Expr.h revision 2fc46bf1a9bc31d50f82de37c70ea257d3cded27
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "clang/AST/UsuallyTinyPtrVector.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include <vector>
28
29namespace clang {
30  class ASTContext;
31  class APValue;
32  class Decl;
33  class IdentifierInfo;
34  class ParmVarDecl;
35  class NamedDecl;
36  class ValueDecl;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXOperatorCallExpr;
40  class CXXMemberCallExpr;
41  class TemplateArgumentLoc;
42  class TemplateArgumentListInfo;
43
44/// \brief A simple array of base specifiers.
45typedef UsuallyTinyPtrVector<const CXXBaseSpecifier> CXXBaseSpecifierArray;
46
47/// Expr - This represents one expression.  Note that Expr's are subclasses of
48/// Stmt.  This allows an expression to be transparently used any place a Stmt
49/// is required.
50///
51class Expr : public Stmt {
52  QualType TR;
53
54protected:
55  /// TypeDependent - Whether this expression is type-dependent
56  /// (C++ [temp.dep.expr]).
57  bool TypeDependent : 1;
58
59  /// ValueDependent - Whether this expression is value-dependent
60  /// (C++ [temp.dep.constexpr]).
61  bool ValueDependent : 1;
62
63  Expr(StmtClass SC, QualType T, bool TD, bool VD)
64    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
65    setType(T);
66  }
67
68  /// \brief Construct an empty expression.
69  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
70
71public:
72  /// \brief Increases the reference count for this expression.
73  ///
74  /// Invoke the Retain() operation when this expression
75  /// is being shared by another owner.
76  Expr *Retain() {
77    Stmt::Retain();
78    return this;
79  }
80
81  QualType getType() const { return TR; }
82  void setType(QualType t) {
83    // In C++, the type of an expression is always adjusted so that it
84    // will not have reference type an expression will never have
85    // reference type (C++ [expr]p6). Use
86    // QualType::getNonReferenceType() to retrieve the non-reference
87    // type. Additionally, inspect Expr::isLvalue to determine whether
88    // an expression that is adjusted in this manner should be
89    // considered an lvalue.
90    assert((t.isNull() || !t->isReferenceType()) &&
91           "Expressions can't have reference type");
92
93    TR = t;
94  }
95
96  /// isValueDependent - Determines whether this expression is
97  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
98  /// array bound of "Chars" in the following example is
99  /// value-dependent.
100  /// @code
101  /// template<int Size, char (&Chars)[Size]> struct meta_string;
102  /// @endcode
103  bool isValueDependent() const { return ValueDependent; }
104
105  /// \brief Set whether this expression is value-dependent or not.
106  void setValueDependent(bool VD) { ValueDependent = VD; }
107
108  /// isTypeDependent - Determines whether this expression is
109  /// type-dependent (C++ [temp.dep.expr]), which means that its type
110  /// could change from one template instantiation to the next. For
111  /// example, the expressions "x" and "x + y" are type-dependent in
112  /// the following code, but "y" is not type-dependent:
113  /// @code
114  /// template<typename T>
115  /// void add(T x, int y) {
116  ///   x + y;
117  /// }
118  /// @endcode
119  bool isTypeDependent() const { return TypeDependent; }
120
121  /// \brief Set whether this expression is type-dependent or not.
122  void setTypeDependent(bool TD) { TypeDependent = TD; }
123
124  /// SourceLocation tokens are not useful in isolation - they are low level
125  /// value objects created/interpreted by SourceManager. We assume AST
126  /// clients will have a pointer to the respective SourceManager.
127  virtual SourceRange getSourceRange() const = 0;
128
129  /// getExprLoc - Return the preferred location for the arrow when diagnosing
130  /// a problem with a generic expression.
131  virtual SourceLocation getExprLoc() const { return getLocStart(); }
132
133  /// isUnusedResultAWarning - Return true if this immediate expression should
134  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
135  /// with location to warn on and the source range[s] to report with the
136  /// warning.
137  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
138                              SourceRange &R2, ASTContext &Ctx) const;
139
140  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
141  /// incomplete type other than void. Nonarray expressions that can be lvalues:
142  ///  - name, where name must be a variable
143  ///  - e[i]
144  ///  - (e), where e must be an lvalue
145  ///  - e.name, where e must be an lvalue
146  ///  - e->name
147  ///  - *e, the type of e cannot be a function type
148  ///  - string-constant
149  ///  - reference type [C++ [expr]]
150  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
151  ///
152  enum isLvalueResult {
153    LV_Valid,
154    LV_NotObjectType,
155    LV_IncompleteVoidType,
156    LV_DuplicateVectorComponents,
157    LV_InvalidExpression,
158    LV_MemberFunction,
159    LV_SubObjCPropertySetting,
160    LV_ClassTemporary
161  };
162  isLvalueResult isLvalue(ASTContext &Ctx) const;
163
164  // Same as above, but excluding checks for non-object and void types in C
165  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
166
167  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
168  /// does not have an incomplete type, does not have a const-qualified type,
169  /// and if it is a structure or union, does not have any member (including,
170  /// recursively, any member or element of all contained aggregates or unions)
171  /// with a const-qualified type.
172  ///
173  /// \param Loc [in] [out] - A source location which *may* be filled
174  /// in with the location of the expression making this a
175  /// non-modifiable lvalue, if specified.
176  enum isModifiableLvalueResult {
177    MLV_Valid,
178    MLV_NotObjectType,
179    MLV_IncompleteVoidType,
180    MLV_DuplicateVectorComponents,
181    MLV_InvalidExpression,
182    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
183    MLV_IncompleteType,
184    MLV_ConstQualified,
185    MLV_ArrayType,
186    MLV_NotBlockQualified,
187    MLV_ReadonlyProperty,
188    MLV_NoSetterProperty,
189    MLV_MemberFunction,
190    MLV_SubObjCPropertySetting,
191    MLV_ClassTemporary
192  };
193  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
194                                              SourceLocation *Loc = 0) const;
195
196  /// \brief If this expression refers to a bit-field, retrieve the
197  /// declaration of that bit-field.
198  FieldDecl *getBitField();
199
200  const FieldDecl *getBitField() const {
201    return const_cast<Expr*>(this)->getBitField();
202  }
203
204  /// \brief Returns whether this expression refers to a vector element.
205  bool refersToVectorElement() const;
206
207  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
208  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
209  /// but also int expressions which are produced by things like comparisons in
210  /// C.
211  bool isKnownToHaveBooleanValue() const;
212
213  /// isIntegerConstantExpr - Return true if this expression is a valid integer
214  /// constant expression, and, if so, return its value in Result.  If not a
215  /// valid i-c-e, return false and fill in Loc (if specified) with the location
216  /// of the invalid expression.
217  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
218                             SourceLocation *Loc = 0,
219                             bool isEvaluated = true) const;
220  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
221    llvm::APSInt X;
222    return isIntegerConstantExpr(X, Ctx, Loc);
223  }
224  /// isConstantInitializer - Returns true if this expression is a constant
225  /// initializer, which can be emitted at compile-time.
226  bool isConstantInitializer(ASTContext &Ctx) const;
227
228  /// EvalResult is a struct with detailed info about an evaluated expression.
229  struct EvalResult {
230    /// Val - This is the value the expression can be folded to.
231    APValue Val;
232
233    /// HasSideEffects - Whether the evaluated expression has side effects.
234    /// For example, (f() && 0) can be folded, but it still has side effects.
235    bool HasSideEffects;
236
237    /// Diag - If the expression is unfoldable, then Diag contains a note
238    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
239    /// position for the error, and DiagExpr is the expression that caused
240    /// the error.
241    /// If the expression is foldable, but not an integer constant expression,
242    /// Diag contains a note diagnostic that describes why it isn't an integer
243    /// constant expression. If the expression *is* an integer constant
244    /// expression, then Diag will be zero.
245    unsigned Diag;
246    const Expr *DiagExpr;
247    SourceLocation DiagLoc;
248
249    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
250  };
251
252  /// Evaluate - Return true if this is a constant which we can fold using
253  /// any crazy technique (that has nothing to do with language standards) that
254  /// we want to.  If this function returns true, it returns the folded constant
255  /// in Result.
256  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
257
258  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
259  /// stack based objects.
260  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
261
262  /// EvaluateAsBooleanCondition - Return true if this is a constant
263  /// which we we can fold and convert to a boolean condition using
264  /// any crazy technique that we want to.
265  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
266
267  /// isEvaluatable - Call Evaluate to see if this expression can be constant
268  /// folded, but discard the result.
269  bool isEvaluatable(ASTContext &Ctx) const;
270
271  /// HasSideEffects - This routine returns true for all those expressions
272  /// which must be evaluated each time and must not be optimization away
273  /// or evaluated at compile time. Example is a function call, volatile
274  /// variable read.
275  bool HasSideEffects(ASTContext &Ctx) const;
276
277  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
278  /// must be called on an expression that constant folds to an integer.
279  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
280
281  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
282  /// with link time known address.
283  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
284
285  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
286  /// also succeeds on stack based, immutable address lvalues.
287  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
288
289  /// \brief Enumeration used to describe how \c isNullPointerConstant()
290  /// should cope with value-dependent expressions.
291  enum NullPointerConstantValueDependence {
292    /// \brief Specifies that the expression should never be value-dependent.
293    NPC_NeverValueDependent = 0,
294
295    /// \brief Specifies that a value-dependent expression of integral or
296    /// dependent type should be considered a null pointer constant.
297    NPC_ValueDependentIsNull,
298
299    /// \brief Specifies that a value-dependent expression should be considered
300    /// to never be a null pointer constant.
301    NPC_ValueDependentIsNotNull
302  };
303
304  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
305  /// integer constant expression with the value zero, or if this is one that is
306  /// cast to void*.
307  bool isNullPointerConstant(ASTContext &Ctx,
308                             NullPointerConstantValueDependence NPC) const;
309
310  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
311  /// write barrier.
312  bool isOBJCGCCandidate(ASTContext &Ctx) const;
313
314  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
315  ///  its subexpression.  If that subexpression is also a ParenExpr,
316  ///  then this method recursively returns its subexpression, and so forth.
317  ///  Otherwise, the method returns the current Expr.
318  Expr *IgnoreParens();
319
320  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
321  /// or CastExprs, returning their operand.
322  Expr *IgnoreParenCasts();
323
324  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
325  /// ParenExpr or ImplicitCastExprs, returning their operand.
326  Expr *IgnoreParenImpCasts();
327
328  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
329  /// value (including ptr->int casts of the same size).  Strip off any
330  /// ParenExpr or CastExprs, returning their operand.
331  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
332
333  /// \brief Determine whether this expression is a default function argument.
334  ///
335  /// Default arguments are implicitly generated in the abstract syntax tree
336  /// by semantic analysis for function calls, object constructions, etc. in
337  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
338  /// this routine also looks through any implicit casts to determine whether
339  /// the expression is a default argument.
340  bool isDefaultArgument() const;
341
342  /// \brief Determine whether this expression directly creates a
343  /// temporary object (of class type).
344  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
345
346  /// \brief If this expression directly creates a temporary object of
347  /// class type, return the expression that actually constructs that
348  /// temporary object.
349  const Expr *getTemporaryObject() const;
350
351  const Expr *IgnoreParens() const {
352    return const_cast<Expr*>(this)->IgnoreParens();
353  }
354  const Expr *IgnoreParenCasts() const {
355    return const_cast<Expr*>(this)->IgnoreParenCasts();
356  }
357  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
358    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
359  }
360
361  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
362  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
363
364  static bool classof(const Stmt *T) {
365    return T->getStmtClass() >= firstExprConstant &&
366           T->getStmtClass() <= lastExprConstant;
367  }
368  static bool classof(const Expr *) { return true; }
369};
370
371
372//===----------------------------------------------------------------------===//
373// Primary Expressions.
374//===----------------------------------------------------------------------===//
375
376/// \brief Represents the qualifier that may precede a C++ name, e.g., the
377/// "std::" in "std::sort".
378struct NameQualifier {
379  /// \brief The nested name specifier.
380  NestedNameSpecifier *NNS;
381
382  /// \brief The source range covered by the nested name specifier.
383  SourceRange Range;
384};
385
386/// \brief Represents an explicit template argument list in C++, e.g.,
387/// the "<int>" in "sort<int>".
388struct ExplicitTemplateArgumentList {
389  /// \brief The source location of the left angle bracket ('<');
390  SourceLocation LAngleLoc;
391
392  /// \brief The source location of the right angle bracket ('>');
393  SourceLocation RAngleLoc;
394
395  /// \brief The number of template arguments in TemplateArgs.
396  /// The actual template arguments (if any) are stored after the
397  /// ExplicitTemplateArgumentList structure.
398  unsigned NumTemplateArgs;
399
400  /// \brief Retrieve the template arguments
401  TemplateArgumentLoc *getTemplateArgs() {
402    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
403  }
404
405  /// \brief Retrieve the template arguments
406  const TemplateArgumentLoc *getTemplateArgs() const {
407    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
408  }
409
410  void initializeFrom(const TemplateArgumentListInfo &List);
411  void copyInto(TemplateArgumentListInfo &List) const;
412  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
413};
414
415/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
416/// enum, etc.
417class DeclRefExpr : public Expr {
418  enum {
419    // Flag on DecoratedD that specifies when this declaration reference
420    // expression has a C++ nested-name-specifier.
421    HasQualifierFlag = 0x01,
422    // Flag on DecoratedD that specifies when this declaration reference
423    // expression has an explicit C++ template argument list.
424    HasExplicitTemplateArgumentListFlag = 0x02
425  };
426
427  // DecoratedD - The declaration that we are referencing, plus two bits to
428  // indicate whether (1) the declaration's name was explicitly qualified and
429  // (2) the declaration's name was followed by an explicit template
430  // argument list.
431  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
432
433  // Loc - The location of the declaration name itself.
434  SourceLocation Loc;
435
436  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
437  NameQualifier *getNameQualifier() {
438    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
439      return 0;
440
441    return reinterpret_cast<NameQualifier *> (this + 1);
442  }
443
444  /// \brief Retrieve the qualifier that preceded the member name, if any.
445  const NameQualifier *getNameQualifier() const {
446    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
447  }
448
449  /// \brief Retrieve the explicit template argument list that followed the
450  /// member template name, if any.
451  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
452    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
453      return 0;
454
455    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
456      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
457
458    return reinterpret_cast<ExplicitTemplateArgumentList *>(
459                                                      getNameQualifier() + 1);
460  }
461
462  /// \brief Retrieve the explicit template argument list that followed the
463  /// member template name, if any.
464  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
465    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
466  }
467
468  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
469              ValueDecl *D, SourceLocation NameLoc,
470              const TemplateArgumentListInfo *TemplateArgs,
471              QualType T);
472
473protected:
474  /// \brief Computes the type- and value-dependence flags for this
475  /// declaration reference expression.
476  void computeDependence();
477
478  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
479    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
480    computeDependence();
481  }
482
483public:
484  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
485    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
486    computeDependence();
487  }
488
489  /// \brief Construct an empty declaration reference expression.
490  explicit DeclRefExpr(EmptyShell Empty)
491    : Expr(DeclRefExprClass, Empty) { }
492
493  static DeclRefExpr *Create(ASTContext &Context,
494                             NestedNameSpecifier *Qualifier,
495                             SourceRange QualifierRange,
496                             ValueDecl *D,
497                             SourceLocation NameLoc,
498                             QualType T,
499                             const TemplateArgumentListInfo *TemplateArgs = 0);
500
501  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
502  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
503  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
504
505  SourceLocation getLocation() const { return Loc; }
506  void setLocation(SourceLocation L) { Loc = L; }
507  virtual SourceRange getSourceRange() const;
508
509  /// \brief Determine whether this declaration reference was preceded by a
510  /// C++ nested-name-specifier, e.g., \c N::foo.
511  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
512
513  /// \brief If the name was qualified, retrieves the source range of
514  /// the nested-name-specifier that precedes the name. Otherwise,
515  /// returns an empty source range.
516  SourceRange getQualifierRange() const {
517    if (!hasQualifier())
518      return SourceRange();
519
520    return getNameQualifier()->Range;
521  }
522
523  /// \brief If the name was qualified, retrieves the nested-name-specifier
524  /// that precedes the name. Otherwise, returns NULL.
525  NestedNameSpecifier *getQualifier() const {
526    if (!hasQualifier())
527      return 0;
528
529    return getNameQualifier()->NNS;
530  }
531
532  /// \brief Determines whether this member expression actually had a C++
533  /// template argument list explicitly specified, e.g., x.f<int>.
534  bool hasExplicitTemplateArgumentList() const {
535    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
536  }
537
538  /// \brief Copies the template arguments (if present) into the given
539  /// structure.
540  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
541    if (hasExplicitTemplateArgumentList())
542      getExplicitTemplateArgumentList()->copyInto(List);
543  }
544
545  /// \brief Retrieve the location of the left angle bracket following the
546  /// member name ('<'), if any.
547  SourceLocation getLAngleLoc() const {
548    if (!hasExplicitTemplateArgumentList())
549      return SourceLocation();
550
551    return getExplicitTemplateArgumentList()->LAngleLoc;
552  }
553
554  /// \brief Retrieve the template arguments provided as part of this
555  /// template-id.
556  const TemplateArgumentLoc *getTemplateArgs() const {
557    if (!hasExplicitTemplateArgumentList())
558      return 0;
559
560    return getExplicitTemplateArgumentList()->getTemplateArgs();
561  }
562
563  /// \brief Retrieve the number of template arguments provided as part of this
564  /// template-id.
565  unsigned getNumTemplateArgs() const {
566    if (!hasExplicitTemplateArgumentList())
567      return 0;
568
569    return getExplicitTemplateArgumentList()->NumTemplateArgs;
570  }
571
572  /// \brief Retrieve the location of the right angle bracket following the
573  /// template arguments ('>').
574  SourceLocation getRAngleLoc() const {
575    if (!hasExplicitTemplateArgumentList())
576      return SourceLocation();
577
578    return getExplicitTemplateArgumentList()->RAngleLoc;
579  }
580
581  static bool classof(const Stmt *T) {
582    return T->getStmtClass() == DeclRefExprClass;
583  }
584  static bool classof(const DeclRefExpr *) { return true; }
585
586  // Iterators
587  virtual child_iterator child_begin();
588  virtual child_iterator child_end();
589};
590
591/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
592class PredefinedExpr : public Expr {
593public:
594  enum IdentType {
595    Func,
596    Function,
597    PrettyFunction,
598    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
599    /// 'virtual' keyword is omitted for virtual member functions.
600    PrettyFunctionNoVirtual
601  };
602
603private:
604  SourceLocation Loc;
605  IdentType Type;
606public:
607  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
608    : Expr(PredefinedExprClass, type, type->isDependentType(),
609           type->isDependentType()), Loc(l), Type(IT) {}
610
611  /// \brief Construct an empty predefined expression.
612  explicit PredefinedExpr(EmptyShell Empty)
613    : Expr(PredefinedExprClass, Empty) { }
614
615  IdentType getIdentType() const { return Type; }
616  void setIdentType(IdentType IT) { Type = IT; }
617
618  SourceLocation getLocation() const { return Loc; }
619  void setLocation(SourceLocation L) { Loc = L; }
620
621  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
622
623  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
624
625  static bool classof(const Stmt *T) {
626    return T->getStmtClass() == PredefinedExprClass;
627  }
628  static bool classof(const PredefinedExpr *) { return true; }
629
630  // Iterators
631  virtual child_iterator child_begin();
632  virtual child_iterator child_end();
633};
634
635class IntegerLiteral : public Expr {
636  llvm::APInt Value;
637  SourceLocation Loc;
638public:
639  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
640  // or UnsignedLongLongTy
641  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
642    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
643    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
644  }
645
646  /// \brief Construct an empty integer literal.
647  explicit IntegerLiteral(EmptyShell Empty)
648    : Expr(IntegerLiteralClass, Empty) { }
649
650  const llvm::APInt &getValue() const { return Value; }
651  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
652
653  /// \brief Retrieve the location of the literal.
654  SourceLocation getLocation() const { return Loc; }
655
656  void setValue(const llvm::APInt &Val) { Value = Val; }
657  void setLocation(SourceLocation Location) { Loc = Location; }
658
659  static bool classof(const Stmt *T) {
660    return T->getStmtClass() == IntegerLiteralClass;
661  }
662  static bool classof(const IntegerLiteral *) { return true; }
663
664  // Iterators
665  virtual child_iterator child_begin();
666  virtual child_iterator child_end();
667};
668
669class CharacterLiteral : public Expr {
670  unsigned Value;
671  SourceLocation Loc;
672  bool IsWide;
673public:
674  // type should be IntTy
675  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
676    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
677      IsWide(iswide) {
678  }
679
680  /// \brief Construct an empty character literal.
681  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
682
683  SourceLocation getLocation() const { return Loc; }
684  bool isWide() const { return IsWide; }
685
686  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
687
688  unsigned getValue() const { return Value; }
689
690  void setLocation(SourceLocation Location) { Loc = Location; }
691  void setWide(bool W) { IsWide = W; }
692  void setValue(unsigned Val) { Value = Val; }
693
694  static bool classof(const Stmt *T) {
695    return T->getStmtClass() == CharacterLiteralClass;
696  }
697  static bool classof(const CharacterLiteral *) { return true; }
698
699  // Iterators
700  virtual child_iterator child_begin();
701  virtual child_iterator child_end();
702};
703
704class FloatingLiteral : public Expr {
705  llvm::APFloat Value;
706  bool IsExact : 1;
707  SourceLocation Loc;
708public:
709  FloatingLiteral(const llvm::APFloat &V, bool isexact,
710                  QualType Type, SourceLocation L)
711    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
712      IsExact(isexact), Loc(L) {}
713
714  /// \brief Construct an empty floating-point literal.
715  explicit FloatingLiteral(EmptyShell Empty)
716    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
717
718  const llvm::APFloat &getValue() const { return Value; }
719  void setValue(const llvm::APFloat &Val) { Value = Val; }
720
721  bool isExact() const { return IsExact; }
722  void setExact(bool E) { IsExact = E; }
723
724  /// getValueAsApproximateDouble - This returns the value as an inaccurate
725  /// double.  Note that this may cause loss of precision, but is useful for
726  /// debugging dumps, etc.
727  double getValueAsApproximateDouble() const;
728
729  SourceLocation getLocation() const { return Loc; }
730  void setLocation(SourceLocation L) { Loc = L; }
731
732  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
733
734  static bool classof(const Stmt *T) {
735    return T->getStmtClass() == FloatingLiteralClass;
736  }
737  static bool classof(const FloatingLiteral *) { return true; }
738
739  // Iterators
740  virtual child_iterator child_begin();
741  virtual child_iterator child_end();
742};
743
744/// ImaginaryLiteral - We support imaginary integer and floating point literals,
745/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
746/// IntegerLiteral classes.  Instances of this class always have a Complex type
747/// whose element type matches the subexpression.
748///
749class ImaginaryLiteral : public Expr {
750  Stmt *Val;
751public:
752  ImaginaryLiteral(Expr *val, QualType Ty)
753    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
754
755  /// \brief Build an empty imaginary literal.
756  explicit ImaginaryLiteral(EmptyShell Empty)
757    : Expr(ImaginaryLiteralClass, Empty) { }
758
759  const Expr *getSubExpr() const { return cast<Expr>(Val); }
760  Expr *getSubExpr() { return cast<Expr>(Val); }
761  void setSubExpr(Expr *E) { Val = E; }
762
763  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
764  static bool classof(const Stmt *T) {
765    return T->getStmtClass() == ImaginaryLiteralClass;
766  }
767  static bool classof(const ImaginaryLiteral *) { return true; }
768
769  // Iterators
770  virtual child_iterator child_begin();
771  virtual child_iterator child_end();
772};
773
774/// StringLiteral - This represents a string literal expression, e.g. "foo"
775/// or L"bar" (wide strings).  The actual string is returned by getStrData()
776/// is NOT null-terminated, and the length of the string is determined by
777/// calling getByteLength().  The C type for a string is always a
778/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
779/// not.
780///
781/// Note that strings in C can be formed by concatenation of multiple string
782/// literal pptokens in translation phase #6.  This keeps track of the locations
783/// of each of these pieces.
784///
785/// Strings in C can also be truncated and extended by assigning into arrays,
786/// e.g. with constructs like:
787///   char X[2] = "foobar";
788/// In this case, getByteLength() will return 6, but the string literal will
789/// have type "char[2]".
790class StringLiteral : public Expr {
791  const char *StrData;
792  unsigned ByteLength;
793  bool IsWide;
794  unsigned NumConcatenated;
795  SourceLocation TokLocs[1];
796
797  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
798
799protected:
800  virtual void DoDestroy(ASTContext &C);
801
802public:
803  /// This is the "fully general" constructor that allows representation of
804  /// strings formed from multiple concatenated tokens.
805  static StringLiteral *Create(ASTContext &C, const char *StrData,
806                               unsigned ByteLength, bool Wide, QualType Ty,
807                               const SourceLocation *Loc, unsigned NumStrs);
808
809  /// Simple constructor for string literals made from one token.
810  static StringLiteral *Create(ASTContext &C, const char *StrData,
811                               unsigned ByteLength,
812                               bool Wide, QualType Ty, SourceLocation Loc) {
813    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
814  }
815
816  /// \brief Construct an empty string literal.
817  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
818
819  llvm::StringRef getString() const {
820    return llvm::StringRef(StrData, ByteLength);
821  }
822  // FIXME: These are deprecated, replace with StringRef.
823  const char *getStrData() const { return StrData; }
824  unsigned getByteLength() const { return ByteLength; }
825
826  /// \brief Sets the string data to the given string data.
827  void setString(ASTContext &C, llvm::StringRef Str);
828
829  bool isWide() const { return IsWide; }
830  void setWide(bool W) { IsWide = W; }
831
832  bool containsNonAsciiOrNull() const {
833    llvm::StringRef Str = getString();
834    for (unsigned i = 0, e = Str.size(); i != e; ++i)
835      if (!isascii(Str[i]) || !Str[i])
836        return true;
837    return false;
838  }
839  /// getNumConcatenated - Get the number of string literal tokens that were
840  /// concatenated in translation phase #6 to form this string literal.
841  unsigned getNumConcatenated() const { return NumConcatenated; }
842
843  SourceLocation getStrTokenLoc(unsigned TokNum) const {
844    assert(TokNum < NumConcatenated && "Invalid tok number");
845    return TokLocs[TokNum];
846  }
847  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
848    assert(TokNum < NumConcatenated && "Invalid tok number");
849    TokLocs[TokNum] = L;
850  }
851
852  typedef const SourceLocation *tokloc_iterator;
853  tokloc_iterator tokloc_begin() const { return TokLocs; }
854  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
855
856  virtual SourceRange getSourceRange() const {
857    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
858  }
859  static bool classof(const Stmt *T) {
860    return T->getStmtClass() == StringLiteralClass;
861  }
862  static bool classof(const StringLiteral *) { return true; }
863
864  // Iterators
865  virtual child_iterator child_begin();
866  virtual child_iterator child_end();
867};
868
869/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
870/// AST node is only formed if full location information is requested.
871class ParenExpr : public Expr {
872  SourceLocation L, R;
873  Stmt *Val;
874public:
875  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
876    : Expr(ParenExprClass, val->getType(),
877           val->isTypeDependent(), val->isValueDependent()),
878      L(l), R(r), Val(val) {}
879
880  /// \brief Construct an empty parenthesized expression.
881  explicit ParenExpr(EmptyShell Empty)
882    : Expr(ParenExprClass, Empty) { }
883
884  const Expr *getSubExpr() const { return cast<Expr>(Val); }
885  Expr *getSubExpr() { return cast<Expr>(Val); }
886  void setSubExpr(Expr *E) { Val = E; }
887
888  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
889
890  /// \brief Get the location of the left parentheses '('.
891  SourceLocation getLParen() const { return L; }
892  void setLParen(SourceLocation Loc) { L = Loc; }
893
894  /// \brief Get the location of the right parentheses ')'.
895  SourceLocation getRParen() const { return R; }
896  void setRParen(SourceLocation Loc) { R = Loc; }
897
898  static bool classof(const Stmt *T) {
899    return T->getStmtClass() == ParenExprClass;
900  }
901  static bool classof(const ParenExpr *) { return true; }
902
903  // Iterators
904  virtual child_iterator child_begin();
905  virtual child_iterator child_end();
906};
907
908
909/// UnaryOperator - This represents the unary-expression's (except sizeof and
910/// alignof), the postinc/postdec operators from postfix-expression, and various
911/// extensions.
912///
913/// Notes on various nodes:
914///
915/// Real/Imag - These return the real/imag part of a complex operand.  If
916///   applied to a non-complex value, the former returns its operand and the
917///   later returns zero in the type of the operand.
918///
919/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
920///   subexpression is a compound literal with the various MemberExpr and
921///   ArraySubscriptExpr's applied to it. (This is only used in C)
922///
923class UnaryOperator : public Expr {
924public:
925  // Note that additions to this should also update the StmtVisitor class.
926  enum Opcode {
927    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
928    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
929    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
930    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
931    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
932    Real, Imag,       // "__real expr"/"__imag expr" Extension.
933    Extension,        // __extension__ marker.
934    OffsetOf          // __builtin_offsetof
935  };
936private:
937  Stmt *Val;
938  Opcode Opc;
939  SourceLocation Loc;
940public:
941
942  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
943    : Expr(UnaryOperatorClass, type,
944           input->isTypeDependent() && opc != OffsetOf,
945           input->isValueDependent()),
946      Val(input), Opc(opc), Loc(l) {}
947
948  /// \brief Build an empty unary operator.
949  explicit UnaryOperator(EmptyShell Empty)
950    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
951
952  Opcode getOpcode() const { return Opc; }
953  void setOpcode(Opcode O) { Opc = O; }
954
955  Expr *getSubExpr() const { return cast<Expr>(Val); }
956  void setSubExpr(Expr *E) { Val = E; }
957
958  /// getOperatorLoc - Return the location of the operator.
959  SourceLocation getOperatorLoc() const { return Loc; }
960  void setOperatorLoc(SourceLocation L) { Loc = L; }
961
962  /// isPostfix - Return true if this is a postfix operation, like x++.
963  static bool isPostfix(Opcode Op) {
964    return Op == PostInc || Op == PostDec;
965  }
966
967  /// isPostfix - Return true if this is a prefix operation, like --x.
968  static bool isPrefix(Opcode Op) {
969    return Op == PreInc || Op == PreDec;
970  }
971
972  bool isPrefix() const { return isPrefix(Opc); }
973  bool isPostfix() const { return isPostfix(Opc); }
974  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
975  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
976  bool isOffsetOfOp() const { return Opc == OffsetOf; }
977  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
978  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
979
980  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
981  /// corresponds to, e.g. "sizeof" or "[pre]++"
982  static const char *getOpcodeStr(Opcode Op);
983
984  /// \brief Retrieve the unary opcode that corresponds to the given
985  /// overloaded operator.
986  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
987
988  /// \brief Retrieve the overloaded operator kind that corresponds to
989  /// the given unary opcode.
990  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
991
992  virtual SourceRange getSourceRange() const {
993    if (isPostfix())
994      return SourceRange(Val->getLocStart(), Loc);
995    else
996      return SourceRange(Loc, Val->getLocEnd());
997  }
998  virtual SourceLocation getExprLoc() const { return Loc; }
999
1000  static bool classof(const Stmt *T) {
1001    return T->getStmtClass() == UnaryOperatorClass;
1002  }
1003  static bool classof(const UnaryOperator *) { return true; }
1004
1005  // Iterators
1006  virtual child_iterator child_begin();
1007  virtual child_iterator child_end();
1008};
1009
1010/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1011/// offsetof(record-type, member-designator). For example, given:
1012/// @code
1013/// struct S {
1014///   float f;
1015///   double d;
1016/// };
1017/// struct T {
1018///   int i;
1019///   struct S s[10];
1020/// };
1021/// @endcode
1022/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1023
1024class OffsetOfExpr : public Expr {
1025public:
1026  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1027  class OffsetOfNode {
1028  public:
1029    /// \brief The kind of offsetof node we have.
1030    enum Kind {
1031      /// \brief An index into an array.
1032      Array = 0x00,
1033      /// \brief A field.
1034      Field = 0x01,
1035      /// \brief A field in a dependent type, known only by its name.
1036      Identifier = 0x02,
1037      /// \brief An implicit indirection through a C++ base class, when the
1038      /// field found is in a base class.
1039      Base = 0x03
1040    };
1041
1042  private:
1043    enum { MaskBits = 2, Mask = 0x03 };
1044
1045    /// \brief The source range that covers this part of the designator.
1046    SourceRange Range;
1047
1048    /// \brief The data describing the designator, which comes in three
1049    /// different forms, depending on the lower two bits.
1050    ///   - An unsigned index into the array of Expr*'s stored after this node
1051    ///     in memory, for [constant-expression] designators.
1052    ///   - A FieldDecl*, for references to a known field.
1053    ///   - An IdentifierInfo*, for references to a field with a given name
1054    ///     when the class type is dependent.
1055    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1056    ///     base class.
1057    uintptr_t Data;
1058
1059  public:
1060    /// \brief Create an offsetof node that refers to an array element.
1061    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1062                 SourceLocation RBracketLoc)
1063      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1064
1065    /// \brief Create an offsetof node that refers to a field.
1066    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1067                 SourceLocation NameLoc)
1068      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1069        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1070
1071    /// \brief Create an offsetof node that refers to an identifier.
1072    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1073                 SourceLocation NameLoc)
1074      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1075        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1076
1077    /// \brief Create an offsetof node that refers into a C++ base class.
1078    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1079      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1080
1081    /// \brief Determine what kind of offsetof node this is.
1082    Kind getKind() const {
1083      return static_cast<Kind>(Data & Mask);
1084    }
1085
1086    /// \brief For an array element node, returns the index into the array
1087    /// of expressions.
1088    unsigned getArrayExprIndex() const {
1089      assert(getKind() == Array);
1090      return Data >> 2;
1091    }
1092
1093    /// \brief For a field offsetof node, returns the field.
1094    FieldDecl *getField() const {
1095      assert(getKind() == Field);
1096      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1097    }
1098
1099    /// \brief For a field or identifier offsetof node, returns the name of
1100    /// the field.
1101    IdentifierInfo *getFieldName() const;
1102
1103    /// \brief For a base class node, returns the base specifier.
1104    CXXBaseSpecifier *getBase() const {
1105      assert(getKind() == Base);
1106      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1107    }
1108
1109    /// \brief Retrieve the source range that covers this offsetof node.
1110    ///
1111    /// For an array element node, the source range contains the locations of
1112    /// the square brackets. For a field or identifier node, the source range
1113    /// contains the location of the period (if there is one) and the
1114    /// identifier.
1115    SourceRange getRange() const { return Range; }
1116  };
1117
1118private:
1119
1120  SourceLocation OperatorLoc, RParenLoc;
1121  // Base type;
1122  TypeSourceInfo *TSInfo;
1123  // Number of sub-components (i.e. instances of OffsetOfNode).
1124  unsigned NumComps;
1125  // Number of sub-expressions (i.e. array subscript expressions).
1126  unsigned NumExprs;
1127
1128  OffsetOfExpr(ASTContext &C, QualType type,
1129               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1130               OffsetOfNode* compsPtr, unsigned numComps,
1131               Expr** exprsPtr, unsigned numExprs,
1132               SourceLocation RParenLoc);
1133
1134  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1135    : Expr(OffsetOfExprClass, EmptyShell()),
1136      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1137
1138public:
1139
1140  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1141                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1142                              OffsetOfNode* compsPtr, unsigned numComps,
1143                              Expr** exprsPtr, unsigned numExprs,
1144                              SourceLocation RParenLoc);
1145
1146  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1147                                   unsigned NumComps, unsigned NumExprs);
1148
1149  /// getOperatorLoc - Return the location of the operator.
1150  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1151  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1152
1153  /// \brief Return the location of the right parentheses.
1154  SourceLocation getRParenLoc() const { return RParenLoc; }
1155  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1156
1157  TypeSourceInfo *getTypeSourceInfo() const {
1158    return TSInfo;
1159  }
1160  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1161    TSInfo = tsi;
1162  }
1163
1164  const OffsetOfNode &getComponent(unsigned Idx) {
1165    assert(Idx < NumComps && "Subscript out of range");
1166    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1167  }
1168
1169  void setComponent(unsigned Idx, OffsetOfNode ON) {
1170    assert(Idx < NumComps && "Subscript out of range");
1171    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1172  }
1173
1174  unsigned getNumComponents() const {
1175    return NumComps;
1176  }
1177
1178  Expr* getIndexExpr(unsigned Idx) {
1179    assert(Idx < NumExprs && "Subscript out of range");
1180    return reinterpret_cast<Expr **>(
1181                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1182  }
1183
1184  void setIndexExpr(unsigned Idx, Expr* E) {
1185    assert(Idx < NumComps && "Subscript out of range");
1186    reinterpret_cast<Expr **>(
1187                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1188  }
1189
1190  unsigned getNumExpressions() const {
1191    return NumExprs;
1192  }
1193
1194  virtual SourceRange getSourceRange() const {
1195    return SourceRange(OperatorLoc, RParenLoc);
1196  }
1197
1198  static bool classof(const Stmt *T) {
1199    return T->getStmtClass() == OffsetOfExprClass;
1200  }
1201
1202  static bool classof(const OffsetOfExpr *) { return true; }
1203
1204  // Iterators
1205  virtual child_iterator child_begin();
1206  virtual child_iterator child_end();
1207};
1208
1209/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1210/// types and expressions.
1211class SizeOfAlignOfExpr : public Expr {
1212  bool isSizeof : 1;  // true if sizeof, false if alignof.
1213  bool isType : 1;    // true if operand is a type, false if an expression
1214  union {
1215    TypeSourceInfo *Ty;
1216    Stmt *Ex;
1217  } Argument;
1218  SourceLocation OpLoc, RParenLoc;
1219
1220protected:
1221  virtual void DoDestroy(ASTContext& C);
1222
1223public:
1224  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1225                    QualType resultType, SourceLocation op,
1226                    SourceLocation rp) :
1227      Expr(SizeOfAlignOfExprClass, resultType,
1228           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1229           // Value-dependent if the argument is type-dependent.
1230           TInfo->getType()->isDependentType()),
1231      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1232    Argument.Ty = TInfo;
1233  }
1234
1235  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1236                    QualType resultType, SourceLocation op,
1237                    SourceLocation rp) :
1238      Expr(SizeOfAlignOfExprClass, resultType,
1239           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1240           // Value-dependent if the argument is type-dependent.
1241           E->isTypeDependent()),
1242      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1243    Argument.Ex = E;
1244  }
1245
1246  /// \brief Construct an empty sizeof/alignof expression.
1247  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1248    : Expr(SizeOfAlignOfExprClass, Empty) { }
1249
1250  bool isSizeOf() const { return isSizeof; }
1251  void setSizeof(bool S) { isSizeof = S; }
1252
1253  bool isArgumentType() const { return isType; }
1254  QualType getArgumentType() const {
1255    return getArgumentTypeInfo()->getType();
1256  }
1257  TypeSourceInfo *getArgumentTypeInfo() const {
1258    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1259    return Argument.Ty;
1260  }
1261  Expr *getArgumentExpr() {
1262    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1263    return static_cast<Expr*>(Argument.Ex);
1264  }
1265  const Expr *getArgumentExpr() const {
1266    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1267  }
1268
1269  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1270  void setArgument(TypeSourceInfo *TInfo) {
1271    Argument.Ty = TInfo;
1272    isType = true;
1273  }
1274
1275  /// Gets the argument type, or the type of the argument expression, whichever
1276  /// is appropriate.
1277  QualType getTypeOfArgument() const {
1278    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1279  }
1280
1281  SourceLocation getOperatorLoc() const { return OpLoc; }
1282  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1283
1284  SourceLocation getRParenLoc() const { return RParenLoc; }
1285  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1286
1287  virtual SourceRange getSourceRange() const {
1288    return SourceRange(OpLoc, RParenLoc);
1289  }
1290
1291  static bool classof(const Stmt *T) {
1292    return T->getStmtClass() == SizeOfAlignOfExprClass;
1293  }
1294  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1295
1296  // Iterators
1297  virtual child_iterator child_begin();
1298  virtual child_iterator child_end();
1299};
1300
1301//===----------------------------------------------------------------------===//
1302// Postfix Operators.
1303//===----------------------------------------------------------------------===//
1304
1305/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1306class ArraySubscriptExpr : public Expr {
1307  enum { LHS, RHS, END_EXPR=2 };
1308  Stmt* SubExprs[END_EXPR];
1309  SourceLocation RBracketLoc;
1310public:
1311  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1312                     SourceLocation rbracketloc)
1313  : Expr(ArraySubscriptExprClass, t,
1314         lhs->isTypeDependent() || rhs->isTypeDependent(),
1315         lhs->isValueDependent() || rhs->isValueDependent()),
1316    RBracketLoc(rbracketloc) {
1317    SubExprs[LHS] = lhs;
1318    SubExprs[RHS] = rhs;
1319  }
1320
1321  /// \brief Create an empty array subscript expression.
1322  explicit ArraySubscriptExpr(EmptyShell Shell)
1323    : Expr(ArraySubscriptExprClass, Shell) { }
1324
1325  /// An array access can be written A[4] or 4[A] (both are equivalent).
1326  /// - getBase() and getIdx() always present the normalized view: A[4].
1327  ///    In this case getBase() returns "A" and getIdx() returns "4".
1328  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1329  ///    4[A] getLHS() returns "4".
1330  /// Note: Because vector element access is also written A[4] we must
1331  /// predicate the format conversion in getBase and getIdx only on the
1332  /// the type of the RHS, as it is possible for the LHS to be a vector of
1333  /// integer type
1334  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1335  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1336  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1337
1338  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1339  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1340  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1341
1342  Expr *getBase() {
1343    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1344  }
1345
1346  const Expr *getBase() const {
1347    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1348  }
1349
1350  Expr *getIdx() {
1351    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1352  }
1353
1354  const Expr *getIdx() const {
1355    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1356  }
1357
1358  virtual SourceRange getSourceRange() const {
1359    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1360  }
1361
1362  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1363  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1364
1365  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1366
1367  static bool classof(const Stmt *T) {
1368    return T->getStmtClass() == ArraySubscriptExprClass;
1369  }
1370  static bool classof(const ArraySubscriptExpr *) { return true; }
1371
1372  // Iterators
1373  virtual child_iterator child_begin();
1374  virtual child_iterator child_end();
1375};
1376
1377
1378/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1379/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1380/// while its subclasses may represent alternative syntax that (semantically)
1381/// results in a function call. For example, CXXOperatorCallExpr is
1382/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1383/// "str1 + str2" to resolve to a function call.
1384class CallExpr : public Expr {
1385  enum { FN=0, ARGS_START=1 };
1386  Stmt **SubExprs;
1387  unsigned NumArgs;
1388  SourceLocation RParenLoc;
1389
1390protected:
1391  // This version of the constructor is for derived classes.
1392  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1393           QualType t, SourceLocation rparenloc);
1394
1395  virtual void DoDestroy(ASTContext& C);
1396
1397public:
1398  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1399           SourceLocation rparenloc);
1400
1401  /// \brief Build an empty call expression.
1402  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1403
1404  ~CallExpr() {}
1405
1406  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1407  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1408  void setCallee(Expr *F) { SubExprs[FN] = F; }
1409
1410  Decl *getCalleeDecl();
1411  const Decl *getCalleeDecl() const {
1412    return const_cast<CallExpr*>(this)->getCalleeDecl();
1413  }
1414
1415  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1416  FunctionDecl *getDirectCallee();
1417  const FunctionDecl *getDirectCallee() const {
1418    return const_cast<CallExpr*>(this)->getDirectCallee();
1419  }
1420
1421  /// getNumArgs - Return the number of actual arguments to this call.
1422  ///
1423  unsigned getNumArgs() const { return NumArgs; }
1424
1425  /// getArg - Return the specified argument.
1426  Expr *getArg(unsigned Arg) {
1427    assert(Arg < NumArgs && "Arg access out of range!");
1428    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1429  }
1430  const Expr *getArg(unsigned Arg) const {
1431    assert(Arg < NumArgs && "Arg access out of range!");
1432    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1433  }
1434
1435  /// setArg - Set the specified argument.
1436  void setArg(unsigned Arg, Expr *ArgExpr) {
1437    assert(Arg < NumArgs && "Arg access out of range!");
1438    SubExprs[Arg+ARGS_START] = ArgExpr;
1439  }
1440
1441  /// setNumArgs - This changes the number of arguments present in this call.
1442  /// Any orphaned expressions are deleted by this, and any new operands are set
1443  /// to null.
1444  void setNumArgs(ASTContext& C, unsigned NumArgs);
1445
1446  typedef ExprIterator arg_iterator;
1447  typedef ConstExprIterator const_arg_iterator;
1448
1449  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1450  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1451  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1452  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1453
1454  /// getNumCommas - Return the number of commas that must have been present in
1455  /// this function call.
1456  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1457
1458  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1459  /// not, return 0.
1460  unsigned isBuiltinCall(ASTContext &Context) const;
1461
1462  /// getCallReturnType - Get the return type of the call expr. This is not
1463  /// always the type of the expr itself, if the return type is a reference
1464  /// type.
1465  QualType getCallReturnType() const;
1466
1467  SourceLocation getRParenLoc() const { return RParenLoc; }
1468  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1469
1470  virtual SourceRange getSourceRange() const {
1471    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1472  }
1473
1474  static bool classof(const Stmt *T) {
1475    return T->getStmtClass() >= firstCallExprConstant &&
1476           T->getStmtClass() <= lastCallExprConstant;
1477  }
1478  static bool classof(const CallExpr *) { return true; }
1479
1480  // Iterators
1481  virtual child_iterator child_begin();
1482  virtual child_iterator child_end();
1483};
1484
1485/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1486///
1487class MemberExpr : public Expr {
1488  /// Extra data stored in some member expressions.
1489  struct MemberNameQualifier : public NameQualifier {
1490    DeclAccessPair FoundDecl;
1491  };
1492
1493  /// Base - the expression for the base pointer or structure references.  In
1494  /// X.F, this is "X".
1495  Stmt *Base;
1496
1497  /// MemberDecl - This is the decl being referenced by the field/member name.
1498  /// In X.F, this is the decl referenced by F.
1499  ValueDecl *MemberDecl;
1500
1501  /// MemberLoc - This is the location of the member name.
1502  SourceLocation MemberLoc;
1503
1504  /// IsArrow - True if this is "X->F", false if this is "X.F".
1505  bool IsArrow : 1;
1506
1507  /// \brief True if this member expression used a nested-name-specifier to
1508  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1509  /// declaration.  When true, a MemberNameQualifier
1510  /// structure is allocated immediately after the MemberExpr.
1511  bool HasQualifierOrFoundDecl : 1;
1512
1513  /// \brief True if this member expression specified a template argument list
1514  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1515  /// structure (and its TemplateArguments) are allocated immediately after
1516  /// the MemberExpr or, if the member expression also has a qualifier, after
1517  /// the MemberNameQualifier structure.
1518  bool HasExplicitTemplateArgumentList : 1;
1519
1520  /// \brief Retrieve the qualifier that preceded the member name, if any.
1521  MemberNameQualifier *getMemberQualifier() {
1522    assert(HasQualifierOrFoundDecl);
1523    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1524  }
1525
1526  /// \brief Retrieve the qualifier that preceded the member name, if any.
1527  const MemberNameQualifier *getMemberQualifier() const {
1528    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1529  }
1530
1531  /// \brief Retrieve the explicit template argument list that followed the
1532  /// member template name, if any.
1533  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1534    if (!HasExplicitTemplateArgumentList)
1535      return 0;
1536
1537    if (!HasQualifierOrFoundDecl)
1538      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1539
1540    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1541                                                      getMemberQualifier() + 1);
1542  }
1543
1544  /// \brief Retrieve the explicit template argument list that followed the
1545  /// member template name, if any.
1546  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1547    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1548  }
1549
1550public:
1551  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1552             SourceLocation l, QualType ty)
1553    : Expr(MemberExprClass, ty,
1554           base->isTypeDependent(), base->isValueDependent()),
1555      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1556      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1557
1558  /// \brief Build an empty member reference expression.
1559  explicit MemberExpr(EmptyShell Empty)
1560    : Expr(MemberExprClass, Empty), HasQualifierOrFoundDecl(false),
1561      HasExplicitTemplateArgumentList(false) { }
1562
1563  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1564                            NestedNameSpecifier *qual, SourceRange qualrange,
1565                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1566                            SourceLocation l,
1567                            const TemplateArgumentListInfo *targs,
1568                            QualType ty);
1569
1570  void setBase(Expr *E) { Base = E; }
1571  Expr *getBase() const { return cast<Expr>(Base); }
1572
1573  /// \brief Retrieve the member declaration to which this expression refers.
1574  ///
1575  /// The returned declaration will either be a FieldDecl or (in C++)
1576  /// a CXXMethodDecl.
1577  ValueDecl *getMemberDecl() const { return MemberDecl; }
1578  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1579
1580  /// \brief Retrieves the declaration found by lookup.
1581  DeclAccessPair getFoundDecl() const {
1582    if (!HasQualifierOrFoundDecl)
1583      return DeclAccessPair::make(getMemberDecl(),
1584                                  getMemberDecl()->getAccess());
1585    return getMemberQualifier()->FoundDecl;
1586  }
1587
1588  /// \brief Determines whether this member expression actually had
1589  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1590  /// x->Base::foo.
1591  bool hasQualifier() const { return getQualifier() != 0; }
1592
1593  /// \brief If the member name was qualified, retrieves the source range of
1594  /// the nested-name-specifier that precedes the member name. Otherwise,
1595  /// returns an empty source range.
1596  SourceRange getQualifierRange() const {
1597    if (!HasQualifierOrFoundDecl)
1598      return SourceRange();
1599
1600    return getMemberQualifier()->Range;
1601  }
1602
1603  /// \brief If the member name was qualified, retrieves the
1604  /// nested-name-specifier that precedes the member name. Otherwise, returns
1605  /// NULL.
1606  NestedNameSpecifier *getQualifier() const {
1607    if (!HasQualifierOrFoundDecl)
1608      return 0;
1609
1610    return getMemberQualifier()->NNS;
1611  }
1612
1613  /// \brief Determines whether this member expression actually had a C++
1614  /// template argument list explicitly specified, e.g., x.f<int>.
1615  bool hasExplicitTemplateArgumentList() const {
1616    return HasExplicitTemplateArgumentList;
1617  }
1618
1619  /// \brief Copies the template arguments (if present) into the given
1620  /// structure.
1621  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1622    if (hasExplicitTemplateArgumentList())
1623      getExplicitTemplateArgumentList()->copyInto(List);
1624  }
1625
1626  /// \brief Retrieve the location of the left angle bracket following the
1627  /// member name ('<'), if any.
1628  SourceLocation getLAngleLoc() const {
1629    if (!HasExplicitTemplateArgumentList)
1630      return SourceLocation();
1631
1632    return getExplicitTemplateArgumentList()->LAngleLoc;
1633  }
1634
1635  /// \brief Retrieve the template arguments provided as part of this
1636  /// template-id.
1637  const TemplateArgumentLoc *getTemplateArgs() const {
1638    if (!HasExplicitTemplateArgumentList)
1639      return 0;
1640
1641    return getExplicitTemplateArgumentList()->getTemplateArgs();
1642  }
1643
1644  /// \brief Retrieve the number of template arguments provided as part of this
1645  /// template-id.
1646  unsigned getNumTemplateArgs() const {
1647    if (!HasExplicitTemplateArgumentList)
1648      return 0;
1649
1650    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1651  }
1652
1653  /// \brief Retrieve the location of the right angle bracket following the
1654  /// template arguments ('>').
1655  SourceLocation getRAngleLoc() const {
1656    if (!HasExplicitTemplateArgumentList)
1657      return SourceLocation();
1658
1659    return getExplicitTemplateArgumentList()->RAngleLoc;
1660  }
1661
1662  bool isArrow() const { return IsArrow; }
1663  void setArrow(bool A) { IsArrow = A; }
1664
1665  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1666  /// location of 'F'.
1667  SourceLocation getMemberLoc() const { return MemberLoc; }
1668  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1669
1670  virtual SourceRange getSourceRange() const {
1671    // If we have an implicit base (like a C++ implicit this),
1672    // make sure not to return its location
1673    SourceLocation EndLoc = MemberLoc;
1674    if (HasExplicitTemplateArgumentList)
1675      EndLoc = getRAngleLoc();
1676
1677    SourceLocation BaseLoc = getBase()->getLocStart();
1678    if (BaseLoc.isInvalid())
1679      return SourceRange(MemberLoc, EndLoc);
1680    return SourceRange(BaseLoc, EndLoc);
1681  }
1682
1683  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1684
1685  static bool classof(const Stmt *T) {
1686    return T->getStmtClass() == MemberExprClass;
1687  }
1688  static bool classof(const MemberExpr *) { return true; }
1689
1690  // Iterators
1691  virtual child_iterator child_begin();
1692  virtual child_iterator child_end();
1693};
1694
1695/// CompoundLiteralExpr - [C99 6.5.2.5]
1696///
1697class CompoundLiteralExpr : public Expr {
1698  /// LParenLoc - If non-null, this is the location of the left paren in a
1699  /// compound literal like "(int){4}".  This can be null if this is a
1700  /// synthesized compound expression.
1701  SourceLocation LParenLoc;
1702
1703  /// The type as written.  This can be an incomplete array type, in
1704  /// which case the actual expression type will be different.
1705  TypeSourceInfo *TInfo;
1706  Stmt *Init;
1707  bool FileScope;
1708public:
1709  // FIXME: Can compound literals be value-dependent?
1710  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1711                      QualType T, Expr *init, bool fileScope)
1712    : Expr(CompoundLiteralExprClass, T,
1713           tinfo->getType()->isDependentType(), false),
1714      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1715
1716  /// \brief Construct an empty compound literal.
1717  explicit CompoundLiteralExpr(EmptyShell Empty)
1718    : Expr(CompoundLiteralExprClass, Empty) { }
1719
1720  const Expr *getInitializer() const { return cast<Expr>(Init); }
1721  Expr *getInitializer() { return cast<Expr>(Init); }
1722  void setInitializer(Expr *E) { Init = E; }
1723
1724  bool isFileScope() const { return FileScope; }
1725  void setFileScope(bool FS) { FileScope = FS; }
1726
1727  SourceLocation getLParenLoc() const { return LParenLoc; }
1728  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1729
1730  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1731  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1732
1733  virtual SourceRange getSourceRange() const {
1734    // FIXME: Init should never be null.
1735    if (!Init)
1736      return SourceRange();
1737    if (LParenLoc.isInvalid())
1738      return Init->getSourceRange();
1739    return SourceRange(LParenLoc, Init->getLocEnd());
1740  }
1741
1742  static bool classof(const Stmt *T) {
1743    return T->getStmtClass() == CompoundLiteralExprClass;
1744  }
1745  static bool classof(const CompoundLiteralExpr *) { return true; }
1746
1747  // Iterators
1748  virtual child_iterator child_begin();
1749  virtual child_iterator child_end();
1750};
1751
1752/// CastExpr - Base class for type casts, including both implicit
1753/// casts (ImplicitCastExpr) and explicit casts that have some
1754/// representation in the source code (ExplicitCastExpr's derived
1755/// classes).
1756class CastExpr : public Expr {
1757public:
1758  /// CastKind - the kind of cast this represents.
1759  enum CastKind {
1760    /// CK_Unknown - Unknown cast kind.
1761    /// FIXME: The goal is to get rid of this and make all casts have a
1762    /// kind so that the AST client doesn't have to try to figure out what's
1763    /// going on.
1764    CK_Unknown,
1765
1766    /// CK_BitCast - Used for reinterpret_cast.
1767    CK_BitCast,
1768
1769    /// CK_NoOp - Used for const_cast.
1770    CK_NoOp,
1771
1772    /// CK_BaseToDerived - Base to derived class casts.
1773    CK_BaseToDerived,
1774
1775    /// CK_DerivedToBase - Derived to base class casts.
1776    CK_DerivedToBase,
1777
1778    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1779    /// assume that the derived pointer is not null.
1780    CK_UncheckedDerivedToBase,
1781
1782    /// CK_Dynamic - Dynamic cast.
1783    CK_Dynamic,
1784
1785    /// CK_ToUnion - Cast to union (GCC extension).
1786    CK_ToUnion,
1787
1788    /// CK_ArrayToPointerDecay - Array to pointer decay.
1789    CK_ArrayToPointerDecay,
1790
1791    // CK_FunctionToPointerDecay - Function to pointer decay.
1792    CK_FunctionToPointerDecay,
1793
1794    /// CK_NullToMemberPointer - Null pointer to member pointer.
1795    CK_NullToMemberPointer,
1796
1797    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1798    /// member pointer in derived class.
1799    CK_BaseToDerivedMemberPointer,
1800
1801    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1802    /// member pointer in base class.
1803    CK_DerivedToBaseMemberPointer,
1804
1805    /// CK_UserDefinedConversion - Conversion using a user defined type
1806    /// conversion function.
1807    CK_UserDefinedConversion,
1808
1809    /// CK_ConstructorConversion - Conversion by constructor
1810    CK_ConstructorConversion,
1811
1812    /// CK_IntegralToPointer - Integral to pointer
1813    CK_IntegralToPointer,
1814
1815    /// CK_PointerToIntegral - Pointer to integral
1816    CK_PointerToIntegral,
1817
1818    /// CK_ToVoid - Cast to void.
1819    CK_ToVoid,
1820
1821    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1822    /// vector type with the same element type as the src type. Splats the
1823    /// src expression into the destination expression.
1824    CK_VectorSplat,
1825
1826    /// CK_IntegralCast - Casting between integral types of different size.
1827    CK_IntegralCast,
1828
1829    /// CK_IntegralToFloating - Integral to floating point.
1830    CK_IntegralToFloating,
1831
1832    /// CK_FloatingToIntegral - Floating point to integral.
1833    CK_FloatingToIntegral,
1834
1835    /// CK_FloatingCast - Casting between floating types of different size.
1836    CK_FloatingCast,
1837
1838    /// CK_MemberPointerToBoolean - Member pointer to boolean
1839    CK_MemberPointerToBoolean,
1840
1841    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1842    /// pointer
1843    CK_AnyPointerToObjCPointerCast,
1844    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1845    /// pointer
1846    CK_AnyPointerToBlockPointerCast
1847
1848  };
1849
1850private:
1851  CastKind Kind;
1852  Stmt *Op;
1853
1854  /// BasePath - For derived-to-base and base-to-derived casts, the base array
1855  /// contains the inheritance path.
1856  CXXBaseSpecifierArray BasePath;
1857
1858  void CheckBasePath() const {
1859#ifndef NDEBUG
1860    switch (getCastKind()) {
1861    case CK_DerivedToBase:
1862    case CK_UncheckedDerivedToBase:
1863    case CK_DerivedToBaseMemberPointer:
1864    case CK_BaseToDerived:
1865    case CK_BaseToDerivedMemberPointer:
1866      assert(!BasePath.empty() && "Cast kind should have a base path!");
1867      break;
1868
1869    // These should not have an inheritance path.
1870    case CK_Unknown:
1871    case CK_BitCast:
1872    case CK_NoOp:
1873    case CK_Dynamic:
1874    case CK_ToUnion:
1875    case CK_ArrayToPointerDecay:
1876    case CK_FunctionToPointerDecay:
1877    case CK_NullToMemberPointer:
1878    case CK_UserDefinedConversion:
1879    case CK_ConstructorConversion:
1880    case CK_IntegralToPointer:
1881    case CK_PointerToIntegral:
1882    case CK_ToVoid:
1883    case CK_VectorSplat:
1884    case CK_IntegralCast:
1885    case CK_IntegralToFloating:
1886    case CK_FloatingToIntegral:
1887    case CK_FloatingCast:
1888    case CK_MemberPointerToBoolean:
1889    case CK_AnyPointerToObjCPointerCast:
1890    case CK_AnyPointerToBlockPointerCast:
1891      assert(BasePath.empty() && "Cast kind should not have a base path!");
1892      break;
1893    }
1894#endif
1895  }
1896
1897protected:
1898  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
1899           CXXBaseSpecifierArray BasePath) :
1900    Expr(SC, ty,
1901         // Cast expressions are type-dependent if the type is
1902         // dependent (C++ [temp.dep.expr]p3).
1903         ty->isDependentType(),
1904         // Cast expressions are value-dependent if the type is
1905         // dependent or if the subexpression is value-dependent.
1906         ty->isDependentType() || (op && op->isValueDependent())),
1907    Kind(kind), Op(op), BasePath(BasePath) {
1908      CheckBasePath();
1909    }
1910
1911  /// \brief Construct an empty cast.
1912  CastExpr(StmtClass SC, EmptyShell Empty)
1913    : Expr(SC, Empty) { }
1914
1915  virtual void DoDestroy(ASTContext &C);
1916
1917public:
1918  CastKind getCastKind() const { return Kind; }
1919  void setCastKind(CastKind K) { Kind = K; }
1920  const char *getCastKindName() const;
1921
1922  Expr *getSubExpr() { return cast<Expr>(Op); }
1923  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1924  void setSubExpr(Expr *E) { Op = E; }
1925
1926  /// \brief Retrieve the cast subexpression as it was written in the source
1927  /// code, looking through any implicit casts or other intermediate nodes
1928  /// introduced by semantic analysis.
1929  Expr *getSubExprAsWritten();
1930  const Expr *getSubExprAsWritten() const {
1931    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
1932  }
1933
1934  const CXXBaseSpecifierArray& getBasePath() const { return BasePath; }
1935
1936  static bool classof(const Stmt *T) {
1937    return T->getStmtClass() >= firstCastExprConstant &&
1938           T->getStmtClass() <= lastCastExprConstant;
1939  }
1940  static bool classof(const CastExpr *) { return true; }
1941
1942  // Iterators
1943  virtual child_iterator child_begin();
1944  virtual child_iterator child_end();
1945};
1946
1947/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1948/// conversions, which have no direct representation in the original
1949/// source code. For example: converting T[]->T*, void f()->void
1950/// (*f)(), float->double, short->int, etc.
1951///
1952/// In C, implicit casts always produce rvalues. However, in C++, an
1953/// implicit cast whose result is being bound to a reference will be
1954/// an lvalue. For example:
1955///
1956/// @code
1957/// class Base { };
1958/// class Derived : public Base { };
1959/// void f(Derived d) {
1960///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1961/// }
1962/// @endcode
1963class ImplicitCastExpr : public CastExpr {
1964  /// LvalueCast - Whether this cast produces an lvalue.
1965  bool LvalueCast;
1966
1967public:
1968  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
1969                   CXXBaseSpecifierArray BasePath, bool Lvalue)
1970    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePath),
1971    LvalueCast(Lvalue) { }
1972
1973  /// \brief Construct an empty implicit cast.
1974  explicit ImplicitCastExpr(EmptyShell Shell)
1975    : CastExpr(ImplicitCastExprClass, Shell) { }
1976
1977  virtual SourceRange getSourceRange() const {
1978    return getSubExpr()->getSourceRange();
1979  }
1980
1981  /// isLvalueCast - Whether this cast produces an lvalue.
1982  bool isLvalueCast() const { return LvalueCast; }
1983
1984  /// setLvalueCast - Set whether this cast produces an lvalue.
1985  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1986
1987  static bool classof(const Stmt *T) {
1988    return T->getStmtClass() == ImplicitCastExprClass;
1989  }
1990  static bool classof(const ImplicitCastExpr *) { return true; }
1991};
1992
1993/// ExplicitCastExpr - An explicit cast written in the source
1994/// code.
1995///
1996/// This class is effectively an abstract class, because it provides
1997/// the basic representation of an explicitly-written cast without
1998/// specifying which kind of cast (C cast, functional cast, static
1999/// cast, etc.) was written; specific derived classes represent the
2000/// particular style of cast and its location information.
2001///
2002/// Unlike implicit casts, explicit cast nodes have two different
2003/// types: the type that was written into the source code, and the
2004/// actual type of the expression as determined by semantic
2005/// analysis. These types may differ slightly. For example, in C++ one
2006/// can cast to a reference type, which indicates that the resulting
2007/// expression will be an lvalue. The reference type, however, will
2008/// not be used as the type of the expression.
2009class ExplicitCastExpr : public CastExpr {
2010  /// TInfo - Source type info for the (written) type
2011  /// this expression is casting to.
2012  TypeSourceInfo *TInfo;
2013
2014protected:
2015  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2016                   Expr *op, CXXBaseSpecifierArray BasePath,
2017                   TypeSourceInfo *writtenTy)
2018    : CastExpr(SC, exprTy, kind, op, BasePath), TInfo(writtenTy) {}
2019
2020  /// \brief Construct an empty explicit cast.
2021  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
2022    : CastExpr(SC, Shell) { }
2023
2024public:
2025  /// getTypeInfoAsWritten - Returns the type source info for the type
2026  /// that this expression is casting to.
2027  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2028  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2029
2030  /// getTypeAsWritten - Returns the type that this expression is
2031  /// casting to, as written in the source code.
2032  QualType getTypeAsWritten() const { return TInfo->getType(); }
2033
2034  static bool classof(const Stmt *T) {
2035     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2036            T->getStmtClass() <= lastExplicitCastExprConstant;
2037  }
2038  static bool classof(const ExplicitCastExpr *) { return true; }
2039};
2040
2041/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2042/// cast in C++ (C++ [expr.cast]), which uses the syntax
2043/// (Type)expr. For example: @c (int)f.
2044class CStyleCastExpr : public ExplicitCastExpr {
2045  SourceLocation LPLoc; // the location of the left paren
2046  SourceLocation RPLoc; // the location of the right paren
2047public:
2048  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2049                 CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
2050                 SourceLocation l, SourceLocation r)
2051    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, BasePath,
2052                       writtenTy), LPLoc(l), RPLoc(r) {}
2053
2054  /// \brief Construct an empty C-style explicit cast.
2055  explicit CStyleCastExpr(EmptyShell Shell)
2056    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
2057
2058  SourceLocation getLParenLoc() const { return LPLoc; }
2059  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2060
2061  SourceLocation getRParenLoc() const { return RPLoc; }
2062  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2063
2064  virtual SourceRange getSourceRange() const {
2065    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2066  }
2067  static bool classof(const Stmt *T) {
2068    return T->getStmtClass() == CStyleCastExprClass;
2069  }
2070  static bool classof(const CStyleCastExpr *) { return true; }
2071};
2072
2073/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2074///
2075/// This expression node kind describes a builtin binary operation,
2076/// such as "x + y" for integer values "x" and "y". The operands will
2077/// already have been converted to appropriate types (e.g., by
2078/// performing promotions or conversions).
2079///
2080/// In C++, where operators may be overloaded, a different kind of
2081/// expression node (CXXOperatorCallExpr) is used to express the
2082/// invocation of an overloaded operator with operator syntax. Within
2083/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2084/// used to store an expression "x + y" depends on the subexpressions
2085/// for x and y. If neither x or y is type-dependent, and the "+"
2086/// operator resolves to a built-in operation, BinaryOperator will be
2087/// used to express the computation (x and y may still be
2088/// value-dependent). If either x or y is type-dependent, or if the
2089/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2090/// be used to express the computation.
2091class BinaryOperator : public Expr {
2092public:
2093  enum Opcode {
2094    // Operators listed in order of precedence.
2095    // Note that additions to this should also update the StmtVisitor class.
2096    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2097    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2098    Add, Sub,         // [C99 6.5.6] Additive operators.
2099    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2100    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2101    EQ, NE,           // [C99 6.5.9] Equality operators.
2102    And,              // [C99 6.5.10] Bitwise AND operator.
2103    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2104    Or,               // [C99 6.5.12] Bitwise OR operator.
2105    LAnd,             // [C99 6.5.13] Logical AND operator.
2106    LOr,              // [C99 6.5.14] Logical OR operator.
2107    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2108    DivAssign, RemAssign,
2109    AddAssign, SubAssign,
2110    ShlAssign, ShrAssign,
2111    AndAssign, XorAssign,
2112    OrAssign,
2113    Comma             // [C99 6.5.17] Comma operator.
2114  };
2115private:
2116  enum { LHS, RHS, END_EXPR };
2117  Stmt* SubExprs[END_EXPR];
2118  Opcode Opc;
2119  SourceLocation OpLoc;
2120public:
2121
2122  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2123                 SourceLocation opLoc)
2124    : Expr(BinaryOperatorClass, ResTy,
2125           lhs->isTypeDependent() || rhs->isTypeDependent(),
2126           lhs->isValueDependent() || rhs->isValueDependent()),
2127      Opc(opc), OpLoc(opLoc) {
2128    SubExprs[LHS] = lhs;
2129    SubExprs[RHS] = rhs;
2130    assert(!isCompoundAssignmentOp() &&
2131           "Use ArithAssignBinaryOperator for compound assignments");
2132  }
2133
2134  /// \brief Construct an empty binary operator.
2135  explicit BinaryOperator(EmptyShell Empty)
2136    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2137
2138  SourceLocation getOperatorLoc() const { return OpLoc; }
2139  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2140
2141  Opcode getOpcode() const { return Opc; }
2142  void setOpcode(Opcode O) { Opc = O; }
2143
2144  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2145  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2146  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2147  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2148
2149  virtual SourceRange getSourceRange() const {
2150    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2151  }
2152
2153  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2154  /// corresponds to, e.g. "<<=".
2155  static const char *getOpcodeStr(Opcode Op);
2156
2157  /// \brief Retrieve the binary opcode that corresponds to the given
2158  /// overloaded operator.
2159  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2160
2161  /// \brief Retrieve the overloaded operator kind that corresponds to
2162  /// the given binary opcode.
2163  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2164
2165  /// predicates to categorize the respective opcodes.
2166  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2167  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
2168  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2169  bool isShiftOp() const { return isShiftOp(Opc); }
2170
2171  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2172  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2173
2174  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2175  bool isRelationalOp() const { return isRelationalOp(Opc); }
2176
2177  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2178  bool isEqualityOp() const { return isEqualityOp(Opc); }
2179
2180  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2181  bool isComparisonOp() const { return isComparisonOp(Opc); }
2182
2183  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2184  bool isLogicalOp() const { return isLogicalOp(Opc); }
2185
2186  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2187  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2188  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2189
2190  static bool classof(const Stmt *S) {
2191    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2192           S->getStmtClass() <= lastBinaryOperatorConstant;
2193  }
2194  static bool classof(const BinaryOperator *) { return true; }
2195
2196  // Iterators
2197  virtual child_iterator child_begin();
2198  virtual child_iterator child_end();
2199
2200protected:
2201  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2202                 SourceLocation opLoc, bool dead)
2203    : Expr(CompoundAssignOperatorClass, ResTy,
2204           lhs->isTypeDependent() || rhs->isTypeDependent(),
2205           lhs->isValueDependent() || rhs->isValueDependent()),
2206      Opc(opc), OpLoc(opLoc) {
2207    SubExprs[LHS] = lhs;
2208    SubExprs[RHS] = rhs;
2209  }
2210
2211  BinaryOperator(StmtClass SC, EmptyShell Empty)
2212    : Expr(SC, Empty), Opc(MulAssign) { }
2213};
2214
2215/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2216/// track of the type the operation is performed in.  Due to the semantics of
2217/// these operators, the operands are promoted, the aritmetic performed, an
2218/// implicit conversion back to the result type done, then the assignment takes
2219/// place.  This captures the intermediate type which the computation is done
2220/// in.
2221class CompoundAssignOperator : public BinaryOperator {
2222  QualType ComputationLHSType;
2223  QualType ComputationResultType;
2224public:
2225  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2226                         QualType ResType, QualType CompLHSType,
2227                         QualType CompResultType,
2228                         SourceLocation OpLoc)
2229    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2230      ComputationLHSType(CompLHSType),
2231      ComputationResultType(CompResultType) {
2232    assert(isCompoundAssignmentOp() &&
2233           "Only should be used for compound assignments");
2234  }
2235
2236  /// \brief Build an empty compound assignment operator expression.
2237  explicit CompoundAssignOperator(EmptyShell Empty)
2238    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2239
2240  // The two computation types are the type the LHS is converted
2241  // to for the computation and the type of the result; the two are
2242  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2243  QualType getComputationLHSType() const { return ComputationLHSType; }
2244  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2245
2246  QualType getComputationResultType() const { return ComputationResultType; }
2247  void setComputationResultType(QualType T) { ComputationResultType = T; }
2248
2249  static bool classof(const CompoundAssignOperator *) { return true; }
2250  static bool classof(const Stmt *S) {
2251    return S->getStmtClass() == CompoundAssignOperatorClass;
2252  }
2253};
2254
2255/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2256/// GNU "missing LHS" extension is in use.
2257///
2258class ConditionalOperator : public Expr {
2259  enum { COND, LHS, RHS, END_EXPR };
2260  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2261  SourceLocation QuestionLoc, ColonLoc;
2262public:
2263  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2264                      SourceLocation CLoc, Expr *rhs, QualType t)
2265    : Expr(ConditionalOperatorClass, t,
2266           // FIXME: the type of the conditional operator doesn't
2267           // depend on the type of the conditional, but the standard
2268           // seems to imply that it could. File a bug!
2269           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2270           (cond->isValueDependent() ||
2271            (lhs && lhs->isValueDependent()) ||
2272            (rhs && rhs->isValueDependent()))),
2273      QuestionLoc(QLoc),
2274      ColonLoc(CLoc) {
2275    SubExprs[COND] = cond;
2276    SubExprs[LHS] = lhs;
2277    SubExprs[RHS] = rhs;
2278  }
2279
2280  /// \brief Build an empty conditional operator.
2281  explicit ConditionalOperator(EmptyShell Empty)
2282    : Expr(ConditionalOperatorClass, Empty) { }
2283
2284  // getCond - Return the expression representing the condition for
2285  //  the ?: operator.
2286  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2287  void setCond(Expr *E) { SubExprs[COND] = E; }
2288
2289  // getTrueExpr - Return the subexpression representing the value of the ?:
2290  //  expression if the condition evaluates to true.  In most cases this value
2291  //  will be the same as getLHS() except a GCC extension allows the left
2292  //  subexpression to be omitted, and instead of the condition be returned.
2293  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2294  //  is only evaluated once.
2295  Expr *getTrueExpr() const {
2296    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2297  }
2298
2299  // getTrueExpr - Return the subexpression representing the value of the ?:
2300  // expression if the condition evaluates to false. This is the same as getRHS.
2301  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2302
2303  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2304  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2305
2306  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2307  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2308
2309  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2310  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2311
2312  SourceLocation getColonLoc() const { return ColonLoc; }
2313  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2314
2315  virtual SourceRange getSourceRange() const {
2316    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2317  }
2318  static bool classof(const Stmt *T) {
2319    return T->getStmtClass() == ConditionalOperatorClass;
2320  }
2321  static bool classof(const ConditionalOperator *) { return true; }
2322
2323  // Iterators
2324  virtual child_iterator child_begin();
2325  virtual child_iterator child_end();
2326};
2327
2328/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2329class AddrLabelExpr : public Expr {
2330  SourceLocation AmpAmpLoc, LabelLoc;
2331  LabelStmt *Label;
2332public:
2333  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2334                QualType t)
2335    : Expr(AddrLabelExprClass, t, false, false),
2336      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2337
2338  /// \brief Build an empty address of a label expression.
2339  explicit AddrLabelExpr(EmptyShell Empty)
2340    : Expr(AddrLabelExprClass, Empty) { }
2341
2342  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2343  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2344  SourceLocation getLabelLoc() const { return LabelLoc; }
2345  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2346
2347  virtual SourceRange getSourceRange() const {
2348    return SourceRange(AmpAmpLoc, LabelLoc);
2349  }
2350
2351  LabelStmt *getLabel() const { return Label; }
2352  void setLabel(LabelStmt *S) { Label = S; }
2353
2354  static bool classof(const Stmt *T) {
2355    return T->getStmtClass() == AddrLabelExprClass;
2356  }
2357  static bool classof(const AddrLabelExpr *) { return true; }
2358
2359  // Iterators
2360  virtual child_iterator child_begin();
2361  virtual child_iterator child_end();
2362};
2363
2364/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2365/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2366/// takes the value of the last subexpression.
2367class StmtExpr : public Expr {
2368  Stmt *SubStmt;
2369  SourceLocation LParenLoc, RParenLoc;
2370public:
2371  // FIXME: Does type-dependence need to be computed differently?
2372  StmtExpr(CompoundStmt *substmt, QualType T,
2373           SourceLocation lp, SourceLocation rp) :
2374    Expr(StmtExprClass, T, T->isDependentType(), false),
2375    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2376
2377  /// \brief Build an empty statement expression.
2378  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2379
2380  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2381  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2382  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2383
2384  virtual SourceRange getSourceRange() const {
2385    return SourceRange(LParenLoc, RParenLoc);
2386  }
2387
2388  SourceLocation getLParenLoc() const { return LParenLoc; }
2389  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2390  SourceLocation getRParenLoc() const { return RParenLoc; }
2391  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2392
2393  static bool classof(const Stmt *T) {
2394    return T->getStmtClass() == StmtExprClass;
2395  }
2396  static bool classof(const StmtExpr *) { return true; }
2397
2398  // Iterators
2399  virtual child_iterator child_begin();
2400  virtual child_iterator child_end();
2401};
2402
2403/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2404/// This AST node represents a function that returns 1 if two *types* (not
2405/// expressions) are compatible. The result of this built-in function can be
2406/// used in integer constant expressions.
2407class TypesCompatibleExpr : public Expr {
2408  QualType Type1;
2409  QualType Type2;
2410  SourceLocation BuiltinLoc, RParenLoc;
2411public:
2412  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2413                      QualType t1, QualType t2, SourceLocation RP) :
2414    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2415    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2416
2417  /// \brief Build an empty __builtin_type_compatible_p expression.
2418  explicit TypesCompatibleExpr(EmptyShell Empty)
2419    : Expr(TypesCompatibleExprClass, Empty) { }
2420
2421  QualType getArgType1() const { return Type1; }
2422  void setArgType1(QualType T) { Type1 = T; }
2423  QualType getArgType2() const { return Type2; }
2424  void setArgType2(QualType T) { Type2 = T; }
2425
2426  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2427  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2428
2429  SourceLocation getRParenLoc() const { return RParenLoc; }
2430  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2431
2432  virtual SourceRange getSourceRange() const {
2433    return SourceRange(BuiltinLoc, RParenLoc);
2434  }
2435  static bool classof(const Stmt *T) {
2436    return T->getStmtClass() == TypesCompatibleExprClass;
2437  }
2438  static bool classof(const TypesCompatibleExpr *) { return true; }
2439
2440  // Iterators
2441  virtual child_iterator child_begin();
2442  virtual child_iterator child_end();
2443};
2444
2445/// ShuffleVectorExpr - clang-specific builtin-in function
2446/// __builtin_shufflevector.
2447/// This AST node represents a operator that does a constant
2448/// shuffle, similar to LLVM's shufflevector instruction. It takes
2449/// two vectors and a variable number of constant indices,
2450/// and returns the appropriately shuffled vector.
2451class ShuffleVectorExpr : public Expr {
2452  SourceLocation BuiltinLoc, RParenLoc;
2453
2454  // SubExprs - the list of values passed to the __builtin_shufflevector
2455  // function. The first two are vectors, and the rest are constant
2456  // indices.  The number of values in this list is always
2457  // 2+the number of indices in the vector type.
2458  Stmt **SubExprs;
2459  unsigned NumExprs;
2460
2461protected:
2462  virtual void DoDestroy(ASTContext &C);
2463
2464public:
2465  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2466  // to be computed differently?
2467  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2468                    QualType Type, SourceLocation BLoc,
2469                    SourceLocation RP) :
2470    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2471    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2472
2473    SubExprs = new (C) Stmt*[nexpr];
2474    for (unsigned i = 0; i < nexpr; i++)
2475      SubExprs[i] = args[i];
2476  }
2477
2478  /// \brief Build an empty vector-shuffle expression.
2479  explicit ShuffleVectorExpr(EmptyShell Empty)
2480    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2481
2482  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2483  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2484
2485  SourceLocation getRParenLoc() const { return RParenLoc; }
2486  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2487
2488  virtual SourceRange getSourceRange() const {
2489    return SourceRange(BuiltinLoc, RParenLoc);
2490  }
2491  static bool classof(const Stmt *T) {
2492    return T->getStmtClass() == ShuffleVectorExprClass;
2493  }
2494  static bool classof(const ShuffleVectorExpr *) { return true; }
2495
2496  ~ShuffleVectorExpr() {}
2497
2498  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2499  /// constant expression, the actual arguments passed in, and the function
2500  /// pointers.
2501  unsigned getNumSubExprs() const { return NumExprs; }
2502
2503  /// getExpr - Return the Expr at the specified index.
2504  Expr *getExpr(unsigned Index) {
2505    assert((Index < NumExprs) && "Arg access out of range!");
2506    return cast<Expr>(SubExprs[Index]);
2507  }
2508  const Expr *getExpr(unsigned Index) const {
2509    assert((Index < NumExprs) && "Arg access out of range!");
2510    return cast<Expr>(SubExprs[Index]);
2511  }
2512
2513  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2514
2515  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2516    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2517    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2518  }
2519
2520  // Iterators
2521  virtual child_iterator child_begin();
2522  virtual child_iterator child_end();
2523};
2524
2525/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2526/// This AST node is similar to the conditional operator (?:) in C, with
2527/// the following exceptions:
2528/// - the test expression must be a integer constant expression.
2529/// - the expression returned acts like the chosen subexpression in every
2530///   visible way: the type is the same as that of the chosen subexpression,
2531///   and all predicates (whether it's an l-value, whether it's an integer
2532///   constant expression, etc.) return the same result as for the chosen
2533///   sub-expression.
2534class ChooseExpr : public Expr {
2535  enum { COND, LHS, RHS, END_EXPR };
2536  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2537  SourceLocation BuiltinLoc, RParenLoc;
2538public:
2539  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2540             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2541    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2542      BuiltinLoc(BLoc), RParenLoc(RP) {
2543      SubExprs[COND] = cond;
2544      SubExprs[LHS] = lhs;
2545      SubExprs[RHS] = rhs;
2546    }
2547
2548  /// \brief Build an empty __builtin_choose_expr.
2549  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2550
2551  /// isConditionTrue - Return whether the condition is true (i.e. not
2552  /// equal to zero).
2553  bool isConditionTrue(ASTContext &C) const;
2554
2555  /// getChosenSubExpr - Return the subexpression chosen according to the
2556  /// condition.
2557  Expr *getChosenSubExpr(ASTContext &C) const {
2558    return isConditionTrue(C) ? getLHS() : getRHS();
2559  }
2560
2561  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2562  void setCond(Expr *E) { SubExprs[COND] = E; }
2563  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2564  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2565  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2566  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2567
2568  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2569  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2570
2571  SourceLocation getRParenLoc() const { return RParenLoc; }
2572  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2573
2574  virtual SourceRange getSourceRange() const {
2575    return SourceRange(BuiltinLoc, RParenLoc);
2576  }
2577  static bool classof(const Stmt *T) {
2578    return T->getStmtClass() == ChooseExprClass;
2579  }
2580  static bool classof(const ChooseExpr *) { return true; }
2581
2582  // Iterators
2583  virtual child_iterator child_begin();
2584  virtual child_iterator child_end();
2585};
2586
2587/// GNUNullExpr - Implements the GNU __null extension, which is a name
2588/// for a null pointer constant that has integral type (e.g., int or
2589/// long) and is the same size and alignment as a pointer. The __null
2590/// extension is typically only used by system headers, which define
2591/// NULL as __null in C++ rather than using 0 (which is an integer
2592/// that may not match the size of a pointer).
2593class GNUNullExpr : public Expr {
2594  /// TokenLoc - The location of the __null keyword.
2595  SourceLocation TokenLoc;
2596
2597public:
2598  GNUNullExpr(QualType Ty, SourceLocation Loc)
2599    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2600
2601  /// \brief Build an empty GNU __null expression.
2602  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2603
2604  /// getTokenLocation - The location of the __null token.
2605  SourceLocation getTokenLocation() const { return TokenLoc; }
2606  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2607
2608  virtual SourceRange getSourceRange() const {
2609    return SourceRange(TokenLoc);
2610  }
2611  static bool classof(const Stmt *T) {
2612    return T->getStmtClass() == GNUNullExprClass;
2613  }
2614  static bool classof(const GNUNullExpr *) { return true; }
2615
2616  // Iterators
2617  virtual child_iterator child_begin();
2618  virtual child_iterator child_end();
2619};
2620
2621/// VAArgExpr, used for the builtin function __builtin_va_arg.
2622class VAArgExpr : public Expr {
2623  Stmt *Val;
2624  SourceLocation BuiltinLoc, RParenLoc;
2625public:
2626  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2627    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2628      Val(e),
2629      BuiltinLoc(BLoc),
2630      RParenLoc(RPLoc) { }
2631
2632  /// \brief Create an empty __builtin_va_arg expression.
2633  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2634
2635  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2636  Expr *getSubExpr() { return cast<Expr>(Val); }
2637  void setSubExpr(Expr *E) { Val = E; }
2638
2639  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2640  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2641
2642  SourceLocation getRParenLoc() const { return RParenLoc; }
2643  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2644
2645  virtual SourceRange getSourceRange() const {
2646    return SourceRange(BuiltinLoc, RParenLoc);
2647  }
2648  static bool classof(const Stmt *T) {
2649    return T->getStmtClass() == VAArgExprClass;
2650  }
2651  static bool classof(const VAArgExpr *) { return true; }
2652
2653  // Iterators
2654  virtual child_iterator child_begin();
2655  virtual child_iterator child_end();
2656};
2657
2658/// @brief Describes an C or C++ initializer list.
2659///
2660/// InitListExpr describes an initializer list, which can be used to
2661/// initialize objects of different types, including
2662/// struct/class/union types, arrays, and vectors. For example:
2663///
2664/// @code
2665/// struct foo x = { 1, { 2, 3 } };
2666/// @endcode
2667///
2668/// Prior to semantic analysis, an initializer list will represent the
2669/// initializer list as written by the user, but will have the
2670/// placeholder type "void". This initializer list is called the
2671/// syntactic form of the initializer, and may contain C99 designated
2672/// initializers (represented as DesignatedInitExprs), initializations
2673/// of subobject members without explicit braces, and so on. Clients
2674/// interested in the original syntax of the initializer list should
2675/// use the syntactic form of the initializer list.
2676///
2677/// After semantic analysis, the initializer list will represent the
2678/// semantic form of the initializer, where the initializations of all
2679/// subobjects are made explicit with nested InitListExpr nodes and
2680/// C99 designators have been eliminated by placing the designated
2681/// initializations into the subobject they initialize. Additionally,
2682/// any "holes" in the initialization, where no initializer has been
2683/// specified for a particular subobject, will be replaced with
2684/// implicitly-generated ImplicitValueInitExpr expressions that
2685/// value-initialize the subobjects. Note, however, that the
2686/// initializer lists may still have fewer initializers than there are
2687/// elements to initialize within the object.
2688///
2689/// Given the semantic form of the initializer list, one can retrieve
2690/// the original syntactic form of that initializer list (if it
2691/// exists) using getSyntacticForm(). Since many initializer lists
2692/// have the same syntactic and semantic forms, getSyntacticForm() may
2693/// return NULL, indicating that the current initializer list also
2694/// serves as its syntactic form.
2695class InitListExpr : public Expr {
2696  // FIXME: Eliminate this vector in favor of ASTContext allocation
2697  typedef ASTVector<Stmt *> InitExprsTy;
2698  InitExprsTy InitExprs;
2699  SourceLocation LBraceLoc, RBraceLoc;
2700
2701  /// Contains the initializer list that describes the syntactic form
2702  /// written in the source code.
2703  InitListExpr *SyntacticForm;
2704
2705  /// If this initializer list initializes a union, specifies which
2706  /// field within the union will be initialized.
2707  FieldDecl *UnionFieldInit;
2708
2709  /// Whether this initializer list originally had a GNU array-range
2710  /// designator in it. This is a temporary marker used by CodeGen.
2711  bool HadArrayRangeDesignator;
2712
2713public:
2714  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2715               Expr **initexprs, unsigned numinits,
2716               SourceLocation rbraceloc);
2717
2718  /// \brief Build an empty initializer list.
2719  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2720    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2721
2722  unsigned getNumInits() const { return InitExprs.size(); }
2723
2724  const Expr* getInit(unsigned Init) const {
2725    assert(Init < getNumInits() && "Initializer access out of range!");
2726    return cast_or_null<Expr>(InitExprs[Init]);
2727  }
2728
2729  Expr* getInit(unsigned Init) {
2730    assert(Init < getNumInits() && "Initializer access out of range!");
2731    return cast_or_null<Expr>(InitExprs[Init]);
2732  }
2733
2734  void setInit(unsigned Init, Expr *expr) {
2735    assert(Init < getNumInits() && "Initializer access out of range!");
2736    InitExprs[Init] = expr;
2737  }
2738
2739  /// \brief Reserve space for some number of initializers.
2740  void reserveInits(ASTContext &C, unsigned NumInits);
2741
2742  /// @brief Specify the number of initializers
2743  ///
2744  /// If there are more than @p NumInits initializers, the remaining
2745  /// initializers will be destroyed. If there are fewer than @p
2746  /// NumInits initializers, NULL expressions will be added for the
2747  /// unknown initializers.
2748  void resizeInits(ASTContext &Context, unsigned NumInits);
2749
2750  /// @brief Updates the initializer at index @p Init with the new
2751  /// expression @p expr, and returns the old expression at that
2752  /// location.
2753  ///
2754  /// When @p Init is out of range for this initializer list, the
2755  /// initializer list will be extended with NULL expressions to
2756  /// accomodate the new entry.
2757  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2758
2759  /// \brief If this initializes a union, specifies which field in the
2760  /// union to initialize.
2761  ///
2762  /// Typically, this field is the first named field within the
2763  /// union. However, a designated initializer can specify the
2764  /// initialization of a different field within the union.
2765  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2766  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2767
2768  // Explicit InitListExpr's originate from source code (and have valid source
2769  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2770  bool isExplicit() {
2771    return LBraceLoc.isValid() && RBraceLoc.isValid();
2772  }
2773
2774  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2775  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2776  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2777  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2778
2779  /// @brief Retrieve the initializer list that describes the
2780  /// syntactic form of the initializer.
2781  ///
2782  ///
2783  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2784  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2785
2786  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2787  void sawArrayRangeDesignator(bool ARD = true) {
2788    HadArrayRangeDesignator = ARD;
2789  }
2790
2791  virtual SourceRange getSourceRange() const {
2792    return SourceRange(LBraceLoc, RBraceLoc);
2793  }
2794  static bool classof(const Stmt *T) {
2795    return T->getStmtClass() == InitListExprClass;
2796  }
2797  static bool classof(const InitListExpr *) { return true; }
2798
2799  // Iterators
2800  virtual child_iterator child_begin();
2801  virtual child_iterator child_end();
2802
2803  typedef InitExprsTy::iterator iterator;
2804  typedef InitExprsTy::reverse_iterator reverse_iterator;
2805
2806  iterator begin() { return InitExprs.begin(); }
2807  iterator end() { return InitExprs.end(); }
2808  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2809  reverse_iterator rend() { return InitExprs.rend(); }
2810};
2811
2812/// @brief Represents a C99 designated initializer expression.
2813///
2814/// A designated initializer expression (C99 6.7.8) contains one or
2815/// more designators (which can be field designators, array
2816/// designators, or GNU array-range designators) followed by an
2817/// expression that initializes the field or element(s) that the
2818/// designators refer to. For example, given:
2819///
2820/// @code
2821/// struct point {
2822///   double x;
2823///   double y;
2824/// };
2825/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2826/// @endcode
2827///
2828/// The InitListExpr contains three DesignatedInitExprs, the first of
2829/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2830/// designators, one array designator for @c [2] followed by one field
2831/// designator for @c .y. The initalization expression will be 1.0.
2832class DesignatedInitExpr : public Expr {
2833public:
2834  /// \brief Forward declaration of the Designator class.
2835  class Designator;
2836
2837private:
2838  /// The location of the '=' or ':' prior to the actual initializer
2839  /// expression.
2840  SourceLocation EqualOrColonLoc;
2841
2842  /// Whether this designated initializer used the GNU deprecated
2843  /// syntax rather than the C99 '=' syntax.
2844  bool GNUSyntax : 1;
2845
2846  /// The number of designators in this initializer expression.
2847  unsigned NumDesignators : 15;
2848
2849  /// \brief The designators in this designated initialization
2850  /// expression.
2851  Designator *Designators;
2852
2853  /// The number of subexpressions of this initializer expression,
2854  /// which contains both the initializer and any additional
2855  /// expressions used by array and array-range designators.
2856  unsigned NumSubExprs : 16;
2857
2858
2859  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2860                     const Designator *Designators,
2861                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2862                     Expr **IndexExprs, unsigned NumIndexExprs,
2863                     Expr *Init);
2864
2865  explicit DesignatedInitExpr(unsigned NumSubExprs)
2866    : Expr(DesignatedInitExprClass, EmptyShell()),
2867      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2868
2869protected:
2870  virtual void DoDestroy(ASTContext &C);
2871
2872  void DestroyDesignators(ASTContext &C);
2873
2874public:
2875  /// A field designator, e.g., ".x".
2876  struct FieldDesignator {
2877    /// Refers to the field that is being initialized. The low bit
2878    /// of this field determines whether this is actually a pointer
2879    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2880    /// initially constructed, a field designator will store an
2881    /// IdentifierInfo*. After semantic analysis has resolved that
2882    /// name, the field designator will instead store a FieldDecl*.
2883    uintptr_t NameOrField;
2884
2885    /// The location of the '.' in the designated initializer.
2886    unsigned DotLoc;
2887
2888    /// The location of the field name in the designated initializer.
2889    unsigned FieldLoc;
2890  };
2891
2892  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2893  struct ArrayOrRangeDesignator {
2894    /// Location of the first index expression within the designated
2895    /// initializer expression's list of subexpressions.
2896    unsigned Index;
2897    /// The location of the '[' starting the array range designator.
2898    unsigned LBracketLoc;
2899    /// The location of the ellipsis separating the start and end
2900    /// indices. Only valid for GNU array-range designators.
2901    unsigned EllipsisLoc;
2902    /// The location of the ']' terminating the array range designator.
2903    unsigned RBracketLoc;
2904  };
2905
2906  /// @brief Represents a single C99 designator.
2907  ///
2908  /// @todo This class is infuriatingly similar to clang::Designator,
2909  /// but minor differences (storing indices vs. storing pointers)
2910  /// keep us from reusing it. Try harder, later, to rectify these
2911  /// differences.
2912  class Designator {
2913    /// @brief The kind of designator this describes.
2914    enum {
2915      FieldDesignator,
2916      ArrayDesignator,
2917      ArrayRangeDesignator
2918    } Kind;
2919
2920    union {
2921      /// A field designator, e.g., ".x".
2922      struct FieldDesignator Field;
2923      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2924      struct ArrayOrRangeDesignator ArrayOrRange;
2925    };
2926    friend class DesignatedInitExpr;
2927
2928  public:
2929    Designator() {}
2930
2931    /// @brief Initializes a field designator.
2932    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2933               SourceLocation FieldLoc)
2934      : Kind(FieldDesignator) {
2935      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2936      Field.DotLoc = DotLoc.getRawEncoding();
2937      Field.FieldLoc = FieldLoc.getRawEncoding();
2938    }
2939
2940    /// @brief Initializes an array designator.
2941    Designator(unsigned Index, SourceLocation LBracketLoc,
2942               SourceLocation RBracketLoc)
2943      : Kind(ArrayDesignator) {
2944      ArrayOrRange.Index = Index;
2945      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2946      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2947      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2948    }
2949
2950    /// @brief Initializes a GNU array-range designator.
2951    Designator(unsigned Index, SourceLocation LBracketLoc,
2952               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2953      : Kind(ArrayRangeDesignator) {
2954      ArrayOrRange.Index = Index;
2955      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2956      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2957      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2958    }
2959
2960    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2961    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2962    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2963
2964    IdentifierInfo * getFieldName();
2965
2966    FieldDecl *getField() {
2967      assert(Kind == FieldDesignator && "Only valid on a field designator");
2968      if (Field.NameOrField & 0x01)
2969        return 0;
2970      else
2971        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2972    }
2973
2974    void setField(FieldDecl *FD) {
2975      assert(Kind == FieldDesignator && "Only valid on a field designator");
2976      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2977    }
2978
2979    SourceLocation getDotLoc() const {
2980      assert(Kind == FieldDesignator && "Only valid on a field designator");
2981      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2982    }
2983
2984    SourceLocation getFieldLoc() const {
2985      assert(Kind == FieldDesignator && "Only valid on a field designator");
2986      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2987    }
2988
2989    SourceLocation getLBracketLoc() const {
2990      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2991             "Only valid on an array or array-range designator");
2992      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2993    }
2994
2995    SourceLocation getRBracketLoc() const {
2996      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2997             "Only valid on an array or array-range designator");
2998      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2999    }
3000
3001    SourceLocation getEllipsisLoc() const {
3002      assert(Kind == ArrayRangeDesignator &&
3003             "Only valid on an array-range designator");
3004      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3005    }
3006
3007    unsigned getFirstExprIndex() const {
3008      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3009             "Only valid on an array or array-range designator");
3010      return ArrayOrRange.Index;
3011    }
3012
3013    SourceLocation getStartLocation() const {
3014      if (Kind == FieldDesignator)
3015        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3016      else
3017        return getLBracketLoc();
3018    }
3019  };
3020
3021  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3022                                    unsigned NumDesignators,
3023                                    Expr **IndexExprs, unsigned NumIndexExprs,
3024                                    SourceLocation EqualOrColonLoc,
3025                                    bool GNUSyntax, Expr *Init);
3026
3027  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3028
3029  /// @brief Returns the number of designators in this initializer.
3030  unsigned size() const { return NumDesignators; }
3031
3032  // Iterator access to the designators.
3033  typedef Designator* designators_iterator;
3034  designators_iterator designators_begin() { return Designators; }
3035  designators_iterator designators_end() {
3036    return Designators + NumDesignators;
3037  }
3038
3039  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3040
3041  void setDesignators(ASTContext &C, const Designator *Desigs,
3042                      unsigned NumDesigs);
3043
3044  Expr *getArrayIndex(const Designator& D);
3045  Expr *getArrayRangeStart(const Designator& D);
3046  Expr *getArrayRangeEnd(const Designator& D);
3047
3048  /// @brief Retrieve the location of the '=' that precedes the
3049  /// initializer value itself, if present.
3050  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3051  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3052
3053  /// @brief Determines whether this designated initializer used the
3054  /// deprecated GNU syntax for designated initializers.
3055  bool usesGNUSyntax() const { return GNUSyntax; }
3056  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3057
3058  /// @brief Retrieve the initializer value.
3059  Expr *getInit() const {
3060    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3061  }
3062
3063  void setInit(Expr *init) {
3064    *child_begin() = init;
3065  }
3066
3067  /// \brief Retrieve the total number of subexpressions in this
3068  /// designated initializer expression, including the actual
3069  /// initialized value and any expressions that occur within array
3070  /// and array-range designators.
3071  unsigned getNumSubExprs() const { return NumSubExprs; }
3072
3073  Expr *getSubExpr(unsigned Idx) {
3074    assert(Idx < NumSubExprs && "Subscript out of range");
3075    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3076    Ptr += sizeof(DesignatedInitExpr);
3077    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3078  }
3079
3080  void setSubExpr(unsigned Idx, Expr *E) {
3081    assert(Idx < NumSubExprs && "Subscript out of range");
3082    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3083    Ptr += sizeof(DesignatedInitExpr);
3084    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3085  }
3086
3087  /// \brief Replaces the designator at index @p Idx with the series
3088  /// of designators in [First, Last).
3089  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3090                        const Designator *Last);
3091
3092  virtual SourceRange getSourceRange() const;
3093
3094  static bool classof(const Stmt *T) {
3095    return T->getStmtClass() == DesignatedInitExprClass;
3096  }
3097  static bool classof(const DesignatedInitExpr *) { return true; }
3098
3099  // Iterators
3100  virtual child_iterator child_begin();
3101  virtual child_iterator child_end();
3102};
3103
3104/// \brief Represents an implicitly-generated value initialization of
3105/// an object of a given type.
3106///
3107/// Implicit value initializations occur within semantic initializer
3108/// list expressions (InitListExpr) as placeholders for subobject
3109/// initializations not explicitly specified by the user.
3110///
3111/// \see InitListExpr
3112class ImplicitValueInitExpr : public Expr {
3113public:
3114  explicit ImplicitValueInitExpr(QualType ty)
3115    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3116
3117  /// \brief Construct an empty implicit value initialization.
3118  explicit ImplicitValueInitExpr(EmptyShell Empty)
3119    : Expr(ImplicitValueInitExprClass, Empty) { }
3120
3121  static bool classof(const Stmt *T) {
3122    return T->getStmtClass() == ImplicitValueInitExprClass;
3123  }
3124  static bool classof(const ImplicitValueInitExpr *) { return true; }
3125
3126  virtual SourceRange getSourceRange() const {
3127    return SourceRange();
3128  }
3129
3130  // Iterators
3131  virtual child_iterator child_begin();
3132  virtual child_iterator child_end();
3133};
3134
3135
3136class ParenListExpr : public Expr {
3137  Stmt **Exprs;
3138  unsigned NumExprs;
3139  SourceLocation LParenLoc, RParenLoc;
3140
3141protected:
3142  virtual void DoDestroy(ASTContext& C);
3143
3144public:
3145  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3146                unsigned numexprs, SourceLocation rparenloc);
3147
3148  ~ParenListExpr() {}
3149
3150  /// \brief Build an empty paren list.
3151  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3152
3153  unsigned getNumExprs() const { return NumExprs; }
3154
3155  const Expr* getExpr(unsigned Init) const {
3156    assert(Init < getNumExprs() && "Initializer access out of range!");
3157    return cast_or_null<Expr>(Exprs[Init]);
3158  }
3159
3160  Expr* getExpr(unsigned Init) {
3161    assert(Init < getNumExprs() && "Initializer access out of range!");
3162    return cast_or_null<Expr>(Exprs[Init]);
3163  }
3164
3165  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3166
3167  SourceLocation getLParenLoc() const { return LParenLoc; }
3168  SourceLocation getRParenLoc() const { return RParenLoc; }
3169
3170  virtual SourceRange getSourceRange() const {
3171    return SourceRange(LParenLoc, RParenLoc);
3172  }
3173  static bool classof(const Stmt *T) {
3174    return T->getStmtClass() == ParenListExprClass;
3175  }
3176  static bool classof(const ParenListExpr *) { return true; }
3177
3178  // Iterators
3179  virtual child_iterator child_begin();
3180  virtual child_iterator child_end();
3181};
3182
3183
3184//===----------------------------------------------------------------------===//
3185// Clang Extensions
3186//===----------------------------------------------------------------------===//
3187
3188
3189/// ExtVectorElementExpr - This represents access to specific elements of a
3190/// vector, and may occur on the left hand side or right hand side.  For example
3191/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3192///
3193/// Note that the base may have either vector or pointer to vector type, just
3194/// like a struct field reference.
3195///
3196class ExtVectorElementExpr : public Expr {
3197  Stmt *Base;
3198  IdentifierInfo *Accessor;
3199  SourceLocation AccessorLoc;
3200public:
3201  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3202                       SourceLocation loc)
3203    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3204           base->isValueDependent()),
3205      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3206
3207  /// \brief Build an empty vector element expression.
3208  explicit ExtVectorElementExpr(EmptyShell Empty)
3209    : Expr(ExtVectorElementExprClass, Empty) { }
3210
3211  const Expr *getBase() const { return cast<Expr>(Base); }
3212  Expr *getBase() { return cast<Expr>(Base); }
3213  void setBase(Expr *E) { Base = E; }
3214
3215  IdentifierInfo &getAccessor() const { return *Accessor; }
3216  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3217
3218  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3219  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3220
3221  /// getNumElements - Get the number of components being selected.
3222  unsigned getNumElements() const;
3223
3224  /// containsDuplicateElements - Return true if any element access is
3225  /// repeated.
3226  bool containsDuplicateElements() const;
3227
3228  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3229  /// aggregate Constant of ConstantInt(s).
3230  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3231
3232  virtual SourceRange getSourceRange() const {
3233    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3234  }
3235
3236  /// isArrow - Return true if the base expression is a pointer to vector,
3237  /// return false if the base expression is a vector.
3238  bool isArrow() const;
3239
3240  static bool classof(const Stmt *T) {
3241    return T->getStmtClass() == ExtVectorElementExprClass;
3242  }
3243  static bool classof(const ExtVectorElementExpr *) { return true; }
3244
3245  // Iterators
3246  virtual child_iterator child_begin();
3247  virtual child_iterator child_end();
3248};
3249
3250
3251/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3252/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3253class BlockExpr : public Expr {
3254protected:
3255  BlockDecl *TheBlock;
3256  bool HasBlockDeclRefExprs;
3257public:
3258  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3259    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3260      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3261
3262  /// \brief Build an empty block expression.
3263  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3264
3265  const BlockDecl *getBlockDecl() const { return TheBlock; }
3266  BlockDecl *getBlockDecl() { return TheBlock; }
3267  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3268
3269  // Convenience functions for probing the underlying BlockDecl.
3270  SourceLocation getCaretLocation() const;
3271  const Stmt *getBody() const;
3272  Stmt *getBody();
3273
3274  virtual SourceRange getSourceRange() const {
3275    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3276  }
3277
3278  /// getFunctionType - Return the underlying function type for this block.
3279  const FunctionType *getFunctionType() const;
3280
3281  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3282  /// inside of the block that reference values outside the block.
3283  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3284  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3285
3286  static bool classof(const Stmt *T) {
3287    return T->getStmtClass() == BlockExprClass;
3288  }
3289  static bool classof(const BlockExpr *) { return true; }
3290
3291  // Iterators
3292  virtual child_iterator child_begin();
3293  virtual child_iterator child_end();
3294};
3295
3296/// BlockDeclRefExpr - A reference to a declared variable, function,
3297/// enum, etc.
3298class BlockDeclRefExpr : public Expr {
3299  ValueDecl *D;
3300  SourceLocation Loc;
3301  bool IsByRef : 1;
3302  bool ConstQualAdded : 1;
3303public:
3304  // FIXME: Fix type/value dependence!
3305  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3306                   bool constAdded = false)
3307  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3308    ConstQualAdded(constAdded) {}
3309
3310  // \brief Build an empty reference to a declared variable in a
3311  // block.
3312  explicit BlockDeclRefExpr(EmptyShell Empty)
3313    : Expr(BlockDeclRefExprClass, Empty) { }
3314
3315  ValueDecl *getDecl() { return D; }
3316  const ValueDecl *getDecl() const { return D; }
3317  void setDecl(ValueDecl *VD) { D = VD; }
3318
3319  SourceLocation getLocation() const { return Loc; }
3320  void setLocation(SourceLocation L) { Loc = L; }
3321
3322  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3323
3324  bool isByRef() const { return IsByRef; }
3325  void setByRef(bool BR) { IsByRef = BR; }
3326
3327  bool isConstQualAdded() const { return ConstQualAdded; }
3328  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3329
3330  static bool classof(const Stmt *T) {
3331    return T->getStmtClass() == BlockDeclRefExprClass;
3332  }
3333  static bool classof(const BlockDeclRefExpr *) { return true; }
3334
3335  // Iterators
3336  virtual child_iterator child_begin();
3337  virtual child_iterator child_end();
3338};
3339
3340}  // end namespace clang
3341
3342#endif
3343