Expr.h revision 3fa5cae9b3812cab9fab6c042c3329bb70a3d046
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <vector>
29
30namespace clang {
31  class ASTContext;
32  class APValue;
33  class Decl;
34  class IdentifierInfo;
35  class ParmVarDecl;
36  class NamedDecl;
37  class ValueDecl;
38  class BlockDecl;
39  class CXXBaseSpecifier;
40  class CXXOperatorCallExpr;
41  class CXXMemberCallExpr;
42  class TemplateArgumentLoc;
43  class TemplateArgumentListInfo;
44
45/// \brief A simple array of base specifiers.
46typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
47
48/// Expr - This represents one expression.  Note that Expr's are subclasses of
49/// Stmt.  This allows an expression to be transparently used any place a Stmt
50/// is required.
51///
52class Expr : public Stmt {
53  QualType TR;
54
55  virtual void ANCHOR(); // key function.
56protected:
57  /// TypeDependent - Whether this expression is type-dependent
58  /// (C++ [temp.dep.expr]).
59  bool TypeDependent : 1;
60
61  /// ValueDependent - Whether this expression is value-dependent
62  /// (C++ [temp.dep.constexpr]).
63  bool ValueDependent : 1;
64
65  /// ValueKind - The value classification of this expression.
66  /// Only actually used by certain subclasses.
67  unsigned ValueKind : 2;
68
69  enum { BitsRemaining = 28 };
70
71  Expr(StmtClass SC, QualType T, bool TD, bool VD)
72    : Stmt(SC), TypeDependent(TD), ValueDependent(VD), ValueKind(0) {
73    setType(T);
74  }
75
76  /// \brief Construct an empty expression.
77  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
78
79public:
80  QualType getType() const { return TR; }
81  void setType(QualType t) {
82    // In C++, the type of an expression is always adjusted so that it
83    // will not have reference type an expression will never have
84    // reference type (C++ [expr]p6). Use
85    // QualType::getNonReferenceType() to retrieve the non-reference
86    // type. Additionally, inspect Expr::isLvalue to determine whether
87    // an expression that is adjusted in this manner should be
88    // considered an lvalue.
89    assert((t.isNull() || !t->isReferenceType()) &&
90           "Expressions can't have reference type");
91
92    TR = t;
93  }
94
95  /// isValueDependent - Determines whether this expression is
96  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
97  /// array bound of "Chars" in the following example is
98  /// value-dependent.
99  /// @code
100  /// template<int Size, char (&Chars)[Size]> struct meta_string;
101  /// @endcode
102  bool isValueDependent() const { return ValueDependent; }
103
104  /// \brief Set whether this expression is value-dependent or not.
105  void setValueDependent(bool VD) { ValueDependent = VD; }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) { TypeDependent = TD; }
122
123  /// SourceLocation tokens are not useful in isolation - they are low level
124  /// value objects created/interpreted by SourceManager. We assume AST
125  /// clients will have a pointer to the respective SourceManager.
126  virtual SourceRange getSourceRange() const = 0;
127
128  /// getExprLoc - Return the preferred location for the arrow when diagnosing
129  /// a problem with a generic expression.
130  virtual SourceLocation getExprLoc() const { return getLocStart(); }
131
132  /// isUnusedResultAWarning - Return true if this immediate expression should
133  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
134  /// with location to warn on and the source range[s] to report with the
135  /// warning.
136  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
137                              SourceRange &R2, ASTContext &Ctx) const;
138
139  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
140  /// incomplete type other than void. Nonarray expressions that can be lvalues:
141  ///  - name, where name must be a variable
142  ///  - e[i]
143  ///  - (e), where e must be an lvalue
144  ///  - e.name, where e must be an lvalue
145  ///  - e->name
146  ///  - *e, the type of e cannot be a function type
147  ///  - string-constant
148  ///  - reference type [C++ [expr]]
149  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
150  ///
151  enum isLvalueResult {
152    LV_Valid,
153    LV_NotObjectType,
154    LV_IncompleteVoidType,
155    LV_DuplicateVectorComponents,
156    LV_InvalidExpression,
157    LV_MemberFunction,
158    LV_SubObjCPropertySetting,
159    LV_ClassTemporary
160  };
161  isLvalueResult isLvalue(ASTContext &Ctx) const;
162
163  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
164  /// does not have an incomplete type, does not have a const-qualified type,
165  /// and if it is a structure or union, does not have any member (including,
166  /// recursively, any member or element of all contained aggregates or unions)
167  /// with a const-qualified type.
168  ///
169  /// \param Loc [in] [out] - A source location which *may* be filled
170  /// in with the location of the expression making this a
171  /// non-modifiable lvalue, if specified.
172  enum isModifiableLvalueResult {
173    MLV_Valid,
174    MLV_NotObjectType,
175    MLV_IncompleteVoidType,
176    MLV_DuplicateVectorComponents,
177    MLV_InvalidExpression,
178    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
179    MLV_IncompleteType,
180    MLV_ConstQualified,
181    MLV_ArrayType,
182    MLV_NotBlockQualified,
183    MLV_ReadonlyProperty,
184    MLV_NoSetterProperty,
185    MLV_MemberFunction,
186    MLV_SubObjCPropertySetting,
187    MLV_ClassTemporary
188  };
189  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
190                                              SourceLocation *Loc = 0) const;
191
192  /// \brief The return type of classify(). Represents the C++0x expression
193  ///        taxonomy.
194  class Classification {
195  public:
196    /// \brief The various classification results. Most of these mean prvalue.
197    enum Kinds {
198      CL_LValue,
199      CL_XValue,
200      CL_Function, // Functions cannot be lvalues in C.
201      CL_Void, // Void cannot be an lvalue in C.
202      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
203      CL_MemberFunction, // An expression referring to a member function
204      CL_SubObjCPropertySetting,
205      CL_ClassTemporary, // A prvalue of class type
206      CL_PRValue // A prvalue for any other reason, of any other type
207    };
208    /// \brief The results of modification testing.
209    enum ModifiableType {
210      CM_Untested, // testModifiable was false.
211      CM_Modifiable,
212      CM_RValue, // Not modifiable because it's an rvalue
213      CM_Function, // Not modifiable because it's a function; C++ only
214      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
215      CM_NotBlockQualified, // Not captured in the closure
216      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
217      CM_ConstQualified,
218      CM_ArrayType,
219      CM_IncompleteType
220    };
221
222  private:
223    friend class Expr;
224
225    unsigned short Kind;
226    unsigned short Modifiable;
227
228    explicit Classification(Kinds k, ModifiableType m)
229      : Kind(k), Modifiable(m)
230    {}
231
232  public:
233    Classification() {}
234
235    Kinds getKind() const { return static_cast<Kinds>(Kind); }
236    ModifiableType getModifiable() const {
237      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
238      return static_cast<ModifiableType>(Modifiable);
239    }
240    bool isLValue() const { return Kind == CL_LValue; }
241    bool isXValue() const { return Kind == CL_XValue; }
242    bool isGLValue() const { return Kind <= CL_XValue; }
243    bool isPRValue() const { return Kind >= CL_Function; }
244    bool isRValue() const { return Kind >= CL_XValue; }
245    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
246  };
247  /// \brief Classify - Classify this expression according to the C++0x
248  ///        expression taxonomy.
249  ///
250  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
251  /// old lvalue vs rvalue. This function determines the type of expression this
252  /// is. There are three expression types:
253  /// - lvalues are classical lvalues as in C++03.
254  /// - prvalues are equivalent to rvalues in C++03.
255  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
256  ///   function returning an rvalue reference.
257  /// lvalues and xvalues are collectively referred to as glvalues, while
258  /// prvalues and xvalues together form rvalues.
259  Classification Classify(ASTContext &Ctx) const {
260    return ClassifyImpl(Ctx, 0);
261  }
262
263  /// \brief ClassifyModifiable - Classify this expression according to the
264  ///        C++0x expression taxonomy, and see if it is valid on the left side
265  ///        of an assignment.
266  ///
267  /// This function extends classify in that it also tests whether the
268  /// expression is modifiable (C99 6.3.2.1p1).
269  /// \param Loc A source location that might be filled with a relevant location
270  ///            if the expression is not modifiable.
271  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
272    return ClassifyImpl(Ctx, &Loc);
273  }
274
275private:
276  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
277
278public:
279
280  /// \brief If this expression refers to a bit-field, retrieve the
281  /// declaration of that bit-field.
282  FieldDecl *getBitField();
283
284  const FieldDecl *getBitField() const {
285    return const_cast<Expr*>(this)->getBitField();
286  }
287
288  /// \brief Returns whether this expression refers to a vector element.
289  bool refersToVectorElement() const;
290
291  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
292  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
293  /// but also int expressions which are produced by things like comparisons in
294  /// C.
295  bool isKnownToHaveBooleanValue() const;
296
297  /// isIntegerConstantExpr - Return true if this expression is a valid integer
298  /// constant expression, and, if so, return its value in Result.  If not a
299  /// valid i-c-e, return false and fill in Loc (if specified) with the location
300  /// of the invalid expression.
301  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
302                             SourceLocation *Loc = 0,
303                             bool isEvaluated = true) const;
304  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
305    llvm::APSInt X;
306    return isIntegerConstantExpr(X, Ctx, Loc);
307  }
308  /// isConstantInitializer - Returns true if this expression is a constant
309  /// initializer, which can be emitted at compile-time.
310  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
311
312  /// EvalResult is a struct with detailed info about an evaluated expression.
313  struct EvalResult {
314    /// Val - This is the value the expression can be folded to.
315    APValue Val;
316
317    /// HasSideEffects - Whether the evaluated expression has side effects.
318    /// For example, (f() && 0) can be folded, but it still has side effects.
319    bool HasSideEffects;
320
321    /// Diag - If the expression is unfoldable, then Diag contains a note
322    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
323    /// position for the error, and DiagExpr is the expression that caused
324    /// the error.
325    /// If the expression is foldable, but not an integer constant expression,
326    /// Diag contains a note diagnostic that describes why it isn't an integer
327    /// constant expression. If the expression *is* an integer constant
328    /// expression, then Diag will be zero.
329    unsigned Diag;
330    const Expr *DiagExpr;
331    SourceLocation DiagLoc;
332
333    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
334
335    // isGlobalLValue - Return true if the evaluated lvalue expression
336    // is global.
337    bool isGlobalLValue() const;
338    // hasSideEffects - Return true if the evaluated expression has
339    // side effects.
340    bool hasSideEffects() const {
341      return HasSideEffects;
342    }
343  };
344
345  /// Evaluate - Return true if this is a constant which we can fold using
346  /// any crazy technique (that has nothing to do with language standards) that
347  /// we want to.  If this function returns true, it returns the folded constant
348  /// in Result.
349  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
350
351  /// EvaluateAsBooleanCondition - Return true if this is a constant
352  /// which we we can fold and convert to a boolean condition using
353  /// any crazy technique that we want to.
354  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
355
356  /// isEvaluatable - Call Evaluate to see if this expression can be constant
357  /// folded, but discard the result.
358  bool isEvaluatable(ASTContext &Ctx) const;
359
360  /// HasSideEffects - This routine returns true for all those expressions
361  /// which must be evaluated each time and must not be optimized away
362  /// or evaluated at compile time. Example is a function call, volatile
363  /// variable read.
364  bool HasSideEffects(ASTContext &Ctx) const;
365
366  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
367  /// must be called on an expression that constant folds to an integer.
368  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
369
370  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
371  /// with link time known address.
372  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
373
374  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
375  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
376
377  /// \brief Enumeration used to describe how \c isNullPointerConstant()
378  /// should cope with value-dependent expressions.
379  enum NullPointerConstantValueDependence {
380    /// \brief Specifies that the expression should never be value-dependent.
381    NPC_NeverValueDependent = 0,
382
383    /// \brief Specifies that a value-dependent expression of integral or
384    /// dependent type should be considered a null pointer constant.
385    NPC_ValueDependentIsNull,
386
387    /// \brief Specifies that a value-dependent expression should be considered
388    /// to never be a null pointer constant.
389    NPC_ValueDependentIsNotNull
390  };
391
392  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
393  /// integer constant expression with the value zero, or if this is one that is
394  /// cast to void*.
395  bool isNullPointerConstant(ASTContext &Ctx,
396                             NullPointerConstantValueDependence NPC) const;
397
398  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
399  /// write barrier.
400  bool isOBJCGCCandidate(ASTContext &Ctx) const;
401
402  /// \brief Result type of CanThrow().
403  enum CanThrowResult {
404    CT_Cannot,
405    CT_Dependent,
406    CT_Can
407  };
408  /// \brief Test if this expression, if evaluated, might throw, according to
409  ///        the rules of C++ [expr.unary.noexcept].
410  CanThrowResult CanThrow(ASTContext &C) const;
411
412  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
413  ///  its subexpression.  If that subexpression is also a ParenExpr,
414  ///  then this method recursively returns its subexpression, and so forth.
415  ///  Otherwise, the method returns the current Expr.
416  Expr *IgnoreParens();
417
418  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
419  /// or CastExprs, returning their operand.
420  Expr *IgnoreParenCasts();
421
422  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
423  /// ParenExpr or ImplicitCastExprs, returning their operand.
424  Expr *IgnoreParenImpCasts();
425
426  const Expr *IgnoreParenImpCasts() const {
427    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
428  }
429
430  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
431  /// value (including ptr->int casts of the same size).  Strip off any
432  /// ParenExpr or CastExprs, returning their operand.
433  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
434
435  /// \brief Determine whether this expression is a default function argument.
436  ///
437  /// Default arguments are implicitly generated in the abstract syntax tree
438  /// by semantic analysis for function calls, object constructions, etc. in
439  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
440  /// this routine also looks through any implicit casts to determine whether
441  /// the expression is a default argument.
442  bool isDefaultArgument() const;
443
444  /// \brief Determine whether the result of this expression is a
445  /// temporary object of the given class type.
446  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
447
448  const Expr *IgnoreParens() const {
449    return const_cast<Expr*>(this)->IgnoreParens();
450  }
451  const Expr *IgnoreParenCasts() const {
452    return const_cast<Expr*>(this)->IgnoreParenCasts();
453  }
454  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
455    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
456  }
457
458  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
459  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
460
461  static bool classof(const Stmt *T) {
462    return T->getStmtClass() >= firstExprConstant &&
463           T->getStmtClass() <= lastExprConstant;
464  }
465  static bool classof(const Expr *) { return true; }
466};
467
468
469//===----------------------------------------------------------------------===//
470// Primary Expressions.
471//===----------------------------------------------------------------------===//
472
473/// \brief Represents the qualifier that may precede a C++ name, e.g., the
474/// "std::" in "std::sort".
475struct NameQualifier {
476  /// \brief The nested name specifier.
477  NestedNameSpecifier *NNS;
478
479  /// \brief The source range covered by the nested name specifier.
480  SourceRange Range;
481};
482
483/// \brief Represents an explicit template argument list in C++, e.g.,
484/// the "<int>" in "sort<int>".
485struct ExplicitTemplateArgumentList {
486  /// \brief The source location of the left angle bracket ('<');
487  SourceLocation LAngleLoc;
488
489  /// \brief The source location of the right angle bracket ('>');
490  SourceLocation RAngleLoc;
491
492  /// \brief The number of template arguments in TemplateArgs.
493  /// The actual template arguments (if any) are stored after the
494  /// ExplicitTemplateArgumentList structure.
495  unsigned NumTemplateArgs;
496
497  /// \brief Retrieve the template arguments
498  TemplateArgumentLoc *getTemplateArgs() {
499    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
500  }
501
502  /// \brief Retrieve the template arguments
503  const TemplateArgumentLoc *getTemplateArgs() const {
504    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
505  }
506
507  void initializeFrom(const TemplateArgumentListInfo &List);
508  void copyInto(TemplateArgumentListInfo &List) const;
509  static std::size_t sizeFor(unsigned NumTemplateArgs);
510  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
511};
512
513/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
514/// enum, etc.
515class DeclRefExpr : public Expr {
516  enum {
517    // Flag on DecoratedD that specifies when this declaration reference
518    // expression has a C++ nested-name-specifier.
519    HasQualifierFlag = 0x01,
520    // Flag on DecoratedD that specifies when this declaration reference
521    // expression has an explicit C++ template argument list.
522    HasExplicitTemplateArgumentListFlag = 0x02
523  };
524
525  // DecoratedD - The declaration that we are referencing, plus two bits to
526  // indicate whether (1) the declaration's name was explicitly qualified and
527  // (2) the declaration's name was followed by an explicit template
528  // argument list.
529  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
530
531  // Loc - The location of the declaration name itself.
532  SourceLocation Loc;
533
534  /// DNLoc - Provides source/type location info for the
535  /// declaration name embedded in DecoratedD.
536  DeclarationNameLoc DNLoc;
537
538  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
539  NameQualifier *getNameQualifier() {
540    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
541      return 0;
542
543    return reinterpret_cast<NameQualifier *> (this + 1);
544  }
545
546  /// \brief Retrieve the qualifier that preceded the member name, if any.
547  const NameQualifier *getNameQualifier() const {
548    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
549  }
550
551  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
552              ValueDecl *D, SourceLocation NameLoc,
553              const TemplateArgumentListInfo *TemplateArgs,
554              QualType T);
555
556  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
557              ValueDecl *D, const DeclarationNameInfo &NameInfo,
558              const TemplateArgumentListInfo *TemplateArgs,
559              QualType T);
560
561  /// \brief Construct an empty declaration reference expression.
562  explicit DeclRefExpr(EmptyShell Empty)
563    : Expr(DeclRefExprClass, Empty) { }
564
565  /// \brief Computes the type- and value-dependence flags for this
566  /// declaration reference expression.
567  void computeDependence();
568
569public:
570  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
571    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
572    computeDependence();
573  }
574
575  static DeclRefExpr *Create(ASTContext &Context,
576                             NestedNameSpecifier *Qualifier,
577                             SourceRange QualifierRange,
578                             ValueDecl *D,
579                             SourceLocation NameLoc,
580                             QualType T,
581                             const TemplateArgumentListInfo *TemplateArgs = 0);
582
583  static DeclRefExpr *Create(ASTContext &Context,
584                             NestedNameSpecifier *Qualifier,
585                             SourceRange QualifierRange,
586                             ValueDecl *D,
587                             const DeclarationNameInfo &NameInfo,
588                             QualType T,
589                             const TemplateArgumentListInfo *TemplateArgs = 0);
590
591  /// \brief Construct an empty declaration reference expression.
592  static DeclRefExpr *CreateEmpty(ASTContext &Context,
593                                  bool HasQualifier, unsigned NumTemplateArgs);
594
595  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
596  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
597  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
598
599  DeclarationNameInfo getNameInfo() const {
600    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
601  }
602
603  SourceLocation getLocation() const { return Loc; }
604  void setLocation(SourceLocation L) { Loc = L; }
605  virtual SourceRange getSourceRange() const;
606
607  /// \brief Determine whether this declaration reference was preceded by a
608  /// C++ nested-name-specifier, e.g., \c N::foo.
609  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
610
611  /// \brief If the name was qualified, retrieves the source range of
612  /// the nested-name-specifier that precedes the name. Otherwise,
613  /// returns an empty source range.
614  SourceRange getQualifierRange() const {
615    if (!hasQualifier())
616      return SourceRange();
617
618    return getNameQualifier()->Range;
619  }
620
621  /// \brief If the name was qualified, retrieves the nested-name-specifier
622  /// that precedes the name. Otherwise, returns NULL.
623  NestedNameSpecifier *getQualifier() const {
624    if (!hasQualifier())
625      return 0;
626
627    return getNameQualifier()->NNS;
628  }
629
630  bool hasExplicitTemplateArgs() const {
631    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
632  }
633
634  /// \brief Retrieve the explicit template argument list that followed the
635  /// member template name.
636  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
637    assert(hasExplicitTemplateArgs());
638
639    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
640      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
641
642    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
643                                                      getNameQualifier() + 1);
644  }
645
646  /// \brief Retrieve the explicit template argument list that followed the
647  /// member template name.
648  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
649    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
650  }
651
652  /// \brief Retrieves the optional explicit template arguments.
653  /// This points to the same data as getExplicitTemplateArgs(), but
654  /// returns null if there are no explicit template arguments.
655  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
656    if (!hasExplicitTemplateArgs()) return 0;
657    return &getExplicitTemplateArgs();
658  }
659
660  /// \brief Copies the template arguments (if present) into the given
661  /// structure.
662  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
663    if (hasExplicitTemplateArgs())
664      getExplicitTemplateArgs().copyInto(List);
665  }
666
667  /// \brief Retrieve the location of the left angle bracket following the
668  /// member name ('<'), if any.
669  SourceLocation getLAngleLoc() const {
670    if (!hasExplicitTemplateArgs())
671      return SourceLocation();
672
673    return getExplicitTemplateArgs().LAngleLoc;
674  }
675
676  /// \brief Retrieve the template arguments provided as part of this
677  /// template-id.
678  const TemplateArgumentLoc *getTemplateArgs() const {
679    if (!hasExplicitTemplateArgs())
680      return 0;
681
682    return getExplicitTemplateArgs().getTemplateArgs();
683  }
684
685  /// \brief Retrieve the number of template arguments provided as part of this
686  /// template-id.
687  unsigned getNumTemplateArgs() const {
688    if (!hasExplicitTemplateArgs())
689      return 0;
690
691    return getExplicitTemplateArgs().NumTemplateArgs;
692  }
693
694  /// \brief Retrieve the location of the right angle bracket following the
695  /// template arguments ('>').
696  SourceLocation getRAngleLoc() const {
697    if (!hasExplicitTemplateArgs())
698      return SourceLocation();
699
700    return getExplicitTemplateArgs().RAngleLoc;
701  }
702
703  static bool classof(const Stmt *T) {
704    return T->getStmtClass() == DeclRefExprClass;
705  }
706  static bool classof(const DeclRefExpr *) { return true; }
707
708  // Iterators
709  virtual child_iterator child_begin();
710  virtual child_iterator child_end();
711
712  friend class ASTStmtReader;
713  friend class ASTStmtWriter;
714};
715
716/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
717class PredefinedExpr : public Expr {
718public:
719  enum IdentType {
720    Func,
721    Function,
722    PrettyFunction,
723    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
724    /// 'virtual' keyword is omitted for virtual member functions.
725    PrettyFunctionNoVirtual
726  };
727
728private:
729  SourceLocation Loc;
730  IdentType Type;
731public:
732  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
733    : Expr(PredefinedExprClass, type, type->isDependentType(),
734           type->isDependentType()), Loc(l), Type(IT) {}
735
736  /// \brief Construct an empty predefined expression.
737  explicit PredefinedExpr(EmptyShell Empty)
738    : Expr(PredefinedExprClass, Empty) { }
739
740  IdentType getIdentType() const { return Type; }
741  void setIdentType(IdentType IT) { Type = IT; }
742
743  SourceLocation getLocation() const { return Loc; }
744  void setLocation(SourceLocation L) { Loc = L; }
745
746  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
747
748  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
749
750  static bool classof(const Stmt *T) {
751    return T->getStmtClass() == PredefinedExprClass;
752  }
753  static bool classof(const PredefinedExpr *) { return true; }
754
755  // Iterators
756  virtual child_iterator child_begin();
757  virtual child_iterator child_end();
758};
759
760/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
761/// leaking memory.
762///
763/// For large floats/integers, APFloat/APInt will allocate memory from the heap
764/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
765/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
766/// the APFloat/APInt values will never get freed. APNumericStorage uses
767/// ASTContext's allocator for memory allocation.
768class APNumericStorage {
769  unsigned BitWidth;
770  union {
771    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
772    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
773  };
774
775  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
776
777  APNumericStorage(const APNumericStorage&); // do not implement
778  APNumericStorage& operator=(const APNumericStorage&); // do not implement
779
780protected:
781  APNumericStorage() : BitWidth(0), VAL(0) { }
782
783  llvm::APInt getIntValue() const {
784    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
785    if (NumWords > 1)
786      return llvm::APInt(BitWidth, NumWords, pVal);
787    else
788      return llvm::APInt(BitWidth, VAL);
789  }
790  void setIntValue(ASTContext &C, const llvm::APInt &Val);
791};
792
793class APIntStorage : public APNumericStorage {
794public:
795  llvm::APInt getValue() const { return getIntValue(); }
796  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
797};
798
799class APFloatStorage : public APNumericStorage {
800public:
801  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
802  void setValue(ASTContext &C, const llvm::APFloat &Val) {
803    setIntValue(C, Val.bitcastToAPInt());
804  }
805};
806
807class IntegerLiteral : public Expr {
808  APIntStorage Num;
809  SourceLocation Loc;
810
811  /// \brief Construct an empty integer literal.
812  explicit IntegerLiteral(EmptyShell Empty)
813    : Expr(IntegerLiteralClass, Empty) { }
814
815public:
816  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
817  // or UnsignedLongLongTy
818  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
819                 QualType type, SourceLocation l)
820    : Expr(IntegerLiteralClass, type, false, false), Loc(l) {
821    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
822    setValue(C, V);
823  }
824
825  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
826  // or UnsignedLongLongTy
827  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
828                                QualType type, SourceLocation l);
829  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
830
831  llvm::APInt getValue() const { return Num.getValue(); }
832  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
833
834  /// \brief Retrieve the location of the literal.
835  SourceLocation getLocation() const { return Loc; }
836
837  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
838  void setLocation(SourceLocation Location) { Loc = Location; }
839
840  static bool classof(const Stmt *T) {
841    return T->getStmtClass() == IntegerLiteralClass;
842  }
843  static bool classof(const IntegerLiteral *) { return true; }
844
845  // Iterators
846  virtual child_iterator child_begin();
847  virtual child_iterator child_end();
848};
849
850class CharacterLiteral : public Expr {
851  unsigned Value;
852  SourceLocation Loc;
853  bool IsWide;
854public:
855  // type should be IntTy
856  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
857    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
858      IsWide(iswide) {
859  }
860
861  /// \brief Construct an empty character literal.
862  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
863
864  SourceLocation getLocation() const { return Loc; }
865  bool isWide() const { return IsWide; }
866
867  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
868
869  unsigned getValue() const { return Value; }
870
871  void setLocation(SourceLocation Location) { Loc = Location; }
872  void setWide(bool W) { IsWide = W; }
873  void setValue(unsigned Val) { Value = Val; }
874
875  static bool classof(const Stmt *T) {
876    return T->getStmtClass() == CharacterLiteralClass;
877  }
878  static bool classof(const CharacterLiteral *) { return true; }
879
880  // Iterators
881  virtual child_iterator child_begin();
882  virtual child_iterator child_end();
883};
884
885class FloatingLiteral : public Expr {
886  APFloatStorage Num;
887  bool IsExact : 1;
888  SourceLocation Loc;
889
890  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
891                  QualType Type, SourceLocation L)
892    : Expr(FloatingLiteralClass, Type, false, false),
893      IsExact(isexact), Loc(L) {
894    setValue(C, V);
895  }
896
897  /// \brief Construct an empty floating-point literal.
898  explicit FloatingLiteral(EmptyShell Empty)
899    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
900
901public:
902  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
903                                 bool isexact, QualType Type, SourceLocation L);
904  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
905
906  llvm::APFloat getValue() const { return Num.getValue(); }
907  void setValue(ASTContext &C, const llvm::APFloat &Val) {
908    Num.setValue(C, Val);
909  }
910
911  bool isExact() const { return IsExact; }
912  void setExact(bool E) { IsExact = E; }
913
914  /// getValueAsApproximateDouble - This returns the value as an inaccurate
915  /// double.  Note that this may cause loss of precision, but is useful for
916  /// debugging dumps, etc.
917  double getValueAsApproximateDouble() const;
918
919  SourceLocation getLocation() const { return Loc; }
920  void setLocation(SourceLocation L) { Loc = L; }
921
922  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
923
924  static bool classof(const Stmt *T) {
925    return T->getStmtClass() == FloatingLiteralClass;
926  }
927  static bool classof(const FloatingLiteral *) { return true; }
928
929  // Iterators
930  virtual child_iterator child_begin();
931  virtual child_iterator child_end();
932};
933
934/// ImaginaryLiteral - We support imaginary integer and floating point literals,
935/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
936/// IntegerLiteral classes.  Instances of this class always have a Complex type
937/// whose element type matches the subexpression.
938///
939class ImaginaryLiteral : public Expr {
940  Stmt *Val;
941public:
942  ImaginaryLiteral(Expr *val, QualType Ty)
943    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
944
945  /// \brief Build an empty imaginary literal.
946  explicit ImaginaryLiteral(EmptyShell Empty)
947    : Expr(ImaginaryLiteralClass, Empty) { }
948
949  const Expr *getSubExpr() const { return cast<Expr>(Val); }
950  Expr *getSubExpr() { return cast<Expr>(Val); }
951  void setSubExpr(Expr *E) { Val = E; }
952
953  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
954  static bool classof(const Stmt *T) {
955    return T->getStmtClass() == ImaginaryLiteralClass;
956  }
957  static bool classof(const ImaginaryLiteral *) { return true; }
958
959  // Iterators
960  virtual child_iterator child_begin();
961  virtual child_iterator child_end();
962};
963
964/// StringLiteral - This represents a string literal expression, e.g. "foo"
965/// or L"bar" (wide strings).  The actual string is returned by getStrData()
966/// is NOT null-terminated, and the length of the string is determined by
967/// calling getByteLength().  The C type for a string is always a
968/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
969/// not.
970///
971/// Note that strings in C can be formed by concatenation of multiple string
972/// literal pptokens in translation phase #6.  This keeps track of the locations
973/// of each of these pieces.
974///
975/// Strings in C can also be truncated and extended by assigning into arrays,
976/// e.g. with constructs like:
977///   char X[2] = "foobar";
978/// In this case, getByteLength() will return 6, but the string literal will
979/// have type "char[2]".
980class StringLiteral : public Expr {
981  const char *StrData;
982  unsigned ByteLength;
983  bool IsWide;
984  unsigned NumConcatenated;
985  SourceLocation TokLocs[1];
986
987  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
988
989public:
990  /// This is the "fully general" constructor that allows representation of
991  /// strings formed from multiple concatenated tokens.
992  static StringLiteral *Create(ASTContext &C, const char *StrData,
993                               unsigned ByteLength, bool Wide, QualType Ty,
994                               const SourceLocation *Loc, unsigned NumStrs);
995
996  /// Simple constructor for string literals made from one token.
997  static StringLiteral *Create(ASTContext &C, const char *StrData,
998                               unsigned ByteLength,
999                               bool Wide, QualType Ty, SourceLocation Loc) {
1000    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1001  }
1002
1003  /// \brief Construct an empty string literal.
1004  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1005
1006  llvm::StringRef getString() const {
1007    return llvm::StringRef(StrData, ByteLength);
1008  }
1009
1010  unsigned getByteLength() const { return ByteLength; }
1011
1012  /// \brief Sets the string data to the given string data.
1013  void setString(ASTContext &C, llvm::StringRef Str);
1014
1015  bool isWide() const { return IsWide; }
1016  void setWide(bool W) { IsWide = W; }
1017
1018  bool containsNonAsciiOrNull() const {
1019    llvm::StringRef Str = getString();
1020    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1021      if (!isascii(Str[i]) || !Str[i])
1022        return true;
1023    return false;
1024  }
1025  /// getNumConcatenated - Get the number of string literal tokens that were
1026  /// concatenated in translation phase #6 to form this string literal.
1027  unsigned getNumConcatenated() const { return NumConcatenated; }
1028
1029  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1030    assert(TokNum < NumConcatenated && "Invalid tok number");
1031    return TokLocs[TokNum];
1032  }
1033  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1034    assert(TokNum < NumConcatenated && "Invalid tok number");
1035    TokLocs[TokNum] = L;
1036  }
1037
1038  typedef const SourceLocation *tokloc_iterator;
1039  tokloc_iterator tokloc_begin() const { return TokLocs; }
1040  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1041
1042  virtual SourceRange getSourceRange() const {
1043    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1044  }
1045  static bool classof(const Stmt *T) {
1046    return T->getStmtClass() == StringLiteralClass;
1047  }
1048  static bool classof(const StringLiteral *) { return true; }
1049
1050  // Iterators
1051  virtual child_iterator child_begin();
1052  virtual child_iterator child_end();
1053};
1054
1055/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1056/// AST node is only formed if full location information is requested.
1057class ParenExpr : public Expr {
1058  SourceLocation L, R;
1059  Stmt *Val;
1060public:
1061  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1062    : Expr(ParenExprClass, val->getType(),
1063           val->isTypeDependent(), val->isValueDependent()),
1064      L(l), R(r), Val(val) {}
1065
1066  /// \brief Construct an empty parenthesized expression.
1067  explicit ParenExpr(EmptyShell Empty)
1068    : Expr(ParenExprClass, Empty) { }
1069
1070  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1071  Expr *getSubExpr() { return cast<Expr>(Val); }
1072  void setSubExpr(Expr *E) { Val = E; }
1073
1074  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1075
1076  /// \brief Get the location of the left parentheses '('.
1077  SourceLocation getLParen() const { return L; }
1078  void setLParen(SourceLocation Loc) { L = Loc; }
1079
1080  /// \brief Get the location of the right parentheses ')'.
1081  SourceLocation getRParen() const { return R; }
1082  void setRParen(SourceLocation Loc) { R = Loc; }
1083
1084  static bool classof(const Stmt *T) {
1085    return T->getStmtClass() == ParenExprClass;
1086  }
1087  static bool classof(const ParenExpr *) { return true; }
1088
1089  // Iterators
1090  virtual child_iterator child_begin();
1091  virtual child_iterator child_end();
1092};
1093
1094
1095/// UnaryOperator - This represents the unary-expression's (except sizeof and
1096/// alignof), the postinc/postdec operators from postfix-expression, and various
1097/// extensions.
1098///
1099/// Notes on various nodes:
1100///
1101/// Real/Imag - These return the real/imag part of a complex operand.  If
1102///   applied to a non-complex value, the former returns its operand and the
1103///   later returns zero in the type of the operand.
1104///
1105class UnaryOperator : public Expr {
1106public:
1107  typedef UnaryOperatorKind Opcode;
1108
1109private:
1110  unsigned Opc : 5;
1111  SourceLocation Loc;
1112  Stmt *Val;
1113public:
1114
1115  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1116    : Expr(UnaryOperatorClass, type,
1117           input->isTypeDependent() || type->isDependentType(),
1118           input->isValueDependent()),
1119      Opc(opc), Loc(l), Val(input) {}
1120
1121  /// \brief Build an empty unary operator.
1122  explicit UnaryOperator(EmptyShell Empty)
1123    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1124
1125  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1126  void setOpcode(Opcode O) { Opc = O; }
1127
1128  Expr *getSubExpr() const { return cast<Expr>(Val); }
1129  void setSubExpr(Expr *E) { Val = E; }
1130
1131  /// getOperatorLoc - Return the location of the operator.
1132  SourceLocation getOperatorLoc() const { return Loc; }
1133  void setOperatorLoc(SourceLocation L) { Loc = L; }
1134
1135  /// isPostfix - Return true if this is a postfix operation, like x++.
1136  static bool isPostfix(Opcode Op) {
1137    return Op == UO_PostInc || Op == UO_PostDec;
1138  }
1139
1140  /// isPostfix - Return true if this is a prefix operation, like --x.
1141  static bool isPrefix(Opcode Op) {
1142    return Op == UO_PreInc || Op == UO_PreDec;
1143  }
1144
1145  bool isPrefix() const { return isPrefix(getOpcode()); }
1146  bool isPostfix() const { return isPostfix(getOpcode()); }
1147  bool isIncrementOp() const {
1148    return Opc == UO_PreInc || Opc == UO_PostInc;
1149  }
1150  bool isIncrementDecrementOp() const {
1151    return Opc <= UO_PreDec;
1152  }
1153  static bool isArithmeticOp(Opcode Op) {
1154    return Op >= UO_Plus && Op <= UO_LNot;
1155  }
1156  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1157
1158  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1159  /// corresponds to, e.g. "sizeof" or "[pre]++"
1160  static const char *getOpcodeStr(Opcode Op);
1161
1162  /// \brief Retrieve the unary opcode that corresponds to the given
1163  /// overloaded operator.
1164  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1165
1166  /// \brief Retrieve the overloaded operator kind that corresponds to
1167  /// the given unary opcode.
1168  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1169
1170  virtual SourceRange getSourceRange() const {
1171    if (isPostfix())
1172      return SourceRange(Val->getLocStart(), Loc);
1173    else
1174      return SourceRange(Loc, Val->getLocEnd());
1175  }
1176  virtual SourceLocation getExprLoc() const { return Loc; }
1177
1178  static bool classof(const Stmt *T) {
1179    return T->getStmtClass() == UnaryOperatorClass;
1180  }
1181  static bool classof(const UnaryOperator *) { return true; }
1182
1183  // Iterators
1184  virtual child_iterator child_begin();
1185  virtual child_iterator child_end();
1186};
1187
1188/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1189/// offsetof(record-type, member-designator). For example, given:
1190/// @code
1191/// struct S {
1192///   float f;
1193///   double d;
1194/// };
1195/// struct T {
1196///   int i;
1197///   struct S s[10];
1198/// };
1199/// @endcode
1200/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1201
1202class OffsetOfExpr : public Expr {
1203public:
1204  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1205  class OffsetOfNode {
1206  public:
1207    /// \brief The kind of offsetof node we have.
1208    enum Kind {
1209      /// \brief An index into an array.
1210      Array = 0x00,
1211      /// \brief A field.
1212      Field = 0x01,
1213      /// \brief A field in a dependent type, known only by its name.
1214      Identifier = 0x02,
1215      /// \brief An implicit indirection through a C++ base class, when the
1216      /// field found is in a base class.
1217      Base = 0x03
1218    };
1219
1220  private:
1221    enum { MaskBits = 2, Mask = 0x03 };
1222
1223    /// \brief The source range that covers this part of the designator.
1224    SourceRange Range;
1225
1226    /// \brief The data describing the designator, which comes in three
1227    /// different forms, depending on the lower two bits.
1228    ///   - An unsigned index into the array of Expr*'s stored after this node
1229    ///     in memory, for [constant-expression] designators.
1230    ///   - A FieldDecl*, for references to a known field.
1231    ///   - An IdentifierInfo*, for references to a field with a given name
1232    ///     when the class type is dependent.
1233    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1234    ///     base class.
1235    uintptr_t Data;
1236
1237  public:
1238    /// \brief Create an offsetof node that refers to an array element.
1239    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1240                 SourceLocation RBracketLoc)
1241      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1242
1243    /// \brief Create an offsetof node that refers to a field.
1244    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1245                 SourceLocation NameLoc)
1246      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1247        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1248
1249    /// \brief Create an offsetof node that refers to an identifier.
1250    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1251                 SourceLocation NameLoc)
1252      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1253        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1254
1255    /// \brief Create an offsetof node that refers into a C++ base class.
1256    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1257      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1258
1259    /// \brief Determine what kind of offsetof node this is.
1260    Kind getKind() const {
1261      return static_cast<Kind>(Data & Mask);
1262    }
1263
1264    /// \brief For an array element node, returns the index into the array
1265    /// of expressions.
1266    unsigned getArrayExprIndex() const {
1267      assert(getKind() == Array);
1268      return Data >> 2;
1269    }
1270
1271    /// \brief For a field offsetof node, returns the field.
1272    FieldDecl *getField() const {
1273      assert(getKind() == Field);
1274      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1275    }
1276
1277    /// \brief For a field or identifier offsetof node, returns the name of
1278    /// the field.
1279    IdentifierInfo *getFieldName() const;
1280
1281    /// \brief For a base class node, returns the base specifier.
1282    CXXBaseSpecifier *getBase() const {
1283      assert(getKind() == Base);
1284      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1285    }
1286
1287    /// \brief Retrieve the source range that covers this offsetof node.
1288    ///
1289    /// For an array element node, the source range contains the locations of
1290    /// the square brackets. For a field or identifier node, the source range
1291    /// contains the location of the period (if there is one) and the
1292    /// identifier.
1293    SourceRange getRange() const { return Range; }
1294  };
1295
1296private:
1297
1298  SourceLocation OperatorLoc, RParenLoc;
1299  // Base type;
1300  TypeSourceInfo *TSInfo;
1301  // Number of sub-components (i.e. instances of OffsetOfNode).
1302  unsigned NumComps;
1303  // Number of sub-expressions (i.e. array subscript expressions).
1304  unsigned NumExprs;
1305
1306  OffsetOfExpr(ASTContext &C, QualType type,
1307               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1308               OffsetOfNode* compsPtr, unsigned numComps,
1309               Expr** exprsPtr, unsigned numExprs,
1310               SourceLocation RParenLoc);
1311
1312  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1313    : Expr(OffsetOfExprClass, EmptyShell()),
1314      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1315
1316public:
1317
1318  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1319                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1320                              OffsetOfNode* compsPtr, unsigned numComps,
1321                              Expr** exprsPtr, unsigned numExprs,
1322                              SourceLocation RParenLoc);
1323
1324  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1325                                   unsigned NumComps, unsigned NumExprs);
1326
1327  /// getOperatorLoc - Return the location of the operator.
1328  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1329  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1330
1331  /// \brief Return the location of the right parentheses.
1332  SourceLocation getRParenLoc() const { return RParenLoc; }
1333  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1334
1335  TypeSourceInfo *getTypeSourceInfo() const {
1336    return TSInfo;
1337  }
1338  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1339    TSInfo = tsi;
1340  }
1341
1342  const OffsetOfNode &getComponent(unsigned Idx) {
1343    assert(Idx < NumComps && "Subscript out of range");
1344    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1345  }
1346
1347  void setComponent(unsigned Idx, OffsetOfNode ON) {
1348    assert(Idx < NumComps && "Subscript out of range");
1349    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1350  }
1351
1352  unsigned getNumComponents() const {
1353    return NumComps;
1354  }
1355
1356  Expr* getIndexExpr(unsigned Idx) {
1357    assert(Idx < NumExprs && "Subscript out of range");
1358    return reinterpret_cast<Expr **>(
1359                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1360  }
1361
1362  void setIndexExpr(unsigned Idx, Expr* E) {
1363    assert(Idx < NumComps && "Subscript out of range");
1364    reinterpret_cast<Expr **>(
1365                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1366  }
1367
1368  unsigned getNumExpressions() const {
1369    return NumExprs;
1370  }
1371
1372  virtual SourceRange getSourceRange() const {
1373    return SourceRange(OperatorLoc, RParenLoc);
1374  }
1375
1376  static bool classof(const Stmt *T) {
1377    return T->getStmtClass() == OffsetOfExprClass;
1378  }
1379
1380  static bool classof(const OffsetOfExpr *) { return true; }
1381
1382  // Iterators
1383  virtual child_iterator child_begin();
1384  virtual child_iterator child_end();
1385};
1386
1387/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1388/// types and expressions.
1389class SizeOfAlignOfExpr : public Expr {
1390  bool isSizeof : 1;  // true if sizeof, false if alignof.
1391  bool isType : 1;    // true if operand is a type, false if an expression
1392  union {
1393    TypeSourceInfo *Ty;
1394    Stmt *Ex;
1395  } Argument;
1396  SourceLocation OpLoc, RParenLoc;
1397
1398public:
1399  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1400                    QualType resultType, SourceLocation op,
1401                    SourceLocation rp) :
1402      Expr(SizeOfAlignOfExprClass, resultType,
1403           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1404           // Value-dependent if the argument is type-dependent.
1405           TInfo->getType()->isDependentType()),
1406      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1407    Argument.Ty = TInfo;
1408  }
1409
1410  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1411                    QualType resultType, SourceLocation op,
1412                    SourceLocation rp) :
1413      Expr(SizeOfAlignOfExprClass, resultType,
1414           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1415           // Value-dependent if the argument is type-dependent.
1416           E->isTypeDependent()),
1417      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1418    Argument.Ex = E;
1419  }
1420
1421  /// \brief Construct an empty sizeof/alignof expression.
1422  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1423    : Expr(SizeOfAlignOfExprClass, Empty) { }
1424
1425  bool isSizeOf() const { return isSizeof; }
1426  void setSizeof(bool S) { isSizeof = S; }
1427
1428  bool isArgumentType() const { return isType; }
1429  QualType getArgumentType() const {
1430    return getArgumentTypeInfo()->getType();
1431  }
1432  TypeSourceInfo *getArgumentTypeInfo() const {
1433    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1434    return Argument.Ty;
1435  }
1436  Expr *getArgumentExpr() {
1437    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1438    return static_cast<Expr*>(Argument.Ex);
1439  }
1440  const Expr *getArgumentExpr() const {
1441    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1442  }
1443
1444  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1445  void setArgument(TypeSourceInfo *TInfo) {
1446    Argument.Ty = TInfo;
1447    isType = true;
1448  }
1449
1450  /// Gets the argument type, or the type of the argument expression, whichever
1451  /// is appropriate.
1452  QualType getTypeOfArgument() const {
1453    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1454  }
1455
1456  SourceLocation getOperatorLoc() const { return OpLoc; }
1457  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1458
1459  SourceLocation getRParenLoc() const { return RParenLoc; }
1460  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1461
1462  virtual SourceRange getSourceRange() const {
1463    return SourceRange(OpLoc, RParenLoc);
1464  }
1465
1466  static bool classof(const Stmt *T) {
1467    return T->getStmtClass() == SizeOfAlignOfExprClass;
1468  }
1469  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1470
1471  // Iterators
1472  virtual child_iterator child_begin();
1473  virtual child_iterator child_end();
1474};
1475
1476//===----------------------------------------------------------------------===//
1477// Postfix Operators.
1478//===----------------------------------------------------------------------===//
1479
1480/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1481class ArraySubscriptExpr : public Expr {
1482  enum { LHS, RHS, END_EXPR=2 };
1483  Stmt* SubExprs[END_EXPR];
1484  SourceLocation RBracketLoc;
1485public:
1486  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1487                     SourceLocation rbracketloc)
1488  : Expr(ArraySubscriptExprClass, t,
1489         lhs->isTypeDependent() || rhs->isTypeDependent(),
1490         lhs->isValueDependent() || rhs->isValueDependent()),
1491    RBracketLoc(rbracketloc) {
1492    SubExprs[LHS] = lhs;
1493    SubExprs[RHS] = rhs;
1494  }
1495
1496  /// \brief Create an empty array subscript expression.
1497  explicit ArraySubscriptExpr(EmptyShell Shell)
1498    : Expr(ArraySubscriptExprClass, Shell) { }
1499
1500  /// An array access can be written A[4] or 4[A] (both are equivalent).
1501  /// - getBase() and getIdx() always present the normalized view: A[4].
1502  ///    In this case getBase() returns "A" and getIdx() returns "4".
1503  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1504  ///    4[A] getLHS() returns "4".
1505  /// Note: Because vector element access is also written A[4] we must
1506  /// predicate the format conversion in getBase and getIdx only on the
1507  /// the type of the RHS, as it is possible for the LHS to be a vector of
1508  /// integer type
1509  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1510  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1511  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1512
1513  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1514  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1515  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1516
1517  Expr *getBase() {
1518    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1519  }
1520
1521  const Expr *getBase() const {
1522    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1523  }
1524
1525  Expr *getIdx() {
1526    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1527  }
1528
1529  const Expr *getIdx() const {
1530    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1531  }
1532
1533  virtual SourceRange getSourceRange() const {
1534    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1535  }
1536
1537  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1538  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1539
1540  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1541
1542  static bool classof(const Stmt *T) {
1543    return T->getStmtClass() == ArraySubscriptExprClass;
1544  }
1545  static bool classof(const ArraySubscriptExpr *) { return true; }
1546
1547  // Iterators
1548  virtual child_iterator child_begin();
1549  virtual child_iterator child_end();
1550};
1551
1552
1553/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1554/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1555/// while its subclasses may represent alternative syntax that (semantically)
1556/// results in a function call. For example, CXXOperatorCallExpr is
1557/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1558/// "str1 + str2" to resolve to a function call.
1559class CallExpr : public Expr {
1560  enum { FN=0, ARGS_START=1 };
1561  Stmt **SubExprs;
1562  unsigned NumArgs;
1563  SourceLocation RParenLoc;
1564
1565protected:
1566  // This version of the constructor is for derived classes.
1567  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1568           QualType t, SourceLocation rparenloc);
1569
1570public:
1571  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1572           SourceLocation rparenloc);
1573
1574  /// \brief Build an empty call expression.
1575  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1576
1577  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1578  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1579  void setCallee(Expr *F) { SubExprs[FN] = F; }
1580
1581  Decl *getCalleeDecl();
1582  const Decl *getCalleeDecl() const {
1583    return const_cast<CallExpr*>(this)->getCalleeDecl();
1584  }
1585
1586  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1587  FunctionDecl *getDirectCallee();
1588  const FunctionDecl *getDirectCallee() const {
1589    return const_cast<CallExpr*>(this)->getDirectCallee();
1590  }
1591
1592  /// getNumArgs - Return the number of actual arguments to this call.
1593  ///
1594  unsigned getNumArgs() const { return NumArgs; }
1595
1596  /// getArg - Return the specified argument.
1597  Expr *getArg(unsigned Arg) {
1598    assert(Arg < NumArgs && "Arg access out of range!");
1599    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1600  }
1601  const Expr *getArg(unsigned Arg) const {
1602    assert(Arg < NumArgs && "Arg access out of range!");
1603    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1604  }
1605
1606  /// setArg - Set the specified argument.
1607  void setArg(unsigned Arg, Expr *ArgExpr) {
1608    assert(Arg < NumArgs && "Arg access out of range!");
1609    SubExprs[Arg+ARGS_START] = ArgExpr;
1610  }
1611
1612  /// setNumArgs - This changes the number of arguments present in this call.
1613  /// Any orphaned expressions are deleted by this, and any new operands are set
1614  /// to null.
1615  void setNumArgs(ASTContext& C, unsigned NumArgs);
1616
1617  typedef ExprIterator arg_iterator;
1618  typedef ConstExprIterator const_arg_iterator;
1619
1620  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1621  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1622  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1623  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1624
1625  /// getNumCommas - Return the number of commas that must have been present in
1626  /// this function call.
1627  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1628
1629  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1630  /// not, return 0.
1631  unsigned isBuiltinCall(ASTContext &Context) const;
1632
1633  /// getCallReturnType - Get the return type of the call expr. This is not
1634  /// always the type of the expr itself, if the return type is a reference
1635  /// type.
1636  QualType getCallReturnType() const;
1637
1638  SourceLocation getRParenLoc() const { return RParenLoc; }
1639  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1640
1641  virtual SourceRange getSourceRange() const {
1642    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1643  }
1644
1645  static bool classof(const Stmt *T) {
1646    return T->getStmtClass() >= firstCallExprConstant &&
1647           T->getStmtClass() <= lastCallExprConstant;
1648  }
1649  static bool classof(const CallExpr *) { return true; }
1650
1651  // Iterators
1652  virtual child_iterator child_begin();
1653  virtual child_iterator child_end();
1654};
1655
1656/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1657///
1658class MemberExpr : public Expr {
1659  /// Extra data stored in some member expressions.
1660  struct MemberNameQualifier : public NameQualifier {
1661    DeclAccessPair FoundDecl;
1662  };
1663
1664  /// Base - the expression for the base pointer or structure references.  In
1665  /// X.F, this is "X".
1666  Stmt *Base;
1667
1668  /// MemberDecl - This is the decl being referenced by the field/member name.
1669  /// In X.F, this is the decl referenced by F.
1670  ValueDecl *MemberDecl;
1671
1672  /// MemberLoc - This is the location of the member name.
1673  SourceLocation MemberLoc;
1674
1675  /// MemberDNLoc - Provides source/type location info for the
1676  /// declaration name embedded in MemberDecl.
1677  DeclarationNameLoc MemberDNLoc;
1678
1679  /// IsArrow - True if this is "X->F", false if this is "X.F".
1680  bool IsArrow : 1;
1681
1682  /// \brief True if this member expression used a nested-name-specifier to
1683  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1684  /// declaration.  When true, a MemberNameQualifier
1685  /// structure is allocated immediately after the MemberExpr.
1686  bool HasQualifierOrFoundDecl : 1;
1687
1688  /// \brief True if this member expression specified a template argument list
1689  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1690  /// structure (and its TemplateArguments) are allocated immediately after
1691  /// the MemberExpr or, if the member expression also has a qualifier, after
1692  /// the MemberNameQualifier structure.
1693  bool HasExplicitTemplateArgumentList : 1;
1694
1695  /// \brief Retrieve the qualifier that preceded the member name, if any.
1696  MemberNameQualifier *getMemberQualifier() {
1697    assert(HasQualifierOrFoundDecl);
1698    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1699  }
1700
1701  /// \brief Retrieve the qualifier that preceded the member name, if any.
1702  const MemberNameQualifier *getMemberQualifier() const {
1703    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1704  }
1705
1706public:
1707  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1708             const DeclarationNameInfo &NameInfo, QualType ty)
1709    : Expr(MemberExprClass, ty,
1710           base->isTypeDependent(), base->isValueDependent()),
1711      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1712      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1713      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1714    assert(memberdecl->getDeclName() == NameInfo.getName());
1715  }
1716
1717  // NOTE: this constructor should be used only when it is known that
1718  // the member name can not provide additional syntactic info
1719  // (i.e., source locations for C++ operator names or type source info
1720  // for constructors, destructors and conversion oeprators).
1721  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1722             SourceLocation l, QualType ty)
1723    : Expr(MemberExprClass, ty,
1724           base->isTypeDependent(), base->isValueDependent()),
1725      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1726      IsArrow(isarrow),
1727      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1728
1729  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1730                            NestedNameSpecifier *qual, SourceRange qualrange,
1731                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1732                            DeclarationNameInfo MemberNameInfo,
1733                            const TemplateArgumentListInfo *targs,
1734                            QualType ty);
1735
1736  void setBase(Expr *E) { Base = E; }
1737  Expr *getBase() const { return cast<Expr>(Base); }
1738
1739  /// \brief Retrieve the member declaration to which this expression refers.
1740  ///
1741  /// The returned declaration will either be a FieldDecl or (in C++)
1742  /// a CXXMethodDecl.
1743  ValueDecl *getMemberDecl() const { return MemberDecl; }
1744  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1745
1746  /// \brief Retrieves the declaration found by lookup.
1747  DeclAccessPair getFoundDecl() const {
1748    if (!HasQualifierOrFoundDecl)
1749      return DeclAccessPair::make(getMemberDecl(),
1750                                  getMemberDecl()->getAccess());
1751    return getMemberQualifier()->FoundDecl;
1752  }
1753
1754  /// \brief Determines whether this member expression actually had
1755  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1756  /// x->Base::foo.
1757  bool hasQualifier() const { return getQualifier() != 0; }
1758
1759  /// \brief If the member name was qualified, retrieves the source range of
1760  /// the nested-name-specifier that precedes the member name. Otherwise,
1761  /// returns an empty source range.
1762  SourceRange getQualifierRange() const {
1763    if (!HasQualifierOrFoundDecl)
1764      return SourceRange();
1765
1766    return getMemberQualifier()->Range;
1767  }
1768
1769  /// \brief If the member name was qualified, retrieves the
1770  /// nested-name-specifier that precedes the member name. Otherwise, returns
1771  /// NULL.
1772  NestedNameSpecifier *getQualifier() const {
1773    if (!HasQualifierOrFoundDecl)
1774      return 0;
1775
1776    return getMemberQualifier()->NNS;
1777  }
1778
1779  /// \brief Determines whether this member expression actually had a C++
1780  /// template argument list explicitly specified, e.g., x.f<int>.
1781  bool hasExplicitTemplateArgs() const {
1782    return HasExplicitTemplateArgumentList;
1783  }
1784
1785  /// \brief Copies the template arguments (if present) into the given
1786  /// structure.
1787  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1788    if (hasExplicitTemplateArgs())
1789      getExplicitTemplateArgs().copyInto(List);
1790  }
1791
1792  /// \brief Retrieve the explicit template argument list that
1793  /// follow the member template name.  This must only be called on an
1794  /// expression with explicit template arguments.
1795  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1796    assert(HasExplicitTemplateArgumentList);
1797    if (!HasQualifierOrFoundDecl)
1798      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1799
1800    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
1801                                                      getMemberQualifier() + 1);
1802  }
1803
1804  /// \brief Retrieve the explicit template argument list that
1805  /// followed the member template name.  This must only be called on
1806  /// an expression with explicit template arguments.
1807  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1808    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
1809  }
1810
1811  /// \brief Retrieves the optional explicit template arguments.
1812  /// This points to the same data as getExplicitTemplateArgs(), but
1813  /// returns null if there are no explicit template arguments.
1814  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
1815    if (!hasExplicitTemplateArgs()) return 0;
1816    return &getExplicitTemplateArgs();
1817  }
1818
1819  /// \brief Retrieve the location of the left angle bracket following the
1820  /// member name ('<'), if any.
1821  SourceLocation getLAngleLoc() const {
1822    if (!HasExplicitTemplateArgumentList)
1823      return SourceLocation();
1824
1825    return getExplicitTemplateArgs().LAngleLoc;
1826  }
1827
1828  /// \brief Retrieve the template arguments provided as part of this
1829  /// template-id.
1830  const TemplateArgumentLoc *getTemplateArgs() const {
1831    if (!HasExplicitTemplateArgumentList)
1832      return 0;
1833
1834    return getExplicitTemplateArgs().getTemplateArgs();
1835  }
1836
1837  /// \brief Retrieve the number of template arguments provided as part of this
1838  /// template-id.
1839  unsigned getNumTemplateArgs() const {
1840    if (!HasExplicitTemplateArgumentList)
1841      return 0;
1842
1843    return getExplicitTemplateArgs().NumTemplateArgs;
1844  }
1845
1846  /// \brief Retrieve the location of the right angle bracket following the
1847  /// template arguments ('>').
1848  SourceLocation getRAngleLoc() const {
1849    if (!HasExplicitTemplateArgumentList)
1850      return SourceLocation();
1851
1852    return getExplicitTemplateArgs().RAngleLoc;
1853  }
1854
1855  /// \brief Retrieve the member declaration name info.
1856  DeclarationNameInfo getMemberNameInfo() const {
1857    return DeclarationNameInfo(MemberDecl->getDeclName(),
1858                               MemberLoc, MemberDNLoc);
1859  }
1860
1861  bool isArrow() const { return IsArrow; }
1862  void setArrow(bool A) { IsArrow = A; }
1863
1864  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1865  /// location of 'F'.
1866  SourceLocation getMemberLoc() const { return MemberLoc; }
1867  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1868
1869  virtual SourceRange getSourceRange() const {
1870    // If we have an implicit base (like a C++ implicit this),
1871    // make sure not to return its location
1872    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1873      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1874
1875    SourceLocation BaseLoc = getBase()->getLocStart();
1876    if (BaseLoc.isInvalid())
1877      return SourceRange(MemberLoc, EndLoc);
1878    return SourceRange(BaseLoc, EndLoc);
1879  }
1880
1881  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1882
1883  static bool classof(const Stmt *T) {
1884    return T->getStmtClass() == MemberExprClass;
1885  }
1886  static bool classof(const MemberExpr *) { return true; }
1887
1888  // Iterators
1889  virtual child_iterator child_begin();
1890  virtual child_iterator child_end();
1891
1892  friend class ASTReader;
1893  friend class ASTStmtWriter;
1894};
1895
1896/// CompoundLiteralExpr - [C99 6.5.2.5]
1897///
1898class CompoundLiteralExpr : public Expr {
1899  /// LParenLoc - If non-null, this is the location of the left paren in a
1900  /// compound literal like "(int){4}".  This can be null if this is a
1901  /// synthesized compound expression.
1902  SourceLocation LParenLoc;
1903
1904  /// The type as written.  This can be an incomplete array type, in
1905  /// which case the actual expression type will be different.
1906  TypeSourceInfo *TInfo;
1907  Stmt *Init;
1908  bool FileScope;
1909public:
1910  // FIXME: Can compound literals be value-dependent?
1911  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1912                      QualType T, Expr *init, bool fileScope)
1913    : Expr(CompoundLiteralExprClass, T,
1914           tinfo->getType()->isDependentType(), false),
1915      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1916
1917  /// \brief Construct an empty compound literal.
1918  explicit CompoundLiteralExpr(EmptyShell Empty)
1919    : Expr(CompoundLiteralExprClass, Empty) { }
1920
1921  const Expr *getInitializer() const { return cast<Expr>(Init); }
1922  Expr *getInitializer() { return cast<Expr>(Init); }
1923  void setInitializer(Expr *E) { Init = E; }
1924
1925  bool isFileScope() const { return FileScope; }
1926  void setFileScope(bool FS) { FileScope = FS; }
1927
1928  SourceLocation getLParenLoc() const { return LParenLoc; }
1929  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1930
1931  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1932  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1933
1934  virtual SourceRange getSourceRange() const {
1935    // FIXME: Init should never be null.
1936    if (!Init)
1937      return SourceRange();
1938    if (LParenLoc.isInvalid())
1939      return Init->getSourceRange();
1940    return SourceRange(LParenLoc, Init->getLocEnd());
1941  }
1942
1943  static bool classof(const Stmt *T) {
1944    return T->getStmtClass() == CompoundLiteralExprClass;
1945  }
1946  static bool classof(const CompoundLiteralExpr *) { return true; }
1947
1948  // Iterators
1949  virtual child_iterator child_begin();
1950  virtual child_iterator child_end();
1951};
1952
1953/// CastExpr - Base class for type casts, including both implicit
1954/// casts (ImplicitCastExpr) and explicit casts that have some
1955/// representation in the source code (ExplicitCastExpr's derived
1956/// classes).
1957class CastExpr : public Expr {
1958public:
1959  typedef clang::CastKind CastKind;
1960
1961private:
1962  unsigned Kind : 5;
1963  unsigned BasePathSize : BitsRemaining - 5;
1964  Stmt *Op;
1965
1966  void CheckBasePath() const {
1967#ifndef NDEBUG
1968    switch (getCastKind()) {
1969    case CK_DerivedToBase:
1970    case CK_UncheckedDerivedToBase:
1971    case CK_DerivedToBaseMemberPointer:
1972    case CK_BaseToDerived:
1973    case CK_BaseToDerivedMemberPointer:
1974      assert(!path_empty() && "Cast kind should have a base path!");
1975      break;
1976
1977    // These should not have an inheritance path.
1978    case CK_Unknown:
1979    case CK_BitCast:
1980    case CK_LValueBitCast:
1981    case CK_NoOp:
1982    case CK_Dynamic:
1983    case CK_ToUnion:
1984    case CK_ArrayToPointerDecay:
1985    case CK_FunctionToPointerDecay:
1986    case CK_NullToMemberPointer:
1987    case CK_UserDefinedConversion:
1988    case CK_ConstructorConversion:
1989    case CK_IntegralToPointer:
1990    case CK_PointerToIntegral:
1991    case CK_ToVoid:
1992    case CK_VectorSplat:
1993    case CK_IntegralCast:
1994    case CK_IntegralToFloating:
1995    case CK_FloatingToIntegral:
1996    case CK_FloatingCast:
1997    case CK_MemberPointerToBoolean:
1998    case CK_AnyPointerToObjCPointerCast:
1999    case CK_AnyPointerToBlockPointerCast:
2000    case CK_ObjCObjectLValueCast:
2001      assert(path_empty() && "Cast kind should not have a base path!");
2002      break;
2003    }
2004#endif
2005  }
2006
2007  const CXXBaseSpecifier * const *path_buffer() const {
2008    return const_cast<CastExpr*>(this)->path_buffer();
2009  }
2010  CXXBaseSpecifier **path_buffer();
2011
2012protected:
2013  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
2014           unsigned BasePathSize) :
2015    Expr(SC, ty,
2016         // Cast expressions are type-dependent if the type is
2017         // dependent (C++ [temp.dep.expr]p3).
2018         ty->isDependentType(),
2019         // Cast expressions are value-dependent if the type is
2020         // dependent or if the subexpression is value-dependent.
2021         ty->isDependentType() || (op && op->isValueDependent())),
2022    Kind(kind), BasePathSize(BasePathSize), Op(op) {
2023    CheckBasePath();
2024  }
2025
2026  /// \brief Construct an empty cast.
2027  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2028    : Expr(SC, Empty), BasePathSize(BasePathSize) { }
2029
2030public:
2031  CastKind getCastKind() const { return static_cast<CastKind>(Kind); }
2032  void setCastKind(CastKind K) { Kind = K; }
2033  const char *getCastKindName() const;
2034
2035  Expr *getSubExpr() { return cast<Expr>(Op); }
2036  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2037  void setSubExpr(Expr *E) { Op = E; }
2038
2039  /// \brief Retrieve the cast subexpression as it was written in the source
2040  /// code, looking through any implicit casts or other intermediate nodes
2041  /// introduced by semantic analysis.
2042  Expr *getSubExprAsWritten();
2043  const Expr *getSubExprAsWritten() const {
2044    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2045  }
2046
2047  typedef CXXBaseSpecifier **path_iterator;
2048  typedef const CXXBaseSpecifier * const *path_const_iterator;
2049  bool path_empty() const { return BasePathSize == 0; }
2050  unsigned path_size() const { return BasePathSize; }
2051  path_iterator path_begin() { return path_buffer(); }
2052  path_iterator path_end() { return path_buffer() + path_size(); }
2053  path_const_iterator path_begin() const { return path_buffer(); }
2054  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2055
2056  void setCastPath(const CXXCastPath &Path);
2057
2058  static bool classof(const Stmt *T) {
2059    return T->getStmtClass() >= firstCastExprConstant &&
2060           T->getStmtClass() <= lastCastExprConstant;
2061  }
2062  static bool classof(const CastExpr *) { return true; }
2063
2064  // Iterators
2065  virtual child_iterator child_begin();
2066  virtual child_iterator child_end();
2067};
2068
2069/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2070/// conversions, which have no direct representation in the original
2071/// source code. For example: converting T[]->T*, void f()->void
2072/// (*f)(), float->double, short->int, etc.
2073///
2074/// In C, implicit casts always produce rvalues. However, in C++, an
2075/// implicit cast whose result is being bound to a reference will be
2076/// an lvalue or xvalue. For example:
2077///
2078/// @code
2079/// class Base { };
2080/// class Derived : public Base { };
2081/// Derived &&ref();
2082/// void f(Derived d) {
2083///   Base& b = d; // initializer is an ImplicitCastExpr
2084///                // to an lvalue of type Base
2085///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2086///                     // to an xvalue of type Base
2087/// }
2088/// @endcode
2089class ImplicitCastExpr : public CastExpr {
2090private:
2091  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2092                   unsigned BasePathLength, ExprValueKind VK)
2093    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePathLength) {
2094    ValueKind = VK;
2095  }
2096
2097  /// \brief Construct an empty implicit cast.
2098  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2099    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2100
2101public:
2102  enum OnStack_t { OnStack };
2103  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2104                   ExprValueKind VK)
2105    : CastExpr(ImplicitCastExprClass, ty, kind, op, 0) {
2106    ValueKind = VK;
2107  }
2108
2109  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2110                                  CastKind Kind, Expr *Operand,
2111                                  const CXXCastPath *BasePath,
2112                                  ExprValueKind Cat);
2113
2114  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2115
2116  virtual SourceRange getSourceRange() const {
2117    return getSubExpr()->getSourceRange();
2118  }
2119
2120  /// getValueKind - The value kind that this cast produces.
2121  ExprValueKind getValueKind() const {
2122    return static_cast<ExprValueKind>(ValueKind);
2123  }
2124
2125  /// setValueKind - Set the value kind this cast produces.
2126  void setValueKind(ExprValueKind Cat) { ValueKind = Cat; }
2127
2128  static bool classof(const Stmt *T) {
2129    return T->getStmtClass() == ImplicitCastExprClass;
2130  }
2131  static bool classof(const ImplicitCastExpr *) { return true; }
2132};
2133
2134/// ExplicitCastExpr - An explicit cast written in the source
2135/// code.
2136///
2137/// This class is effectively an abstract class, because it provides
2138/// the basic representation of an explicitly-written cast without
2139/// specifying which kind of cast (C cast, functional cast, static
2140/// cast, etc.) was written; specific derived classes represent the
2141/// particular style of cast and its location information.
2142///
2143/// Unlike implicit casts, explicit cast nodes have two different
2144/// types: the type that was written into the source code, and the
2145/// actual type of the expression as determined by semantic
2146/// analysis. These types may differ slightly. For example, in C++ one
2147/// can cast to a reference type, which indicates that the resulting
2148/// expression will be an lvalue or xvalue. The reference type, however,
2149/// will not be used as the type of the expression.
2150class ExplicitCastExpr : public CastExpr {
2151  /// TInfo - Source type info for the (written) type
2152  /// this expression is casting to.
2153  TypeSourceInfo *TInfo;
2154
2155protected:
2156  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2157                   Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy)
2158    : CastExpr(SC, exprTy, kind, op, PathSize), TInfo(writtenTy) {}
2159
2160  /// \brief Construct an empty explicit cast.
2161  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2162    : CastExpr(SC, Shell, PathSize) { }
2163
2164public:
2165  /// getTypeInfoAsWritten - Returns the type source info for the type
2166  /// that this expression is casting to.
2167  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2168  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2169
2170  /// getTypeAsWritten - Returns the type that this expression is
2171  /// casting to, as written in the source code.
2172  QualType getTypeAsWritten() const { return TInfo->getType(); }
2173
2174  static bool classof(const Stmt *T) {
2175     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2176            T->getStmtClass() <= lastExplicitCastExprConstant;
2177  }
2178  static bool classof(const ExplicitCastExpr *) { return true; }
2179};
2180
2181/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2182/// cast in C++ (C++ [expr.cast]), which uses the syntax
2183/// (Type)expr. For example: @c (int)f.
2184class CStyleCastExpr : public ExplicitCastExpr {
2185  SourceLocation LPLoc; // the location of the left paren
2186  SourceLocation RPLoc; // the location of the right paren
2187
2188  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2189                 unsigned PathSize, TypeSourceInfo *writtenTy,
2190                 SourceLocation l, SourceLocation r)
2191    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, PathSize,
2192                       writtenTy), LPLoc(l), RPLoc(r) {}
2193
2194  /// \brief Construct an empty C-style explicit cast.
2195  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2196    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2197
2198public:
2199  static CStyleCastExpr *Create(ASTContext &Context, QualType T, CastKind K,
2200                                Expr *Op, const CXXCastPath *BasePath,
2201                                TypeSourceInfo *WrittenTy, SourceLocation L,
2202                                SourceLocation R);
2203
2204  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2205
2206  SourceLocation getLParenLoc() const { return LPLoc; }
2207  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2208
2209  SourceLocation getRParenLoc() const { return RPLoc; }
2210  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2211
2212  virtual SourceRange getSourceRange() const {
2213    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2214  }
2215  static bool classof(const Stmt *T) {
2216    return T->getStmtClass() == CStyleCastExprClass;
2217  }
2218  static bool classof(const CStyleCastExpr *) { return true; }
2219};
2220
2221/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2222///
2223/// This expression node kind describes a builtin binary operation,
2224/// such as "x + y" for integer values "x" and "y". The operands will
2225/// already have been converted to appropriate types (e.g., by
2226/// performing promotions or conversions).
2227///
2228/// In C++, where operators may be overloaded, a different kind of
2229/// expression node (CXXOperatorCallExpr) is used to express the
2230/// invocation of an overloaded operator with operator syntax. Within
2231/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2232/// used to store an expression "x + y" depends on the subexpressions
2233/// for x and y. If neither x or y is type-dependent, and the "+"
2234/// operator resolves to a built-in operation, BinaryOperator will be
2235/// used to express the computation (x and y may still be
2236/// value-dependent). If either x or y is type-dependent, or if the
2237/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2238/// be used to express the computation.
2239class BinaryOperator : public Expr {
2240public:
2241  typedef BinaryOperatorKind Opcode;
2242
2243private:
2244  unsigned Opc : 6;
2245  SourceLocation OpLoc;
2246
2247  enum { LHS, RHS, END_EXPR };
2248  Stmt* SubExprs[END_EXPR];
2249public:
2250
2251  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2252                 SourceLocation opLoc)
2253    : Expr(BinaryOperatorClass, ResTy,
2254           lhs->isTypeDependent() || rhs->isTypeDependent(),
2255           lhs->isValueDependent() || rhs->isValueDependent()),
2256      Opc(opc), OpLoc(opLoc) {
2257    SubExprs[LHS] = lhs;
2258    SubExprs[RHS] = rhs;
2259    assert(!isCompoundAssignmentOp() &&
2260           "Use ArithAssignBinaryOperator for compound assignments");
2261  }
2262
2263  /// \brief Construct an empty binary operator.
2264  explicit BinaryOperator(EmptyShell Empty)
2265    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2266
2267  SourceLocation getOperatorLoc() const { return OpLoc; }
2268  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2269
2270  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2271  void setOpcode(Opcode O) { Opc = O; }
2272
2273  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2274  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2275  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2276  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2277
2278  virtual SourceRange getSourceRange() const {
2279    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2280  }
2281
2282  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2283  /// corresponds to, e.g. "<<=".
2284  static const char *getOpcodeStr(Opcode Op);
2285
2286  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2287
2288  /// \brief Retrieve the binary opcode that corresponds to the given
2289  /// overloaded operator.
2290  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2291
2292  /// \brief Retrieve the overloaded operator kind that corresponds to
2293  /// the given binary opcode.
2294  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2295
2296  /// predicates to categorize the respective opcodes.
2297  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2298  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2299  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2300  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2301  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2302  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2303
2304  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2305  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2306
2307  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2308  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2309
2310  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2311  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2312
2313  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2314  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2315
2316  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2317  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2318
2319  bool isAssignmentOp() const { return Opc >= BO_Assign && Opc <= BO_OrAssign; }
2320  bool isCompoundAssignmentOp() const {
2321    return Opc > BO_Assign && Opc <= BO_OrAssign;
2322  }
2323  bool isShiftAssignOp() const {
2324    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2325  }
2326
2327  static bool classof(const Stmt *S) {
2328    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2329           S->getStmtClass() <= lastBinaryOperatorConstant;
2330  }
2331  static bool classof(const BinaryOperator *) { return true; }
2332
2333  // Iterators
2334  virtual child_iterator child_begin();
2335  virtual child_iterator child_end();
2336
2337protected:
2338  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2339                 SourceLocation opLoc, bool dead)
2340    : Expr(CompoundAssignOperatorClass, ResTy,
2341           lhs->isTypeDependent() || rhs->isTypeDependent(),
2342           lhs->isValueDependent() || rhs->isValueDependent()),
2343      Opc(opc), OpLoc(opLoc) {
2344    SubExprs[LHS] = lhs;
2345    SubExprs[RHS] = rhs;
2346  }
2347
2348  BinaryOperator(StmtClass SC, EmptyShell Empty)
2349    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2350};
2351
2352/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2353/// track of the type the operation is performed in.  Due to the semantics of
2354/// these operators, the operands are promoted, the aritmetic performed, an
2355/// implicit conversion back to the result type done, then the assignment takes
2356/// place.  This captures the intermediate type which the computation is done
2357/// in.
2358class CompoundAssignOperator : public BinaryOperator {
2359  QualType ComputationLHSType;
2360  QualType ComputationResultType;
2361public:
2362  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2363                         QualType ResType, QualType CompLHSType,
2364                         QualType CompResultType,
2365                         SourceLocation OpLoc)
2366    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2367      ComputationLHSType(CompLHSType),
2368      ComputationResultType(CompResultType) {
2369    assert(isCompoundAssignmentOp() &&
2370           "Only should be used for compound assignments");
2371  }
2372
2373  /// \brief Build an empty compound assignment operator expression.
2374  explicit CompoundAssignOperator(EmptyShell Empty)
2375    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2376
2377  // The two computation types are the type the LHS is converted
2378  // to for the computation and the type of the result; the two are
2379  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2380  QualType getComputationLHSType() const { return ComputationLHSType; }
2381  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2382
2383  QualType getComputationResultType() const { return ComputationResultType; }
2384  void setComputationResultType(QualType T) { ComputationResultType = T; }
2385
2386  static bool classof(const CompoundAssignOperator *) { return true; }
2387  static bool classof(const Stmt *S) {
2388    return S->getStmtClass() == CompoundAssignOperatorClass;
2389  }
2390};
2391
2392/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2393/// GNU "missing LHS" extension is in use.
2394///
2395class ConditionalOperator : public Expr {
2396  enum { COND, LHS, RHS, END_EXPR };
2397  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2398  Stmt* Save;
2399  SourceLocation QuestionLoc, ColonLoc;
2400public:
2401  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2402                      SourceLocation CLoc, Expr *rhs, Expr *save, QualType t)
2403    : Expr(ConditionalOperatorClass, t,
2404           // FIXME: the type of the conditional operator doesn't
2405           // depend on the type of the conditional, but the standard
2406           // seems to imply that it could. File a bug!
2407           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2408           (cond->isValueDependent() ||
2409            (lhs && lhs->isValueDependent()) ||
2410            (rhs && rhs->isValueDependent()))),
2411      QuestionLoc(QLoc),
2412      ColonLoc(CLoc) {
2413    SubExprs[COND] = cond;
2414    SubExprs[LHS] = lhs;
2415    SubExprs[RHS] = rhs;
2416    Save = save;
2417  }
2418
2419  /// \brief Build an empty conditional operator.
2420  explicit ConditionalOperator(EmptyShell Empty)
2421    : Expr(ConditionalOperatorClass, Empty) { }
2422
2423  // getCond - Return the expression representing the condition for
2424  //  the ?: operator.
2425  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2426  void setCond(Expr *E) { SubExprs[COND] = E; }
2427
2428  // getTrueExpr - Return the subexpression representing the value of the ?:
2429  //  expression if the condition evaluates to true.
2430  Expr *getTrueExpr() const {
2431    return cast<Expr>(SubExprs[LHS]);
2432  }
2433
2434  // getFalseExpr - Return the subexpression representing the value of the ?:
2435  // expression if the condition evaluates to false. This is the same as getRHS.
2436  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2437
2438  // getSaveExpr - In most cases this value will be null. Except a GCC extension
2439  // allows the left subexpression to be omitted, and instead of that condition
2440  // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
2441  // expression "x" is only evaluated once. Under this senario, this function
2442  // returns the original, non-converted condition expression for the ?:operator
2443  Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2444
2445  Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
2446  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2447
2448  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2449  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2450
2451  Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2452  void setSAVE(Expr *E) { Save = E; }
2453
2454  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2455  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2456
2457  SourceLocation getColonLoc() const { return ColonLoc; }
2458  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2459
2460  virtual SourceRange getSourceRange() const {
2461    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2462  }
2463  static bool classof(const Stmt *T) {
2464    return T->getStmtClass() == ConditionalOperatorClass;
2465  }
2466  static bool classof(const ConditionalOperator *) { return true; }
2467
2468  // Iterators
2469  virtual child_iterator child_begin();
2470  virtual child_iterator child_end();
2471};
2472
2473/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2474class AddrLabelExpr : public Expr {
2475  SourceLocation AmpAmpLoc, LabelLoc;
2476  LabelStmt *Label;
2477public:
2478  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2479                QualType t)
2480    : Expr(AddrLabelExprClass, t, false, false),
2481      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2482
2483  /// \brief Build an empty address of a label expression.
2484  explicit AddrLabelExpr(EmptyShell Empty)
2485    : Expr(AddrLabelExprClass, Empty) { }
2486
2487  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2488  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2489  SourceLocation getLabelLoc() const { return LabelLoc; }
2490  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2491
2492  virtual SourceRange getSourceRange() const {
2493    return SourceRange(AmpAmpLoc, LabelLoc);
2494  }
2495
2496  LabelStmt *getLabel() const { return Label; }
2497  void setLabel(LabelStmt *S) { Label = S; }
2498
2499  static bool classof(const Stmt *T) {
2500    return T->getStmtClass() == AddrLabelExprClass;
2501  }
2502  static bool classof(const AddrLabelExpr *) { return true; }
2503
2504  // Iterators
2505  virtual child_iterator child_begin();
2506  virtual child_iterator child_end();
2507};
2508
2509/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2510/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2511/// takes the value of the last subexpression.
2512class StmtExpr : public Expr {
2513  Stmt *SubStmt;
2514  SourceLocation LParenLoc, RParenLoc;
2515public:
2516  // FIXME: Does type-dependence need to be computed differently?
2517  StmtExpr(CompoundStmt *substmt, QualType T,
2518           SourceLocation lp, SourceLocation rp) :
2519    Expr(StmtExprClass, T, T->isDependentType(), false),
2520    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2521
2522  /// \brief Build an empty statement expression.
2523  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2524
2525  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2526  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2527  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2528
2529  virtual SourceRange getSourceRange() const {
2530    return SourceRange(LParenLoc, RParenLoc);
2531  }
2532
2533  SourceLocation getLParenLoc() const { return LParenLoc; }
2534  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2535  SourceLocation getRParenLoc() const { return RParenLoc; }
2536  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2537
2538  static bool classof(const Stmt *T) {
2539    return T->getStmtClass() == StmtExprClass;
2540  }
2541  static bool classof(const StmtExpr *) { return true; }
2542
2543  // Iterators
2544  virtual child_iterator child_begin();
2545  virtual child_iterator child_end();
2546};
2547
2548/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2549/// This AST node represents a function that returns 1 if two *types* (not
2550/// expressions) are compatible. The result of this built-in function can be
2551/// used in integer constant expressions.
2552class TypesCompatibleExpr : public Expr {
2553  TypeSourceInfo *TInfo1;
2554  TypeSourceInfo *TInfo2;
2555  SourceLocation BuiltinLoc, RParenLoc;
2556public:
2557  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2558                      TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
2559                      SourceLocation RP) :
2560    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2561    TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2562
2563  /// \brief Build an empty __builtin_type_compatible_p expression.
2564  explicit TypesCompatibleExpr(EmptyShell Empty)
2565    : Expr(TypesCompatibleExprClass, Empty) { }
2566
2567  TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
2568  void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
2569  TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
2570  void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
2571
2572  QualType getArgType1() const { return TInfo1->getType(); }
2573  QualType getArgType2() const { return TInfo2->getType(); }
2574
2575  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2576  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2577
2578  SourceLocation getRParenLoc() const { return RParenLoc; }
2579  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2580
2581  virtual SourceRange getSourceRange() const {
2582    return SourceRange(BuiltinLoc, RParenLoc);
2583  }
2584  static bool classof(const Stmt *T) {
2585    return T->getStmtClass() == TypesCompatibleExprClass;
2586  }
2587  static bool classof(const TypesCompatibleExpr *) { return true; }
2588
2589  // Iterators
2590  virtual child_iterator child_begin();
2591  virtual child_iterator child_end();
2592};
2593
2594/// ShuffleVectorExpr - clang-specific builtin-in function
2595/// __builtin_shufflevector.
2596/// This AST node represents a operator that does a constant
2597/// shuffle, similar to LLVM's shufflevector instruction. It takes
2598/// two vectors and a variable number of constant indices,
2599/// and returns the appropriately shuffled vector.
2600class ShuffleVectorExpr : public Expr {
2601  SourceLocation BuiltinLoc, RParenLoc;
2602
2603  // SubExprs - the list of values passed to the __builtin_shufflevector
2604  // function. The first two are vectors, and the rest are constant
2605  // indices.  The number of values in this list is always
2606  // 2+the number of indices in the vector type.
2607  Stmt **SubExprs;
2608  unsigned NumExprs;
2609
2610public:
2611  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2612  // to be computed differently?
2613  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2614                    QualType Type, SourceLocation BLoc,
2615                    SourceLocation RP) :
2616    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2617    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2618
2619    SubExprs = new (C) Stmt*[nexpr];
2620    for (unsigned i = 0; i < nexpr; i++)
2621      SubExprs[i] = args[i];
2622  }
2623
2624  /// \brief Build an empty vector-shuffle expression.
2625  explicit ShuffleVectorExpr(EmptyShell Empty)
2626    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2627
2628  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2629  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2630
2631  SourceLocation getRParenLoc() const { return RParenLoc; }
2632  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2633
2634  virtual SourceRange getSourceRange() const {
2635    return SourceRange(BuiltinLoc, RParenLoc);
2636  }
2637  static bool classof(const Stmt *T) {
2638    return T->getStmtClass() == ShuffleVectorExprClass;
2639  }
2640  static bool classof(const ShuffleVectorExpr *) { return true; }
2641
2642  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2643  /// constant expression, the actual arguments passed in, and the function
2644  /// pointers.
2645  unsigned getNumSubExprs() const { return NumExprs; }
2646
2647  /// getExpr - Return the Expr at the specified index.
2648  Expr *getExpr(unsigned Index) {
2649    assert((Index < NumExprs) && "Arg access out of range!");
2650    return cast<Expr>(SubExprs[Index]);
2651  }
2652  const Expr *getExpr(unsigned Index) const {
2653    assert((Index < NumExprs) && "Arg access out of range!");
2654    return cast<Expr>(SubExprs[Index]);
2655  }
2656
2657  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2658
2659  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2660    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2661    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2662  }
2663
2664  // Iterators
2665  virtual child_iterator child_begin();
2666  virtual child_iterator child_end();
2667};
2668
2669/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2670/// This AST node is similar to the conditional operator (?:) in C, with
2671/// the following exceptions:
2672/// - the test expression must be a integer constant expression.
2673/// - the expression returned acts like the chosen subexpression in every
2674///   visible way: the type is the same as that of the chosen subexpression,
2675///   and all predicates (whether it's an l-value, whether it's an integer
2676///   constant expression, etc.) return the same result as for the chosen
2677///   sub-expression.
2678class ChooseExpr : public Expr {
2679  enum { COND, LHS, RHS, END_EXPR };
2680  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2681  SourceLocation BuiltinLoc, RParenLoc;
2682public:
2683  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2684             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2685    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2686      BuiltinLoc(BLoc), RParenLoc(RP) {
2687      SubExprs[COND] = cond;
2688      SubExprs[LHS] = lhs;
2689      SubExprs[RHS] = rhs;
2690    }
2691
2692  /// \brief Build an empty __builtin_choose_expr.
2693  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2694
2695  /// isConditionTrue - Return whether the condition is true (i.e. not
2696  /// equal to zero).
2697  bool isConditionTrue(ASTContext &C) const;
2698
2699  /// getChosenSubExpr - Return the subexpression chosen according to the
2700  /// condition.
2701  Expr *getChosenSubExpr(ASTContext &C) const {
2702    return isConditionTrue(C) ? getLHS() : getRHS();
2703  }
2704
2705  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2706  void setCond(Expr *E) { SubExprs[COND] = E; }
2707  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2708  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2709  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2710  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2711
2712  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2713  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2714
2715  SourceLocation getRParenLoc() const { return RParenLoc; }
2716  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2717
2718  virtual SourceRange getSourceRange() const {
2719    return SourceRange(BuiltinLoc, RParenLoc);
2720  }
2721  static bool classof(const Stmt *T) {
2722    return T->getStmtClass() == ChooseExprClass;
2723  }
2724  static bool classof(const ChooseExpr *) { return true; }
2725
2726  // Iterators
2727  virtual child_iterator child_begin();
2728  virtual child_iterator child_end();
2729};
2730
2731/// GNUNullExpr - Implements the GNU __null extension, which is a name
2732/// for a null pointer constant that has integral type (e.g., int or
2733/// long) and is the same size and alignment as a pointer. The __null
2734/// extension is typically only used by system headers, which define
2735/// NULL as __null in C++ rather than using 0 (which is an integer
2736/// that may not match the size of a pointer).
2737class GNUNullExpr : public Expr {
2738  /// TokenLoc - The location of the __null keyword.
2739  SourceLocation TokenLoc;
2740
2741public:
2742  GNUNullExpr(QualType Ty, SourceLocation Loc)
2743    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2744
2745  /// \brief Build an empty GNU __null expression.
2746  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2747
2748  /// getTokenLocation - The location of the __null token.
2749  SourceLocation getTokenLocation() const { return TokenLoc; }
2750  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2751
2752  virtual SourceRange getSourceRange() const {
2753    return SourceRange(TokenLoc);
2754  }
2755  static bool classof(const Stmt *T) {
2756    return T->getStmtClass() == GNUNullExprClass;
2757  }
2758  static bool classof(const GNUNullExpr *) { return true; }
2759
2760  // Iterators
2761  virtual child_iterator child_begin();
2762  virtual child_iterator child_end();
2763};
2764
2765/// VAArgExpr, used for the builtin function __builtin_va_arg.
2766class VAArgExpr : public Expr {
2767  Stmt *Val;
2768  TypeSourceInfo *TInfo;
2769  SourceLocation BuiltinLoc, RParenLoc;
2770public:
2771  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2772            SourceLocation RPLoc, QualType t)
2773    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2774      Val(e), TInfo(TInfo),
2775      BuiltinLoc(BLoc),
2776      RParenLoc(RPLoc) { }
2777
2778  /// \brief Create an empty __builtin_va_arg expression.
2779  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2780
2781  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2782  Expr *getSubExpr() { return cast<Expr>(Val); }
2783  void setSubExpr(Expr *E) { Val = E; }
2784
2785  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2786  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2787
2788  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2789  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2790
2791  SourceLocation getRParenLoc() const { return RParenLoc; }
2792  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2793
2794  virtual SourceRange getSourceRange() const {
2795    return SourceRange(BuiltinLoc, RParenLoc);
2796  }
2797  static bool classof(const Stmt *T) {
2798    return T->getStmtClass() == VAArgExprClass;
2799  }
2800  static bool classof(const VAArgExpr *) { return true; }
2801
2802  // Iterators
2803  virtual child_iterator child_begin();
2804  virtual child_iterator child_end();
2805};
2806
2807/// @brief Describes an C or C++ initializer list.
2808///
2809/// InitListExpr describes an initializer list, which can be used to
2810/// initialize objects of different types, including
2811/// struct/class/union types, arrays, and vectors. For example:
2812///
2813/// @code
2814/// struct foo x = { 1, { 2, 3 } };
2815/// @endcode
2816///
2817/// Prior to semantic analysis, an initializer list will represent the
2818/// initializer list as written by the user, but will have the
2819/// placeholder type "void". This initializer list is called the
2820/// syntactic form of the initializer, and may contain C99 designated
2821/// initializers (represented as DesignatedInitExprs), initializations
2822/// of subobject members without explicit braces, and so on. Clients
2823/// interested in the original syntax of the initializer list should
2824/// use the syntactic form of the initializer list.
2825///
2826/// After semantic analysis, the initializer list will represent the
2827/// semantic form of the initializer, where the initializations of all
2828/// subobjects are made explicit with nested InitListExpr nodes and
2829/// C99 designators have been eliminated by placing the designated
2830/// initializations into the subobject they initialize. Additionally,
2831/// any "holes" in the initialization, where no initializer has been
2832/// specified for a particular subobject, will be replaced with
2833/// implicitly-generated ImplicitValueInitExpr expressions that
2834/// value-initialize the subobjects. Note, however, that the
2835/// initializer lists may still have fewer initializers than there are
2836/// elements to initialize within the object.
2837///
2838/// Given the semantic form of the initializer list, one can retrieve
2839/// the original syntactic form of that initializer list (if it
2840/// exists) using getSyntacticForm(). Since many initializer lists
2841/// have the same syntactic and semantic forms, getSyntacticForm() may
2842/// return NULL, indicating that the current initializer list also
2843/// serves as its syntactic form.
2844class InitListExpr : public Expr {
2845  // FIXME: Eliminate this vector in favor of ASTContext allocation
2846  typedef ASTVector<Stmt *> InitExprsTy;
2847  InitExprsTy InitExprs;
2848  SourceLocation LBraceLoc, RBraceLoc;
2849
2850  /// Contains the initializer list that describes the syntactic form
2851  /// written in the source code.
2852  InitListExpr *SyntacticForm;
2853
2854  /// If this initializer list initializes a union, specifies which
2855  /// field within the union will be initialized.
2856  FieldDecl *UnionFieldInit;
2857
2858  /// Whether this initializer list originally had a GNU array-range
2859  /// designator in it. This is a temporary marker used by CodeGen.
2860  bool HadArrayRangeDesignator;
2861
2862public:
2863  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2864               Expr **initexprs, unsigned numinits,
2865               SourceLocation rbraceloc);
2866
2867  /// \brief Build an empty initializer list.
2868  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2869    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2870
2871  unsigned getNumInits() const { return InitExprs.size(); }
2872
2873  const Expr *getInit(unsigned Init) const {
2874    assert(Init < getNumInits() && "Initializer access out of range!");
2875    return cast_or_null<Expr>(InitExprs[Init]);
2876  }
2877
2878  Expr *getInit(unsigned Init) {
2879    assert(Init < getNumInits() && "Initializer access out of range!");
2880    return cast_or_null<Expr>(InitExprs[Init]);
2881  }
2882
2883  void setInit(unsigned Init, Expr *expr) {
2884    assert(Init < getNumInits() && "Initializer access out of range!");
2885    InitExprs[Init] = expr;
2886  }
2887
2888  /// \brief Reserve space for some number of initializers.
2889  void reserveInits(ASTContext &C, unsigned NumInits);
2890
2891  /// @brief Specify the number of initializers
2892  ///
2893  /// If there are more than @p NumInits initializers, the remaining
2894  /// initializers will be destroyed. If there are fewer than @p
2895  /// NumInits initializers, NULL expressions will be added for the
2896  /// unknown initializers.
2897  void resizeInits(ASTContext &Context, unsigned NumInits);
2898
2899  /// @brief Updates the initializer at index @p Init with the new
2900  /// expression @p expr, and returns the old expression at that
2901  /// location.
2902  ///
2903  /// When @p Init is out of range for this initializer list, the
2904  /// initializer list will be extended with NULL expressions to
2905  /// accomodate the new entry.
2906  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2907
2908  /// \brief If this initializes a union, specifies which field in the
2909  /// union to initialize.
2910  ///
2911  /// Typically, this field is the first named field within the
2912  /// union. However, a designated initializer can specify the
2913  /// initialization of a different field within the union.
2914  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2915  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2916
2917  // Explicit InitListExpr's originate from source code (and have valid source
2918  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2919  bool isExplicit() {
2920    return LBraceLoc.isValid() && RBraceLoc.isValid();
2921  }
2922
2923  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2924  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2925  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2926  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2927
2928  /// @brief Retrieve the initializer list that describes the
2929  /// syntactic form of the initializer.
2930  ///
2931  ///
2932  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2933  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2934
2935  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2936  void sawArrayRangeDesignator(bool ARD = true) {
2937    HadArrayRangeDesignator = ARD;
2938  }
2939
2940  virtual SourceRange getSourceRange() const {
2941    return SourceRange(LBraceLoc, RBraceLoc);
2942  }
2943  static bool classof(const Stmt *T) {
2944    return T->getStmtClass() == InitListExprClass;
2945  }
2946  static bool classof(const InitListExpr *) { return true; }
2947
2948  // Iterators
2949  virtual child_iterator child_begin();
2950  virtual child_iterator child_end();
2951
2952  typedef InitExprsTy::iterator iterator;
2953  typedef InitExprsTy::const_iterator const_iterator;
2954  typedef InitExprsTy::reverse_iterator reverse_iterator;
2955  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
2956
2957  iterator begin() { return InitExprs.begin(); }
2958  const_iterator begin() const { return InitExprs.begin(); }
2959  iterator end() { return InitExprs.end(); }
2960  const_iterator end() const { return InitExprs.end(); }
2961  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2962  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
2963  reverse_iterator rend() { return InitExprs.rend(); }
2964  const_reverse_iterator rend() const { return InitExprs.rend(); }
2965};
2966
2967/// @brief Represents a C99 designated initializer expression.
2968///
2969/// A designated initializer expression (C99 6.7.8) contains one or
2970/// more designators (which can be field designators, array
2971/// designators, or GNU array-range designators) followed by an
2972/// expression that initializes the field or element(s) that the
2973/// designators refer to. For example, given:
2974///
2975/// @code
2976/// struct point {
2977///   double x;
2978///   double y;
2979/// };
2980/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2981/// @endcode
2982///
2983/// The InitListExpr contains three DesignatedInitExprs, the first of
2984/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2985/// designators, one array designator for @c [2] followed by one field
2986/// designator for @c .y. The initalization expression will be 1.0.
2987class DesignatedInitExpr : public Expr {
2988public:
2989  /// \brief Forward declaration of the Designator class.
2990  class Designator;
2991
2992private:
2993  /// The location of the '=' or ':' prior to the actual initializer
2994  /// expression.
2995  SourceLocation EqualOrColonLoc;
2996
2997  /// Whether this designated initializer used the GNU deprecated
2998  /// syntax rather than the C99 '=' syntax.
2999  bool GNUSyntax : 1;
3000
3001  /// The number of designators in this initializer expression.
3002  unsigned NumDesignators : 15;
3003
3004  /// \brief The designators in this designated initialization
3005  /// expression.
3006  Designator *Designators;
3007
3008  /// The number of subexpressions of this initializer expression,
3009  /// which contains both the initializer and any additional
3010  /// expressions used by array and array-range designators.
3011  unsigned NumSubExprs : 16;
3012
3013
3014  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3015                     const Designator *Designators,
3016                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3017                     Expr **IndexExprs, unsigned NumIndexExprs,
3018                     Expr *Init);
3019
3020  explicit DesignatedInitExpr(unsigned NumSubExprs)
3021    : Expr(DesignatedInitExprClass, EmptyShell()),
3022      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3023
3024public:
3025  /// A field designator, e.g., ".x".
3026  struct FieldDesignator {
3027    /// Refers to the field that is being initialized. The low bit
3028    /// of this field determines whether this is actually a pointer
3029    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3030    /// initially constructed, a field designator will store an
3031    /// IdentifierInfo*. After semantic analysis has resolved that
3032    /// name, the field designator will instead store a FieldDecl*.
3033    uintptr_t NameOrField;
3034
3035    /// The location of the '.' in the designated initializer.
3036    unsigned DotLoc;
3037
3038    /// The location of the field name in the designated initializer.
3039    unsigned FieldLoc;
3040  };
3041
3042  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3043  struct ArrayOrRangeDesignator {
3044    /// Location of the first index expression within the designated
3045    /// initializer expression's list of subexpressions.
3046    unsigned Index;
3047    /// The location of the '[' starting the array range designator.
3048    unsigned LBracketLoc;
3049    /// The location of the ellipsis separating the start and end
3050    /// indices. Only valid for GNU array-range designators.
3051    unsigned EllipsisLoc;
3052    /// The location of the ']' terminating the array range designator.
3053    unsigned RBracketLoc;
3054  };
3055
3056  /// @brief Represents a single C99 designator.
3057  ///
3058  /// @todo This class is infuriatingly similar to clang::Designator,
3059  /// but minor differences (storing indices vs. storing pointers)
3060  /// keep us from reusing it. Try harder, later, to rectify these
3061  /// differences.
3062  class Designator {
3063    /// @brief The kind of designator this describes.
3064    enum {
3065      FieldDesignator,
3066      ArrayDesignator,
3067      ArrayRangeDesignator
3068    } Kind;
3069
3070    union {
3071      /// A field designator, e.g., ".x".
3072      struct FieldDesignator Field;
3073      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3074      struct ArrayOrRangeDesignator ArrayOrRange;
3075    };
3076    friend class DesignatedInitExpr;
3077
3078  public:
3079    Designator() {}
3080
3081    /// @brief Initializes a field designator.
3082    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3083               SourceLocation FieldLoc)
3084      : Kind(FieldDesignator) {
3085      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3086      Field.DotLoc = DotLoc.getRawEncoding();
3087      Field.FieldLoc = FieldLoc.getRawEncoding();
3088    }
3089
3090    /// @brief Initializes an array designator.
3091    Designator(unsigned Index, SourceLocation LBracketLoc,
3092               SourceLocation RBracketLoc)
3093      : Kind(ArrayDesignator) {
3094      ArrayOrRange.Index = Index;
3095      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3096      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3097      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3098    }
3099
3100    /// @brief Initializes a GNU array-range designator.
3101    Designator(unsigned Index, SourceLocation LBracketLoc,
3102               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3103      : Kind(ArrayRangeDesignator) {
3104      ArrayOrRange.Index = Index;
3105      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3106      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3107      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3108    }
3109
3110    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3111    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3112    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3113
3114    IdentifierInfo * getFieldName();
3115
3116    FieldDecl *getField() {
3117      assert(Kind == FieldDesignator && "Only valid on a field designator");
3118      if (Field.NameOrField & 0x01)
3119        return 0;
3120      else
3121        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3122    }
3123
3124    void setField(FieldDecl *FD) {
3125      assert(Kind == FieldDesignator && "Only valid on a field designator");
3126      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3127    }
3128
3129    SourceLocation getDotLoc() const {
3130      assert(Kind == FieldDesignator && "Only valid on a field designator");
3131      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3132    }
3133
3134    SourceLocation getFieldLoc() const {
3135      assert(Kind == FieldDesignator && "Only valid on a field designator");
3136      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3137    }
3138
3139    SourceLocation getLBracketLoc() const {
3140      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3141             "Only valid on an array or array-range designator");
3142      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3143    }
3144
3145    SourceLocation getRBracketLoc() const {
3146      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3147             "Only valid on an array or array-range designator");
3148      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3149    }
3150
3151    SourceLocation getEllipsisLoc() const {
3152      assert(Kind == ArrayRangeDesignator &&
3153             "Only valid on an array-range designator");
3154      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3155    }
3156
3157    unsigned getFirstExprIndex() const {
3158      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3159             "Only valid on an array or array-range designator");
3160      return ArrayOrRange.Index;
3161    }
3162
3163    SourceLocation getStartLocation() const {
3164      if (Kind == FieldDesignator)
3165        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3166      else
3167        return getLBracketLoc();
3168    }
3169  };
3170
3171  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3172                                    unsigned NumDesignators,
3173                                    Expr **IndexExprs, unsigned NumIndexExprs,
3174                                    SourceLocation EqualOrColonLoc,
3175                                    bool GNUSyntax, Expr *Init);
3176
3177  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3178
3179  /// @brief Returns the number of designators in this initializer.
3180  unsigned size() const { return NumDesignators; }
3181
3182  // Iterator access to the designators.
3183  typedef Designator* designators_iterator;
3184  designators_iterator designators_begin() { return Designators; }
3185  designators_iterator designators_end() {
3186    return Designators + NumDesignators;
3187  }
3188
3189  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3190
3191  void setDesignators(ASTContext &C, const Designator *Desigs,
3192                      unsigned NumDesigs);
3193
3194  Expr *getArrayIndex(const Designator& D);
3195  Expr *getArrayRangeStart(const Designator& D);
3196  Expr *getArrayRangeEnd(const Designator& D);
3197
3198  /// @brief Retrieve the location of the '=' that precedes the
3199  /// initializer value itself, if present.
3200  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3201  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3202
3203  /// @brief Determines whether this designated initializer used the
3204  /// deprecated GNU syntax for designated initializers.
3205  bool usesGNUSyntax() const { return GNUSyntax; }
3206  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3207
3208  /// @brief Retrieve the initializer value.
3209  Expr *getInit() const {
3210    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3211  }
3212
3213  void setInit(Expr *init) {
3214    *child_begin() = init;
3215  }
3216
3217  /// \brief Retrieve the total number of subexpressions in this
3218  /// designated initializer expression, including the actual
3219  /// initialized value and any expressions that occur within array
3220  /// and array-range designators.
3221  unsigned getNumSubExprs() const { return NumSubExprs; }
3222
3223  Expr *getSubExpr(unsigned Idx) {
3224    assert(Idx < NumSubExprs && "Subscript out of range");
3225    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3226    Ptr += sizeof(DesignatedInitExpr);
3227    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3228  }
3229
3230  void setSubExpr(unsigned Idx, Expr *E) {
3231    assert(Idx < NumSubExprs && "Subscript out of range");
3232    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3233    Ptr += sizeof(DesignatedInitExpr);
3234    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3235  }
3236
3237  /// \brief Replaces the designator at index @p Idx with the series
3238  /// of designators in [First, Last).
3239  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3240                        const Designator *Last);
3241
3242  virtual SourceRange getSourceRange() const;
3243
3244  static bool classof(const Stmt *T) {
3245    return T->getStmtClass() == DesignatedInitExprClass;
3246  }
3247  static bool classof(const DesignatedInitExpr *) { return true; }
3248
3249  // Iterators
3250  virtual child_iterator child_begin();
3251  virtual child_iterator child_end();
3252};
3253
3254/// \brief Represents an implicitly-generated value initialization of
3255/// an object of a given type.
3256///
3257/// Implicit value initializations occur within semantic initializer
3258/// list expressions (InitListExpr) as placeholders for subobject
3259/// initializations not explicitly specified by the user.
3260///
3261/// \see InitListExpr
3262class ImplicitValueInitExpr : public Expr {
3263public:
3264  explicit ImplicitValueInitExpr(QualType ty)
3265    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3266
3267  /// \brief Construct an empty implicit value initialization.
3268  explicit ImplicitValueInitExpr(EmptyShell Empty)
3269    : Expr(ImplicitValueInitExprClass, Empty) { }
3270
3271  static bool classof(const Stmt *T) {
3272    return T->getStmtClass() == ImplicitValueInitExprClass;
3273  }
3274  static bool classof(const ImplicitValueInitExpr *) { return true; }
3275
3276  virtual SourceRange getSourceRange() const {
3277    return SourceRange();
3278  }
3279
3280  // Iterators
3281  virtual child_iterator child_begin();
3282  virtual child_iterator child_end();
3283};
3284
3285
3286class ParenListExpr : public Expr {
3287  Stmt **Exprs;
3288  unsigned NumExprs;
3289  SourceLocation LParenLoc, RParenLoc;
3290
3291public:
3292  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3293                unsigned numexprs, SourceLocation rparenloc);
3294
3295  /// \brief Build an empty paren list.
3296  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3297
3298  unsigned getNumExprs() const { return NumExprs; }
3299
3300  const Expr* getExpr(unsigned Init) const {
3301    assert(Init < getNumExprs() && "Initializer access out of range!");
3302    return cast_or_null<Expr>(Exprs[Init]);
3303  }
3304
3305  Expr* getExpr(unsigned Init) {
3306    assert(Init < getNumExprs() && "Initializer access out of range!");
3307    return cast_or_null<Expr>(Exprs[Init]);
3308  }
3309
3310  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3311
3312  SourceLocation getLParenLoc() const { return LParenLoc; }
3313  SourceLocation getRParenLoc() const { return RParenLoc; }
3314
3315  virtual SourceRange getSourceRange() const {
3316    return SourceRange(LParenLoc, RParenLoc);
3317  }
3318  static bool classof(const Stmt *T) {
3319    return T->getStmtClass() == ParenListExprClass;
3320  }
3321  static bool classof(const ParenListExpr *) { return true; }
3322
3323  // Iterators
3324  virtual child_iterator child_begin();
3325  virtual child_iterator child_end();
3326
3327  friend class ASTStmtReader;
3328  friend class ASTStmtWriter;
3329};
3330
3331
3332//===----------------------------------------------------------------------===//
3333// Clang Extensions
3334//===----------------------------------------------------------------------===//
3335
3336
3337/// ExtVectorElementExpr - This represents access to specific elements of a
3338/// vector, and may occur on the left hand side or right hand side.  For example
3339/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3340///
3341/// Note that the base may have either vector or pointer to vector type, just
3342/// like a struct field reference.
3343///
3344class ExtVectorElementExpr : public Expr {
3345  Stmt *Base;
3346  IdentifierInfo *Accessor;
3347  SourceLocation AccessorLoc;
3348public:
3349  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3350                       SourceLocation loc)
3351    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3352           base->isValueDependent()),
3353      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3354
3355  /// \brief Build an empty vector element expression.
3356  explicit ExtVectorElementExpr(EmptyShell Empty)
3357    : Expr(ExtVectorElementExprClass, Empty) { }
3358
3359  const Expr *getBase() const { return cast<Expr>(Base); }
3360  Expr *getBase() { return cast<Expr>(Base); }
3361  void setBase(Expr *E) { Base = E; }
3362
3363  IdentifierInfo &getAccessor() const { return *Accessor; }
3364  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3365
3366  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3367  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3368
3369  /// getNumElements - Get the number of components being selected.
3370  unsigned getNumElements() const;
3371
3372  /// containsDuplicateElements - Return true if any element access is
3373  /// repeated.
3374  bool containsDuplicateElements() const;
3375
3376  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3377  /// aggregate Constant of ConstantInt(s).
3378  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3379
3380  virtual SourceRange getSourceRange() const {
3381    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3382  }
3383
3384  /// isArrow - Return true if the base expression is a pointer to vector,
3385  /// return false if the base expression is a vector.
3386  bool isArrow() const;
3387
3388  static bool classof(const Stmt *T) {
3389    return T->getStmtClass() == ExtVectorElementExprClass;
3390  }
3391  static bool classof(const ExtVectorElementExpr *) { return true; }
3392
3393  // Iterators
3394  virtual child_iterator child_begin();
3395  virtual child_iterator child_end();
3396};
3397
3398
3399/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3400/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3401class BlockExpr : public Expr {
3402protected:
3403  BlockDecl *TheBlock;
3404  bool HasBlockDeclRefExprs;
3405public:
3406  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3407    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3408      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3409
3410  /// \brief Build an empty block expression.
3411  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3412
3413  const BlockDecl *getBlockDecl() const { return TheBlock; }
3414  BlockDecl *getBlockDecl() { return TheBlock; }
3415  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3416
3417  // Convenience functions for probing the underlying BlockDecl.
3418  SourceLocation getCaretLocation() const;
3419  const Stmt *getBody() const;
3420  Stmt *getBody();
3421
3422  virtual SourceRange getSourceRange() const {
3423    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3424  }
3425
3426  /// getFunctionType - Return the underlying function type for this block.
3427  const FunctionType *getFunctionType() const;
3428
3429  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3430  /// inside of the block that reference values outside the block.
3431  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3432  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3433
3434  static bool classof(const Stmt *T) {
3435    return T->getStmtClass() == BlockExprClass;
3436  }
3437  static bool classof(const BlockExpr *) { return true; }
3438
3439  // Iterators
3440  virtual child_iterator child_begin();
3441  virtual child_iterator child_end();
3442};
3443
3444/// BlockDeclRefExpr - A reference to a declared variable, function,
3445/// enum, etc.
3446class BlockDeclRefExpr : public Expr {
3447  ValueDecl *D;
3448  SourceLocation Loc;
3449  bool IsByRef : 1;
3450  bool ConstQualAdded : 1;
3451  Stmt *CopyConstructorVal;
3452public:
3453  // FIXME: Fix type/value dependence!
3454  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3455                   bool constAdded = false,
3456                   Stmt *copyConstructorVal = 0)
3457  : Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false),
3458    D(d), Loc(l), IsByRef(ByRef),
3459    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3460
3461  // \brief Build an empty reference to a declared variable in a
3462  // block.
3463  explicit BlockDeclRefExpr(EmptyShell Empty)
3464    : Expr(BlockDeclRefExprClass, Empty) { }
3465
3466  ValueDecl *getDecl() { return D; }
3467  const ValueDecl *getDecl() const { return D; }
3468  void setDecl(ValueDecl *VD) { D = VD; }
3469
3470  SourceLocation getLocation() const { return Loc; }
3471  void setLocation(SourceLocation L) { Loc = L; }
3472
3473  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3474
3475  bool isByRef() const { return IsByRef; }
3476  void setByRef(bool BR) { IsByRef = BR; }
3477
3478  bool isConstQualAdded() const { return ConstQualAdded; }
3479  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3480
3481  const Expr *getCopyConstructorExpr() const
3482    { return cast_or_null<Expr>(CopyConstructorVal); }
3483  Expr *getCopyConstructorExpr()
3484    { return cast_or_null<Expr>(CopyConstructorVal); }
3485  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3486
3487  static bool classof(const Stmt *T) {
3488    return T->getStmtClass() == BlockDeclRefExprClass;
3489  }
3490  static bool classof(const BlockDeclRefExpr *) { return true; }
3491
3492  // Iterators
3493  virtual child_iterator child_begin();
3494  virtual child_iterator child_end();
3495};
3496
3497}  // end namespace clang
3498
3499#endif
3500