Expr.h revision 4045107b7384fd68eed5e3e2f06fc2a47e7be0a6
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <vector>
29
30namespace clang {
31  class ASTContext;
32  class APValue;
33  class Decl;
34  class IdentifierInfo;
35  class ParmVarDecl;
36  class NamedDecl;
37  class ValueDecl;
38  class BlockDecl;
39  class CXXBaseSpecifier;
40  class CXXOperatorCallExpr;
41  class CXXMemberCallExpr;
42  class TemplateArgumentLoc;
43  class TemplateArgumentListInfo;
44
45/// \brief A simple array of base specifiers.
46typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
47
48/// Expr - This represents one expression.  Note that Expr's are subclasses of
49/// Stmt.  This allows an expression to be transparently used any place a Stmt
50/// is required.
51///
52class Expr : public Stmt {
53  QualType TR;
54
55  virtual void ANCHOR(); // key function.
56protected:
57  /// TypeDependent - Whether this expression is type-dependent
58  /// (C++ [temp.dep.expr]).
59  bool TypeDependent : 1;
60
61  /// ValueDependent - Whether this expression is value-dependent
62  /// (C++ [temp.dep.constexpr]).
63  bool ValueDependent : 1;
64
65  /// ValueKind - The value classification of this expression.
66  /// Only actually used by certain subclasses.
67  unsigned ValueKind : 2;
68
69  enum { BitsRemaining = 28 };
70
71  Expr(StmtClass SC, QualType T, bool TD, bool VD)
72    : Stmt(SC), TypeDependent(TD), ValueDependent(VD), ValueKind(0) {
73    setType(T);
74  }
75
76  /// \brief Construct an empty expression.
77  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
78
79public:
80  /// \brief Increases the reference count for this expression.
81  ///
82  /// Invoke the Retain() operation when this expression
83  /// is being shared by another owner.
84  Expr *Retain() {
85    Stmt::Retain();
86    return this;
87  }
88
89  QualType getType() const { return TR; }
90  void setType(QualType t) {
91    // In C++, the type of an expression is always adjusted so that it
92    // will not have reference type an expression will never have
93    // reference type (C++ [expr]p6). Use
94    // QualType::getNonReferenceType() to retrieve the non-reference
95    // type. Additionally, inspect Expr::isLvalue to determine whether
96    // an expression that is adjusted in this manner should be
97    // considered an lvalue.
98    assert((t.isNull() || !t->isReferenceType()) &&
99           "Expressions can't have reference type");
100
101    TR = t;
102  }
103
104  /// isValueDependent - Determines whether this expression is
105  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
106  /// array bound of "Chars" in the following example is
107  /// value-dependent.
108  /// @code
109  /// template<int Size, char (&Chars)[Size]> struct meta_string;
110  /// @endcode
111  bool isValueDependent() const { return ValueDependent; }
112
113  /// \brief Set whether this expression is value-dependent or not.
114  void setValueDependent(bool VD) { ValueDependent = VD; }
115
116  /// isTypeDependent - Determines whether this expression is
117  /// type-dependent (C++ [temp.dep.expr]), which means that its type
118  /// could change from one template instantiation to the next. For
119  /// example, the expressions "x" and "x + y" are type-dependent in
120  /// the following code, but "y" is not type-dependent:
121  /// @code
122  /// template<typename T>
123  /// void add(T x, int y) {
124  ///   x + y;
125  /// }
126  /// @endcode
127  bool isTypeDependent() const { return TypeDependent; }
128
129  /// \brief Set whether this expression is type-dependent or not.
130  void setTypeDependent(bool TD) { TypeDependent = TD; }
131
132  /// SourceLocation tokens are not useful in isolation - they are low level
133  /// value objects created/interpreted by SourceManager. We assume AST
134  /// clients will have a pointer to the respective SourceManager.
135  virtual SourceRange getSourceRange() const = 0;
136
137  /// getExprLoc - Return the preferred location for the arrow when diagnosing
138  /// a problem with a generic expression.
139  virtual SourceLocation getExprLoc() const { return getLocStart(); }
140
141  /// isUnusedResultAWarning - Return true if this immediate expression should
142  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
143  /// with location to warn on and the source range[s] to report with the
144  /// warning.
145  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
146                              SourceRange &R2, ASTContext &Ctx) const;
147
148  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
149  /// incomplete type other than void. Nonarray expressions that can be lvalues:
150  ///  - name, where name must be a variable
151  ///  - e[i]
152  ///  - (e), where e must be an lvalue
153  ///  - e.name, where e must be an lvalue
154  ///  - e->name
155  ///  - *e, the type of e cannot be a function type
156  ///  - string-constant
157  ///  - reference type [C++ [expr]]
158  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
159  ///
160  enum isLvalueResult {
161    LV_Valid,
162    LV_NotObjectType,
163    LV_IncompleteVoidType,
164    LV_DuplicateVectorComponents,
165    LV_InvalidExpression,
166    LV_MemberFunction,
167    LV_SubObjCPropertySetting,
168    LV_ClassTemporary
169  };
170  isLvalueResult isLvalue(ASTContext &Ctx) const;
171
172  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
173  /// does not have an incomplete type, does not have a const-qualified type,
174  /// and if it is a structure or union, does not have any member (including,
175  /// recursively, any member or element of all contained aggregates or unions)
176  /// with a const-qualified type.
177  ///
178  /// \param Loc [in] [out] - A source location which *may* be filled
179  /// in with the location of the expression making this a
180  /// non-modifiable lvalue, if specified.
181  enum isModifiableLvalueResult {
182    MLV_Valid,
183    MLV_NotObjectType,
184    MLV_IncompleteVoidType,
185    MLV_DuplicateVectorComponents,
186    MLV_InvalidExpression,
187    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
188    MLV_IncompleteType,
189    MLV_ConstQualified,
190    MLV_ArrayType,
191    MLV_NotBlockQualified,
192    MLV_ReadonlyProperty,
193    MLV_NoSetterProperty,
194    MLV_MemberFunction,
195    MLV_SubObjCPropertySetting,
196    MLV_ClassTemporary
197  };
198  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
199                                              SourceLocation *Loc = 0) const;
200
201  /// \brief The return type of classify(). Represents the C++0x expression
202  ///        taxonomy.
203  class Classification {
204  public:
205    /// \brief The various classification results. Most of these mean prvalue.
206    enum Kinds {
207      CL_LValue,
208      CL_XValue,
209      CL_Function, // Functions cannot be lvalues in C.
210      CL_Void, // Void cannot be an lvalue in C.
211      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
212      CL_MemberFunction, // An expression referring to a member function
213      CL_SubObjCPropertySetting,
214      CL_ClassTemporary, // A prvalue of class type
215      CL_PRValue // A prvalue for any other reason, of any other type
216    };
217    /// \brief The results of modification testing.
218    enum ModifiableType {
219      CM_Untested, // testModifiable was false.
220      CM_Modifiable,
221      CM_RValue, // Not modifiable because it's an rvalue
222      CM_Function, // Not modifiable because it's a function; C++ only
223      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
224      CM_NotBlockQualified, // Not captured in the closure
225      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
226      CM_ConstQualified,
227      CM_ArrayType,
228      CM_IncompleteType
229    };
230
231  private:
232    friend class Expr;
233
234    unsigned short Kind;
235    unsigned short Modifiable;
236
237    explicit Classification(Kinds k, ModifiableType m)
238      : Kind(k), Modifiable(m)
239    {}
240
241  public:
242    Classification() {}
243
244    Kinds getKind() const { return static_cast<Kinds>(Kind); }
245    ModifiableType getModifiable() const {
246      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
247      return static_cast<ModifiableType>(Modifiable);
248    }
249    bool isLValue() const { return Kind == CL_LValue; }
250    bool isXValue() const { return Kind == CL_XValue; }
251    bool isGLValue() const { return Kind <= CL_XValue; }
252    bool isPRValue() const { return Kind >= CL_Function; }
253    bool isRValue() const { return Kind >= CL_XValue; }
254    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
255  };
256  /// \brief Classify - Classify this expression according to the C++0x
257  ///        expression taxonomy.
258  ///
259  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
260  /// old lvalue vs rvalue. This function determines the type of expression this
261  /// is. There are three expression types:
262  /// - lvalues are classical lvalues as in C++03.
263  /// - prvalues are equivalent to rvalues in C++03.
264  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
265  ///   function returning an rvalue reference.
266  /// lvalues and xvalues are collectively referred to as glvalues, while
267  /// prvalues and xvalues together form rvalues.
268  Classification Classify(ASTContext &Ctx) const {
269    return ClassifyImpl(Ctx, 0);
270  }
271
272  /// \brief ClassifyModifiable - Classify this expression according to the
273  ///        C++0x expression taxonomy, and see if it is valid on the left side
274  ///        of an assignment.
275  ///
276  /// This function extends classify in that it also tests whether the
277  /// expression is modifiable (C99 6.3.2.1p1).
278  /// \param Loc A source location that might be filled with a relevant location
279  ///            if the expression is not modifiable.
280  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
281    return ClassifyImpl(Ctx, &Loc);
282  }
283
284private:
285  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
286
287public:
288
289  /// \brief If this expression refers to a bit-field, retrieve the
290  /// declaration of that bit-field.
291  FieldDecl *getBitField();
292
293  const FieldDecl *getBitField() const {
294    return const_cast<Expr*>(this)->getBitField();
295  }
296
297  /// \brief Returns whether this expression refers to a vector element.
298  bool refersToVectorElement() const;
299
300  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
301  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
302  /// but also int expressions which are produced by things like comparisons in
303  /// C.
304  bool isKnownToHaveBooleanValue() const;
305
306  /// isIntegerConstantExpr - Return true if this expression is a valid integer
307  /// constant expression, and, if so, return its value in Result.  If not a
308  /// valid i-c-e, return false and fill in Loc (if specified) with the location
309  /// of the invalid expression.
310  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
311                             SourceLocation *Loc = 0,
312                             bool isEvaluated = true) const;
313  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
314    llvm::APSInt X;
315    return isIntegerConstantExpr(X, Ctx, Loc);
316  }
317  /// isConstantInitializer - Returns true if this expression is a constant
318  /// initializer, which can be emitted at compile-time.
319  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
320
321  /// EvalResult is a struct with detailed info about an evaluated expression.
322  struct EvalResult {
323    /// Val - This is the value the expression can be folded to.
324    APValue Val;
325
326    /// HasSideEffects - Whether the evaluated expression has side effects.
327    /// For example, (f() && 0) can be folded, but it still has side effects.
328    bool HasSideEffects;
329
330    /// Diag - If the expression is unfoldable, then Diag contains a note
331    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
332    /// position for the error, and DiagExpr is the expression that caused
333    /// the error.
334    /// If the expression is foldable, but not an integer constant expression,
335    /// Diag contains a note diagnostic that describes why it isn't an integer
336    /// constant expression. If the expression *is* an integer constant
337    /// expression, then Diag will be zero.
338    unsigned Diag;
339    const Expr *DiagExpr;
340    SourceLocation DiagLoc;
341
342    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
343
344    // isGlobalLValue - Return true if the evaluated lvalue expression
345    // is global.
346    bool isGlobalLValue() const;
347    // hasSideEffects - Return true if the evaluated expression has
348    // side effects.
349    bool hasSideEffects() const {
350      return HasSideEffects;
351    }
352  };
353
354  /// Evaluate - Return true if this is a constant which we can fold using
355  /// any crazy technique (that has nothing to do with language standards) that
356  /// we want to.  If this function returns true, it returns the folded constant
357  /// in Result.
358  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
359
360  /// EvaluateAsBooleanCondition - Return true if this is a constant
361  /// which we we can fold and convert to a boolean condition using
362  /// any crazy technique that we want to.
363  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
364
365  /// isEvaluatable - Call Evaluate to see if this expression can be constant
366  /// folded, but discard the result.
367  bool isEvaluatable(ASTContext &Ctx) const;
368
369  /// HasSideEffects - This routine returns true for all those expressions
370  /// which must be evaluated each time and must not be optimized away
371  /// or evaluated at compile time. Example is a function call, volatile
372  /// variable read.
373  bool HasSideEffects(ASTContext &Ctx) const;
374
375  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
376  /// must be called on an expression that constant folds to an integer.
377  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
378
379  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
380  /// with link time known address.
381  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
382
383  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
384  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
385
386  /// \brief Enumeration used to describe how \c isNullPointerConstant()
387  /// should cope with value-dependent expressions.
388  enum NullPointerConstantValueDependence {
389    /// \brief Specifies that the expression should never be value-dependent.
390    NPC_NeverValueDependent = 0,
391
392    /// \brief Specifies that a value-dependent expression of integral or
393    /// dependent type should be considered a null pointer constant.
394    NPC_ValueDependentIsNull,
395
396    /// \brief Specifies that a value-dependent expression should be considered
397    /// to never be a null pointer constant.
398    NPC_ValueDependentIsNotNull
399  };
400
401  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
402  /// integer constant expression with the value zero, or if this is one that is
403  /// cast to void*.
404  bool isNullPointerConstant(ASTContext &Ctx,
405                             NullPointerConstantValueDependence NPC) const;
406
407  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
408  /// write barrier.
409  bool isOBJCGCCandidate(ASTContext &Ctx) const;
410
411  /// \brief Result type of CanThrow().
412  enum CanThrowResult {
413    CT_Cannot,
414    CT_Dependent,
415    CT_Can
416  };
417  /// \brief Test if this expression, if evaluated, might throw, according to
418  ///        the rules of C++ [expr.unary.noexcept].
419  CanThrowResult CanThrow(ASTContext &C) const;
420
421  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
422  ///  its subexpression.  If that subexpression is also a ParenExpr,
423  ///  then this method recursively returns its subexpression, and so forth.
424  ///  Otherwise, the method returns the current Expr.
425  Expr *IgnoreParens();
426
427  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
428  /// or CastExprs, returning their operand.
429  Expr *IgnoreParenCasts();
430
431  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
432  /// ParenExpr or ImplicitCastExprs, returning their operand.
433  Expr *IgnoreParenImpCasts();
434
435  const Expr *IgnoreParenImpCasts() const {
436    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
437  }
438
439  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
440  /// value (including ptr->int casts of the same size).  Strip off any
441  /// ParenExpr or CastExprs, returning their operand.
442  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
443
444  /// \brief Determine whether this expression is a default function argument.
445  ///
446  /// Default arguments are implicitly generated in the abstract syntax tree
447  /// by semantic analysis for function calls, object constructions, etc. in
448  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
449  /// this routine also looks through any implicit casts to determine whether
450  /// the expression is a default argument.
451  bool isDefaultArgument() const;
452
453  /// \brief Determine whether the result of this expression is a
454  /// temporary object of the given class type.
455  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
456
457  const Expr *IgnoreParens() const {
458    return const_cast<Expr*>(this)->IgnoreParens();
459  }
460  const Expr *IgnoreParenCasts() const {
461    return const_cast<Expr*>(this)->IgnoreParenCasts();
462  }
463  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
464    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
465  }
466
467  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
468  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
469
470  static bool classof(const Stmt *T) {
471    return T->getStmtClass() >= firstExprConstant &&
472           T->getStmtClass() <= lastExprConstant;
473  }
474  static bool classof(const Expr *) { return true; }
475};
476
477
478//===----------------------------------------------------------------------===//
479// Primary Expressions.
480//===----------------------------------------------------------------------===//
481
482/// \brief Represents the qualifier that may precede a C++ name, e.g., the
483/// "std::" in "std::sort".
484struct NameQualifier {
485  /// \brief The nested name specifier.
486  NestedNameSpecifier *NNS;
487
488  /// \brief The source range covered by the nested name specifier.
489  SourceRange Range;
490};
491
492/// \brief Represents an explicit template argument list in C++, e.g.,
493/// the "<int>" in "sort<int>".
494struct ExplicitTemplateArgumentList {
495  /// \brief The source location of the left angle bracket ('<');
496  SourceLocation LAngleLoc;
497
498  /// \brief The source location of the right angle bracket ('>');
499  SourceLocation RAngleLoc;
500
501  /// \brief The number of template arguments in TemplateArgs.
502  /// The actual template arguments (if any) are stored after the
503  /// ExplicitTemplateArgumentList structure.
504  unsigned NumTemplateArgs;
505
506  /// \brief Retrieve the template arguments
507  TemplateArgumentLoc *getTemplateArgs() {
508    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
509  }
510
511  /// \brief Retrieve the template arguments
512  const TemplateArgumentLoc *getTemplateArgs() const {
513    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
514  }
515
516  void initializeFrom(const TemplateArgumentListInfo &List);
517  void copyInto(TemplateArgumentListInfo &List) const;
518  static std::size_t sizeFor(unsigned NumTemplateArgs);
519  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
520};
521
522/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
523/// enum, etc.
524class DeclRefExpr : public Expr {
525  enum {
526    // Flag on DecoratedD that specifies when this declaration reference
527    // expression has a C++ nested-name-specifier.
528    HasQualifierFlag = 0x01,
529    // Flag on DecoratedD that specifies when this declaration reference
530    // expression has an explicit C++ template argument list.
531    HasExplicitTemplateArgumentListFlag = 0x02
532  };
533
534  // DecoratedD - The declaration that we are referencing, plus two bits to
535  // indicate whether (1) the declaration's name was explicitly qualified and
536  // (2) the declaration's name was followed by an explicit template
537  // argument list.
538  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
539
540  // Loc - The location of the declaration name itself.
541  SourceLocation Loc;
542
543  /// DNLoc - Provides source/type location info for the
544  /// declaration name embedded in DecoratedD.
545  DeclarationNameLoc DNLoc;
546
547  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
548  NameQualifier *getNameQualifier() {
549    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
550      return 0;
551
552    return reinterpret_cast<NameQualifier *> (this + 1);
553  }
554
555  /// \brief Retrieve the qualifier that preceded the member name, if any.
556  const NameQualifier *getNameQualifier() const {
557    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
558  }
559
560  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
561              ValueDecl *D, SourceLocation NameLoc,
562              const TemplateArgumentListInfo *TemplateArgs,
563              QualType T);
564
565  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
566              ValueDecl *D, const DeclarationNameInfo &NameInfo,
567              const TemplateArgumentListInfo *TemplateArgs,
568              QualType T);
569
570  /// \brief Construct an empty declaration reference expression.
571  explicit DeclRefExpr(EmptyShell Empty)
572    : Expr(DeclRefExprClass, Empty) { }
573
574  /// \brief Computes the type- and value-dependence flags for this
575  /// declaration reference expression.
576  void computeDependence();
577
578public:
579  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
580    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
581    computeDependence();
582  }
583
584  static DeclRefExpr *Create(ASTContext &Context,
585                             NestedNameSpecifier *Qualifier,
586                             SourceRange QualifierRange,
587                             ValueDecl *D,
588                             SourceLocation NameLoc,
589                             QualType T,
590                             const TemplateArgumentListInfo *TemplateArgs = 0);
591
592  static DeclRefExpr *Create(ASTContext &Context,
593                             NestedNameSpecifier *Qualifier,
594                             SourceRange QualifierRange,
595                             ValueDecl *D,
596                             const DeclarationNameInfo &NameInfo,
597                             QualType T,
598                             const TemplateArgumentListInfo *TemplateArgs = 0);
599
600  /// \brief Construct an empty declaration reference expression.
601  static DeclRefExpr *CreateEmpty(ASTContext &Context,
602                                  bool HasQualifier, unsigned NumTemplateArgs);
603
604  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
605  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
606  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
607
608  DeclarationNameInfo getNameInfo() const {
609    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
610  }
611
612  SourceLocation getLocation() const { return Loc; }
613  void setLocation(SourceLocation L) { Loc = L; }
614  virtual SourceRange getSourceRange() const;
615
616  /// \brief Determine whether this declaration reference was preceded by a
617  /// C++ nested-name-specifier, e.g., \c N::foo.
618  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
619
620  /// \brief If the name was qualified, retrieves the source range of
621  /// the nested-name-specifier that precedes the name. Otherwise,
622  /// returns an empty source range.
623  SourceRange getQualifierRange() const {
624    if (!hasQualifier())
625      return SourceRange();
626
627    return getNameQualifier()->Range;
628  }
629
630  /// \brief If the name was qualified, retrieves the nested-name-specifier
631  /// that precedes the name. Otherwise, returns NULL.
632  NestedNameSpecifier *getQualifier() const {
633    if (!hasQualifier())
634      return 0;
635
636    return getNameQualifier()->NNS;
637  }
638
639  bool hasExplicitTemplateArgs() const {
640    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
641  }
642
643  /// \brief Retrieve the explicit template argument list that followed the
644  /// member template name.
645  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
646    assert(hasExplicitTemplateArgs());
647
648    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
649      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
650
651    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
652                                                      getNameQualifier() + 1);
653  }
654
655  /// \brief Retrieve the explicit template argument list that followed the
656  /// member template name.
657  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
658    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
659  }
660
661  /// \brief Retrieves the optional explicit template arguments.
662  /// This points to the same data as getExplicitTemplateArgs(), but
663  /// returns null if there are no explicit template arguments.
664  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
665    if (!hasExplicitTemplateArgs()) return 0;
666    return &getExplicitTemplateArgs();
667  }
668
669  /// \brief Copies the template arguments (if present) into the given
670  /// structure.
671  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
672    if (hasExplicitTemplateArgs())
673      getExplicitTemplateArgs().copyInto(List);
674  }
675
676  /// \brief Retrieve the location of the left angle bracket following the
677  /// member name ('<'), if any.
678  SourceLocation getLAngleLoc() const {
679    if (!hasExplicitTemplateArgs())
680      return SourceLocation();
681
682    return getExplicitTemplateArgs().LAngleLoc;
683  }
684
685  /// \brief Retrieve the template arguments provided as part of this
686  /// template-id.
687  const TemplateArgumentLoc *getTemplateArgs() const {
688    if (!hasExplicitTemplateArgs())
689      return 0;
690
691    return getExplicitTemplateArgs().getTemplateArgs();
692  }
693
694  /// \brief Retrieve the number of template arguments provided as part of this
695  /// template-id.
696  unsigned getNumTemplateArgs() const {
697    if (!hasExplicitTemplateArgs())
698      return 0;
699
700    return getExplicitTemplateArgs().NumTemplateArgs;
701  }
702
703  /// \brief Retrieve the location of the right angle bracket following the
704  /// template arguments ('>').
705  SourceLocation getRAngleLoc() const {
706    if (!hasExplicitTemplateArgs())
707      return SourceLocation();
708
709    return getExplicitTemplateArgs().RAngleLoc;
710  }
711
712  static bool classof(const Stmt *T) {
713    return T->getStmtClass() == DeclRefExprClass;
714  }
715  static bool classof(const DeclRefExpr *) { return true; }
716
717  // Iterators
718  virtual child_iterator child_begin();
719  virtual child_iterator child_end();
720
721  friend class ASTStmtReader;
722  friend class ASTStmtWriter;
723};
724
725/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
726class PredefinedExpr : public Expr {
727public:
728  enum IdentType {
729    Func,
730    Function,
731    PrettyFunction,
732    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
733    /// 'virtual' keyword is omitted for virtual member functions.
734    PrettyFunctionNoVirtual
735  };
736
737private:
738  SourceLocation Loc;
739  IdentType Type;
740public:
741  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
742    : Expr(PredefinedExprClass, type, type->isDependentType(),
743           type->isDependentType()), Loc(l), Type(IT) {}
744
745  /// \brief Construct an empty predefined expression.
746  explicit PredefinedExpr(EmptyShell Empty)
747    : Expr(PredefinedExprClass, Empty) { }
748
749  IdentType getIdentType() const { return Type; }
750  void setIdentType(IdentType IT) { Type = IT; }
751
752  SourceLocation getLocation() const { return Loc; }
753  void setLocation(SourceLocation L) { Loc = L; }
754
755  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
756
757  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
758
759  static bool classof(const Stmt *T) {
760    return T->getStmtClass() == PredefinedExprClass;
761  }
762  static bool classof(const PredefinedExpr *) { return true; }
763
764  // Iterators
765  virtual child_iterator child_begin();
766  virtual child_iterator child_end();
767};
768
769/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
770/// leaking memory.
771///
772/// For large floats/integers, APFloat/APInt will allocate memory from the heap
773/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
774/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
775/// the APFloat/APInt values will never get freed. APNumericStorage uses
776/// ASTContext's allocator for memory allocation.
777class APNumericStorage {
778  unsigned BitWidth;
779  union {
780    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
781    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
782  };
783
784  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
785
786  APNumericStorage(const APNumericStorage&); // do not implement
787  APNumericStorage& operator=(const APNumericStorage&); // do not implement
788
789protected:
790  APNumericStorage() : BitWidth(0), VAL(0) { }
791
792  llvm::APInt getIntValue() const {
793    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
794    if (NumWords > 1)
795      return llvm::APInt(BitWidth, NumWords, pVal);
796    else
797      return llvm::APInt(BitWidth, VAL);
798  }
799  void setIntValue(ASTContext &C, const llvm::APInt &Val);
800};
801
802class APIntStorage : public APNumericStorage {
803public:
804  llvm::APInt getValue() const { return getIntValue(); }
805  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
806};
807
808class APFloatStorage : public APNumericStorage {
809public:
810  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
811  void setValue(ASTContext &C, const llvm::APFloat &Val) {
812    setIntValue(C, Val.bitcastToAPInt());
813  }
814};
815
816class IntegerLiteral : public Expr {
817  APIntStorage Num;
818  SourceLocation Loc;
819
820  /// \brief Construct an empty integer literal.
821  explicit IntegerLiteral(EmptyShell Empty)
822    : Expr(IntegerLiteralClass, Empty) { }
823
824public:
825  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
826  // or UnsignedLongLongTy
827  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
828                 QualType type, SourceLocation l)
829    : Expr(IntegerLiteralClass, type, false, false), Loc(l) {
830    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
831    setValue(C, V);
832  }
833
834  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
835  // or UnsignedLongLongTy
836  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
837                                QualType type, SourceLocation l);
838  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
839
840  llvm::APInt getValue() const { return Num.getValue(); }
841  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
842
843  /// \brief Retrieve the location of the literal.
844  SourceLocation getLocation() const { return Loc; }
845
846  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
847  void setLocation(SourceLocation Location) { Loc = Location; }
848
849  static bool classof(const Stmt *T) {
850    return T->getStmtClass() == IntegerLiteralClass;
851  }
852  static bool classof(const IntegerLiteral *) { return true; }
853
854  // Iterators
855  virtual child_iterator child_begin();
856  virtual child_iterator child_end();
857};
858
859class CharacterLiteral : public Expr {
860  unsigned Value;
861  SourceLocation Loc;
862  bool IsWide;
863public:
864  // type should be IntTy
865  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
866    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
867      IsWide(iswide) {
868  }
869
870  /// \brief Construct an empty character literal.
871  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
872
873  SourceLocation getLocation() const { return Loc; }
874  bool isWide() const { return IsWide; }
875
876  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
877
878  unsigned getValue() const { return Value; }
879
880  void setLocation(SourceLocation Location) { Loc = Location; }
881  void setWide(bool W) { IsWide = W; }
882  void setValue(unsigned Val) { Value = Val; }
883
884  static bool classof(const Stmt *T) {
885    return T->getStmtClass() == CharacterLiteralClass;
886  }
887  static bool classof(const CharacterLiteral *) { return true; }
888
889  // Iterators
890  virtual child_iterator child_begin();
891  virtual child_iterator child_end();
892};
893
894class FloatingLiteral : public Expr {
895  APFloatStorage Num;
896  bool IsExact : 1;
897  SourceLocation Loc;
898
899  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
900                  QualType Type, SourceLocation L)
901    : Expr(FloatingLiteralClass, Type, false, false),
902      IsExact(isexact), Loc(L) {
903    setValue(C, V);
904  }
905
906  /// \brief Construct an empty floating-point literal.
907  explicit FloatingLiteral(EmptyShell Empty)
908    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
909
910public:
911  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
912                                 bool isexact, QualType Type, SourceLocation L);
913  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
914
915  llvm::APFloat getValue() const { return Num.getValue(); }
916  void setValue(ASTContext &C, const llvm::APFloat &Val) {
917    Num.setValue(C, Val);
918  }
919
920  bool isExact() const { return IsExact; }
921  void setExact(bool E) { IsExact = E; }
922
923  /// getValueAsApproximateDouble - This returns the value as an inaccurate
924  /// double.  Note that this may cause loss of precision, but is useful for
925  /// debugging dumps, etc.
926  double getValueAsApproximateDouble() const;
927
928  SourceLocation getLocation() const { return Loc; }
929  void setLocation(SourceLocation L) { Loc = L; }
930
931  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
932
933  static bool classof(const Stmt *T) {
934    return T->getStmtClass() == FloatingLiteralClass;
935  }
936  static bool classof(const FloatingLiteral *) { return true; }
937
938  // Iterators
939  virtual child_iterator child_begin();
940  virtual child_iterator child_end();
941};
942
943/// ImaginaryLiteral - We support imaginary integer and floating point literals,
944/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
945/// IntegerLiteral classes.  Instances of this class always have a Complex type
946/// whose element type matches the subexpression.
947///
948class ImaginaryLiteral : public Expr {
949  Stmt *Val;
950public:
951  ImaginaryLiteral(Expr *val, QualType Ty)
952    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
953
954  /// \brief Build an empty imaginary literal.
955  explicit ImaginaryLiteral(EmptyShell Empty)
956    : Expr(ImaginaryLiteralClass, Empty) { }
957
958  const Expr *getSubExpr() const { return cast<Expr>(Val); }
959  Expr *getSubExpr() { return cast<Expr>(Val); }
960  void setSubExpr(Expr *E) { Val = E; }
961
962  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
963  static bool classof(const Stmt *T) {
964    return T->getStmtClass() == ImaginaryLiteralClass;
965  }
966  static bool classof(const ImaginaryLiteral *) { return true; }
967
968  // Iterators
969  virtual child_iterator child_begin();
970  virtual child_iterator child_end();
971};
972
973/// StringLiteral - This represents a string literal expression, e.g. "foo"
974/// or L"bar" (wide strings).  The actual string is returned by getStrData()
975/// is NOT null-terminated, and the length of the string is determined by
976/// calling getByteLength().  The C type for a string is always a
977/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
978/// not.
979///
980/// Note that strings in C can be formed by concatenation of multiple string
981/// literal pptokens in translation phase #6.  This keeps track of the locations
982/// of each of these pieces.
983///
984/// Strings in C can also be truncated and extended by assigning into arrays,
985/// e.g. with constructs like:
986///   char X[2] = "foobar";
987/// In this case, getByteLength() will return 6, but the string literal will
988/// have type "char[2]".
989class StringLiteral : public Expr {
990  const char *StrData;
991  unsigned ByteLength;
992  bool IsWide;
993  unsigned NumConcatenated;
994  SourceLocation TokLocs[1];
995
996  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
997
998public:
999  /// This is the "fully general" constructor that allows representation of
1000  /// strings formed from multiple concatenated tokens.
1001  static StringLiteral *Create(ASTContext &C, const char *StrData,
1002                               unsigned ByteLength, bool Wide, QualType Ty,
1003                               const SourceLocation *Loc, unsigned NumStrs);
1004
1005  /// Simple constructor for string literals made from one token.
1006  static StringLiteral *Create(ASTContext &C, const char *StrData,
1007                               unsigned ByteLength,
1008                               bool Wide, QualType Ty, SourceLocation Loc) {
1009    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1010  }
1011
1012  /// \brief Construct an empty string literal.
1013  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1014
1015  llvm::StringRef getString() const {
1016    return llvm::StringRef(StrData, ByteLength);
1017  }
1018
1019  unsigned getByteLength() const { return ByteLength; }
1020
1021  /// \brief Sets the string data to the given string data.
1022  void setString(ASTContext &C, llvm::StringRef Str);
1023
1024  bool isWide() const { return IsWide; }
1025  void setWide(bool W) { IsWide = W; }
1026
1027  bool containsNonAsciiOrNull() const {
1028    llvm::StringRef Str = getString();
1029    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1030      if (!isascii(Str[i]) || !Str[i])
1031        return true;
1032    return false;
1033  }
1034  /// getNumConcatenated - Get the number of string literal tokens that were
1035  /// concatenated in translation phase #6 to form this string literal.
1036  unsigned getNumConcatenated() const { return NumConcatenated; }
1037
1038  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1039    assert(TokNum < NumConcatenated && "Invalid tok number");
1040    return TokLocs[TokNum];
1041  }
1042  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1043    assert(TokNum < NumConcatenated && "Invalid tok number");
1044    TokLocs[TokNum] = L;
1045  }
1046
1047  typedef const SourceLocation *tokloc_iterator;
1048  tokloc_iterator tokloc_begin() const { return TokLocs; }
1049  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1050
1051  virtual SourceRange getSourceRange() const {
1052    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1053  }
1054  static bool classof(const Stmt *T) {
1055    return T->getStmtClass() == StringLiteralClass;
1056  }
1057  static bool classof(const StringLiteral *) { return true; }
1058
1059  // Iterators
1060  virtual child_iterator child_begin();
1061  virtual child_iterator child_end();
1062};
1063
1064/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1065/// AST node is only formed if full location information is requested.
1066class ParenExpr : public Expr {
1067  SourceLocation L, R;
1068  Stmt *Val;
1069public:
1070  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1071    : Expr(ParenExprClass, val->getType(),
1072           val->isTypeDependent(), val->isValueDependent()),
1073      L(l), R(r), Val(val) {}
1074
1075  /// \brief Construct an empty parenthesized expression.
1076  explicit ParenExpr(EmptyShell Empty)
1077    : Expr(ParenExprClass, Empty) { }
1078
1079  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1080  Expr *getSubExpr() { return cast<Expr>(Val); }
1081  void setSubExpr(Expr *E) { Val = E; }
1082
1083  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1084
1085  /// \brief Get the location of the left parentheses '('.
1086  SourceLocation getLParen() const { return L; }
1087  void setLParen(SourceLocation Loc) { L = Loc; }
1088
1089  /// \brief Get the location of the right parentheses ')'.
1090  SourceLocation getRParen() const { return R; }
1091  void setRParen(SourceLocation Loc) { R = Loc; }
1092
1093  static bool classof(const Stmt *T) {
1094    return T->getStmtClass() == ParenExprClass;
1095  }
1096  static bool classof(const ParenExpr *) { return true; }
1097
1098  // Iterators
1099  virtual child_iterator child_begin();
1100  virtual child_iterator child_end();
1101};
1102
1103
1104/// UnaryOperator - This represents the unary-expression's (except sizeof and
1105/// alignof), the postinc/postdec operators from postfix-expression, and various
1106/// extensions.
1107///
1108/// Notes on various nodes:
1109///
1110/// Real/Imag - These return the real/imag part of a complex operand.  If
1111///   applied to a non-complex value, the former returns its operand and the
1112///   later returns zero in the type of the operand.
1113///
1114class UnaryOperator : public Expr {
1115public:
1116  typedef UnaryOperatorKind Opcode;
1117
1118private:
1119  unsigned Opc : 5;
1120  SourceLocation Loc;
1121  Stmt *Val;
1122public:
1123
1124  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1125    : Expr(UnaryOperatorClass, type,
1126           input->isTypeDependent() || type->isDependentType(),
1127           input->isValueDependent()),
1128      Opc(opc), Loc(l), Val(input) {}
1129
1130  /// \brief Build an empty unary operator.
1131  explicit UnaryOperator(EmptyShell Empty)
1132    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1133
1134  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1135  void setOpcode(Opcode O) { Opc = O; }
1136
1137  Expr *getSubExpr() const { return cast<Expr>(Val); }
1138  void setSubExpr(Expr *E) { Val = E; }
1139
1140  /// getOperatorLoc - Return the location of the operator.
1141  SourceLocation getOperatorLoc() const { return Loc; }
1142  void setOperatorLoc(SourceLocation L) { Loc = L; }
1143
1144  /// isPostfix - Return true if this is a postfix operation, like x++.
1145  static bool isPostfix(Opcode Op) {
1146    return Op == UO_PostInc || Op == UO_PostDec;
1147  }
1148
1149  /// isPostfix - Return true if this is a prefix operation, like --x.
1150  static bool isPrefix(Opcode Op) {
1151    return Op == UO_PreInc || Op == UO_PreDec;
1152  }
1153
1154  bool isPrefix() const { return isPrefix(getOpcode()); }
1155  bool isPostfix() const { return isPostfix(getOpcode()); }
1156  bool isIncrementOp() const {
1157    return Opc == UO_PreInc || Opc == UO_PostInc;
1158  }
1159  bool isIncrementDecrementOp() const {
1160    return Opc <= UO_PreDec;
1161  }
1162  static bool isArithmeticOp(Opcode Op) {
1163    return Op >= UO_Plus && Op <= UO_LNot;
1164  }
1165  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1166
1167  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1168  /// corresponds to, e.g. "sizeof" or "[pre]++"
1169  static const char *getOpcodeStr(Opcode Op);
1170
1171  /// \brief Retrieve the unary opcode that corresponds to the given
1172  /// overloaded operator.
1173  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1174
1175  /// \brief Retrieve the overloaded operator kind that corresponds to
1176  /// the given unary opcode.
1177  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1178
1179  virtual SourceRange getSourceRange() const {
1180    if (isPostfix())
1181      return SourceRange(Val->getLocStart(), Loc);
1182    else
1183      return SourceRange(Loc, Val->getLocEnd());
1184  }
1185  virtual SourceLocation getExprLoc() const { return Loc; }
1186
1187  static bool classof(const Stmt *T) {
1188    return T->getStmtClass() == UnaryOperatorClass;
1189  }
1190  static bool classof(const UnaryOperator *) { return true; }
1191
1192  // Iterators
1193  virtual child_iterator child_begin();
1194  virtual child_iterator child_end();
1195};
1196
1197/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1198/// offsetof(record-type, member-designator). For example, given:
1199/// @code
1200/// struct S {
1201///   float f;
1202///   double d;
1203/// };
1204/// struct T {
1205///   int i;
1206///   struct S s[10];
1207/// };
1208/// @endcode
1209/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1210
1211class OffsetOfExpr : public Expr {
1212public:
1213  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1214  class OffsetOfNode {
1215  public:
1216    /// \brief The kind of offsetof node we have.
1217    enum Kind {
1218      /// \brief An index into an array.
1219      Array = 0x00,
1220      /// \brief A field.
1221      Field = 0x01,
1222      /// \brief A field in a dependent type, known only by its name.
1223      Identifier = 0x02,
1224      /// \brief An implicit indirection through a C++ base class, when the
1225      /// field found is in a base class.
1226      Base = 0x03
1227    };
1228
1229  private:
1230    enum { MaskBits = 2, Mask = 0x03 };
1231
1232    /// \brief The source range that covers this part of the designator.
1233    SourceRange Range;
1234
1235    /// \brief The data describing the designator, which comes in three
1236    /// different forms, depending on the lower two bits.
1237    ///   - An unsigned index into the array of Expr*'s stored after this node
1238    ///     in memory, for [constant-expression] designators.
1239    ///   - A FieldDecl*, for references to a known field.
1240    ///   - An IdentifierInfo*, for references to a field with a given name
1241    ///     when the class type is dependent.
1242    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1243    ///     base class.
1244    uintptr_t Data;
1245
1246  public:
1247    /// \brief Create an offsetof node that refers to an array element.
1248    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1249                 SourceLocation RBracketLoc)
1250      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1251
1252    /// \brief Create an offsetof node that refers to a field.
1253    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1254                 SourceLocation NameLoc)
1255      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1256        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1257
1258    /// \brief Create an offsetof node that refers to an identifier.
1259    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1260                 SourceLocation NameLoc)
1261      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1262        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1263
1264    /// \brief Create an offsetof node that refers into a C++ base class.
1265    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1266      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1267
1268    /// \brief Determine what kind of offsetof node this is.
1269    Kind getKind() const {
1270      return static_cast<Kind>(Data & Mask);
1271    }
1272
1273    /// \brief For an array element node, returns the index into the array
1274    /// of expressions.
1275    unsigned getArrayExprIndex() const {
1276      assert(getKind() == Array);
1277      return Data >> 2;
1278    }
1279
1280    /// \brief For a field offsetof node, returns the field.
1281    FieldDecl *getField() const {
1282      assert(getKind() == Field);
1283      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1284    }
1285
1286    /// \brief For a field or identifier offsetof node, returns the name of
1287    /// the field.
1288    IdentifierInfo *getFieldName() const;
1289
1290    /// \brief For a base class node, returns the base specifier.
1291    CXXBaseSpecifier *getBase() const {
1292      assert(getKind() == Base);
1293      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1294    }
1295
1296    /// \brief Retrieve the source range that covers this offsetof node.
1297    ///
1298    /// For an array element node, the source range contains the locations of
1299    /// the square brackets. For a field or identifier node, the source range
1300    /// contains the location of the period (if there is one) and the
1301    /// identifier.
1302    SourceRange getRange() const { return Range; }
1303  };
1304
1305private:
1306
1307  SourceLocation OperatorLoc, RParenLoc;
1308  // Base type;
1309  TypeSourceInfo *TSInfo;
1310  // Number of sub-components (i.e. instances of OffsetOfNode).
1311  unsigned NumComps;
1312  // Number of sub-expressions (i.e. array subscript expressions).
1313  unsigned NumExprs;
1314
1315  OffsetOfExpr(ASTContext &C, QualType type,
1316               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1317               OffsetOfNode* compsPtr, unsigned numComps,
1318               Expr** exprsPtr, unsigned numExprs,
1319               SourceLocation RParenLoc);
1320
1321  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1322    : Expr(OffsetOfExprClass, EmptyShell()),
1323      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1324
1325public:
1326
1327  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1328                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1329                              OffsetOfNode* compsPtr, unsigned numComps,
1330                              Expr** exprsPtr, unsigned numExprs,
1331                              SourceLocation RParenLoc);
1332
1333  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1334                                   unsigned NumComps, unsigned NumExprs);
1335
1336  /// getOperatorLoc - Return the location of the operator.
1337  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1338  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1339
1340  /// \brief Return the location of the right parentheses.
1341  SourceLocation getRParenLoc() const { return RParenLoc; }
1342  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1343
1344  TypeSourceInfo *getTypeSourceInfo() const {
1345    return TSInfo;
1346  }
1347  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1348    TSInfo = tsi;
1349  }
1350
1351  const OffsetOfNode &getComponent(unsigned Idx) {
1352    assert(Idx < NumComps && "Subscript out of range");
1353    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1354  }
1355
1356  void setComponent(unsigned Idx, OffsetOfNode ON) {
1357    assert(Idx < NumComps && "Subscript out of range");
1358    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1359  }
1360
1361  unsigned getNumComponents() const {
1362    return NumComps;
1363  }
1364
1365  Expr* getIndexExpr(unsigned Idx) {
1366    assert(Idx < NumExprs && "Subscript out of range");
1367    return reinterpret_cast<Expr **>(
1368                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1369  }
1370
1371  void setIndexExpr(unsigned Idx, Expr* E) {
1372    assert(Idx < NumComps && "Subscript out of range");
1373    reinterpret_cast<Expr **>(
1374                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1375  }
1376
1377  unsigned getNumExpressions() const {
1378    return NumExprs;
1379  }
1380
1381  virtual SourceRange getSourceRange() const {
1382    return SourceRange(OperatorLoc, RParenLoc);
1383  }
1384
1385  static bool classof(const Stmt *T) {
1386    return T->getStmtClass() == OffsetOfExprClass;
1387  }
1388
1389  static bool classof(const OffsetOfExpr *) { return true; }
1390
1391  // Iterators
1392  virtual child_iterator child_begin();
1393  virtual child_iterator child_end();
1394};
1395
1396/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1397/// types and expressions.
1398class SizeOfAlignOfExpr : public Expr {
1399  bool isSizeof : 1;  // true if sizeof, false if alignof.
1400  bool isType : 1;    // true if operand is a type, false if an expression
1401  union {
1402    TypeSourceInfo *Ty;
1403    Stmt *Ex;
1404  } Argument;
1405  SourceLocation OpLoc, RParenLoc;
1406
1407public:
1408  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1409                    QualType resultType, SourceLocation op,
1410                    SourceLocation rp) :
1411      Expr(SizeOfAlignOfExprClass, resultType,
1412           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1413           // Value-dependent if the argument is type-dependent.
1414           TInfo->getType()->isDependentType()),
1415      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1416    Argument.Ty = TInfo;
1417  }
1418
1419  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1420                    QualType resultType, SourceLocation op,
1421                    SourceLocation rp) :
1422      Expr(SizeOfAlignOfExprClass, resultType,
1423           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1424           // Value-dependent if the argument is type-dependent.
1425           E->isTypeDependent()),
1426      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1427    Argument.Ex = E;
1428  }
1429
1430  /// \brief Construct an empty sizeof/alignof expression.
1431  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1432    : Expr(SizeOfAlignOfExprClass, Empty) { }
1433
1434  bool isSizeOf() const { return isSizeof; }
1435  void setSizeof(bool S) { isSizeof = S; }
1436
1437  bool isArgumentType() const { return isType; }
1438  QualType getArgumentType() const {
1439    return getArgumentTypeInfo()->getType();
1440  }
1441  TypeSourceInfo *getArgumentTypeInfo() const {
1442    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1443    return Argument.Ty;
1444  }
1445  Expr *getArgumentExpr() {
1446    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1447    return static_cast<Expr*>(Argument.Ex);
1448  }
1449  const Expr *getArgumentExpr() const {
1450    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1451  }
1452
1453  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1454  void setArgument(TypeSourceInfo *TInfo) {
1455    Argument.Ty = TInfo;
1456    isType = true;
1457  }
1458
1459  /// Gets the argument type, or the type of the argument expression, whichever
1460  /// is appropriate.
1461  QualType getTypeOfArgument() const {
1462    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1463  }
1464
1465  SourceLocation getOperatorLoc() const { return OpLoc; }
1466  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1467
1468  SourceLocation getRParenLoc() const { return RParenLoc; }
1469  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1470
1471  virtual SourceRange getSourceRange() const {
1472    return SourceRange(OpLoc, RParenLoc);
1473  }
1474
1475  static bool classof(const Stmt *T) {
1476    return T->getStmtClass() == SizeOfAlignOfExprClass;
1477  }
1478  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1479
1480  // Iterators
1481  virtual child_iterator child_begin();
1482  virtual child_iterator child_end();
1483};
1484
1485//===----------------------------------------------------------------------===//
1486// Postfix Operators.
1487//===----------------------------------------------------------------------===//
1488
1489/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1490class ArraySubscriptExpr : public Expr {
1491  enum { LHS, RHS, END_EXPR=2 };
1492  Stmt* SubExprs[END_EXPR];
1493  SourceLocation RBracketLoc;
1494public:
1495  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1496                     SourceLocation rbracketloc)
1497  : Expr(ArraySubscriptExprClass, t,
1498         lhs->isTypeDependent() || rhs->isTypeDependent(),
1499         lhs->isValueDependent() || rhs->isValueDependent()),
1500    RBracketLoc(rbracketloc) {
1501    SubExprs[LHS] = lhs;
1502    SubExprs[RHS] = rhs;
1503  }
1504
1505  /// \brief Create an empty array subscript expression.
1506  explicit ArraySubscriptExpr(EmptyShell Shell)
1507    : Expr(ArraySubscriptExprClass, Shell) { }
1508
1509  /// An array access can be written A[4] or 4[A] (both are equivalent).
1510  /// - getBase() and getIdx() always present the normalized view: A[4].
1511  ///    In this case getBase() returns "A" and getIdx() returns "4".
1512  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1513  ///    4[A] getLHS() returns "4".
1514  /// Note: Because vector element access is also written A[4] we must
1515  /// predicate the format conversion in getBase and getIdx only on the
1516  /// the type of the RHS, as it is possible for the LHS to be a vector of
1517  /// integer type
1518  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1519  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1520  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1521
1522  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1523  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1524  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1525
1526  Expr *getBase() {
1527    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1528  }
1529
1530  const Expr *getBase() const {
1531    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1532  }
1533
1534  Expr *getIdx() {
1535    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1536  }
1537
1538  const Expr *getIdx() const {
1539    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1540  }
1541
1542  virtual SourceRange getSourceRange() const {
1543    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1544  }
1545
1546  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1547  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1548
1549  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1550
1551  static bool classof(const Stmt *T) {
1552    return T->getStmtClass() == ArraySubscriptExprClass;
1553  }
1554  static bool classof(const ArraySubscriptExpr *) { return true; }
1555
1556  // Iterators
1557  virtual child_iterator child_begin();
1558  virtual child_iterator child_end();
1559};
1560
1561
1562/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1563/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1564/// while its subclasses may represent alternative syntax that (semantically)
1565/// results in a function call. For example, CXXOperatorCallExpr is
1566/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1567/// "str1 + str2" to resolve to a function call.
1568class CallExpr : public Expr {
1569  enum { FN=0, ARGS_START=1 };
1570  Stmt **SubExprs;
1571  unsigned NumArgs;
1572  SourceLocation RParenLoc;
1573
1574protected:
1575  // This version of the constructor is for derived classes.
1576  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1577           QualType t, SourceLocation rparenloc);
1578
1579public:
1580  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1581           SourceLocation rparenloc);
1582
1583  /// \brief Build an empty call expression.
1584  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1585
1586  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1587  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1588  void setCallee(Expr *F) { SubExprs[FN] = F; }
1589
1590  Decl *getCalleeDecl();
1591  const Decl *getCalleeDecl() const {
1592    return const_cast<CallExpr*>(this)->getCalleeDecl();
1593  }
1594
1595  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1596  FunctionDecl *getDirectCallee();
1597  const FunctionDecl *getDirectCallee() const {
1598    return const_cast<CallExpr*>(this)->getDirectCallee();
1599  }
1600
1601  /// getNumArgs - Return the number of actual arguments to this call.
1602  ///
1603  unsigned getNumArgs() const { return NumArgs; }
1604
1605  /// getArg - Return the specified argument.
1606  Expr *getArg(unsigned Arg) {
1607    assert(Arg < NumArgs && "Arg access out of range!");
1608    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1609  }
1610  const Expr *getArg(unsigned Arg) const {
1611    assert(Arg < NumArgs && "Arg access out of range!");
1612    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1613  }
1614
1615  /// setArg - Set the specified argument.
1616  void setArg(unsigned Arg, Expr *ArgExpr) {
1617    assert(Arg < NumArgs && "Arg access out of range!");
1618    SubExprs[Arg+ARGS_START] = ArgExpr;
1619  }
1620
1621  /// setNumArgs - This changes the number of arguments present in this call.
1622  /// Any orphaned expressions are deleted by this, and any new operands are set
1623  /// to null.
1624  void setNumArgs(ASTContext& C, unsigned NumArgs);
1625
1626  typedef ExprIterator arg_iterator;
1627  typedef ConstExprIterator const_arg_iterator;
1628
1629  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1630  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1631  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1632  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1633
1634  /// getNumCommas - Return the number of commas that must have been present in
1635  /// this function call.
1636  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1637
1638  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1639  /// not, return 0.
1640  unsigned isBuiltinCall(ASTContext &Context) const;
1641
1642  /// getCallReturnType - Get the return type of the call expr. This is not
1643  /// always the type of the expr itself, if the return type is a reference
1644  /// type.
1645  QualType getCallReturnType() const;
1646
1647  SourceLocation getRParenLoc() const { return RParenLoc; }
1648  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1649
1650  virtual SourceRange getSourceRange() const {
1651    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1652  }
1653
1654  static bool classof(const Stmt *T) {
1655    return T->getStmtClass() >= firstCallExprConstant &&
1656           T->getStmtClass() <= lastCallExprConstant;
1657  }
1658  static bool classof(const CallExpr *) { return true; }
1659
1660  // Iterators
1661  virtual child_iterator child_begin();
1662  virtual child_iterator child_end();
1663};
1664
1665/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1666///
1667class MemberExpr : public Expr {
1668  /// Extra data stored in some member expressions.
1669  struct MemberNameQualifier : public NameQualifier {
1670    DeclAccessPair FoundDecl;
1671  };
1672
1673  /// Base - the expression for the base pointer or structure references.  In
1674  /// X.F, this is "X".
1675  Stmt *Base;
1676
1677  /// MemberDecl - This is the decl being referenced by the field/member name.
1678  /// In X.F, this is the decl referenced by F.
1679  ValueDecl *MemberDecl;
1680
1681  /// MemberLoc - This is the location of the member name.
1682  SourceLocation MemberLoc;
1683
1684  /// MemberDNLoc - Provides source/type location info for the
1685  /// declaration name embedded in MemberDecl.
1686  DeclarationNameLoc MemberDNLoc;
1687
1688  /// IsArrow - True if this is "X->F", false if this is "X.F".
1689  bool IsArrow : 1;
1690
1691  /// \brief True if this member expression used a nested-name-specifier to
1692  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1693  /// declaration.  When true, a MemberNameQualifier
1694  /// structure is allocated immediately after the MemberExpr.
1695  bool HasQualifierOrFoundDecl : 1;
1696
1697  /// \brief True if this member expression specified a template argument list
1698  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1699  /// structure (and its TemplateArguments) are allocated immediately after
1700  /// the MemberExpr or, if the member expression also has a qualifier, after
1701  /// the MemberNameQualifier structure.
1702  bool HasExplicitTemplateArgumentList : 1;
1703
1704  /// \brief Retrieve the qualifier that preceded the member name, if any.
1705  MemberNameQualifier *getMemberQualifier() {
1706    assert(HasQualifierOrFoundDecl);
1707    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1708  }
1709
1710  /// \brief Retrieve the qualifier that preceded the member name, if any.
1711  const MemberNameQualifier *getMemberQualifier() const {
1712    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1713  }
1714
1715public:
1716  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1717             const DeclarationNameInfo &NameInfo, QualType ty)
1718    : Expr(MemberExprClass, ty,
1719           base->isTypeDependent(), base->isValueDependent()),
1720      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1721      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1722      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1723    assert(memberdecl->getDeclName() == NameInfo.getName());
1724  }
1725
1726  // NOTE: this constructor should be used only when it is known that
1727  // the member name can not provide additional syntactic info
1728  // (i.e., source locations for C++ operator names or type source info
1729  // for constructors, destructors and conversion oeprators).
1730  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1731             SourceLocation l, QualType ty)
1732    : Expr(MemberExprClass, ty,
1733           base->isTypeDependent(), base->isValueDependent()),
1734      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1735      IsArrow(isarrow),
1736      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1737
1738  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1739                            NestedNameSpecifier *qual, SourceRange qualrange,
1740                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1741                            DeclarationNameInfo MemberNameInfo,
1742                            const TemplateArgumentListInfo *targs,
1743                            QualType ty);
1744
1745  void setBase(Expr *E) { Base = E; }
1746  Expr *getBase() const { return cast<Expr>(Base); }
1747
1748  /// \brief Retrieve the member declaration to which this expression refers.
1749  ///
1750  /// The returned declaration will either be a FieldDecl or (in C++)
1751  /// a CXXMethodDecl.
1752  ValueDecl *getMemberDecl() const { return MemberDecl; }
1753  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1754
1755  /// \brief Retrieves the declaration found by lookup.
1756  DeclAccessPair getFoundDecl() const {
1757    if (!HasQualifierOrFoundDecl)
1758      return DeclAccessPair::make(getMemberDecl(),
1759                                  getMemberDecl()->getAccess());
1760    return getMemberQualifier()->FoundDecl;
1761  }
1762
1763  /// \brief Determines whether this member expression actually had
1764  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1765  /// x->Base::foo.
1766  bool hasQualifier() const { return getQualifier() != 0; }
1767
1768  /// \brief If the member name was qualified, retrieves the source range of
1769  /// the nested-name-specifier that precedes the member name. Otherwise,
1770  /// returns an empty source range.
1771  SourceRange getQualifierRange() const {
1772    if (!HasQualifierOrFoundDecl)
1773      return SourceRange();
1774
1775    return getMemberQualifier()->Range;
1776  }
1777
1778  /// \brief If the member name was qualified, retrieves the
1779  /// nested-name-specifier that precedes the member name. Otherwise, returns
1780  /// NULL.
1781  NestedNameSpecifier *getQualifier() const {
1782    if (!HasQualifierOrFoundDecl)
1783      return 0;
1784
1785    return getMemberQualifier()->NNS;
1786  }
1787
1788  /// \brief Determines whether this member expression actually had a C++
1789  /// template argument list explicitly specified, e.g., x.f<int>.
1790  bool hasExplicitTemplateArgs() const {
1791    return HasExplicitTemplateArgumentList;
1792  }
1793
1794  /// \brief Copies the template arguments (if present) into the given
1795  /// structure.
1796  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1797    if (hasExplicitTemplateArgs())
1798      getExplicitTemplateArgs().copyInto(List);
1799  }
1800
1801  /// \brief Retrieve the explicit template argument list that
1802  /// follow the member template name.  This must only be called on an
1803  /// expression with explicit template arguments.
1804  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1805    assert(HasExplicitTemplateArgumentList);
1806    if (!HasQualifierOrFoundDecl)
1807      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1808
1809    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
1810                                                      getMemberQualifier() + 1);
1811  }
1812
1813  /// \brief Retrieve the explicit template argument list that
1814  /// followed the member template name.  This must only be called on
1815  /// an expression with explicit template arguments.
1816  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1817    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
1818  }
1819
1820  /// \brief Retrieves the optional explicit template arguments.
1821  /// This points to the same data as getExplicitTemplateArgs(), but
1822  /// returns null if there are no explicit template arguments.
1823  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
1824    if (!hasExplicitTemplateArgs()) return 0;
1825    return &getExplicitTemplateArgs();
1826  }
1827
1828  /// \brief Retrieve the location of the left angle bracket following the
1829  /// member name ('<'), if any.
1830  SourceLocation getLAngleLoc() const {
1831    if (!HasExplicitTemplateArgumentList)
1832      return SourceLocation();
1833
1834    return getExplicitTemplateArgs().LAngleLoc;
1835  }
1836
1837  /// \brief Retrieve the template arguments provided as part of this
1838  /// template-id.
1839  const TemplateArgumentLoc *getTemplateArgs() const {
1840    if (!HasExplicitTemplateArgumentList)
1841      return 0;
1842
1843    return getExplicitTemplateArgs().getTemplateArgs();
1844  }
1845
1846  /// \brief Retrieve the number of template arguments provided as part of this
1847  /// template-id.
1848  unsigned getNumTemplateArgs() const {
1849    if (!HasExplicitTemplateArgumentList)
1850      return 0;
1851
1852    return getExplicitTemplateArgs().NumTemplateArgs;
1853  }
1854
1855  /// \brief Retrieve the location of the right angle bracket following the
1856  /// template arguments ('>').
1857  SourceLocation getRAngleLoc() const {
1858    if (!HasExplicitTemplateArgumentList)
1859      return SourceLocation();
1860
1861    return getExplicitTemplateArgs().RAngleLoc;
1862  }
1863
1864  /// \brief Retrieve the member declaration name info.
1865  DeclarationNameInfo getMemberNameInfo() const {
1866    return DeclarationNameInfo(MemberDecl->getDeclName(),
1867                               MemberLoc, MemberDNLoc);
1868  }
1869
1870  bool isArrow() const { return IsArrow; }
1871  void setArrow(bool A) { IsArrow = A; }
1872
1873  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1874  /// location of 'F'.
1875  SourceLocation getMemberLoc() const { return MemberLoc; }
1876  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1877
1878  virtual SourceRange getSourceRange() const {
1879    // If we have an implicit base (like a C++ implicit this),
1880    // make sure not to return its location
1881    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1882      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1883
1884    SourceLocation BaseLoc = getBase()->getLocStart();
1885    if (BaseLoc.isInvalid())
1886      return SourceRange(MemberLoc, EndLoc);
1887    return SourceRange(BaseLoc, EndLoc);
1888  }
1889
1890  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1891
1892  static bool classof(const Stmt *T) {
1893    return T->getStmtClass() == MemberExprClass;
1894  }
1895  static bool classof(const MemberExpr *) { return true; }
1896
1897  // Iterators
1898  virtual child_iterator child_begin();
1899  virtual child_iterator child_end();
1900
1901  friend class ASTReader;
1902  friend class ASTStmtWriter;
1903};
1904
1905/// CompoundLiteralExpr - [C99 6.5.2.5]
1906///
1907class CompoundLiteralExpr : public Expr {
1908  /// LParenLoc - If non-null, this is the location of the left paren in a
1909  /// compound literal like "(int){4}".  This can be null if this is a
1910  /// synthesized compound expression.
1911  SourceLocation LParenLoc;
1912
1913  /// The type as written.  This can be an incomplete array type, in
1914  /// which case the actual expression type will be different.
1915  TypeSourceInfo *TInfo;
1916  Stmt *Init;
1917  bool FileScope;
1918public:
1919  // FIXME: Can compound literals be value-dependent?
1920  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1921                      QualType T, Expr *init, bool fileScope)
1922    : Expr(CompoundLiteralExprClass, T,
1923           tinfo->getType()->isDependentType(), false),
1924      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1925
1926  /// \brief Construct an empty compound literal.
1927  explicit CompoundLiteralExpr(EmptyShell Empty)
1928    : Expr(CompoundLiteralExprClass, Empty) { }
1929
1930  const Expr *getInitializer() const { return cast<Expr>(Init); }
1931  Expr *getInitializer() { return cast<Expr>(Init); }
1932  void setInitializer(Expr *E) { Init = E; }
1933
1934  bool isFileScope() const { return FileScope; }
1935  void setFileScope(bool FS) { FileScope = FS; }
1936
1937  SourceLocation getLParenLoc() const { return LParenLoc; }
1938  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1939
1940  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1941  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1942
1943  virtual SourceRange getSourceRange() const {
1944    // FIXME: Init should never be null.
1945    if (!Init)
1946      return SourceRange();
1947    if (LParenLoc.isInvalid())
1948      return Init->getSourceRange();
1949    return SourceRange(LParenLoc, Init->getLocEnd());
1950  }
1951
1952  static bool classof(const Stmt *T) {
1953    return T->getStmtClass() == CompoundLiteralExprClass;
1954  }
1955  static bool classof(const CompoundLiteralExpr *) { return true; }
1956
1957  // Iterators
1958  virtual child_iterator child_begin();
1959  virtual child_iterator child_end();
1960};
1961
1962/// CastExpr - Base class for type casts, including both implicit
1963/// casts (ImplicitCastExpr) and explicit casts that have some
1964/// representation in the source code (ExplicitCastExpr's derived
1965/// classes).
1966class CastExpr : public Expr {
1967public:
1968  typedef clang::CastKind CastKind;
1969
1970private:
1971  unsigned Kind : 5;
1972  unsigned BasePathSize : BitsRemaining - 5;
1973  Stmt *Op;
1974
1975  void CheckBasePath() const {
1976#ifndef NDEBUG
1977    switch (getCastKind()) {
1978    case CK_DerivedToBase:
1979    case CK_UncheckedDerivedToBase:
1980    case CK_DerivedToBaseMemberPointer:
1981    case CK_BaseToDerived:
1982    case CK_BaseToDerivedMemberPointer:
1983      assert(!path_empty() && "Cast kind should have a base path!");
1984      break;
1985
1986    // These should not have an inheritance path.
1987    case CK_Unknown:
1988    case CK_BitCast:
1989    case CK_LValueBitCast:
1990    case CK_NoOp:
1991    case CK_Dynamic:
1992    case CK_ToUnion:
1993    case CK_ArrayToPointerDecay:
1994    case CK_FunctionToPointerDecay:
1995    case CK_NullToMemberPointer:
1996    case CK_UserDefinedConversion:
1997    case CK_ConstructorConversion:
1998    case CK_IntegralToPointer:
1999    case CK_PointerToIntegral:
2000    case CK_ToVoid:
2001    case CK_VectorSplat:
2002    case CK_IntegralCast:
2003    case CK_IntegralToFloating:
2004    case CK_FloatingToIntegral:
2005    case CK_FloatingCast:
2006    case CK_MemberPointerToBoolean:
2007    case CK_AnyPointerToObjCPointerCast:
2008    case CK_AnyPointerToBlockPointerCast:
2009    case CK_ObjCObjectLValueCast:
2010      assert(path_empty() && "Cast kind should not have a base path!");
2011      break;
2012    }
2013#endif
2014  }
2015
2016  const CXXBaseSpecifier * const *path_buffer() const {
2017    return const_cast<CastExpr*>(this)->path_buffer();
2018  }
2019  CXXBaseSpecifier **path_buffer();
2020
2021protected:
2022  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
2023           unsigned BasePathSize) :
2024    Expr(SC, ty,
2025         // Cast expressions are type-dependent if the type is
2026         // dependent (C++ [temp.dep.expr]p3).
2027         ty->isDependentType(),
2028         // Cast expressions are value-dependent if the type is
2029         // dependent or if the subexpression is value-dependent.
2030         ty->isDependentType() || (op && op->isValueDependent())),
2031    Kind(kind), BasePathSize(BasePathSize), Op(op) {
2032    CheckBasePath();
2033  }
2034
2035  /// \brief Construct an empty cast.
2036  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2037    : Expr(SC, Empty), BasePathSize(BasePathSize) { }
2038
2039public:
2040  CastKind getCastKind() const { return static_cast<CastKind>(Kind); }
2041  void setCastKind(CastKind K) { Kind = K; }
2042  const char *getCastKindName() const;
2043
2044  Expr *getSubExpr() { return cast<Expr>(Op); }
2045  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2046  void setSubExpr(Expr *E) { Op = E; }
2047
2048  /// \brief Retrieve the cast subexpression as it was written in the source
2049  /// code, looking through any implicit casts or other intermediate nodes
2050  /// introduced by semantic analysis.
2051  Expr *getSubExprAsWritten();
2052  const Expr *getSubExprAsWritten() const {
2053    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2054  }
2055
2056  typedef CXXBaseSpecifier **path_iterator;
2057  typedef const CXXBaseSpecifier * const *path_const_iterator;
2058  bool path_empty() const { return BasePathSize == 0; }
2059  unsigned path_size() const { return BasePathSize; }
2060  path_iterator path_begin() { return path_buffer(); }
2061  path_iterator path_end() { return path_buffer() + path_size(); }
2062  path_const_iterator path_begin() const { return path_buffer(); }
2063  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2064
2065  void setCastPath(const CXXCastPath &Path);
2066
2067  static bool classof(const Stmt *T) {
2068    return T->getStmtClass() >= firstCastExprConstant &&
2069           T->getStmtClass() <= lastCastExprConstant;
2070  }
2071  static bool classof(const CastExpr *) { return true; }
2072
2073  // Iterators
2074  virtual child_iterator child_begin();
2075  virtual child_iterator child_end();
2076};
2077
2078/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2079/// conversions, which have no direct representation in the original
2080/// source code. For example: converting T[]->T*, void f()->void
2081/// (*f)(), float->double, short->int, etc.
2082///
2083/// In C, implicit casts always produce rvalues. However, in C++, an
2084/// implicit cast whose result is being bound to a reference will be
2085/// an lvalue or xvalue. For example:
2086///
2087/// @code
2088/// class Base { };
2089/// class Derived : public Base { };
2090/// Derived &&ref();
2091/// void f(Derived d) {
2092///   Base& b = d; // initializer is an ImplicitCastExpr
2093///                // to an lvalue of type Base
2094///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2095///                     // to an xvalue of type Base
2096/// }
2097/// @endcode
2098class ImplicitCastExpr : public CastExpr {
2099private:
2100  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2101                   unsigned BasePathLength, ExprValueKind VK)
2102    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePathLength) {
2103    ValueKind = VK;
2104  }
2105
2106  /// \brief Construct an empty implicit cast.
2107  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2108    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2109
2110public:
2111  enum OnStack_t { OnStack };
2112  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2113                   ExprValueKind VK)
2114    : CastExpr(ImplicitCastExprClass, ty, kind, op, 0) {
2115    ValueKind = VK;
2116  }
2117
2118  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2119                                  CastKind Kind, Expr *Operand,
2120                                  const CXXCastPath *BasePath,
2121                                  ExprValueKind Cat);
2122
2123  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2124
2125  virtual SourceRange getSourceRange() const {
2126    return getSubExpr()->getSourceRange();
2127  }
2128
2129  /// getValueKind - The value kind that this cast produces.
2130  ExprValueKind getValueKind() const {
2131    return static_cast<ExprValueKind>(ValueKind);
2132  }
2133
2134  /// setValueKind - Set the value kind this cast produces.
2135  void setValueKind(ExprValueKind Cat) { ValueKind = Cat; }
2136
2137  static bool classof(const Stmt *T) {
2138    return T->getStmtClass() == ImplicitCastExprClass;
2139  }
2140  static bool classof(const ImplicitCastExpr *) { return true; }
2141};
2142
2143/// ExplicitCastExpr - An explicit cast written in the source
2144/// code.
2145///
2146/// This class is effectively an abstract class, because it provides
2147/// the basic representation of an explicitly-written cast without
2148/// specifying which kind of cast (C cast, functional cast, static
2149/// cast, etc.) was written; specific derived classes represent the
2150/// particular style of cast and its location information.
2151///
2152/// Unlike implicit casts, explicit cast nodes have two different
2153/// types: the type that was written into the source code, and the
2154/// actual type of the expression as determined by semantic
2155/// analysis. These types may differ slightly. For example, in C++ one
2156/// can cast to a reference type, which indicates that the resulting
2157/// expression will be an lvalue or xvalue. The reference type, however,
2158/// will not be used as the type of the expression.
2159class ExplicitCastExpr : public CastExpr {
2160  /// TInfo - Source type info for the (written) type
2161  /// this expression is casting to.
2162  TypeSourceInfo *TInfo;
2163
2164protected:
2165  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2166                   Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy)
2167    : CastExpr(SC, exprTy, kind, op, PathSize), TInfo(writtenTy) {}
2168
2169  /// \brief Construct an empty explicit cast.
2170  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2171    : CastExpr(SC, Shell, PathSize) { }
2172
2173public:
2174  /// getTypeInfoAsWritten - Returns the type source info for the type
2175  /// that this expression is casting to.
2176  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2177  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2178
2179  /// getTypeAsWritten - Returns the type that this expression is
2180  /// casting to, as written in the source code.
2181  QualType getTypeAsWritten() const { return TInfo->getType(); }
2182
2183  static bool classof(const Stmt *T) {
2184     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2185            T->getStmtClass() <= lastExplicitCastExprConstant;
2186  }
2187  static bool classof(const ExplicitCastExpr *) { return true; }
2188};
2189
2190/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2191/// cast in C++ (C++ [expr.cast]), which uses the syntax
2192/// (Type)expr. For example: @c (int)f.
2193class CStyleCastExpr : public ExplicitCastExpr {
2194  SourceLocation LPLoc; // the location of the left paren
2195  SourceLocation RPLoc; // the location of the right paren
2196
2197  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2198                 unsigned PathSize, TypeSourceInfo *writtenTy,
2199                 SourceLocation l, SourceLocation r)
2200    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, PathSize,
2201                       writtenTy), LPLoc(l), RPLoc(r) {}
2202
2203  /// \brief Construct an empty C-style explicit cast.
2204  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2205    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2206
2207public:
2208  static CStyleCastExpr *Create(ASTContext &Context, QualType T, CastKind K,
2209                                Expr *Op, const CXXCastPath *BasePath,
2210                                TypeSourceInfo *WrittenTy, SourceLocation L,
2211                                SourceLocation R);
2212
2213  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2214
2215  SourceLocation getLParenLoc() const { return LPLoc; }
2216  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2217
2218  SourceLocation getRParenLoc() const { return RPLoc; }
2219  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2220
2221  virtual SourceRange getSourceRange() const {
2222    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2223  }
2224  static bool classof(const Stmt *T) {
2225    return T->getStmtClass() == CStyleCastExprClass;
2226  }
2227  static bool classof(const CStyleCastExpr *) { return true; }
2228};
2229
2230/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2231///
2232/// This expression node kind describes a builtin binary operation,
2233/// such as "x + y" for integer values "x" and "y". The operands will
2234/// already have been converted to appropriate types (e.g., by
2235/// performing promotions or conversions).
2236///
2237/// In C++, where operators may be overloaded, a different kind of
2238/// expression node (CXXOperatorCallExpr) is used to express the
2239/// invocation of an overloaded operator with operator syntax. Within
2240/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2241/// used to store an expression "x + y" depends on the subexpressions
2242/// for x and y. If neither x or y is type-dependent, and the "+"
2243/// operator resolves to a built-in operation, BinaryOperator will be
2244/// used to express the computation (x and y may still be
2245/// value-dependent). If either x or y is type-dependent, or if the
2246/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2247/// be used to express the computation.
2248class BinaryOperator : public Expr {
2249public:
2250  typedef BinaryOperatorKind Opcode;
2251
2252private:
2253  unsigned Opc : 6;
2254  SourceLocation OpLoc;
2255
2256  enum { LHS, RHS, END_EXPR };
2257  Stmt* SubExprs[END_EXPR];
2258public:
2259
2260  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2261                 SourceLocation opLoc)
2262    : Expr(BinaryOperatorClass, ResTy,
2263           lhs->isTypeDependent() || rhs->isTypeDependent(),
2264           lhs->isValueDependent() || rhs->isValueDependent()),
2265      Opc(opc), OpLoc(opLoc) {
2266    SubExprs[LHS] = lhs;
2267    SubExprs[RHS] = rhs;
2268    assert(!isCompoundAssignmentOp() &&
2269           "Use ArithAssignBinaryOperator for compound assignments");
2270  }
2271
2272  /// \brief Construct an empty binary operator.
2273  explicit BinaryOperator(EmptyShell Empty)
2274    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2275
2276  SourceLocation getOperatorLoc() const { return OpLoc; }
2277  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2278
2279  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2280  void setOpcode(Opcode O) { Opc = O; }
2281
2282  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2283  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2284  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2285  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2286
2287  virtual SourceRange getSourceRange() const {
2288    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2289  }
2290
2291  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2292  /// corresponds to, e.g. "<<=".
2293  static const char *getOpcodeStr(Opcode Op);
2294
2295  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2296
2297  /// \brief Retrieve the binary opcode that corresponds to the given
2298  /// overloaded operator.
2299  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2300
2301  /// \brief Retrieve the overloaded operator kind that corresponds to
2302  /// the given binary opcode.
2303  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2304
2305  /// predicates to categorize the respective opcodes.
2306  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2307  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2308  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2309  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2310  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2311  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2312
2313  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2314  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2315
2316  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2317  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2318
2319  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2320  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2321
2322  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2323  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2324
2325  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2326  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2327
2328  bool isAssignmentOp() const { return Opc >= BO_Assign && Opc <= BO_OrAssign; }
2329  bool isCompoundAssignmentOp() const {
2330    return Opc > BO_Assign && Opc <= BO_OrAssign;
2331  }
2332  bool isShiftAssignOp() const {
2333    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2334  }
2335
2336  static bool classof(const Stmt *S) {
2337    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2338           S->getStmtClass() <= lastBinaryOperatorConstant;
2339  }
2340  static bool classof(const BinaryOperator *) { return true; }
2341
2342  // Iterators
2343  virtual child_iterator child_begin();
2344  virtual child_iterator child_end();
2345
2346protected:
2347  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2348                 SourceLocation opLoc, bool dead)
2349    : Expr(CompoundAssignOperatorClass, ResTy,
2350           lhs->isTypeDependent() || rhs->isTypeDependent(),
2351           lhs->isValueDependent() || rhs->isValueDependent()),
2352      Opc(opc), OpLoc(opLoc) {
2353    SubExprs[LHS] = lhs;
2354    SubExprs[RHS] = rhs;
2355  }
2356
2357  BinaryOperator(StmtClass SC, EmptyShell Empty)
2358    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2359};
2360
2361/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2362/// track of the type the operation is performed in.  Due to the semantics of
2363/// these operators, the operands are promoted, the aritmetic performed, an
2364/// implicit conversion back to the result type done, then the assignment takes
2365/// place.  This captures the intermediate type which the computation is done
2366/// in.
2367class CompoundAssignOperator : public BinaryOperator {
2368  QualType ComputationLHSType;
2369  QualType ComputationResultType;
2370public:
2371  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2372                         QualType ResType, QualType CompLHSType,
2373                         QualType CompResultType,
2374                         SourceLocation OpLoc)
2375    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2376      ComputationLHSType(CompLHSType),
2377      ComputationResultType(CompResultType) {
2378    assert(isCompoundAssignmentOp() &&
2379           "Only should be used for compound assignments");
2380  }
2381
2382  /// \brief Build an empty compound assignment operator expression.
2383  explicit CompoundAssignOperator(EmptyShell Empty)
2384    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2385
2386  // The two computation types are the type the LHS is converted
2387  // to for the computation and the type of the result; the two are
2388  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2389  QualType getComputationLHSType() const { return ComputationLHSType; }
2390  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2391
2392  QualType getComputationResultType() const { return ComputationResultType; }
2393  void setComputationResultType(QualType T) { ComputationResultType = T; }
2394
2395  static bool classof(const CompoundAssignOperator *) { return true; }
2396  static bool classof(const Stmt *S) {
2397    return S->getStmtClass() == CompoundAssignOperatorClass;
2398  }
2399};
2400
2401/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2402/// GNU "missing LHS" extension is in use.
2403///
2404class ConditionalOperator : public Expr {
2405  enum { COND, LHS, RHS, END_EXPR };
2406  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2407  Stmt* Save;
2408  SourceLocation QuestionLoc, ColonLoc;
2409public:
2410  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2411                      SourceLocation CLoc, Expr *rhs, Expr *save, QualType t)
2412    : Expr(ConditionalOperatorClass, t,
2413           // FIXME: the type of the conditional operator doesn't
2414           // depend on the type of the conditional, but the standard
2415           // seems to imply that it could. File a bug!
2416           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2417           (cond->isValueDependent() ||
2418            (lhs && lhs->isValueDependent()) ||
2419            (rhs && rhs->isValueDependent()))),
2420      QuestionLoc(QLoc),
2421      ColonLoc(CLoc) {
2422    SubExprs[COND] = cond;
2423    SubExprs[LHS] = lhs;
2424    SubExprs[RHS] = rhs;
2425    Save = save;
2426  }
2427
2428  /// \brief Build an empty conditional operator.
2429  explicit ConditionalOperator(EmptyShell Empty)
2430    : Expr(ConditionalOperatorClass, Empty) { }
2431
2432  // getCond - Return the expression representing the condition for
2433  //  the ?: operator.
2434  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2435  void setCond(Expr *E) { SubExprs[COND] = E; }
2436
2437  // getTrueExpr - Return the subexpression representing the value of the ?:
2438  //  expression if the condition evaluates to true.
2439  Expr *getTrueExpr() const {
2440    return cast<Expr>(SubExprs[LHS]);
2441  }
2442
2443  // getFalseExpr - Return the subexpression representing the value of the ?:
2444  // expression if the condition evaluates to false. This is the same as getRHS.
2445  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2446
2447  // getSaveExpr - In most cases this value will be null. Except a GCC extension
2448  // allows the left subexpression to be omitted, and instead of that condition
2449  // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
2450  // expression "x" is only evaluated once. Under this senario, this function
2451  // returns the original, non-converted condition expression for the ?:operator
2452  Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2453
2454  Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
2455  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2456
2457  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2458  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2459
2460  Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2461  void setSAVE(Expr *E) { Save = E; }
2462
2463  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2464  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2465
2466  SourceLocation getColonLoc() const { return ColonLoc; }
2467  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2468
2469  virtual SourceRange getSourceRange() const {
2470    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2471  }
2472  static bool classof(const Stmt *T) {
2473    return T->getStmtClass() == ConditionalOperatorClass;
2474  }
2475  static bool classof(const ConditionalOperator *) { return true; }
2476
2477  // Iterators
2478  virtual child_iterator child_begin();
2479  virtual child_iterator child_end();
2480};
2481
2482/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2483class AddrLabelExpr : public Expr {
2484  SourceLocation AmpAmpLoc, LabelLoc;
2485  LabelStmt *Label;
2486public:
2487  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2488                QualType t)
2489    : Expr(AddrLabelExprClass, t, false, false),
2490      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2491
2492  /// \brief Build an empty address of a label expression.
2493  explicit AddrLabelExpr(EmptyShell Empty)
2494    : Expr(AddrLabelExprClass, Empty) { }
2495
2496  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2497  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2498  SourceLocation getLabelLoc() const { return LabelLoc; }
2499  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2500
2501  virtual SourceRange getSourceRange() const {
2502    return SourceRange(AmpAmpLoc, LabelLoc);
2503  }
2504
2505  LabelStmt *getLabel() const { return Label; }
2506  void setLabel(LabelStmt *S) { Label = S; }
2507
2508  static bool classof(const Stmt *T) {
2509    return T->getStmtClass() == AddrLabelExprClass;
2510  }
2511  static bool classof(const AddrLabelExpr *) { return true; }
2512
2513  // Iterators
2514  virtual child_iterator child_begin();
2515  virtual child_iterator child_end();
2516};
2517
2518/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2519/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2520/// takes the value of the last subexpression.
2521class StmtExpr : public Expr {
2522  Stmt *SubStmt;
2523  SourceLocation LParenLoc, RParenLoc;
2524public:
2525  // FIXME: Does type-dependence need to be computed differently?
2526  StmtExpr(CompoundStmt *substmt, QualType T,
2527           SourceLocation lp, SourceLocation rp) :
2528    Expr(StmtExprClass, T, T->isDependentType(), false),
2529    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2530
2531  /// \brief Build an empty statement expression.
2532  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2533
2534  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2535  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2536  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2537
2538  virtual SourceRange getSourceRange() const {
2539    return SourceRange(LParenLoc, RParenLoc);
2540  }
2541
2542  SourceLocation getLParenLoc() const { return LParenLoc; }
2543  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2544  SourceLocation getRParenLoc() const { return RParenLoc; }
2545  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2546
2547  static bool classof(const Stmt *T) {
2548    return T->getStmtClass() == StmtExprClass;
2549  }
2550  static bool classof(const StmtExpr *) { return true; }
2551
2552  // Iterators
2553  virtual child_iterator child_begin();
2554  virtual child_iterator child_end();
2555};
2556
2557/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2558/// This AST node represents a function that returns 1 if two *types* (not
2559/// expressions) are compatible. The result of this built-in function can be
2560/// used in integer constant expressions.
2561class TypesCompatibleExpr : public Expr {
2562  TypeSourceInfo *TInfo1;
2563  TypeSourceInfo *TInfo2;
2564  SourceLocation BuiltinLoc, RParenLoc;
2565public:
2566  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2567                      TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
2568                      SourceLocation RP) :
2569    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2570    TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2571
2572  /// \brief Build an empty __builtin_type_compatible_p expression.
2573  explicit TypesCompatibleExpr(EmptyShell Empty)
2574    : Expr(TypesCompatibleExprClass, Empty) { }
2575
2576  TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
2577  void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
2578  TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
2579  void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
2580
2581  QualType getArgType1() const { return TInfo1->getType(); }
2582  QualType getArgType2() const { return TInfo2->getType(); }
2583
2584  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2585  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2586
2587  SourceLocation getRParenLoc() const { return RParenLoc; }
2588  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2589
2590  virtual SourceRange getSourceRange() const {
2591    return SourceRange(BuiltinLoc, RParenLoc);
2592  }
2593  static bool classof(const Stmt *T) {
2594    return T->getStmtClass() == TypesCompatibleExprClass;
2595  }
2596  static bool classof(const TypesCompatibleExpr *) { return true; }
2597
2598  // Iterators
2599  virtual child_iterator child_begin();
2600  virtual child_iterator child_end();
2601};
2602
2603/// ShuffleVectorExpr - clang-specific builtin-in function
2604/// __builtin_shufflevector.
2605/// This AST node represents a operator that does a constant
2606/// shuffle, similar to LLVM's shufflevector instruction. It takes
2607/// two vectors and a variable number of constant indices,
2608/// and returns the appropriately shuffled vector.
2609class ShuffleVectorExpr : public Expr {
2610  SourceLocation BuiltinLoc, RParenLoc;
2611
2612  // SubExprs - the list of values passed to the __builtin_shufflevector
2613  // function. The first two are vectors, and the rest are constant
2614  // indices.  The number of values in this list is always
2615  // 2+the number of indices in the vector type.
2616  Stmt **SubExprs;
2617  unsigned NumExprs;
2618
2619public:
2620  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2621  // to be computed differently?
2622  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2623                    QualType Type, SourceLocation BLoc,
2624                    SourceLocation RP) :
2625    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2626    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2627
2628    SubExprs = new (C) Stmt*[nexpr];
2629    for (unsigned i = 0; i < nexpr; i++)
2630      SubExprs[i] = args[i];
2631  }
2632
2633  /// \brief Build an empty vector-shuffle expression.
2634  explicit ShuffleVectorExpr(EmptyShell Empty)
2635    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2636
2637  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2638  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2639
2640  SourceLocation getRParenLoc() const { return RParenLoc; }
2641  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2642
2643  virtual SourceRange getSourceRange() const {
2644    return SourceRange(BuiltinLoc, RParenLoc);
2645  }
2646  static bool classof(const Stmt *T) {
2647    return T->getStmtClass() == ShuffleVectorExprClass;
2648  }
2649  static bool classof(const ShuffleVectorExpr *) { return true; }
2650
2651  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2652  /// constant expression, the actual arguments passed in, and the function
2653  /// pointers.
2654  unsigned getNumSubExprs() const { return NumExprs; }
2655
2656  /// getExpr - Return the Expr at the specified index.
2657  Expr *getExpr(unsigned Index) {
2658    assert((Index < NumExprs) && "Arg access out of range!");
2659    return cast<Expr>(SubExprs[Index]);
2660  }
2661  const Expr *getExpr(unsigned Index) const {
2662    assert((Index < NumExprs) && "Arg access out of range!");
2663    return cast<Expr>(SubExprs[Index]);
2664  }
2665
2666  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2667
2668  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2669    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2670    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2671  }
2672
2673  // Iterators
2674  virtual child_iterator child_begin();
2675  virtual child_iterator child_end();
2676};
2677
2678/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2679/// This AST node is similar to the conditional operator (?:) in C, with
2680/// the following exceptions:
2681/// - the test expression must be a integer constant expression.
2682/// - the expression returned acts like the chosen subexpression in every
2683///   visible way: the type is the same as that of the chosen subexpression,
2684///   and all predicates (whether it's an l-value, whether it's an integer
2685///   constant expression, etc.) return the same result as for the chosen
2686///   sub-expression.
2687class ChooseExpr : public Expr {
2688  enum { COND, LHS, RHS, END_EXPR };
2689  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2690  SourceLocation BuiltinLoc, RParenLoc;
2691public:
2692  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2693             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2694    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2695      BuiltinLoc(BLoc), RParenLoc(RP) {
2696      SubExprs[COND] = cond;
2697      SubExprs[LHS] = lhs;
2698      SubExprs[RHS] = rhs;
2699    }
2700
2701  /// \brief Build an empty __builtin_choose_expr.
2702  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2703
2704  /// isConditionTrue - Return whether the condition is true (i.e. not
2705  /// equal to zero).
2706  bool isConditionTrue(ASTContext &C) const;
2707
2708  /// getChosenSubExpr - Return the subexpression chosen according to the
2709  /// condition.
2710  Expr *getChosenSubExpr(ASTContext &C) const {
2711    return isConditionTrue(C) ? getLHS() : getRHS();
2712  }
2713
2714  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2715  void setCond(Expr *E) { SubExprs[COND] = E; }
2716  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2717  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2718  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2719  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2720
2721  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2722  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2723
2724  SourceLocation getRParenLoc() const { return RParenLoc; }
2725  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2726
2727  virtual SourceRange getSourceRange() const {
2728    return SourceRange(BuiltinLoc, RParenLoc);
2729  }
2730  static bool classof(const Stmt *T) {
2731    return T->getStmtClass() == ChooseExprClass;
2732  }
2733  static bool classof(const ChooseExpr *) { return true; }
2734
2735  // Iterators
2736  virtual child_iterator child_begin();
2737  virtual child_iterator child_end();
2738};
2739
2740/// GNUNullExpr - Implements the GNU __null extension, which is a name
2741/// for a null pointer constant that has integral type (e.g., int or
2742/// long) and is the same size and alignment as a pointer. The __null
2743/// extension is typically only used by system headers, which define
2744/// NULL as __null in C++ rather than using 0 (which is an integer
2745/// that may not match the size of a pointer).
2746class GNUNullExpr : public Expr {
2747  /// TokenLoc - The location of the __null keyword.
2748  SourceLocation TokenLoc;
2749
2750public:
2751  GNUNullExpr(QualType Ty, SourceLocation Loc)
2752    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2753
2754  /// \brief Build an empty GNU __null expression.
2755  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2756
2757  /// getTokenLocation - The location of the __null token.
2758  SourceLocation getTokenLocation() const { return TokenLoc; }
2759  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2760
2761  virtual SourceRange getSourceRange() const {
2762    return SourceRange(TokenLoc);
2763  }
2764  static bool classof(const Stmt *T) {
2765    return T->getStmtClass() == GNUNullExprClass;
2766  }
2767  static bool classof(const GNUNullExpr *) { return true; }
2768
2769  // Iterators
2770  virtual child_iterator child_begin();
2771  virtual child_iterator child_end();
2772};
2773
2774/// VAArgExpr, used for the builtin function __builtin_va_arg.
2775class VAArgExpr : public Expr {
2776  Stmt *Val;
2777  TypeSourceInfo *TInfo;
2778  SourceLocation BuiltinLoc, RParenLoc;
2779public:
2780  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2781            SourceLocation RPLoc, QualType t)
2782    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2783      Val(e), TInfo(TInfo),
2784      BuiltinLoc(BLoc),
2785      RParenLoc(RPLoc) { }
2786
2787  /// \brief Create an empty __builtin_va_arg expression.
2788  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2789
2790  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2791  Expr *getSubExpr() { return cast<Expr>(Val); }
2792  void setSubExpr(Expr *E) { Val = E; }
2793
2794  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2795  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2796
2797  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2798  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2799
2800  SourceLocation getRParenLoc() const { return RParenLoc; }
2801  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2802
2803  virtual SourceRange getSourceRange() const {
2804    return SourceRange(BuiltinLoc, RParenLoc);
2805  }
2806  static bool classof(const Stmt *T) {
2807    return T->getStmtClass() == VAArgExprClass;
2808  }
2809  static bool classof(const VAArgExpr *) { return true; }
2810
2811  // Iterators
2812  virtual child_iterator child_begin();
2813  virtual child_iterator child_end();
2814};
2815
2816/// @brief Describes an C or C++ initializer list.
2817///
2818/// InitListExpr describes an initializer list, which can be used to
2819/// initialize objects of different types, including
2820/// struct/class/union types, arrays, and vectors. For example:
2821///
2822/// @code
2823/// struct foo x = { 1, { 2, 3 } };
2824/// @endcode
2825///
2826/// Prior to semantic analysis, an initializer list will represent the
2827/// initializer list as written by the user, but will have the
2828/// placeholder type "void". This initializer list is called the
2829/// syntactic form of the initializer, and may contain C99 designated
2830/// initializers (represented as DesignatedInitExprs), initializations
2831/// of subobject members without explicit braces, and so on. Clients
2832/// interested in the original syntax of the initializer list should
2833/// use the syntactic form of the initializer list.
2834///
2835/// After semantic analysis, the initializer list will represent the
2836/// semantic form of the initializer, where the initializations of all
2837/// subobjects are made explicit with nested InitListExpr nodes and
2838/// C99 designators have been eliminated by placing the designated
2839/// initializations into the subobject they initialize. Additionally,
2840/// any "holes" in the initialization, where no initializer has been
2841/// specified for a particular subobject, will be replaced with
2842/// implicitly-generated ImplicitValueInitExpr expressions that
2843/// value-initialize the subobjects. Note, however, that the
2844/// initializer lists may still have fewer initializers than there are
2845/// elements to initialize within the object.
2846///
2847/// Given the semantic form of the initializer list, one can retrieve
2848/// the original syntactic form of that initializer list (if it
2849/// exists) using getSyntacticForm(). Since many initializer lists
2850/// have the same syntactic and semantic forms, getSyntacticForm() may
2851/// return NULL, indicating that the current initializer list also
2852/// serves as its syntactic form.
2853class InitListExpr : public Expr {
2854  // FIXME: Eliminate this vector in favor of ASTContext allocation
2855  typedef ASTVector<Stmt *> InitExprsTy;
2856  InitExprsTy InitExprs;
2857  SourceLocation LBraceLoc, RBraceLoc;
2858
2859  /// Contains the initializer list that describes the syntactic form
2860  /// written in the source code.
2861  InitListExpr *SyntacticForm;
2862
2863  /// If this initializer list initializes a union, specifies which
2864  /// field within the union will be initialized.
2865  FieldDecl *UnionFieldInit;
2866
2867  /// Whether this initializer list originally had a GNU array-range
2868  /// designator in it. This is a temporary marker used by CodeGen.
2869  bool HadArrayRangeDesignator;
2870
2871public:
2872  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2873               Expr **initexprs, unsigned numinits,
2874               SourceLocation rbraceloc);
2875
2876  /// \brief Build an empty initializer list.
2877  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2878    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2879
2880  unsigned getNumInits() const { return InitExprs.size(); }
2881
2882  const Expr *getInit(unsigned Init) const {
2883    assert(Init < getNumInits() && "Initializer access out of range!");
2884    return cast_or_null<Expr>(InitExprs[Init]);
2885  }
2886
2887  Expr *getInit(unsigned Init) {
2888    assert(Init < getNumInits() && "Initializer access out of range!");
2889    return cast_or_null<Expr>(InitExprs[Init]);
2890  }
2891
2892  void setInit(unsigned Init, Expr *expr) {
2893    assert(Init < getNumInits() && "Initializer access out of range!");
2894    InitExprs[Init] = expr;
2895  }
2896
2897  /// \brief Reserve space for some number of initializers.
2898  void reserveInits(ASTContext &C, unsigned NumInits);
2899
2900  /// @brief Specify the number of initializers
2901  ///
2902  /// If there are more than @p NumInits initializers, the remaining
2903  /// initializers will be destroyed. If there are fewer than @p
2904  /// NumInits initializers, NULL expressions will be added for the
2905  /// unknown initializers.
2906  void resizeInits(ASTContext &Context, unsigned NumInits);
2907
2908  /// @brief Updates the initializer at index @p Init with the new
2909  /// expression @p expr, and returns the old expression at that
2910  /// location.
2911  ///
2912  /// When @p Init is out of range for this initializer list, the
2913  /// initializer list will be extended with NULL expressions to
2914  /// accomodate the new entry.
2915  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2916
2917  /// \brief If this initializes a union, specifies which field in the
2918  /// union to initialize.
2919  ///
2920  /// Typically, this field is the first named field within the
2921  /// union. However, a designated initializer can specify the
2922  /// initialization of a different field within the union.
2923  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2924  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2925
2926  // Explicit InitListExpr's originate from source code (and have valid source
2927  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2928  bool isExplicit() {
2929    return LBraceLoc.isValid() && RBraceLoc.isValid();
2930  }
2931
2932  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2933  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2934  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2935  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2936
2937  /// @brief Retrieve the initializer list that describes the
2938  /// syntactic form of the initializer.
2939  ///
2940  ///
2941  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2942  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2943
2944  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2945  void sawArrayRangeDesignator(bool ARD = true) {
2946    HadArrayRangeDesignator = ARD;
2947  }
2948
2949  virtual SourceRange getSourceRange() const {
2950    return SourceRange(LBraceLoc, RBraceLoc);
2951  }
2952  static bool classof(const Stmt *T) {
2953    return T->getStmtClass() == InitListExprClass;
2954  }
2955  static bool classof(const InitListExpr *) { return true; }
2956
2957  // Iterators
2958  virtual child_iterator child_begin();
2959  virtual child_iterator child_end();
2960
2961  typedef InitExprsTy::iterator iterator;
2962  typedef InitExprsTy::const_iterator const_iterator;
2963  typedef InitExprsTy::reverse_iterator reverse_iterator;
2964  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
2965
2966  iterator begin() { return InitExprs.begin(); }
2967  const_iterator begin() const { return InitExprs.begin(); }
2968  iterator end() { return InitExprs.end(); }
2969  const_iterator end() const { return InitExprs.end(); }
2970  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2971  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
2972  reverse_iterator rend() { return InitExprs.rend(); }
2973  const_reverse_iterator rend() const { return InitExprs.rend(); }
2974};
2975
2976/// @brief Represents a C99 designated initializer expression.
2977///
2978/// A designated initializer expression (C99 6.7.8) contains one or
2979/// more designators (which can be field designators, array
2980/// designators, or GNU array-range designators) followed by an
2981/// expression that initializes the field or element(s) that the
2982/// designators refer to. For example, given:
2983///
2984/// @code
2985/// struct point {
2986///   double x;
2987///   double y;
2988/// };
2989/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2990/// @endcode
2991///
2992/// The InitListExpr contains three DesignatedInitExprs, the first of
2993/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2994/// designators, one array designator for @c [2] followed by one field
2995/// designator for @c .y. The initalization expression will be 1.0.
2996class DesignatedInitExpr : public Expr {
2997public:
2998  /// \brief Forward declaration of the Designator class.
2999  class Designator;
3000
3001private:
3002  /// The location of the '=' or ':' prior to the actual initializer
3003  /// expression.
3004  SourceLocation EqualOrColonLoc;
3005
3006  /// Whether this designated initializer used the GNU deprecated
3007  /// syntax rather than the C99 '=' syntax.
3008  bool GNUSyntax : 1;
3009
3010  /// The number of designators in this initializer expression.
3011  unsigned NumDesignators : 15;
3012
3013  /// \brief The designators in this designated initialization
3014  /// expression.
3015  Designator *Designators;
3016
3017  /// The number of subexpressions of this initializer expression,
3018  /// which contains both the initializer and any additional
3019  /// expressions used by array and array-range designators.
3020  unsigned NumSubExprs : 16;
3021
3022
3023  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3024                     const Designator *Designators,
3025                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3026                     Expr **IndexExprs, unsigned NumIndexExprs,
3027                     Expr *Init);
3028
3029  explicit DesignatedInitExpr(unsigned NumSubExprs)
3030    : Expr(DesignatedInitExprClass, EmptyShell()),
3031      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3032
3033public:
3034  /// A field designator, e.g., ".x".
3035  struct FieldDesignator {
3036    /// Refers to the field that is being initialized. The low bit
3037    /// of this field determines whether this is actually a pointer
3038    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3039    /// initially constructed, a field designator will store an
3040    /// IdentifierInfo*. After semantic analysis has resolved that
3041    /// name, the field designator will instead store a FieldDecl*.
3042    uintptr_t NameOrField;
3043
3044    /// The location of the '.' in the designated initializer.
3045    unsigned DotLoc;
3046
3047    /// The location of the field name in the designated initializer.
3048    unsigned FieldLoc;
3049  };
3050
3051  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3052  struct ArrayOrRangeDesignator {
3053    /// Location of the first index expression within the designated
3054    /// initializer expression's list of subexpressions.
3055    unsigned Index;
3056    /// The location of the '[' starting the array range designator.
3057    unsigned LBracketLoc;
3058    /// The location of the ellipsis separating the start and end
3059    /// indices. Only valid for GNU array-range designators.
3060    unsigned EllipsisLoc;
3061    /// The location of the ']' terminating the array range designator.
3062    unsigned RBracketLoc;
3063  };
3064
3065  /// @brief Represents a single C99 designator.
3066  ///
3067  /// @todo This class is infuriatingly similar to clang::Designator,
3068  /// but minor differences (storing indices vs. storing pointers)
3069  /// keep us from reusing it. Try harder, later, to rectify these
3070  /// differences.
3071  class Designator {
3072    /// @brief The kind of designator this describes.
3073    enum {
3074      FieldDesignator,
3075      ArrayDesignator,
3076      ArrayRangeDesignator
3077    } Kind;
3078
3079    union {
3080      /// A field designator, e.g., ".x".
3081      struct FieldDesignator Field;
3082      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3083      struct ArrayOrRangeDesignator ArrayOrRange;
3084    };
3085    friend class DesignatedInitExpr;
3086
3087  public:
3088    Designator() {}
3089
3090    /// @brief Initializes a field designator.
3091    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3092               SourceLocation FieldLoc)
3093      : Kind(FieldDesignator) {
3094      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3095      Field.DotLoc = DotLoc.getRawEncoding();
3096      Field.FieldLoc = FieldLoc.getRawEncoding();
3097    }
3098
3099    /// @brief Initializes an array designator.
3100    Designator(unsigned Index, SourceLocation LBracketLoc,
3101               SourceLocation RBracketLoc)
3102      : Kind(ArrayDesignator) {
3103      ArrayOrRange.Index = Index;
3104      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3105      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3106      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3107    }
3108
3109    /// @brief Initializes a GNU array-range designator.
3110    Designator(unsigned Index, SourceLocation LBracketLoc,
3111               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3112      : Kind(ArrayRangeDesignator) {
3113      ArrayOrRange.Index = Index;
3114      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3115      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3116      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3117    }
3118
3119    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3120    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3121    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3122
3123    IdentifierInfo * getFieldName();
3124
3125    FieldDecl *getField() {
3126      assert(Kind == FieldDesignator && "Only valid on a field designator");
3127      if (Field.NameOrField & 0x01)
3128        return 0;
3129      else
3130        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3131    }
3132
3133    void setField(FieldDecl *FD) {
3134      assert(Kind == FieldDesignator && "Only valid on a field designator");
3135      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3136    }
3137
3138    SourceLocation getDotLoc() const {
3139      assert(Kind == FieldDesignator && "Only valid on a field designator");
3140      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3141    }
3142
3143    SourceLocation getFieldLoc() const {
3144      assert(Kind == FieldDesignator && "Only valid on a field designator");
3145      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3146    }
3147
3148    SourceLocation getLBracketLoc() const {
3149      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3150             "Only valid on an array or array-range designator");
3151      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3152    }
3153
3154    SourceLocation getRBracketLoc() const {
3155      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3156             "Only valid on an array or array-range designator");
3157      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3158    }
3159
3160    SourceLocation getEllipsisLoc() const {
3161      assert(Kind == ArrayRangeDesignator &&
3162             "Only valid on an array-range designator");
3163      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3164    }
3165
3166    unsigned getFirstExprIndex() const {
3167      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3168             "Only valid on an array or array-range designator");
3169      return ArrayOrRange.Index;
3170    }
3171
3172    SourceLocation getStartLocation() const {
3173      if (Kind == FieldDesignator)
3174        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3175      else
3176        return getLBracketLoc();
3177    }
3178  };
3179
3180  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3181                                    unsigned NumDesignators,
3182                                    Expr **IndexExprs, unsigned NumIndexExprs,
3183                                    SourceLocation EqualOrColonLoc,
3184                                    bool GNUSyntax, Expr *Init);
3185
3186  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3187
3188  /// @brief Returns the number of designators in this initializer.
3189  unsigned size() const { return NumDesignators; }
3190
3191  // Iterator access to the designators.
3192  typedef Designator* designators_iterator;
3193  designators_iterator designators_begin() { return Designators; }
3194  designators_iterator designators_end() {
3195    return Designators + NumDesignators;
3196  }
3197
3198  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3199
3200  void setDesignators(ASTContext &C, const Designator *Desigs,
3201                      unsigned NumDesigs);
3202
3203  Expr *getArrayIndex(const Designator& D);
3204  Expr *getArrayRangeStart(const Designator& D);
3205  Expr *getArrayRangeEnd(const Designator& D);
3206
3207  /// @brief Retrieve the location of the '=' that precedes the
3208  /// initializer value itself, if present.
3209  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3210  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3211
3212  /// @brief Determines whether this designated initializer used the
3213  /// deprecated GNU syntax for designated initializers.
3214  bool usesGNUSyntax() const { return GNUSyntax; }
3215  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3216
3217  /// @brief Retrieve the initializer value.
3218  Expr *getInit() const {
3219    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3220  }
3221
3222  void setInit(Expr *init) {
3223    *child_begin() = init;
3224  }
3225
3226  /// \brief Retrieve the total number of subexpressions in this
3227  /// designated initializer expression, including the actual
3228  /// initialized value and any expressions that occur within array
3229  /// and array-range designators.
3230  unsigned getNumSubExprs() const { return NumSubExprs; }
3231
3232  Expr *getSubExpr(unsigned Idx) {
3233    assert(Idx < NumSubExprs && "Subscript out of range");
3234    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3235    Ptr += sizeof(DesignatedInitExpr);
3236    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3237  }
3238
3239  void setSubExpr(unsigned Idx, Expr *E) {
3240    assert(Idx < NumSubExprs && "Subscript out of range");
3241    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3242    Ptr += sizeof(DesignatedInitExpr);
3243    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3244  }
3245
3246  /// \brief Replaces the designator at index @p Idx with the series
3247  /// of designators in [First, Last).
3248  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3249                        const Designator *Last);
3250
3251  virtual SourceRange getSourceRange() const;
3252
3253  static bool classof(const Stmt *T) {
3254    return T->getStmtClass() == DesignatedInitExprClass;
3255  }
3256  static bool classof(const DesignatedInitExpr *) { return true; }
3257
3258  // Iterators
3259  virtual child_iterator child_begin();
3260  virtual child_iterator child_end();
3261};
3262
3263/// \brief Represents an implicitly-generated value initialization of
3264/// an object of a given type.
3265///
3266/// Implicit value initializations occur within semantic initializer
3267/// list expressions (InitListExpr) as placeholders for subobject
3268/// initializations not explicitly specified by the user.
3269///
3270/// \see InitListExpr
3271class ImplicitValueInitExpr : public Expr {
3272public:
3273  explicit ImplicitValueInitExpr(QualType ty)
3274    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3275
3276  /// \brief Construct an empty implicit value initialization.
3277  explicit ImplicitValueInitExpr(EmptyShell Empty)
3278    : Expr(ImplicitValueInitExprClass, Empty) { }
3279
3280  static bool classof(const Stmt *T) {
3281    return T->getStmtClass() == ImplicitValueInitExprClass;
3282  }
3283  static bool classof(const ImplicitValueInitExpr *) { return true; }
3284
3285  virtual SourceRange getSourceRange() const {
3286    return SourceRange();
3287  }
3288
3289  // Iterators
3290  virtual child_iterator child_begin();
3291  virtual child_iterator child_end();
3292};
3293
3294
3295class ParenListExpr : public Expr {
3296  Stmt **Exprs;
3297  unsigned NumExprs;
3298  SourceLocation LParenLoc, RParenLoc;
3299
3300public:
3301  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3302                unsigned numexprs, SourceLocation rparenloc);
3303
3304  /// \brief Build an empty paren list.
3305  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3306
3307  unsigned getNumExprs() const { return NumExprs; }
3308
3309  const Expr* getExpr(unsigned Init) const {
3310    assert(Init < getNumExprs() && "Initializer access out of range!");
3311    return cast_or_null<Expr>(Exprs[Init]);
3312  }
3313
3314  Expr* getExpr(unsigned Init) {
3315    assert(Init < getNumExprs() && "Initializer access out of range!");
3316    return cast_or_null<Expr>(Exprs[Init]);
3317  }
3318
3319  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3320
3321  SourceLocation getLParenLoc() const { return LParenLoc; }
3322  SourceLocation getRParenLoc() const { return RParenLoc; }
3323
3324  virtual SourceRange getSourceRange() const {
3325    return SourceRange(LParenLoc, RParenLoc);
3326  }
3327  static bool classof(const Stmt *T) {
3328    return T->getStmtClass() == ParenListExprClass;
3329  }
3330  static bool classof(const ParenListExpr *) { return true; }
3331
3332  // Iterators
3333  virtual child_iterator child_begin();
3334  virtual child_iterator child_end();
3335
3336  friend class ASTStmtReader;
3337  friend class ASTStmtWriter;
3338};
3339
3340
3341//===----------------------------------------------------------------------===//
3342// Clang Extensions
3343//===----------------------------------------------------------------------===//
3344
3345
3346/// ExtVectorElementExpr - This represents access to specific elements of a
3347/// vector, and may occur on the left hand side or right hand side.  For example
3348/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3349///
3350/// Note that the base may have either vector or pointer to vector type, just
3351/// like a struct field reference.
3352///
3353class ExtVectorElementExpr : public Expr {
3354  Stmt *Base;
3355  IdentifierInfo *Accessor;
3356  SourceLocation AccessorLoc;
3357public:
3358  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3359                       SourceLocation loc)
3360    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3361           base->isValueDependent()),
3362      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3363
3364  /// \brief Build an empty vector element expression.
3365  explicit ExtVectorElementExpr(EmptyShell Empty)
3366    : Expr(ExtVectorElementExprClass, Empty) { }
3367
3368  const Expr *getBase() const { return cast<Expr>(Base); }
3369  Expr *getBase() { return cast<Expr>(Base); }
3370  void setBase(Expr *E) { Base = E; }
3371
3372  IdentifierInfo &getAccessor() const { return *Accessor; }
3373  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3374
3375  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3376  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3377
3378  /// getNumElements - Get the number of components being selected.
3379  unsigned getNumElements() const;
3380
3381  /// containsDuplicateElements - Return true if any element access is
3382  /// repeated.
3383  bool containsDuplicateElements() const;
3384
3385  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3386  /// aggregate Constant of ConstantInt(s).
3387  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3388
3389  virtual SourceRange getSourceRange() const {
3390    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3391  }
3392
3393  /// isArrow - Return true if the base expression is a pointer to vector,
3394  /// return false if the base expression is a vector.
3395  bool isArrow() const;
3396
3397  static bool classof(const Stmt *T) {
3398    return T->getStmtClass() == ExtVectorElementExprClass;
3399  }
3400  static bool classof(const ExtVectorElementExpr *) { return true; }
3401
3402  // Iterators
3403  virtual child_iterator child_begin();
3404  virtual child_iterator child_end();
3405};
3406
3407
3408/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3409/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3410class BlockExpr : public Expr {
3411protected:
3412  BlockDecl *TheBlock;
3413  bool HasBlockDeclRefExprs;
3414public:
3415  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3416    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3417      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3418
3419  /// \brief Build an empty block expression.
3420  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3421
3422  const BlockDecl *getBlockDecl() const { return TheBlock; }
3423  BlockDecl *getBlockDecl() { return TheBlock; }
3424  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3425
3426  // Convenience functions for probing the underlying BlockDecl.
3427  SourceLocation getCaretLocation() const;
3428  const Stmt *getBody() const;
3429  Stmt *getBody();
3430
3431  virtual SourceRange getSourceRange() const {
3432    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3433  }
3434
3435  /// getFunctionType - Return the underlying function type for this block.
3436  const FunctionType *getFunctionType() const;
3437
3438  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3439  /// inside of the block that reference values outside the block.
3440  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3441  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3442
3443  static bool classof(const Stmt *T) {
3444    return T->getStmtClass() == BlockExprClass;
3445  }
3446  static bool classof(const BlockExpr *) { return true; }
3447
3448  // Iterators
3449  virtual child_iterator child_begin();
3450  virtual child_iterator child_end();
3451};
3452
3453/// BlockDeclRefExpr - A reference to a declared variable, function,
3454/// enum, etc.
3455class BlockDeclRefExpr : public Expr {
3456  ValueDecl *D;
3457  SourceLocation Loc;
3458  bool IsByRef : 1;
3459  bool ConstQualAdded : 1;
3460  Stmt *CopyConstructorVal;
3461public:
3462  // FIXME: Fix type/value dependence!
3463  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3464                   bool constAdded = false,
3465                   Stmt *copyConstructorVal = 0)
3466  : Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false),
3467    D(d), Loc(l), IsByRef(ByRef),
3468    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3469
3470  // \brief Build an empty reference to a declared variable in a
3471  // block.
3472  explicit BlockDeclRefExpr(EmptyShell Empty)
3473    : Expr(BlockDeclRefExprClass, Empty) { }
3474
3475  ValueDecl *getDecl() { return D; }
3476  const ValueDecl *getDecl() const { return D; }
3477  void setDecl(ValueDecl *VD) { D = VD; }
3478
3479  SourceLocation getLocation() const { return Loc; }
3480  void setLocation(SourceLocation L) { Loc = L; }
3481
3482  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3483
3484  bool isByRef() const { return IsByRef; }
3485  void setByRef(bool BR) { IsByRef = BR; }
3486
3487  bool isConstQualAdded() const { return ConstQualAdded; }
3488  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3489
3490  const Expr *getCopyConstructorExpr() const
3491    { return cast_or_null<Expr>(CopyConstructorVal); }
3492  Expr *getCopyConstructorExpr()
3493    { return cast_or_null<Expr>(CopyConstructorVal); }
3494  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3495
3496  static bool classof(const Stmt *T) {
3497    return T->getStmtClass() == BlockDeclRefExprClass;
3498  }
3499  static bool classof(const BlockDeclRefExpr *) { return true; }
3500
3501  // Iterators
3502  virtual child_iterator child_begin();
3503  virtual child_iterator child_end();
3504};
3505
3506}  // end namespace clang
3507
3508#endif
3509