Expr.h revision 370187c8a3e96517c943329f2511737a04b85450
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66  /// \brief Construct an empty expression.
67  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
68
69public:
70  QualType getType() const { return TR; }
71  void setType(QualType t) {
72    // In C++, the type of an expression is always adjusted so that it
73    // will not have reference type an expression will never have
74    // reference type (C++ [expr]p6). Use
75    // QualType::getNonReferenceType() to retrieve the non-reference
76    // type. Additionally, inspect Expr::isLvalue to determine whether
77    // an expression that is adjusted in this manner should be
78    // considered an lvalue.
79    assert((TR.isNull() || !TR->isReferenceType()) &&
80           "Expressions can't have reference type");
81
82    TR = t;
83  }
84
85  /// isValueDependent - Determines whether this expression is
86  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
87  /// array bound of "Chars" in the following example is
88  /// value-dependent.
89  /// @code
90  /// template<int Size, char (&Chars)[Size]> struct meta_string;
91  /// @endcode
92  bool isValueDependent() const { return ValueDependent; }
93
94  /// \brief Set whether this expression is value-dependent or not.
95  void setValueDependent(bool VD) { ValueDependent = VD; }
96
97  /// isTypeDependent - Determines whether this expression is
98  /// type-dependent (C++ [temp.dep.expr]), which means that its type
99  /// could change from one template instantiation to the next. For
100  /// example, the expressions "x" and "x + y" are type-dependent in
101  /// the following code, but "y" is not type-dependent:
102  /// @code
103  /// template<typename T>
104  /// void add(T x, int y) {
105  ///   x + y;
106  /// }
107  /// @endcode
108  bool isTypeDependent() const { return TypeDependent; }
109
110  /// \brief Set whether this expression is type-dependent or not.
111  void setTypeDependent(bool TD) { TypeDependent = TD; }
112
113  /// SourceLocation tokens are not useful in isolation - they are low level
114  /// value objects created/interpreted by SourceManager. We assume AST
115  /// clients will have a pointer to the respective SourceManager.
116  virtual SourceRange getSourceRange() const = 0;
117
118  /// getExprLoc - Return the preferred location for the arrow when diagnosing
119  /// a problem with a generic expression.
120  virtual SourceLocation getExprLoc() const { return getLocStart(); }
121
122  /// isUnusedResultAWarning - Return true if this immediate expression should
123  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
124  /// with location to warn on and the source range[s] to report with the
125  /// warning.
126  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
127                              SourceRange &R2) const;
128
129  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
130  /// incomplete type other than void. Nonarray expressions that can be lvalues:
131  ///  - name, where name must be a variable
132  ///  - e[i]
133  ///  - (e), where e must be an lvalue
134  ///  - e.name, where e must be an lvalue
135  ///  - e->name
136  ///  - *e, the type of e cannot be a function type
137  ///  - string-constant
138  ///  - reference type [C++ [expr]]
139  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
140  ///
141  enum isLvalueResult {
142    LV_Valid,
143    LV_NotObjectType,
144    LV_IncompleteVoidType,
145    LV_DuplicateVectorComponents,
146    LV_InvalidExpression,
147    LV_MemberFunction
148  };
149  isLvalueResult isLvalue(ASTContext &Ctx) const;
150
151  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
152  /// does not have an incomplete type, does not have a const-qualified type,
153  /// and if it is a structure or union, does not have any member (including,
154  /// recursively, any member or element of all contained aggregates or unions)
155  /// with a const-qualified type.
156  ///
157  /// \param Loc [in] [out] - A source location which *may* be filled
158  /// in with the location of the expression making this a
159  /// non-modifiable lvalue, if specified.
160  enum isModifiableLvalueResult {
161    MLV_Valid,
162    MLV_NotObjectType,
163    MLV_IncompleteVoidType,
164    MLV_DuplicateVectorComponents,
165    MLV_InvalidExpression,
166    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
167    MLV_IncompleteType,
168    MLV_ConstQualified,
169    MLV_ArrayType,
170    MLV_NotBlockQualified,
171    MLV_ReadonlyProperty,
172    MLV_NoSetterProperty,
173    MLV_MemberFunction
174  };
175  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
176                                              SourceLocation *Loc = 0) const;
177
178  bool isBitField();
179
180  /// getIntegerConstantExprValue() - Return the value of an integer
181  /// constant expression. The expression must be a valid integer
182  /// constant expression as determined by isIntegerConstantExpr.
183  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
184    llvm::APSInt X;
185    bool success = isIntegerConstantExpr(X, Ctx);
186    success = success;
187    assert(success && "Illegal argument to getIntegerConstantExpr");
188    return X;
189  }
190
191  /// isIntegerConstantExpr - Return true if this expression is a valid integer
192  /// constant expression, and, if so, return its value in Result.  If not a
193  /// valid i-c-e, return false and fill in Loc (if specified) with the location
194  /// of the invalid expression.
195  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
196                             SourceLocation *Loc = 0,
197                             bool isEvaluated = true) const;
198  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
199                             SourceLocation *Loc = 0,
200                             bool isEvaluated = true) const;
201  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
202    llvm::APSInt X;
203    return isIntegerConstantExpr(X, Ctx, Loc);
204  }
205  /// isConstantInitializer - Returns true if this expression is a constant
206  /// initializer, which can be emitted at compile-time.
207  bool isConstantInitializer(ASTContext &Ctx) const;
208
209  /// EvalResult is a struct with detailed info about an evaluated expression.
210  struct EvalResult {
211    /// Val - This is the value the expression can be folded to.
212    APValue Val;
213
214    /// HasSideEffects - Whether the evaluated expression has side effects.
215    /// For example, (f() && 0) can be folded, but it still has side effects.
216    bool HasSideEffects;
217
218    /// Diag - If the expression is unfoldable, then Diag contains a note
219    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
220    /// position for the error, and DiagExpr is the expression that caused
221    /// the error.
222    /// If the expression is foldable, but not an integer constant expression,
223    /// Diag contains a note diagnostic that describes why it isn't an integer
224    /// constant expression. If the expression *is* an integer constant
225    /// expression, then Diag will be zero.
226    unsigned Diag;
227    const Expr *DiagExpr;
228    SourceLocation DiagLoc;
229
230    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
231  };
232
233  /// Evaluate - Return true if this is a constant which we can fold using
234  /// any crazy technique (that has nothing to do with language standards) that
235  /// we want to.  If this function returns true, it returns the folded constant
236  /// in Result.
237  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
238
239  /// isEvaluatable - Call Evaluate to see if this expression can be constant
240  /// folded, but discard the result.
241  bool isEvaluatable(ASTContext &Ctx) const;
242
243  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
244  /// must be called on an expression that constant folds to an integer.
245  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
246
247  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
248  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
249
250  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
251  /// integer constant expression with the value zero, or if this is one that is
252  /// cast to void*.
253  bool isNullPointerConstant(ASTContext &Ctx) const;
254
255  /// hasGlobalStorage - Return true if this expression has static storage
256  /// duration.  This means that the address of this expression is a link-time
257  /// constant.
258  bool hasGlobalStorage() const;
259
260  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
261  /// write barrier.
262  bool isOBJCGCCandidate() const;
263
264  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
265  ///  its subexpression.  If that subexpression is also a ParenExpr,
266  ///  then this method recursively returns its subexpression, and so forth.
267  ///  Otherwise, the method returns the current Expr.
268  Expr* IgnoreParens();
269
270  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
271  /// or CastExprs, returning their operand.
272  Expr *IgnoreParenCasts();
273
274  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
275  /// value (including ptr->int casts of the same size).  Strip off any
276  /// ParenExpr or CastExprs, returning their operand.
277  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
278
279  const Expr* IgnoreParens() const {
280    return const_cast<Expr*>(this)->IgnoreParens();
281  }
282  const Expr *IgnoreParenCasts() const {
283    return const_cast<Expr*>(this)->IgnoreParenCasts();
284  }
285  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
286    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
287  }
288
289  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
290  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
291
292  static bool classof(const Stmt *T) {
293    return T->getStmtClass() >= firstExprConstant &&
294           T->getStmtClass() <= lastExprConstant;
295  }
296  static bool classof(const Expr *) { return true; }
297};
298
299
300//===----------------------------------------------------------------------===//
301// Primary Expressions.
302//===----------------------------------------------------------------------===//
303
304/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
305/// enum, etc.
306class DeclRefExpr : public Expr {
307  NamedDecl *D;
308  SourceLocation Loc;
309
310protected:
311  // FIXME: Eventually, this constructor will go away and all subclasses
312  // will have to provide the type- and value-dependent flags.
313  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
314    Expr(SC, t), D(d), Loc(l) {}
315
316  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
317              bool VD) :
318    Expr(SC, t, TD, VD), D(d), Loc(l) {}
319
320public:
321  // FIXME: Eventually, this constructor will go away and all clients
322  // will have to provide the type- and value-dependent flags.
323  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
324    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
325
326  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
327    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
328
329  /// \brief Construct an empty declaration reference expression.
330  explicit DeclRefExpr(EmptyShell Empty)
331    : Expr(DeclRefExprClass, Empty) { }
332
333  NamedDecl *getDecl() { return D; }
334  const NamedDecl *getDecl() const { return D; }
335  void setDecl(NamedDecl *NewD) { D = NewD; }
336
337  SourceLocation getLocation() const { return Loc; }
338  void setLocation(SourceLocation L) { Loc = L; }
339  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
340
341  static bool classof(const Stmt *T) {
342    return T->getStmtClass() == DeclRefExprClass ||
343           T->getStmtClass() == CXXConditionDeclExprClass ||
344           T->getStmtClass() == QualifiedDeclRefExprClass;
345  }
346  static bool classof(const DeclRefExpr *) { return true; }
347
348  // Iterators
349  virtual child_iterator child_begin();
350  virtual child_iterator child_end();
351};
352
353/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
354class PredefinedExpr : public Expr {
355public:
356  enum IdentType {
357    Func,
358    Function,
359    PrettyFunction
360  };
361
362private:
363  SourceLocation Loc;
364  IdentType Type;
365public:
366  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
367    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
368
369  /// \brief Construct an empty predefined expression.
370  explicit PredefinedExpr(EmptyShell Empty)
371    : Expr(PredefinedExprClass, Empty) { }
372
373  IdentType getIdentType() const { return Type; }
374  void setIdentType(IdentType IT) { Type = IT; }
375
376  SourceLocation getLocation() const { return Loc; }
377  void setLocation(SourceLocation L) { Loc = L; }
378
379  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
380
381  static bool classof(const Stmt *T) {
382    return T->getStmtClass() == PredefinedExprClass;
383  }
384  static bool classof(const PredefinedExpr *) { return true; }
385
386  // Iterators
387  virtual child_iterator child_begin();
388  virtual child_iterator child_end();
389};
390
391class IntegerLiteral : public Expr {
392  llvm::APInt Value;
393  SourceLocation Loc;
394public:
395  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
396  // or UnsignedLongLongTy
397  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
398    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
399    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
400  }
401
402  /// \brief Construct an empty integer literal.
403  explicit IntegerLiteral(EmptyShell Empty)
404    : Expr(IntegerLiteralClass, Empty) { }
405
406  IntegerLiteral* Clone(ASTContext &C) const;
407
408  const llvm::APInt &getValue() const { return Value; }
409  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
410
411  /// \brief Retrieve the location of the literal.
412  SourceLocation getLocation() const { return Loc; }
413
414  void setValue(const llvm::APInt &Val) { Value = Val; }
415  void setLocation(SourceLocation Location) { Loc = Location; }
416
417  static bool classof(const Stmt *T) {
418    return T->getStmtClass() == IntegerLiteralClass;
419  }
420  static bool classof(const IntegerLiteral *) { return true; }
421
422  // Iterators
423  virtual child_iterator child_begin();
424  virtual child_iterator child_end();
425};
426
427class CharacterLiteral : public Expr {
428  unsigned Value;
429  SourceLocation Loc;
430  bool IsWide;
431public:
432  // type should be IntTy
433  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
434    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
435  }
436
437  /// \brief Construct an empty character literal.
438  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
439
440  SourceLocation getLoc() const { return Loc; }
441  bool isWide() const { return IsWide; }
442
443  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
444
445  unsigned getValue() const { return Value; }
446
447  void setLocation(SourceLocation Location) { Loc = Location; }
448  void setWide(bool W) { IsWide = W; }
449  void setValue(unsigned Val) { Value = Val; }
450
451  static bool classof(const Stmt *T) {
452    return T->getStmtClass() == CharacterLiteralClass;
453  }
454  static bool classof(const CharacterLiteral *) { return true; }
455
456  // Iterators
457  virtual child_iterator child_begin();
458  virtual child_iterator child_end();
459};
460
461class FloatingLiteral : public Expr {
462  llvm::APFloat Value;
463  bool IsExact : 1;
464  SourceLocation Loc;
465public:
466  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
467                  QualType Type, SourceLocation L)
468    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
469
470  /// \brief Construct an empty floating-point literal.
471  FloatingLiteral(EmptyShell Empty)
472    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
473
474  const llvm::APFloat &getValue() const { return Value; }
475  void setValue(const llvm::APFloat &Val) { Value = Val; }
476
477  bool isExact() const { return IsExact; }
478  void setExact(bool E) { IsExact = E; }
479
480  /// getValueAsApproximateDouble - This returns the value as an inaccurate
481  /// double.  Note that this may cause loss of precision, but is useful for
482  /// debugging dumps, etc.
483  double getValueAsApproximateDouble() const;
484
485  SourceLocation getLocation() const { return Loc; }
486  void setLocation(SourceLocation L) { Loc = L; }
487
488  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
489
490  static bool classof(const Stmt *T) {
491    return T->getStmtClass() == FloatingLiteralClass;
492  }
493  static bool classof(const FloatingLiteral *) { return true; }
494
495  // Iterators
496  virtual child_iterator child_begin();
497  virtual child_iterator child_end();
498};
499
500/// ImaginaryLiteral - We support imaginary integer and floating point literals,
501/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
502/// IntegerLiteral classes.  Instances of this class always have a Complex type
503/// whose element type matches the subexpression.
504///
505class ImaginaryLiteral : public Expr {
506  Stmt *Val;
507public:
508  ImaginaryLiteral(Expr *val, QualType Ty)
509    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
510
511  /// \brief Build an empty imaginary literal.
512  explicit ImaginaryLiteral(EmptyShell Empty)
513    : Expr(ImaginaryLiteralClass, Empty) { }
514
515  const Expr *getSubExpr() const { return cast<Expr>(Val); }
516  Expr *getSubExpr() { return cast<Expr>(Val); }
517  void setSubExpr(Expr *E) { Val = E; }
518
519  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
520  static bool classof(const Stmt *T) {
521    return T->getStmtClass() == ImaginaryLiteralClass;
522  }
523  static bool classof(const ImaginaryLiteral *) { return true; }
524
525  // Iterators
526  virtual child_iterator child_begin();
527  virtual child_iterator child_end();
528};
529
530/// StringLiteral - This represents a string literal expression, e.g. "foo"
531/// or L"bar" (wide strings).  The actual string is returned by getStrData()
532/// is NOT null-terminated, and the length of the string is determined by
533/// calling getByteLength().  The C type for a string is always a
534/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
535/// not.
536///
537/// Note that strings in C can be formed by concatenation of multiple string
538/// literal pptokens in translation phase #6.  This keeps track of the locations
539/// of each of these pieces.
540///
541/// Strings in C can also be truncated and extended by assigning into arrays,
542/// e.g. with constructs like:
543///   char X[2] = "foobar";
544/// In this case, getByteLength() will return 6, but the string literal will
545/// have type "char[2]".
546class StringLiteral : public Expr {
547  const char *StrData;
548  unsigned ByteLength;
549  bool IsWide;
550  unsigned NumConcatenated;
551  SourceLocation TokLocs[1];
552
553  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
554public:
555  /// This is the "fully general" constructor that allows representation of
556  /// strings formed from multiple concatenated tokens.
557  static StringLiteral *Create(ASTContext &C, const char *StrData,
558                               unsigned ByteLength, bool Wide, QualType Ty,
559                               const SourceLocation *Loc, unsigned NumStrs);
560
561  /// Simple constructor for string literals made from one token.
562  static StringLiteral *Create(ASTContext &C, const char *StrData,
563                               unsigned ByteLength,
564                               bool Wide, QualType Ty, SourceLocation Loc) {
565    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
566  }
567
568  /// \brief Construct an empty string literal.
569  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
570
571  StringLiteral* Clone(ASTContext &C) const;
572  void Destroy(ASTContext &C);
573
574  const char *getStrData() const { return StrData; }
575  unsigned getByteLength() const { return ByteLength; }
576
577  /// \brief Sets the string data to the given string data.
578  void setStrData(ASTContext &C, const char *Str, unsigned Len);
579
580  bool isWide() const { return IsWide; }
581  void setWide(bool W) { IsWide = W; }
582
583  bool containsNonAsciiOrNull() const {
584    for (unsigned i = 0; i < getByteLength(); ++i)
585      if (!isascii(getStrData()[i]) || !getStrData()[i])
586        return true;
587    return false;
588  }
589  /// getNumConcatenated - Get the number of string literal tokens that were
590  /// concatenated in translation phase #6 to form this string literal.
591  unsigned getNumConcatenated() const { return NumConcatenated; }
592
593  SourceLocation getStrTokenLoc(unsigned TokNum) const {
594    assert(TokNum < NumConcatenated && "Invalid tok number");
595    return TokLocs[TokNum];
596  }
597  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
598    assert(TokNum < NumConcatenated && "Invalid tok number");
599    TokLocs[TokNum] = L;
600  }
601
602  typedef const SourceLocation *tokloc_iterator;
603  tokloc_iterator tokloc_begin() const { return TokLocs; }
604  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
605
606  virtual SourceRange getSourceRange() const {
607    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
608  }
609  static bool classof(const Stmt *T) {
610    return T->getStmtClass() == StringLiteralClass;
611  }
612  static bool classof(const StringLiteral *) { return true; }
613
614  // Iterators
615  virtual child_iterator child_begin();
616  virtual child_iterator child_end();
617};
618
619/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
620/// AST node is only formed if full location information is requested.
621class ParenExpr : public Expr {
622  SourceLocation L, R;
623  Stmt *Val;
624public:
625  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
626    : Expr(ParenExprClass, val->getType(),
627           val->isTypeDependent(), val->isValueDependent()),
628      L(l), R(r), Val(val) {}
629
630  /// \brief Construct an empty parenthesized expression.
631  explicit ParenExpr(EmptyShell Empty)
632    : Expr(ParenExprClass, Empty) { }
633
634  const Expr *getSubExpr() const { return cast<Expr>(Val); }
635  Expr *getSubExpr() { return cast<Expr>(Val); }
636  void setSubExpr(Expr *E) { Val = E; }
637
638  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
639
640  /// \brief Get the location of the left parentheses '('.
641  SourceLocation getLParen() const { return L; }
642  void setLParen(SourceLocation Loc) { L = Loc; }
643
644  /// \brief Get the location of the right parentheses ')'.
645  SourceLocation getRParen() const { return R; }
646  void setRParen(SourceLocation Loc) { R = Loc; }
647
648  static bool classof(const Stmt *T) {
649    return T->getStmtClass() == ParenExprClass;
650  }
651  static bool classof(const ParenExpr *) { return true; }
652
653  // Iterators
654  virtual child_iterator child_begin();
655  virtual child_iterator child_end();
656};
657
658
659/// UnaryOperator - This represents the unary-expression's (except sizeof and
660/// alignof), the postinc/postdec operators from postfix-expression, and various
661/// extensions.
662///
663/// Notes on various nodes:
664///
665/// Real/Imag - These return the real/imag part of a complex operand.  If
666///   applied to a non-complex value, the former returns its operand and the
667///   later returns zero in the type of the operand.
668///
669/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
670///   subexpression is a compound literal with the various MemberExpr and
671///   ArraySubscriptExpr's applied to it.
672///
673class UnaryOperator : public Expr {
674public:
675  // Note that additions to this should also update the StmtVisitor class.
676  enum Opcode {
677    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
678    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
679    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
680    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
681    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
682    Real, Imag,       // "__real expr"/"__imag expr" Extension.
683    Extension,        // __extension__ marker.
684    OffsetOf          // __builtin_offsetof
685  };
686private:
687  Stmt *Val;
688  Opcode Opc;
689  SourceLocation Loc;
690public:
691
692  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
693    : Expr(UnaryOperatorClass, type,
694           input->isTypeDependent() && opc != OffsetOf,
695           input->isValueDependent()),
696      Val(input), Opc(opc), Loc(l) {}
697
698  /// \brief Build an empty unary operator.
699  explicit UnaryOperator(EmptyShell Empty)
700    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
701
702  Opcode getOpcode() const { return Opc; }
703  void setOpcode(Opcode O) { Opc = O; }
704
705  Expr *getSubExpr() const { return cast<Expr>(Val); }
706  void setSubExpr(Expr *E) { Val = E; }
707
708  /// getOperatorLoc - Return the location of the operator.
709  SourceLocation getOperatorLoc() const { return Loc; }
710  void setOperatorLoc(SourceLocation L) { Loc = L; }
711
712  /// isPostfix - Return true if this is a postfix operation, like x++.
713  static bool isPostfix(Opcode Op) {
714    return Op == PostInc || Op == PostDec;
715  }
716
717  /// isPostfix - Return true if this is a prefix operation, like --x.
718  static bool isPrefix(Opcode Op) {
719    return Op == PreInc || Op == PreDec;
720  }
721
722  bool isPrefix() const { return isPrefix(Opc); }
723  bool isPostfix() const { return isPostfix(Opc); }
724  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
725  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
726  bool isOffsetOfOp() const { return Opc == OffsetOf; }
727  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
728
729  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
730  /// corresponds to, e.g. "sizeof" or "[pre]++"
731  static const char *getOpcodeStr(Opcode Op);
732
733  /// \brief Retrieve the unary opcode that corresponds to the given
734  /// overloaded operator.
735  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
736
737  /// \brief Retrieve the overloaded operator kind that corresponds to
738  /// the given unary opcode.
739  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
740
741  virtual SourceRange getSourceRange() const {
742    if (isPostfix())
743      return SourceRange(Val->getLocStart(), Loc);
744    else
745      return SourceRange(Loc, Val->getLocEnd());
746  }
747  virtual SourceLocation getExprLoc() const { return Loc; }
748
749  static bool classof(const Stmt *T) {
750    return T->getStmtClass() == UnaryOperatorClass;
751  }
752  static bool classof(const UnaryOperator *) { return true; }
753
754  // Iterators
755  virtual child_iterator child_begin();
756  virtual child_iterator child_end();
757};
758
759/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
760/// types and expressions.
761class SizeOfAlignOfExpr : public Expr {
762  bool isSizeof : 1;  // true if sizeof, false if alignof.
763  bool isType : 1;    // true if operand is a type, false if an expression
764  union {
765    void *Ty;
766    Stmt *Ex;
767  } Argument;
768  SourceLocation OpLoc, RParenLoc;
769public:
770  SizeOfAlignOfExpr(bool issizeof, QualType T,
771                    QualType resultType, SourceLocation op,
772                    SourceLocation rp) :
773      Expr(SizeOfAlignOfExprClass, resultType,
774           false, // Never type-dependent (C++ [temp.dep.expr]p3).
775           // Value-dependent if the argument is type-dependent.
776           T->isDependentType()),
777      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
778    Argument.Ty = T.getAsOpaquePtr();
779  }
780
781  SizeOfAlignOfExpr(bool issizeof, Expr *E,
782                    QualType resultType, SourceLocation op,
783                    SourceLocation rp) :
784      Expr(SizeOfAlignOfExprClass, resultType,
785           false, // Never type-dependent (C++ [temp.dep.expr]p3).
786           // Value-dependent if the argument is type-dependent.
787           E->isTypeDependent()),
788      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
789    Argument.Ex = E;
790  }
791
792  /// \brief Construct an empty sizeof/alignof expression.
793  explicit SizeOfAlignOfExpr(EmptyShell Empty)
794    : Expr(SizeOfAlignOfExprClass, Empty) { }
795
796  virtual void Destroy(ASTContext& C);
797
798  bool isSizeOf() const { return isSizeof; }
799  void setSizeof(bool S) { isSizeof = S; }
800
801  bool isArgumentType() const { return isType; }
802  QualType getArgumentType() const {
803    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
804    return QualType::getFromOpaquePtr(Argument.Ty);
805  }
806  Expr *getArgumentExpr() {
807    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
808    return static_cast<Expr*>(Argument.Ex);
809  }
810  const Expr *getArgumentExpr() const {
811    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
812  }
813
814  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
815  void setArgument(QualType T) {
816    Argument.Ty = T.getAsOpaquePtr();
817    isType = true;
818  }
819
820  /// Gets the argument type, or the type of the argument expression, whichever
821  /// is appropriate.
822  QualType getTypeOfArgument() const {
823    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
824  }
825
826  SourceLocation getOperatorLoc() const { return OpLoc; }
827  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
828
829  SourceLocation getRParenLoc() const { return RParenLoc; }
830  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
831
832  virtual SourceRange getSourceRange() const {
833    return SourceRange(OpLoc, RParenLoc);
834  }
835
836  static bool classof(const Stmt *T) {
837    return T->getStmtClass() == SizeOfAlignOfExprClass;
838  }
839  static bool classof(const SizeOfAlignOfExpr *) { return true; }
840
841  // Iterators
842  virtual child_iterator child_begin();
843  virtual child_iterator child_end();
844};
845
846//===----------------------------------------------------------------------===//
847// Postfix Operators.
848//===----------------------------------------------------------------------===//
849
850/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
851class ArraySubscriptExpr : public Expr {
852  enum { LHS, RHS, END_EXPR=2 };
853  Stmt* SubExprs[END_EXPR];
854  SourceLocation RBracketLoc;
855public:
856  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
857                     SourceLocation rbracketloc)
858  : Expr(ArraySubscriptExprClass, t,
859         lhs->isTypeDependent() || rhs->isTypeDependent(),
860         lhs->isValueDependent() || rhs->isValueDependent()),
861    RBracketLoc(rbracketloc) {
862    SubExprs[LHS] = lhs;
863    SubExprs[RHS] = rhs;
864  }
865
866  /// \brief Create an empty array subscript expression.
867  explicit ArraySubscriptExpr(EmptyShell Shell)
868    : Expr(ArraySubscriptExprClass, Shell) { }
869
870  /// An array access can be written A[4] or 4[A] (both are equivalent).
871  /// - getBase() and getIdx() always present the normalized view: A[4].
872  ///    In this case getBase() returns "A" and getIdx() returns "4".
873  /// - getLHS() and getRHS() present the syntactic view. e.g. for
874  ///    4[A] getLHS() returns "4".
875  /// Note: Because vector element access is also written A[4] we must
876  /// predicate the format conversion in getBase and getIdx only on the
877  /// the type of the RHS, as it is possible for the LHS to be a vector of
878  /// integer type
879  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
880  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
881  void setLHS(Expr *E) { SubExprs[LHS] = E; }
882
883  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
884  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
885  void setRHS(Expr *E) { SubExprs[RHS] = E; }
886
887  Expr *getBase() {
888    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
889  }
890
891  const Expr *getBase() const {
892    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
893  }
894
895  Expr *getIdx() {
896    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
897  }
898
899  const Expr *getIdx() const {
900    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
901  }
902
903  virtual SourceRange getSourceRange() const {
904    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
905  }
906
907  SourceLocation getRBracketLoc() const { return RBracketLoc; }
908  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
909
910  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
911
912  static bool classof(const Stmt *T) {
913    return T->getStmtClass() == ArraySubscriptExprClass;
914  }
915  static bool classof(const ArraySubscriptExpr *) { return true; }
916
917  // Iterators
918  virtual child_iterator child_begin();
919  virtual child_iterator child_end();
920};
921
922
923/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
924/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
925/// while its subclasses may represent alternative syntax that (semantically)
926/// results in a function call. For example, CXXOperatorCallExpr is
927/// a subclass for overloaded operator calls that use operator syntax, e.g.,
928/// "str1 + str2" to resolve to a function call.
929class CallExpr : public Expr {
930  enum { FN=0, ARGS_START=1 };
931  Stmt **SubExprs;
932  unsigned NumArgs;
933  SourceLocation RParenLoc;
934
935  // This version of the ctor is for deserialization.
936  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
937           SourceLocation rparenloc)
938  : Expr(SC,t), SubExprs(subexprs),
939    NumArgs(numargs), RParenLoc(rparenloc) {}
940
941protected:
942  // This version of the constructor is for derived classes.
943  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
944           QualType t, SourceLocation rparenloc);
945
946public:
947  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
948           SourceLocation rparenloc);
949
950  /// \brief Build an empty call expression.
951  CallExpr(ASTContext &C, EmptyShell Empty);
952
953  ~CallExpr() {}
954
955  void Destroy(ASTContext& C);
956
957  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
958  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
959  void setCallee(Expr *F) { SubExprs[FN] = F; }
960
961  /// getNumArgs - Return the number of actual arguments to this call.
962  ///
963  unsigned getNumArgs() const { return NumArgs; }
964
965  /// getArg - Return the specified argument.
966  Expr *getArg(unsigned Arg) {
967    assert(Arg < NumArgs && "Arg access out of range!");
968    return cast<Expr>(SubExprs[Arg+ARGS_START]);
969  }
970  const Expr *getArg(unsigned Arg) const {
971    assert(Arg < NumArgs && "Arg access out of range!");
972    return cast<Expr>(SubExprs[Arg+ARGS_START]);
973  }
974
975  /// setArg - Set the specified argument.
976  void setArg(unsigned Arg, Expr *ArgExpr) {
977    assert(Arg < NumArgs && "Arg access out of range!");
978    SubExprs[Arg+ARGS_START] = ArgExpr;
979  }
980
981  /// setNumArgs - This changes the number of arguments present in this call.
982  /// Any orphaned expressions are deleted by this, and any new operands are set
983  /// to null.
984  void setNumArgs(ASTContext& C, unsigned NumArgs);
985
986  typedef ExprIterator arg_iterator;
987  typedef ConstExprIterator const_arg_iterator;
988
989  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
990  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
991  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
992  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
993
994  /// getNumCommas - Return the number of commas that must have been present in
995  /// this function call.
996  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
997
998  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
999  /// not, return 0.
1000  unsigned isBuiltinCall(ASTContext &Context) const;
1001
1002  SourceLocation getRParenLoc() const { return RParenLoc; }
1003  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1004
1005  virtual SourceRange getSourceRange() const {
1006    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1007  }
1008
1009  static bool classof(const Stmt *T) {
1010    return T->getStmtClass() == CallExprClass ||
1011           T->getStmtClass() == CXXOperatorCallExprClass ||
1012           T->getStmtClass() == CXXMemberCallExprClass;
1013  }
1014  static bool classof(const CallExpr *) { return true; }
1015  static bool classof(const CXXOperatorCallExpr *) { return true; }
1016  static bool classof(const CXXMemberCallExpr *) { return true; }
1017
1018  // Iterators
1019  virtual child_iterator child_begin();
1020  virtual child_iterator child_end();
1021};
1022
1023/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1024///
1025class MemberExpr : public Expr {
1026  /// Base - the expression for the base pointer or structure references.  In
1027  /// X.F, this is "X".
1028  Stmt *Base;
1029
1030  /// MemberDecl - This is the decl being referenced by the field/member name.
1031  /// In X.F, this is the decl referenced by F.
1032  NamedDecl *MemberDecl;
1033
1034  /// MemberLoc - This is the location of the member name.
1035  SourceLocation MemberLoc;
1036
1037  /// IsArrow - True if this is "X->F", false if this is "X.F".
1038  bool IsArrow;
1039public:
1040  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1041             QualType ty)
1042    : Expr(MemberExprClass, ty),
1043      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
1044
1045  /// \brief Build an empty member reference expression.
1046  explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }
1047
1048  void setBase(Expr *E) { Base = E; }
1049  Expr *getBase() const { return cast<Expr>(Base); }
1050
1051  /// \brief Retrieve the member declaration to which this expression refers.
1052  ///
1053  /// The returned declaration will either be a FieldDecl or (in C++)
1054  /// a CXXMethodDecl.
1055  NamedDecl *getMemberDecl() const { return MemberDecl; }
1056  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1057
1058  bool isArrow() const { return IsArrow; }
1059  void setArrow(bool A) { IsArrow = A; }
1060
1061  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1062  /// location of 'F'.
1063  SourceLocation getMemberLoc() const { return MemberLoc; }
1064  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1065
1066  virtual SourceRange getSourceRange() const {
1067    return SourceRange(getBase()->getLocStart(), MemberLoc);
1068  }
1069
1070  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1071
1072  static bool classof(const Stmt *T) {
1073    return T->getStmtClass() == MemberExprClass;
1074  }
1075  static bool classof(const MemberExpr *) { return true; }
1076
1077  // Iterators
1078  virtual child_iterator child_begin();
1079  virtual child_iterator child_end();
1080};
1081
1082/// CompoundLiteralExpr - [C99 6.5.2.5]
1083///
1084class CompoundLiteralExpr : public Expr {
1085  /// LParenLoc - If non-null, this is the location of the left paren in a
1086  /// compound literal like "(int){4}".  This can be null if this is a
1087  /// synthesized compound expression.
1088  SourceLocation LParenLoc;
1089  Stmt *Init;
1090  bool FileScope;
1091public:
1092  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1093                      bool fileScope)
1094    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1095      FileScope(fileScope) {}
1096
1097  /// \brief Construct an empty compound literal.
1098  explicit CompoundLiteralExpr(EmptyShell Empty)
1099    : Expr(CompoundLiteralExprClass, Empty) { }
1100
1101  const Expr *getInitializer() const { return cast<Expr>(Init); }
1102  Expr *getInitializer() { return cast<Expr>(Init); }
1103  void setInitializer(Expr *E) { Init = E; }
1104
1105  bool isFileScope() const { return FileScope; }
1106  void setFileScope(bool FS) { FileScope = FS; }
1107
1108  SourceLocation getLParenLoc() const { return LParenLoc; }
1109  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1110
1111  virtual SourceRange getSourceRange() const {
1112    // FIXME: Init should never be null.
1113    if (!Init)
1114      return SourceRange();
1115    if (LParenLoc.isInvalid())
1116      return Init->getSourceRange();
1117    return SourceRange(LParenLoc, Init->getLocEnd());
1118  }
1119
1120  static bool classof(const Stmt *T) {
1121    return T->getStmtClass() == CompoundLiteralExprClass;
1122  }
1123  static bool classof(const CompoundLiteralExpr *) { return true; }
1124
1125  // Iterators
1126  virtual child_iterator child_begin();
1127  virtual child_iterator child_end();
1128};
1129
1130/// CastExpr - Base class for type casts, including both implicit
1131/// casts (ImplicitCastExpr) and explicit casts that have some
1132/// representation in the source code (ExplicitCastExpr's derived
1133/// classes).
1134class CastExpr : public Expr {
1135  Stmt *Op;
1136protected:
1137  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1138    Expr(SC, ty,
1139         // Cast expressions are type-dependent if the type is
1140         // dependent (C++ [temp.dep.expr]p3).
1141         ty->isDependentType(),
1142         // Cast expressions are value-dependent if the type is
1143         // dependent or if the subexpression is value-dependent.
1144         ty->isDependentType() || (op && op->isValueDependent())),
1145    Op(op) {}
1146
1147  /// \brief Construct an empty cast.
1148  CastExpr(StmtClass SC, EmptyShell Empty)
1149    : Expr(SC, Empty) { }
1150
1151public:
1152  Expr *getSubExpr() { return cast<Expr>(Op); }
1153  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1154  void setSubExpr(Expr *E) { Op = E; }
1155
1156  static bool classof(const Stmt *T) {
1157    StmtClass SC = T->getStmtClass();
1158    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1159      return true;
1160
1161    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1162      return true;
1163
1164    return false;
1165  }
1166  static bool classof(const CastExpr *) { return true; }
1167
1168  // Iterators
1169  virtual child_iterator child_begin();
1170  virtual child_iterator child_end();
1171};
1172
1173/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1174/// conversions, which have no direct representation in the original
1175/// source code. For example: converting T[]->T*, void f()->void
1176/// (*f)(), float->double, short->int, etc.
1177///
1178/// In C, implicit casts always produce rvalues. However, in C++, an
1179/// implicit cast whose result is being bound to a reference will be
1180/// an lvalue. For example:
1181///
1182/// @code
1183/// class Base { };
1184/// class Derived : public Base { };
1185/// void f(Derived d) {
1186///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1187/// }
1188/// @endcode
1189class ImplicitCastExpr : public CastExpr {
1190  /// LvalueCast - Whether this cast produces an lvalue.
1191  bool LvalueCast;
1192
1193public:
1194  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1195    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1196
1197  /// \brief Construct an empty implicit cast.
1198  explicit ImplicitCastExpr(EmptyShell Shell)
1199    : CastExpr(ImplicitCastExprClass, Shell) { }
1200
1201
1202  virtual SourceRange getSourceRange() const {
1203    return getSubExpr()->getSourceRange();
1204  }
1205
1206  /// isLvalueCast - Whether this cast produces an lvalue.
1207  bool isLvalueCast() const { return LvalueCast; }
1208
1209  /// setLvalueCast - Set whether this cast produces an lvalue.
1210  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1211
1212  static bool classof(const Stmt *T) {
1213    return T->getStmtClass() == ImplicitCastExprClass;
1214  }
1215  static bool classof(const ImplicitCastExpr *) { return true; }
1216};
1217
1218/// ExplicitCastExpr - An explicit cast written in the source
1219/// code.
1220///
1221/// This class is effectively an abstract class, because it provides
1222/// the basic representation of an explicitly-written cast without
1223/// specifying which kind of cast (C cast, functional cast, static
1224/// cast, etc.) was written; specific derived classes represent the
1225/// particular style of cast and its location information.
1226///
1227/// Unlike implicit casts, explicit cast nodes have two different
1228/// types: the type that was written into the source code, and the
1229/// actual type of the expression as determined by semantic
1230/// analysis. These types may differ slightly. For example, in C++ one
1231/// can cast to a reference type, which indicates that the resulting
1232/// expression will be an lvalue. The reference type, however, will
1233/// not be used as the type of the expression.
1234class ExplicitCastExpr : public CastExpr {
1235  /// TypeAsWritten - The type that this expression is casting to, as
1236  /// written in the source code.
1237  QualType TypeAsWritten;
1238
1239protected:
1240  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1241    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1242
1243  /// \brief Construct an empty explicit cast.
1244  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1245    : CastExpr(SC, Shell) { }
1246
1247public:
1248  /// getTypeAsWritten - Returns the type that this expression is
1249  /// casting to, as written in the source code.
1250  QualType getTypeAsWritten() const { return TypeAsWritten; }
1251  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1252
1253  static bool classof(const Stmt *T) {
1254    StmtClass SC = T->getStmtClass();
1255    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1256      return true;
1257    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1258      return true;
1259
1260    return false;
1261  }
1262  static bool classof(const ExplicitCastExpr *) { return true; }
1263};
1264
1265/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1266/// cast in C++ (C++ [expr.cast]), which uses the syntax
1267/// (Type)expr. For example: @c (int)f.
1268class CStyleCastExpr : public ExplicitCastExpr {
1269  SourceLocation LPLoc; // the location of the left paren
1270  SourceLocation RPLoc; // the location of the right paren
1271public:
1272  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1273                    SourceLocation l, SourceLocation r) :
1274    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1275    LPLoc(l), RPLoc(r) {}
1276
1277  /// \brief Construct an empty C-style explicit cast.
1278  explicit CStyleCastExpr(EmptyShell Shell)
1279    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1280
1281  SourceLocation getLParenLoc() const { return LPLoc; }
1282  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1283
1284  SourceLocation getRParenLoc() const { return RPLoc; }
1285  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1286
1287  virtual SourceRange getSourceRange() const {
1288    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1289  }
1290  static bool classof(const Stmt *T) {
1291    return T->getStmtClass() == CStyleCastExprClass;
1292  }
1293  static bool classof(const CStyleCastExpr *) { return true; }
1294};
1295
1296/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1297///
1298/// This expression node kind describes a builtin binary operation,
1299/// such as "x + y" for integer values "x" and "y". The operands will
1300/// already have been converted to appropriate types (e.g., by
1301/// performing promotions or conversions).
1302///
1303/// In C++, where operators may be overloaded, a different kind of
1304/// expression node (CXXOperatorCallExpr) is used to express the
1305/// invocation of an overloaded operator with operator syntax. Within
1306/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1307/// used to store an expression "x + y" depends on the subexpressions
1308/// for x and y. If neither x or y is type-dependent, and the "+"
1309/// operator resolves to a built-in operation, BinaryOperator will be
1310/// used to express the computation (x and y may still be
1311/// value-dependent). If either x or y is type-dependent, or if the
1312/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1313/// be used to express the computation.
1314class BinaryOperator : public Expr {
1315public:
1316  enum Opcode {
1317    // Operators listed in order of precedence.
1318    // Note that additions to this should also update the StmtVisitor class.
1319    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1320    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1321    Add, Sub,         // [C99 6.5.6] Additive operators.
1322    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1323    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1324    EQ, NE,           // [C99 6.5.9] Equality operators.
1325    And,              // [C99 6.5.10] Bitwise AND operator.
1326    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1327    Or,               // [C99 6.5.12] Bitwise OR operator.
1328    LAnd,             // [C99 6.5.13] Logical AND operator.
1329    LOr,              // [C99 6.5.14] Logical OR operator.
1330    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1331    DivAssign, RemAssign,
1332    AddAssign, SubAssign,
1333    ShlAssign, ShrAssign,
1334    AndAssign, XorAssign,
1335    OrAssign,
1336    Comma             // [C99 6.5.17] Comma operator.
1337  };
1338private:
1339  enum { LHS, RHS, END_EXPR };
1340  Stmt* SubExprs[END_EXPR];
1341  Opcode Opc;
1342  SourceLocation OpLoc;
1343public:
1344
1345  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1346                 SourceLocation opLoc)
1347    : Expr(BinaryOperatorClass, ResTy,
1348           lhs->isTypeDependent() || rhs->isTypeDependent(),
1349           lhs->isValueDependent() || rhs->isValueDependent()),
1350      Opc(opc), OpLoc(opLoc) {
1351    SubExprs[LHS] = lhs;
1352    SubExprs[RHS] = rhs;
1353    assert(!isCompoundAssignmentOp() &&
1354           "Use ArithAssignBinaryOperator for compound assignments");
1355  }
1356
1357  /// \brief Construct an empty binary operator.
1358  explicit BinaryOperator(EmptyShell Empty)
1359    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1360
1361  SourceLocation getOperatorLoc() const { return OpLoc; }
1362  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1363
1364  Opcode getOpcode() const { return Opc; }
1365  void setOpcode(Opcode O) { Opc = O; }
1366
1367  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1368  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1369  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1370  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1371
1372  virtual SourceRange getSourceRange() const {
1373    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1374  }
1375
1376  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1377  /// corresponds to, e.g. "<<=".
1378  static const char *getOpcodeStr(Opcode Op);
1379
1380  /// \brief Retrieve the binary opcode that corresponds to the given
1381  /// overloaded operator.
1382  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1383
1384  /// \brief Retrieve the overloaded operator kind that corresponds to
1385  /// the given binary opcode.
1386  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1387
1388  /// predicates to categorize the respective opcodes.
1389  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1390  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1391  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1392  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1393
1394  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1395  bool isRelationalOp() const { return isRelationalOp(Opc); }
1396
1397  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1398  bool isEqualityOp() const { return isEqualityOp(Opc); }
1399
1400  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1401  bool isLogicalOp() const { return isLogicalOp(Opc); }
1402
1403  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1404  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1405  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1406
1407  static bool classof(const Stmt *S) {
1408    return S->getStmtClass() == BinaryOperatorClass ||
1409           S->getStmtClass() == CompoundAssignOperatorClass;
1410  }
1411  static bool classof(const BinaryOperator *) { return true; }
1412
1413  // Iterators
1414  virtual child_iterator child_begin();
1415  virtual child_iterator child_end();
1416
1417protected:
1418  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1419                 SourceLocation oploc, bool dead)
1420    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1421    SubExprs[LHS] = lhs;
1422    SubExprs[RHS] = rhs;
1423  }
1424
1425  BinaryOperator(StmtClass SC, EmptyShell Empty)
1426    : Expr(SC, Empty), Opc(MulAssign) { }
1427};
1428
1429/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1430/// track of the type the operation is performed in.  Due to the semantics of
1431/// these operators, the operands are promoted, the aritmetic performed, an
1432/// implicit conversion back to the result type done, then the assignment takes
1433/// place.  This captures the intermediate type which the computation is done
1434/// in.
1435class CompoundAssignOperator : public BinaryOperator {
1436  QualType ComputationLHSType;
1437  QualType ComputationResultType;
1438public:
1439  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1440                         QualType ResType, QualType CompLHSType,
1441                         QualType CompResultType,
1442                         SourceLocation OpLoc)
1443    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1444      ComputationLHSType(CompLHSType),
1445      ComputationResultType(CompResultType) {
1446    assert(isCompoundAssignmentOp() &&
1447           "Only should be used for compound assignments");
1448  }
1449
1450  /// \brief Build an empty compound assignment operator expression.
1451  explicit CompoundAssignOperator(EmptyShell Empty)
1452    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1453
1454  // The two computation types are the type the LHS is converted
1455  // to for the computation and the type of the result; the two are
1456  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1457  QualType getComputationLHSType() const { return ComputationLHSType; }
1458  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1459
1460  QualType getComputationResultType() const { return ComputationResultType; }
1461  void setComputationResultType(QualType T) { ComputationResultType = T; }
1462
1463  static bool classof(const CompoundAssignOperator *) { return true; }
1464  static bool classof(const Stmt *S) {
1465    return S->getStmtClass() == CompoundAssignOperatorClass;
1466  }
1467};
1468
1469/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1470/// GNU "missing LHS" extension is in use.
1471///
1472class ConditionalOperator : public Expr {
1473  enum { COND, LHS, RHS, END_EXPR };
1474  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1475public:
1476  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1477    : Expr(ConditionalOperatorClass, t,
1478           // FIXME: the type of the conditional operator doesn't
1479           // depend on the type of the conditional, but the standard
1480           // seems to imply that it could. File a bug!
1481           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1482           (cond->isValueDependent() ||
1483            (lhs && lhs->isValueDependent()) ||
1484            (rhs && rhs->isValueDependent()))) {
1485    SubExprs[COND] = cond;
1486    SubExprs[LHS] = lhs;
1487    SubExprs[RHS] = rhs;
1488  }
1489
1490  /// \brief Build an empty conditional operator.
1491  explicit ConditionalOperator(EmptyShell Empty)
1492    : Expr(ConditionalOperatorClass, Empty) { }
1493
1494  // getCond - Return the expression representing the condition for
1495  //  the ?: operator.
1496  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1497  void setCond(Expr *E) { SubExprs[COND] = E; }
1498
1499  // getTrueExpr - Return the subexpression representing the value of the ?:
1500  //  expression if the condition evaluates to true.  In most cases this value
1501  //  will be the same as getLHS() except a GCC extension allows the left
1502  //  subexpression to be omitted, and instead of the condition be returned.
1503  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1504  //  is only evaluated once.
1505  Expr *getTrueExpr() const {
1506    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1507  }
1508
1509  // getTrueExpr - Return the subexpression representing the value of the ?:
1510  // expression if the condition evaluates to false. This is the same as getRHS.
1511  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1512
1513  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1514  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1515
1516  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1517  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1518
1519  virtual SourceRange getSourceRange() const {
1520    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1521  }
1522  static bool classof(const Stmt *T) {
1523    return T->getStmtClass() == ConditionalOperatorClass;
1524  }
1525  static bool classof(const ConditionalOperator *) { return true; }
1526
1527  // Iterators
1528  virtual child_iterator child_begin();
1529  virtual child_iterator child_end();
1530};
1531
1532/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1533class AddrLabelExpr : public Expr {
1534  SourceLocation AmpAmpLoc, LabelLoc;
1535  LabelStmt *Label;
1536public:
1537  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1538                QualType t)
1539    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1540
1541  /// \brief Build an empty address of a label expression.
1542  explicit AddrLabelExpr(EmptyShell Empty)
1543    : Expr(AddrLabelExprClass, Empty) { }
1544
1545  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
1546  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
1547  SourceLocation getLabelLoc() const { return LabelLoc; }
1548  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1549
1550  virtual SourceRange getSourceRange() const {
1551    return SourceRange(AmpAmpLoc, LabelLoc);
1552  }
1553
1554  LabelStmt *getLabel() const { return Label; }
1555  void setLabel(LabelStmt *S) { Label = S; }
1556
1557  static bool classof(const Stmt *T) {
1558    return T->getStmtClass() == AddrLabelExprClass;
1559  }
1560  static bool classof(const AddrLabelExpr *) { return true; }
1561
1562  // Iterators
1563  virtual child_iterator child_begin();
1564  virtual child_iterator child_end();
1565};
1566
1567/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1568/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1569/// takes the value of the last subexpression.
1570class StmtExpr : public Expr {
1571  Stmt *SubStmt;
1572  SourceLocation LParenLoc, RParenLoc;
1573public:
1574  StmtExpr(CompoundStmt *substmt, QualType T,
1575           SourceLocation lp, SourceLocation rp) :
1576    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1577
1578  /// \brief Build an empty statement expression.
1579  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
1580
1581  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1582  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1583  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
1584
1585  virtual SourceRange getSourceRange() const {
1586    return SourceRange(LParenLoc, RParenLoc);
1587  }
1588
1589  SourceLocation getLParenLoc() const { return LParenLoc; }
1590  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1591  SourceLocation getRParenLoc() const { return RParenLoc; }
1592  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1593
1594  static bool classof(const Stmt *T) {
1595    return T->getStmtClass() == StmtExprClass;
1596  }
1597  static bool classof(const StmtExpr *) { return true; }
1598
1599  // Iterators
1600  virtual child_iterator child_begin();
1601  virtual child_iterator child_end();
1602};
1603
1604/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1605/// This AST node represents a function that returns 1 if two *types* (not
1606/// expressions) are compatible. The result of this built-in function can be
1607/// used in integer constant expressions.
1608class TypesCompatibleExpr : public Expr {
1609  QualType Type1;
1610  QualType Type2;
1611  SourceLocation BuiltinLoc, RParenLoc;
1612public:
1613  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1614                      QualType t1, QualType t2, SourceLocation RP) :
1615    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1616    BuiltinLoc(BLoc), RParenLoc(RP) {}
1617
1618  /// \brief Build an empty __builtin_type_compatible_p expression.
1619  explicit TypesCompatibleExpr(EmptyShell Empty)
1620    : Expr(TypesCompatibleExprClass, Empty) { }
1621
1622  QualType getArgType1() const { return Type1; }
1623  void setArgType1(QualType T) { Type1 = T; }
1624  QualType getArgType2() const { return Type2; }
1625  void setArgType2(QualType T) { Type2 = T; }
1626
1627  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1628  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1629
1630  SourceLocation getRParenLoc() const { return RParenLoc; }
1631  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1632
1633  virtual SourceRange getSourceRange() const {
1634    return SourceRange(BuiltinLoc, RParenLoc);
1635  }
1636  static bool classof(const Stmt *T) {
1637    return T->getStmtClass() == TypesCompatibleExprClass;
1638  }
1639  static bool classof(const TypesCompatibleExpr *) { return true; }
1640
1641  // Iterators
1642  virtual child_iterator child_begin();
1643  virtual child_iterator child_end();
1644};
1645
1646/// ShuffleVectorExpr - clang-specific builtin-in function
1647/// __builtin_shufflevector.
1648/// This AST node represents a operator that does a constant
1649/// shuffle, similar to LLVM's shufflevector instruction. It takes
1650/// two vectors and a variable number of constant indices,
1651/// and returns the appropriately shuffled vector.
1652class ShuffleVectorExpr : public Expr {
1653  SourceLocation BuiltinLoc, RParenLoc;
1654
1655  // SubExprs - the list of values passed to the __builtin_shufflevector
1656  // function. The first two are vectors, and the rest are constant
1657  // indices.  The number of values in this list is always
1658  // 2+the number of indices in the vector type.
1659  Stmt **SubExprs;
1660  unsigned NumExprs;
1661
1662public:
1663  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1664                    QualType Type, SourceLocation BLoc,
1665                    SourceLocation RP) :
1666    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1667    RParenLoc(RP), NumExprs(nexpr) {
1668
1669    SubExprs = new Stmt*[nexpr];
1670    for (unsigned i = 0; i < nexpr; i++)
1671      SubExprs[i] = args[i];
1672  }
1673
1674  /// \brief Build an empty vector-shuffle expression.
1675  explicit ShuffleVectorExpr(EmptyShell Empty)
1676    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1677
1678  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1679  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1680
1681  SourceLocation getRParenLoc() const { return RParenLoc; }
1682  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1683
1684  virtual SourceRange getSourceRange() const {
1685    return SourceRange(BuiltinLoc, RParenLoc);
1686  }
1687  static bool classof(const Stmt *T) {
1688    return T->getStmtClass() == ShuffleVectorExprClass;
1689  }
1690  static bool classof(const ShuffleVectorExpr *) { return true; }
1691
1692  ~ShuffleVectorExpr() {
1693    delete [] SubExprs;
1694  }
1695
1696  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1697  /// constant expression, the actual arguments passed in, and the function
1698  /// pointers.
1699  unsigned getNumSubExprs() const { return NumExprs; }
1700
1701  /// getExpr - Return the Expr at the specified index.
1702  Expr *getExpr(unsigned Index) {
1703    assert((Index < NumExprs) && "Arg access out of range!");
1704    return cast<Expr>(SubExprs[Index]);
1705  }
1706  const Expr *getExpr(unsigned Index) const {
1707    assert((Index < NumExprs) && "Arg access out of range!");
1708    return cast<Expr>(SubExprs[Index]);
1709  }
1710
1711  void setExprs(Expr ** Exprs, unsigned NumExprs);
1712
1713  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1714    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1715    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1716  }
1717
1718  // Iterators
1719  virtual child_iterator child_begin();
1720  virtual child_iterator child_end();
1721};
1722
1723/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1724/// This AST node is similar to the conditional operator (?:) in C, with
1725/// the following exceptions:
1726/// - the test expression must be a integer constant expression.
1727/// - the expression returned acts like the chosen subexpression in every
1728///   visible way: the type is the same as that of the chosen subexpression,
1729///   and all predicates (whether it's an l-value, whether it's an integer
1730///   constant expression, etc.) return the same result as for the chosen
1731///   sub-expression.
1732class ChooseExpr : public Expr {
1733  enum { COND, LHS, RHS, END_EXPR };
1734  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1735  SourceLocation BuiltinLoc, RParenLoc;
1736public:
1737  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1738             SourceLocation RP)
1739    : Expr(ChooseExprClass, t),
1740      BuiltinLoc(BLoc), RParenLoc(RP) {
1741      SubExprs[COND] = cond;
1742      SubExprs[LHS] = lhs;
1743      SubExprs[RHS] = rhs;
1744    }
1745
1746  /// \brief Build an empty __builtin_choose_expr.
1747  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
1748
1749  /// isConditionTrue - Return whether the condition is true (i.e. not
1750  /// equal to zero).
1751  bool isConditionTrue(ASTContext &C) const;
1752
1753  /// getChosenSubExpr - Return the subexpression chosen according to the
1754  /// condition.
1755  Expr *getChosenSubExpr(ASTContext &C) const {
1756    return isConditionTrue(C) ? getLHS() : getRHS();
1757  }
1758
1759  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1760  void setCond(Expr *E) { SubExprs[COND] = E; }
1761  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1762  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1763  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1764  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1765
1766  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1767  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1768
1769  SourceLocation getRParenLoc() const { return RParenLoc; }
1770  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1771
1772  virtual SourceRange getSourceRange() const {
1773    return SourceRange(BuiltinLoc, RParenLoc);
1774  }
1775  static bool classof(const Stmt *T) {
1776    return T->getStmtClass() == ChooseExprClass;
1777  }
1778  static bool classof(const ChooseExpr *) { return true; }
1779
1780  // Iterators
1781  virtual child_iterator child_begin();
1782  virtual child_iterator child_end();
1783};
1784
1785/// GNUNullExpr - Implements the GNU __null extension, which is a name
1786/// for a null pointer constant that has integral type (e.g., int or
1787/// long) and is the same size and alignment as a pointer. The __null
1788/// extension is typically only used by system headers, which define
1789/// NULL as __null in C++ rather than using 0 (which is an integer
1790/// that may not match the size of a pointer).
1791class GNUNullExpr : public Expr {
1792  /// TokenLoc - The location of the __null keyword.
1793  SourceLocation TokenLoc;
1794
1795public:
1796  GNUNullExpr(QualType Ty, SourceLocation Loc)
1797    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1798
1799  /// \brief Build an empty GNU __null expression.
1800  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
1801
1802  /// getTokenLocation - The location of the __null token.
1803  SourceLocation getTokenLocation() const { return TokenLoc; }
1804  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
1805
1806  virtual SourceRange getSourceRange() const {
1807    return SourceRange(TokenLoc);
1808  }
1809  static bool classof(const Stmt *T) {
1810    return T->getStmtClass() == GNUNullExprClass;
1811  }
1812  static bool classof(const GNUNullExpr *) { return true; }
1813
1814  // Iterators
1815  virtual child_iterator child_begin();
1816  virtual child_iterator child_end();
1817};
1818
1819/// VAArgExpr, used for the builtin function __builtin_va_start.
1820class VAArgExpr : public Expr {
1821  Stmt *Val;
1822  SourceLocation BuiltinLoc, RParenLoc;
1823public:
1824  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1825    : Expr(VAArgExprClass, t),
1826      Val(e),
1827      BuiltinLoc(BLoc),
1828      RParenLoc(RPLoc) { }
1829
1830  /// \brief Create an empty __builtin_va_start expression.
1831  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
1832
1833  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1834  Expr *getSubExpr() { return cast<Expr>(Val); }
1835  void setSubExpr(Expr *E) { Val = E; }
1836
1837  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1838  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1839
1840  SourceLocation getRParenLoc() const { return RParenLoc; }
1841  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1842
1843  virtual SourceRange getSourceRange() const {
1844    return SourceRange(BuiltinLoc, RParenLoc);
1845  }
1846  static bool classof(const Stmt *T) {
1847    return T->getStmtClass() == VAArgExprClass;
1848  }
1849  static bool classof(const VAArgExpr *) { return true; }
1850
1851  // Iterators
1852  virtual child_iterator child_begin();
1853  virtual child_iterator child_end();
1854};
1855
1856/// @brief Describes an C or C++ initializer list.
1857///
1858/// InitListExpr describes an initializer list, which can be used to
1859/// initialize objects of different types, including
1860/// struct/class/union types, arrays, and vectors. For example:
1861///
1862/// @code
1863/// struct foo x = { 1, { 2, 3 } };
1864/// @endcode
1865///
1866/// Prior to semantic analysis, an initializer list will represent the
1867/// initializer list as written by the user, but will have the
1868/// placeholder type "void". This initializer list is called the
1869/// syntactic form of the initializer, and may contain C99 designated
1870/// initializers (represented as DesignatedInitExprs), initializations
1871/// of subobject members without explicit braces, and so on. Clients
1872/// interested in the original syntax of the initializer list should
1873/// use the syntactic form of the initializer list.
1874///
1875/// After semantic analysis, the initializer list will represent the
1876/// semantic form of the initializer, where the initializations of all
1877/// subobjects are made explicit with nested InitListExpr nodes and
1878/// C99 designators have been eliminated by placing the designated
1879/// initializations into the subobject they initialize. Additionally,
1880/// any "holes" in the initialization, where no initializer has been
1881/// specified for a particular subobject, will be replaced with
1882/// implicitly-generated ImplicitValueInitExpr expressions that
1883/// value-initialize the subobjects. Note, however, that the
1884/// initializer lists may still have fewer initializers than there are
1885/// elements to initialize within the object.
1886///
1887/// Given the semantic form of the initializer list, one can retrieve
1888/// the original syntactic form of that initializer list (if it
1889/// exists) using getSyntacticForm(). Since many initializer lists
1890/// have the same syntactic and semantic forms, getSyntacticForm() may
1891/// return NULL, indicating that the current initializer list also
1892/// serves as its syntactic form.
1893class InitListExpr : public Expr {
1894  std::vector<Stmt *> InitExprs;
1895  SourceLocation LBraceLoc, RBraceLoc;
1896
1897  /// Contains the initializer list that describes the syntactic form
1898  /// written in the source code.
1899  InitListExpr *SyntacticForm;
1900
1901  /// If this initializer list initializes a union, specifies which
1902  /// field within the union will be initialized.
1903  FieldDecl *UnionFieldInit;
1904
1905  /// Whether this initializer list originally had a GNU array-range
1906  /// designator in it. This is a temporary marker used by CodeGen.
1907  bool HadArrayRangeDesignator;
1908
1909public:
1910  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1911               SourceLocation rbraceloc);
1912
1913  /// \brief Build an empty initializer list.
1914  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
1915
1916  unsigned getNumInits() const { return InitExprs.size(); }
1917
1918  const Expr* getInit(unsigned Init) const {
1919    assert(Init < getNumInits() && "Initializer access out of range!");
1920    return cast_or_null<Expr>(InitExprs[Init]);
1921  }
1922
1923  Expr* getInit(unsigned Init) {
1924    assert(Init < getNumInits() && "Initializer access out of range!");
1925    return cast_or_null<Expr>(InitExprs[Init]);
1926  }
1927
1928  void setInit(unsigned Init, Expr *expr) {
1929    assert(Init < getNumInits() && "Initializer access out of range!");
1930    InitExprs[Init] = expr;
1931  }
1932
1933  /// \brief Reserve space for some number of initializers.
1934  void reserveInits(unsigned NumInits);
1935
1936  /// @brief Specify the number of initializers
1937  ///
1938  /// If there are more than @p NumInits initializers, the remaining
1939  /// initializers will be destroyed. If there are fewer than @p
1940  /// NumInits initializers, NULL expressions will be added for the
1941  /// unknown initializers.
1942  void resizeInits(ASTContext &Context, unsigned NumInits);
1943
1944  /// @brief Updates the initializer at index @p Init with the new
1945  /// expression @p expr, and returns the old expression at that
1946  /// location.
1947  ///
1948  /// When @p Init is out of range for this initializer list, the
1949  /// initializer list will be extended with NULL expressions to
1950  /// accomodate the new entry.
1951  Expr *updateInit(unsigned Init, Expr *expr);
1952
1953  /// \brief If this initializes a union, specifies which field in the
1954  /// union to initialize.
1955  ///
1956  /// Typically, this field is the first named field within the
1957  /// union. However, a designated initializer can specify the
1958  /// initialization of a different field within the union.
1959  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1960  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1961
1962  // Explicit InitListExpr's originate from source code (and have valid source
1963  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1964  bool isExplicit() {
1965    return LBraceLoc.isValid() && RBraceLoc.isValid();
1966  }
1967
1968  SourceLocation getLBraceLoc() const { return LBraceLoc; }
1969  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
1970  SourceLocation getRBraceLoc() const { return RBraceLoc; }
1971  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1972
1973  /// @brief Retrieve the initializer list that describes the
1974  /// syntactic form of the initializer.
1975  ///
1976  ///
1977  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1978  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1979
1980  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1981  void sawArrayRangeDesignator(bool ARD = true) {
1982    HadArrayRangeDesignator = ARD;
1983  }
1984
1985  virtual SourceRange getSourceRange() const {
1986    return SourceRange(LBraceLoc, RBraceLoc);
1987  }
1988  static bool classof(const Stmt *T) {
1989    return T->getStmtClass() == InitListExprClass;
1990  }
1991  static bool classof(const InitListExpr *) { return true; }
1992
1993  // Iterators
1994  virtual child_iterator child_begin();
1995  virtual child_iterator child_end();
1996
1997  typedef std::vector<Stmt *>::iterator iterator;
1998  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1999
2000  iterator begin() { return InitExprs.begin(); }
2001  iterator end() { return InitExprs.end(); }
2002  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2003  reverse_iterator rend() { return InitExprs.rend(); }
2004};
2005
2006/// @brief Represents a C99 designated initializer expression.
2007///
2008/// A designated initializer expression (C99 6.7.8) contains one or
2009/// more designators (which can be field designators, array
2010/// designators, or GNU array-range designators) followed by an
2011/// expression that initializes the field or element(s) that the
2012/// designators refer to. For example, given:
2013///
2014/// @code
2015/// struct point {
2016///   double x;
2017///   double y;
2018/// };
2019/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2020/// @endcode
2021///
2022/// The InitListExpr contains three DesignatedInitExprs, the first of
2023/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2024/// designators, one array designator for @c [2] followed by one field
2025/// designator for @c .y. The initalization expression will be 1.0.
2026class DesignatedInitExpr : public Expr {
2027public:
2028  /// \brief Forward declaration of the Designator class.
2029  class Designator;
2030
2031private:
2032  /// The location of the '=' or ':' prior to the actual initializer
2033  /// expression.
2034  SourceLocation EqualOrColonLoc;
2035
2036  /// Whether this designated initializer used the GNU deprecated
2037  /// syntax rather than the C99 '=' syntax.
2038  bool GNUSyntax : 1;
2039
2040  /// The number of designators in this initializer expression.
2041  unsigned NumDesignators : 15;
2042
2043  /// \brief The designators in this designated initialization
2044  /// expression.
2045  Designator *Designators;
2046
2047  /// The number of subexpressions of this initializer expression,
2048  /// which contains both the initializer and any additional
2049  /// expressions used by array and array-range designators.
2050  unsigned NumSubExprs : 16;
2051
2052
2053  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2054                     const Designator *Designators,
2055                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2056                     unsigned NumSubExprs);
2057
2058  explicit DesignatedInitExpr(unsigned NumSubExprs)
2059    : Expr(DesignatedInitExprClass, EmptyShell()),
2060      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2061
2062public:
2063  /// A field designator, e.g., ".x".
2064  struct FieldDesignator {
2065    /// Refers to the field that is being initialized. The low bit
2066    /// of this field determines whether this is actually a pointer
2067    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2068    /// initially constructed, a field designator will store an
2069    /// IdentifierInfo*. After semantic analysis has resolved that
2070    /// name, the field designator will instead store a FieldDecl*.
2071    uintptr_t NameOrField;
2072
2073    /// The location of the '.' in the designated initializer.
2074    unsigned DotLoc;
2075
2076    /// The location of the field name in the designated initializer.
2077    unsigned FieldLoc;
2078  };
2079
2080  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2081  struct ArrayOrRangeDesignator {
2082    /// Location of the first index expression within the designated
2083    /// initializer expression's list of subexpressions.
2084    unsigned Index;
2085    /// The location of the '[' starting the array range designator.
2086    unsigned LBracketLoc;
2087    /// The location of the ellipsis separating the start and end
2088    /// indices. Only valid for GNU array-range designators.
2089    unsigned EllipsisLoc;
2090    /// The location of the ']' terminating the array range designator.
2091    unsigned RBracketLoc;
2092  };
2093
2094  /// @brief Represents a single C99 designator.
2095  ///
2096  /// @todo This class is infuriatingly similar to clang::Designator,
2097  /// but minor differences (storing indices vs. storing pointers)
2098  /// keep us from reusing it. Try harder, later, to rectify these
2099  /// differences.
2100  class Designator {
2101    /// @brief The kind of designator this describes.
2102    enum {
2103      FieldDesignator,
2104      ArrayDesignator,
2105      ArrayRangeDesignator
2106    } Kind;
2107
2108    union {
2109      /// A field designator, e.g., ".x".
2110      struct FieldDesignator Field;
2111      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2112      struct ArrayOrRangeDesignator ArrayOrRange;
2113    };
2114    friend class DesignatedInitExpr;
2115
2116  public:
2117    Designator() {}
2118
2119    /// @brief Initializes a field designator.
2120    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2121               SourceLocation FieldLoc)
2122      : Kind(FieldDesignator) {
2123      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2124      Field.DotLoc = DotLoc.getRawEncoding();
2125      Field.FieldLoc = FieldLoc.getRawEncoding();
2126    }
2127
2128    /// @brief Initializes an array designator.
2129    Designator(unsigned Index, SourceLocation LBracketLoc,
2130               SourceLocation RBracketLoc)
2131      : Kind(ArrayDesignator) {
2132      ArrayOrRange.Index = Index;
2133      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2134      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2135      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2136    }
2137
2138    /// @brief Initializes a GNU array-range designator.
2139    Designator(unsigned Index, SourceLocation LBracketLoc,
2140               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2141      : Kind(ArrayRangeDesignator) {
2142      ArrayOrRange.Index = Index;
2143      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2144      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2145      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2146    }
2147
2148    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2149    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2150    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2151
2152    IdentifierInfo * getFieldName();
2153
2154    FieldDecl *getField() {
2155      assert(Kind == FieldDesignator && "Only valid on a field designator");
2156      if (Field.NameOrField & 0x01)
2157        return 0;
2158      else
2159        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2160    }
2161
2162    void setField(FieldDecl *FD) {
2163      assert(Kind == FieldDesignator && "Only valid on a field designator");
2164      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2165    }
2166
2167    SourceLocation getDotLoc() const {
2168      assert(Kind == FieldDesignator && "Only valid on a field designator");
2169      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2170    }
2171
2172    SourceLocation getFieldLoc() const {
2173      assert(Kind == FieldDesignator && "Only valid on a field designator");
2174      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2175    }
2176
2177    SourceLocation getLBracketLoc() const {
2178      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2179             "Only valid on an array or array-range designator");
2180      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2181    }
2182
2183    SourceLocation getRBracketLoc() const {
2184      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2185             "Only valid on an array or array-range designator");
2186      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2187    }
2188
2189    SourceLocation getEllipsisLoc() const {
2190      assert(Kind == ArrayRangeDesignator &&
2191             "Only valid on an array-range designator");
2192      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2193    }
2194
2195    unsigned getFirstExprIndex() const {
2196      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2197             "Only valid on an array or array-range designator");
2198      return ArrayOrRange.Index;
2199    }
2200
2201    SourceLocation getStartLocation() const {
2202      if (Kind == FieldDesignator)
2203        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2204      else
2205        return getLBracketLoc();
2206    }
2207  };
2208
2209  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2210                                    unsigned NumDesignators,
2211                                    Expr **IndexExprs, unsigned NumIndexExprs,
2212                                    SourceLocation EqualOrColonLoc,
2213                                    bool GNUSyntax, Expr *Init);
2214
2215  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2216
2217  /// @brief Returns the number of designators in this initializer.
2218  unsigned size() const { return NumDesignators; }
2219
2220  // Iterator access to the designators.
2221  typedef Designator* designators_iterator;
2222  designators_iterator designators_begin() { return Designators; }
2223  designators_iterator designators_end() {
2224    return Designators + NumDesignators;
2225  }
2226
2227  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2228
2229  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2230
2231  Expr *getArrayIndex(const Designator& D);
2232  Expr *getArrayRangeStart(const Designator& D);
2233  Expr *getArrayRangeEnd(const Designator& D);
2234
2235  /// @brief Retrieve the location of the '=' that precedes the
2236  /// initializer value itself, if present.
2237  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2238  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2239
2240  /// @brief Determines whether this designated initializer used the
2241  /// deprecated GNU syntax for designated initializers.
2242  bool usesGNUSyntax() const { return GNUSyntax; }
2243  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2244
2245  /// @brief Retrieve the initializer value.
2246  Expr *getInit() const {
2247    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2248  }
2249
2250  void setInit(Expr *init) {
2251    *child_begin() = init;
2252  }
2253
2254  /// \brief Retrieve the total number of subexpressions in this
2255  /// designated initializer expression, including the actual
2256  /// initialized value and any expressions that occur within array
2257  /// and array-range designators.
2258  unsigned getNumSubExprs() const { return NumSubExprs; }
2259
2260  Expr *getSubExpr(unsigned Idx) {
2261    assert(Idx < NumSubExprs && "Subscript out of range");
2262    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2263    Ptr += sizeof(DesignatedInitExpr);
2264    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2265  }
2266
2267  void setSubExpr(unsigned Idx, Expr *E) {
2268    assert(Idx < NumSubExprs && "Subscript out of range");
2269    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2270    Ptr += sizeof(DesignatedInitExpr);
2271    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2272  }
2273
2274  /// \brief Replaces the designator at index @p Idx with the series
2275  /// of designators in [First, Last).
2276  void ExpandDesignator(unsigned Idx, const Designator *First,
2277                        const Designator *Last);
2278
2279  virtual SourceRange getSourceRange() const;
2280
2281  virtual void Destroy(ASTContext &C);
2282
2283  static bool classof(const Stmt *T) {
2284    return T->getStmtClass() == DesignatedInitExprClass;
2285  }
2286  static bool classof(const DesignatedInitExpr *) { return true; }
2287
2288  // Iterators
2289  virtual child_iterator child_begin();
2290  virtual child_iterator child_end();
2291};
2292
2293/// \brief Represents an implicitly-generated value initialization of
2294/// an object of a given type.
2295///
2296/// Implicit value initializations occur within semantic initializer
2297/// list expressions (InitListExpr) as placeholders for subobject
2298/// initializations not explicitly specified by the user.
2299///
2300/// \see InitListExpr
2301class ImplicitValueInitExpr : public Expr {
2302public:
2303  explicit ImplicitValueInitExpr(QualType ty)
2304    : Expr(ImplicitValueInitExprClass, ty) { }
2305
2306  /// \brief Construct an empty implicit value initialization.
2307  explicit ImplicitValueInitExpr(EmptyShell Empty)
2308    : Expr(ImplicitValueInitExprClass, Empty) { }
2309
2310  static bool classof(const Stmt *T) {
2311    return T->getStmtClass() == ImplicitValueInitExprClass;
2312  }
2313  static bool classof(const ImplicitValueInitExpr *) { return true; }
2314
2315  virtual SourceRange getSourceRange() const {
2316    return SourceRange();
2317  }
2318
2319  // Iterators
2320  virtual child_iterator child_begin();
2321  virtual child_iterator child_end();
2322};
2323
2324//===----------------------------------------------------------------------===//
2325// Clang Extensions
2326//===----------------------------------------------------------------------===//
2327
2328
2329/// ExtVectorElementExpr - This represents access to specific elements of a
2330/// vector, and may occur on the left hand side or right hand side.  For example
2331/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2332///
2333/// Note that the base may have either vector or pointer to vector type, just
2334/// like a struct field reference.
2335///
2336class ExtVectorElementExpr : public Expr {
2337  Stmt *Base;
2338  IdentifierInfo *Accessor;
2339  SourceLocation AccessorLoc;
2340public:
2341  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2342                       SourceLocation loc)
2343    : Expr(ExtVectorElementExprClass, ty),
2344      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2345
2346  /// \brief Build an empty vector element expression.
2347  explicit ExtVectorElementExpr(EmptyShell Empty)
2348    : Expr(ExtVectorElementExprClass, Empty) { }
2349
2350  const Expr *getBase() const { return cast<Expr>(Base); }
2351  Expr *getBase() { return cast<Expr>(Base); }
2352  void setBase(Expr *E) { Base = E; }
2353
2354  IdentifierInfo &getAccessor() const { return *Accessor; }
2355  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2356
2357  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2358  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2359
2360  /// getNumElements - Get the number of components being selected.
2361  unsigned getNumElements() const;
2362
2363  /// containsDuplicateElements - Return true if any element access is
2364  /// repeated.
2365  bool containsDuplicateElements() const;
2366
2367  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2368  /// aggregate Constant of ConstantInt(s).
2369  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2370
2371  virtual SourceRange getSourceRange() const {
2372    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2373  }
2374
2375  /// isArrow - Return true if the base expression is a pointer to vector,
2376  /// return false if the base expression is a vector.
2377  bool isArrow() const;
2378
2379  static bool classof(const Stmt *T) {
2380    return T->getStmtClass() == ExtVectorElementExprClass;
2381  }
2382  static bool classof(const ExtVectorElementExpr *) { return true; }
2383
2384  // Iterators
2385  virtual child_iterator child_begin();
2386  virtual child_iterator child_end();
2387};
2388
2389
2390/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2391/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2392class BlockExpr : public Expr {
2393protected:
2394  BlockDecl *TheBlock;
2395  bool HasBlockDeclRefExprs;
2396public:
2397  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2398    : Expr(BlockExprClass, ty),
2399      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2400
2401  /// \brief Build an empty block expression.
2402  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2403
2404  const BlockDecl *getBlockDecl() const { return TheBlock; }
2405  BlockDecl *getBlockDecl() { return TheBlock; }
2406  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2407
2408  // Convenience functions for probing the underlying BlockDecl.
2409  SourceLocation getCaretLocation() const;
2410  const Stmt *getBody() const;
2411  Stmt *getBody();
2412
2413  const Stmt *getBody(ASTContext &C) const { return getBody(); }
2414  Stmt *getBody(ASTContext &C) { return getBody(); }
2415
2416  virtual SourceRange getSourceRange() const {
2417    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2418  }
2419
2420  /// getFunctionType - Return the underlying function type for this block.
2421  const FunctionType *getFunctionType() const;
2422
2423  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2424  /// inside of the block that reference values outside the block.
2425  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2426  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2427
2428  static bool classof(const Stmt *T) {
2429    return T->getStmtClass() == BlockExprClass;
2430  }
2431  static bool classof(const BlockExpr *) { return true; }
2432
2433  // Iterators
2434  virtual child_iterator child_begin();
2435  virtual child_iterator child_end();
2436};
2437
2438/// BlockDeclRefExpr - A reference to a declared variable, function,
2439/// enum, etc.
2440class BlockDeclRefExpr : public Expr {
2441  ValueDecl *D;
2442  SourceLocation Loc;
2443  bool IsByRef;
2444public:
2445  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2446       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2447
2448  // \brief Build an empty reference to a declared variable in a
2449  // block.
2450  explicit BlockDeclRefExpr(EmptyShell Empty)
2451    : Expr(BlockDeclRefExprClass, Empty) { }
2452
2453  ValueDecl *getDecl() { return D; }
2454  const ValueDecl *getDecl() const { return D; }
2455  void setDecl(ValueDecl *VD) { D = VD; }
2456
2457  SourceLocation getLocation() const { return Loc; }
2458  void setLocation(SourceLocation L) { Loc = L; }
2459
2460  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2461
2462  bool isByRef() const { return IsByRef; }
2463  void setByRef(bool BR) { IsByRef = BR; }
2464
2465  static bool classof(const Stmt *T) {
2466    return T->getStmtClass() == BlockDeclRefExprClass;
2467  }
2468  static bool classof(const BlockDeclRefExpr *) { return true; }
2469
2470  // Iterators
2471  virtual child_iterator child_begin();
2472  virtual child_iterator child_end();
2473};
2474
2475}  // end namespace clang
2476
2477#endif
2478