Expr.h revision 37bdfe284ad365f753741d1d89c078c148b3f4af
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "clang/AST/UsuallyTinyPtrVector.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include <vector>
28
29namespace clang {
30  class ASTContext;
31  class APValue;
32  class Decl;
33  class IdentifierInfo;
34  class ParmVarDecl;
35  class NamedDecl;
36  class ValueDecl;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXOperatorCallExpr;
40  class CXXMemberCallExpr;
41  class TemplateArgumentLoc;
42  class TemplateArgumentListInfo;
43
44/// \brief A simple array of base specifiers.
45typedef UsuallyTinyPtrVector<const CXXBaseSpecifier> CXXBaseSpecifierArray;
46
47/// Expr - This represents one expression.  Note that Expr's are subclasses of
48/// Stmt.  This allows an expression to be transparently used any place a Stmt
49/// is required.
50///
51class Expr : public Stmt {
52  QualType TR;
53
54  virtual void ANCHOR(); // key function.
55protected:
56  /// TypeDependent - Whether this expression is type-dependent
57  /// (C++ [temp.dep.expr]).
58  bool TypeDependent : 1;
59
60  /// ValueDependent - Whether this expression is value-dependent
61  /// (C++ [temp.dep.constexpr]).
62  bool ValueDependent : 1;
63
64  Expr(StmtClass SC, QualType T, bool TD, bool VD)
65    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
66    setType(T);
67  }
68
69  /// \brief Construct an empty expression.
70  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71
72public:
73  /// \brief Increases the reference count for this expression.
74  ///
75  /// Invoke the Retain() operation when this expression
76  /// is being shared by another owner.
77  Expr *Retain() {
78    Stmt::Retain();
79    return this;
80  }
81
82  QualType getType() const { return TR; }
83  void setType(QualType t) {
84    // In C++, the type of an expression is always adjusted so that it
85    // will not have reference type an expression will never have
86    // reference type (C++ [expr]p6). Use
87    // QualType::getNonReferenceType() to retrieve the non-reference
88    // type. Additionally, inspect Expr::isLvalue to determine whether
89    // an expression that is adjusted in this manner should be
90    // considered an lvalue.
91    assert((t.isNull() || !t->isReferenceType()) &&
92           "Expressions can't have reference type");
93
94    TR = t;
95  }
96
97  /// isValueDependent - Determines whether this expression is
98  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
99  /// array bound of "Chars" in the following example is
100  /// value-dependent.
101  /// @code
102  /// template<int Size, char (&Chars)[Size]> struct meta_string;
103  /// @endcode
104  bool isValueDependent() const { return ValueDependent; }
105
106  /// \brief Set whether this expression is value-dependent or not.
107  void setValueDependent(bool VD) { ValueDependent = VD; }
108
109  /// isTypeDependent - Determines whether this expression is
110  /// type-dependent (C++ [temp.dep.expr]), which means that its type
111  /// could change from one template instantiation to the next. For
112  /// example, the expressions "x" and "x + y" are type-dependent in
113  /// the following code, but "y" is not type-dependent:
114  /// @code
115  /// template<typename T>
116  /// void add(T x, int y) {
117  ///   x + y;
118  /// }
119  /// @endcode
120  bool isTypeDependent() const { return TypeDependent; }
121
122  /// \brief Set whether this expression is type-dependent or not.
123  void setTypeDependent(bool TD) { TypeDependent = TD; }
124
125  /// SourceLocation tokens are not useful in isolation - they are low level
126  /// value objects created/interpreted by SourceManager. We assume AST
127  /// clients will have a pointer to the respective SourceManager.
128  virtual SourceRange getSourceRange() const = 0;
129
130  /// getExprLoc - Return the preferred location for the arrow when diagnosing
131  /// a problem with a generic expression.
132  virtual SourceLocation getExprLoc() const { return getLocStart(); }
133
134  /// isUnusedResultAWarning - Return true if this immediate expression should
135  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
136  /// with location to warn on and the source range[s] to report with the
137  /// warning.
138  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
139                              SourceRange &R2, ASTContext &Ctx) const;
140
141  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
142  /// incomplete type other than void. Nonarray expressions that can be lvalues:
143  ///  - name, where name must be a variable
144  ///  - e[i]
145  ///  - (e), where e must be an lvalue
146  ///  - e.name, where e must be an lvalue
147  ///  - e->name
148  ///  - *e, the type of e cannot be a function type
149  ///  - string-constant
150  ///  - reference type [C++ [expr]]
151  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
152  ///
153  enum isLvalueResult {
154    LV_Valid,
155    LV_NotObjectType,
156    LV_IncompleteVoidType,
157    LV_DuplicateVectorComponents,
158    LV_InvalidExpression,
159    LV_MemberFunction,
160    LV_SubObjCPropertySetting,
161    LV_ClassTemporary
162  };
163  isLvalueResult isLvalue(ASTContext &Ctx) const;
164
165  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
166  /// does not have an incomplete type, does not have a const-qualified type,
167  /// and if it is a structure or union, does not have any member (including,
168  /// recursively, any member or element of all contained aggregates or unions)
169  /// with a const-qualified type.
170  ///
171  /// \param Loc [in] [out] - A source location which *may* be filled
172  /// in with the location of the expression making this a
173  /// non-modifiable lvalue, if specified.
174  enum isModifiableLvalueResult {
175    MLV_Valid,
176    MLV_NotObjectType,
177    MLV_IncompleteVoidType,
178    MLV_DuplicateVectorComponents,
179    MLV_InvalidExpression,
180    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
181    MLV_IncompleteType,
182    MLV_ConstQualified,
183    MLV_ArrayType,
184    MLV_NotBlockQualified,
185    MLV_ReadonlyProperty,
186    MLV_NoSetterProperty,
187    MLV_MemberFunction,
188    MLV_SubObjCPropertySetting,
189    MLV_ClassTemporary
190  };
191  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
192                                              SourceLocation *Loc = 0) const;
193
194  /// \brief The return type of classify(). Represents the C++0x expression
195  ///        taxonomy.
196  class Classification {
197  public:
198    /// \brief The various classification results. Most of these mean prvalue.
199    enum Kinds {
200      CL_LValue,
201      CL_XValue,
202      CL_Function, // Functions cannot be lvalues in C.
203      CL_Void, // Void cannot be an lvalue in C.
204      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
205      CL_MemberFunction, // An expression referring to a member function
206      CL_SubObjCPropertySetting,
207      CL_ClassTemporary, // A prvalue of class type
208      CL_PRValue // A prvalue for any other reason, of any other type
209    };
210    /// \brief The results of modification testing.
211    enum ModifiableType {
212      CM_Untested, // testModifiable was false.
213      CM_Modifiable,
214      CM_RValue, // Not modifiable because it's an rvalue
215      CM_Function, // Not modifiable because it's a function; C++ only
216      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
217      CM_NotBlockQualified, // Not captured in the closure
218      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
219      CM_ConstQualified,
220      CM_ArrayType,
221      CM_IncompleteType
222    };
223
224  private:
225    friend class Expr;
226
227    unsigned short Kind;
228    unsigned short Modifiable;
229
230    explicit Classification(Kinds k, ModifiableType m)
231      : Kind(k), Modifiable(m)
232    {}
233
234  public:
235    Classification() {}
236
237    Kinds getKind() const { return static_cast<Kinds>(Kind); }
238    ModifiableType getModifiable() const {
239      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
240      return static_cast<ModifiableType>(Modifiable);
241    }
242    bool isLValue() const { return Kind == CL_LValue; }
243    bool isXValue() const { return Kind == CL_XValue; }
244    bool isGLValue() const { return Kind <= CL_XValue; }
245    bool isPRValue() const { return Kind >= CL_Function; }
246    bool isRValue() const { return Kind >= CL_XValue; }
247    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
248  };
249  /// \brief classify - Classify this expression according to the C++0x
250  ///        expression taxonomy.
251  ///
252  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
253  /// old lvalue vs rvalue. This function determines the type of expression this
254  /// is. There are three expression types:
255  /// - lvalues are classical lvalues as in C++03.
256  /// - prvalues are equivalent to rvalues in C++03.
257  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
258  ///   function returning an rvalue reference.
259  /// lvalues and xvalues are collectively referred to as glvalues, while
260  /// prvalues and xvalues together form rvalues.
261  /// If a
262  Classification Classify(ASTContext &Ctx) const {
263    return ClassifyImpl(Ctx, 0);
264  }
265
266  /// \brief classifyModifiable - Classify this expression according to the
267  ///        C++0x expression taxonomy, and see if it is valid on the left side
268  ///        of an assignment.
269  ///
270  /// This function extends classify in that it also tests whether the
271  /// expression is modifiable (C99 6.3.2.1p1).
272  /// \param Loc A source location that might be filled with a relevant location
273  ///            if the expression is not modifiable.
274  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
275    return ClassifyImpl(Ctx, &Loc);
276  }
277
278private:
279  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
280
281public:
282
283  /// \brief If this expression refers to a bit-field, retrieve the
284  /// declaration of that bit-field.
285  FieldDecl *getBitField();
286
287  const FieldDecl *getBitField() const {
288    return const_cast<Expr*>(this)->getBitField();
289  }
290
291  /// \brief Returns whether this expression refers to a vector element.
292  bool refersToVectorElement() const;
293
294  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
295  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
296  /// but also int expressions which are produced by things like comparisons in
297  /// C.
298  bool isKnownToHaveBooleanValue() const;
299
300  /// isIntegerConstantExpr - Return true if this expression is a valid integer
301  /// constant expression, and, if so, return its value in Result.  If not a
302  /// valid i-c-e, return false and fill in Loc (if specified) with the location
303  /// of the invalid expression.
304  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
305                             SourceLocation *Loc = 0,
306                             bool isEvaluated = true) const;
307  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
308    llvm::APSInt X;
309    return isIntegerConstantExpr(X, Ctx, Loc);
310  }
311  /// isConstantInitializer - Returns true if this expression is a constant
312  /// initializer, which can be emitted at compile-time.
313  bool isConstantInitializer(ASTContext &Ctx) const;
314
315  /// EvalResult is a struct with detailed info about an evaluated expression.
316  struct EvalResult {
317    /// Val - This is the value the expression can be folded to.
318    APValue Val;
319
320    /// HasSideEffects - Whether the evaluated expression has side effects.
321    /// For example, (f() && 0) can be folded, but it still has side effects.
322    bool HasSideEffects;
323
324    /// Diag - If the expression is unfoldable, then Diag contains a note
325    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
326    /// position for the error, and DiagExpr is the expression that caused
327    /// the error.
328    /// If the expression is foldable, but not an integer constant expression,
329    /// Diag contains a note diagnostic that describes why it isn't an integer
330    /// constant expression. If the expression *is* an integer constant
331    /// expression, then Diag will be zero.
332    unsigned Diag;
333    const Expr *DiagExpr;
334    SourceLocation DiagLoc;
335
336    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
337
338    // isGlobalLValue - Return true if the evaluated lvalue expression
339    // is global.
340    bool isGlobalLValue() const;
341    // hasSideEffects - Return true if the evaluated expression has
342    // side effects.
343    bool hasSideEffects() const {
344      return HasSideEffects;
345    }
346  };
347
348  /// Evaluate - Return true if this is a constant which we can fold using
349  /// any crazy technique (that has nothing to do with language standards) that
350  /// we want to.  If this function returns true, it returns the folded constant
351  /// in Result.
352  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
353
354  /// EvaluateAsBooleanCondition - Return true if this is a constant
355  /// which we we can fold and convert to a boolean condition using
356  /// any crazy technique that we want to.
357  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
358
359  /// isEvaluatable - Call Evaluate to see if this expression can be constant
360  /// folded, but discard the result.
361  bool isEvaluatable(ASTContext &Ctx) const;
362
363  /// HasSideEffects - This routine returns true for all those expressions
364  /// which must be evaluated each time and must not be optimization away
365  /// or evaluated at compile time. Example is a function call, volatile
366  /// variable read.
367  bool HasSideEffects(ASTContext &Ctx) const;
368
369  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
370  /// must be called on an expression that constant folds to an integer.
371  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
372
373  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
374  /// with link time known address.
375  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
376
377  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
378  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
379
380  /// \brief Enumeration used to describe how \c isNullPointerConstant()
381  /// should cope with value-dependent expressions.
382  enum NullPointerConstantValueDependence {
383    /// \brief Specifies that the expression should never be value-dependent.
384    NPC_NeverValueDependent = 0,
385
386    /// \brief Specifies that a value-dependent expression of integral or
387    /// dependent type should be considered a null pointer constant.
388    NPC_ValueDependentIsNull,
389
390    /// \brief Specifies that a value-dependent expression should be considered
391    /// to never be a null pointer constant.
392    NPC_ValueDependentIsNotNull
393  };
394
395  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
396  /// integer constant expression with the value zero, or if this is one that is
397  /// cast to void*.
398  bool isNullPointerConstant(ASTContext &Ctx,
399                             NullPointerConstantValueDependence NPC) const;
400
401  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
402  /// write barrier.
403  bool isOBJCGCCandidate(ASTContext &Ctx) const;
404
405  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
406  ///  its subexpression.  If that subexpression is also a ParenExpr,
407  ///  then this method recursively returns its subexpression, and so forth.
408  ///  Otherwise, the method returns the current Expr.
409  Expr *IgnoreParens();
410
411  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
412  /// or CastExprs, returning their operand.
413  Expr *IgnoreParenCasts();
414
415  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
416  /// ParenExpr or ImplicitCastExprs, returning their operand.
417  Expr *IgnoreParenImpCasts();
418
419  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
420  /// value (including ptr->int casts of the same size).  Strip off any
421  /// ParenExpr or CastExprs, returning their operand.
422  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
423
424  /// \brief Determine whether this expression is a default function argument.
425  ///
426  /// Default arguments are implicitly generated in the abstract syntax tree
427  /// by semantic analysis for function calls, object constructions, etc. in
428  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
429  /// this routine also looks through any implicit casts to determine whether
430  /// the expression is a default argument.
431  bool isDefaultArgument() const;
432
433  /// \brief Determine whether this expression directly creates a
434  /// temporary object (of class type).
435  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
436
437  /// \brief If this expression directly creates a temporary object of
438  /// class type, return the expression that actually constructs that
439  /// temporary object.
440  const Expr *getTemporaryObject() const;
441
442  const Expr *IgnoreParens() const {
443    return const_cast<Expr*>(this)->IgnoreParens();
444  }
445  const Expr *IgnoreParenCasts() const {
446    return const_cast<Expr*>(this)->IgnoreParenCasts();
447  }
448  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
449    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
450  }
451
452  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
453  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
454
455  static bool classof(const Stmt *T) {
456    return T->getStmtClass() >= firstExprConstant &&
457           T->getStmtClass() <= lastExprConstant;
458  }
459  static bool classof(const Expr *) { return true; }
460};
461
462
463//===----------------------------------------------------------------------===//
464// Primary Expressions.
465//===----------------------------------------------------------------------===//
466
467/// \brief Represents the qualifier that may precede a C++ name, e.g., the
468/// "std::" in "std::sort".
469struct NameQualifier {
470  /// \brief The nested name specifier.
471  NestedNameSpecifier *NNS;
472
473  /// \brief The source range covered by the nested name specifier.
474  SourceRange Range;
475};
476
477/// \brief Represents an explicit template argument list in C++, e.g.,
478/// the "<int>" in "sort<int>".
479struct ExplicitTemplateArgumentList {
480  /// \brief The source location of the left angle bracket ('<');
481  SourceLocation LAngleLoc;
482
483  /// \brief The source location of the right angle bracket ('>');
484  SourceLocation RAngleLoc;
485
486  /// \brief The number of template arguments in TemplateArgs.
487  /// The actual template arguments (if any) are stored after the
488  /// ExplicitTemplateArgumentList structure.
489  unsigned NumTemplateArgs;
490
491  /// \brief Retrieve the template arguments
492  TemplateArgumentLoc *getTemplateArgs() {
493    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
494  }
495
496  /// \brief Retrieve the template arguments
497  const TemplateArgumentLoc *getTemplateArgs() const {
498    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
499  }
500
501  void initializeFrom(const TemplateArgumentListInfo &List);
502  void copyInto(TemplateArgumentListInfo &List) const;
503  static std::size_t sizeFor(unsigned NumTemplateArgs);
504  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
505};
506
507/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
508/// enum, etc.
509class DeclRefExpr : public Expr {
510  enum {
511    // Flag on DecoratedD that specifies when this declaration reference
512    // expression has a C++ nested-name-specifier.
513    HasQualifierFlag = 0x01,
514    // Flag on DecoratedD that specifies when this declaration reference
515    // expression has an explicit C++ template argument list.
516    HasExplicitTemplateArgumentListFlag = 0x02
517  };
518
519  // DecoratedD - The declaration that we are referencing, plus two bits to
520  // indicate whether (1) the declaration's name was explicitly qualified and
521  // (2) the declaration's name was followed by an explicit template
522  // argument list.
523  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
524
525  // Loc - The location of the declaration name itself.
526  SourceLocation Loc;
527
528  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
529  NameQualifier *getNameQualifier() {
530    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
531      return 0;
532
533    return reinterpret_cast<NameQualifier *> (this + 1);
534  }
535
536  /// \brief Retrieve the qualifier that preceded the member name, if any.
537  const NameQualifier *getNameQualifier() const {
538    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
539  }
540
541  /// \brief Retrieve the explicit template argument list that followed the
542  /// member template name, if any.
543  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
544    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
545      return 0;
546
547    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
548      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
549
550    return reinterpret_cast<ExplicitTemplateArgumentList *>(
551                                                      getNameQualifier() + 1);
552  }
553
554  /// \brief Retrieve the explicit template argument list that followed the
555  /// member template name, if any.
556  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
557    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
558  }
559
560  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
561              ValueDecl *D, SourceLocation NameLoc,
562              const TemplateArgumentListInfo *TemplateArgs,
563              QualType T);
564
565protected:
566  /// \brief Computes the type- and value-dependence flags for this
567  /// declaration reference expression.
568  void computeDependence();
569
570  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
571    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
572    computeDependence();
573  }
574
575public:
576  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
577    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
578    computeDependence();
579  }
580
581  /// \brief Construct an empty declaration reference expression.
582  explicit DeclRefExpr(EmptyShell Empty)
583    : Expr(DeclRefExprClass, Empty) { }
584
585  static DeclRefExpr *Create(ASTContext &Context,
586                             NestedNameSpecifier *Qualifier,
587                             SourceRange QualifierRange,
588                             ValueDecl *D,
589                             SourceLocation NameLoc,
590                             QualType T,
591                             const TemplateArgumentListInfo *TemplateArgs = 0);
592
593  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
594  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
595  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
596
597  SourceLocation getLocation() const { return Loc; }
598  void setLocation(SourceLocation L) { Loc = L; }
599  virtual SourceRange getSourceRange() const;
600
601  /// \brief Determine whether this declaration reference was preceded by a
602  /// C++ nested-name-specifier, e.g., \c N::foo.
603  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
604
605  /// \brief If the name was qualified, retrieves the source range of
606  /// the nested-name-specifier that precedes the name. Otherwise,
607  /// returns an empty source range.
608  SourceRange getQualifierRange() const {
609    if (!hasQualifier())
610      return SourceRange();
611
612    return getNameQualifier()->Range;
613  }
614
615  /// \brief If the name was qualified, retrieves the nested-name-specifier
616  /// that precedes the name. Otherwise, returns NULL.
617  NestedNameSpecifier *getQualifier() const {
618    if (!hasQualifier())
619      return 0;
620
621    return getNameQualifier()->NNS;
622  }
623
624  /// \brief Determines whether this member expression actually had a C++
625  /// template argument list explicitly specified, e.g., x.f<int>.
626  bool hasExplicitTemplateArgumentList() const {
627    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
628  }
629
630  /// \brief Copies the template arguments (if present) into the given
631  /// structure.
632  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
633    if (hasExplicitTemplateArgumentList())
634      getExplicitTemplateArgumentList()->copyInto(List);
635  }
636
637  /// \brief Retrieve the location of the left angle bracket following the
638  /// member name ('<'), if any.
639  SourceLocation getLAngleLoc() const {
640    if (!hasExplicitTemplateArgumentList())
641      return SourceLocation();
642
643    return getExplicitTemplateArgumentList()->LAngleLoc;
644  }
645
646  /// \brief Retrieve the template arguments provided as part of this
647  /// template-id.
648  const TemplateArgumentLoc *getTemplateArgs() const {
649    if (!hasExplicitTemplateArgumentList())
650      return 0;
651
652    return getExplicitTemplateArgumentList()->getTemplateArgs();
653  }
654
655  /// \brief Retrieve the number of template arguments provided as part of this
656  /// template-id.
657  unsigned getNumTemplateArgs() const {
658    if (!hasExplicitTemplateArgumentList())
659      return 0;
660
661    return getExplicitTemplateArgumentList()->NumTemplateArgs;
662  }
663
664  /// \brief Retrieve the location of the right angle bracket following the
665  /// template arguments ('>').
666  SourceLocation getRAngleLoc() const {
667    if (!hasExplicitTemplateArgumentList())
668      return SourceLocation();
669
670    return getExplicitTemplateArgumentList()->RAngleLoc;
671  }
672
673  static bool classof(const Stmt *T) {
674    return T->getStmtClass() == DeclRefExprClass;
675  }
676  static bool classof(const DeclRefExpr *) { return true; }
677
678  // Iterators
679  virtual child_iterator child_begin();
680  virtual child_iterator child_end();
681};
682
683/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
684class PredefinedExpr : public Expr {
685public:
686  enum IdentType {
687    Func,
688    Function,
689    PrettyFunction,
690    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
691    /// 'virtual' keyword is omitted for virtual member functions.
692    PrettyFunctionNoVirtual
693  };
694
695private:
696  SourceLocation Loc;
697  IdentType Type;
698public:
699  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
700    : Expr(PredefinedExprClass, type, type->isDependentType(),
701           type->isDependentType()), Loc(l), Type(IT) {}
702
703  /// \brief Construct an empty predefined expression.
704  explicit PredefinedExpr(EmptyShell Empty)
705    : Expr(PredefinedExprClass, Empty) { }
706
707  IdentType getIdentType() const { return Type; }
708  void setIdentType(IdentType IT) { Type = IT; }
709
710  SourceLocation getLocation() const { return Loc; }
711  void setLocation(SourceLocation L) { Loc = L; }
712
713  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
714
715  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
716
717  static bool classof(const Stmt *T) {
718    return T->getStmtClass() == PredefinedExprClass;
719  }
720  static bool classof(const PredefinedExpr *) { return true; }
721
722  // Iterators
723  virtual child_iterator child_begin();
724  virtual child_iterator child_end();
725};
726
727class IntegerLiteral : public Expr {
728  llvm::APInt Value;
729  SourceLocation Loc;
730public:
731  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
732  // or UnsignedLongLongTy
733  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
734    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
735    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
736  }
737
738  /// \brief Construct an empty integer literal.
739  explicit IntegerLiteral(EmptyShell Empty)
740    : Expr(IntegerLiteralClass, Empty) { }
741
742  const llvm::APInt &getValue() const { return Value; }
743  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
744
745  /// \brief Retrieve the location of the literal.
746  SourceLocation getLocation() const { return Loc; }
747
748  void setValue(const llvm::APInt &Val) { Value = Val; }
749  void setLocation(SourceLocation Location) { Loc = Location; }
750
751  static bool classof(const Stmt *T) {
752    return T->getStmtClass() == IntegerLiteralClass;
753  }
754  static bool classof(const IntegerLiteral *) { return true; }
755
756  // Iterators
757  virtual child_iterator child_begin();
758  virtual child_iterator child_end();
759};
760
761class CharacterLiteral : public Expr {
762  unsigned Value;
763  SourceLocation Loc;
764  bool IsWide;
765public:
766  // type should be IntTy
767  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
768    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
769      IsWide(iswide) {
770  }
771
772  /// \brief Construct an empty character literal.
773  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
774
775  SourceLocation getLocation() const { return Loc; }
776  bool isWide() const { return IsWide; }
777
778  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
779
780  unsigned getValue() const { return Value; }
781
782  void setLocation(SourceLocation Location) { Loc = Location; }
783  void setWide(bool W) { IsWide = W; }
784  void setValue(unsigned Val) { Value = Val; }
785
786  static bool classof(const Stmt *T) {
787    return T->getStmtClass() == CharacterLiteralClass;
788  }
789  static bool classof(const CharacterLiteral *) { return true; }
790
791  // Iterators
792  virtual child_iterator child_begin();
793  virtual child_iterator child_end();
794};
795
796class FloatingLiteral : public Expr {
797  llvm::APFloat Value;
798  bool IsExact : 1;
799  SourceLocation Loc;
800public:
801  FloatingLiteral(const llvm::APFloat &V, bool isexact,
802                  QualType Type, SourceLocation L)
803    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
804      IsExact(isexact), Loc(L) {}
805
806  /// \brief Construct an empty floating-point literal.
807  explicit FloatingLiteral(EmptyShell Empty)
808    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
809
810  const llvm::APFloat &getValue() const { return Value; }
811  void setValue(const llvm::APFloat &Val) { Value = Val; }
812
813  bool isExact() const { return IsExact; }
814  void setExact(bool E) { IsExact = E; }
815
816  /// getValueAsApproximateDouble - This returns the value as an inaccurate
817  /// double.  Note that this may cause loss of precision, but is useful for
818  /// debugging dumps, etc.
819  double getValueAsApproximateDouble() const;
820
821  SourceLocation getLocation() const { return Loc; }
822  void setLocation(SourceLocation L) { Loc = L; }
823
824  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
825
826  static bool classof(const Stmt *T) {
827    return T->getStmtClass() == FloatingLiteralClass;
828  }
829  static bool classof(const FloatingLiteral *) { return true; }
830
831  // Iterators
832  virtual child_iterator child_begin();
833  virtual child_iterator child_end();
834};
835
836/// ImaginaryLiteral - We support imaginary integer and floating point literals,
837/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
838/// IntegerLiteral classes.  Instances of this class always have a Complex type
839/// whose element type matches the subexpression.
840///
841class ImaginaryLiteral : public Expr {
842  Stmt *Val;
843public:
844  ImaginaryLiteral(Expr *val, QualType Ty)
845    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
846
847  /// \brief Build an empty imaginary literal.
848  explicit ImaginaryLiteral(EmptyShell Empty)
849    : Expr(ImaginaryLiteralClass, Empty) { }
850
851  const Expr *getSubExpr() const { return cast<Expr>(Val); }
852  Expr *getSubExpr() { return cast<Expr>(Val); }
853  void setSubExpr(Expr *E) { Val = E; }
854
855  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
856  static bool classof(const Stmt *T) {
857    return T->getStmtClass() == ImaginaryLiteralClass;
858  }
859  static bool classof(const ImaginaryLiteral *) { return true; }
860
861  // Iterators
862  virtual child_iterator child_begin();
863  virtual child_iterator child_end();
864};
865
866/// StringLiteral - This represents a string literal expression, e.g. "foo"
867/// or L"bar" (wide strings).  The actual string is returned by getStrData()
868/// is NOT null-terminated, and the length of the string is determined by
869/// calling getByteLength().  The C type for a string is always a
870/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
871/// not.
872///
873/// Note that strings in C can be formed by concatenation of multiple string
874/// literal pptokens in translation phase #6.  This keeps track of the locations
875/// of each of these pieces.
876///
877/// Strings in C can also be truncated and extended by assigning into arrays,
878/// e.g. with constructs like:
879///   char X[2] = "foobar";
880/// In this case, getByteLength() will return 6, but the string literal will
881/// have type "char[2]".
882class StringLiteral : public Expr {
883  const char *StrData;
884  unsigned ByteLength;
885  bool IsWide;
886  unsigned NumConcatenated;
887  SourceLocation TokLocs[1];
888
889  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
890
891protected:
892  virtual void DoDestroy(ASTContext &C);
893
894public:
895  /// This is the "fully general" constructor that allows representation of
896  /// strings formed from multiple concatenated tokens.
897  static StringLiteral *Create(ASTContext &C, const char *StrData,
898                               unsigned ByteLength, bool Wide, QualType Ty,
899                               const SourceLocation *Loc, unsigned NumStrs);
900
901  /// Simple constructor for string literals made from one token.
902  static StringLiteral *Create(ASTContext &C, const char *StrData,
903                               unsigned ByteLength,
904                               bool Wide, QualType Ty, SourceLocation Loc) {
905    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
906  }
907
908  /// \brief Construct an empty string literal.
909  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
910
911  llvm::StringRef getString() const {
912    return llvm::StringRef(StrData, ByteLength);
913  }
914  // FIXME: These are deprecated, replace with StringRef.
915  const char *getStrData() const { return StrData; }
916  unsigned getByteLength() const { return ByteLength; }
917
918  /// \brief Sets the string data to the given string data.
919  void setString(ASTContext &C, llvm::StringRef Str);
920
921  bool isWide() const { return IsWide; }
922  void setWide(bool W) { IsWide = W; }
923
924  bool containsNonAsciiOrNull() const {
925    llvm::StringRef Str = getString();
926    for (unsigned i = 0, e = Str.size(); i != e; ++i)
927      if (!isascii(Str[i]) || !Str[i])
928        return true;
929    return false;
930  }
931  /// getNumConcatenated - Get the number of string literal tokens that were
932  /// concatenated in translation phase #6 to form this string literal.
933  unsigned getNumConcatenated() const { return NumConcatenated; }
934
935  SourceLocation getStrTokenLoc(unsigned TokNum) const {
936    assert(TokNum < NumConcatenated && "Invalid tok number");
937    return TokLocs[TokNum];
938  }
939  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
940    assert(TokNum < NumConcatenated && "Invalid tok number");
941    TokLocs[TokNum] = L;
942  }
943
944  typedef const SourceLocation *tokloc_iterator;
945  tokloc_iterator tokloc_begin() const { return TokLocs; }
946  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
947
948  virtual SourceRange getSourceRange() const {
949    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
950  }
951  static bool classof(const Stmt *T) {
952    return T->getStmtClass() == StringLiteralClass;
953  }
954  static bool classof(const StringLiteral *) { return true; }
955
956  // Iterators
957  virtual child_iterator child_begin();
958  virtual child_iterator child_end();
959};
960
961/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
962/// AST node is only formed if full location information is requested.
963class ParenExpr : public Expr {
964  SourceLocation L, R;
965  Stmt *Val;
966public:
967  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
968    : Expr(ParenExprClass, val->getType(),
969           val->isTypeDependent(), val->isValueDependent()),
970      L(l), R(r), Val(val) {}
971
972  /// \brief Construct an empty parenthesized expression.
973  explicit ParenExpr(EmptyShell Empty)
974    : Expr(ParenExprClass, Empty) { }
975
976  const Expr *getSubExpr() const { return cast<Expr>(Val); }
977  Expr *getSubExpr() { return cast<Expr>(Val); }
978  void setSubExpr(Expr *E) { Val = E; }
979
980  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
981
982  /// \brief Get the location of the left parentheses '('.
983  SourceLocation getLParen() const { return L; }
984  void setLParen(SourceLocation Loc) { L = Loc; }
985
986  /// \brief Get the location of the right parentheses ')'.
987  SourceLocation getRParen() const { return R; }
988  void setRParen(SourceLocation Loc) { R = Loc; }
989
990  static bool classof(const Stmt *T) {
991    return T->getStmtClass() == ParenExprClass;
992  }
993  static bool classof(const ParenExpr *) { return true; }
994
995  // Iterators
996  virtual child_iterator child_begin();
997  virtual child_iterator child_end();
998};
999
1000
1001/// UnaryOperator - This represents the unary-expression's (except sizeof and
1002/// alignof), the postinc/postdec operators from postfix-expression, and various
1003/// extensions.
1004///
1005/// Notes on various nodes:
1006///
1007/// Real/Imag - These return the real/imag part of a complex operand.  If
1008///   applied to a non-complex value, the former returns its operand and the
1009///   later returns zero in the type of the operand.
1010///
1011/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
1012///   subexpression is a compound literal with the various MemberExpr and
1013///   ArraySubscriptExpr's applied to it. (This is only used in C)
1014///
1015class UnaryOperator : public Expr {
1016public:
1017  // Note that additions to this should also update the StmtVisitor class.
1018  enum Opcode {
1019    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
1020    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
1021    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
1022    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
1023    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
1024    Real, Imag,       // "__real expr"/"__imag expr" Extension.
1025    Extension,        // __extension__ marker.
1026    OffsetOf          // __builtin_offsetof
1027  };
1028private:
1029  Stmt *Val;
1030  Opcode Opc;
1031  SourceLocation Loc;
1032public:
1033
1034  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1035    : Expr(UnaryOperatorClass, type,
1036           input->isTypeDependent() && opc != OffsetOf,
1037           input->isValueDependent()),
1038      Val(input), Opc(opc), Loc(l) {}
1039
1040  /// \brief Build an empty unary operator.
1041  explicit UnaryOperator(EmptyShell Empty)
1042    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
1043
1044  Opcode getOpcode() const { return Opc; }
1045  void setOpcode(Opcode O) { Opc = O; }
1046
1047  Expr *getSubExpr() const { return cast<Expr>(Val); }
1048  void setSubExpr(Expr *E) { Val = E; }
1049
1050  /// getOperatorLoc - Return the location of the operator.
1051  SourceLocation getOperatorLoc() const { return Loc; }
1052  void setOperatorLoc(SourceLocation L) { Loc = L; }
1053
1054  /// isPostfix - Return true if this is a postfix operation, like x++.
1055  static bool isPostfix(Opcode Op) {
1056    return Op == PostInc || Op == PostDec;
1057  }
1058
1059  /// isPostfix - Return true if this is a prefix operation, like --x.
1060  static bool isPrefix(Opcode Op) {
1061    return Op == PreInc || Op == PreDec;
1062  }
1063
1064  bool isPrefix() const { return isPrefix(Opc); }
1065  bool isPostfix() const { return isPostfix(Opc); }
1066  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
1067  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
1068  bool isOffsetOfOp() const { return Opc == OffsetOf; }
1069  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
1070  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
1071
1072  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1073  /// corresponds to, e.g. "sizeof" or "[pre]++"
1074  static const char *getOpcodeStr(Opcode Op);
1075
1076  /// \brief Retrieve the unary opcode that corresponds to the given
1077  /// overloaded operator.
1078  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1079
1080  /// \brief Retrieve the overloaded operator kind that corresponds to
1081  /// the given unary opcode.
1082  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1083
1084  virtual SourceRange getSourceRange() const {
1085    if (isPostfix())
1086      return SourceRange(Val->getLocStart(), Loc);
1087    else
1088      return SourceRange(Loc, Val->getLocEnd());
1089  }
1090  virtual SourceLocation getExprLoc() const { return Loc; }
1091
1092  static bool classof(const Stmt *T) {
1093    return T->getStmtClass() == UnaryOperatorClass;
1094  }
1095  static bool classof(const UnaryOperator *) { return true; }
1096
1097  // Iterators
1098  virtual child_iterator child_begin();
1099  virtual child_iterator child_end();
1100};
1101
1102/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1103/// offsetof(record-type, member-designator). For example, given:
1104/// @code
1105/// struct S {
1106///   float f;
1107///   double d;
1108/// };
1109/// struct T {
1110///   int i;
1111///   struct S s[10];
1112/// };
1113/// @endcode
1114/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1115
1116class OffsetOfExpr : public Expr {
1117public:
1118  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1119  class OffsetOfNode {
1120  public:
1121    /// \brief The kind of offsetof node we have.
1122    enum Kind {
1123      /// \brief An index into an array.
1124      Array = 0x00,
1125      /// \brief A field.
1126      Field = 0x01,
1127      /// \brief A field in a dependent type, known only by its name.
1128      Identifier = 0x02,
1129      /// \brief An implicit indirection through a C++ base class, when the
1130      /// field found is in a base class.
1131      Base = 0x03
1132    };
1133
1134  private:
1135    enum { MaskBits = 2, Mask = 0x03 };
1136
1137    /// \brief The source range that covers this part of the designator.
1138    SourceRange Range;
1139
1140    /// \brief The data describing the designator, which comes in three
1141    /// different forms, depending on the lower two bits.
1142    ///   - An unsigned index into the array of Expr*'s stored after this node
1143    ///     in memory, for [constant-expression] designators.
1144    ///   - A FieldDecl*, for references to a known field.
1145    ///   - An IdentifierInfo*, for references to a field with a given name
1146    ///     when the class type is dependent.
1147    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1148    ///     base class.
1149    uintptr_t Data;
1150
1151  public:
1152    /// \brief Create an offsetof node that refers to an array element.
1153    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1154                 SourceLocation RBracketLoc)
1155      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1156
1157    /// \brief Create an offsetof node that refers to a field.
1158    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1159                 SourceLocation NameLoc)
1160      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1161        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1162
1163    /// \brief Create an offsetof node that refers to an identifier.
1164    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1165                 SourceLocation NameLoc)
1166      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1167        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1168
1169    /// \brief Create an offsetof node that refers into a C++ base class.
1170    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1171      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1172
1173    /// \brief Determine what kind of offsetof node this is.
1174    Kind getKind() const {
1175      return static_cast<Kind>(Data & Mask);
1176    }
1177
1178    /// \brief For an array element node, returns the index into the array
1179    /// of expressions.
1180    unsigned getArrayExprIndex() const {
1181      assert(getKind() == Array);
1182      return Data >> 2;
1183    }
1184
1185    /// \brief For a field offsetof node, returns the field.
1186    FieldDecl *getField() const {
1187      assert(getKind() == Field);
1188      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1189    }
1190
1191    /// \brief For a field or identifier offsetof node, returns the name of
1192    /// the field.
1193    IdentifierInfo *getFieldName() const;
1194
1195    /// \brief For a base class node, returns the base specifier.
1196    CXXBaseSpecifier *getBase() const {
1197      assert(getKind() == Base);
1198      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1199    }
1200
1201    /// \brief Retrieve the source range that covers this offsetof node.
1202    ///
1203    /// For an array element node, the source range contains the locations of
1204    /// the square brackets. For a field or identifier node, the source range
1205    /// contains the location of the period (if there is one) and the
1206    /// identifier.
1207    SourceRange getRange() const { return Range; }
1208  };
1209
1210private:
1211
1212  SourceLocation OperatorLoc, RParenLoc;
1213  // Base type;
1214  TypeSourceInfo *TSInfo;
1215  // Number of sub-components (i.e. instances of OffsetOfNode).
1216  unsigned NumComps;
1217  // Number of sub-expressions (i.e. array subscript expressions).
1218  unsigned NumExprs;
1219
1220  OffsetOfExpr(ASTContext &C, QualType type,
1221               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1222               OffsetOfNode* compsPtr, unsigned numComps,
1223               Expr** exprsPtr, unsigned numExprs,
1224               SourceLocation RParenLoc);
1225
1226  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1227    : Expr(OffsetOfExprClass, EmptyShell()),
1228      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1229
1230public:
1231
1232  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1233                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1234                              OffsetOfNode* compsPtr, unsigned numComps,
1235                              Expr** exprsPtr, unsigned numExprs,
1236                              SourceLocation RParenLoc);
1237
1238  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1239                                   unsigned NumComps, unsigned NumExprs);
1240
1241  /// getOperatorLoc - Return the location of the operator.
1242  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1243  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1244
1245  /// \brief Return the location of the right parentheses.
1246  SourceLocation getRParenLoc() const { return RParenLoc; }
1247  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1248
1249  TypeSourceInfo *getTypeSourceInfo() const {
1250    return TSInfo;
1251  }
1252  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1253    TSInfo = tsi;
1254  }
1255
1256  const OffsetOfNode &getComponent(unsigned Idx) {
1257    assert(Idx < NumComps && "Subscript out of range");
1258    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1259  }
1260
1261  void setComponent(unsigned Idx, OffsetOfNode ON) {
1262    assert(Idx < NumComps && "Subscript out of range");
1263    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1264  }
1265
1266  unsigned getNumComponents() const {
1267    return NumComps;
1268  }
1269
1270  Expr* getIndexExpr(unsigned Idx) {
1271    assert(Idx < NumExprs && "Subscript out of range");
1272    return reinterpret_cast<Expr **>(
1273                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1274  }
1275
1276  void setIndexExpr(unsigned Idx, Expr* E) {
1277    assert(Idx < NumComps && "Subscript out of range");
1278    reinterpret_cast<Expr **>(
1279                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1280  }
1281
1282  unsigned getNumExpressions() const {
1283    return NumExprs;
1284  }
1285
1286  virtual SourceRange getSourceRange() const {
1287    return SourceRange(OperatorLoc, RParenLoc);
1288  }
1289
1290  static bool classof(const Stmt *T) {
1291    return T->getStmtClass() == OffsetOfExprClass;
1292  }
1293
1294  static bool classof(const OffsetOfExpr *) { return true; }
1295
1296  // Iterators
1297  virtual child_iterator child_begin();
1298  virtual child_iterator child_end();
1299};
1300
1301/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1302/// types and expressions.
1303class SizeOfAlignOfExpr : public Expr {
1304  bool isSizeof : 1;  // true if sizeof, false if alignof.
1305  bool isType : 1;    // true if operand is a type, false if an expression
1306  union {
1307    TypeSourceInfo *Ty;
1308    Stmt *Ex;
1309  } Argument;
1310  SourceLocation OpLoc, RParenLoc;
1311
1312protected:
1313  virtual void DoDestroy(ASTContext& C);
1314
1315public:
1316  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1317                    QualType resultType, SourceLocation op,
1318                    SourceLocation rp) :
1319      Expr(SizeOfAlignOfExprClass, resultType,
1320           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1321           // Value-dependent if the argument is type-dependent.
1322           TInfo->getType()->isDependentType()),
1323      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1324    Argument.Ty = TInfo;
1325  }
1326
1327  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1328                    QualType resultType, SourceLocation op,
1329                    SourceLocation rp) :
1330      Expr(SizeOfAlignOfExprClass, resultType,
1331           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1332           // Value-dependent if the argument is type-dependent.
1333           E->isTypeDependent()),
1334      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1335    Argument.Ex = E;
1336  }
1337
1338  /// \brief Construct an empty sizeof/alignof expression.
1339  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1340    : Expr(SizeOfAlignOfExprClass, Empty) { }
1341
1342  bool isSizeOf() const { return isSizeof; }
1343  void setSizeof(bool S) { isSizeof = S; }
1344
1345  bool isArgumentType() const { return isType; }
1346  QualType getArgumentType() const {
1347    return getArgumentTypeInfo()->getType();
1348  }
1349  TypeSourceInfo *getArgumentTypeInfo() const {
1350    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1351    return Argument.Ty;
1352  }
1353  Expr *getArgumentExpr() {
1354    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1355    return static_cast<Expr*>(Argument.Ex);
1356  }
1357  const Expr *getArgumentExpr() const {
1358    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1359  }
1360
1361  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1362  void setArgument(TypeSourceInfo *TInfo) {
1363    Argument.Ty = TInfo;
1364    isType = true;
1365  }
1366
1367  /// Gets the argument type, or the type of the argument expression, whichever
1368  /// is appropriate.
1369  QualType getTypeOfArgument() const {
1370    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1371  }
1372
1373  SourceLocation getOperatorLoc() const { return OpLoc; }
1374  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1375
1376  SourceLocation getRParenLoc() const { return RParenLoc; }
1377  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1378
1379  virtual SourceRange getSourceRange() const {
1380    return SourceRange(OpLoc, RParenLoc);
1381  }
1382
1383  static bool classof(const Stmt *T) {
1384    return T->getStmtClass() == SizeOfAlignOfExprClass;
1385  }
1386  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1387
1388  // Iterators
1389  virtual child_iterator child_begin();
1390  virtual child_iterator child_end();
1391};
1392
1393//===----------------------------------------------------------------------===//
1394// Postfix Operators.
1395//===----------------------------------------------------------------------===//
1396
1397/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1398class ArraySubscriptExpr : public Expr {
1399  enum { LHS, RHS, END_EXPR=2 };
1400  Stmt* SubExprs[END_EXPR];
1401  SourceLocation RBracketLoc;
1402public:
1403  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1404                     SourceLocation rbracketloc)
1405  : Expr(ArraySubscriptExprClass, t,
1406         lhs->isTypeDependent() || rhs->isTypeDependent(),
1407         lhs->isValueDependent() || rhs->isValueDependent()),
1408    RBracketLoc(rbracketloc) {
1409    SubExprs[LHS] = lhs;
1410    SubExprs[RHS] = rhs;
1411  }
1412
1413  /// \brief Create an empty array subscript expression.
1414  explicit ArraySubscriptExpr(EmptyShell Shell)
1415    : Expr(ArraySubscriptExprClass, Shell) { }
1416
1417  /// An array access can be written A[4] or 4[A] (both are equivalent).
1418  /// - getBase() and getIdx() always present the normalized view: A[4].
1419  ///    In this case getBase() returns "A" and getIdx() returns "4".
1420  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1421  ///    4[A] getLHS() returns "4".
1422  /// Note: Because vector element access is also written A[4] we must
1423  /// predicate the format conversion in getBase and getIdx only on the
1424  /// the type of the RHS, as it is possible for the LHS to be a vector of
1425  /// integer type
1426  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1427  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1428  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1429
1430  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1431  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1432  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1433
1434  Expr *getBase() {
1435    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1436  }
1437
1438  const Expr *getBase() const {
1439    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1440  }
1441
1442  Expr *getIdx() {
1443    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1444  }
1445
1446  const Expr *getIdx() const {
1447    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1448  }
1449
1450  virtual SourceRange getSourceRange() const {
1451    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1452  }
1453
1454  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1455  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1456
1457  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1458
1459  static bool classof(const Stmt *T) {
1460    return T->getStmtClass() == ArraySubscriptExprClass;
1461  }
1462  static bool classof(const ArraySubscriptExpr *) { return true; }
1463
1464  // Iterators
1465  virtual child_iterator child_begin();
1466  virtual child_iterator child_end();
1467};
1468
1469
1470/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1471/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1472/// while its subclasses may represent alternative syntax that (semantically)
1473/// results in a function call. For example, CXXOperatorCallExpr is
1474/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1475/// "str1 + str2" to resolve to a function call.
1476class CallExpr : public Expr {
1477  enum { FN=0, ARGS_START=1 };
1478  Stmt **SubExprs;
1479  unsigned NumArgs;
1480  SourceLocation RParenLoc;
1481
1482protected:
1483  // This version of the constructor is for derived classes.
1484  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1485           QualType t, SourceLocation rparenloc);
1486
1487  virtual void DoDestroy(ASTContext& C);
1488
1489public:
1490  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1491           SourceLocation rparenloc);
1492
1493  /// \brief Build an empty call expression.
1494  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1495
1496  ~CallExpr() {}
1497
1498  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1499  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1500  void setCallee(Expr *F) { SubExprs[FN] = F; }
1501
1502  Decl *getCalleeDecl();
1503  const Decl *getCalleeDecl() const {
1504    return const_cast<CallExpr*>(this)->getCalleeDecl();
1505  }
1506
1507  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1508  FunctionDecl *getDirectCallee();
1509  const FunctionDecl *getDirectCallee() const {
1510    return const_cast<CallExpr*>(this)->getDirectCallee();
1511  }
1512
1513  /// getNumArgs - Return the number of actual arguments to this call.
1514  ///
1515  unsigned getNumArgs() const { return NumArgs; }
1516
1517  /// getArg - Return the specified argument.
1518  Expr *getArg(unsigned Arg) {
1519    assert(Arg < NumArgs && "Arg access out of range!");
1520    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1521  }
1522  const Expr *getArg(unsigned Arg) const {
1523    assert(Arg < NumArgs && "Arg access out of range!");
1524    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1525  }
1526
1527  /// setArg - Set the specified argument.
1528  void setArg(unsigned Arg, Expr *ArgExpr) {
1529    assert(Arg < NumArgs && "Arg access out of range!");
1530    SubExprs[Arg+ARGS_START] = ArgExpr;
1531  }
1532
1533  /// setNumArgs - This changes the number of arguments present in this call.
1534  /// Any orphaned expressions are deleted by this, and any new operands are set
1535  /// to null.
1536  void setNumArgs(ASTContext& C, unsigned NumArgs);
1537
1538  typedef ExprIterator arg_iterator;
1539  typedef ConstExprIterator const_arg_iterator;
1540
1541  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1542  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1543  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1544  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1545
1546  /// getNumCommas - Return the number of commas that must have been present in
1547  /// this function call.
1548  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1549
1550  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1551  /// not, return 0.
1552  unsigned isBuiltinCall(ASTContext &Context) const;
1553
1554  /// getCallReturnType - Get the return type of the call expr. This is not
1555  /// always the type of the expr itself, if the return type is a reference
1556  /// type.
1557  QualType getCallReturnType() const;
1558
1559  SourceLocation getRParenLoc() const { return RParenLoc; }
1560  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1561
1562  virtual SourceRange getSourceRange() const {
1563    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1564  }
1565
1566  static bool classof(const Stmt *T) {
1567    return T->getStmtClass() >= firstCallExprConstant &&
1568           T->getStmtClass() <= lastCallExprConstant;
1569  }
1570  static bool classof(const CallExpr *) { return true; }
1571
1572  // Iterators
1573  virtual child_iterator child_begin();
1574  virtual child_iterator child_end();
1575};
1576
1577/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1578///
1579class MemberExpr : public Expr {
1580  /// Extra data stored in some member expressions.
1581  struct MemberNameQualifier : public NameQualifier {
1582    DeclAccessPair FoundDecl;
1583  };
1584
1585  /// Base - the expression for the base pointer or structure references.  In
1586  /// X.F, this is "X".
1587  Stmt *Base;
1588
1589  /// MemberDecl - This is the decl being referenced by the field/member name.
1590  /// In X.F, this is the decl referenced by F.
1591  ValueDecl *MemberDecl;
1592
1593  /// MemberLoc - This is the location of the member name.
1594  SourceLocation MemberLoc;
1595
1596  /// IsArrow - True if this is "X->F", false if this is "X.F".
1597  bool IsArrow : 1;
1598
1599  /// \brief True if this member expression used a nested-name-specifier to
1600  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1601  /// declaration.  When true, a MemberNameQualifier
1602  /// structure is allocated immediately after the MemberExpr.
1603  bool HasQualifierOrFoundDecl : 1;
1604
1605  /// \brief True if this member expression specified a template argument list
1606  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1607  /// structure (and its TemplateArguments) are allocated immediately after
1608  /// the MemberExpr or, if the member expression also has a qualifier, after
1609  /// the MemberNameQualifier structure.
1610  bool HasExplicitTemplateArgumentList : 1;
1611
1612  /// \brief Retrieve the qualifier that preceded the member name, if any.
1613  MemberNameQualifier *getMemberQualifier() {
1614    assert(HasQualifierOrFoundDecl);
1615    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1616  }
1617
1618  /// \brief Retrieve the qualifier that preceded the member name, if any.
1619  const MemberNameQualifier *getMemberQualifier() const {
1620    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1621  }
1622
1623  /// \brief Retrieve the explicit template argument list that followed the
1624  /// member template name, if any.
1625  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1626    if (!HasExplicitTemplateArgumentList)
1627      return 0;
1628
1629    if (!HasQualifierOrFoundDecl)
1630      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1631
1632    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1633                                                      getMemberQualifier() + 1);
1634  }
1635
1636  /// \brief Retrieve the explicit template argument list that followed the
1637  /// member template name, if any.
1638  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1639    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1640  }
1641
1642public:
1643  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1644             SourceLocation l, QualType ty)
1645    : Expr(MemberExprClass, ty,
1646           base->isTypeDependent(), base->isValueDependent()),
1647      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1648      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1649
1650  /// \brief Build an empty member reference expression.
1651  explicit MemberExpr(EmptyShell Empty)
1652    : Expr(MemberExprClass, Empty), HasQualifierOrFoundDecl(false),
1653      HasExplicitTemplateArgumentList(false) { }
1654
1655  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1656                            NestedNameSpecifier *qual, SourceRange qualrange,
1657                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1658                            SourceLocation l,
1659                            const TemplateArgumentListInfo *targs,
1660                            QualType ty);
1661
1662  void setBase(Expr *E) { Base = E; }
1663  Expr *getBase() const { return cast<Expr>(Base); }
1664
1665  /// \brief Retrieve the member declaration to which this expression refers.
1666  ///
1667  /// The returned declaration will either be a FieldDecl or (in C++)
1668  /// a CXXMethodDecl.
1669  ValueDecl *getMemberDecl() const { return MemberDecl; }
1670  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1671
1672  /// \brief Retrieves the declaration found by lookup.
1673  DeclAccessPair getFoundDecl() const {
1674    if (!HasQualifierOrFoundDecl)
1675      return DeclAccessPair::make(getMemberDecl(),
1676                                  getMemberDecl()->getAccess());
1677    return getMemberQualifier()->FoundDecl;
1678  }
1679
1680  /// \brief Determines whether this member expression actually had
1681  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1682  /// x->Base::foo.
1683  bool hasQualifier() const { return getQualifier() != 0; }
1684
1685  /// \brief If the member name was qualified, retrieves the source range of
1686  /// the nested-name-specifier that precedes the member name. Otherwise,
1687  /// returns an empty source range.
1688  SourceRange getQualifierRange() const {
1689    if (!HasQualifierOrFoundDecl)
1690      return SourceRange();
1691
1692    return getMemberQualifier()->Range;
1693  }
1694
1695  /// \brief If the member name was qualified, retrieves the
1696  /// nested-name-specifier that precedes the member name. Otherwise, returns
1697  /// NULL.
1698  NestedNameSpecifier *getQualifier() const {
1699    if (!HasQualifierOrFoundDecl)
1700      return 0;
1701
1702    return getMemberQualifier()->NNS;
1703  }
1704
1705  /// \brief Determines whether this member expression actually had a C++
1706  /// template argument list explicitly specified, e.g., x.f<int>.
1707  bool hasExplicitTemplateArgumentList() const {
1708    return HasExplicitTemplateArgumentList;
1709  }
1710
1711  /// \brief Copies the template arguments (if present) into the given
1712  /// structure.
1713  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1714    if (hasExplicitTemplateArgumentList())
1715      getExplicitTemplateArgumentList()->copyInto(List);
1716  }
1717
1718  /// \brief Retrieve the location of the left angle bracket following the
1719  /// member name ('<'), if any.
1720  SourceLocation getLAngleLoc() const {
1721    if (!HasExplicitTemplateArgumentList)
1722      return SourceLocation();
1723
1724    return getExplicitTemplateArgumentList()->LAngleLoc;
1725  }
1726
1727  /// \brief Retrieve the template arguments provided as part of this
1728  /// template-id.
1729  const TemplateArgumentLoc *getTemplateArgs() const {
1730    if (!HasExplicitTemplateArgumentList)
1731      return 0;
1732
1733    return getExplicitTemplateArgumentList()->getTemplateArgs();
1734  }
1735
1736  /// \brief Retrieve the number of template arguments provided as part of this
1737  /// template-id.
1738  unsigned getNumTemplateArgs() const {
1739    if (!HasExplicitTemplateArgumentList)
1740      return 0;
1741
1742    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1743  }
1744
1745  /// \brief Retrieve the location of the right angle bracket following the
1746  /// template arguments ('>').
1747  SourceLocation getRAngleLoc() const {
1748    if (!HasExplicitTemplateArgumentList)
1749      return SourceLocation();
1750
1751    return getExplicitTemplateArgumentList()->RAngleLoc;
1752  }
1753
1754  bool isArrow() const { return IsArrow; }
1755  void setArrow(bool A) { IsArrow = A; }
1756
1757  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1758  /// location of 'F'.
1759  SourceLocation getMemberLoc() const { return MemberLoc; }
1760  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1761
1762  virtual SourceRange getSourceRange() const {
1763    // If we have an implicit base (like a C++ implicit this),
1764    // make sure not to return its location
1765    SourceLocation EndLoc = MemberLoc;
1766    if (HasExplicitTemplateArgumentList)
1767      EndLoc = getRAngleLoc();
1768
1769    SourceLocation BaseLoc = getBase()->getLocStart();
1770    if (BaseLoc.isInvalid())
1771      return SourceRange(MemberLoc, EndLoc);
1772    return SourceRange(BaseLoc, EndLoc);
1773  }
1774
1775  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1776
1777  static bool classof(const Stmt *T) {
1778    return T->getStmtClass() == MemberExprClass;
1779  }
1780  static bool classof(const MemberExpr *) { return true; }
1781
1782  // Iterators
1783  virtual child_iterator child_begin();
1784  virtual child_iterator child_end();
1785};
1786
1787/// CompoundLiteralExpr - [C99 6.5.2.5]
1788///
1789class CompoundLiteralExpr : public Expr {
1790  /// LParenLoc - If non-null, this is the location of the left paren in a
1791  /// compound literal like "(int){4}".  This can be null if this is a
1792  /// synthesized compound expression.
1793  SourceLocation LParenLoc;
1794
1795  /// The type as written.  This can be an incomplete array type, in
1796  /// which case the actual expression type will be different.
1797  TypeSourceInfo *TInfo;
1798  Stmt *Init;
1799  bool FileScope;
1800public:
1801  // FIXME: Can compound literals be value-dependent?
1802  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1803                      QualType T, Expr *init, bool fileScope)
1804    : Expr(CompoundLiteralExprClass, T,
1805           tinfo->getType()->isDependentType(), false),
1806      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1807
1808  /// \brief Construct an empty compound literal.
1809  explicit CompoundLiteralExpr(EmptyShell Empty)
1810    : Expr(CompoundLiteralExprClass, Empty) { }
1811
1812  const Expr *getInitializer() const { return cast<Expr>(Init); }
1813  Expr *getInitializer() { return cast<Expr>(Init); }
1814  void setInitializer(Expr *E) { Init = E; }
1815
1816  bool isFileScope() const { return FileScope; }
1817  void setFileScope(bool FS) { FileScope = FS; }
1818
1819  SourceLocation getLParenLoc() const { return LParenLoc; }
1820  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1821
1822  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1823  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1824
1825  virtual SourceRange getSourceRange() const {
1826    // FIXME: Init should never be null.
1827    if (!Init)
1828      return SourceRange();
1829    if (LParenLoc.isInvalid())
1830      return Init->getSourceRange();
1831    return SourceRange(LParenLoc, Init->getLocEnd());
1832  }
1833
1834  static bool classof(const Stmt *T) {
1835    return T->getStmtClass() == CompoundLiteralExprClass;
1836  }
1837  static bool classof(const CompoundLiteralExpr *) { return true; }
1838
1839  // Iterators
1840  virtual child_iterator child_begin();
1841  virtual child_iterator child_end();
1842};
1843
1844/// CastExpr - Base class for type casts, including both implicit
1845/// casts (ImplicitCastExpr) and explicit casts that have some
1846/// representation in the source code (ExplicitCastExpr's derived
1847/// classes).
1848class CastExpr : public Expr {
1849public:
1850  /// CastKind - the kind of cast this represents.
1851  enum CastKind {
1852    /// CK_Unknown - Unknown cast kind.
1853    /// FIXME: The goal is to get rid of this and make all casts have a
1854    /// kind so that the AST client doesn't have to try to figure out what's
1855    /// going on.
1856    CK_Unknown,
1857
1858    /// CK_BitCast - Used for reinterpret_cast.
1859    CK_BitCast,
1860
1861    /// CK_NoOp - Used for const_cast.
1862    CK_NoOp,
1863
1864    /// CK_BaseToDerived - Base to derived class casts.
1865    CK_BaseToDerived,
1866
1867    /// CK_DerivedToBase - Derived to base class casts.
1868    CK_DerivedToBase,
1869
1870    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1871    /// assume that the derived pointer is not null.
1872    CK_UncheckedDerivedToBase,
1873
1874    /// CK_Dynamic - Dynamic cast.
1875    CK_Dynamic,
1876
1877    /// CK_ToUnion - Cast to union (GCC extension).
1878    CK_ToUnion,
1879
1880    /// CK_ArrayToPointerDecay - Array to pointer decay.
1881    CK_ArrayToPointerDecay,
1882
1883    // CK_FunctionToPointerDecay - Function to pointer decay.
1884    CK_FunctionToPointerDecay,
1885
1886    /// CK_NullToMemberPointer - Null pointer to member pointer.
1887    CK_NullToMemberPointer,
1888
1889    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1890    /// member pointer in derived class.
1891    CK_BaseToDerivedMemberPointer,
1892
1893    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1894    /// member pointer in base class.
1895    CK_DerivedToBaseMemberPointer,
1896
1897    /// CK_UserDefinedConversion - Conversion using a user defined type
1898    /// conversion function.
1899    CK_UserDefinedConversion,
1900
1901    /// CK_ConstructorConversion - Conversion by constructor
1902    CK_ConstructorConversion,
1903
1904    /// CK_IntegralToPointer - Integral to pointer
1905    CK_IntegralToPointer,
1906
1907    /// CK_PointerToIntegral - Pointer to integral
1908    CK_PointerToIntegral,
1909
1910    /// CK_ToVoid - Cast to void.
1911    CK_ToVoid,
1912
1913    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1914    /// vector type with the same element type as the src type. Splats the
1915    /// src expression into the destination expression.
1916    CK_VectorSplat,
1917
1918    /// CK_IntegralCast - Casting between integral types of different size.
1919    CK_IntegralCast,
1920
1921    /// CK_IntegralToFloating - Integral to floating point.
1922    CK_IntegralToFloating,
1923
1924    /// CK_FloatingToIntegral - Floating point to integral.
1925    CK_FloatingToIntegral,
1926
1927    /// CK_FloatingCast - Casting between floating types of different size.
1928    CK_FloatingCast,
1929
1930    /// CK_MemberPointerToBoolean - Member pointer to boolean
1931    CK_MemberPointerToBoolean,
1932
1933    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1934    /// pointer
1935    CK_AnyPointerToObjCPointerCast,
1936    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1937    /// pointer
1938    CK_AnyPointerToBlockPointerCast
1939
1940  };
1941
1942private:
1943  CastKind Kind;
1944  Stmt *Op;
1945
1946  /// BasePath - For derived-to-base and base-to-derived casts, the base array
1947  /// contains the inheritance path.
1948  CXXBaseSpecifierArray BasePath;
1949
1950  void CheckBasePath() const {
1951#ifndef NDEBUG
1952    switch (getCastKind()) {
1953    case CK_DerivedToBase:
1954    case CK_UncheckedDerivedToBase:
1955    case CK_DerivedToBaseMemberPointer:
1956    case CK_BaseToDerived:
1957    case CK_BaseToDerivedMemberPointer:
1958      assert(!BasePath.empty() && "Cast kind should have a base path!");
1959      break;
1960
1961    // These should not have an inheritance path.
1962    case CK_Unknown:
1963    case CK_BitCast:
1964    case CK_NoOp:
1965    case CK_Dynamic:
1966    case CK_ToUnion:
1967    case CK_ArrayToPointerDecay:
1968    case CK_FunctionToPointerDecay:
1969    case CK_NullToMemberPointer:
1970    case CK_UserDefinedConversion:
1971    case CK_ConstructorConversion:
1972    case CK_IntegralToPointer:
1973    case CK_PointerToIntegral:
1974    case CK_ToVoid:
1975    case CK_VectorSplat:
1976    case CK_IntegralCast:
1977    case CK_IntegralToFloating:
1978    case CK_FloatingToIntegral:
1979    case CK_FloatingCast:
1980    case CK_MemberPointerToBoolean:
1981    case CK_AnyPointerToObjCPointerCast:
1982    case CK_AnyPointerToBlockPointerCast:
1983      assert(BasePath.empty() && "Cast kind should not have a base path!");
1984      break;
1985    }
1986#endif
1987  }
1988
1989protected:
1990  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
1991           CXXBaseSpecifierArray BasePath) :
1992    Expr(SC, ty,
1993         // Cast expressions are type-dependent if the type is
1994         // dependent (C++ [temp.dep.expr]p3).
1995         ty->isDependentType(),
1996         // Cast expressions are value-dependent if the type is
1997         // dependent or if the subexpression is value-dependent.
1998         ty->isDependentType() || (op && op->isValueDependent())),
1999    Kind(kind), Op(op), BasePath(BasePath) {
2000      CheckBasePath();
2001    }
2002
2003  /// \brief Construct an empty cast.
2004  CastExpr(StmtClass SC, EmptyShell Empty)
2005    : Expr(SC, Empty) { }
2006
2007  virtual void DoDestroy(ASTContext &C);
2008
2009public:
2010  CastKind getCastKind() const { return Kind; }
2011  void setCastKind(CastKind K) { Kind = K; }
2012  const char *getCastKindName() const;
2013
2014  Expr *getSubExpr() { return cast<Expr>(Op); }
2015  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2016  void setSubExpr(Expr *E) { Op = E; }
2017
2018  /// \brief Retrieve the cast subexpression as it was written in the source
2019  /// code, looking through any implicit casts or other intermediate nodes
2020  /// introduced by semantic analysis.
2021  Expr *getSubExprAsWritten();
2022  const Expr *getSubExprAsWritten() const {
2023    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2024  }
2025
2026  const CXXBaseSpecifierArray& getBasePath() const { return BasePath; }
2027
2028  static bool classof(const Stmt *T) {
2029    return T->getStmtClass() >= firstCastExprConstant &&
2030           T->getStmtClass() <= lastCastExprConstant;
2031  }
2032  static bool classof(const CastExpr *) { return true; }
2033
2034  // Iterators
2035  virtual child_iterator child_begin();
2036  virtual child_iterator child_end();
2037};
2038
2039/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2040/// conversions, which have no direct representation in the original
2041/// source code. For example: converting T[]->T*, void f()->void
2042/// (*f)(), float->double, short->int, etc.
2043///
2044/// In C, implicit casts always produce rvalues. However, in C++, an
2045/// implicit cast whose result is being bound to a reference will be
2046/// an lvalue. For example:
2047///
2048/// @code
2049/// class Base { };
2050/// class Derived : public Base { };
2051/// void f(Derived d) {
2052///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
2053/// }
2054/// @endcode
2055class ImplicitCastExpr : public CastExpr {
2056  /// LvalueCast - Whether this cast produces an lvalue.
2057  bool LvalueCast;
2058
2059public:
2060  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2061                   CXXBaseSpecifierArray BasePath, bool Lvalue)
2062    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePath),
2063    LvalueCast(Lvalue) { }
2064
2065  /// \brief Construct an empty implicit cast.
2066  explicit ImplicitCastExpr(EmptyShell Shell)
2067    : CastExpr(ImplicitCastExprClass, Shell) { }
2068
2069  virtual SourceRange getSourceRange() const {
2070    return getSubExpr()->getSourceRange();
2071  }
2072
2073  /// isLvalueCast - Whether this cast produces an lvalue.
2074  bool isLvalueCast() const { return LvalueCast; }
2075
2076  /// setLvalueCast - Set whether this cast produces an lvalue.
2077  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
2078
2079  static bool classof(const Stmt *T) {
2080    return T->getStmtClass() == ImplicitCastExprClass;
2081  }
2082  static bool classof(const ImplicitCastExpr *) { return true; }
2083};
2084
2085/// ExplicitCastExpr - An explicit cast written in the source
2086/// code.
2087///
2088/// This class is effectively an abstract class, because it provides
2089/// the basic representation of an explicitly-written cast without
2090/// specifying which kind of cast (C cast, functional cast, static
2091/// cast, etc.) was written; specific derived classes represent the
2092/// particular style of cast and its location information.
2093///
2094/// Unlike implicit casts, explicit cast nodes have two different
2095/// types: the type that was written into the source code, and the
2096/// actual type of the expression as determined by semantic
2097/// analysis. These types may differ slightly. For example, in C++ one
2098/// can cast to a reference type, which indicates that the resulting
2099/// expression will be an lvalue. The reference type, however, will
2100/// not be used as the type of the expression.
2101class ExplicitCastExpr : public CastExpr {
2102  /// TInfo - Source type info for the (written) type
2103  /// this expression is casting to.
2104  TypeSourceInfo *TInfo;
2105
2106protected:
2107  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2108                   Expr *op, CXXBaseSpecifierArray BasePath,
2109                   TypeSourceInfo *writtenTy)
2110    : CastExpr(SC, exprTy, kind, op, BasePath), TInfo(writtenTy) {}
2111
2112  /// \brief Construct an empty explicit cast.
2113  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
2114    : CastExpr(SC, Shell) { }
2115
2116public:
2117  /// getTypeInfoAsWritten - Returns the type source info for the type
2118  /// that this expression is casting to.
2119  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2120  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2121
2122  /// getTypeAsWritten - Returns the type that this expression is
2123  /// casting to, as written in the source code.
2124  QualType getTypeAsWritten() const { return TInfo->getType(); }
2125
2126  static bool classof(const Stmt *T) {
2127     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2128            T->getStmtClass() <= lastExplicitCastExprConstant;
2129  }
2130  static bool classof(const ExplicitCastExpr *) { return true; }
2131};
2132
2133/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2134/// cast in C++ (C++ [expr.cast]), which uses the syntax
2135/// (Type)expr. For example: @c (int)f.
2136class CStyleCastExpr : public ExplicitCastExpr {
2137  SourceLocation LPLoc; // the location of the left paren
2138  SourceLocation RPLoc; // the location of the right paren
2139public:
2140  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2141                 CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
2142                 SourceLocation l, SourceLocation r)
2143    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, BasePath,
2144                       writtenTy), LPLoc(l), RPLoc(r) {}
2145
2146  /// \brief Construct an empty C-style explicit cast.
2147  explicit CStyleCastExpr(EmptyShell Shell)
2148    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
2149
2150  SourceLocation getLParenLoc() const { return LPLoc; }
2151  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2152
2153  SourceLocation getRParenLoc() const { return RPLoc; }
2154  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2155
2156  virtual SourceRange getSourceRange() const {
2157    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2158  }
2159  static bool classof(const Stmt *T) {
2160    return T->getStmtClass() == CStyleCastExprClass;
2161  }
2162  static bool classof(const CStyleCastExpr *) { return true; }
2163};
2164
2165/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2166///
2167/// This expression node kind describes a builtin binary operation,
2168/// such as "x + y" for integer values "x" and "y". The operands will
2169/// already have been converted to appropriate types (e.g., by
2170/// performing promotions or conversions).
2171///
2172/// In C++, where operators may be overloaded, a different kind of
2173/// expression node (CXXOperatorCallExpr) is used to express the
2174/// invocation of an overloaded operator with operator syntax. Within
2175/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2176/// used to store an expression "x + y" depends on the subexpressions
2177/// for x and y. If neither x or y is type-dependent, and the "+"
2178/// operator resolves to a built-in operation, BinaryOperator will be
2179/// used to express the computation (x and y may still be
2180/// value-dependent). If either x or y is type-dependent, or if the
2181/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2182/// be used to express the computation.
2183class BinaryOperator : public Expr {
2184public:
2185  enum Opcode {
2186    // Operators listed in order of precedence.
2187    // Note that additions to this should also update the StmtVisitor class.
2188    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2189    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2190    Add, Sub,         // [C99 6.5.6] Additive operators.
2191    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2192    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2193    EQ, NE,           // [C99 6.5.9] Equality operators.
2194    And,              // [C99 6.5.10] Bitwise AND operator.
2195    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2196    Or,               // [C99 6.5.12] Bitwise OR operator.
2197    LAnd,             // [C99 6.5.13] Logical AND operator.
2198    LOr,              // [C99 6.5.14] Logical OR operator.
2199    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2200    DivAssign, RemAssign,
2201    AddAssign, SubAssign,
2202    ShlAssign, ShrAssign,
2203    AndAssign, XorAssign,
2204    OrAssign,
2205    Comma             // [C99 6.5.17] Comma operator.
2206  };
2207private:
2208  enum { LHS, RHS, END_EXPR };
2209  Stmt* SubExprs[END_EXPR];
2210  Opcode Opc;
2211  SourceLocation OpLoc;
2212public:
2213
2214  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2215                 SourceLocation opLoc)
2216    : Expr(BinaryOperatorClass, ResTy,
2217           lhs->isTypeDependent() || rhs->isTypeDependent(),
2218           lhs->isValueDependent() || rhs->isValueDependent()),
2219      Opc(opc), OpLoc(opLoc) {
2220    SubExprs[LHS] = lhs;
2221    SubExprs[RHS] = rhs;
2222    assert(!isCompoundAssignmentOp() &&
2223           "Use ArithAssignBinaryOperator for compound assignments");
2224  }
2225
2226  /// \brief Construct an empty binary operator.
2227  explicit BinaryOperator(EmptyShell Empty)
2228    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2229
2230  SourceLocation getOperatorLoc() const { return OpLoc; }
2231  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2232
2233  Opcode getOpcode() const { return Opc; }
2234  void setOpcode(Opcode O) { Opc = O; }
2235
2236  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2237  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2238  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2239  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2240
2241  virtual SourceRange getSourceRange() const {
2242    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2243  }
2244
2245  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2246  /// corresponds to, e.g. "<<=".
2247  static const char *getOpcodeStr(Opcode Op);
2248
2249  /// \brief Retrieve the binary opcode that corresponds to the given
2250  /// overloaded operator.
2251  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2252
2253  /// \brief Retrieve the overloaded operator kind that corresponds to
2254  /// the given binary opcode.
2255  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2256
2257  /// predicates to categorize the respective opcodes.
2258  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2259  static bool isAdditiveOp(Opcode Opc) { return Opc == Add || Opc == Sub; }
2260  bool isAdditiveOp() const { return isAdditiveOp(Opc); }
2261  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2262  bool isShiftOp() const { return isShiftOp(Opc); }
2263
2264  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2265  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2266
2267  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2268  bool isRelationalOp() const { return isRelationalOp(Opc); }
2269
2270  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2271  bool isEqualityOp() const { return isEqualityOp(Opc); }
2272
2273  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2274  bool isComparisonOp() const { return isComparisonOp(Opc); }
2275
2276  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2277  bool isLogicalOp() const { return isLogicalOp(Opc); }
2278
2279  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2280  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2281  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2282
2283  static bool classof(const Stmt *S) {
2284    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2285           S->getStmtClass() <= lastBinaryOperatorConstant;
2286  }
2287  static bool classof(const BinaryOperator *) { return true; }
2288
2289  // Iterators
2290  virtual child_iterator child_begin();
2291  virtual child_iterator child_end();
2292
2293protected:
2294  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2295                 SourceLocation opLoc, bool dead)
2296    : Expr(CompoundAssignOperatorClass, ResTy,
2297           lhs->isTypeDependent() || rhs->isTypeDependent(),
2298           lhs->isValueDependent() || rhs->isValueDependent()),
2299      Opc(opc), OpLoc(opLoc) {
2300    SubExprs[LHS] = lhs;
2301    SubExprs[RHS] = rhs;
2302  }
2303
2304  BinaryOperator(StmtClass SC, EmptyShell Empty)
2305    : Expr(SC, Empty), Opc(MulAssign) { }
2306};
2307
2308/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2309/// track of the type the operation is performed in.  Due to the semantics of
2310/// these operators, the operands are promoted, the aritmetic performed, an
2311/// implicit conversion back to the result type done, then the assignment takes
2312/// place.  This captures the intermediate type which the computation is done
2313/// in.
2314class CompoundAssignOperator : public BinaryOperator {
2315  QualType ComputationLHSType;
2316  QualType ComputationResultType;
2317public:
2318  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2319                         QualType ResType, QualType CompLHSType,
2320                         QualType CompResultType,
2321                         SourceLocation OpLoc)
2322    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2323      ComputationLHSType(CompLHSType),
2324      ComputationResultType(CompResultType) {
2325    assert(isCompoundAssignmentOp() &&
2326           "Only should be used for compound assignments");
2327  }
2328
2329  /// \brief Build an empty compound assignment operator expression.
2330  explicit CompoundAssignOperator(EmptyShell Empty)
2331    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2332
2333  // The two computation types are the type the LHS is converted
2334  // to for the computation and the type of the result; the two are
2335  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2336  QualType getComputationLHSType() const { return ComputationLHSType; }
2337  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2338
2339  QualType getComputationResultType() const { return ComputationResultType; }
2340  void setComputationResultType(QualType T) { ComputationResultType = T; }
2341
2342  static bool classof(const CompoundAssignOperator *) { return true; }
2343  static bool classof(const Stmt *S) {
2344    return S->getStmtClass() == CompoundAssignOperatorClass;
2345  }
2346};
2347
2348/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2349/// GNU "missing LHS" extension is in use.
2350///
2351class ConditionalOperator : public Expr {
2352  enum { COND, LHS, RHS, END_EXPR };
2353  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2354  SourceLocation QuestionLoc, ColonLoc;
2355public:
2356  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2357                      SourceLocation CLoc, Expr *rhs, QualType t)
2358    : Expr(ConditionalOperatorClass, t,
2359           // FIXME: the type of the conditional operator doesn't
2360           // depend on the type of the conditional, but the standard
2361           // seems to imply that it could. File a bug!
2362           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2363           (cond->isValueDependent() ||
2364            (lhs && lhs->isValueDependent()) ||
2365            (rhs && rhs->isValueDependent()))),
2366      QuestionLoc(QLoc),
2367      ColonLoc(CLoc) {
2368    SubExprs[COND] = cond;
2369    SubExprs[LHS] = lhs;
2370    SubExprs[RHS] = rhs;
2371  }
2372
2373  /// \brief Build an empty conditional operator.
2374  explicit ConditionalOperator(EmptyShell Empty)
2375    : Expr(ConditionalOperatorClass, Empty) { }
2376
2377  // getCond - Return the expression representing the condition for
2378  //  the ?: operator.
2379  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2380  void setCond(Expr *E) { SubExprs[COND] = E; }
2381
2382  // getTrueExpr - Return the subexpression representing the value of the ?:
2383  //  expression if the condition evaluates to true.  In most cases this value
2384  //  will be the same as getLHS() except a GCC extension allows the left
2385  //  subexpression to be omitted, and instead of the condition be returned.
2386  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2387  //  is only evaluated once.
2388  Expr *getTrueExpr() const {
2389    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2390  }
2391
2392  // getTrueExpr - Return the subexpression representing the value of the ?:
2393  // expression if the condition evaluates to false. This is the same as getRHS.
2394  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2395
2396  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2397  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2398
2399  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2400  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2401
2402  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2403  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2404
2405  SourceLocation getColonLoc() const { return ColonLoc; }
2406  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2407
2408  virtual SourceRange getSourceRange() const {
2409    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2410  }
2411  static bool classof(const Stmt *T) {
2412    return T->getStmtClass() == ConditionalOperatorClass;
2413  }
2414  static bool classof(const ConditionalOperator *) { return true; }
2415
2416  // Iterators
2417  virtual child_iterator child_begin();
2418  virtual child_iterator child_end();
2419};
2420
2421/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2422class AddrLabelExpr : public Expr {
2423  SourceLocation AmpAmpLoc, LabelLoc;
2424  LabelStmt *Label;
2425public:
2426  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2427                QualType t)
2428    : Expr(AddrLabelExprClass, t, false, false),
2429      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2430
2431  /// \brief Build an empty address of a label expression.
2432  explicit AddrLabelExpr(EmptyShell Empty)
2433    : Expr(AddrLabelExprClass, Empty) { }
2434
2435  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2436  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2437  SourceLocation getLabelLoc() const { return LabelLoc; }
2438  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2439
2440  virtual SourceRange getSourceRange() const {
2441    return SourceRange(AmpAmpLoc, LabelLoc);
2442  }
2443
2444  LabelStmt *getLabel() const { return Label; }
2445  void setLabel(LabelStmt *S) { Label = S; }
2446
2447  static bool classof(const Stmt *T) {
2448    return T->getStmtClass() == AddrLabelExprClass;
2449  }
2450  static bool classof(const AddrLabelExpr *) { return true; }
2451
2452  // Iterators
2453  virtual child_iterator child_begin();
2454  virtual child_iterator child_end();
2455};
2456
2457/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2458/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2459/// takes the value of the last subexpression.
2460class StmtExpr : public Expr {
2461  Stmt *SubStmt;
2462  SourceLocation LParenLoc, RParenLoc;
2463public:
2464  // FIXME: Does type-dependence need to be computed differently?
2465  StmtExpr(CompoundStmt *substmt, QualType T,
2466           SourceLocation lp, SourceLocation rp) :
2467    Expr(StmtExprClass, T, T->isDependentType(), false),
2468    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2469
2470  /// \brief Build an empty statement expression.
2471  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2472
2473  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2474  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2475  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2476
2477  virtual SourceRange getSourceRange() const {
2478    return SourceRange(LParenLoc, RParenLoc);
2479  }
2480
2481  SourceLocation getLParenLoc() const { return LParenLoc; }
2482  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2483  SourceLocation getRParenLoc() const { return RParenLoc; }
2484  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2485
2486  static bool classof(const Stmt *T) {
2487    return T->getStmtClass() == StmtExprClass;
2488  }
2489  static bool classof(const StmtExpr *) { return true; }
2490
2491  // Iterators
2492  virtual child_iterator child_begin();
2493  virtual child_iterator child_end();
2494};
2495
2496/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2497/// This AST node represents a function that returns 1 if two *types* (not
2498/// expressions) are compatible. The result of this built-in function can be
2499/// used in integer constant expressions.
2500class TypesCompatibleExpr : public Expr {
2501  QualType Type1;
2502  QualType Type2;
2503  SourceLocation BuiltinLoc, RParenLoc;
2504public:
2505  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2506                      QualType t1, QualType t2, SourceLocation RP) :
2507    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2508    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2509
2510  /// \brief Build an empty __builtin_type_compatible_p expression.
2511  explicit TypesCompatibleExpr(EmptyShell Empty)
2512    : Expr(TypesCompatibleExprClass, Empty) { }
2513
2514  QualType getArgType1() const { return Type1; }
2515  void setArgType1(QualType T) { Type1 = T; }
2516  QualType getArgType2() const { return Type2; }
2517  void setArgType2(QualType T) { Type2 = T; }
2518
2519  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2520  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2521
2522  SourceLocation getRParenLoc() const { return RParenLoc; }
2523  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2524
2525  virtual SourceRange getSourceRange() const {
2526    return SourceRange(BuiltinLoc, RParenLoc);
2527  }
2528  static bool classof(const Stmt *T) {
2529    return T->getStmtClass() == TypesCompatibleExprClass;
2530  }
2531  static bool classof(const TypesCompatibleExpr *) { return true; }
2532
2533  // Iterators
2534  virtual child_iterator child_begin();
2535  virtual child_iterator child_end();
2536};
2537
2538/// ShuffleVectorExpr - clang-specific builtin-in function
2539/// __builtin_shufflevector.
2540/// This AST node represents a operator that does a constant
2541/// shuffle, similar to LLVM's shufflevector instruction. It takes
2542/// two vectors and a variable number of constant indices,
2543/// and returns the appropriately shuffled vector.
2544class ShuffleVectorExpr : public Expr {
2545  SourceLocation BuiltinLoc, RParenLoc;
2546
2547  // SubExprs - the list of values passed to the __builtin_shufflevector
2548  // function. The first two are vectors, and the rest are constant
2549  // indices.  The number of values in this list is always
2550  // 2+the number of indices in the vector type.
2551  Stmt **SubExprs;
2552  unsigned NumExprs;
2553
2554protected:
2555  virtual void DoDestroy(ASTContext &C);
2556
2557public:
2558  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2559  // to be computed differently?
2560  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2561                    QualType Type, SourceLocation BLoc,
2562                    SourceLocation RP) :
2563    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2564    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2565
2566    SubExprs = new (C) Stmt*[nexpr];
2567    for (unsigned i = 0; i < nexpr; i++)
2568      SubExprs[i] = args[i];
2569  }
2570
2571  /// \brief Build an empty vector-shuffle expression.
2572  explicit ShuffleVectorExpr(EmptyShell Empty)
2573    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2574
2575  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2576  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2577
2578  SourceLocation getRParenLoc() const { return RParenLoc; }
2579  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2580
2581  virtual SourceRange getSourceRange() const {
2582    return SourceRange(BuiltinLoc, RParenLoc);
2583  }
2584  static bool classof(const Stmt *T) {
2585    return T->getStmtClass() == ShuffleVectorExprClass;
2586  }
2587  static bool classof(const ShuffleVectorExpr *) { return true; }
2588
2589  ~ShuffleVectorExpr() {}
2590
2591  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2592  /// constant expression, the actual arguments passed in, and the function
2593  /// pointers.
2594  unsigned getNumSubExprs() const { return NumExprs; }
2595
2596  /// getExpr - Return the Expr at the specified index.
2597  Expr *getExpr(unsigned Index) {
2598    assert((Index < NumExprs) && "Arg access out of range!");
2599    return cast<Expr>(SubExprs[Index]);
2600  }
2601  const Expr *getExpr(unsigned Index) const {
2602    assert((Index < NumExprs) && "Arg access out of range!");
2603    return cast<Expr>(SubExprs[Index]);
2604  }
2605
2606  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2607
2608  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2609    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2610    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2611  }
2612
2613  // Iterators
2614  virtual child_iterator child_begin();
2615  virtual child_iterator child_end();
2616};
2617
2618/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2619/// This AST node is similar to the conditional operator (?:) in C, with
2620/// the following exceptions:
2621/// - the test expression must be a integer constant expression.
2622/// - the expression returned acts like the chosen subexpression in every
2623///   visible way: the type is the same as that of the chosen subexpression,
2624///   and all predicates (whether it's an l-value, whether it's an integer
2625///   constant expression, etc.) return the same result as for the chosen
2626///   sub-expression.
2627class ChooseExpr : public Expr {
2628  enum { COND, LHS, RHS, END_EXPR };
2629  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2630  SourceLocation BuiltinLoc, RParenLoc;
2631public:
2632  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2633             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2634    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2635      BuiltinLoc(BLoc), RParenLoc(RP) {
2636      SubExprs[COND] = cond;
2637      SubExprs[LHS] = lhs;
2638      SubExprs[RHS] = rhs;
2639    }
2640
2641  /// \brief Build an empty __builtin_choose_expr.
2642  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2643
2644  /// isConditionTrue - Return whether the condition is true (i.e. not
2645  /// equal to zero).
2646  bool isConditionTrue(ASTContext &C) const;
2647
2648  /// getChosenSubExpr - Return the subexpression chosen according to the
2649  /// condition.
2650  Expr *getChosenSubExpr(ASTContext &C) const {
2651    return isConditionTrue(C) ? getLHS() : getRHS();
2652  }
2653
2654  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2655  void setCond(Expr *E) { SubExprs[COND] = E; }
2656  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2657  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2658  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2659  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2660
2661  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2662  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2663
2664  SourceLocation getRParenLoc() const { return RParenLoc; }
2665  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2666
2667  virtual SourceRange getSourceRange() const {
2668    return SourceRange(BuiltinLoc, RParenLoc);
2669  }
2670  static bool classof(const Stmt *T) {
2671    return T->getStmtClass() == ChooseExprClass;
2672  }
2673  static bool classof(const ChooseExpr *) { return true; }
2674
2675  // Iterators
2676  virtual child_iterator child_begin();
2677  virtual child_iterator child_end();
2678};
2679
2680/// GNUNullExpr - Implements the GNU __null extension, which is a name
2681/// for a null pointer constant that has integral type (e.g., int or
2682/// long) and is the same size and alignment as a pointer. The __null
2683/// extension is typically only used by system headers, which define
2684/// NULL as __null in C++ rather than using 0 (which is an integer
2685/// that may not match the size of a pointer).
2686class GNUNullExpr : public Expr {
2687  /// TokenLoc - The location of the __null keyword.
2688  SourceLocation TokenLoc;
2689
2690public:
2691  GNUNullExpr(QualType Ty, SourceLocation Loc)
2692    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2693
2694  /// \brief Build an empty GNU __null expression.
2695  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2696
2697  /// getTokenLocation - The location of the __null token.
2698  SourceLocation getTokenLocation() const { return TokenLoc; }
2699  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2700
2701  virtual SourceRange getSourceRange() const {
2702    return SourceRange(TokenLoc);
2703  }
2704  static bool classof(const Stmt *T) {
2705    return T->getStmtClass() == GNUNullExprClass;
2706  }
2707  static bool classof(const GNUNullExpr *) { return true; }
2708
2709  // Iterators
2710  virtual child_iterator child_begin();
2711  virtual child_iterator child_end();
2712};
2713
2714/// VAArgExpr, used for the builtin function __builtin_va_arg.
2715class VAArgExpr : public Expr {
2716  Stmt *Val;
2717  SourceLocation BuiltinLoc, RParenLoc;
2718public:
2719  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2720    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2721      Val(e),
2722      BuiltinLoc(BLoc),
2723      RParenLoc(RPLoc) { }
2724
2725  /// \brief Create an empty __builtin_va_arg expression.
2726  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2727
2728  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2729  Expr *getSubExpr() { return cast<Expr>(Val); }
2730  void setSubExpr(Expr *E) { Val = E; }
2731
2732  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2733  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2734
2735  SourceLocation getRParenLoc() const { return RParenLoc; }
2736  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2737
2738  virtual SourceRange getSourceRange() const {
2739    return SourceRange(BuiltinLoc, RParenLoc);
2740  }
2741  static bool classof(const Stmt *T) {
2742    return T->getStmtClass() == VAArgExprClass;
2743  }
2744  static bool classof(const VAArgExpr *) { return true; }
2745
2746  // Iterators
2747  virtual child_iterator child_begin();
2748  virtual child_iterator child_end();
2749};
2750
2751/// @brief Describes an C or C++ initializer list.
2752///
2753/// InitListExpr describes an initializer list, which can be used to
2754/// initialize objects of different types, including
2755/// struct/class/union types, arrays, and vectors. For example:
2756///
2757/// @code
2758/// struct foo x = { 1, { 2, 3 } };
2759/// @endcode
2760///
2761/// Prior to semantic analysis, an initializer list will represent the
2762/// initializer list as written by the user, but will have the
2763/// placeholder type "void". This initializer list is called the
2764/// syntactic form of the initializer, and may contain C99 designated
2765/// initializers (represented as DesignatedInitExprs), initializations
2766/// of subobject members without explicit braces, and so on. Clients
2767/// interested in the original syntax of the initializer list should
2768/// use the syntactic form of the initializer list.
2769///
2770/// After semantic analysis, the initializer list will represent the
2771/// semantic form of the initializer, where the initializations of all
2772/// subobjects are made explicit with nested InitListExpr nodes and
2773/// C99 designators have been eliminated by placing the designated
2774/// initializations into the subobject they initialize. Additionally,
2775/// any "holes" in the initialization, where no initializer has been
2776/// specified for a particular subobject, will be replaced with
2777/// implicitly-generated ImplicitValueInitExpr expressions that
2778/// value-initialize the subobjects. Note, however, that the
2779/// initializer lists may still have fewer initializers than there are
2780/// elements to initialize within the object.
2781///
2782/// Given the semantic form of the initializer list, one can retrieve
2783/// the original syntactic form of that initializer list (if it
2784/// exists) using getSyntacticForm(). Since many initializer lists
2785/// have the same syntactic and semantic forms, getSyntacticForm() may
2786/// return NULL, indicating that the current initializer list also
2787/// serves as its syntactic form.
2788class InitListExpr : public Expr {
2789  // FIXME: Eliminate this vector in favor of ASTContext allocation
2790  typedef ASTVector<Stmt *> InitExprsTy;
2791  InitExprsTy InitExprs;
2792  SourceLocation LBraceLoc, RBraceLoc;
2793
2794  /// Contains the initializer list that describes the syntactic form
2795  /// written in the source code.
2796  InitListExpr *SyntacticForm;
2797
2798  /// If this initializer list initializes a union, specifies which
2799  /// field within the union will be initialized.
2800  FieldDecl *UnionFieldInit;
2801
2802  /// Whether this initializer list originally had a GNU array-range
2803  /// designator in it. This is a temporary marker used by CodeGen.
2804  bool HadArrayRangeDesignator;
2805
2806public:
2807  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2808               Expr **initexprs, unsigned numinits,
2809               SourceLocation rbraceloc);
2810
2811  /// \brief Build an empty initializer list.
2812  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2813    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2814
2815  unsigned getNumInits() const { return InitExprs.size(); }
2816
2817  const Expr* getInit(unsigned Init) const {
2818    assert(Init < getNumInits() && "Initializer access out of range!");
2819    return cast_or_null<Expr>(InitExprs[Init]);
2820  }
2821
2822  Expr* getInit(unsigned Init) {
2823    assert(Init < getNumInits() && "Initializer access out of range!");
2824    return cast_or_null<Expr>(InitExprs[Init]);
2825  }
2826
2827  void setInit(unsigned Init, Expr *expr) {
2828    assert(Init < getNumInits() && "Initializer access out of range!");
2829    InitExprs[Init] = expr;
2830  }
2831
2832  /// \brief Reserve space for some number of initializers.
2833  void reserveInits(ASTContext &C, unsigned NumInits);
2834
2835  /// @brief Specify the number of initializers
2836  ///
2837  /// If there are more than @p NumInits initializers, the remaining
2838  /// initializers will be destroyed. If there are fewer than @p
2839  /// NumInits initializers, NULL expressions will be added for the
2840  /// unknown initializers.
2841  void resizeInits(ASTContext &Context, unsigned NumInits);
2842
2843  /// @brief Updates the initializer at index @p Init with the new
2844  /// expression @p expr, and returns the old expression at that
2845  /// location.
2846  ///
2847  /// When @p Init is out of range for this initializer list, the
2848  /// initializer list will be extended with NULL expressions to
2849  /// accomodate the new entry.
2850  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2851
2852  /// \brief If this initializes a union, specifies which field in the
2853  /// union to initialize.
2854  ///
2855  /// Typically, this field is the first named field within the
2856  /// union. However, a designated initializer can specify the
2857  /// initialization of a different field within the union.
2858  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2859  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2860
2861  // Explicit InitListExpr's originate from source code (and have valid source
2862  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2863  bool isExplicit() {
2864    return LBraceLoc.isValid() && RBraceLoc.isValid();
2865  }
2866
2867  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2868  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2869  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2870  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2871
2872  /// @brief Retrieve the initializer list that describes the
2873  /// syntactic form of the initializer.
2874  ///
2875  ///
2876  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2877  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2878
2879  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2880  void sawArrayRangeDesignator(bool ARD = true) {
2881    HadArrayRangeDesignator = ARD;
2882  }
2883
2884  virtual SourceRange getSourceRange() const {
2885    return SourceRange(LBraceLoc, RBraceLoc);
2886  }
2887  static bool classof(const Stmt *T) {
2888    return T->getStmtClass() == InitListExprClass;
2889  }
2890  static bool classof(const InitListExpr *) { return true; }
2891
2892  // Iterators
2893  virtual child_iterator child_begin();
2894  virtual child_iterator child_end();
2895
2896  typedef InitExprsTy::iterator iterator;
2897  typedef InitExprsTy::reverse_iterator reverse_iterator;
2898
2899  iterator begin() { return InitExprs.begin(); }
2900  iterator end() { return InitExprs.end(); }
2901  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2902  reverse_iterator rend() { return InitExprs.rend(); }
2903};
2904
2905/// @brief Represents a C99 designated initializer expression.
2906///
2907/// A designated initializer expression (C99 6.7.8) contains one or
2908/// more designators (which can be field designators, array
2909/// designators, or GNU array-range designators) followed by an
2910/// expression that initializes the field or element(s) that the
2911/// designators refer to. For example, given:
2912///
2913/// @code
2914/// struct point {
2915///   double x;
2916///   double y;
2917/// };
2918/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2919/// @endcode
2920///
2921/// The InitListExpr contains three DesignatedInitExprs, the first of
2922/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2923/// designators, one array designator for @c [2] followed by one field
2924/// designator for @c .y. The initalization expression will be 1.0.
2925class DesignatedInitExpr : public Expr {
2926public:
2927  /// \brief Forward declaration of the Designator class.
2928  class Designator;
2929
2930private:
2931  /// The location of the '=' or ':' prior to the actual initializer
2932  /// expression.
2933  SourceLocation EqualOrColonLoc;
2934
2935  /// Whether this designated initializer used the GNU deprecated
2936  /// syntax rather than the C99 '=' syntax.
2937  bool GNUSyntax : 1;
2938
2939  /// The number of designators in this initializer expression.
2940  unsigned NumDesignators : 15;
2941
2942  /// \brief The designators in this designated initialization
2943  /// expression.
2944  Designator *Designators;
2945
2946  /// The number of subexpressions of this initializer expression,
2947  /// which contains both the initializer and any additional
2948  /// expressions used by array and array-range designators.
2949  unsigned NumSubExprs : 16;
2950
2951
2952  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2953                     const Designator *Designators,
2954                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2955                     Expr **IndexExprs, unsigned NumIndexExprs,
2956                     Expr *Init);
2957
2958  explicit DesignatedInitExpr(unsigned NumSubExprs)
2959    : Expr(DesignatedInitExprClass, EmptyShell()),
2960      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2961
2962protected:
2963  virtual void DoDestroy(ASTContext &C);
2964
2965  void DestroyDesignators(ASTContext &C);
2966
2967public:
2968  /// A field designator, e.g., ".x".
2969  struct FieldDesignator {
2970    /// Refers to the field that is being initialized. The low bit
2971    /// of this field determines whether this is actually a pointer
2972    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2973    /// initially constructed, a field designator will store an
2974    /// IdentifierInfo*. After semantic analysis has resolved that
2975    /// name, the field designator will instead store a FieldDecl*.
2976    uintptr_t NameOrField;
2977
2978    /// The location of the '.' in the designated initializer.
2979    unsigned DotLoc;
2980
2981    /// The location of the field name in the designated initializer.
2982    unsigned FieldLoc;
2983  };
2984
2985  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2986  struct ArrayOrRangeDesignator {
2987    /// Location of the first index expression within the designated
2988    /// initializer expression's list of subexpressions.
2989    unsigned Index;
2990    /// The location of the '[' starting the array range designator.
2991    unsigned LBracketLoc;
2992    /// The location of the ellipsis separating the start and end
2993    /// indices. Only valid for GNU array-range designators.
2994    unsigned EllipsisLoc;
2995    /// The location of the ']' terminating the array range designator.
2996    unsigned RBracketLoc;
2997  };
2998
2999  /// @brief Represents a single C99 designator.
3000  ///
3001  /// @todo This class is infuriatingly similar to clang::Designator,
3002  /// but minor differences (storing indices vs. storing pointers)
3003  /// keep us from reusing it. Try harder, later, to rectify these
3004  /// differences.
3005  class Designator {
3006    /// @brief The kind of designator this describes.
3007    enum {
3008      FieldDesignator,
3009      ArrayDesignator,
3010      ArrayRangeDesignator
3011    } Kind;
3012
3013    union {
3014      /// A field designator, e.g., ".x".
3015      struct FieldDesignator Field;
3016      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3017      struct ArrayOrRangeDesignator ArrayOrRange;
3018    };
3019    friend class DesignatedInitExpr;
3020
3021  public:
3022    Designator() {}
3023
3024    /// @brief Initializes a field designator.
3025    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3026               SourceLocation FieldLoc)
3027      : Kind(FieldDesignator) {
3028      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3029      Field.DotLoc = DotLoc.getRawEncoding();
3030      Field.FieldLoc = FieldLoc.getRawEncoding();
3031    }
3032
3033    /// @brief Initializes an array designator.
3034    Designator(unsigned Index, SourceLocation LBracketLoc,
3035               SourceLocation RBracketLoc)
3036      : Kind(ArrayDesignator) {
3037      ArrayOrRange.Index = Index;
3038      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3039      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3040      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3041    }
3042
3043    /// @brief Initializes a GNU array-range designator.
3044    Designator(unsigned Index, SourceLocation LBracketLoc,
3045               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3046      : Kind(ArrayRangeDesignator) {
3047      ArrayOrRange.Index = Index;
3048      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3049      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3050      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3051    }
3052
3053    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3054    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3055    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3056
3057    IdentifierInfo * getFieldName();
3058
3059    FieldDecl *getField() {
3060      assert(Kind == FieldDesignator && "Only valid on a field designator");
3061      if (Field.NameOrField & 0x01)
3062        return 0;
3063      else
3064        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3065    }
3066
3067    void setField(FieldDecl *FD) {
3068      assert(Kind == FieldDesignator && "Only valid on a field designator");
3069      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3070    }
3071
3072    SourceLocation getDotLoc() const {
3073      assert(Kind == FieldDesignator && "Only valid on a field designator");
3074      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3075    }
3076
3077    SourceLocation getFieldLoc() const {
3078      assert(Kind == FieldDesignator && "Only valid on a field designator");
3079      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3080    }
3081
3082    SourceLocation getLBracketLoc() const {
3083      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3084             "Only valid on an array or array-range designator");
3085      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3086    }
3087
3088    SourceLocation getRBracketLoc() const {
3089      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3090             "Only valid on an array or array-range designator");
3091      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3092    }
3093
3094    SourceLocation getEllipsisLoc() const {
3095      assert(Kind == ArrayRangeDesignator &&
3096             "Only valid on an array-range designator");
3097      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3098    }
3099
3100    unsigned getFirstExprIndex() const {
3101      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3102             "Only valid on an array or array-range designator");
3103      return ArrayOrRange.Index;
3104    }
3105
3106    SourceLocation getStartLocation() const {
3107      if (Kind == FieldDesignator)
3108        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3109      else
3110        return getLBracketLoc();
3111    }
3112  };
3113
3114  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3115                                    unsigned NumDesignators,
3116                                    Expr **IndexExprs, unsigned NumIndexExprs,
3117                                    SourceLocation EqualOrColonLoc,
3118                                    bool GNUSyntax, Expr *Init);
3119
3120  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3121
3122  /// @brief Returns the number of designators in this initializer.
3123  unsigned size() const { return NumDesignators; }
3124
3125  // Iterator access to the designators.
3126  typedef Designator* designators_iterator;
3127  designators_iterator designators_begin() { return Designators; }
3128  designators_iterator designators_end() {
3129    return Designators + NumDesignators;
3130  }
3131
3132  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3133
3134  void setDesignators(ASTContext &C, const Designator *Desigs,
3135                      unsigned NumDesigs);
3136
3137  Expr *getArrayIndex(const Designator& D);
3138  Expr *getArrayRangeStart(const Designator& D);
3139  Expr *getArrayRangeEnd(const Designator& D);
3140
3141  /// @brief Retrieve the location of the '=' that precedes the
3142  /// initializer value itself, if present.
3143  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3144  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3145
3146  /// @brief Determines whether this designated initializer used the
3147  /// deprecated GNU syntax for designated initializers.
3148  bool usesGNUSyntax() const { return GNUSyntax; }
3149  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3150
3151  /// @brief Retrieve the initializer value.
3152  Expr *getInit() const {
3153    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3154  }
3155
3156  void setInit(Expr *init) {
3157    *child_begin() = init;
3158  }
3159
3160  /// \brief Retrieve the total number of subexpressions in this
3161  /// designated initializer expression, including the actual
3162  /// initialized value and any expressions that occur within array
3163  /// and array-range designators.
3164  unsigned getNumSubExprs() const { return NumSubExprs; }
3165
3166  Expr *getSubExpr(unsigned Idx) {
3167    assert(Idx < NumSubExprs && "Subscript out of range");
3168    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3169    Ptr += sizeof(DesignatedInitExpr);
3170    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3171  }
3172
3173  void setSubExpr(unsigned Idx, Expr *E) {
3174    assert(Idx < NumSubExprs && "Subscript out of range");
3175    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3176    Ptr += sizeof(DesignatedInitExpr);
3177    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3178  }
3179
3180  /// \brief Replaces the designator at index @p Idx with the series
3181  /// of designators in [First, Last).
3182  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3183                        const Designator *Last);
3184
3185  virtual SourceRange getSourceRange() const;
3186
3187  static bool classof(const Stmt *T) {
3188    return T->getStmtClass() == DesignatedInitExprClass;
3189  }
3190  static bool classof(const DesignatedInitExpr *) { return true; }
3191
3192  // Iterators
3193  virtual child_iterator child_begin();
3194  virtual child_iterator child_end();
3195};
3196
3197/// \brief Represents an implicitly-generated value initialization of
3198/// an object of a given type.
3199///
3200/// Implicit value initializations occur within semantic initializer
3201/// list expressions (InitListExpr) as placeholders for subobject
3202/// initializations not explicitly specified by the user.
3203///
3204/// \see InitListExpr
3205class ImplicitValueInitExpr : public Expr {
3206public:
3207  explicit ImplicitValueInitExpr(QualType ty)
3208    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3209
3210  /// \brief Construct an empty implicit value initialization.
3211  explicit ImplicitValueInitExpr(EmptyShell Empty)
3212    : Expr(ImplicitValueInitExprClass, Empty) { }
3213
3214  static bool classof(const Stmt *T) {
3215    return T->getStmtClass() == ImplicitValueInitExprClass;
3216  }
3217  static bool classof(const ImplicitValueInitExpr *) { return true; }
3218
3219  virtual SourceRange getSourceRange() const {
3220    return SourceRange();
3221  }
3222
3223  // Iterators
3224  virtual child_iterator child_begin();
3225  virtual child_iterator child_end();
3226};
3227
3228
3229class ParenListExpr : public Expr {
3230  Stmt **Exprs;
3231  unsigned NumExprs;
3232  SourceLocation LParenLoc, RParenLoc;
3233
3234protected:
3235  virtual void DoDestroy(ASTContext& C);
3236
3237public:
3238  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3239                unsigned numexprs, SourceLocation rparenloc);
3240
3241  ~ParenListExpr() {}
3242
3243  /// \brief Build an empty paren list.
3244  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3245
3246  unsigned getNumExprs() const { return NumExprs; }
3247
3248  const Expr* getExpr(unsigned Init) const {
3249    assert(Init < getNumExprs() && "Initializer access out of range!");
3250    return cast_or_null<Expr>(Exprs[Init]);
3251  }
3252
3253  Expr* getExpr(unsigned Init) {
3254    assert(Init < getNumExprs() && "Initializer access out of range!");
3255    return cast_or_null<Expr>(Exprs[Init]);
3256  }
3257
3258  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3259
3260  SourceLocation getLParenLoc() const { return LParenLoc; }
3261  SourceLocation getRParenLoc() const { return RParenLoc; }
3262
3263  virtual SourceRange getSourceRange() const {
3264    return SourceRange(LParenLoc, RParenLoc);
3265  }
3266  static bool classof(const Stmt *T) {
3267    return T->getStmtClass() == ParenListExprClass;
3268  }
3269  static bool classof(const ParenListExpr *) { return true; }
3270
3271  // Iterators
3272  virtual child_iterator child_begin();
3273  virtual child_iterator child_end();
3274
3275  friend class PCHStmtReader;
3276  friend class PCHStmtWriter;
3277};
3278
3279
3280//===----------------------------------------------------------------------===//
3281// Clang Extensions
3282//===----------------------------------------------------------------------===//
3283
3284
3285/// ExtVectorElementExpr - This represents access to specific elements of a
3286/// vector, and may occur on the left hand side or right hand side.  For example
3287/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3288///
3289/// Note that the base may have either vector or pointer to vector type, just
3290/// like a struct field reference.
3291///
3292class ExtVectorElementExpr : public Expr {
3293  Stmt *Base;
3294  IdentifierInfo *Accessor;
3295  SourceLocation AccessorLoc;
3296public:
3297  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3298                       SourceLocation loc)
3299    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3300           base->isValueDependent()),
3301      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3302
3303  /// \brief Build an empty vector element expression.
3304  explicit ExtVectorElementExpr(EmptyShell Empty)
3305    : Expr(ExtVectorElementExprClass, Empty) { }
3306
3307  const Expr *getBase() const { return cast<Expr>(Base); }
3308  Expr *getBase() { return cast<Expr>(Base); }
3309  void setBase(Expr *E) { Base = E; }
3310
3311  IdentifierInfo &getAccessor() const { return *Accessor; }
3312  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3313
3314  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3315  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3316
3317  /// getNumElements - Get the number of components being selected.
3318  unsigned getNumElements() const;
3319
3320  /// containsDuplicateElements - Return true if any element access is
3321  /// repeated.
3322  bool containsDuplicateElements() const;
3323
3324  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3325  /// aggregate Constant of ConstantInt(s).
3326  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3327
3328  virtual SourceRange getSourceRange() const {
3329    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3330  }
3331
3332  /// isArrow - Return true if the base expression is a pointer to vector,
3333  /// return false if the base expression is a vector.
3334  bool isArrow() const;
3335
3336  static bool classof(const Stmt *T) {
3337    return T->getStmtClass() == ExtVectorElementExprClass;
3338  }
3339  static bool classof(const ExtVectorElementExpr *) { return true; }
3340
3341  // Iterators
3342  virtual child_iterator child_begin();
3343  virtual child_iterator child_end();
3344};
3345
3346
3347/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3348/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3349class BlockExpr : public Expr {
3350protected:
3351  BlockDecl *TheBlock;
3352  bool HasBlockDeclRefExprs;
3353public:
3354  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3355    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3356      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3357
3358  /// \brief Build an empty block expression.
3359  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3360
3361  const BlockDecl *getBlockDecl() const { return TheBlock; }
3362  BlockDecl *getBlockDecl() { return TheBlock; }
3363  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3364
3365  // Convenience functions for probing the underlying BlockDecl.
3366  SourceLocation getCaretLocation() const;
3367  const Stmt *getBody() const;
3368  Stmt *getBody();
3369
3370  virtual SourceRange getSourceRange() const {
3371    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3372  }
3373
3374  /// getFunctionType - Return the underlying function type for this block.
3375  const FunctionType *getFunctionType() const;
3376
3377  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3378  /// inside of the block that reference values outside the block.
3379  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3380  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3381
3382  static bool classof(const Stmt *T) {
3383    return T->getStmtClass() == BlockExprClass;
3384  }
3385  static bool classof(const BlockExpr *) { return true; }
3386
3387  // Iterators
3388  virtual child_iterator child_begin();
3389  virtual child_iterator child_end();
3390};
3391
3392/// BlockDeclRefExpr - A reference to a declared variable, function,
3393/// enum, etc.
3394class BlockDeclRefExpr : public Expr {
3395  ValueDecl *D;
3396  SourceLocation Loc;
3397  bool IsByRef : 1;
3398  bool ConstQualAdded : 1;
3399  Stmt *CopyConstructorVal;
3400public:
3401  // FIXME: Fix type/value dependence!
3402  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3403                   bool constAdded = false,
3404                   Stmt *copyConstructorVal = 0)
3405  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3406    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3407
3408  // \brief Build an empty reference to a declared variable in a
3409  // block.
3410  explicit BlockDeclRefExpr(EmptyShell Empty)
3411    : Expr(BlockDeclRefExprClass, Empty) { }
3412
3413  ValueDecl *getDecl() { return D; }
3414  const ValueDecl *getDecl() const { return D; }
3415  void setDecl(ValueDecl *VD) { D = VD; }
3416
3417  SourceLocation getLocation() const { return Loc; }
3418  void setLocation(SourceLocation L) { Loc = L; }
3419
3420  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3421
3422  bool isByRef() const { return IsByRef; }
3423  void setByRef(bool BR) { IsByRef = BR; }
3424
3425  bool isConstQualAdded() const { return ConstQualAdded; }
3426  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3427
3428  const Expr *getCopyConstructorExpr() const
3429    { return cast_or_null<Expr>(CopyConstructorVal); }
3430  Expr *getCopyConstructorExpr()
3431    { return cast_or_null<Expr>(CopyConstructorVal); }
3432  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3433
3434  static bool classof(const Stmt *T) {
3435    return T->getStmtClass() == BlockDeclRefExprClass;
3436  }
3437  static bool classof(const BlockDeclRefExpr *) { return true; }
3438
3439  // Iterators
3440  virtual child_iterator child_begin();
3441  virtual child_iterator child_end();
3442};
3443
3444}  // end namespace clang
3445
3446#endif
3447