Expr.h revision 3fd95ce225393fe4a3623e429766a8c3f487ff9d
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
243  /// write barrier.
244  bool isOBJCGCCandidate() const;
245
246  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
247  ///  its subexpression.  If that subexpression is also a ParenExpr,
248  ///  then this method recursively returns its subexpression, and so forth.
249  ///  Otherwise, the method returns the current Expr.
250  Expr* IgnoreParens();
251
252  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
253  /// or CastExprs, returning their operand.
254  Expr *IgnoreParenCasts();
255
256  const Expr* IgnoreParens() const {
257    return const_cast<Expr*>(this)->IgnoreParens();
258  }
259  const Expr *IgnoreParenCasts() const {
260    return const_cast<Expr*>(this)->IgnoreParenCasts();
261  }
262
263  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
264  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
265
266  static bool classof(const Stmt *T) {
267    return T->getStmtClass() >= firstExprConstant &&
268           T->getStmtClass() <= lastExprConstant;
269  }
270  static bool classof(const Expr *) { return true; }
271
272  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
273    return cast<Expr>(Stmt::Create(D, C));
274  }
275};
276
277
278//===----------------------------------------------------------------------===//
279// Primary Expressions.
280//===----------------------------------------------------------------------===//
281
282/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
283/// enum, etc.
284class DeclRefExpr : public Expr {
285  NamedDecl *D;
286  SourceLocation Loc;
287
288protected:
289  // FIXME: Eventually, this constructor will go away and all subclasses
290  // will have to provide the type- and value-dependent flags.
291  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
292    Expr(SC, t), D(d), Loc(l) {}
293
294  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
295              bool VD) :
296    Expr(SC, t, TD, VD), D(d), Loc(l) {}
297
298public:
299  // FIXME: Eventually, this constructor will go away and all clients
300  // will have to provide the type- and value-dependent flags.
301  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
302    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
303
304  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
305    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
306
307  NamedDecl *getDecl() { return D; }
308  const NamedDecl *getDecl() const { return D; }
309  void setDecl(NamedDecl *NewD) { D = NewD; }
310
311  SourceLocation getLocation() const { return Loc; }
312  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
313
314  static bool classof(const Stmt *T) {
315    return T->getStmtClass() == DeclRefExprClass ||
316           T->getStmtClass() == CXXConditionDeclExprClass ||
317           T->getStmtClass() == QualifiedDeclRefExprClass;
318  }
319  static bool classof(const DeclRefExpr *) { return true; }
320
321  // Iterators
322  virtual child_iterator child_begin();
323  virtual child_iterator child_end();
324
325  virtual void EmitImpl(llvm::Serializer& S) const;
326  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
327};
328
329/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
330class PredefinedExpr : public Expr {
331public:
332  enum IdentType {
333    Func,
334    Function,
335    PrettyFunction
336  };
337
338private:
339  SourceLocation Loc;
340  IdentType Type;
341public:
342  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
343    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
344
345  IdentType getIdentType() const { return Type; }
346
347  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == PredefinedExprClass;
351  }
352  static bool classof(const PredefinedExpr *) { return true; }
353
354  // Iterators
355  virtual child_iterator child_begin();
356  virtual child_iterator child_end();
357
358  virtual void EmitImpl(llvm::Serializer& S) const;
359  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
360};
361
362class IntegerLiteral : public Expr {
363  llvm::APInt Value;
364  SourceLocation Loc;
365public:
366  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
367  // or UnsignedLongLongTy
368  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
369    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
370    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
371  }
372  const llvm::APInt &getValue() const { return Value; }
373  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
374
375  /// \brief Retrieve the location of the literal.
376  SourceLocation getLocation() const { return Loc; }
377
378  static bool classof(const Stmt *T) {
379    return T->getStmtClass() == IntegerLiteralClass;
380  }
381  static bool classof(const IntegerLiteral *) { return true; }
382
383  // Iterators
384  virtual child_iterator child_begin();
385  virtual child_iterator child_end();
386
387  virtual void EmitImpl(llvm::Serializer& S) const;
388  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
389};
390
391class CharacterLiteral : public Expr {
392  unsigned Value;
393  SourceLocation Loc;
394  bool IsWide;
395public:
396  // type should be IntTy
397  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
398    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
399  }
400  SourceLocation getLoc() const { return Loc; }
401  bool isWide() const { return IsWide; }
402
403  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
404
405  unsigned getValue() const { return Value; }
406
407  static bool classof(const Stmt *T) {
408    return T->getStmtClass() == CharacterLiteralClass;
409  }
410  static bool classof(const CharacterLiteral *) { return true; }
411
412  // Iterators
413  virtual child_iterator child_begin();
414  virtual child_iterator child_end();
415
416  virtual void EmitImpl(llvm::Serializer& S) const;
417  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
418};
419
420class FloatingLiteral : public Expr {
421  llvm::APFloat Value;
422  bool IsExact : 1;
423  SourceLocation Loc;
424public:
425  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
426                  QualType Type, SourceLocation L)
427    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
428
429  const llvm::APFloat &getValue() const { return Value; }
430
431  bool isExact() const { return IsExact; }
432
433  /// getValueAsApproximateDouble - This returns the value as an inaccurate
434  /// double.  Note that this may cause loss of precision, but is useful for
435  /// debugging dumps, etc.
436  double getValueAsApproximateDouble() const;
437
438  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
439
440  static bool classof(const Stmt *T) {
441    return T->getStmtClass() == FloatingLiteralClass;
442  }
443  static bool classof(const FloatingLiteral *) { return true; }
444
445  // Iterators
446  virtual child_iterator child_begin();
447  virtual child_iterator child_end();
448
449  virtual void EmitImpl(llvm::Serializer& S) const;
450  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
451};
452
453/// ImaginaryLiteral - We support imaginary integer and floating point literals,
454/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
455/// IntegerLiteral classes.  Instances of this class always have a Complex type
456/// whose element type matches the subexpression.
457///
458class ImaginaryLiteral : public Expr {
459  Stmt *Val;
460public:
461  ImaginaryLiteral(Expr *val, QualType Ty)
462    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
463
464  const Expr *getSubExpr() const { return cast<Expr>(Val); }
465  Expr *getSubExpr() { return cast<Expr>(Val); }
466
467  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
468  static bool classof(const Stmt *T) {
469    return T->getStmtClass() == ImaginaryLiteralClass;
470  }
471  static bool classof(const ImaginaryLiteral *) { return true; }
472
473  // Iterators
474  virtual child_iterator child_begin();
475  virtual child_iterator child_end();
476
477  virtual void EmitImpl(llvm::Serializer& S) const;
478  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
479};
480
481/// StringLiteral - This represents a string literal expression, e.g. "foo"
482/// or L"bar" (wide strings).  The actual string is returned by getStrData()
483/// is NOT null-terminated, and the length of the string is determined by
484/// calling getByteLength().  The C type for a string is always a
485/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
486/// not.
487///
488/// Note that strings in C can be formed by concatenation of multiple string
489/// literal pptokens in translation phase #6.  This keeps track of the locations
490/// of each of these pieces.
491///
492/// Strings in C can also be truncated and extended by assigning into arrays,
493/// e.g. with constructs like:
494///   char X[2] = "foobar";
495/// In this case, getByteLength() will return 6, but the string literal will
496/// have type "char[2]".
497class StringLiteral : public Expr {
498  const char *StrData;
499  unsigned ByteLength;
500  bool IsWide;
501  unsigned NumConcatenated;
502  SourceLocation TokLocs[1];
503
504  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
505public:
506  /// This is the "fully general" constructor that allows representation of
507  /// strings formed from multiple concatenated tokens.
508  static StringLiteral *Create(ASTContext &C, const char *StrData,
509                               unsigned ByteLength, bool Wide, QualType Ty,
510                               SourceLocation *Loc, unsigned NumStrs);
511
512  /// Simple constructor for string literals made from one token.
513  static StringLiteral *Create(ASTContext &C, const char *StrData,
514                               unsigned ByteLength,
515                               bool Wide, QualType Ty, SourceLocation Loc) {
516    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
517  }
518
519  void Destroy(ASTContext &C);
520
521  const char *getStrData() const { return StrData; }
522  unsigned getByteLength() const { return ByteLength; }
523  bool isWide() const { return IsWide; }
524
525  /// getNumConcatenated - Get the number of string literal tokens that were
526  /// concatenated in translation phase #6 to form this string literal.
527  unsigned getNumConcatenated() const { return NumConcatenated; }
528
529  SourceLocation getStrTokenLoc(unsigned TokNum) const {
530    assert(TokNum < NumConcatenated && "Invalid tok number");
531    return TokLocs[TokNum];
532  }
533
534  typedef const SourceLocation *tokloc_iterator;
535  tokloc_iterator tokloc_begin() const { return TokLocs; }
536  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
537
538  virtual SourceRange getSourceRange() const {
539    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
540  }
541  static bool classof(const Stmt *T) {
542    return T->getStmtClass() == StringLiteralClass;
543  }
544  static bool classof(const StringLiteral *) { return true; }
545
546  // Iterators
547  virtual child_iterator child_begin();
548  virtual child_iterator child_end();
549
550  virtual void EmitImpl(llvm::Serializer& S) const;
551  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
552};
553
554/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
555/// AST node is only formed if full location information is requested.
556class ParenExpr : public Expr {
557  SourceLocation L, R;
558  Stmt *Val;
559public:
560  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
561    : Expr(ParenExprClass, val->getType(),
562           val->isTypeDependent(), val->isValueDependent()),
563      L(l), R(r), Val(val) {}
564
565  const Expr *getSubExpr() const { return cast<Expr>(Val); }
566  Expr *getSubExpr() { return cast<Expr>(Val); }
567  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
568
569  /// \brief Get the location of the left parentheses '('.
570  SourceLocation getLParen() const { return L; }
571
572  /// \brief Get the location of the right parentheses ')'.
573  SourceLocation getRParen() const { return R; }
574
575  static bool classof(const Stmt *T) {
576    return T->getStmtClass() == ParenExprClass;
577  }
578  static bool classof(const ParenExpr *) { return true; }
579
580  // Iterators
581  virtual child_iterator child_begin();
582  virtual child_iterator child_end();
583
584  virtual void EmitImpl(llvm::Serializer& S) const;
585  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
586};
587
588
589/// UnaryOperator - This represents the unary-expression's (except sizeof and
590/// alignof), the postinc/postdec operators from postfix-expression, and various
591/// extensions.
592///
593/// Notes on various nodes:
594///
595/// Real/Imag - These return the real/imag part of a complex operand.  If
596///   applied to a non-complex value, the former returns its operand and the
597///   later returns zero in the type of the operand.
598///
599/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
600///   subexpression is a compound literal with the various MemberExpr and
601///   ArraySubscriptExpr's applied to it.
602///
603class UnaryOperator : public Expr {
604public:
605  // Note that additions to this should also update the StmtVisitor class.
606  enum Opcode {
607    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
608    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
609    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
610    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
611    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
612    Real, Imag,       // "__real expr"/"__imag expr" Extension.
613    Extension,        // __extension__ marker.
614    OffsetOf          // __builtin_offsetof
615  };
616private:
617  Stmt *Val;
618  Opcode Opc;
619  SourceLocation Loc;
620public:
621
622  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
623    : Expr(UnaryOperatorClass, type,
624           input->isTypeDependent() && opc != OffsetOf,
625           input->isValueDependent()),
626      Val(input), Opc(opc), Loc(l) {}
627
628  Opcode getOpcode() const { return Opc; }
629  Expr *getSubExpr() const { return cast<Expr>(Val); }
630
631  /// getOperatorLoc - Return the location of the operator.
632  SourceLocation getOperatorLoc() const { return Loc; }
633
634  /// isPostfix - Return true if this is a postfix operation, like x++.
635  static bool isPostfix(Opcode Op) {
636    return Op == PostInc || Op == PostDec;
637  }
638
639  /// isPostfix - Return true if this is a prefix operation, like --x.
640  static bool isPrefix(Opcode Op) {
641    return Op == PreInc || Op == PreDec;
642  }
643
644  bool isPrefix() const { return isPrefix(Opc); }
645  bool isPostfix() const { return isPostfix(Opc); }
646  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
647  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
648  bool isOffsetOfOp() const { return Opc == OffsetOf; }
649  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
650
651  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
652  /// corresponds to, e.g. "sizeof" or "[pre]++"
653  static const char *getOpcodeStr(Opcode Op);
654
655  virtual SourceRange getSourceRange() const {
656    if (isPostfix())
657      return SourceRange(Val->getLocStart(), Loc);
658    else
659      return SourceRange(Loc, Val->getLocEnd());
660  }
661  virtual SourceLocation getExprLoc() const { return Loc; }
662
663  static bool classof(const Stmt *T) {
664    return T->getStmtClass() == UnaryOperatorClass;
665  }
666  static bool classof(const UnaryOperator *) { return true; }
667
668  // Iterators
669  virtual child_iterator child_begin();
670  virtual child_iterator child_end();
671
672  virtual void EmitImpl(llvm::Serializer& S) const;
673  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
674};
675
676/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
677/// types and expressions.
678class SizeOfAlignOfExpr : public Expr {
679  bool isSizeof : 1;  // true if sizeof, false if alignof.
680  bool isType : 1;    // true if operand is a type, false if an expression
681  union {
682    void *Ty;
683    Stmt *Ex;
684  } Argument;
685  SourceLocation OpLoc, RParenLoc;
686public:
687  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
688                    QualType resultType, SourceLocation op,
689                    SourceLocation rp) :
690      Expr(SizeOfAlignOfExprClass, resultType,
691           false, // Never type-dependent.
692           // Value-dependent if the argument is type-dependent.
693           (istype ? QualType::getFromOpaquePtr(argument)->isDependentType()
694                   : static_cast<Expr*>(argument)->isTypeDependent())),
695      isSizeof(issizeof), isType(istype), OpLoc(op), RParenLoc(rp) {
696    if (isType)
697      Argument.Ty = argument;
698    else
699      // argument was an Expr*, so cast it back to that to be safe
700      Argument.Ex = static_cast<Expr*>(argument);
701  }
702
703  virtual void Destroy(ASTContext& C);
704
705  bool isSizeOf() const { return isSizeof; }
706  bool isArgumentType() const { return isType; }
707  QualType getArgumentType() const {
708    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
709    return QualType::getFromOpaquePtr(Argument.Ty);
710  }
711  Expr *getArgumentExpr() {
712    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
713    return static_cast<Expr*>(Argument.Ex);
714  }
715  const Expr *getArgumentExpr() const {
716    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
717  }
718
719  /// Gets the argument type, or the type of the argument expression, whichever
720  /// is appropriate.
721  QualType getTypeOfArgument() const {
722    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
723  }
724
725  SourceLocation getOperatorLoc() const { return OpLoc; }
726
727  virtual SourceRange getSourceRange() const {
728    return SourceRange(OpLoc, RParenLoc);
729  }
730
731  static bool classof(const Stmt *T) {
732    return T->getStmtClass() == SizeOfAlignOfExprClass;
733  }
734  static bool classof(const SizeOfAlignOfExpr *) { return true; }
735
736  // Iterators
737  virtual child_iterator child_begin();
738  virtual child_iterator child_end();
739
740  virtual void EmitImpl(llvm::Serializer& S) const;
741  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
742};
743
744//===----------------------------------------------------------------------===//
745// Postfix Operators.
746//===----------------------------------------------------------------------===//
747
748/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
749class ArraySubscriptExpr : public Expr {
750  enum { LHS, RHS, END_EXPR=2 };
751  Stmt* SubExprs[END_EXPR];
752  SourceLocation RBracketLoc;
753public:
754  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
755                     SourceLocation rbracketloc)
756  : Expr(ArraySubscriptExprClass, t,
757         lhs->isTypeDependent() || rhs->isTypeDependent(),
758         lhs->isValueDependent() || rhs->isValueDependent()),
759    RBracketLoc(rbracketloc) {
760    SubExprs[LHS] = lhs;
761    SubExprs[RHS] = rhs;
762  }
763
764  /// An array access can be written A[4] or 4[A] (both are equivalent).
765  /// - getBase() and getIdx() always present the normalized view: A[4].
766  ///    In this case getBase() returns "A" and getIdx() returns "4".
767  /// - getLHS() and getRHS() present the syntactic view. e.g. for
768  ///    4[A] getLHS() returns "4".
769  /// Note: Because vector element access is also written A[4] we must
770  /// predicate the format conversion in getBase and getIdx only on the
771  /// the type of the RHS, as it is possible for the LHS to be a vector of
772  /// integer type
773  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
774  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
775
776  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
777  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
778
779  Expr *getBase() {
780    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
781  }
782
783  const Expr *getBase() const {
784    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
785  }
786
787  Expr *getIdx() {
788    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
789  }
790
791  const Expr *getIdx() const {
792    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
793  }
794
795  virtual SourceRange getSourceRange() const {
796    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
797  }
798
799  SourceLocation getRBracketLoc() const { return RBracketLoc; }
800  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
801
802  static bool classof(const Stmt *T) {
803    return T->getStmtClass() == ArraySubscriptExprClass;
804  }
805  static bool classof(const ArraySubscriptExpr *) { return true; }
806
807  // Iterators
808  virtual child_iterator child_begin();
809  virtual child_iterator child_end();
810
811  virtual void EmitImpl(llvm::Serializer& S) const;
812  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
813};
814
815
816/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
817/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
818/// while its subclasses may represent alternative syntax that (semantically)
819/// results in a function call. For example, CXXOperatorCallExpr is
820/// a subclass for overloaded operator calls that use operator syntax, e.g.,
821/// "str1 + str2" to resolve to a function call.
822class CallExpr : public Expr {
823  enum { FN=0, ARGS_START=1 };
824  Stmt **SubExprs;
825  unsigned NumArgs;
826  SourceLocation RParenLoc;
827
828  // This version of the ctor is for deserialization.
829  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
830           SourceLocation rparenloc)
831  : Expr(SC,t), SubExprs(subexprs),
832    NumArgs(numargs), RParenLoc(rparenloc) {}
833
834protected:
835  // This version of the constructor is for derived classes.
836  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
837           QualType t, SourceLocation rparenloc);
838
839public:
840  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
841           SourceLocation rparenloc);
842
843  ~CallExpr() {}
844
845  void Destroy(ASTContext& C);
846
847  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
848  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
849  void setCallee(Expr *F) { SubExprs[FN] = F; }
850
851  /// getNumArgs - Return the number of actual arguments to this call.
852  ///
853  unsigned getNumArgs() const { return NumArgs; }
854
855  /// getArg - Return the specified argument.
856  Expr *getArg(unsigned Arg) {
857    assert(Arg < NumArgs && "Arg access out of range!");
858    return cast<Expr>(SubExprs[Arg+ARGS_START]);
859  }
860  const Expr *getArg(unsigned Arg) const {
861    assert(Arg < NumArgs && "Arg access out of range!");
862    return cast<Expr>(SubExprs[Arg+ARGS_START]);
863  }
864
865  // FIXME: Why is this needed?  Why not just create the CallExpr with the
866  // corect number of arguments?  It makes the ASTs less brittle.
867  /// setArg - Set the specified argument.
868  void setArg(unsigned Arg, Expr *ArgExpr) {
869    assert(Arg < NumArgs && "Arg access out of range!");
870    SubExprs[Arg+ARGS_START] = ArgExpr;
871  }
872
873  // FIXME: It would be great to just get rid of this.  There is only one
874  // callee of this method, and it probably could be refactored to not use
875  // this method and instead just create a CallExpr with the right number of
876  // arguments.
877  /// setNumArgs - This changes the number of arguments present in this call.
878  /// Any orphaned expressions are deleted by this, and any new operands are set
879  /// to null.
880  void setNumArgs(ASTContext& C, unsigned NumArgs);
881
882  typedef ExprIterator arg_iterator;
883  typedef ConstExprIterator const_arg_iterator;
884
885  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
886  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
887  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
888  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
889
890  /// getNumCommas - Return the number of commas that must have been present in
891  /// this function call.
892  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
893
894  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
895  /// not, return 0.
896  unsigned isBuiltinCall(ASTContext &Context) const;
897
898  SourceLocation getRParenLoc() const { return RParenLoc; }
899
900  virtual SourceRange getSourceRange() const {
901    return SourceRange(getCallee()->getLocStart(), RParenLoc);
902  }
903
904  static bool classof(const Stmt *T) {
905    return T->getStmtClass() == CallExprClass ||
906           T->getStmtClass() == CXXOperatorCallExprClass ||
907           T->getStmtClass() == CXXMemberCallExprClass;
908  }
909  static bool classof(const CallExpr *) { return true; }
910  static bool classof(const CXXOperatorCallExpr *) { return true; }
911  static bool classof(const CXXMemberCallExpr *) { return true; }
912
913  // Iterators
914  virtual child_iterator child_begin();
915  virtual child_iterator child_end();
916
917  virtual void EmitImpl(llvm::Serializer& S) const;
918  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
919                              StmtClass SC);
920};
921
922/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
923///
924class MemberExpr : public Expr {
925  /// Base - the expression for the base pointer or structure references.  In
926  /// X.F, this is "X".
927  Stmt *Base;
928
929  /// MemberDecl - This is the decl being referenced by the field/member name.
930  /// In X.F, this is the decl referenced by F.
931  NamedDecl *MemberDecl;
932
933  /// MemberLoc - This is the location of the member name.
934  SourceLocation MemberLoc;
935
936  /// IsArrow - True if this is "X->F", false if this is "X.F".
937  bool IsArrow;
938public:
939  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
940             QualType ty)
941    : Expr(MemberExprClass, ty),
942      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
943
944  void setBase(Expr *E) { Base = E; }
945  Expr *getBase() const { return cast<Expr>(Base); }
946  NamedDecl *getMemberDecl() const { return MemberDecl; }
947  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
948  bool isArrow() const { return IsArrow; }
949
950  /// getMemberLoc - Return the location of the "member", in X->F, it is the
951  /// location of 'F'.
952  SourceLocation getMemberLoc() const { return MemberLoc; }
953
954  virtual SourceRange getSourceRange() const {
955    return SourceRange(getBase()->getLocStart(), MemberLoc);
956  }
957
958  virtual SourceLocation getExprLoc() const { return MemberLoc; }
959
960  static bool classof(const Stmt *T) {
961    return T->getStmtClass() == MemberExprClass;
962  }
963  static bool classof(const MemberExpr *) { return true; }
964
965  // Iterators
966  virtual child_iterator child_begin();
967  virtual child_iterator child_end();
968
969  virtual void EmitImpl(llvm::Serializer& S) const;
970  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
971};
972
973/// CompoundLiteralExpr - [C99 6.5.2.5]
974///
975class CompoundLiteralExpr : public Expr {
976  /// LParenLoc - If non-null, this is the location of the left paren in a
977  /// compound literal like "(int){4}".  This can be null if this is a
978  /// synthesized compound expression.
979  SourceLocation LParenLoc;
980  Stmt *Init;
981  bool FileScope;
982public:
983  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
984                      bool fileScope)
985    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
986      FileScope(fileScope) {}
987
988  const Expr *getInitializer() const { return cast<Expr>(Init); }
989  Expr *getInitializer() { return cast<Expr>(Init); }
990
991  bool isFileScope() const { return FileScope; }
992
993  SourceLocation getLParenLoc() const { return LParenLoc; }
994
995  virtual SourceRange getSourceRange() const {
996    // FIXME: Init should never be null.
997    if (!Init)
998      return SourceRange();
999    if (LParenLoc.isInvalid())
1000      return Init->getSourceRange();
1001    return SourceRange(LParenLoc, Init->getLocEnd());
1002  }
1003
1004  static bool classof(const Stmt *T) {
1005    return T->getStmtClass() == CompoundLiteralExprClass;
1006  }
1007  static bool classof(const CompoundLiteralExpr *) { return true; }
1008
1009  // Iterators
1010  virtual child_iterator child_begin();
1011  virtual child_iterator child_end();
1012
1013  virtual void EmitImpl(llvm::Serializer& S) const;
1014  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1015};
1016
1017/// CastExpr - Base class for type casts, including both implicit
1018/// casts (ImplicitCastExpr) and explicit casts that have some
1019/// representation in the source code (ExplicitCastExpr's derived
1020/// classes).
1021class CastExpr : public Expr {
1022  Stmt *Op;
1023protected:
1024  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1025    Expr(SC, ty,
1026         // Cast expressions are type-dependent if the type is
1027         // dependent (C++ [temp.dep.expr]p3).
1028         ty->isDependentType(),
1029         // Cast expressions are value-dependent if the type is
1030         // dependent or if the subexpression is value-dependent.
1031         ty->isDependentType() || (op && op->isValueDependent())),
1032    Op(op) {}
1033
1034public:
1035  Expr *getSubExpr() { return cast<Expr>(Op); }
1036  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1037
1038  static bool classof(const Stmt *T) {
1039    StmtClass SC = T->getStmtClass();
1040    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1041      return true;
1042
1043    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1044      return true;
1045
1046    return false;
1047  }
1048  static bool classof(const CastExpr *) { return true; }
1049
1050  // Iterators
1051  virtual child_iterator child_begin();
1052  virtual child_iterator child_end();
1053};
1054
1055/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1056/// conversions, which have no direct representation in the original
1057/// source code. For example: converting T[]->T*, void f()->void
1058/// (*f)(), float->double, short->int, etc.
1059///
1060/// In C, implicit casts always produce rvalues. However, in C++, an
1061/// implicit cast whose result is being bound to a reference will be
1062/// an lvalue. For example:
1063///
1064/// @code
1065/// class Base { };
1066/// class Derived : public Base { };
1067/// void f(Derived d) {
1068///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1069/// }
1070/// @endcode
1071class ImplicitCastExpr : public CastExpr {
1072  /// LvalueCast - Whether this cast produces an lvalue.
1073  bool LvalueCast;
1074
1075public:
1076  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1077    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1078
1079  virtual SourceRange getSourceRange() const {
1080    return getSubExpr()->getSourceRange();
1081  }
1082
1083  /// isLvalueCast - Whether this cast produces an lvalue.
1084  bool isLvalueCast() const { return LvalueCast; }
1085
1086  /// setLvalueCast - Set whether this cast produces an lvalue.
1087  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1088
1089  static bool classof(const Stmt *T) {
1090    return T->getStmtClass() == ImplicitCastExprClass;
1091  }
1092  static bool classof(const ImplicitCastExpr *) { return true; }
1093
1094  virtual void EmitImpl(llvm::Serializer& S) const;
1095  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1096};
1097
1098/// ExplicitCastExpr - An explicit cast written in the source
1099/// code.
1100///
1101/// This class is effectively an abstract class, because it provides
1102/// the basic representation of an explicitly-written cast without
1103/// specifying which kind of cast (C cast, functional cast, static
1104/// cast, etc.) was written; specific derived classes represent the
1105/// particular style of cast and its location information.
1106///
1107/// Unlike implicit casts, explicit cast nodes have two different
1108/// types: the type that was written into the source code, and the
1109/// actual type of the expression as determined by semantic
1110/// analysis. These types may differ slightly. For example, in C++ one
1111/// can cast to a reference type, which indicates that the resulting
1112/// expression will be an lvalue. The reference type, however, will
1113/// not be used as the type of the expression.
1114class ExplicitCastExpr : public CastExpr {
1115  /// TypeAsWritten - The type that this expression is casting to, as
1116  /// written in the source code.
1117  QualType TypeAsWritten;
1118
1119protected:
1120  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1121    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1122
1123public:
1124  /// getTypeAsWritten - Returns the type that this expression is
1125  /// casting to, as written in the source code.
1126  QualType getTypeAsWritten() const { return TypeAsWritten; }
1127
1128  static bool classof(const Stmt *T) {
1129    StmtClass SC = T->getStmtClass();
1130    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1131      return true;
1132    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1133      return true;
1134
1135    return false;
1136  }
1137  static bool classof(const ExplicitCastExpr *) { return true; }
1138};
1139
1140/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1141/// cast in C++ (C++ [expr.cast]), which uses the syntax
1142/// (Type)expr. For example: @c (int)f.
1143class CStyleCastExpr : public ExplicitCastExpr {
1144  SourceLocation LPLoc; // the location of the left paren
1145  SourceLocation RPLoc; // the location of the right paren
1146public:
1147  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1148                    SourceLocation l, SourceLocation r) :
1149    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1150    LPLoc(l), RPLoc(r) {}
1151
1152  SourceLocation getLParenLoc() const { return LPLoc; }
1153  SourceLocation getRParenLoc() const { return RPLoc; }
1154
1155  virtual SourceRange getSourceRange() const {
1156    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1157  }
1158  static bool classof(const Stmt *T) {
1159    return T->getStmtClass() == CStyleCastExprClass;
1160  }
1161  static bool classof(const CStyleCastExpr *) { return true; }
1162
1163  virtual void EmitImpl(llvm::Serializer& S) const;
1164  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1165};
1166
1167/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1168///
1169/// This expression node kind describes a builtin binary operation,
1170/// such as "x + y" for integer values "x" and "y". The operands will
1171/// already have been converted to appropriate types (e.g., by
1172/// performing promotions or conversions).
1173///
1174/// In C++, where operators may be overloaded, a different kind of
1175/// expression node (CXXOperatorCallExpr) is used to express the
1176/// invocation of an overloaded operator with operator syntax. Within
1177/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1178/// used to store an expression "x + y" depends on the subexpressions
1179/// for x and y. If neither x or y is type-dependent, and the "+"
1180/// operator resolves to a built-in operation, BinaryOperator will be
1181/// used to express the computation (x and y may still be
1182/// value-dependent). If either x or y is type-dependent, or if the
1183/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1184/// be used to express the computation.
1185class BinaryOperator : public Expr {
1186public:
1187  enum Opcode {
1188    // Operators listed in order of precedence.
1189    // Note that additions to this should also update the StmtVisitor class.
1190    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1191    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1192    Add, Sub,         // [C99 6.5.6] Additive operators.
1193    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1194    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1195    EQ, NE,           // [C99 6.5.9] Equality operators.
1196    And,              // [C99 6.5.10] Bitwise AND operator.
1197    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1198    Or,               // [C99 6.5.12] Bitwise OR operator.
1199    LAnd,             // [C99 6.5.13] Logical AND operator.
1200    LOr,              // [C99 6.5.14] Logical OR operator.
1201    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1202    DivAssign, RemAssign,
1203    AddAssign, SubAssign,
1204    ShlAssign, ShrAssign,
1205    AndAssign, XorAssign,
1206    OrAssign,
1207    Comma             // [C99 6.5.17] Comma operator.
1208  };
1209private:
1210  enum { LHS, RHS, END_EXPR };
1211  Stmt* SubExprs[END_EXPR];
1212  Opcode Opc;
1213  SourceLocation OpLoc;
1214public:
1215
1216  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1217                 SourceLocation opLoc)
1218    : Expr(BinaryOperatorClass, ResTy,
1219           lhs->isTypeDependent() || rhs->isTypeDependent(),
1220           lhs->isValueDependent() || rhs->isValueDependent()),
1221      Opc(opc), OpLoc(opLoc) {
1222    SubExprs[LHS] = lhs;
1223    SubExprs[RHS] = rhs;
1224    assert(!isCompoundAssignmentOp() &&
1225           "Use ArithAssignBinaryOperator for compound assignments");
1226  }
1227
1228  SourceLocation getOperatorLoc() const { return OpLoc; }
1229  Opcode getOpcode() const { return Opc; }
1230  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1231  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1232  virtual SourceRange getSourceRange() const {
1233    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1234  }
1235
1236  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1237  /// corresponds to, e.g. "<<=".
1238  static const char *getOpcodeStr(Opcode Op);
1239
1240  /// predicates to categorize the respective opcodes.
1241  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1242  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1243  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1244  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1245
1246  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1247  bool isRelationalOp() const { return isRelationalOp(Opc); }
1248
1249  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1250  bool isEqualityOp() const { return isEqualityOp(Opc); }
1251
1252  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1253  bool isLogicalOp() const { return isLogicalOp(Opc); }
1254
1255  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1256  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1257  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1258
1259  static bool classof(const Stmt *S) {
1260    return S->getStmtClass() == BinaryOperatorClass ||
1261           S->getStmtClass() == CompoundAssignOperatorClass;
1262  }
1263  static bool classof(const BinaryOperator *) { return true; }
1264
1265  // Iterators
1266  virtual child_iterator child_begin();
1267  virtual child_iterator child_end();
1268
1269  virtual void EmitImpl(llvm::Serializer& S) const;
1270  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1271
1272protected:
1273  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1274                 SourceLocation oploc, bool dead)
1275    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1276    SubExprs[LHS] = lhs;
1277    SubExprs[RHS] = rhs;
1278  }
1279};
1280
1281/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1282/// track of the type the operation is performed in.  Due to the semantics of
1283/// these operators, the operands are promoted, the aritmetic performed, an
1284/// implicit conversion back to the result type done, then the assignment takes
1285/// place.  This captures the intermediate type which the computation is done
1286/// in.
1287class CompoundAssignOperator : public BinaryOperator {
1288  QualType ComputationType;
1289public:
1290  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1291                         QualType ResType, QualType CompType,
1292                         SourceLocation OpLoc)
1293    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1294      ComputationType(CompType) {
1295    assert(isCompoundAssignmentOp() &&
1296           "Only should be used for compound assignments");
1297  }
1298
1299  QualType getComputationType() const { return ComputationType; }
1300
1301  static bool classof(const CompoundAssignOperator *) { return true; }
1302  static bool classof(const Stmt *S) {
1303    return S->getStmtClass() == CompoundAssignOperatorClass;
1304  }
1305
1306  virtual void EmitImpl(llvm::Serializer& S) const;
1307  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1308                                            ASTContext& C);
1309};
1310
1311/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1312/// GNU "missing LHS" extension is in use.
1313///
1314class ConditionalOperator : public Expr {
1315  enum { COND, LHS, RHS, END_EXPR };
1316  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1317public:
1318  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1319    : Expr(ConditionalOperatorClass, t,
1320           // FIXME: the type of the conditional operator doesn't
1321           // depend on the type of the conditional, but the standard
1322           // seems to imply that it could. File a bug!
1323           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1324           (cond->isValueDependent() ||
1325            (lhs && lhs->isValueDependent()) ||
1326            (rhs && rhs->isValueDependent()))) {
1327    SubExprs[COND] = cond;
1328    SubExprs[LHS] = lhs;
1329    SubExprs[RHS] = rhs;
1330  }
1331
1332  // getCond - Return the expression representing the condition for
1333  //  the ?: operator.
1334  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1335
1336  // getTrueExpr - Return the subexpression representing the value of the ?:
1337  //  expression if the condition evaluates to true.  In most cases this value
1338  //  will be the same as getLHS() except a GCC extension allows the left
1339  //  subexpression to be omitted, and instead of the condition be returned.
1340  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1341  //  is only evaluated once.
1342  Expr *getTrueExpr() const {
1343    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1344  }
1345
1346  // getTrueExpr - Return the subexpression representing the value of the ?:
1347  // expression if the condition evaluates to false. This is the same as getRHS.
1348  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1349
1350  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1351  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1352
1353  virtual SourceRange getSourceRange() const {
1354    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1355  }
1356  static bool classof(const Stmt *T) {
1357    return T->getStmtClass() == ConditionalOperatorClass;
1358  }
1359  static bool classof(const ConditionalOperator *) { return true; }
1360
1361  // Iterators
1362  virtual child_iterator child_begin();
1363  virtual child_iterator child_end();
1364
1365  virtual void EmitImpl(llvm::Serializer& S) const;
1366  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1367};
1368
1369/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1370class AddrLabelExpr : public Expr {
1371  SourceLocation AmpAmpLoc, LabelLoc;
1372  LabelStmt *Label;
1373public:
1374  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1375                QualType t)
1376    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1377
1378  virtual SourceRange getSourceRange() const {
1379    return SourceRange(AmpAmpLoc, LabelLoc);
1380  }
1381
1382  LabelStmt *getLabel() const { return Label; }
1383
1384  static bool classof(const Stmt *T) {
1385    return T->getStmtClass() == AddrLabelExprClass;
1386  }
1387  static bool classof(const AddrLabelExpr *) { return true; }
1388
1389  // Iterators
1390  virtual child_iterator child_begin();
1391  virtual child_iterator child_end();
1392
1393  virtual void EmitImpl(llvm::Serializer& S) const;
1394  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1395};
1396
1397/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1398/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1399/// takes the value of the last subexpression.
1400class StmtExpr : public Expr {
1401  Stmt *SubStmt;
1402  SourceLocation LParenLoc, RParenLoc;
1403public:
1404  StmtExpr(CompoundStmt *substmt, QualType T,
1405           SourceLocation lp, SourceLocation rp) :
1406    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1407
1408  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1409  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1410
1411  virtual SourceRange getSourceRange() const {
1412    return SourceRange(LParenLoc, RParenLoc);
1413  }
1414
1415  SourceLocation getLParenLoc() const { return LParenLoc; }
1416  SourceLocation getRParenLoc() const { return RParenLoc; }
1417
1418  static bool classof(const Stmt *T) {
1419    return T->getStmtClass() == StmtExprClass;
1420  }
1421  static bool classof(const StmtExpr *) { return true; }
1422
1423  // Iterators
1424  virtual child_iterator child_begin();
1425  virtual child_iterator child_end();
1426
1427  virtual void EmitImpl(llvm::Serializer& S) const;
1428  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1429};
1430
1431/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1432/// This AST node represents a function that returns 1 if two *types* (not
1433/// expressions) are compatible. The result of this built-in function can be
1434/// used in integer constant expressions.
1435class TypesCompatibleExpr : public Expr {
1436  QualType Type1;
1437  QualType Type2;
1438  SourceLocation BuiltinLoc, RParenLoc;
1439public:
1440  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1441                      QualType t1, QualType t2, SourceLocation RP) :
1442    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1443    BuiltinLoc(BLoc), RParenLoc(RP) {}
1444
1445  QualType getArgType1() const { return Type1; }
1446  QualType getArgType2() const { return Type2; }
1447
1448  virtual SourceRange getSourceRange() const {
1449    return SourceRange(BuiltinLoc, RParenLoc);
1450  }
1451  static bool classof(const Stmt *T) {
1452    return T->getStmtClass() == TypesCompatibleExprClass;
1453  }
1454  static bool classof(const TypesCompatibleExpr *) { return true; }
1455
1456  // Iterators
1457  virtual child_iterator child_begin();
1458  virtual child_iterator child_end();
1459
1460  virtual void EmitImpl(llvm::Serializer& S) const;
1461  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1462};
1463
1464/// ShuffleVectorExpr - clang-specific builtin-in function
1465/// __builtin_shufflevector.
1466/// This AST node represents a operator that does a constant
1467/// shuffle, similar to LLVM's shufflevector instruction. It takes
1468/// two vectors and a variable number of constant indices,
1469/// and returns the appropriately shuffled vector.
1470class ShuffleVectorExpr : public Expr {
1471  SourceLocation BuiltinLoc, RParenLoc;
1472
1473  // SubExprs - the list of values passed to the __builtin_shufflevector
1474  // function. The first two are vectors, and the rest are constant
1475  // indices.  The number of values in this list is always
1476  // 2+the number of indices in the vector type.
1477  Stmt **SubExprs;
1478  unsigned NumExprs;
1479
1480public:
1481  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1482                    QualType Type, SourceLocation BLoc,
1483                    SourceLocation RP) :
1484    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1485    RParenLoc(RP), NumExprs(nexpr) {
1486
1487    SubExprs = new Stmt*[nexpr];
1488    for (unsigned i = 0; i < nexpr; i++)
1489      SubExprs[i] = args[i];
1490  }
1491
1492  virtual SourceRange getSourceRange() const {
1493    return SourceRange(BuiltinLoc, RParenLoc);
1494  }
1495  static bool classof(const Stmt *T) {
1496    return T->getStmtClass() == ShuffleVectorExprClass;
1497  }
1498  static bool classof(const ShuffleVectorExpr *) { return true; }
1499
1500  ~ShuffleVectorExpr() {
1501    delete [] SubExprs;
1502  }
1503
1504  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1505  /// constant expression, the actual arguments passed in, and the function
1506  /// pointers.
1507  unsigned getNumSubExprs() const { return NumExprs; }
1508
1509  /// getExpr - Return the Expr at the specified index.
1510  Expr *getExpr(unsigned Index) {
1511    assert((Index < NumExprs) && "Arg access out of range!");
1512    return cast<Expr>(SubExprs[Index]);
1513  }
1514  const Expr *getExpr(unsigned Index) const {
1515    assert((Index < NumExprs) && "Arg access out of range!");
1516    return cast<Expr>(SubExprs[Index]);
1517  }
1518
1519  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1520    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1521    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1522  }
1523
1524  // Iterators
1525  virtual child_iterator child_begin();
1526  virtual child_iterator child_end();
1527
1528  virtual void EmitImpl(llvm::Serializer& S) const;
1529  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1530};
1531
1532/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1533/// This AST node is similar to the conditional operator (?:) in C, with
1534/// the following exceptions:
1535/// - the test expression must be a integer constant expression.
1536/// - the expression returned acts like the chosen subexpression in every
1537///   visible way: the type is the same as that of the chosen subexpression,
1538///   and all predicates (whether it's an l-value, whether it's an integer
1539///   constant expression, etc.) return the same result as for the chosen
1540///   sub-expression.
1541class ChooseExpr : public Expr {
1542  enum { COND, LHS, RHS, END_EXPR };
1543  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1544  SourceLocation BuiltinLoc, RParenLoc;
1545public:
1546  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1547             SourceLocation RP)
1548    : Expr(ChooseExprClass, t),
1549      BuiltinLoc(BLoc), RParenLoc(RP) {
1550      SubExprs[COND] = cond;
1551      SubExprs[LHS] = lhs;
1552      SubExprs[RHS] = rhs;
1553    }
1554
1555  /// isConditionTrue - Return whether the condition is true (i.e. not
1556  /// equal to zero).
1557  bool isConditionTrue(ASTContext &C) const;
1558
1559  /// getChosenSubExpr - Return the subexpression chosen according to the
1560  /// condition.
1561  Expr *getChosenSubExpr(ASTContext &C) const {
1562    return isConditionTrue(C) ? getLHS() : getRHS();
1563  }
1564
1565  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1566  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1567  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1568
1569  virtual SourceRange getSourceRange() const {
1570    return SourceRange(BuiltinLoc, RParenLoc);
1571  }
1572  static bool classof(const Stmt *T) {
1573    return T->getStmtClass() == ChooseExprClass;
1574  }
1575  static bool classof(const ChooseExpr *) { return true; }
1576
1577  // Iterators
1578  virtual child_iterator child_begin();
1579  virtual child_iterator child_end();
1580
1581  virtual void EmitImpl(llvm::Serializer& S) const;
1582  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1583};
1584
1585/// GNUNullExpr - Implements the GNU __null extension, which is a name
1586/// for a null pointer constant that has integral type (e.g., int or
1587/// long) and is the same size and alignment as a pointer. The __null
1588/// extension is typically only used by system headers, which define
1589/// NULL as __null in C++ rather than using 0 (which is an integer
1590/// that may not match the size of a pointer).
1591class GNUNullExpr : public Expr {
1592  /// TokenLoc - The location of the __null keyword.
1593  SourceLocation TokenLoc;
1594
1595public:
1596  GNUNullExpr(QualType Ty, SourceLocation Loc)
1597    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1598
1599  /// getTokenLocation - The location of the __null token.
1600  SourceLocation getTokenLocation() const { return TokenLoc; }
1601
1602  virtual SourceRange getSourceRange() const {
1603    return SourceRange(TokenLoc);
1604  }
1605  static bool classof(const Stmt *T) {
1606    return T->getStmtClass() == GNUNullExprClass;
1607  }
1608  static bool classof(const GNUNullExpr *) { return true; }
1609
1610  // Iterators
1611  virtual child_iterator child_begin();
1612  virtual child_iterator child_end();
1613
1614  virtual void EmitImpl(llvm::Serializer& S) const;
1615  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1616};
1617
1618/// VAArgExpr, used for the builtin function __builtin_va_start.
1619class VAArgExpr : public Expr {
1620  Stmt *Val;
1621  SourceLocation BuiltinLoc, RParenLoc;
1622public:
1623  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1624    : Expr(VAArgExprClass, t),
1625      Val(e),
1626      BuiltinLoc(BLoc),
1627      RParenLoc(RPLoc) { }
1628
1629  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1630  Expr *getSubExpr() { return cast<Expr>(Val); }
1631  virtual SourceRange getSourceRange() const {
1632    return SourceRange(BuiltinLoc, RParenLoc);
1633  }
1634  static bool classof(const Stmt *T) {
1635    return T->getStmtClass() == VAArgExprClass;
1636  }
1637  static bool classof(const VAArgExpr *) { return true; }
1638
1639  // Iterators
1640  virtual child_iterator child_begin();
1641  virtual child_iterator child_end();
1642
1643  virtual void EmitImpl(llvm::Serializer& S) const;
1644  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1645};
1646
1647/// @brief Describes an C or C++ initializer list.
1648///
1649/// InitListExpr describes an initializer list, which can be used to
1650/// initialize objects of different types, including
1651/// struct/class/union types, arrays, and vectors. For example:
1652///
1653/// @code
1654/// struct foo x = { 1, { 2, 3 } };
1655/// @endcode
1656///
1657/// Prior to semantic analysis, an initializer list will represent the
1658/// initializer list as written by the user, but will have the
1659/// placeholder type "void". This initializer list is called the
1660/// syntactic form of the initializer, and may contain C99 designated
1661/// initializers (represented as DesignatedInitExprs), initializations
1662/// of subobject members without explicit braces, and so on. Clients
1663/// interested in the original syntax of the initializer list should
1664/// use the syntactic form of the initializer list.
1665///
1666/// After semantic analysis, the initializer list will represent the
1667/// semantic form of the initializer, where the initializations of all
1668/// subobjects are made explicit with nested InitListExpr nodes and
1669/// C99 designators have been eliminated by placing the designated
1670/// initializations into the subobject they initialize. Additionally,
1671/// any "holes" in the initialization, where no initializer has been
1672/// specified for a particular subobject, will be replaced with
1673/// implicitly-generated ImplicitValueInitExpr expressions that
1674/// value-initialize the subobjects. Note, however, that the
1675/// initializer lists may still have fewer initializers than there are
1676/// elements to initialize within the object.
1677///
1678/// Given the semantic form of the initializer list, one can retrieve
1679/// the original syntactic form of that initializer list (if it
1680/// exists) using getSyntacticForm(). Since many initializer lists
1681/// have the same syntactic and semantic forms, getSyntacticForm() may
1682/// return NULL, indicating that the current initializer list also
1683/// serves as its syntactic form.
1684class InitListExpr : public Expr {
1685  std::vector<Stmt *> InitExprs;
1686  SourceLocation LBraceLoc, RBraceLoc;
1687
1688  /// Contains the initializer list that describes the syntactic form
1689  /// written in the source code.
1690  InitListExpr *SyntacticForm;
1691
1692  /// If this initializer list initializes a union, specifies which
1693  /// field within the union will be initialized.
1694  FieldDecl *UnionFieldInit;
1695
1696  /// Whether this initializer list originally had a GNU array-range
1697  /// designator in it. This is a temporary marker used by CodeGen.
1698  bool HadArrayRangeDesignator;
1699
1700public:
1701  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1702               SourceLocation rbraceloc);
1703
1704  unsigned getNumInits() const { return InitExprs.size(); }
1705
1706  const Expr* getInit(unsigned Init) const {
1707    assert(Init < getNumInits() && "Initializer access out of range!");
1708    return cast_or_null<Expr>(InitExprs[Init]);
1709  }
1710
1711  Expr* getInit(unsigned Init) {
1712    assert(Init < getNumInits() && "Initializer access out of range!");
1713    return cast_or_null<Expr>(InitExprs[Init]);
1714  }
1715
1716  void setInit(unsigned Init, Expr *expr) {
1717    assert(Init < getNumInits() && "Initializer access out of range!");
1718    InitExprs[Init] = expr;
1719  }
1720
1721  /// @brief Specify the number of initializers
1722  ///
1723  /// If there are more than @p NumInits initializers, the remaining
1724  /// initializers will be destroyed. If there are fewer than @p
1725  /// NumInits initializers, NULL expressions will be added for the
1726  /// unknown initializers.
1727  void resizeInits(ASTContext &Context, unsigned NumInits);
1728
1729  /// @brief Updates the initializer at index @p Init with the new
1730  /// expression @p expr, and returns the old expression at that
1731  /// location.
1732  ///
1733  /// When @p Init is out of range for this initializer list, the
1734  /// initializer list will be extended with NULL expressions to
1735  /// accomodate the new entry.
1736  Expr *updateInit(unsigned Init, Expr *expr);
1737
1738  /// \brief If this initializes a union, specifies which field in the
1739  /// union to initialize.
1740  ///
1741  /// Typically, this field is the first named field within the
1742  /// union. However, a designated initializer can specify the
1743  /// initialization of a different field within the union.
1744  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1745  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1746
1747  // Explicit InitListExpr's originate from source code (and have valid source
1748  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1749  bool isExplicit() {
1750    return LBraceLoc.isValid() && RBraceLoc.isValid();
1751  }
1752
1753  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1754
1755  /// @brief Retrieve the initializer list that describes the
1756  /// syntactic form of the initializer.
1757  ///
1758  ///
1759  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1760  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1761
1762  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1763  void sawArrayRangeDesignator() {
1764    HadArrayRangeDesignator = true;
1765  }
1766
1767  virtual SourceRange getSourceRange() const {
1768    return SourceRange(LBraceLoc, RBraceLoc);
1769  }
1770  static bool classof(const Stmt *T) {
1771    return T->getStmtClass() == InitListExprClass;
1772  }
1773  static bool classof(const InitListExpr *) { return true; }
1774
1775  // Iterators
1776  virtual child_iterator child_begin();
1777  virtual child_iterator child_end();
1778
1779  typedef std::vector<Stmt *>::iterator iterator;
1780  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1781
1782  iterator begin() { return InitExprs.begin(); }
1783  iterator end() { return InitExprs.end(); }
1784  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1785  reverse_iterator rend() { return InitExprs.rend(); }
1786
1787  // Serailization.
1788  virtual void EmitImpl(llvm::Serializer& S) const;
1789  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1790
1791private:
1792  // Used by serializer.
1793  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1794};
1795
1796/// @brief Represents a C99 designated initializer expression.
1797///
1798/// A designated initializer expression (C99 6.7.8) contains one or
1799/// more designators (which can be field designators, array
1800/// designators, or GNU array-range designators) followed by an
1801/// expression that initializes the field or element(s) that the
1802/// designators refer to. For example, given:
1803///
1804/// @code
1805/// struct point {
1806///   double x;
1807///   double y;
1808/// };
1809/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1810/// @endcode
1811///
1812/// The InitListExpr contains three DesignatedInitExprs, the first of
1813/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1814/// designators, one array designator for @c [2] followed by one field
1815/// designator for @c .y. The initalization expression will be 1.0.
1816class DesignatedInitExpr : public Expr {
1817  /// The location of the '=' or ':' prior to the actual initializer
1818  /// expression.
1819  SourceLocation EqualOrColonLoc;
1820
1821  /// Whether this designated initializer used the GNU deprecated ':'
1822  /// syntax rather than the C99 '=' syntax.
1823  bool UsesColonSyntax : 1;
1824
1825  /// The number of designators in this initializer expression.
1826  unsigned NumDesignators : 15;
1827
1828  /// The number of subexpressions of this initializer expression,
1829  /// which contains both the initializer and any additional
1830  /// expressions used by array and array-range designators.
1831  unsigned NumSubExprs : 16;
1832
1833  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1834                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1835                     unsigned NumSubExprs)
1836    : Expr(DesignatedInitExprClass, Ty),
1837      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1838      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1839
1840public:
1841  /// A field designator, e.g., ".x".
1842  struct FieldDesignator {
1843    /// Refers to the field that is being initialized. The low bit
1844    /// of this field determines whether this is actually a pointer
1845    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1846    /// initially constructed, a field designator will store an
1847    /// IdentifierInfo*. After semantic analysis has resolved that
1848    /// name, the field designator will instead store a FieldDecl*.
1849    uintptr_t NameOrField;
1850
1851    /// The location of the '.' in the designated initializer.
1852    unsigned DotLoc;
1853
1854    /// The location of the field name in the designated initializer.
1855    unsigned FieldLoc;
1856  };
1857
1858  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1859  struct ArrayOrRangeDesignator {
1860    /// Location of the first index expression within the designated
1861    /// initializer expression's list of subexpressions.
1862    unsigned Index;
1863    /// The location of the '[' starting the array range designator.
1864    unsigned LBracketLoc;
1865    /// The location of the ellipsis separating the start and end
1866    /// indices. Only valid for GNU array-range designators.
1867    unsigned EllipsisLoc;
1868    /// The location of the ']' terminating the array range designator.
1869    unsigned RBracketLoc;
1870  };
1871
1872  /// @brief Represents a single C99 designator.
1873  ///
1874  /// @todo This class is infuriatingly similar to clang::Designator,
1875  /// but minor differences (storing indices vs. storing pointers)
1876  /// keep us from reusing it. Try harder, later, to rectify these
1877  /// differences.
1878  class Designator {
1879    /// @brief The kind of designator this describes.
1880    enum {
1881      FieldDesignator,
1882      ArrayDesignator,
1883      ArrayRangeDesignator
1884    } Kind;
1885
1886    union {
1887      /// A field designator, e.g., ".x".
1888      struct FieldDesignator Field;
1889      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1890      struct ArrayOrRangeDesignator ArrayOrRange;
1891    };
1892    friend class DesignatedInitExpr;
1893
1894  public:
1895    /// @brief Initializes a field designator.
1896    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1897               SourceLocation FieldLoc)
1898      : Kind(FieldDesignator) {
1899      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1900      Field.DotLoc = DotLoc.getRawEncoding();
1901      Field.FieldLoc = FieldLoc.getRawEncoding();
1902    }
1903
1904    /// @brief Initializes an array designator.
1905    Designator(unsigned Index, SourceLocation LBracketLoc,
1906               SourceLocation RBracketLoc)
1907      : Kind(ArrayDesignator) {
1908      ArrayOrRange.Index = Index;
1909      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1910      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1911      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1912    }
1913
1914    /// @brief Initializes a GNU array-range designator.
1915    Designator(unsigned Index, SourceLocation LBracketLoc,
1916               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1917      : Kind(ArrayRangeDesignator) {
1918      ArrayOrRange.Index = Index;
1919      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1920      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1921      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1922    }
1923
1924    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1925    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1926    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1927
1928    IdentifierInfo * getFieldName();
1929
1930    FieldDecl *getField() {
1931      assert(Kind == FieldDesignator && "Only valid on a field designator");
1932      if (Field.NameOrField & 0x01)
1933        return 0;
1934      else
1935        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1936    }
1937
1938    void setField(FieldDecl *FD) {
1939      assert(Kind == FieldDesignator && "Only valid on a field designator");
1940      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1941    }
1942
1943    SourceLocation getDotLoc() const {
1944      assert(Kind == FieldDesignator && "Only valid on a field designator");
1945      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1946    }
1947
1948    SourceLocation getFieldLoc() const {
1949      assert(Kind == FieldDesignator && "Only valid on a field designator");
1950      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1951    }
1952
1953    SourceLocation getLBracketLoc() const {
1954      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1955             "Only valid on an array or array-range designator");
1956      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1957    }
1958
1959    SourceLocation getRBracketLoc() const {
1960      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1961             "Only valid on an array or array-range designator");
1962      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1963    }
1964
1965    SourceLocation getEllipsisLoc() const {
1966      assert(Kind == ArrayRangeDesignator &&
1967             "Only valid on an array-range designator");
1968      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1969    }
1970
1971    SourceLocation getStartLocation() const {
1972      if (Kind == FieldDesignator)
1973        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1974      else
1975        return getLBracketLoc();
1976    }
1977  };
1978
1979  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1980                                    unsigned NumDesignators,
1981                                    Expr **IndexExprs, unsigned NumIndexExprs,
1982                                    SourceLocation EqualOrColonLoc,
1983                                    bool UsesColonSyntax, Expr *Init);
1984
1985  /// @brief Returns the number of designators in this initializer.
1986  unsigned size() const { return NumDesignators; }
1987
1988  // Iterator access to the designators.
1989  typedef Designator* designators_iterator;
1990  designators_iterator designators_begin();
1991  designators_iterator designators_end();
1992
1993  Expr *getArrayIndex(const Designator& D);
1994  Expr *getArrayRangeStart(const Designator& D);
1995  Expr *getArrayRangeEnd(const Designator& D);
1996
1997  /// @brief Retrieve the location of the '=' that precedes the
1998  /// initializer value itself, if present.
1999  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2000
2001  /// @brief Determines whether this designated initializer used the
2002  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
2003  bool usesColonSyntax() const { return UsesColonSyntax; }
2004
2005  /// @brief Retrieve the initializer value.
2006  Expr *getInit() const {
2007    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2008  }
2009
2010  void setInit(Expr *init) {
2011    *child_begin() = init;
2012  }
2013
2014  virtual SourceRange getSourceRange() const;
2015
2016  static bool classof(const Stmt *T) {
2017    return T->getStmtClass() == DesignatedInitExprClass;
2018  }
2019  static bool classof(const DesignatedInitExpr *) { return true; }
2020
2021  // Iterators
2022  virtual child_iterator child_begin();
2023  virtual child_iterator child_end();
2024};
2025
2026/// \brief Represents an implicitly-generated value initialization of
2027/// an object of a given type.
2028///
2029/// Implicit value initializations occur within semantic initializer
2030/// list expressions (InitListExpr) as placeholders for subobject
2031/// initializations not explicitly specified by the user.
2032///
2033/// \see InitListExpr
2034class ImplicitValueInitExpr : public Expr {
2035public:
2036  explicit ImplicitValueInitExpr(QualType ty)
2037    : Expr(ImplicitValueInitExprClass, ty) { }
2038
2039  static bool classof(const Stmt *T) {
2040    return T->getStmtClass() == ImplicitValueInitExprClass;
2041  }
2042  static bool classof(const ImplicitValueInitExpr *) { return true; }
2043
2044  virtual SourceRange getSourceRange() const {
2045    return SourceRange();
2046  }
2047
2048  // Iterators
2049  virtual child_iterator child_begin();
2050  virtual child_iterator child_end();
2051};
2052
2053//===----------------------------------------------------------------------===//
2054// Clang Extensions
2055//===----------------------------------------------------------------------===//
2056
2057
2058/// ExtVectorElementExpr - This represents access to specific elements of a
2059/// vector, and may occur on the left hand side or right hand side.  For example
2060/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2061///
2062/// Note that the base may have either vector or pointer to vector type, just
2063/// like a struct field reference.
2064///
2065class ExtVectorElementExpr : public Expr {
2066  Stmt *Base;
2067  IdentifierInfo &Accessor;
2068  SourceLocation AccessorLoc;
2069public:
2070  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2071                       SourceLocation loc)
2072    : Expr(ExtVectorElementExprClass, ty),
2073      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2074
2075  const Expr *getBase() const { return cast<Expr>(Base); }
2076  Expr *getBase() { return cast<Expr>(Base); }
2077
2078  IdentifierInfo &getAccessor() const { return Accessor; }
2079
2080  /// getNumElements - Get the number of components being selected.
2081  unsigned getNumElements() const;
2082
2083  /// containsDuplicateElements - Return true if any element access is
2084  /// repeated.
2085  bool containsDuplicateElements() const;
2086
2087  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2088  /// aggregate Constant of ConstantInt(s).
2089  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2090
2091  virtual SourceRange getSourceRange() const {
2092    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2093  }
2094
2095  /// isArrow - Return true if the base expression is a pointer to vector,
2096  /// return false if the base expression is a vector.
2097  bool isArrow() const;
2098
2099  static bool classof(const Stmt *T) {
2100    return T->getStmtClass() == ExtVectorElementExprClass;
2101  }
2102  static bool classof(const ExtVectorElementExpr *) { return true; }
2103
2104  // Iterators
2105  virtual child_iterator child_begin();
2106  virtual child_iterator child_end();
2107
2108  virtual void EmitImpl(llvm::Serializer& S) const;
2109  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2110};
2111
2112
2113/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2114/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2115class BlockExpr : public Expr {
2116protected:
2117  BlockDecl *TheBlock;
2118  bool HasBlockDeclRefExprs;
2119public:
2120  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2121    : Expr(BlockExprClass, ty),
2122      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2123
2124  const BlockDecl *getBlockDecl() const { return TheBlock; }
2125  BlockDecl *getBlockDecl() { return TheBlock; }
2126
2127  // Convenience functions for probing the underlying BlockDecl.
2128  SourceLocation getCaretLocation() const;
2129  const Stmt *getBody() const;
2130  Stmt *getBody();
2131
2132  virtual SourceRange getSourceRange() const {
2133    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2134  }
2135
2136  /// getFunctionType - Return the underlying function type for this block.
2137  const FunctionType *getFunctionType() const;
2138
2139  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2140  /// contained inside.
2141  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2142
2143  static bool classof(const Stmt *T) {
2144    return T->getStmtClass() == BlockExprClass;
2145  }
2146  static bool classof(const BlockExpr *) { return true; }
2147
2148  // Iterators
2149  virtual child_iterator child_begin();
2150  virtual child_iterator child_end();
2151
2152  virtual void EmitImpl(llvm::Serializer& S) const;
2153  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2154};
2155
2156/// BlockDeclRefExpr - A reference to a declared variable, function,
2157/// enum, etc.
2158class BlockDeclRefExpr : public Expr {
2159  ValueDecl *D;
2160  SourceLocation Loc;
2161  bool IsByRef;
2162public:
2163  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2164       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2165
2166  ValueDecl *getDecl() { return D; }
2167  const ValueDecl *getDecl() const { return D; }
2168  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2169
2170  bool isByRef() const { return IsByRef; }
2171
2172  static bool classof(const Stmt *T) {
2173    return T->getStmtClass() == BlockDeclRefExprClass;
2174  }
2175  static bool classof(const BlockDeclRefExpr *) { return true; }
2176
2177  // Iterators
2178  virtual child_iterator child_begin();
2179  virtual child_iterator child_end();
2180
2181  virtual void EmitImpl(llvm::Serializer& S) const;
2182  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2183};
2184
2185}  // end namespace clang
2186
2187#endif
2188