, we should create a sub-class.
486  SourceLocation firstTokLoc, lastTokLoc;
487public:
488  StringLiteral(ASTContext& C, const char *strData, unsigned byteLength,
489                bool Wide, QualType t, SourceLocation b, SourceLocation e);
490
491  void Destroy(ASTContext& C);
492
493  const char *getStrData() const { return StrData; }
494  unsigned getByteLength() const { return ByteLength; }
495  bool isWide() const { return IsWide; }
496
497  virtual SourceRange getSourceRange() const {
498    return SourceRange(firstTokLoc,lastTokLoc);
499  }
500  static bool classof(const Stmt *T) {
501    return T->getStmtClass() == StringLiteralClass;
502  }
503  static bool classof(const StringLiteral *) { return true; }
504
505  // Iterators
506  virtual child_iterator child_begin();
507  virtual child_iterator child_end();
508
509  virtual void EmitImpl(llvm::Serializer& S) const;
510  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
511};
512
513/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
514/// AST node is only formed if full location information is requested.
515class ParenExpr : public Expr {
516  SourceLocation L, R;
517  Stmt *Val;
518public:
519  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
520    : Expr(ParenExprClass, val->getType(),
521           val->isTypeDependent(), val->isValueDependent()),
522      L(l), R(r), Val(val) {}
523
524  const Expr *getSubExpr() const { return cast<Expr>(Val); }
525  Expr *getSubExpr() { return cast<Expr>(Val); }
526  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
527
528  static bool classof(const Stmt *T) {
529    return T->getStmtClass() == ParenExprClass;
530  }
531  static bool classof(const ParenExpr *) { return true; }
532
533  // Iterators
534  virtual child_iterator child_begin();
535  virtual child_iterator child_end();
536
537  virtual void EmitImpl(llvm::Serializer& S) const;
538  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
539};
540
541
542/// UnaryOperator - This represents the unary-expression's (except sizeof and
543/// alignof), the postinc/postdec operators from postfix-expression, and various
544/// extensions.
545///
546/// Notes on various nodes:
547///
548/// Real/Imag - These return the real/imag part of a complex operand.  If
549///   applied to a non-complex value, the former returns its operand and the
550///   later returns zero in the type of the operand.
551///
552/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
553///   subexpression is a compound literal with the various MemberExpr and
554///   ArraySubscriptExpr's applied to it.
555///
556class UnaryOperator : public Expr {
557public:
558  // Note that additions to this should also update the StmtVisitor class.
559  enum Opcode {
560    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
561    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
562    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
563    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
564    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
565    Real, Imag,       // "__real expr"/"__imag expr" Extension.
566    Extension,        // __extension__ marker.
567    OffsetOf          // __builtin_offsetof
568  };
569private:
570  Stmt *Val;
571  Opcode Opc;
572  SourceLocation Loc;
573public:
574
575  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
576    : Expr(UnaryOperatorClass, type,
577           input->isTypeDependent() && opc != OffsetOf,
578           input->isValueDependent()),
579      Val(input), Opc(opc), Loc(l) {}
580
581  Opcode getOpcode() const { return Opc; }
582  Expr *getSubExpr() const { return cast<Expr>(Val); }
583
584  /// getOperatorLoc - Return the location of the operator.
585  SourceLocation getOperatorLoc() const { return Loc; }
586
587  /// isPostfix - Return true if this is a postfix operation, like x++.
588  static bool isPostfix(Opcode Op);
589
590  /// isPostfix - Return true if this is a prefix operation, like --x.
591  static bool isPrefix(Opcode Op);
592
593  bool isPrefix() const { return isPrefix(Opc); }
594  bool isPostfix() const { return isPostfix(Opc); }
595  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
596  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
597  bool isOffsetOfOp() const { return Opc == OffsetOf; }
598  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
599
600  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
601  /// corresponds to, e.g. "sizeof" or "[pre]++"
602  static const char *getOpcodeStr(Opcode Op);
603
604  virtual SourceRange getSourceRange() const {
605    if (isPostfix())
606      return SourceRange(Val->getLocStart(), Loc);
607    else
608      return SourceRange(Loc, Val->getLocEnd());
609  }
610  virtual SourceLocation getExprLoc() const { return Loc; }
611
612  static bool classof(const Stmt *T) {
613    return T->getStmtClass() == UnaryOperatorClass;
614  }
615  static bool classof(const UnaryOperator *) { return true; }
616
617  int64_t evaluateOffsetOf(ASTContext& C) const;
618
619  // Iterators
620  virtual child_iterator child_begin();
621  virtual child_iterator child_end();
622
623  virtual void EmitImpl(llvm::Serializer& S) const;
624  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
625};
626
627/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
628/// types and expressions.
629class SizeOfAlignOfExpr : public Expr {
630  bool isSizeof : 1;  // true if sizeof, false if alignof.
631  bool isType : 1;    // true if operand is a type, false if an expression
632  union {
633    void *Ty;
634    Stmt *Ex;
635  } Argument;
636  SourceLocation OpLoc, RParenLoc;
637public:
638  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
639                    QualType resultType, SourceLocation op,
640                    SourceLocation rp) :
641      Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
642      isType(istype), OpLoc(op), RParenLoc(rp) {
643    if (isType)
644      Argument.Ty = argument;
645    else
646      // argument was an Expr*, so cast it back to that to be safe
647      Argument.Ex = static_cast<Expr*>(argument);
648  }
649
650  virtual void Destroy(ASTContext& C);
651
652  bool isSizeOf() const { return isSizeof; }
653  bool isArgumentType() const { return isType; }
654  QualType getArgumentType() const {
655    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
656    return QualType::getFromOpaquePtr(Argument.Ty);
657  }
658  Expr *getArgumentExpr() {
659    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
660    return static_cast<Expr*>(Argument.Ex);
661  }
662  const Expr *getArgumentExpr() const {
663    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
664  }
665
666  /// Gets the argument type, or the type of the argument expression, whichever
667  /// is appropriate.
668  QualType getTypeOfArgument() const {
669    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
670  }
671
672  SourceLocation getOperatorLoc() const { return OpLoc; }
673
674  virtual SourceRange getSourceRange() const {
675    return SourceRange(OpLoc, RParenLoc);
676  }
677
678  static bool classof(const Stmt *T) {
679    return T->getStmtClass() == SizeOfAlignOfExprClass;
680  }
681  static bool classof(const SizeOfAlignOfExpr *) { return true; }
682
683  // Iterators
684  virtual child_iterator child_begin();
685  virtual child_iterator child_end();
686
687  virtual void EmitImpl(llvm::Serializer& S) const;
688  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
689};
690
691//===----------------------------------------------------------------------===//
692// Postfix Operators.
693//===----------------------------------------------------------------------===//
694
695/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
696class ArraySubscriptExpr : public Expr {
697  enum { LHS, RHS, END_EXPR=2 };
698  Stmt* SubExprs[END_EXPR];
699  SourceLocation RBracketLoc;
700public:
701  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
702                     SourceLocation rbracketloc)
703  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
704    SubExprs[LHS] = lhs;
705    SubExprs[RHS] = rhs;
706  }
707
708  /// An array access can be written A[4] or 4[A] (both are equivalent).
709  /// - getBase() and getIdx() always present the normalized view: A[4].
710  ///    In this case getBase() returns "A" and getIdx() returns "4".
711  /// - getLHS() and getRHS() present the syntactic view. e.g. for
712  ///    4[A] getLHS() returns "4".
713  /// Note: Because vector element access is also written A[4] we must
714  /// predicate the format conversion in getBase and getIdx only on the
715  /// the type of the RHS, as it is possible for the LHS to be a vector of
716  /// integer type
717  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
718  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
719
720  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
721  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
722
723  Expr *getBase() {
724    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
725  }
726
727  const Expr *getBase() const {
728    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
729  }
730
731  Expr *getIdx() {
732    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
733  }
734
735  const Expr *getIdx() const {
736    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
737  }
738
739  virtual SourceRange getSourceRange() const {
740    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
741  }
742
743  SourceLocation getRBracketLoc() const { return RBracketLoc; }
744  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
745
746  static bool classof(const Stmt *T) {
747    return T->getStmtClass() == ArraySubscriptExprClass;
748  }
749  static bool classof(const ArraySubscriptExpr *) { return true; }
750
751  // Iterators
752  virtual child_iterator child_begin();
753  virtual child_iterator child_end();
754
755  virtual void EmitImpl(llvm::Serializer& S) const;
756  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
757};
758
759
760/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
761/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
762/// while its subclasses may represent alternative syntax that (semantically)
763/// results in a function call. For example, CXXOperatorCallExpr is
764/// a subclass for overloaded operator calls that use operator syntax, e.g.,
765/// "str1 + str2" to resolve to a function call.
766class CallExpr : public Expr {
767  enum { FN=0, ARGS_START=1 };
768  Stmt **SubExprs;
769  unsigned NumArgs;
770  SourceLocation RParenLoc;
771
772  // This version of the ctor is for deserialization.
773  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
774           SourceLocation rparenloc)
775  : Expr(SC,t), SubExprs(subexprs),
776    NumArgs(numargs), RParenLoc(rparenloc) {}
777
778protected:
779  // This version of the constructor is for derived classes.
780  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
781           QualType t, SourceLocation rparenloc);
782
783public:
784  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
785           SourceLocation rparenloc);
786
787  ~CallExpr() {}
788
789  void Destroy(ASTContext& C);
790
791  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
792  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
793  void setCallee(Expr *F) { SubExprs[FN] = F; }
794
795  /// getNumArgs - Return the number of actual arguments to this call.
796  ///
797  unsigned getNumArgs() const { return NumArgs; }
798
799  /// getArg - Return the specified argument.
800  Expr *getArg(unsigned Arg) {
801    assert(Arg < NumArgs && "Arg access out of range!");
802    return cast<Expr>(SubExprs[Arg+ARGS_START]);
803  }
804  const Expr *getArg(unsigned Arg) const {
805    assert(Arg < NumArgs && "Arg access out of range!");
806    return cast<Expr>(SubExprs[Arg+ARGS_START]);
807  }
808
809  // FIXME: Why is this needed?  Why not just create the CallExpr with the
810  // corect number of arguments?  It makes the ASTs less brittle.
811  /// setArg - Set the specified argument.
812  void setArg(unsigned Arg, Expr *ArgExpr) {
813    assert(Arg < NumArgs && "Arg access out of range!");
814    SubExprs[Arg+ARGS_START] = ArgExpr;
815  }
816
817  // FIXME: It would be great to just get rid of this.  There is only one
818  // callee of this method, and it probably could be refactored to not use
819  // this method and instead just create a CallExpr with the right number of
820  // arguments.
821  /// setNumArgs - This changes the number of arguments present in this call.
822  /// Any orphaned expressions are deleted by this, and any new operands are set
823  /// to null.
824  void setNumArgs(ASTContext& C, unsigned NumArgs);
825
826  typedef ExprIterator arg_iterator;
827  typedef ConstExprIterator const_arg_iterator;
828
829  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
830  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
831  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
832  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
833
834  /// getNumCommas - Return the number of commas that must have been present in
835  /// this function call.
836  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
837
838  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
839  /// not, return 0.
840  unsigned isBuiltinCall(ASTContext &Context) const;
841
842  SourceLocation getRParenLoc() const { return RParenLoc; }
843
844  virtual SourceRange getSourceRange() const {
845    return SourceRange(getCallee()->getLocStart(), RParenLoc);
846  }
847
848  static bool classof(const Stmt *T) {
849    return T->getStmtClass() == CallExprClass ||
850           T->getStmtClass() == CXXOperatorCallExprClass ||
851           T->getStmtClass() == CXXMemberCallExprClass;
852  }
853  static bool classof(const CallExpr *) { return true; }
854  static bool classof(const CXXOperatorCallExpr *) { return true; }
855  static bool classof(const CXXMemberCallExpr *) { return true; }
856
857  // Iterators
858  virtual child_iterator child_begin();
859  virtual child_iterator child_end();
860
861  virtual void EmitImpl(llvm::Serializer& S) const;
862  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
863                              StmtClass SC);
864};
865
866/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
867///
868class MemberExpr : public Expr {
869  Stmt *Base;
870  NamedDecl *MemberDecl;
871  SourceLocation MemberLoc;
872  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
873public:
874  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
875             QualType ty)
876    : Expr(MemberExprClass, ty),
877      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
878
879  void setBase(Expr *E) { Base = E; }
880  Expr *getBase() const { return cast<Expr>(Base); }
881  NamedDecl *getMemberDecl() const { return MemberDecl; }
882  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
883  bool isArrow() const { return IsArrow; }
884  SourceLocation getMemberLoc() const { return MemberLoc; }
885
886  virtual SourceRange getSourceRange() const {
887    return SourceRange(getBase()->getLocStart(), MemberLoc);
888  }
889
890  virtual SourceLocation getExprLoc() const { return MemberLoc; }
891
892  static bool classof(const Stmt *T) {
893    return T->getStmtClass() == MemberExprClass;
894  }
895  static bool classof(const MemberExpr *) { return true; }
896
897  // Iterators
898  virtual child_iterator child_begin();
899  virtual child_iterator child_end();
900
901  virtual void EmitImpl(llvm::Serializer& S) const;
902  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
903};
904
905/// CompoundLiteralExpr - [C99 6.5.2.5]
906///
907class CompoundLiteralExpr : public Expr {
908  /// LParenLoc - If non-null, this is the location of the left paren in a
909  /// compound literal like "(int){4}".  This can be null if this is a
910  /// synthesized compound expression.
911  SourceLocation LParenLoc;
912  Stmt *Init;
913  bool FileScope;
914public:
915  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
916                      bool fileScope)
917    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
918      FileScope(fileScope) {}
919
920  const Expr *getInitializer() const { return cast<Expr>(Init); }
921  Expr *getInitializer() { return cast<Expr>(Init); }
922
923  bool isFileScope() const { return FileScope; }
924
925  SourceLocation getLParenLoc() const { return LParenLoc; }
926
927  virtual SourceRange getSourceRange() const {
928    // FIXME: Init should never be null.
929    if (!Init)
930      return SourceRange();
931    if (LParenLoc.isInvalid())
932      return Init->getSourceRange();
933    return SourceRange(LParenLoc, Init->getLocEnd());
934  }
935
936  static bool classof(const Stmt *T) {
937    return T->getStmtClass() == CompoundLiteralExprClass;
938  }
939  static bool classof(const CompoundLiteralExpr *) { return true; }
940
941  // Iterators
942  virtual child_iterator child_begin();
943  virtual child_iterator child_end();
944
945  virtual void EmitImpl(llvm::Serializer& S) const;
946  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
947};
948
949/// CastExpr - Base class for type casts, including both implicit
950/// casts (ImplicitCastExpr) and explicit casts that have some
951/// representation in the source code (ExplicitCastExpr's derived
952/// classes).
953class CastExpr : public Expr {
954  Stmt *Op;
955protected:
956  CastExpr(StmtClass SC, QualType ty, Expr *op) :
957    Expr(SC, ty,
958         // Cast expressions are type-dependent if the type is
959         // dependent (C++ [temp.dep.expr]p3).
960         ty->isDependentType(),
961         // Cast expressions are value-dependent if the type is
962         // dependent or if the subexpression is value-dependent.
963         ty->isDependentType() || (op && op->isValueDependent())),
964    Op(op) {}
965
966public:
967  Expr *getSubExpr() { return cast<Expr>(Op); }
968  const Expr *getSubExpr() const { return cast<Expr>(Op); }
969
970  static bool classof(const Stmt *T) {
971    StmtClass SC = T->getStmtClass();
972    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
973      return true;
974
975    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
976      return true;
977
978    return false;
979  }
980  static bool classof(const CastExpr *) { return true; }
981
982  // Iterators
983  virtual child_iterator child_begin();
984  virtual child_iterator child_end();
985};
986
987/// ImplicitCastExpr - Allows us to explicitly represent implicit type
988/// conversions, which have no direct representation in the original
989/// source code. For example: converting T[]->T*, void f()->void
990/// (*f)(), float->double, short->int, etc.
991///
992/// In C, implicit casts always produce rvalues. However, in C++, an
993/// implicit cast whose result is being bound to a reference will be
994/// an lvalue. For example:
995///
996/// @code
997/// class Base { };
998/// class Derived : public Base { };
999/// void f(Derived d) {
1000///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1001/// }
1002/// @endcode
1003class ImplicitCastExpr : public CastExpr {
1004  /// LvalueCast - Whether this cast produces an lvalue.
1005  bool LvalueCast;
1006
1007public:
1008  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1009    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1010
1011  virtual SourceRange getSourceRange() const {
1012    return getSubExpr()->getSourceRange();
1013  }
1014
1015  /// isLvalueCast - Whether this cast produces an lvalue.
1016  bool isLvalueCast() const { return LvalueCast; }
1017
1018  /// setLvalueCast - Set whether this cast produces an lvalue.
1019  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1020
1021  static bool classof(const Stmt *T) {
1022    return T->getStmtClass() == ImplicitCastExprClass;
1023  }
1024  static bool classof(const ImplicitCastExpr *) { return true; }
1025
1026  virtual void EmitImpl(llvm::Serializer& S) const;
1027  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1028};
1029
1030/// ExplicitCastExpr - An explicit cast written in the source
1031/// code.
1032///
1033/// This class is effectively an abstract class, because it provides
1034/// the basic representation of an explicitly-written cast without
1035/// specifying which kind of cast (C cast, functional cast, static
1036/// cast, etc.) was written; specific derived classes represent the
1037/// particular style of cast and its location information.
1038///
1039/// Unlike implicit casts, explicit cast nodes have two different
1040/// types: the type that was written into the source code, and the
1041/// actual type of the expression as determined by semantic
1042/// analysis. These types may differ slightly. For example, in C++ one
1043/// can cast to a reference type, which indicates that the resulting
1044/// expression will be an lvalue. The reference type, however, will
1045/// not be used as the type of the expression.
1046class ExplicitCastExpr : public CastExpr {
1047  /// TypeAsWritten - The type that this expression is casting to, as
1048  /// written in the source code.
1049  QualType TypeAsWritten;
1050
1051protected:
1052  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1053    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1054
1055public:
1056  /// getTypeAsWritten - Returns the type that this expression is
1057  /// casting to, as written in the source code.
1058  QualType getTypeAsWritten() const { return TypeAsWritten; }
1059
1060  static bool classof(const Stmt *T) {
1061    StmtClass SC = T->getStmtClass();
1062    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1063      return true;
1064    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1065      return true;
1066
1067    return false;
1068  }
1069  static bool classof(const ExplicitCastExpr *) { return true; }
1070};
1071
1072/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1073/// cast in C++ (C++ [expr.cast]), which uses the syntax
1074/// (Type)expr. For example: @c (int)f.
1075class CStyleCastExpr : public ExplicitCastExpr {
1076  SourceLocation LPLoc; // the location of the left paren
1077  SourceLocation RPLoc; // the location of the right paren
1078public:
1079  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1080                    SourceLocation l, SourceLocation r) :
1081    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1082    LPLoc(l), RPLoc(r) {}
1083
1084  SourceLocation getLParenLoc() const { return LPLoc; }
1085  SourceLocation getRParenLoc() const { return RPLoc; }
1086
1087  virtual SourceRange getSourceRange() const {
1088    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1089  }
1090  static bool classof(const Stmt *T) {
1091    return T->getStmtClass() == CStyleCastExprClass;
1092  }
1093  static bool classof(const CStyleCastExpr *) { return true; }
1094
1095  virtual void EmitImpl(llvm::Serializer& S) const;
1096  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1097};
1098
1099class BinaryOperator : public Expr {
1100public:
1101  enum Opcode {
1102    // Operators listed in order of precedence.
1103    // Note that additions to this should also update the StmtVisitor class.
1104    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1105    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1106    Add, Sub,         // [C99 6.5.6] Additive operators.
1107    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1108    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1109    EQ, NE,           // [C99 6.5.9] Equality operators.
1110    And,              // [C99 6.5.10] Bitwise AND operator.
1111    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1112    Or,               // [C99 6.5.12] Bitwise OR operator.
1113    LAnd,             // [C99 6.5.13] Logical AND operator.
1114    LOr,              // [C99 6.5.14] Logical OR operator.
1115    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1116    DivAssign, RemAssign,
1117    AddAssign, SubAssign,
1118    ShlAssign, ShrAssign,
1119    AndAssign, XorAssign,
1120    OrAssign,
1121    Comma             // [C99 6.5.17] Comma operator.
1122  };
1123private:
1124  enum { LHS, RHS, END_EXPR };
1125  Stmt* SubExprs[END_EXPR];
1126  Opcode Opc;
1127  SourceLocation OpLoc;
1128public:
1129
1130  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1131                 SourceLocation opLoc)
1132    : Expr(BinaryOperatorClass, ResTy,
1133           lhs->isTypeDependent() || rhs->isTypeDependent(),
1134           lhs->isValueDependent() || rhs->isValueDependent()),
1135      Opc(opc), OpLoc(opLoc) {
1136    SubExprs[LHS] = lhs;
1137    SubExprs[RHS] = rhs;
1138    assert(!isCompoundAssignmentOp() &&
1139           "Use ArithAssignBinaryOperator for compound assignments");
1140  }
1141
1142  SourceLocation getOperatorLoc() const { return OpLoc; }
1143  Opcode getOpcode() const { return Opc; }
1144  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1145  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1146  virtual SourceRange getSourceRange() const {
1147    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1148  }
1149
1150  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1151  /// corresponds to, e.g. "<<=".
1152  static const char *getOpcodeStr(Opcode Op);
1153
1154  /// predicates to categorize the respective opcodes.
1155  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1156  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1157  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1158  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1159
1160  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1161  bool isRelationalOp() const { return isRelationalOp(Opc); }
1162
1163  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1164  bool isEqualityOp() const { return isEqualityOp(Opc); }
1165
1166  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1167  bool isLogicalOp() const { return isLogicalOp(Opc); }
1168
1169  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1170  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1171  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1172
1173  static bool classof(const Stmt *S) {
1174    return S->getStmtClass() == BinaryOperatorClass ||
1175           S->getStmtClass() == CompoundAssignOperatorClass;
1176  }
1177  static bool classof(const BinaryOperator *) { return true; }
1178
1179  // Iterators
1180  virtual child_iterator child_begin();
1181  virtual child_iterator child_end();
1182
1183  virtual void EmitImpl(llvm::Serializer& S) const;
1184  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1185
1186protected:
1187  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1188                 SourceLocation oploc, bool dead)
1189    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1190    SubExprs[LHS] = lhs;
1191    SubExprs[RHS] = rhs;
1192  }
1193};
1194
1195/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1196/// track of the type the operation is performed in.  Due to the semantics of
1197/// these operators, the operands are promoted, the aritmetic performed, an
1198/// implicit conversion back to the result type done, then the assignment takes
1199/// place.  This captures the intermediate type which the computation is done
1200/// in.
1201class CompoundAssignOperator : public BinaryOperator {
1202  QualType ComputationType;
1203public:
1204  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1205                         QualType ResType, QualType CompType,
1206                         SourceLocation OpLoc)
1207    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1208      ComputationType(CompType) {
1209    assert(isCompoundAssignmentOp() &&
1210           "Only should be used for compound assignments");
1211  }
1212
1213  QualType getComputationType() const { return ComputationType; }
1214
1215  static bool classof(const CompoundAssignOperator *) { return true; }
1216  static bool classof(const Stmt *S) {
1217    return S->getStmtClass() == CompoundAssignOperatorClass;
1218  }
1219
1220  virtual void EmitImpl(llvm::Serializer& S) const;
1221  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1222                                            ASTContext& C);
1223};
1224
1225/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1226/// GNU "missing LHS" extension is in use.
1227///
1228class ConditionalOperator : public Expr {
1229  enum { COND, LHS, RHS, END_EXPR };
1230  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1231public:
1232  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1233    : Expr(ConditionalOperatorClass, t,
1234           // FIXME: the type of the conditional operator doesn't
1235           // depend on the type of the conditional, but the standard
1236           // seems to imply that it could. File a bug!
1237           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1238           (cond->isValueDependent() ||
1239            (lhs && lhs->isValueDependent()) ||
1240            (rhs && rhs->isValueDependent()))) {
1241    SubExprs[COND] = cond;
1242    SubExprs[LHS] = lhs;
1243    SubExprs[RHS] = rhs;
1244  }
1245
1246  // getCond - Return the expression representing the condition for
1247  //  the ?: operator.
1248  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1249
1250  // getTrueExpr - Return the subexpression representing the value of the ?:
1251  //  expression if the condition evaluates to true.  In most cases this value
1252  //  will be the same as getLHS() except a GCC extension allows the left
1253  //  subexpression to be omitted, and instead of the condition be returned.
1254  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1255  //  is only evaluated once.
1256  Expr *getTrueExpr() const {
1257    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1258  }
1259
1260  // getTrueExpr - Return the subexpression representing the value of the ?:
1261  // expression if the condition evaluates to false. This is the same as getRHS.
1262  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1263
1264  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1265  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1266
1267  virtual SourceRange getSourceRange() const {
1268    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1269  }
1270  static bool classof(const Stmt *T) {
1271    return T->getStmtClass() == ConditionalOperatorClass;
1272  }
1273  static bool classof(const ConditionalOperator *) { return true; }
1274
1275  // Iterators
1276  virtual child_iterator child_begin();
1277  virtual child_iterator child_end();
1278
1279  virtual void EmitImpl(llvm::Serializer& S) const;
1280  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1281};
1282
1283/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1284class AddrLabelExpr : public Expr {
1285  SourceLocation AmpAmpLoc, LabelLoc;
1286  LabelStmt *Label;
1287public:
1288  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1289                QualType t)
1290    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1291
1292  virtual SourceRange getSourceRange() const {
1293    return SourceRange(AmpAmpLoc, LabelLoc);
1294  }
1295
1296  LabelStmt *getLabel() const { return Label; }
1297
1298  static bool classof(const Stmt *T) {
1299    return T->getStmtClass() == AddrLabelExprClass;
1300  }
1301  static bool classof(const AddrLabelExpr *) { return true; }
1302
1303  // Iterators
1304  virtual child_iterator child_begin();
1305  virtual child_iterator child_end();
1306
1307  virtual void EmitImpl(llvm::Serializer& S) const;
1308  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1309};
1310
1311/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1312/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1313/// takes the value of the last subexpression.
1314class StmtExpr : public Expr {
1315  Stmt *SubStmt;
1316  SourceLocation LParenLoc, RParenLoc;
1317public:
1318  StmtExpr(CompoundStmt *substmt, QualType T,
1319           SourceLocation lp, SourceLocation rp) :
1320    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1321
1322  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1323  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1324
1325  virtual SourceRange getSourceRange() const {
1326    return SourceRange(LParenLoc, RParenLoc);
1327  }
1328
1329  SourceLocation getLParenLoc() const { return LParenLoc; }
1330  SourceLocation getRParenLoc() const { return RParenLoc; }
1331
1332  static bool classof(const Stmt *T) {
1333    return T->getStmtClass() == StmtExprClass;
1334  }
1335  static bool classof(const StmtExpr *) { return true; }
1336
1337  // Iterators
1338  virtual child_iterator child_begin();
1339  virtual child_iterator child_end();
1340
1341  virtual void EmitImpl(llvm::Serializer& S) const;
1342  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1343};
1344
1345/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1346/// This AST node represents a function that returns 1 if two *types* (not
1347/// expressions) are compatible. The result of this built-in function can be
1348/// used in integer constant expressions.
1349class TypesCompatibleExpr : public Expr {
1350  QualType Type1;
1351  QualType Type2;
1352  SourceLocation BuiltinLoc, RParenLoc;
1353public:
1354  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1355                      QualType t1, QualType t2, SourceLocation RP) :
1356    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1357    BuiltinLoc(BLoc), RParenLoc(RP) {}
1358
1359  QualType getArgType1() const { return Type1; }
1360  QualType getArgType2() const { return Type2; }
1361
1362  virtual SourceRange getSourceRange() const {
1363    return SourceRange(BuiltinLoc, RParenLoc);
1364  }
1365  static bool classof(const Stmt *T) {
1366    return T->getStmtClass() == TypesCompatibleExprClass;
1367  }
1368  static bool classof(const TypesCompatibleExpr *) { return true; }
1369
1370  // Iterators
1371  virtual child_iterator child_begin();
1372  virtual child_iterator child_end();
1373
1374  virtual void EmitImpl(llvm::Serializer& S) const;
1375  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1376};
1377
1378/// ShuffleVectorExpr - clang-specific builtin-in function
1379/// __builtin_shufflevector.
1380/// This AST node represents a operator that does a constant
1381/// shuffle, similar to LLVM's shufflevector instruction. It takes
1382/// two vectors and a variable number of constant indices,
1383/// and returns the appropriately shuffled vector.
1384class ShuffleVectorExpr : public Expr {
1385  SourceLocation BuiltinLoc, RParenLoc;
1386
1387  // SubExprs - the list of values passed to the __builtin_shufflevector
1388  // function. The first two are vectors, and the rest are constant
1389  // indices.  The number of values in this list is always
1390  // 2+the number of indices in the vector type.
1391  Stmt **SubExprs;
1392  unsigned NumExprs;
1393
1394public:
1395  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1396                    QualType Type, SourceLocation BLoc,
1397                    SourceLocation RP) :
1398    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1399    RParenLoc(RP), NumExprs(nexpr) {
1400
1401    SubExprs = new Stmt*[nexpr];
1402    for (unsigned i = 0; i < nexpr; i++)
1403      SubExprs[i] = args[i];
1404  }
1405
1406  virtual SourceRange getSourceRange() const {
1407    return SourceRange(BuiltinLoc, RParenLoc);
1408  }
1409  static bool classof(const Stmt *T) {
1410    return T->getStmtClass() == ShuffleVectorExprClass;
1411  }
1412  static bool classof(const ShuffleVectorExpr *) { return true; }
1413
1414  ~ShuffleVectorExpr() {
1415    delete [] SubExprs;
1416  }
1417
1418  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1419  /// constant expression, the actual arguments passed in, and the function
1420  /// pointers.
1421  unsigned getNumSubExprs() const { return NumExprs; }
1422
1423  /// getExpr - Return the Expr at the specified index.
1424  Expr *getExpr(unsigned Index) {
1425    assert((Index < NumExprs) && "Arg access out of range!");
1426    return cast<Expr>(SubExprs[Index]);
1427  }
1428  const Expr *getExpr(unsigned Index) const {
1429    assert((Index < NumExprs) && "Arg access out of range!");
1430    return cast<Expr>(SubExprs[Index]);
1431  }
1432
1433  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1434    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1435    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1436  }
1437
1438  // Iterators
1439  virtual child_iterator child_begin();
1440  virtual child_iterator child_end();
1441
1442  virtual void EmitImpl(llvm::Serializer& S) const;
1443  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1444};
1445
1446/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1447/// This AST node is similar to the conditional operator (?:) in C, with
1448/// the following exceptions:
1449/// - the test expression must be a constant expression.
1450/// - the expression returned has it's type unaltered by promotion rules.
1451/// - does not evaluate the expression that was not chosen.
1452class ChooseExpr : public Expr {
1453  enum { COND, LHS, RHS, END_EXPR };
1454  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1455  SourceLocation BuiltinLoc, RParenLoc;
1456public:
1457  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1458             SourceLocation RP)
1459    : Expr(ChooseExprClass, t),
1460      BuiltinLoc(BLoc), RParenLoc(RP) {
1461      SubExprs[COND] = cond;
1462      SubExprs[LHS] = lhs;
1463      SubExprs[RHS] = rhs;
1464    }
1465
1466  /// isConditionTrue - Return true if the condition is true.  This is always
1467  /// statically knowable for a well-formed choosexpr.
1468  bool isConditionTrue(ASTContext &C) const;
1469
1470  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1471  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1472  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1473
1474  virtual SourceRange getSourceRange() const {
1475    return SourceRange(BuiltinLoc, RParenLoc);
1476  }
1477  static bool classof(const Stmt *T) {
1478    return T->getStmtClass() == ChooseExprClass;
1479  }
1480  static bool classof(const ChooseExpr *) { return true; }
1481
1482  // Iterators
1483  virtual child_iterator child_begin();
1484  virtual child_iterator child_end();
1485
1486  virtual void EmitImpl(llvm::Serializer& S) const;
1487  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1488};
1489
1490/// GNUNullExpr - Implements the GNU __null extension, which is a name
1491/// for a null pointer constant that has integral type (e.g., int or
1492/// long) and is the same size and alignment as a pointer. The __null
1493/// extension is typically only used by system headers, which define
1494/// NULL as __null in C++ rather than using 0 (which is an integer
1495/// that may not match the size of a pointer).
1496class GNUNullExpr : public Expr {
1497  /// TokenLoc - The location of the __null keyword.
1498  SourceLocation TokenLoc;
1499
1500public:
1501  GNUNullExpr(QualType Ty, SourceLocation Loc)
1502    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1503
1504  /// getTokenLocation - The location of the __null token.
1505  SourceLocation getTokenLocation() const { return TokenLoc; }
1506
1507  virtual SourceRange getSourceRange() const {
1508    return SourceRange(TokenLoc);
1509  }
1510  static bool classof(const Stmt *T) {
1511    return T->getStmtClass() == GNUNullExprClass;
1512  }
1513  static bool classof(const GNUNullExpr *) { return true; }
1514
1515  // Iterators
1516  virtual child_iterator child_begin();
1517  virtual child_iterator child_end();
1518
1519  virtual void EmitImpl(llvm::Serializer& S) const;
1520  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1521};
1522
1523/// OverloadExpr - Clang builtin function __builtin_overload.
1524/// This AST node provides a way to overload functions in C.
1525///
1526/// The first argument is required to be a constant expression, for the number
1527/// of arguments passed to each candidate function.
1528///
1529/// The next N arguments, where N is the value of the constant expression,
1530/// are the values to be passed as arguments.
1531///
1532/// The rest of the arguments are values of pointer to function type, which
1533/// are the candidate functions for overloading.
1534///
1535/// The result is a equivalent to a CallExpr taking N arguments to the
1536/// candidate function whose parameter types match the types of the N arguments.
1537///
1538/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1539/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1540/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1541class OverloadExpr : public Expr {
1542  // SubExprs - the list of values passed to the __builtin_overload function.
1543  // SubExpr[0] is a constant expression
1544  // SubExpr[1-N] are the parameters to pass to the matching function call
1545  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1546  Stmt **SubExprs;
1547
1548  // NumExprs - the size of the SubExprs array
1549  unsigned NumExprs;
1550
1551  // The index of the matching candidate function
1552  unsigned FnIndex;
1553
1554  SourceLocation BuiltinLoc;
1555  SourceLocation RParenLoc;
1556public:
1557  OverloadExpr(ASTContext& C, Expr **args, unsigned nexprs, unsigned idx,
1558               QualType t, SourceLocation bloc, SourceLocation rploc)
1559    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1560      BuiltinLoc(bloc), RParenLoc(rploc) {
1561    SubExprs = new (C) Stmt*[nexprs];
1562    for (unsigned i = 0; i != nexprs; ++i)
1563      SubExprs[i] = args[i];
1564  }
1565
1566  ~OverloadExpr() {}
1567
1568  void Destroy(ASTContext& C);
1569
1570  /// arg_begin - Return a pointer to the list of arguments that will be passed
1571  /// to the matching candidate function, skipping over the initial constant
1572  /// expression.
1573  typedef ConstExprIterator const_arg_iterator;
1574  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1575  const_arg_iterator arg_end(ASTContext& Ctx) const {
1576    return &SubExprs[0]+1+getNumArgs(Ctx);
1577  }
1578
1579  /// getNumArgs - Return the number of arguments to pass to the candidate
1580  /// functions.
1581  unsigned getNumArgs(ASTContext &Ctx) const {
1582    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1583  }
1584
1585  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1586  /// constant expression, the actual arguments passed in, and the function
1587  /// pointers.
1588  unsigned getNumSubExprs() const { return NumExprs; }
1589
1590  /// getExpr - Return the Expr at the specified index.
1591  Expr *getExpr(unsigned Index) const {
1592    assert((Index < NumExprs) && "Arg access out of range!");
1593    return cast<Expr>(SubExprs[Index]);
1594  }
1595
1596  /// getFn - Return the matching candidate function for this OverloadExpr.
1597  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1598
1599  virtual SourceRange getSourceRange() const {
1600    return SourceRange(BuiltinLoc, RParenLoc);
1601  }
1602  static bool classof(const Stmt *T) {
1603    return T->getStmtClass() == OverloadExprClass;
1604  }
1605  static bool classof(const OverloadExpr *) { return true; }
1606
1607  // Iterators
1608  virtual child_iterator child_begin();
1609  virtual child_iterator child_end();
1610
1611  virtual void EmitImpl(llvm::Serializer& S) const;
1612  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1613};
1614
1615/// VAArgExpr, used for the builtin function __builtin_va_start.
1616class VAArgExpr : public Expr {
1617  Stmt *Val;
1618  SourceLocation BuiltinLoc, RParenLoc;
1619public:
1620  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1621    : Expr(VAArgExprClass, t),
1622      Val(e),
1623      BuiltinLoc(BLoc),
1624      RParenLoc(RPLoc) { }
1625
1626  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1627  Expr *getSubExpr() { return cast<Expr>(Val); }
1628  virtual SourceRange getSourceRange() const {
1629    return SourceRange(BuiltinLoc, RParenLoc);
1630  }
1631  static bool classof(const Stmt *T) {
1632    return T->getStmtClass() == VAArgExprClass;
1633  }
1634  static bool classof(const VAArgExpr *) { return true; }
1635
1636  // Iterators
1637  virtual child_iterator child_begin();
1638  virtual child_iterator child_end();
1639
1640  virtual void EmitImpl(llvm::Serializer& S) const;
1641  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1642};
1643
1644/// @brief Describes an C or C++ initializer list.
1645///
1646/// InitListExpr describes an initializer list, which can be used to
1647/// initialize objects of different types, including
1648/// struct/class/union types, arrays, and vectors. For example:
1649///
1650/// @code
1651/// struct foo x = { 1, { 2, 3 } };
1652/// @endcode
1653///
1654/// Prior to semantic analysis, an initializer list will represent the
1655/// initializer list as written by the user, but will have the
1656/// placeholder type "void". This initializer list is called the
1657/// syntactic form of the initializer, and may contain C99 designated
1658/// initializers (represented as DesignatedInitExprs), initializations
1659/// of subobject members without explicit braces, and so on. Clients
1660/// interested in the original syntax of the initializer list should
1661/// use the syntactic form of the initializer list.
1662///
1663/// After semantic analysis, the initializer list will represent the
1664/// semantic form of the initializer, where the initializations of all
1665/// subobjects are made explicit with nested InitListExpr nodes and
1666/// C99 designators have been eliminated by placing the designated
1667/// initializations into the subobject they initialize. Additionally,
1668/// any "holes" in the initialization, where no initializer has been
1669/// specified for a particular subobject, will be replaced with
1670/// implicitly-generated ImplicitValueInitExpr expressions that
1671/// value-initialize the subobjects. Note, however, that the
1672/// initializer lists may still have fewer initializers than there are
1673/// elements to initialize within the object.
1674///
1675/// Given the semantic form of the initializer list, one can retrieve
1676/// the original syntactic form of that initializer list (if it
1677/// exists) using getSyntacticForm(). Since many initializer lists
1678/// have the same syntactic and semantic forms, getSyntacticForm() may
1679/// return NULL, indicating that the current initializer list also
1680/// serves as its syntactic form.
1681class InitListExpr : public Expr {
1682  std::vector<Stmt *> InitExprs;
1683  SourceLocation LBraceLoc, RBraceLoc;
1684
1685  /// Contains the initializer list that describes the syntactic form
1686  /// written in the source code.
1687  InitListExpr *SyntacticForm;
1688
1689  /// If this initializer list initializes a union, specifies which
1690  /// field within the union will be initialized.
1691  FieldDecl *UnionFieldInit;
1692
1693  /// Whether this initializer list originally had a GNU array-range
1694  /// designator in it. This is a temporary marker used by CodeGen.
1695  bool HadArrayRangeDesignator;
1696
1697public:
1698  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1699               SourceLocation rbraceloc);
1700
1701  unsigned getNumInits() const { return InitExprs.size(); }
1702
1703  const Expr* getInit(unsigned Init) const {
1704    assert(Init < getNumInits() && "Initializer access out of range!");
1705    return cast_or_null<Expr>(InitExprs[Init]);
1706  }
1707
1708  Expr* getInit(unsigned Init) {
1709    assert(Init < getNumInits() && "Initializer access out of range!");
1710    return cast_or_null<Expr>(InitExprs[Init]);
1711  }
1712
1713  void setInit(unsigned Init, Expr *expr) {
1714    assert(Init < getNumInits() && "Initializer access out of range!");
1715    InitExprs[Init] = expr;
1716  }
1717
1718  /// @brief Specify the number of initializers
1719  ///
1720  /// If there are more than @p NumInits initializers, the remaining
1721  /// initializers will be destroyed. If there are fewer than @p
1722  /// NumInits initializers, NULL expressions will be added for the
1723  /// unknown initializers.
1724  void resizeInits(ASTContext &Context, unsigned NumInits);
1725
1726  /// @brief Updates the initializer at index @p Init with the new
1727  /// expression @p expr, and returns the old expression at that
1728  /// location.
1729  ///
1730  /// When @p Init is out of range for this initializer list, the
1731  /// initializer list will be extended with NULL expressions to
1732  /// accomodate the new entry.
1733  Expr *updateInit(unsigned Init, Expr *expr);
1734
1735  /// \brief If this initializes a union, specifies which field in the
1736  /// union to initialize.
1737  ///
1738  /// Typically, this field is the first named field within the
1739  /// union. However, a designated initializer can specify the
1740  /// initialization of a different field within the union.
1741  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1742  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1743
1744  // Explicit InitListExpr's originate from source code (and have valid source
1745  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1746  bool isExplicit() {
1747    return LBraceLoc.isValid() && RBraceLoc.isValid();
1748  }
1749
1750  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1751
1752  /// @brief Retrieve the initializer list that describes the
1753  /// syntactic form of the initializer.
1754  ///
1755  ///
1756  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1757  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1758
1759  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1760  void sawArrayRangeDesignator() {
1761    HadArrayRangeDesignator = true;
1762  }
1763
1764  virtual SourceRange getSourceRange() const {
1765    return SourceRange(LBraceLoc, RBraceLoc);
1766  }
1767  static bool classof(const Stmt *T) {
1768    return T->getStmtClass() == InitListExprClass;
1769  }
1770  static bool classof(const InitListExpr *) { return true; }
1771
1772  // Iterators
1773  virtual child_iterator child_begin();
1774  virtual child_iterator child_end();
1775
1776  typedef std::vector<Stmt *>::iterator iterator;
1777  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1778
1779  iterator begin() { return InitExprs.begin(); }
1780  iterator end() { return InitExprs.end(); }
1781  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1782  reverse_iterator rend() { return InitExprs.rend(); }
1783
1784  // Serailization.
1785  virtual void EmitImpl(llvm::Serializer& S) const;
1786  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1787
1788private:
1789  // Used by serializer.
1790  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1791};
1792
1793/// @brief Represents a C99 designated initializer expression.
1794///
1795/// A designated initializer expression (C99 6.7.8) contains one or
1796/// more designators (which can be field designators, array
1797/// designators, or GNU array-range designators) followed by an
1798/// expression that initializes the field or element(s) that the
1799/// designators refer to. For example, given:
1800///
1801/// @code
1802/// struct point {
1803///   double x;
1804///   double y;
1805/// };
1806/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1807/// @endcode
1808///
1809/// The InitListExpr contains three DesignatedInitExprs, the first of
1810/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1811/// designators, one array designator for @c [2] followed by one field
1812/// designator for @c .y. The initalization expression will be 1.0.
1813class DesignatedInitExpr : public Expr {
1814  /// The location of the '=' or ':' prior to the actual initializer
1815  /// expression.
1816  SourceLocation EqualOrColonLoc;
1817
1818  /// Whether this designated initializer used the GNU deprecated ':'
1819  /// syntax rather than the C99 '=' syntax.
1820  bool UsesColonSyntax : 1;
1821
1822  /// The number of designators in this initializer expression.
1823  unsigned NumDesignators : 15;
1824
1825  /// The number of subexpressions of this initializer expression,
1826  /// which contains both the initializer and any additional
1827  /// expressions used by array and array-range designators.
1828  unsigned NumSubExprs : 16;
1829
1830  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1831                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1832                     unsigned NumSubExprs)
1833    : Expr(DesignatedInitExprClass, Ty),
1834      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1835      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1836
1837public:
1838  /// A field designator, e.g., ".x".
1839  struct FieldDesignator {
1840    /// Refers to the field that is being initialized. The low bit
1841    /// of this field determines whether this is actually a pointer
1842    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1843    /// initially constructed, a field designator will store an
1844    /// IdentifierInfo*. After semantic analysis has resolved that
1845    /// name, the field designator will instead store a FieldDecl*.
1846    uintptr_t NameOrField;
1847
1848    /// The location of the '.' in the designated initializer.
1849    unsigned DotLoc;
1850
1851    /// The location of the field name in the designated initializer.
1852    unsigned FieldLoc;
1853  };
1854
1855  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1856  struct ArrayOrRangeDesignator {
1857    /// Location of the first index expression within the designated
1858    /// initializer expression's list of subexpressions.
1859    unsigned Index;
1860    /// The location of the '[' starting the array range designator.
1861    unsigned LBracketLoc;
1862    /// The location of the ellipsis separating the start and end
1863    /// indices. Only valid for GNU array-range designators.
1864    unsigned EllipsisLoc;
1865    /// The location of the ']' terminating the array range designator.
1866    unsigned RBracketLoc;
1867  };
1868
1869  /// @brief Represents a single C99 designator.
1870  ///
1871  /// @todo This class is infuriatingly similar to clang::Designator,
1872  /// but minor differences (storing indices vs. storing pointers)
1873  /// keep us from reusing it. Try harder, later, to rectify these
1874  /// differences.
1875  class Designator {
1876    /// @brief The kind of designator this describes.
1877    enum {
1878      FieldDesignator,
1879      ArrayDesignator,
1880      ArrayRangeDesignator
1881    } Kind;
1882
1883    union {
1884      /// A field designator, e.g., ".x".
1885      struct FieldDesignator Field;
1886      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1887      struct ArrayOrRangeDesignator ArrayOrRange;
1888    };
1889    friend class DesignatedInitExpr;
1890
1891  public:
1892    /// @brief Initializes a field designator.
1893    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1894               SourceLocation FieldLoc)
1895      : Kind(FieldDesignator) {
1896      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1897      Field.DotLoc = DotLoc.getRawEncoding();
1898      Field.FieldLoc = FieldLoc.getRawEncoding();
1899    }
1900
1901    /// @brief Initializes an array designator.
1902    Designator(unsigned Index, SourceLocation LBracketLoc,
1903               SourceLocation RBracketLoc)
1904      : Kind(ArrayDesignator) {
1905      ArrayOrRange.Index = Index;
1906      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1907      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1908      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1909    }
1910
1911    /// @brief Initializes a GNU array-range designator.
1912    Designator(unsigned Index, SourceLocation LBracketLoc,
1913               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1914      : Kind(ArrayRangeDesignator) {
1915      ArrayOrRange.Index = Index;
1916      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1917      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1918      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1919    }
1920
1921    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1922    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1923    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1924
1925    IdentifierInfo * getFieldName();
1926
1927    FieldDecl *getField() {
1928      assert(Kind == FieldDesignator && "Only valid on a field designator");
1929      if (Field.NameOrField & 0x01)
1930        return 0;
1931      else
1932        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1933    }
1934
1935    void setField(FieldDecl *FD) {
1936      assert(Kind == FieldDesignator && "Only valid on a field designator");
1937      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1938    }
1939
1940    SourceLocation getDotLoc() const {
1941      assert(Kind == FieldDesignator && "Only valid on a field designator");
1942      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1943    }
1944
1945    SourceLocation getFieldLoc() const {
1946      assert(Kind == FieldDesignator && "Only valid on a field designator");
1947      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1948    }
1949
1950    SourceLocation getLBracketLoc() const {
1951      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1952             "Only valid on an array or array-range designator");
1953      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1954    }
1955
1956    SourceLocation getRBracketLoc() const {
1957      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1958             "Only valid on an array or array-range designator");
1959      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1960    }
1961
1962    SourceLocation getEllipsisLoc() const {
1963      assert(Kind == ArrayRangeDesignator &&
1964             "Only valid on an array-range designator");
1965      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1966    }
1967
1968    SourceLocation getStartLocation() const {
1969      if (Kind == FieldDesignator)
1970        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1971      else
1972        return getLBracketLoc();
1973    }
1974  };
1975
1976  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1977                                    unsigned NumDesignators,
1978                                    Expr **IndexExprs, unsigned NumIndexExprs,
1979                                    SourceLocation EqualOrColonLoc,
1980                                    bool UsesColonSyntax, Expr *Init);
1981
1982  /// @brief Returns the number of designators in this initializer.
1983  unsigned size() const { return NumDesignators; }
1984
1985  // Iterator access to the designators.
1986  typedef Designator* designators_iterator;
1987  designators_iterator designators_begin();
1988  designators_iterator designators_end();
1989
1990  Expr *getArrayIndex(const Designator& D);
1991  Expr *getArrayRangeStart(const Designator& D);
1992  Expr *getArrayRangeEnd(const Designator& D);
1993
1994  /// @brief Retrieve the location of the '=' that precedes the
1995  /// initializer value itself, if present.
1996  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
1997
1998  /// @brief Determines whether this designated initializer used the
1999  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
2000  bool usesColonSyntax() const { return UsesColonSyntax; }
2001
2002  /// @brief Retrieve the initializer value.
2003  Expr *getInit() const {
2004    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2005  }
2006
2007  void setInit(Expr *init) {
2008    *child_begin() = init;
2009  }
2010
2011  virtual SourceRange getSourceRange() const;
2012
2013  static bool classof(const Stmt *T) {
2014    return T->getStmtClass() == DesignatedInitExprClass;
2015  }
2016  static bool classof(const DesignatedInitExpr *) { return true; }
2017
2018  // Iterators
2019  virtual child_iterator child_begin();
2020  virtual child_iterator child_end();
2021};
2022
2023/// \brief Represents an implicitly-generated value initialization of
2024/// an object of a given type.
2025///
2026/// Implicit value initializations occur within semantic initializer
2027/// list expressions (InitListExpr) as placeholders for subobject
2028/// initializations not explicitly specified by the user.
2029///
2030/// \see InitListExpr
2031class ImplicitValueInitExpr : public Expr {
2032public:
2033  explicit ImplicitValueInitExpr(QualType ty)
2034    : Expr(ImplicitValueInitExprClass, ty) { }
2035
2036  static bool classof(const Stmt *T) {
2037    return T->getStmtClass() == ImplicitValueInitExprClass;
2038  }
2039  static bool classof(const ImplicitValueInitExpr *) { return true; }
2040
2041  virtual SourceRange getSourceRange() const {
2042    return SourceRange();
2043  }
2044
2045  // Iterators
2046  virtual child_iterator child_begin();
2047  virtual child_iterator child_end();
2048};
2049
2050//===----------------------------------------------------------------------===//
2051// Clang Extensions
2052//===----------------------------------------------------------------------===//
2053
2054
2055/// ExtVectorElementExpr - This represents access to specific elements of a
2056/// vector, and may occur on the left hand side or right hand side.  For example
2057/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2058///
2059/// Note that the base may have either vector or pointer to vector type, just
2060/// like a struct field reference.
2061///
2062class ExtVectorElementExpr : public Expr {
2063  Stmt *Base;
2064  IdentifierInfo &Accessor;
2065  SourceLocation AccessorLoc;
2066public:
2067  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2068                       SourceLocation loc)
2069    : Expr(ExtVectorElementExprClass, ty),
2070      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2071
2072  const Expr *getBase() const { return cast<Expr>(Base); }
2073  Expr *getBase() { return cast<Expr>(Base); }
2074
2075  IdentifierInfo &getAccessor() const { return Accessor; }
2076
2077  /// getNumElements - Get the number of components being selected.
2078  unsigned getNumElements() const;
2079
2080  /// containsDuplicateElements - Return true if any element access is
2081  /// repeated.
2082  bool containsDuplicateElements() const;
2083
2084  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2085  /// aggregate Constant of ConstantInt(s).
2086  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2087
2088  virtual SourceRange getSourceRange() const {
2089    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2090  }
2091
2092  /// isArrow - Return true if the base expression is a pointer to vector,
2093  /// return false if the base expression is a vector.
2094  bool isArrow() const;
2095
2096  static bool classof(const Stmt *T) {
2097    return T->getStmtClass() == ExtVectorElementExprClass;
2098  }
2099  static bool classof(const ExtVectorElementExpr *) { return true; }
2100
2101  // Iterators
2102  virtual child_iterator child_begin();
2103  virtual child_iterator child_end();
2104
2105  virtual void EmitImpl(llvm::Serializer& S) const;
2106  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2107};
2108
2109
2110/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2111/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2112class BlockExpr : public Expr {
2113protected:
2114  BlockDecl *TheBlock;
2115public:
2116  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
2117            TheBlock(BD) {}
2118
2119  const BlockDecl *getBlockDecl() const { return TheBlock; }
2120  BlockDecl *getBlockDecl() { return TheBlock; }
2121
2122  // Convenience functions for probing the underlying BlockDecl.
2123  SourceLocation getCaretLocation() const;
2124  const Stmt *getBody() const;
2125  Stmt *getBody();
2126
2127  virtual SourceRange getSourceRange() const {
2128    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2129  }
2130
2131  /// getFunctionType - Return the underlying function type for this block.
2132  const FunctionType *getFunctionType() const;
2133
2134  static bool classof(const Stmt *T) {
2135    return T->getStmtClass() == BlockExprClass;
2136  }
2137  static bool classof(const BlockExpr *) { return true; }
2138
2139  // Iterators
2140  virtual child_iterator child_begin();
2141  virtual child_iterator child_end();
2142
2143  virtual void EmitImpl(llvm::Serializer& S) const;
2144  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2145};
2146
2147/// BlockDeclRefExpr - A reference to a declared variable, function,
2148/// enum, etc.
2149class BlockDeclRefExpr : public Expr {
2150  ValueDecl *D;
2151  SourceLocation Loc;
2152  bool IsByRef;
2153public:
2154  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2155       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2156
2157  ValueDecl *getDecl() { return D; }
2158  const ValueDecl *getDecl() const { return D; }
2159  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2160
2161  bool isByRef() const { return IsByRef; }
2162
2163  static bool classof(const Stmt *T) {
2164    return T->getStmtClass() == BlockDeclRefExprClass;
2165  }
2166  static bool classof(const BlockDeclRefExpr *) { return true; }
2167
2168  // Iterators
2169  virtual child_iterator child_begin();
2170  virtual child_iterator child_end();
2171
2172  virtual void EmitImpl(llvm::Serializer& S) const;
2173  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2174};
2175
2176}  // end namespace clang
2177
2178#endif
2179