Expr.h revision 35183aca180a2b9b2c637cd625a40a7e147d6a32
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
243  /// write barrier.
244  bool isOBJCGCCandidate() const;
245
246  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
247  ///  its subexpression.  If that subexpression is also a ParenExpr,
248  ///  then this method recursively returns its subexpression, and so forth.
249  ///  Otherwise, the method returns the current Expr.
250  Expr* IgnoreParens();
251
252  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
253  /// or CastExprs, returning their operand.
254  Expr *IgnoreParenCasts();
255
256  const Expr* IgnoreParens() const {
257    return const_cast<Expr*>(this)->IgnoreParens();
258  }
259  const Expr *IgnoreParenCasts() const {
260    return const_cast<Expr*>(this)->IgnoreParenCasts();
261  }
262
263  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
264  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
265
266  static bool classof(const Stmt *T) {
267    return T->getStmtClass() >= firstExprConstant &&
268           T->getStmtClass() <= lastExprConstant;
269  }
270  static bool classof(const Expr *) { return true; }
271
272  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
273    return cast<Expr>(Stmt::Create(D, C));
274  }
275};
276
277
278//===----------------------------------------------------------------------===//
279// Primary Expressions.
280//===----------------------------------------------------------------------===//
281
282/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
283/// enum, etc.
284class DeclRefExpr : public Expr {
285  NamedDecl *D;
286  SourceLocation Loc;
287
288protected:
289  // FIXME: Eventually, this constructor will go away and all subclasses
290  // will have to provide the type- and value-dependent flags.
291  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
292    Expr(SC, t), D(d), Loc(l) {}
293
294  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
295              bool VD) :
296    Expr(SC, t, TD, VD), D(d), Loc(l) {}
297
298public:
299  // FIXME: Eventually, this constructor will go away and all clients
300  // will have to provide the type- and value-dependent flags.
301  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
302    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
303
304  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
305    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
306
307  NamedDecl *getDecl() { return D; }
308  const NamedDecl *getDecl() const { return D; }
309  void setDecl(NamedDecl *NewD) { D = NewD; }
310
311  SourceLocation getLocation() const { return Loc; }
312  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
313
314  static bool classof(const Stmt *T) {
315    return T->getStmtClass() == DeclRefExprClass ||
316           T->getStmtClass() == CXXConditionDeclExprClass ||
317           T->getStmtClass() == QualifiedDeclRefExprClass;
318  }
319  static bool classof(const DeclRefExpr *) { return true; }
320
321  // Iterators
322  virtual child_iterator child_begin();
323  virtual child_iterator child_end();
324
325  virtual void EmitImpl(llvm::Serializer& S) const;
326  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
327};
328
329/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
330class PredefinedExpr : public Expr {
331public:
332  enum IdentType {
333    Func,
334    Function,
335    PrettyFunction
336  };
337
338private:
339  SourceLocation Loc;
340  IdentType Type;
341public:
342  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
343    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
344
345  IdentType getIdentType() const { return Type; }
346
347  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == PredefinedExprClass;
351  }
352  static bool classof(const PredefinedExpr *) { return true; }
353
354  // Iterators
355  virtual child_iterator child_begin();
356  virtual child_iterator child_end();
357
358  virtual void EmitImpl(llvm::Serializer& S) const;
359  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
360};
361
362class IntegerLiteral : public Expr {
363  llvm::APInt Value;
364  SourceLocation Loc;
365public:
366  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
367  // or UnsignedLongLongTy
368  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
369    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
370    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
371  }
372  const llvm::APInt &getValue() const { return Value; }
373  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
374
375  static bool classof(const Stmt *T) {
376    return T->getStmtClass() == IntegerLiteralClass;
377  }
378  static bool classof(const IntegerLiteral *) { return true; }
379
380  // Iterators
381  virtual child_iterator child_begin();
382  virtual child_iterator child_end();
383
384  virtual void EmitImpl(llvm::Serializer& S) const;
385  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
386};
387
388class CharacterLiteral : public Expr {
389  unsigned Value;
390  SourceLocation Loc;
391  bool IsWide;
392public:
393  // type should be IntTy
394  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
395    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
396  }
397  SourceLocation getLoc() const { return Loc; }
398  bool isWide() const { return IsWide; }
399
400  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
401
402  unsigned getValue() const { return Value; }
403
404  static bool classof(const Stmt *T) {
405    return T->getStmtClass() == CharacterLiteralClass;
406  }
407  static bool classof(const CharacterLiteral *) { return true; }
408
409  // Iterators
410  virtual child_iterator child_begin();
411  virtual child_iterator child_end();
412
413  virtual void EmitImpl(llvm::Serializer& S) const;
414  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
415};
416
417class FloatingLiteral : public Expr {
418  llvm::APFloat Value;
419  bool IsExact : 1;
420  SourceLocation Loc;
421public:
422  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
423                  QualType Type, SourceLocation L)
424    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
425
426  const llvm::APFloat &getValue() const { return Value; }
427
428  bool isExact() const { return IsExact; }
429
430  /// getValueAsApproximateDouble - This returns the value as an inaccurate
431  /// double.  Note that this may cause loss of precision, but is useful for
432  /// debugging dumps, etc.
433  double getValueAsApproximateDouble() const;
434
435  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
436
437  static bool classof(const Stmt *T) {
438    return T->getStmtClass() == FloatingLiteralClass;
439  }
440  static bool classof(const FloatingLiteral *) { return true; }
441
442  // Iterators
443  virtual child_iterator child_begin();
444  virtual child_iterator child_end();
445
446  virtual void EmitImpl(llvm::Serializer& S) const;
447  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
448};
449
450/// ImaginaryLiteral - We support imaginary integer and floating point literals,
451/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
452/// IntegerLiteral classes.  Instances of this class always have a Complex type
453/// whose element type matches the subexpression.
454///
455class ImaginaryLiteral : public Expr {
456  Stmt *Val;
457public:
458  ImaginaryLiteral(Expr *val, QualType Ty)
459    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
460
461  const Expr *getSubExpr() const { return cast<Expr>(Val); }
462  Expr *getSubExpr() { return cast<Expr>(Val); }
463
464  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
465  static bool classof(const Stmt *T) {
466    return T->getStmtClass() == ImaginaryLiteralClass;
467  }
468  static bool classof(const ImaginaryLiteral *) { return true; }
469
470  // Iterators
471  virtual child_iterator child_begin();
472  virtual child_iterator child_end();
473
474  virtual void EmitImpl(llvm::Serializer& S) const;
475  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
476};
477
478/// StringLiteral - This represents a string literal expression, e.g. "foo"
479/// or L"bar" (wide strings).  The actual string is returned by getStrData()
480/// is NOT null-terminated, and the length of the string is determined by
481/// calling getByteLength().  The C type for a string is always a
482/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
483/// not.
484///
485/// Note that strings in C can be formed by concatenation of multiple string
486/// literal pptokens in translation phase #6.  This keeps track of the locations
487/// of each of these pieces.
488///
489/// Strings in C can also be truncated and extended by assigning into arrays,
490/// e.g. with constructs like:
491///   char X[2] = "foobar";
492/// In this case, getByteLength() will return 6, but the string literal will
493/// have type "char[2]".
494class StringLiteral : public Expr {
495  const char *StrData;
496  unsigned ByteLength;
497  bool IsWide;
498  unsigned NumConcatenated;
499  SourceLocation TokLocs[1];
500
501  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
502public:
503  /// This is the "fully general" constructor that allows representation of
504  /// strings formed from multiple concatenated tokens.
505  static StringLiteral *Create(ASTContext &C, const char *StrData,
506                               unsigned ByteLength, bool Wide, QualType Ty,
507                               SourceLocation *Loc, unsigned NumStrs);
508
509  /// Simple constructor for string literals made from one token.
510  static StringLiteral *Create(ASTContext &C, const char *StrData,
511                               unsigned ByteLength,
512                               bool Wide, QualType Ty, SourceLocation Loc) {
513    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
514  }
515
516  void Destroy(ASTContext &C);
517
518  const char *getStrData() const { return StrData; }
519  unsigned getByteLength() const { return ByteLength; }
520  bool isWide() const { return IsWide; }
521
522  /// getNumConcatenated - Get the number of string literal tokens that were
523  /// concatenated in translation phase #6 to form this string literal.
524  unsigned getNumConcatenated() const { return NumConcatenated; }
525
526  SourceLocation getStrTokenLoc(unsigned TokNum) const {
527    assert(TokNum < NumConcatenated && "Invalid tok number");
528    return TokLocs[TokNum];
529  }
530
531  typedef const SourceLocation *tokloc_iterator;
532  tokloc_iterator tokloc_begin() const { return TokLocs; }
533  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
534
535  virtual SourceRange getSourceRange() const {
536    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
537  }
538  static bool classof(const Stmt *T) {
539    return T->getStmtClass() == StringLiteralClass;
540  }
541  static bool classof(const StringLiteral *) { return true; }
542
543  // Iterators
544  virtual child_iterator child_begin();
545  virtual child_iterator child_end();
546
547  virtual void EmitImpl(llvm::Serializer& S) const;
548  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
549};
550
551/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
552/// AST node is only formed if full location information is requested.
553class ParenExpr : public Expr {
554  SourceLocation L, R;
555  Stmt *Val;
556public:
557  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
558    : Expr(ParenExprClass, val->getType(),
559           val->isTypeDependent(), val->isValueDependent()),
560      L(l), R(r), Val(val) {}
561
562  const Expr *getSubExpr() const { return cast<Expr>(Val); }
563  Expr *getSubExpr() { return cast<Expr>(Val); }
564  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
565
566  static bool classof(const Stmt *T) {
567    return T->getStmtClass() == ParenExprClass;
568  }
569  static bool classof(const ParenExpr *) { return true; }
570
571  // Iterators
572  virtual child_iterator child_begin();
573  virtual child_iterator child_end();
574
575  virtual void EmitImpl(llvm::Serializer& S) const;
576  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
577};
578
579
580/// UnaryOperator - This represents the unary-expression's (except sizeof and
581/// alignof), the postinc/postdec operators from postfix-expression, and various
582/// extensions.
583///
584/// Notes on various nodes:
585///
586/// Real/Imag - These return the real/imag part of a complex operand.  If
587///   applied to a non-complex value, the former returns its operand and the
588///   later returns zero in the type of the operand.
589///
590/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
591///   subexpression is a compound literal with the various MemberExpr and
592///   ArraySubscriptExpr's applied to it.
593///
594class UnaryOperator : public Expr {
595public:
596  // Note that additions to this should also update the StmtVisitor class.
597  enum Opcode {
598    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
599    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
600    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
601    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
602    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
603    Real, Imag,       // "__real expr"/"__imag expr" Extension.
604    Extension,        // __extension__ marker.
605    OffsetOf          // __builtin_offsetof
606  };
607private:
608  Stmt *Val;
609  Opcode Opc;
610  SourceLocation Loc;
611public:
612
613  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
614    : Expr(UnaryOperatorClass, type,
615           input->isTypeDependent() && opc != OffsetOf,
616           input->isValueDependent()),
617      Val(input), Opc(opc), Loc(l) {}
618
619  Opcode getOpcode() const { return Opc; }
620  Expr *getSubExpr() const { return cast<Expr>(Val); }
621
622  /// getOperatorLoc - Return the location of the operator.
623  SourceLocation getOperatorLoc() const { return Loc; }
624
625  /// isPostfix - Return true if this is a postfix operation, like x++.
626  static bool isPostfix(Opcode Op) {
627    return Op == PostInc || Op == PostDec;
628  }
629
630  /// isPostfix - Return true if this is a prefix operation, like --x.
631  static bool isPrefix(Opcode Op) {
632    return Op == PreInc || Op == PreDec;
633  }
634
635  bool isPrefix() const { return isPrefix(Opc); }
636  bool isPostfix() const { return isPostfix(Opc); }
637  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
638  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
639  bool isOffsetOfOp() const { return Opc == OffsetOf; }
640  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
641
642  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
643  /// corresponds to, e.g. "sizeof" or "[pre]++"
644  static const char *getOpcodeStr(Opcode Op);
645
646  virtual SourceRange getSourceRange() const {
647    if (isPostfix())
648      return SourceRange(Val->getLocStart(), Loc);
649    else
650      return SourceRange(Loc, Val->getLocEnd());
651  }
652  virtual SourceLocation getExprLoc() const { return Loc; }
653
654  static bool classof(const Stmt *T) {
655    return T->getStmtClass() == UnaryOperatorClass;
656  }
657  static bool classof(const UnaryOperator *) { return true; }
658
659  // Iterators
660  virtual child_iterator child_begin();
661  virtual child_iterator child_end();
662
663  virtual void EmitImpl(llvm::Serializer& S) const;
664  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
665};
666
667/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
668/// types and expressions.
669class SizeOfAlignOfExpr : public Expr {
670  bool isSizeof : 1;  // true if sizeof, false if alignof.
671  bool isType : 1;    // true if operand is a type, false if an expression
672  union {
673    void *Ty;
674    Stmt *Ex;
675  } Argument;
676  SourceLocation OpLoc, RParenLoc;
677public:
678  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
679                    QualType resultType, SourceLocation op,
680                    SourceLocation rp) :
681      Expr(SizeOfAlignOfExprClass, resultType,
682           false, // Never type-dependent.
683           // Value-dependent if the argument is type-dependent.
684           (istype ? QualType::getFromOpaquePtr(argument)->isDependentType()
685                   : static_cast<Expr*>(argument)->isTypeDependent())),
686      isSizeof(issizeof), isType(istype), OpLoc(op), RParenLoc(rp) {
687    if (isType)
688      Argument.Ty = argument;
689    else
690      // argument was an Expr*, so cast it back to that to be safe
691      Argument.Ex = static_cast<Expr*>(argument);
692  }
693
694  virtual void Destroy(ASTContext& C);
695
696  bool isSizeOf() const { return isSizeof; }
697  bool isArgumentType() const { return isType; }
698  QualType getArgumentType() const {
699    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
700    return QualType::getFromOpaquePtr(Argument.Ty);
701  }
702  Expr *getArgumentExpr() {
703    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
704    return static_cast<Expr*>(Argument.Ex);
705  }
706  const Expr *getArgumentExpr() const {
707    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
708  }
709
710  /// Gets the argument type, or the type of the argument expression, whichever
711  /// is appropriate.
712  QualType getTypeOfArgument() const {
713    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
714  }
715
716  SourceLocation getOperatorLoc() const { return OpLoc; }
717
718  virtual SourceRange getSourceRange() const {
719    return SourceRange(OpLoc, RParenLoc);
720  }
721
722  static bool classof(const Stmt *T) {
723    return T->getStmtClass() == SizeOfAlignOfExprClass;
724  }
725  static bool classof(const SizeOfAlignOfExpr *) { return true; }
726
727  // Iterators
728  virtual child_iterator child_begin();
729  virtual child_iterator child_end();
730
731  virtual void EmitImpl(llvm::Serializer& S) const;
732  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
733};
734
735//===----------------------------------------------------------------------===//
736// Postfix Operators.
737//===----------------------------------------------------------------------===//
738
739/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
740class ArraySubscriptExpr : public Expr {
741  enum { LHS, RHS, END_EXPR=2 };
742  Stmt* SubExprs[END_EXPR];
743  SourceLocation RBracketLoc;
744public:
745  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
746                     SourceLocation rbracketloc)
747  : Expr(ArraySubscriptExprClass, t,
748         lhs->isTypeDependent() || rhs->isTypeDependent(),
749         lhs->isValueDependent() || rhs->isValueDependent()),
750    RBracketLoc(rbracketloc) {
751    SubExprs[LHS] = lhs;
752    SubExprs[RHS] = rhs;
753  }
754
755  /// An array access can be written A[4] or 4[A] (both are equivalent).
756  /// - getBase() and getIdx() always present the normalized view: A[4].
757  ///    In this case getBase() returns "A" and getIdx() returns "4".
758  /// - getLHS() and getRHS() present the syntactic view. e.g. for
759  ///    4[A] getLHS() returns "4".
760  /// Note: Because vector element access is also written A[4] we must
761  /// predicate the format conversion in getBase and getIdx only on the
762  /// the type of the RHS, as it is possible for the LHS to be a vector of
763  /// integer type
764  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
765  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
766
767  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
768  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
769
770  Expr *getBase() {
771    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
772  }
773
774  const Expr *getBase() const {
775    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
776  }
777
778  Expr *getIdx() {
779    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
780  }
781
782  const Expr *getIdx() const {
783    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
784  }
785
786  virtual SourceRange getSourceRange() const {
787    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
788  }
789
790  SourceLocation getRBracketLoc() const { return RBracketLoc; }
791  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
792
793  static bool classof(const Stmt *T) {
794    return T->getStmtClass() == ArraySubscriptExprClass;
795  }
796  static bool classof(const ArraySubscriptExpr *) { return true; }
797
798  // Iterators
799  virtual child_iterator child_begin();
800  virtual child_iterator child_end();
801
802  virtual void EmitImpl(llvm::Serializer& S) const;
803  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
804};
805
806
807/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
808/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
809/// while its subclasses may represent alternative syntax that (semantically)
810/// results in a function call. For example, CXXOperatorCallExpr is
811/// a subclass for overloaded operator calls that use operator syntax, e.g.,
812/// "str1 + str2" to resolve to a function call.
813class CallExpr : public Expr {
814  enum { FN=0, ARGS_START=1 };
815  Stmt **SubExprs;
816  unsigned NumArgs;
817  SourceLocation RParenLoc;
818
819  // This version of the ctor is for deserialization.
820  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
821           SourceLocation rparenloc)
822  : Expr(SC,t), SubExprs(subexprs),
823    NumArgs(numargs), RParenLoc(rparenloc) {}
824
825protected:
826  // This version of the constructor is for derived classes.
827  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
828           QualType t, SourceLocation rparenloc);
829
830public:
831  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
832           SourceLocation rparenloc);
833
834  ~CallExpr() {}
835
836  void Destroy(ASTContext& C);
837
838  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
839  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
840  void setCallee(Expr *F) { SubExprs[FN] = F; }
841
842  /// getNumArgs - Return the number of actual arguments to this call.
843  ///
844  unsigned getNumArgs() const { return NumArgs; }
845
846  /// getArg - Return the specified argument.
847  Expr *getArg(unsigned Arg) {
848    assert(Arg < NumArgs && "Arg access out of range!");
849    return cast<Expr>(SubExprs[Arg+ARGS_START]);
850  }
851  const Expr *getArg(unsigned Arg) const {
852    assert(Arg < NumArgs && "Arg access out of range!");
853    return cast<Expr>(SubExprs[Arg+ARGS_START]);
854  }
855
856  // FIXME: Why is this needed?  Why not just create the CallExpr with the
857  // corect number of arguments?  It makes the ASTs less brittle.
858  /// setArg - Set the specified argument.
859  void setArg(unsigned Arg, Expr *ArgExpr) {
860    assert(Arg < NumArgs && "Arg access out of range!");
861    SubExprs[Arg+ARGS_START] = ArgExpr;
862  }
863
864  // FIXME: It would be great to just get rid of this.  There is only one
865  // callee of this method, and it probably could be refactored to not use
866  // this method and instead just create a CallExpr with the right number of
867  // arguments.
868  /// setNumArgs - This changes the number of arguments present in this call.
869  /// Any orphaned expressions are deleted by this, and any new operands are set
870  /// to null.
871  void setNumArgs(ASTContext& C, unsigned NumArgs);
872
873  typedef ExprIterator arg_iterator;
874  typedef ConstExprIterator const_arg_iterator;
875
876  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
877  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
878  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
879  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
880
881  /// getNumCommas - Return the number of commas that must have been present in
882  /// this function call.
883  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
884
885  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
886  /// not, return 0.
887  unsigned isBuiltinCall(ASTContext &Context) const;
888
889  SourceLocation getRParenLoc() const { return RParenLoc; }
890
891  virtual SourceRange getSourceRange() const {
892    return SourceRange(getCallee()->getLocStart(), RParenLoc);
893  }
894
895  static bool classof(const Stmt *T) {
896    return T->getStmtClass() == CallExprClass ||
897           T->getStmtClass() == CXXOperatorCallExprClass ||
898           T->getStmtClass() == CXXMemberCallExprClass;
899  }
900  static bool classof(const CallExpr *) { return true; }
901  static bool classof(const CXXOperatorCallExpr *) { return true; }
902  static bool classof(const CXXMemberCallExpr *) { return true; }
903
904  // Iterators
905  virtual child_iterator child_begin();
906  virtual child_iterator child_end();
907
908  virtual void EmitImpl(llvm::Serializer& S) const;
909  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
910                              StmtClass SC);
911};
912
913/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
914///
915class MemberExpr : public Expr {
916  Stmt *Base;
917  NamedDecl *MemberDecl;
918  SourceLocation MemberLoc;
919  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
920public:
921  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
922             QualType ty)
923    : Expr(MemberExprClass, ty),
924      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
925
926  void setBase(Expr *E) { Base = E; }
927  Expr *getBase() const { return cast<Expr>(Base); }
928  NamedDecl *getMemberDecl() const { return MemberDecl; }
929  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
930  bool isArrow() const { return IsArrow; }
931  SourceLocation getMemberLoc() const { return MemberLoc; }
932
933  virtual SourceRange getSourceRange() const {
934    return SourceRange(getBase()->getLocStart(), MemberLoc);
935  }
936
937  virtual SourceLocation getExprLoc() const { return MemberLoc; }
938
939  static bool classof(const Stmt *T) {
940    return T->getStmtClass() == MemberExprClass;
941  }
942  static bool classof(const MemberExpr *) { return true; }
943
944  // Iterators
945  virtual child_iterator child_begin();
946  virtual child_iterator child_end();
947
948  virtual void EmitImpl(llvm::Serializer& S) const;
949  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
950};
951
952/// CompoundLiteralExpr - [C99 6.5.2.5]
953///
954class CompoundLiteralExpr : public Expr {
955  /// LParenLoc - If non-null, this is the location of the left paren in a
956  /// compound literal like "(int){4}".  This can be null if this is a
957  /// synthesized compound expression.
958  SourceLocation LParenLoc;
959  Stmt *Init;
960  bool FileScope;
961public:
962  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
963                      bool fileScope)
964    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
965      FileScope(fileScope) {}
966
967  const Expr *getInitializer() const { return cast<Expr>(Init); }
968  Expr *getInitializer() { return cast<Expr>(Init); }
969
970  bool isFileScope() const { return FileScope; }
971
972  SourceLocation getLParenLoc() const { return LParenLoc; }
973
974  virtual SourceRange getSourceRange() const {
975    // FIXME: Init should never be null.
976    if (!Init)
977      return SourceRange();
978    if (LParenLoc.isInvalid())
979      return Init->getSourceRange();
980    return SourceRange(LParenLoc, Init->getLocEnd());
981  }
982
983  static bool classof(const Stmt *T) {
984    return T->getStmtClass() == CompoundLiteralExprClass;
985  }
986  static bool classof(const CompoundLiteralExpr *) { return true; }
987
988  // Iterators
989  virtual child_iterator child_begin();
990  virtual child_iterator child_end();
991
992  virtual void EmitImpl(llvm::Serializer& S) const;
993  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
994};
995
996/// CastExpr - Base class for type casts, including both implicit
997/// casts (ImplicitCastExpr) and explicit casts that have some
998/// representation in the source code (ExplicitCastExpr's derived
999/// classes).
1000class CastExpr : public Expr {
1001  Stmt *Op;
1002protected:
1003  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1004    Expr(SC, ty,
1005         // Cast expressions are type-dependent if the type is
1006         // dependent (C++ [temp.dep.expr]p3).
1007         ty->isDependentType(),
1008         // Cast expressions are value-dependent if the type is
1009         // dependent or if the subexpression is value-dependent.
1010         ty->isDependentType() || (op && op->isValueDependent())),
1011    Op(op) {}
1012
1013public:
1014  Expr *getSubExpr() { return cast<Expr>(Op); }
1015  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1016
1017  static bool classof(const Stmt *T) {
1018    StmtClass SC = T->getStmtClass();
1019    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1020      return true;
1021
1022    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1023      return true;
1024
1025    return false;
1026  }
1027  static bool classof(const CastExpr *) { return true; }
1028
1029  // Iterators
1030  virtual child_iterator child_begin();
1031  virtual child_iterator child_end();
1032};
1033
1034/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1035/// conversions, which have no direct representation in the original
1036/// source code. For example: converting T[]->T*, void f()->void
1037/// (*f)(), float->double, short->int, etc.
1038///
1039/// In C, implicit casts always produce rvalues. However, in C++, an
1040/// implicit cast whose result is being bound to a reference will be
1041/// an lvalue. For example:
1042///
1043/// @code
1044/// class Base { };
1045/// class Derived : public Base { };
1046/// void f(Derived d) {
1047///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1048/// }
1049/// @endcode
1050class ImplicitCastExpr : public CastExpr {
1051  /// LvalueCast - Whether this cast produces an lvalue.
1052  bool LvalueCast;
1053
1054public:
1055  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1056    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1057
1058  virtual SourceRange getSourceRange() const {
1059    return getSubExpr()->getSourceRange();
1060  }
1061
1062  /// isLvalueCast - Whether this cast produces an lvalue.
1063  bool isLvalueCast() const { return LvalueCast; }
1064
1065  /// setLvalueCast - Set whether this cast produces an lvalue.
1066  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1067
1068  static bool classof(const Stmt *T) {
1069    return T->getStmtClass() == ImplicitCastExprClass;
1070  }
1071  static bool classof(const ImplicitCastExpr *) { return true; }
1072
1073  virtual void EmitImpl(llvm::Serializer& S) const;
1074  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1075};
1076
1077/// ExplicitCastExpr - An explicit cast written in the source
1078/// code.
1079///
1080/// This class is effectively an abstract class, because it provides
1081/// the basic representation of an explicitly-written cast without
1082/// specifying which kind of cast (C cast, functional cast, static
1083/// cast, etc.) was written; specific derived classes represent the
1084/// particular style of cast and its location information.
1085///
1086/// Unlike implicit casts, explicit cast nodes have two different
1087/// types: the type that was written into the source code, and the
1088/// actual type of the expression as determined by semantic
1089/// analysis. These types may differ slightly. For example, in C++ one
1090/// can cast to a reference type, which indicates that the resulting
1091/// expression will be an lvalue. The reference type, however, will
1092/// not be used as the type of the expression.
1093class ExplicitCastExpr : public CastExpr {
1094  /// TypeAsWritten - The type that this expression is casting to, as
1095  /// written in the source code.
1096  QualType TypeAsWritten;
1097
1098protected:
1099  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1100    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1101
1102public:
1103  /// getTypeAsWritten - Returns the type that this expression is
1104  /// casting to, as written in the source code.
1105  QualType getTypeAsWritten() const { return TypeAsWritten; }
1106
1107  static bool classof(const Stmt *T) {
1108    StmtClass SC = T->getStmtClass();
1109    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1110      return true;
1111    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1112      return true;
1113
1114    return false;
1115  }
1116  static bool classof(const ExplicitCastExpr *) { return true; }
1117};
1118
1119/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1120/// cast in C++ (C++ [expr.cast]), which uses the syntax
1121/// (Type)expr. For example: @c (int)f.
1122class CStyleCastExpr : public ExplicitCastExpr {
1123  SourceLocation LPLoc; // the location of the left paren
1124  SourceLocation RPLoc; // the location of the right paren
1125public:
1126  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1127                    SourceLocation l, SourceLocation r) :
1128    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1129    LPLoc(l), RPLoc(r) {}
1130
1131  SourceLocation getLParenLoc() const { return LPLoc; }
1132  SourceLocation getRParenLoc() const { return RPLoc; }
1133
1134  virtual SourceRange getSourceRange() const {
1135    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1136  }
1137  static bool classof(const Stmt *T) {
1138    return T->getStmtClass() == CStyleCastExprClass;
1139  }
1140  static bool classof(const CStyleCastExpr *) { return true; }
1141
1142  virtual void EmitImpl(llvm::Serializer& S) const;
1143  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1144};
1145
1146class BinaryOperator : public Expr {
1147public:
1148  enum Opcode {
1149    // Operators listed in order of precedence.
1150    // Note that additions to this should also update the StmtVisitor class.
1151    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1152    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1153    Add, Sub,         // [C99 6.5.6] Additive operators.
1154    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1155    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1156    EQ, NE,           // [C99 6.5.9] Equality operators.
1157    And,              // [C99 6.5.10] Bitwise AND operator.
1158    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1159    Or,               // [C99 6.5.12] Bitwise OR operator.
1160    LAnd,             // [C99 6.5.13] Logical AND operator.
1161    LOr,              // [C99 6.5.14] Logical OR operator.
1162    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1163    DivAssign, RemAssign,
1164    AddAssign, SubAssign,
1165    ShlAssign, ShrAssign,
1166    AndAssign, XorAssign,
1167    OrAssign,
1168    Comma             // [C99 6.5.17] Comma operator.
1169  };
1170private:
1171  enum { LHS, RHS, END_EXPR };
1172  Stmt* SubExprs[END_EXPR];
1173  Opcode Opc;
1174  SourceLocation OpLoc;
1175public:
1176
1177  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1178                 SourceLocation opLoc)
1179    : Expr(BinaryOperatorClass, ResTy,
1180           lhs->isTypeDependent() || rhs->isTypeDependent(),
1181           lhs->isValueDependent() || rhs->isValueDependent()),
1182      Opc(opc), OpLoc(opLoc) {
1183    SubExprs[LHS] = lhs;
1184    SubExprs[RHS] = rhs;
1185    assert(!isCompoundAssignmentOp() &&
1186           "Use ArithAssignBinaryOperator for compound assignments");
1187  }
1188
1189  SourceLocation getOperatorLoc() const { return OpLoc; }
1190  Opcode getOpcode() const { return Opc; }
1191  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1192  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1193  virtual SourceRange getSourceRange() const {
1194    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1195  }
1196
1197  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1198  /// corresponds to, e.g. "<<=".
1199  static const char *getOpcodeStr(Opcode Op);
1200
1201  /// predicates to categorize the respective opcodes.
1202  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1203  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1204  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1205  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1206
1207  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1208  bool isRelationalOp() const { return isRelationalOp(Opc); }
1209
1210  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1211  bool isEqualityOp() const { return isEqualityOp(Opc); }
1212
1213  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1214  bool isLogicalOp() const { return isLogicalOp(Opc); }
1215
1216  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1217  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1218  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1219
1220  static bool classof(const Stmt *S) {
1221    return S->getStmtClass() == BinaryOperatorClass ||
1222           S->getStmtClass() == CompoundAssignOperatorClass;
1223  }
1224  static bool classof(const BinaryOperator *) { return true; }
1225
1226  // Iterators
1227  virtual child_iterator child_begin();
1228  virtual child_iterator child_end();
1229
1230  virtual void EmitImpl(llvm::Serializer& S) const;
1231  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1232
1233protected:
1234  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1235                 SourceLocation oploc, bool dead)
1236    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1237    SubExprs[LHS] = lhs;
1238    SubExprs[RHS] = rhs;
1239  }
1240};
1241
1242/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1243/// track of the type the operation is performed in.  Due to the semantics of
1244/// these operators, the operands are promoted, the aritmetic performed, an
1245/// implicit conversion back to the result type done, then the assignment takes
1246/// place.  This captures the intermediate type which the computation is done
1247/// in.
1248class CompoundAssignOperator : public BinaryOperator {
1249  QualType ComputationType;
1250public:
1251  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1252                         QualType ResType, QualType CompType,
1253                         SourceLocation OpLoc)
1254    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1255      ComputationType(CompType) {
1256    assert(isCompoundAssignmentOp() &&
1257           "Only should be used for compound assignments");
1258  }
1259
1260  QualType getComputationType() const { return ComputationType; }
1261
1262  static bool classof(const CompoundAssignOperator *) { return true; }
1263  static bool classof(const Stmt *S) {
1264    return S->getStmtClass() == CompoundAssignOperatorClass;
1265  }
1266
1267  virtual void EmitImpl(llvm::Serializer& S) const;
1268  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1269                                            ASTContext& C);
1270};
1271
1272/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1273/// GNU "missing LHS" extension is in use.
1274///
1275class ConditionalOperator : public Expr {
1276  enum { COND, LHS, RHS, END_EXPR };
1277  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1278public:
1279  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1280    : Expr(ConditionalOperatorClass, t,
1281           // FIXME: the type of the conditional operator doesn't
1282           // depend on the type of the conditional, but the standard
1283           // seems to imply that it could. File a bug!
1284           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1285           (cond->isValueDependent() ||
1286            (lhs && lhs->isValueDependent()) ||
1287            (rhs && rhs->isValueDependent()))) {
1288    SubExprs[COND] = cond;
1289    SubExprs[LHS] = lhs;
1290    SubExprs[RHS] = rhs;
1291  }
1292
1293  // getCond - Return the expression representing the condition for
1294  //  the ?: operator.
1295  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1296
1297  // getTrueExpr - Return the subexpression representing the value of the ?:
1298  //  expression if the condition evaluates to true.  In most cases this value
1299  //  will be the same as getLHS() except a GCC extension allows the left
1300  //  subexpression to be omitted, and instead of the condition be returned.
1301  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1302  //  is only evaluated once.
1303  Expr *getTrueExpr() const {
1304    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1305  }
1306
1307  // getTrueExpr - Return the subexpression representing the value of the ?:
1308  // expression if the condition evaluates to false. This is the same as getRHS.
1309  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1310
1311  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1312  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1313
1314  virtual SourceRange getSourceRange() const {
1315    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1316  }
1317  static bool classof(const Stmt *T) {
1318    return T->getStmtClass() == ConditionalOperatorClass;
1319  }
1320  static bool classof(const ConditionalOperator *) { return true; }
1321
1322  // Iterators
1323  virtual child_iterator child_begin();
1324  virtual child_iterator child_end();
1325
1326  virtual void EmitImpl(llvm::Serializer& S) const;
1327  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1328};
1329
1330/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1331class AddrLabelExpr : public Expr {
1332  SourceLocation AmpAmpLoc, LabelLoc;
1333  LabelStmt *Label;
1334public:
1335  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1336                QualType t)
1337    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1338
1339  virtual SourceRange getSourceRange() const {
1340    return SourceRange(AmpAmpLoc, LabelLoc);
1341  }
1342
1343  LabelStmt *getLabel() const { return Label; }
1344
1345  static bool classof(const Stmt *T) {
1346    return T->getStmtClass() == AddrLabelExprClass;
1347  }
1348  static bool classof(const AddrLabelExpr *) { return true; }
1349
1350  // Iterators
1351  virtual child_iterator child_begin();
1352  virtual child_iterator child_end();
1353
1354  virtual void EmitImpl(llvm::Serializer& S) const;
1355  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1356};
1357
1358/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1359/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1360/// takes the value of the last subexpression.
1361class StmtExpr : public Expr {
1362  Stmt *SubStmt;
1363  SourceLocation LParenLoc, RParenLoc;
1364public:
1365  StmtExpr(CompoundStmt *substmt, QualType T,
1366           SourceLocation lp, SourceLocation rp) :
1367    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1368
1369  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1370  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1371
1372  virtual SourceRange getSourceRange() const {
1373    return SourceRange(LParenLoc, RParenLoc);
1374  }
1375
1376  SourceLocation getLParenLoc() const { return LParenLoc; }
1377  SourceLocation getRParenLoc() const { return RParenLoc; }
1378
1379  static bool classof(const Stmt *T) {
1380    return T->getStmtClass() == StmtExprClass;
1381  }
1382  static bool classof(const StmtExpr *) { return true; }
1383
1384  // Iterators
1385  virtual child_iterator child_begin();
1386  virtual child_iterator child_end();
1387
1388  virtual void EmitImpl(llvm::Serializer& S) const;
1389  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1390};
1391
1392/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1393/// This AST node represents a function that returns 1 if two *types* (not
1394/// expressions) are compatible. The result of this built-in function can be
1395/// used in integer constant expressions.
1396class TypesCompatibleExpr : public Expr {
1397  QualType Type1;
1398  QualType Type2;
1399  SourceLocation BuiltinLoc, RParenLoc;
1400public:
1401  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1402                      QualType t1, QualType t2, SourceLocation RP) :
1403    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1404    BuiltinLoc(BLoc), RParenLoc(RP) {}
1405
1406  QualType getArgType1() const { return Type1; }
1407  QualType getArgType2() const { return Type2; }
1408
1409  virtual SourceRange getSourceRange() const {
1410    return SourceRange(BuiltinLoc, RParenLoc);
1411  }
1412  static bool classof(const Stmt *T) {
1413    return T->getStmtClass() == TypesCompatibleExprClass;
1414  }
1415  static bool classof(const TypesCompatibleExpr *) { return true; }
1416
1417  // Iterators
1418  virtual child_iterator child_begin();
1419  virtual child_iterator child_end();
1420
1421  virtual void EmitImpl(llvm::Serializer& S) const;
1422  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1423};
1424
1425/// ShuffleVectorExpr - clang-specific builtin-in function
1426/// __builtin_shufflevector.
1427/// This AST node represents a operator that does a constant
1428/// shuffle, similar to LLVM's shufflevector instruction. It takes
1429/// two vectors and a variable number of constant indices,
1430/// and returns the appropriately shuffled vector.
1431class ShuffleVectorExpr : public Expr {
1432  SourceLocation BuiltinLoc, RParenLoc;
1433
1434  // SubExprs - the list of values passed to the __builtin_shufflevector
1435  // function. The first two are vectors, and the rest are constant
1436  // indices.  The number of values in this list is always
1437  // 2+the number of indices in the vector type.
1438  Stmt **SubExprs;
1439  unsigned NumExprs;
1440
1441public:
1442  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1443                    QualType Type, SourceLocation BLoc,
1444                    SourceLocation RP) :
1445    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1446    RParenLoc(RP), NumExprs(nexpr) {
1447
1448    SubExprs = new Stmt*[nexpr];
1449    for (unsigned i = 0; i < nexpr; i++)
1450      SubExprs[i] = args[i];
1451  }
1452
1453  virtual SourceRange getSourceRange() const {
1454    return SourceRange(BuiltinLoc, RParenLoc);
1455  }
1456  static bool classof(const Stmt *T) {
1457    return T->getStmtClass() == ShuffleVectorExprClass;
1458  }
1459  static bool classof(const ShuffleVectorExpr *) { return true; }
1460
1461  ~ShuffleVectorExpr() {
1462    delete [] SubExprs;
1463  }
1464
1465  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1466  /// constant expression, the actual arguments passed in, and the function
1467  /// pointers.
1468  unsigned getNumSubExprs() const { return NumExprs; }
1469
1470  /// getExpr - Return the Expr at the specified index.
1471  Expr *getExpr(unsigned Index) {
1472    assert((Index < NumExprs) && "Arg access out of range!");
1473    return cast<Expr>(SubExprs[Index]);
1474  }
1475  const Expr *getExpr(unsigned Index) const {
1476    assert((Index < NumExprs) && "Arg access out of range!");
1477    return cast<Expr>(SubExprs[Index]);
1478  }
1479
1480  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1481    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1482    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1483  }
1484
1485  // Iterators
1486  virtual child_iterator child_begin();
1487  virtual child_iterator child_end();
1488
1489  virtual void EmitImpl(llvm::Serializer& S) const;
1490  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1491};
1492
1493/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1494/// This AST node is similar to the conditional operator (?:) in C, with
1495/// the following exceptions:
1496/// - the test expression must be a constant expression.
1497/// - the expression returned has it's type unaltered by promotion rules.
1498/// - does not evaluate the expression that was not chosen.
1499class ChooseExpr : public Expr {
1500  enum { COND, LHS, RHS, END_EXPR };
1501  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1502  SourceLocation BuiltinLoc, RParenLoc;
1503public:
1504  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1505             SourceLocation RP)
1506    : Expr(ChooseExprClass, t),
1507      BuiltinLoc(BLoc), RParenLoc(RP) {
1508      SubExprs[COND] = cond;
1509      SubExprs[LHS] = lhs;
1510      SubExprs[RHS] = rhs;
1511    }
1512
1513  /// isConditionTrue - Return true if the condition is true.  This is always
1514  /// statically knowable for a well-formed choosexpr.
1515  bool isConditionTrue(ASTContext &C) const;
1516
1517  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1518  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1519  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1520
1521  virtual SourceRange getSourceRange() const {
1522    return SourceRange(BuiltinLoc, RParenLoc);
1523  }
1524  static bool classof(const Stmt *T) {
1525    return T->getStmtClass() == ChooseExprClass;
1526  }
1527  static bool classof(const ChooseExpr *) { return true; }
1528
1529  // Iterators
1530  virtual child_iterator child_begin();
1531  virtual child_iterator child_end();
1532
1533  virtual void EmitImpl(llvm::Serializer& S) const;
1534  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1535};
1536
1537/// GNUNullExpr - Implements the GNU __null extension, which is a name
1538/// for a null pointer constant that has integral type (e.g., int or
1539/// long) and is the same size and alignment as a pointer. The __null
1540/// extension is typically only used by system headers, which define
1541/// NULL as __null in C++ rather than using 0 (which is an integer
1542/// that may not match the size of a pointer).
1543class GNUNullExpr : public Expr {
1544  /// TokenLoc - The location of the __null keyword.
1545  SourceLocation TokenLoc;
1546
1547public:
1548  GNUNullExpr(QualType Ty, SourceLocation Loc)
1549    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1550
1551  /// getTokenLocation - The location of the __null token.
1552  SourceLocation getTokenLocation() const { return TokenLoc; }
1553
1554  virtual SourceRange getSourceRange() const {
1555    return SourceRange(TokenLoc);
1556  }
1557  static bool classof(const Stmt *T) {
1558    return T->getStmtClass() == GNUNullExprClass;
1559  }
1560  static bool classof(const GNUNullExpr *) { return true; }
1561
1562  // Iterators
1563  virtual child_iterator child_begin();
1564  virtual child_iterator child_end();
1565
1566  virtual void EmitImpl(llvm::Serializer& S) const;
1567  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1568};
1569
1570/// VAArgExpr, used for the builtin function __builtin_va_start.
1571class VAArgExpr : public Expr {
1572  Stmt *Val;
1573  SourceLocation BuiltinLoc, RParenLoc;
1574public:
1575  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1576    : Expr(VAArgExprClass, t),
1577      Val(e),
1578      BuiltinLoc(BLoc),
1579      RParenLoc(RPLoc) { }
1580
1581  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1582  Expr *getSubExpr() { return cast<Expr>(Val); }
1583  virtual SourceRange getSourceRange() const {
1584    return SourceRange(BuiltinLoc, RParenLoc);
1585  }
1586  static bool classof(const Stmt *T) {
1587    return T->getStmtClass() == VAArgExprClass;
1588  }
1589  static bool classof(const VAArgExpr *) { return true; }
1590
1591  // Iterators
1592  virtual child_iterator child_begin();
1593  virtual child_iterator child_end();
1594
1595  virtual void EmitImpl(llvm::Serializer& S) const;
1596  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1597};
1598
1599/// @brief Describes an C or C++ initializer list.
1600///
1601/// InitListExpr describes an initializer list, which can be used to
1602/// initialize objects of different types, including
1603/// struct/class/union types, arrays, and vectors. For example:
1604///
1605/// @code
1606/// struct foo x = { 1, { 2, 3 } };
1607/// @endcode
1608///
1609/// Prior to semantic analysis, an initializer list will represent the
1610/// initializer list as written by the user, but will have the
1611/// placeholder type "void". This initializer list is called the
1612/// syntactic form of the initializer, and may contain C99 designated
1613/// initializers (represented as DesignatedInitExprs), initializations
1614/// of subobject members without explicit braces, and so on. Clients
1615/// interested in the original syntax of the initializer list should
1616/// use the syntactic form of the initializer list.
1617///
1618/// After semantic analysis, the initializer list will represent the
1619/// semantic form of the initializer, where the initializations of all
1620/// subobjects are made explicit with nested InitListExpr nodes and
1621/// C99 designators have been eliminated by placing the designated
1622/// initializations into the subobject they initialize. Additionally,
1623/// any "holes" in the initialization, where no initializer has been
1624/// specified for a particular subobject, will be replaced with
1625/// implicitly-generated ImplicitValueInitExpr expressions that
1626/// value-initialize the subobjects. Note, however, that the
1627/// initializer lists may still have fewer initializers than there are
1628/// elements to initialize within the object.
1629///
1630/// Given the semantic form of the initializer list, one can retrieve
1631/// the original syntactic form of that initializer list (if it
1632/// exists) using getSyntacticForm(). Since many initializer lists
1633/// have the same syntactic and semantic forms, getSyntacticForm() may
1634/// return NULL, indicating that the current initializer list also
1635/// serves as its syntactic form.
1636class InitListExpr : public Expr {
1637  std::vector<Stmt *> InitExprs;
1638  SourceLocation LBraceLoc, RBraceLoc;
1639
1640  /// Contains the initializer list that describes the syntactic form
1641  /// written in the source code.
1642  InitListExpr *SyntacticForm;
1643
1644  /// If this initializer list initializes a union, specifies which
1645  /// field within the union will be initialized.
1646  FieldDecl *UnionFieldInit;
1647
1648  /// Whether this initializer list originally had a GNU array-range
1649  /// designator in it. This is a temporary marker used by CodeGen.
1650  bool HadArrayRangeDesignator;
1651
1652public:
1653  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1654               SourceLocation rbraceloc);
1655
1656  unsigned getNumInits() const { return InitExprs.size(); }
1657
1658  const Expr* getInit(unsigned Init) const {
1659    assert(Init < getNumInits() && "Initializer access out of range!");
1660    return cast_or_null<Expr>(InitExprs[Init]);
1661  }
1662
1663  Expr* getInit(unsigned Init) {
1664    assert(Init < getNumInits() && "Initializer access out of range!");
1665    return cast_or_null<Expr>(InitExprs[Init]);
1666  }
1667
1668  void setInit(unsigned Init, Expr *expr) {
1669    assert(Init < getNumInits() && "Initializer access out of range!");
1670    InitExprs[Init] = expr;
1671  }
1672
1673  /// @brief Specify the number of initializers
1674  ///
1675  /// If there are more than @p NumInits initializers, the remaining
1676  /// initializers will be destroyed. If there are fewer than @p
1677  /// NumInits initializers, NULL expressions will be added for the
1678  /// unknown initializers.
1679  void resizeInits(ASTContext &Context, unsigned NumInits);
1680
1681  /// @brief Updates the initializer at index @p Init with the new
1682  /// expression @p expr, and returns the old expression at that
1683  /// location.
1684  ///
1685  /// When @p Init is out of range for this initializer list, the
1686  /// initializer list will be extended with NULL expressions to
1687  /// accomodate the new entry.
1688  Expr *updateInit(unsigned Init, Expr *expr);
1689
1690  /// \brief If this initializes a union, specifies which field in the
1691  /// union to initialize.
1692  ///
1693  /// Typically, this field is the first named field within the
1694  /// union. However, a designated initializer can specify the
1695  /// initialization of a different field within the union.
1696  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1697  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1698
1699  // Explicit InitListExpr's originate from source code (and have valid source
1700  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1701  bool isExplicit() {
1702    return LBraceLoc.isValid() && RBraceLoc.isValid();
1703  }
1704
1705  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1706
1707  /// @brief Retrieve the initializer list that describes the
1708  /// syntactic form of the initializer.
1709  ///
1710  ///
1711  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1712  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1713
1714  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1715  void sawArrayRangeDesignator() {
1716    HadArrayRangeDesignator = true;
1717  }
1718
1719  virtual SourceRange getSourceRange() const {
1720    return SourceRange(LBraceLoc, RBraceLoc);
1721  }
1722  static bool classof(const Stmt *T) {
1723    return T->getStmtClass() == InitListExprClass;
1724  }
1725  static bool classof(const InitListExpr *) { return true; }
1726
1727  // Iterators
1728  virtual child_iterator child_begin();
1729  virtual child_iterator child_end();
1730
1731  typedef std::vector<Stmt *>::iterator iterator;
1732  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1733
1734  iterator begin() { return InitExprs.begin(); }
1735  iterator end() { return InitExprs.end(); }
1736  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1737  reverse_iterator rend() { return InitExprs.rend(); }
1738
1739  // Serailization.
1740  virtual void EmitImpl(llvm::Serializer& S) const;
1741  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1742
1743private:
1744  // Used by serializer.
1745  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1746};
1747
1748/// @brief Represents a C99 designated initializer expression.
1749///
1750/// A designated initializer expression (C99 6.7.8) contains one or
1751/// more designators (which can be field designators, array
1752/// designators, or GNU array-range designators) followed by an
1753/// expression that initializes the field or element(s) that the
1754/// designators refer to. For example, given:
1755///
1756/// @code
1757/// struct point {
1758///   double x;
1759///   double y;
1760/// };
1761/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1762/// @endcode
1763///
1764/// The InitListExpr contains three DesignatedInitExprs, the first of
1765/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1766/// designators, one array designator for @c [2] followed by one field
1767/// designator for @c .y. The initalization expression will be 1.0.
1768class DesignatedInitExpr : public Expr {
1769  /// The location of the '=' or ':' prior to the actual initializer
1770  /// expression.
1771  SourceLocation EqualOrColonLoc;
1772
1773  /// Whether this designated initializer used the GNU deprecated ':'
1774  /// syntax rather than the C99 '=' syntax.
1775  bool UsesColonSyntax : 1;
1776
1777  /// The number of designators in this initializer expression.
1778  unsigned NumDesignators : 15;
1779
1780  /// The number of subexpressions of this initializer expression,
1781  /// which contains both the initializer and any additional
1782  /// expressions used by array and array-range designators.
1783  unsigned NumSubExprs : 16;
1784
1785  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1786                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1787                     unsigned NumSubExprs)
1788    : Expr(DesignatedInitExprClass, Ty),
1789      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1790      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1791
1792public:
1793  /// A field designator, e.g., ".x".
1794  struct FieldDesignator {
1795    /// Refers to the field that is being initialized. The low bit
1796    /// of this field determines whether this is actually a pointer
1797    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1798    /// initially constructed, a field designator will store an
1799    /// IdentifierInfo*. After semantic analysis has resolved that
1800    /// name, the field designator will instead store a FieldDecl*.
1801    uintptr_t NameOrField;
1802
1803    /// The location of the '.' in the designated initializer.
1804    unsigned DotLoc;
1805
1806    /// The location of the field name in the designated initializer.
1807    unsigned FieldLoc;
1808  };
1809
1810  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1811  struct ArrayOrRangeDesignator {
1812    /// Location of the first index expression within the designated
1813    /// initializer expression's list of subexpressions.
1814    unsigned Index;
1815    /// The location of the '[' starting the array range designator.
1816    unsigned LBracketLoc;
1817    /// The location of the ellipsis separating the start and end
1818    /// indices. Only valid for GNU array-range designators.
1819    unsigned EllipsisLoc;
1820    /// The location of the ']' terminating the array range designator.
1821    unsigned RBracketLoc;
1822  };
1823
1824  /// @brief Represents a single C99 designator.
1825  ///
1826  /// @todo This class is infuriatingly similar to clang::Designator,
1827  /// but minor differences (storing indices vs. storing pointers)
1828  /// keep us from reusing it. Try harder, later, to rectify these
1829  /// differences.
1830  class Designator {
1831    /// @brief The kind of designator this describes.
1832    enum {
1833      FieldDesignator,
1834      ArrayDesignator,
1835      ArrayRangeDesignator
1836    } Kind;
1837
1838    union {
1839      /// A field designator, e.g., ".x".
1840      struct FieldDesignator Field;
1841      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1842      struct ArrayOrRangeDesignator ArrayOrRange;
1843    };
1844    friend class DesignatedInitExpr;
1845
1846  public:
1847    /// @brief Initializes a field designator.
1848    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1849               SourceLocation FieldLoc)
1850      : Kind(FieldDesignator) {
1851      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1852      Field.DotLoc = DotLoc.getRawEncoding();
1853      Field.FieldLoc = FieldLoc.getRawEncoding();
1854    }
1855
1856    /// @brief Initializes an array designator.
1857    Designator(unsigned Index, SourceLocation LBracketLoc,
1858               SourceLocation RBracketLoc)
1859      : Kind(ArrayDesignator) {
1860      ArrayOrRange.Index = Index;
1861      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1862      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1863      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1864    }
1865
1866    /// @brief Initializes a GNU array-range designator.
1867    Designator(unsigned Index, SourceLocation LBracketLoc,
1868               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1869      : Kind(ArrayRangeDesignator) {
1870      ArrayOrRange.Index = Index;
1871      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1872      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1873      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1874    }
1875
1876    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1877    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1878    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1879
1880    IdentifierInfo * getFieldName();
1881
1882    FieldDecl *getField() {
1883      assert(Kind == FieldDesignator && "Only valid on a field designator");
1884      if (Field.NameOrField & 0x01)
1885        return 0;
1886      else
1887        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1888    }
1889
1890    void setField(FieldDecl *FD) {
1891      assert(Kind == FieldDesignator && "Only valid on a field designator");
1892      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1893    }
1894
1895    SourceLocation getDotLoc() const {
1896      assert(Kind == FieldDesignator && "Only valid on a field designator");
1897      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1898    }
1899
1900    SourceLocation getFieldLoc() const {
1901      assert(Kind == FieldDesignator && "Only valid on a field designator");
1902      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1903    }
1904
1905    SourceLocation getLBracketLoc() const {
1906      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1907             "Only valid on an array or array-range designator");
1908      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1909    }
1910
1911    SourceLocation getRBracketLoc() const {
1912      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1913             "Only valid on an array or array-range designator");
1914      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1915    }
1916
1917    SourceLocation getEllipsisLoc() const {
1918      assert(Kind == ArrayRangeDesignator &&
1919             "Only valid on an array-range designator");
1920      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1921    }
1922
1923    SourceLocation getStartLocation() const {
1924      if (Kind == FieldDesignator)
1925        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1926      else
1927        return getLBracketLoc();
1928    }
1929  };
1930
1931  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1932                                    unsigned NumDesignators,
1933                                    Expr **IndexExprs, unsigned NumIndexExprs,
1934                                    SourceLocation EqualOrColonLoc,
1935                                    bool UsesColonSyntax, Expr *Init);
1936
1937  /// @brief Returns the number of designators in this initializer.
1938  unsigned size() const { return NumDesignators; }
1939
1940  // Iterator access to the designators.
1941  typedef Designator* designators_iterator;
1942  designators_iterator designators_begin();
1943  designators_iterator designators_end();
1944
1945  Expr *getArrayIndex(const Designator& D);
1946  Expr *getArrayRangeStart(const Designator& D);
1947  Expr *getArrayRangeEnd(const Designator& D);
1948
1949  /// @brief Retrieve the location of the '=' that precedes the
1950  /// initializer value itself, if present.
1951  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
1952
1953  /// @brief Determines whether this designated initializer used the
1954  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
1955  bool usesColonSyntax() const { return UsesColonSyntax; }
1956
1957  /// @brief Retrieve the initializer value.
1958  Expr *getInit() const {
1959    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
1960  }
1961
1962  void setInit(Expr *init) {
1963    *child_begin() = init;
1964  }
1965
1966  virtual SourceRange getSourceRange() const;
1967
1968  static bool classof(const Stmt *T) {
1969    return T->getStmtClass() == DesignatedInitExprClass;
1970  }
1971  static bool classof(const DesignatedInitExpr *) { return true; }
1972
1973  // Iterators
1974  virtual child_iterator child_begin();
1975  virtual child_iterator child_end();
1976};
1977
1978/// \brief Represents an implicitly-generated value initialization of
1979/// an object of a given type.
1980///
1981/// Implicit value initializations occur within semantic initializer
1982/// list expressions (InitListExpr) as placeholders for subobject
1983/// initializations not explicitly specified by the user.
1984///
1985/// \see InitListExpr
1986class ImplicitValueInitExpr : public Expr {
1987public:
1988  explicit ImplicitValueInitExpr(QualType ty)
1989    : Expr(ImplicitValueInitExprClass, ty) { }
1990
1991  static bool classof(const Stmt *T) {
1992    return T->getStmtClass() == ImplicitValueInitExprClass;
1993  }
1994  static bool classof(const ImplicitValueInitExpr *) { return true; }
1995
1996  virtual SourceRange getSourceRange() const {
1997    return SourceRange();
1998  }
1999
2000  // Iterators
2001  virtual child_iterator child_begin();
2002  virtual child_iterator child_end();
2003};
2004
2005//===----------------------------------------------------------------------===//
2006// Clang Extensions
2007//===----------------------------------------------------------------------===//
2008
2009
2010/// ExtVectorElementExpr - This represents access to specific elements of a
2011/// vector, and may occur on the left hand side or right hand side.  For example
2012/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2013///
2014/// Note that the base may have either vector or pointer to vector type, just
2015/// like a struct field reference.
2016///
2017class ExtVectorElementExpr : public Expr {
2018  Stmt *Base;
2019  IdentifierInfo &Accessor;
2020  SourceLocation AccessorLoc;
2021public:
2022  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2023                       SourceLocation loc)
2024    : Expr(ExtVectorElementExprClass, ty),
2025      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2026
2027  const Expr *getBase() const { return cast<Expr>(Base); }
2028  Expr *getBase() { return cast<Expr>(Base); }
2029
2030  IdentifierInfo &getAccessor() const { return Accessor; }
2031
2032  /// getNumElements - Get the number of components being selected.
2033  unsigned getNumElements() const;
2034
2035  /// containsDuplicateElements - Return true if any element access is
2036  /// repeated.
2037  bool containsDuplicateElements() const;
2038
2039  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2040  /// aggregate Constant of ConstantInt(s).
2041  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2042
2043  virtual SourceRange getSourceRange() const {
2044    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2045  }
2046
2047  /// isArrow - Return true if the base expression is a pointer to vector,
2048  /// return false if the base expression is a vector.
2049  bool isArrow() const;
2050
2051  static bool classof(const Stmt *T) {
2052    return T->getStmtClass() == ExtVectorElementExprClass;
2053  }
2054  static bool classof(const ExtVectorElementExpr *) { return true; }
2055
2056  // Iterators
2057  virtual child_iterator child_begin();
2058  virtual child_iterator child_end();
2059
2060  virtual void EmitImpl(llvm::Serializer& S) const;
2061  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2062};
2063
2064
2065/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2066/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2067class BlockExpr : public Expr {
2068protected:
2069  BlockDecl *TheBlock;
2070  bool HasBlockDeclRefExprs;
2071public:
2072  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2073    : Expr(BlockExprClass, ty),
2074      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2075
2076  const BlockDecl *getBlockDecl() const { return TheBlock; }
2077  BlockDecl *getBlockDecl() { return TheBlock; }
2078
2079  // Convenience functions for probing the underlying BlockDecl.
2080  SourceLocation getCaretLocation() const;
2081  const Stmt *getBody() const;
2082  Stmt *getBody();
2083
2084  virtual SourceRange getSourceRange() const {
2085    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2086  }
2087
2088  /// getFunctionType - Return the underlying function type for this block.
2089  const FunctionType *getFunctionType() const;
2090
2091  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2092  /// contained inside.
2093  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2094
2095  static bool classof(const Stmt *T) {
2096    return T->getStmtClass() == BlockExprClass;
2097  }
2098  static bool classof(const BlockExpr *) { return true; }
2099
2100  // Iterators
2101  virtual child_iterator child_begin();
2102  virtual child_iterator child_end();
2103
2104  virtual void EmitImpl(llvm::Serializer& S) const;
2105  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2106};
2107
2108/// BlockDeclRefExpr - A reference to a declared variable, function,
2109/// enum, etc.
2110class BlockDeclRefExpr : public Expr {
2111  ValueDecl *D;
2112  SourceLocation Loc;
2113  bool IsByRef;
2114public:
2115  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2116       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2117
2118  ValueDecl *getDecl() { return D; }
2119  const ValueDecl *getDecl() const { return D; }
2120  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2121
2122  bool isByRef() const { return IsByRef; }
2123
2124  static bool classof(const Stmt *T) {
2125    return T->getStmtClass() == BlockDeclRefExprClass;
2126  }
2127  static bool classof(const BlockDeclRefExpr *) { return true; }
2128
2129  // Iterators
2130  virtual child_iterator child_begin();
2131  virtual child_iterator child_end();
2132
2133  virtual void EmitImpl(llvm::Serializer& S) const;
2134  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2135};
2136
2137}  // end namespace clang
2138
2139#endif
2140