Expr.h revision 4204f07fc8bffe6d320b2de95fea274ccf37a17b
1cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//
3cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//                     The LLVM Compiler Infrastructure
4cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//
5cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson// This file is distributed under the University of Illinois Open Source
6cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson// License. See LICENSE.TXT for details.
7cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//
8cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//===----------------------------------------------------------------------===//
9cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//
10cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//  This file defines the Expr interface and subclasses.
11cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//
12cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//===----------------------------------------------------------------------===//
13cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
14cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#ifndef LLVM_CLANG_AST_EXPR_H
15cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#define LLVM_CLANG_AST_EXPR_H
16cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
17cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "clang/AST/APValue.h"
18cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "clang/AST/Stmt.h"
19cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "clang/AST/Type.h"
20cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "clang/AST/DeclAccessPair.h"
21cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "clang/AST/ASTVector.h"
22cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "clang/AST/UsuallyTinyPtrVector.h"
23cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "llvm/ADT/APSInt.h"
24cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "llvm/ADT/APFloat.h"
25cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "llvm/ADT/SmallVector.h"
26cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include "llvm/ADT/StringRef.h"
27cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson#include <vector>
28cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
29cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonnamespace clang {
30cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class ASTContext;
31cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class APValue;
32cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class Decl;
33cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class IdentifierInfo;
34cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class ParmVarDecl;
35cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class NamedDecl;
36cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class ValueDecl;
37cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class BlockDecl;
38cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class CXXBaseSpecifier;
39cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class CXXOperatorCallExpr;
40cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class CXXMemberCallExpr;
41cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class TemplateArgumentLoc;
42cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class TemplateArgumentListInfo;
43cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
44cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// \brief A simple array of base specifiers.
45cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksontypedef UsuallyTinyPtrVector<const CXXBaseSpecifier> CXXBaseSpecifierArray;
46cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
47cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// Expr - This represents one expression.  Note that Expr's are subclasses of
48cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// Stmt.  This allows an expression to be transparently used any place a Stmt
49cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// is required.
50cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson///
51cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonclass Expr : public Stmt {
52cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  QualType TR;
53cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
54cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual void ANCHOR(); // key function.
55ad919c30df71bc191be6f107385638b456da6a0fAdam Jacksonprotected:
56ad919c30df71bc191be6f107385638b456da6a0fAdam Jackson  /// TypeDependent - Whether this expression is type-dependent
57ad919c30df71bc191be6f107385638b456da6a0fAdam Jackson  /// (C++ [temp.dep.expr]).
58cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool TypeDependent : 1;
59cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
60cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// ValueDependent - Whether this expression is value-dependent
61cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// (C++ [temp.dep.constexpr]).
62fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick  bool ValueDependent : 1;
6302986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick
6402986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  Expr(StmtClass SC, QualType T, bool TD, bool VD)
6502986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
6602986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick    setType(T);
67cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
68cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
69cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Construct an empty expression.
70cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
72cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonpublic:
73cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Increases the reference count for this expression.
74cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///
75cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// Invoke the Retain() operation when this expression
76cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// is being shared by another owner.
77cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  Expr *Retain() {
78cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    Stmt::Retain();
79cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return this;
80cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
81cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
82cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  QualType getType() const { return TR; }
83cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setType(QualType t) {
84cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // In C++, the type of an expression is always adjusted so that it
85cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // will not have reference type an expression will never have
86cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // reference type (C++ [expr]p6). Use
87cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // QualType::getNonReferenceType() to retrieve the non-reference
88cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // type. Additionally, inspect Expr::isLvalue to determine whether
89cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // an expression that is adjusted in this manner should be
90cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // considered an lvalue.
91cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    assert((t.isNull() || !t->isReferenceType()) &&
92cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson           "Expressions can't have reference type");
93cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
94cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    TR = t;
95cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
96cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
97cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isValueDependent - Determines whether this expression is
98cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
99cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// array bound of "Chars" in the following example is
100cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// value-dependent.
101cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// @code
102cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// template<int Size, char (&Chars)[Size]> struct meta_string;
103cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// @endcode
104cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isValueDependent() const { return ValueDependent; }
105cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
106cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Set whether this expression is value-dependent or not.
107cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setValueDependent(bool VD) { ValueDependent = VD; }
108cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
109cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isTypeDependent - Determines whether this expression is
110cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// type-dependent (C++ [temp.dep.expr]), which means that its type
111cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// could change from one template instantiation to the next. For
112cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// example, the expressions "x" and "x + y" are type-dependent in
113cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// the following code, but "y" is not type-dependent:
114cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// @code
115cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// template<typename T>
116cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// void add(T x, int y) {
117cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///   x + y;
118cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// }
119cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// @endcode
120cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isTypeDependent() const { return TypeDependent; }
121cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
122cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Set whether this expression is type-dependent or not.
123cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setTypeDependent(bool TD) { TypeDependent = TD; }
124cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
125cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// SourceLocation tokens are not useful in isolation - they are low level
126cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// value objects created/interpreted by SourceManager. We assume AST
127cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// clients will have a pointer to the respective SourceManager.
128cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual SourceRange getSourceRange() const = 0;
129cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
130cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// getExprLoc - Return the preferred location for the arrow when diagnosing
131cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// a problem with a generic expression.
132cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual SourceLocation getExprLoc() const { return getLocStart(); }
133cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
134cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isUnusedResultAWarning - Return true if this immediate expression should
135cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
136cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// with location to warn on and the source range[s] to report with the
137cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// warning.
138cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
139cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                              SourceRange &R2, ASTContext &Ctx) const;
140cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
141cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
142cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// incomplete type other than void. Nonarray expressions that can be lvalues:
143cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - name, where name must be a variable
144cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - e[i]
145cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - (e), where e must be an lvalue
146cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - e.name, where e must be an lvalue
147cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - e->name
148cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - *e, the type of e cannot be a function type
149cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - string-constant
150cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - reference type [C++ [expr]]
151cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
152cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///
153cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  enum isLvalueResult {
154cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    LV_Valid,
155cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    LV_NotObjectType,
156cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    LV_IncompleteVoidType,
157cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    LV_DuplicateVectorComponents,
158cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    LV_InvalidExpression,
159cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    LV_MemberFunction,
160cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    LV_SubObjCPropertySetting,
161cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    LV_ClassTemporary
162cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  };
163cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  isLvalueResult isLvalue(ASTContext &Ctx) const;
164cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
165cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
166cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// does not have an incomplete type, does not have a const-qualified type,
167cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// and if it is a structure or union, does not have any member (including,
168cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// recursively, any member or element of all contained aggregates or unions)
169cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// with a const-qualified type.
170cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///
171cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \param Loc [in] [out] - A source location which *may* be filled
172cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// in with the location of the expression making this a
173cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// non-modifiable lvalue, if specified.
174cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  enum isModifiableLvalueResult {
175cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_Valid,
176cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_NotObjectType,
177cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_IncompleteVoidType,
178cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_DuplicateVectorComponents,
179cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_InvalidExpression,
180cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
181cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_IncompleteType,
182cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_ConstQualified,
183cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_ArrayType,
184cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_NotBlockQualified,
185cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_ReadonlyProperty,
186cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_NoSetterProperty,
187cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_MemberFunction,
188cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_SubObjCPropertySetting,
189cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    MLV_ClassTemporary
190cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  };
191cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
192cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                                              SourceLocation *Loc = 0) const;
193cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
194cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief The return type of classify(). Represents the C++0x expression
195cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///        taxonomy.
196cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  class Classification {
197cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  public:
198cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// \brief The various classification results. Most of these mean prvalue.
199cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    enum Kinds {
200cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_LValue,
201cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_XValue,
202cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_Function, // Functions cannot be lvalues in C.
203cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_Void, // Void cannot be an lvalue in C.
204cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
205cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_MemberFunction, // An expression referring to a member function
206cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_SubObjCPropertySetting,
207cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_ClassTemporary, // A prvalue of class type
208cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CL_PRValue // A prvalue for any other reason, of any other type
209cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    };
210cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// \brief The results of modification testing.
211cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    enum ModifiableType {
212cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CM_Untested, // testModifiable was false.
213fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick      CM_Modifiable,
214fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick      CM_RValue, // Not modifiable because it's an rvalue
215cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CM_Function, // Not modifiable because it's a function; C++ only
216cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
217fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick      CM_NotBlockQualified, // Not captured in the closure
218fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
219fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick      CM_ConstQualified,
220cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      CM_ArrayType,
221fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick      CM_IncompleteType
222cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    };
223cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
224fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick  private:
225fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick    friend class Expr;
226cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
227fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick    unsigned short Kind;
228fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick    unsigned short Modifiable;
229cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
230fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick    explicit Classification(Kinds k, ModifiableType m)
231fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick      : Kind(k), Modifiable(m)
232fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick    {}
233cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
234fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick  public:
235cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    Classification() {}
236cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
237cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    Kinds getKind() const { return static_cast<Kinds>(Kind); }
238cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    ModifiableType getModifiable() const {
239cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
240cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      return static_cast<ModifiableType>(Modifiable);
241cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    }
242cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool isLValue() const { return Kind == CL_LValue; }
243cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool isXValue() const { return Kind == CL_XValue; }
244cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool isGLValue() const { return Kind <= CL_XValue; }
245cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool isPRValue() const { return Kind >= CL_Function; }
246cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool isRValue() const { return Kind >= CL_XValue; }
247cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
248cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  };
249cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief classify - Classify this expression according to the C++0x
250cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///        expression taxonomy.
251cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///
252cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
253cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// old lvalue vs rvalue. This function determines the type of expression this
254cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// is. There are three expression types:
255cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// - lvalues are classical lvalues as in C++03.
256cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// - prvalues are equivalent to rvalues in C++03.
257cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
258cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///   function returning an rvalue reference.
259cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// lvalues and xvalues are collectively referred to as glvalues, while
260cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// prvalues and xvalues together form rvalues.
261cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  Classification Classify(ASTContext &Ctx) const {
262cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return ClassifyImpl(Ctx, 0);
263cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
264cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
265cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief classifyModifiable - Classify this expression according to the
266cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///        C++0x expression taxonomy, and see if it is valid on the left side
267cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///        of an assignment.
268cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///
269cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// This function extends classify in that it also tests whether the
270cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// expression is modifiable (C99 6.3.2.1p1).
271cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \param Loc A source location that might be filled with a relevant location
272cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///            if the expression is not modifiable.
273cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
274cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return ClassifyImpl(Ctx, &Loc);
275cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
276cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
277cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonprivate:
278cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
279cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
280cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonpublic:
281cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
282cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief If this expression refers to a bit-field, retrieve the
283cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// declaration of that bit-field.
284cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  FieldDecl *getBitField();
285cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
286cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const FieldDecl *getBitField() const {
287cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return const_cast<Expr*>(this)->getBitField();
288cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
289cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
290cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Returns whether this expression refers to a vector element.
291cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool refersToVectorElement() const;
292cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
293cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
294cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
295cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// but also int expressions which are produced by things like comparisons in
296cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// C.
297cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isKnownToHaveBooleanValue() const;
298cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
299cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isIntegerConstantExpr - Return true if this expression is a valid integer
300cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// constant expression, and, if so, return its value in Result.  If not a
301cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// valid i-c-e, return false and fill in Loc (if specified) with the location
302cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// of the invalid expression.
303cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
304cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             SourceLocation *Loc = 0,
305cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             bool isEvaluated = true) const;
306cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
307cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    llvm::APSInt X;
308cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return isIntegerConstantExpr(X, Ctx, Loc);
309cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
310cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isConstantInitializer - Returns true if this expression is a constant
311cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// initializer, which can be emitted at compile-time.
312cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
313cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
314cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// EvalResult is a struct with detailed info about an evaluated expression.
315cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  struct EvalResult {
316cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// Val - This is the value the expression can be folded to.
317cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    APValue Val;
318cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
319cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// HasSideEffects - Whether the evaluated expression has side effects.
320cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// For example, (f() && 0) can be folded, but it still has side effects.
321cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool HasSideEffects;
322cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
323cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// Diag - If the expression is unfoldable, then Diag contains a note
324cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
325cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// position for the error, and DiagExpr is the expression that caused
326cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// the error.
327cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// If the expression is foldable, but not an integer constant expression,
328cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// Diag contains a note diagnostic that describes why it isn't an integer
329cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// constant expression. If the expression *is* an integer constant
330cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// expression, then Diag will be zero.
331cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    unsigned Diag;
332cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    const Expr *DiagExpr;
333cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    SourceLocation DiagLoc;
334cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
335cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
336cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
337cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // isGlobalLValue - Return true if the evaluated lvalue expression
338cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // is global.
339cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool isGlobalLValue() const;
340cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // hasSideEffects - Return true if the evaluated expression has
341cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // side effects.
342cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    bool hasSideEffects() const {
343cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      return HasSideEffects;
344cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    }
345cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  };
346cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
347cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// Evaluate - Return true if this is a constant which we can fold using
348cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// any crazy technique (that has nothing to do with language standards) that
349cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// we want to.  If this function returns true, it returns the folded constant
350cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// in Result.
351cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
352cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
353cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// EvaluateAsBooleanCondition - Return true if this is a constant
354cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// which we we can fold and convert to a boolean condition using
355cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// any crazy technique that we want to.
356cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
357cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
358cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isEvaluatable - Call Evaluate to see if this expression can be constant
359cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// folded, but discard the result.
360cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isEvaluatable(ASTContext &Ctx) const;
361cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
362cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// HasSideEffects - This routine returns true for all those expressions
363cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// which must be evaluated each time and must not be optimization away
364cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// or evaluated at compile time. Example is a function call, volatile
365cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// variable read.
366cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool HasSideEffects(ASTContext &Ctx) const;
367cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
368cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
369cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// must be called on an expression that constant folds to an integer.
370cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
371cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
372cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
373cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// with link time known address.
374cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
375cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
376cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
377cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
378cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
379cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Enumeration used to describe how \c isNullPointerConstant()
380cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// should cope with value-dependent expressions.
381cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  enum NullPointerConstantValueDependence {
382cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// \brief Specifies that the expression should never be value-dependent.
383cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    NPC_NeverValueDependent = 0,
384cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
385cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// \brief Specifies that a value-dependent expression of integral or
386cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// dependent type should be considered a null pointer constant.
387cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    NPC_ValueDependentIsNull,
388cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
389cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// \brief Specifies that a value-dependent expression should be considered
390cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// to never be a null pointer constant.
391cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    NPC_ValueDependentIsNotNull
392cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  };
393cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
394cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
395cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// integer constant expression with the value zero, or if this is one that is
396cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// cast to void*.
397cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isNullPointerConstant(ASTContext &Ctx,
398cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             NullPointerConstantValueDependence NPC) const;
399cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
400cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
401cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// write barrier.
402cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isOBJCGCCandidate(ASTContext &Ctx) const;
403cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
404cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
405cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  its subexpression.  If that subexpression is also a ParenExpr,
406cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  then this method recursively returns its subexpression, and so forth.
407cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///  Otherwise, the method returns the current Expr.
408cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  Expr *IgnoreParens();
409cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
410cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
411cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// or CastExprs, returning their operand.
412cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  Expr *IgnoreParenCasts();
413cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
414cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
415cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// ParenExpr or ImplicitCastExprs, returning their operand.
416cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  Expr *IgnoreParenImpCasts();
417cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
418cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
419cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// value (including ptr->int casts of the same size).  Strip off any
420cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// ParenExpr or CastExprs, returning their operand.
421cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
422cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
423cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Determine whether this expression is a default function argument.
424cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ///
425cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// Default arguments are implicitly generated in the abstract syntax tree
426cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// by semantic analysis for function calls, object constructions, etc. in
427cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
428cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// this routine also looks through any implicit casts to determine whether
429cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// the expression is a default argument.
430cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isDefaultArgument() const;
431cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
432cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Determine whether this expression directly creates a
433cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// temporary object (of class type).
434cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
435cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
436cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief If this expression directly creates a temporary object of
437cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// class type, return the expression that actually constructs that
438cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// temporary object.
439cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const Expr *getTemporaryObject() const;
440fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick
441cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const Expr *IgnoreParens() const {
442cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return const_cast<Expr*>(this)->IgnoreParens();
443cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
444cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const Expr *IgnoreParenCasts() const {
445cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return const_cast<Expr*>(this)->IgnoreParenCasts();
446cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
447cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
448cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
449cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
450cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
451cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
452cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
453cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
454cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static bool classof(const Stmt *T) {
455cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return T->getStmtClass() >= firstExprConstant &&
456cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson           T->getStmtClass() <= lastExprConstant;
457fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick  }
458fdb07636f2e6324c5250cd5ee97778b7f5933beaIan Romanick  static bool classof(const Expr *) { return true; }
459cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson};
460cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
461cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
462cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//===----------------------------------------------------------------------===//
463cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson// Primary Expressions.
464cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson//===----------------------------------------------------------------------===//
465cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
466cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// \brief Represents the qualifier that may precede a C++ name, e.g., the
467cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// "std::" in "std::sort".
468cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonstruct NameQualifier {
469cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief The nested name specifier.
470cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  NestedNameSpecifier *NNS;
471cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
472cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief The source range covered by the nested name specifier.
473cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceRange Range;
474cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson};
475cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
476cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// \brief Represents an explicit template argument list in C++, e.g.,
477cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// the "<int>" in "sort<int>".
478cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonstruct ExplicitTemplateArgumentList {
479cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief The source location of the left angle bracket ('<');
480cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation LAngleLoc;
481cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
482cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief The source location of the right angle bracket ('>');
483cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation RAngleLoc;
484cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
485cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief The number of template arguments in TemplateArgs.
486cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// The actual template arguments (if any) are stored after the
487cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// ExplicitTemplateArgumentList structure.
488cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  unsigned NumTemplateArgs;
489cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
490cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the template arguments
491cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  TemplateArgumentLoc *getTemplateArgs() {
492cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
493cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
494cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
495cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the template arguments
496cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const TemplateArgumentLoc *getTemplateArgs() const {
497cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
498cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
499cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
500cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void initializeFrom(const TemplateArgumentListInfo &List);
501cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void copyInto(TemplateArgumentListInfo &List) const;
502cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static std::size_t sizeFor(unsigned NumTemplateArgs);
503cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
504cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson};
505cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
506cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
507cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// enum, etc.
508cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonclass DeclRefExpr : public Expr {
509cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  enum {
510cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // Flag on DecoratedD that specifies when this declaration reference
511cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // expression has a C++ nested-name-specifier.
512cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    HasQualifierFlag = 0x01,
513cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // Flag on DecoratedD that specifies when this declaration reference
514cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    // expression has an explicit C++ template argument list.
515cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    HasExplicitTemplateArgumentListFlag = 0x02
516cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  };
517cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
518cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // DecoratedD - The declaration that we are referencing, plus two bits to
519cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // indicate whether (1) the declaration's name was explicitly qualified and
520c39bf5e273a4995a279ae2af59fc29e06ab47e29Ian Romanick  // (2) the declaration's name was followed by an explicit template
521cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // argument list.
522cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
523c39bf5e273a4995a279ae2af59fc29e06ab47e29Ian Romanick
524cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // Loc - The location of the declaration name itself.
525cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation Loc;
526cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
527cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
528cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  NameQualifier *getNameQualifier() {
529cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
530cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      return 0;
531cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
532cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return reinterpret_cast<NameQualifier *> (this + 1);
533cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
534cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
535cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the qualifier that preceded the member name, if any.
536cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const NameQualifier *getNameQualifier() const {
537cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
538cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
539cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
540cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the explicit template argument list that followed the
541cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// member template name, if any.
542cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
543cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
544cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      return 0;
545cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
546cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
547cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
548cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
549cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return reinterpret_cast<ExplicitTemplateArgumentList *>(
550cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                                                      getNameQualifier() + 1);
551cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
552cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
553cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the explicit template argument list that followed the
554cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// member template name, if any.
555cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
556cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
557cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
558cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
559cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
560cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson              ValueDecl *D, SourceLocation NameLoc,
561cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson              const TemplateArgumentListInfo *TemplateArgs,
562cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson              QualType T);
563cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
564cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Construct an empty declaration reference expression.
565cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  explicit DeclRefExpr(EmptyShell Empty)
566cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    : Expr(DeclRefExprClass, Empty) { }
567cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
568cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Computes the type- and value-dependence flags for this
569cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// declaration reference expression.
570cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void computeDependence();
571cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
572cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonpublic:
573cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
574cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
575cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    computeDependence();
576cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
577cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
578cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static DeclRefExpr *Create(ASTContext &Context,
579cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             NestedNameSpecifier *Qualifier,
580cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             SourceRange QualifierRange,
581cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             ValueDecl *D,
582cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             SourceLocation NameLoc,
583cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             QualType T,
584cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                             const TemplateArgumentListInfo *TemplateArgs = 0);
585cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
586cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Construct an empty declaration reference expression.
587cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static DeclRefExpr *CreateEmpty(ASTContext &Context,
588cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson                                  bool HasQualifier, unsigned NumTemplateArgs);
589cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
590cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
591cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
592cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
593cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
594cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation getLocation() const { return Loc; }
595cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setLocation(SourceLocation L) { Loc = L; }
596cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual SourceRange getSourceRange() const;
597cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
598cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Determine whether this declaration reference was preceded by a
599cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// C++ nested-name-specifier, e.g., \c N::foo.
600cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
601cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
602cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief If the name was qualified, retrieves the source range of
603cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// the nested-name-specifier that precedes the name. Otherwise,
604cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// returns an empty source range.
605cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceRange getQualifierRange() const {
606cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    if (!hasQualifier())
607cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      return SourceRange();
60802986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick
60902986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick    return getNameQualifier()->Range;
610cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
61102986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick
61202986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  /// \brief If the name was qualified, retrieves the nested-name-specifier
61302986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  /// that precedes the name. Otherwise, returns NULL.
61402986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  NestedNameSpecifier *getQualifier() const {
61502986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick    if (!hasQualifier())
61602986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick      return 0;
61702986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick
61802986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick    return getNameQualifier()->NNS;
61902986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  }
62002986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick
62102986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  /// \brief Determines whether this member expression actually had a C++
62202986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  /// template argument list explicitly specified, e.g., x.f<int>.
62302986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  bool hasExplicitTemplateArgumentList() const {
62402986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
625cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
62602986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick
627cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Copies the template arguments (if present) into the given
628cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// structure.
629cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
63002986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick    if (hasExplicitTemplateArgumentList())
63102986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick      getExplicitTemplateArgumentList()->copyInto(List);
632cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
633cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
634cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the location of the left angle bracket following the
635cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// member name ('<'), if any.
636cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation getLAngleLoc() const {
637cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    if (!hasExplicitTemplateArgumentList())
63802986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick      return SourceLocation();
639cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
640cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return getExplicitTemplateArgumentList()->LAngleLoc;
641cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
64202986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick
64302986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  /// \brief Retrieve the template arguments provided as part of this
64402986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  /// template-id.
64502986cb2cc1b1d47b26a653e9ae0fa508365f616Ian Romanick  const TemplateArgumentLoc *getTemplateArgs() const {
646cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    if (!hasExplicitTemplateArgumentList())
647cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      return 0;
648cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
649cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return getExplicitTemplateArgumentList()->getTemplateArgs();
650cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
651cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
652cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the number of template arguments provided as part of this
653cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// template-id.
654cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  unsigned getNumTemplateArgs() const {
655cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    if (!hasExplicitTemplateArgumentList())
656cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson      return 0;
657cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
658cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return getExplicitTemplateArgumentList()->NumTemplateArgs;
659cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
660cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
661cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the location of the right angle bracket following the
6625f1f229f8da255ca9b390da1757ad781978cf619Ian Romanick  /// template arguments ('>').
6635f1f229f8da255ca9b390da1757ad781978cf619Ian Romanick  SourceLocation getRAngleLoc() const {
6645f1f229f8da255ca9b390da1757ad781978cf619Ian Romanick    if (!hasExplicitTemplateArgumentList())
6655f1f229f8da255ca9b390da1757ad781978cf619Ian Romanick      return SourceLocation();
6665f1f229f8da255ca9b390da1757ad781978cf619Ian Romanick
6675f1f229f8da255ca9b390da1757ad781978cf619Ian Romanick    return getExplicitTemplateArgumentList()->RAngleLoc;
6685f1f229f8da255ca9b390da1757ad781978cf619Ian Romanick  }
669cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
6705f1f229f8da255ca9b390da1757ad781978cf619Ian Romanick  static bool classof(const Stmt *T) {
671cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return T->getStmtClass() == DeclRefExprClass;
672cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
673cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static bool classof(const DeclRefExpr *) { return true; }
674cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
675cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // Iterators
676cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual child_iterator child_begin();
677cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual child_iterator child_end();
678cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
679cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  friend class PCHStmtReader;
680cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  friend class PCHStmtWriter;
681cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson};
682cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
683cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
684cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonclass PredefinedExpr : public Expr {
685cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonpublic:
686cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  enum IdentType {
687cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    Func,
688cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    Function,
689cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    PrettyFunction,
690cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
691cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    /// 'virtual' keyword is omitted for virtual member functions.
692cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    PrettyFunctionNoVirtual
693cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  };
694cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
695cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonprivate:
696cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation Loc;
697cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  IdentType Type;
698cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonpublic:
699cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
700cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    : Expr(PredefinedExprClass, type, type->isDependentType(),
701cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson           type->isDependentType()), Loc(l), Type(IT) {}
702cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
703cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Construct an empty predefined expression.
704cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  explicit PredefinedExpr(EmptyShell Empty)
705cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    : Expr(PredefinedExprClass, Empty) { }
706cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
707cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  IdentType getIdentType() const { return Type; }
708cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setIdentType(IdentType IT) { Type = IT; }
709cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
710cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation getLocation() const { return Loc; }
711cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setLocation(SourceLocation L) { Loc = L; }
712cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
713cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
714cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
715cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
716cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
717cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static bool classof(const Stmt *T) {
718cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return T->getStmtClass() == PredefinedExprClass;
719cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
720cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static bool classof(const PredefinedExpr *) { return true; }
721cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
722cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // Iterators
723cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual child_iterator child_begin();
724cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual child_iterator child_end();
725cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson};
726cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
727cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonclass IntegerLiteral : public Expr {
728cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  llvm::APInt Value;
729cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation Loc;
730cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jacksonpublic:
731cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
732cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // or UnsignedLongLongTy
733cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
734cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
735cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
736cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
737cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
738cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Construct an empty integer literal.
739cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  explicit IntegerLiteral(EmptyShell Empty)
740cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    : Expr(IntegerLiteralClass, Empty) { }
741cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
742cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  const llvm::APInt &getValue() const { return Value; }
743cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
744cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
745cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  /// \brief Retrieve the location of the literal.
746cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  SourceLocation getLocation() const { return Loc; }
747cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
748cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setValue(const llvm::APInt &Val) { Value = Val; }
749cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  void setLocation(SourceLocation Location) { Loc = Location; }
750cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
751cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static bool classof(const Stmt *T) {
752cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson    return T->getStmtClass() == IntegerLiteralClass;
753cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  }
754cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  static bool classof(const IntegerLiteral *) { return true; }
755cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson
756cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  // Iterators
757cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual child_iterator child_begin();
758cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson  virtual child_iterator child_end();
759cb3610e37c4c0a40520441b8515d044dabcc8854Adam Jackson};
760
761class CharacterLiteral : public Expr {
762  unsigned Value;
763  SourceLocation Loc;
764  bool IsWide;
765public:
766  // type should be IntTy
767  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
768    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
769      IsWide(iswide) {
770  }
771
772  /// \brief Construct an empty character literal.
773  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
774
775  SourceLocation getLocation() const { return Loc; }
776  bool isWide() const { return IsWide; }
777
778  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
779
780  unsigned getValue() const { return Value; }
781
782  void setLocation(SourceLocation Location) { Loc = Location; }
783  void setWide(bool W) { IsWide = W; }
784  void setValue(unsigned Val) { Value = Val; }
785
786  static bool classof(const Stmt *T) {
787    return T->getStmtClass() == CharacterLiteralClass;
788  }
789  static bool classof(const CharacterLiteral *) { return true; }
790
791  // Iterators
792  virtual child_iterator child_begin();
793  virtual child_iterator child_end();
794};
795
796class FloatingLiteral : public Expr {
797  llvm::APFloat Value;
798  bool IsExact : 1;
799  SourceLocation Loc;
800public:
801  FloatingLiteral(const llvm::APFloat &V, bool isexact,
802                  QualType Type, SourceLocation L)
803    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
804      IsExact(isexact), Loc(L) {}
805
806  /// \brief Construct an empty floating-point literal.
807  explicit FloatingLiteral(EmptyShell Empty)
808    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
809
810  const llvm::APFloat &getValue() const { return Value; }
811  void setValue(const llvm::APFloat &Val) { Value = Val; }
812
813  bool isExact() const { return IsExact; }
814  void setExact(bool E) { IsExact = E; }
815
816  /// getValueAsApproximateDouble - This returns the value as an inaccurate
817  /// double.  Note that this may cause loss of precision, but is useful for
818  /// debugging dumps, etc.
819  double getValueAsApproximateDouble() const;
820
821  SourceLocation getLocation() const { return Loc; }
822  void setLocation(SourceLocation L) { Loc = L; }
823
824  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
825
826  static bool classof(const Stmt *T) {
827    return T->getStmtClass() == FloatingLiteralClass;
828  }
829  static bool classof(const FloatingLiteral *) { return true; }
830
831  // Iterators
832  virtual child_iterator child_begin();
833  virtual child_iterator child_end();
834};
835
836/// ImaginaryLiteral - We support imaginary integer and floating point literals,
837/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
838/// IntegerLiteral classes.  Instances of this class always have a Complex type
839/// whose element type matches the subexpression.
840///
841class ImaginaryLiteral : public Expr {
842  Stmt *Val;
843public:
844  ImaginaryLiteral(Expr *val, QualType Ty)
845    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
846
847  /// \brief Build an empty imaginary literal.
848  explicit ImaginaryLiteral(EmptyShell Empty)
849    : Expr(ImaginaryLiteralClass, Empty) { }
850
851  const Expr *getSubExpr() const { return cast<Expr>(Val); }
852  Expr *getSubExpr() { return cast<Expr>(Val); }
853  void setSubExpr(Expr *E) { Val = E; }
854
855  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
856  static bool classof(const Stmt *T) {
857    return T->getStmtClass() == ImaginaryLiteralClass;
858  }
859  static bool classof(const ImaginaryLiteral *) { return true; }
860
861  // Iterators
862  virtual child_iterator child_begin();
863  virtual child_iterator child_end();
864};
865
866/// StringLiteral - This represents a string literal expression, e.g. "foo"
867/// or L"bar" (wide strings).  The actual string is returned by getStrData()
868/// is NOT null-terminated, and the length of the string is determined by
869/// calling getByteLength().  The C type for a string is always a
870/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
871/// not.
872///
873/// Note that strings in C can be formed by concatenation of multiple string
874/// literal pptokens in translation phase #6.  This keeps track of the locations
875/// of each of these pieces.
876///
877/// Strings in C can also be truncated and extended by assigning into arrays,
878/// e.g. with constructs like:
879///   char X[2] = "foobar";
880/// In this case, getByteLength() will return 6, but the string literal will
881/// have type "char[2]".
882class StringLiteral : public Expr {
883  const char *StrData;
884  unsigned ByteLength;
885  bool IsWide;
886  unsigned NumConcatenated;
887  SourceLocation TokLocs[1];
888
889  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
890
891public:
892  /// This is the "fully general" constructor that allows representation of
893  /// strings formed from multiple concatenated tokens.
894  static StringLiteral *Create(ASTContext &C, const char *StrData,
895                               unsigned ByteLength, bool Wide, QualType Ty,
896                               const SourceLocation *Loc, unsigned NumStrs);
897
898  /// Simple constructor for string literals made from one token.
899  static StringLiteral *Create(ASTContext &C, const char *StrData,
900                               unsigned ByteLength,
901                               bool Wide, QualType Ty, SourceLocation Loc) {
902    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
903  }
904
905  /// \brief Construct an empty string literal.
906  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
907
908  llvm::StringRef getString() const {
909    return llvm::StringRef(StrData, ByteLength);
910  }
911  // FIXME: These are deprecated, replace with StringRef.
912  const char *getStrData() const { return StrData; }
913  unsigned getByteLength() const { return ByteLength; }
914
915  /// \brief Sets the string data to the given string data.
916  void setString(ASTContext &C, llvm::StringRef Str);
917
918  bool isWide() const { return IsWide; }
919  void setWide(bool W) { IsWide = W; }
920
921  bool containsNonAsciiOrNull() const {
922    llvm::StringRef Str = getString();
923    for (unsigned i = 0, e = Str.size(); i != e; ++i)
924      if (!isascii(Str[i]) || !Str[i])
925        return true;
926    return false;
927  }
928  /// getNumConcatenated - Get the number of string literal tokens that were
929  /// concatenated in translation phase #6 to form this string literal.
930  unsigned getNumConcatenated() const { return NumConcatenated; }
931
932  SourceLocation getStrTokenLoc(unsigned TokNum) const {
933    assert(TokNum < NumConcatenated && "Invalid tok number");
934    return TokLocs[TokNum];
935  }
936  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
937    assert(TokNum < NumConcatenated && "Invalid tok number");
938    TokLocs[TokNum] = L;
939  }
940
941  typedef const SourceLocation *tokloc_iterator;
942  tokloc_iterator tokloc_begin() const { return TokLocs; }
943  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
944
945  virtual SourceRange getSourceRange() const {
946    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
947  }
948  static bool classof(const Stmt *T) {
949    return T->getStmtClass() == StringLiteralClass;
950  }
951  static bool classof(const StringLiteral *) { return true; }
952
953  // Iterators
954  virtual child_iterator child_begin();
955  virtual child_iterator child_end();
956};
957
958/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
959/// AST node is only formed if full location information is requested.
960class ParenExpr : public Expr {
961  SourceLocation L, R;
962  Stmt *Val;
963public:
964  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
965    : Expr(ParenExprClass, val->getType(),
966           val->isTypeDependent(), val->isValueDependent()),
967      L(l), R(r), Val(val) {}
968
969  /// \brief Construct an empty parenthesized expression.
970  explicit ParenExpr(EmptyShell Empty)
971    : Expr(ParenExprClass, Empty) { }
972
973  const Expr *getSubExpr() const { return cast<Expr>(Val); }
974  Expr *getSubExpr() { return cast<Expr>(Val); }
975  void setSubExpr(Expr *E) { Val = E; }
976
977  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
978
979  /// \brief Get the location of the left parentheses '('.
980  SourceLocation getLParen() const { return L; }
981  void setLParen(SourceLocation Loc) { L = Loc; }
982
983  /// \brief Get the location of the right parentheses ')'.
984  SourceLocation getRParen() const { return R; }
985  void setRParen(SourceLocation Loc) { R = Loc; }
986
987  static bool classof(const Stmt *T) {
988    return T->getStmtClass() == ParenExprClass;
989  }
990  static bool classof(const ParenExpr *) { return true; }
991
992  // Iterators
993  virtual child_iterator child_begin();
994  virtual child_iterator child_end();
995};
996
997
998/// UnaryOperator - This represents the unary-expression's (except sizeof and
999/// alignof), the postinc/postdec operators from postfix-expression, and various
1000/// extensions.
1001///
1002/// Notes on various nodes:
1003///
1004/// Real/Imag - These return the real/imag part of a complex operand.  If
1005///   applied to a non-complex value, the former returns its operand and the
1006///   later returns zero in the type of the operand.
1007///
1008/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
1009///   subexpression is a compound literal with the various MemberExpr and
1010///   ArraySubscriptExpr's applied to it. (This is only used in C)
1011///
1012class UnaryOperator : public Expr {
1013public:
1014  // Note that additions to this should also update the StmtVisitor class.
1015  enum Opcode {
1016    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
1017    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
1018    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
1019    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
1020    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
1021    Real, Imag,       // "__real expr"/"__imag expr" Extension.
1022    Extension,        // __extension__ marker.
1023    OffsetOf          // __builtin_offsetof
1024  };
1025private:
1026  Stmt *Val;
1027  Opcode Opc;
1028  SourceLocation Loc;
1029public:
1030
1031  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1032    : Expr(UnaryOperatorClass, type,
1033           opc != OffsetOf && (input->isTypeDependent() ||
1034                               type->isDependentType()),
1035           input->isValueDependent()),
1036      Val(input), Opc(opc), Loc(l) {}
1037
1038  /// \brief Build an empty unary operator.
1039  explicit UnaryOperator(EmptyShell Empty)
1040    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
1041
1042  Opcode getOpcode() const { return Opc; }
1043  void setOpcode(Opcode O) { Opc = O; }
1044
1045  Expr *getSubExpr() const { return cast<Expr>(Val); }
1046  void setSubExpr(Expr *E) { Val = E; }
1047
1048  /// getOperatorLoc - Return the location of the operator.
1049  SourceLocation getOperatorLoc() const { return Loc; }
1050  void setOperatorLoc(SourceLocation L) { Loc = L; }
1051
1052  /// isPostfix - Return true if this is a postfix operation, like x++.
1053  static bool isPostfix(Opcode Op) {
1054    return Op == PostInc || Op == PostDec;
1055  }
1056
1057  /// isPostfix - Return true if this is a prefix operation, like --x.
1058  static bool isPrefix(Opcode Op) {
1059    return Op == PreInc || Op == PreDec;
1060  }
1061
1062  bool isPrefix() const { return isPrefix(Opc); }
1063  bool isPostfix() const { return isPostfix(Opc); }
1064  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
1065  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
1066  bool isOffsetOfOp() const { return Opc == OffsetOf; }
1067  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
1068  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
1069
1070  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1071  /// corresponds to, e.g. "sizeof" or "[pre]++"
1072  static const char *getOpcodeStr(Opcode Op);
1073
1074  /// \brief Retrieve the unary opcode that corresponds to the given
1075  /// overloaded operator.
1076  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1077
1078  /// \brief Retrieve the overloaded operator kind that corresponds to
1079  /// the given unary opcode.
1080  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1081
1082  virtual SourceRange getSourceRange() const {
1083    if (isPostfix())
1084      return SourceRange(Val->getLocStart(), Loc);
1085    else
1086      return SourceRange(Loc, Val->getLocEnd());
1087  }
1088  virtual SourceLocation getExprLoc() const { return Loc; }
1089
1090  static bool classof(const Stmt *T) {
1091    return T->getStmtClass() == UnaryOperatorClass;
1092  }
1093  static bool classof(const UnaryOperator *) { return true; }
1094
1095  // Iterators
1096  virtual child_iterator child_begin();
1097  virtual child_iterator child_end();
1098};
1099
1100/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1101/// offsetof(record-type, member-designator). For example, given:
1102/// @code
1103/// struct S {
1104///   float f;
1105///   double d;
1106/// };
1107/// struct T {
1108///   int i;
1109///   struct S s[10];
1110/// };
1111/// @endcode
1112/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1113
1114class OffsetOfExpr : public Expr {
1115public:
1116  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1117  class OffsetOfNode {
1118  public:
1119    /// \brief The kind of offsetof node we have.
1120    enum Kind {
1121      /// \brief An index into an array.
1122      Array = 0x00,
1123      /// \brief A field.
1124      Field = 0x01,
1125      /// \brief A field in a dependent type, known only by its name.
1126      Identifier = 0x02,
1127      /// \brief An implicit indirection through a C++ base class, when the
1128      /// field found is in a base class.
1129      Base = 0x03
1130    };
1131
1132  private:
1133    enum { MaskBits = 2, Mask = 0x03 };
1134
1135    /// \brief The source range that covers this part of the designator.
1136    SourceRange Range;
1137
1138    /// \brief The data describing the designator, which comes in three
1139    /// different forms, depending on the lower two bits.
1140    ///   - An unsigned index into the array of Expr*'s stored after this node
1141    ///     in memory, for [constant-expression] designators.
1142    ///   - A FieldDecl*, for references to a known field.
1143    ///   - An IdentifierInfo*, for references to a field with a given name
1144    ///     when the class type is dependent.
1145    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1146    ///     base class.
1147    uintptr_t Data;
1148
1149  public:
1150    /// \brief Create an offsetof node that refers to an array element.
1151    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1152                 SourceLocation RBracketLoc)
1153      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1154
1155    /// \brief Create an offsetof node that refers to a field.
1156    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1157                 SourceLocation NameLoc)
1158      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1159        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1160
1161    /// \brief Create an offsetof node that refers to an identifier.
1162    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1163                 SourceLocation NameLoc)
1164      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1165        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1166
1167    /// \brief Create an offsetof node that refers into a C++ base class.
1168    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1169      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1170
1171    /// \brief Determine what kind of offsetof node this is.
1172    Kind getKind() const {
1173      return static_cast<Kind>(Data & Mask);
1174    }
1175
1176    /// \brief For an array element node, returns the index into the array
1177    /// of expressions.
1178    unsigned getArrayExprIndex() const {
1179      assert(getKind() == Array);
1180      return Data >> 2;
1181    }
1182
1183    /// \brief For a field offsetof node, returns the field.
1184    FieldDecl *getField() const {
1185      assert(getKind() == Field);
1186      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1187    }
1188
1189    /// \brief For a field or identifier offsetof node, returns the name of
1190    /// the field.
1191    IdentifierInfo *getFieldName() const;
1192
1193    /// \brief For a base class node, returns the base specifier.
1194    CXXBaseSpecifier *getBase() const {
1195      assert(getKind() == Base);
1196      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1197    }
1198
1199    /// \brief Retrieve the source range that covers this offsetof node.
1200    ///
1201    /// For an array element node, the source range contains the locations of
1202    /// the square brackets. For a field or identifier node, the source range
1203    /// contains the location of the period (if there is one) and the
1204    /// identifier.
1205    SourceRange getRange() const { return Range; }
1206  };
1207
1208private:
1209
1210  SourceLocation OperatorLoc, RParenLoc;
1211  // Base type;
1212  TypeSourceInfo *TSInfo;
1213  // Number of sub-components (i.e. instances of OffsetOfNode).
1214  unsigned NumComps;
1215  // Number of sub-expressions (i.e. array subscript expressions).
1216  unsigned NumExprs;
1217
1218  OffsetOfExpr(ASTContext &C, QualType type,
1219               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1220               OffsetOfNode* compsPtr, unsigned numComps,
1221               Expr** exprsPtr, unsigned numExprs,
1222               SourceLocation RParenLoc);
1223
1224  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1225    : Expr(OffsetOfExprClass, EmptyShell()),
1226      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1227
1228public:
1229
1230  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1231                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1232                              OffsetOfNode* compsPtr, unsigned numComps,
1233                              Expr** exprsPtr, unsigned numExprs,
1234                              SourceLocation RParenLoc);
1235
1236  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1237                                   unsigned NumComps, unsigned NumExprs);
1238
1239  /// getOperatorLoc - Return the location of the operator.
1240  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1241  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1242
1243  /// \brief Return the location of the right parentheses.
1244  SourceLocation getRParenLoc() const { return RParenLoc; }
1245  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1246
1247  TypeSourceInfo *getTypeSourceInfo() const {
1248    return TSInfo;
1249  }
1250  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1251    TSInfo = tsi;
1252  }
1253
1254  const OffsetOfNode &getComponent(unsigned Idx) {
1255    assert(Idx < NumComps && "Subscript out of range");
1256    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1257  }
1258
1259  void setComponent(unsigned Idx, OffsetOfNode ON) {
1260    assert(Idx < NumComps && "Subscript out of range");
1261    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1262  }
1263
1264  unsigned getNumComponents() const {
1265    return NumComps;
1266  }
1267
1268  Expr* getIndexExpr(unsigned Idx) {
1269    assert(Idx < NumExprs && "Subscript out of range");
1270    return reinterpret_cast<Expr **>(
1271                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1272  }
1273
1274  void setIndexExpr(unsigned Idx, Expr* E) {
1275    assert(Idx < NumComps && "Subscript out of range");
1276    reinterpret_cast<Expr **>(
1277                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1278  }
1279
1280  unsigned getNumExpressions() const {
1281    return NumExprs;
1282  }
1283
1284  virtual SourceRange getSourceRange() const {
1285    return SourceRange(OperatorLoc, RParenLoc);
1286  }
1287
1288  static bool classof(const Stmt *T) {
1289    return T->getStmtClass() == OffsetOfExprClass;
1290  }
1291
1292  static bool classof(const OffsetOfExpr *) { return true; }
1293
1294  // Iterators
1295  virtual child_iterator child_begin();
1296  virtual child_iterator child_end();
1297};
1298
1299/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1300/// types and expressions.
1301class SizeOfAlignOfExpr : public Expr {
1302  bool isSizeof : 1;  // true if sizeof, false if alignof.
1303  bool isType : 1;    // true if operand is a type, false if an expression
1304  union {
1305    TypeSourceInfo *Ty;
1306    Stmt *Ex;
1307  } Argument;
1308  SourceLocation OpLoc, RParenLoc;
1309
1310public:
1311  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1312                    QualType resultType, SourceLocation op,
1313                    SourceLocation rp) :
1314      Expr(SizeOfAlignOfExprClass, resultType,
1315           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1316           // Value-dependent if the argument is type-dependent.
1317           TInfo->getType()->isDependentType()),
1318      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1319    Argument.Ty = TInfo;
1320  }
1321
1322  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1323                    QualType resultType, SourceLocation op,
1324                    SourceLocation rp) :
1325      Expr(SizeOfAlignOfExprClass, resultType,
1326           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1327           // Value-dependent if the argument is type-dependent.
1328           E->isTypeDependent()),
1329      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1330    Argument.Ex = E;
1331  }
1332
1333  /// \brief Construct an empty sizeof/alignof expression.
1334  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1335    : Expr(SizeOfAlignOfExprClass, Empty) { }
1336
1337  bool isSizeOf() const { return isSizeof; }
1338  void setSizeof(bool S) { isSizeof = S; }
1339
1340  bool isArgumentType() const { return isType; }
1341  QualType getArgumentType() const {
1342    return getArgumentTypeInfo()->getType();
1343  }
1344  TypeSourceInfo *getArgumentTypeInfo() const {
1345    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1346    return Argument.Ty;
1347  }
1348  Expr *getArgumentExpr() {
1349    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1350    return static_cast<Expr*>(Argument.Ex);
1351  }
1352  const Expr *getArgumentExpr() const {
1353    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1354  }
1355
1356  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1357  void setArgument(TypeSourceInfo *TInfo) {
1358    Argument.Ty = TInfo;
1359    isType = true;
1360  }
1361
1362  /// Gets the argument type, or the type of the argument expression, whichever
1363  /// is appropriate.
1364  QualType getTypeOfArgument() const {
1365    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1366  }
1367
1368  SourceLocation getOperatorLoc() const { return OpLoc; }
1369  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1370
1371  SourceLocation getRParenLoc() const { return RParenLoc; }
1372  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1373
1374  virtual SourceRange getSourceRange() const {
1375    return SourceRange(OpLoc, RParenLoc);
1376  }
1377
1378  static bool classof(const Stmt *T) {
1379    return T->getStmtClass() == SizeOfAlignOfExprClass;
1380  }
1381  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1382
1383  // Iterators
1384  virtual child_iterator child_begin();
1385  virtual child_iterator child_end();
1386};
1387
1388//===----------------------------------------------------------------------===//
1389// Postfix Operators.
1390//===----------------------------------------------------------------------===//
1391
1392/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1393class ArraySubscriptExpr : public Expr {
1394  enum { LHS, RHS, END_EXPR=2 };
1395  Stmt* SubExprs[END_EXPR];
1396  SourceLocation RBracketLoc;
1397public:
1398  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1399                     SourceLocation rbracketloc)
1400  : Expr(ArraySubscriptExprClass, t,
1401         lhs->isTypeDependent() || rhs->isTypeDependent(),
1402         lhs->isValueDependent() || rhs->isValueDependent()),
1403    RBracketLoc(rbracketloc) {
1404    SubExprs[LHS] = lhs;
1405    SubExprs[RHS] = rhs;
1406  }
1407
1408  /// \brief Create an empty array subscript expression.
1409  explicit ArraySubscriptExpr(EmptyShell Shell)
1410    : Expr(ArraySubscriptExprClass, Shell) { }
1411
1412  /// An array access can be written A[4] or 4[A] (both are equivalent).
1413  /// - getBase() and getIdx() always present the normalized view: A[4].
1414  ///    In this case getBase() returns "A" and getIdx() returns "4".
1415  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1416  ///    4[A] getLHS() returns "4".
1417  /// Note: Because vector element access is also written A[4] we must
1418  /// predicate the format conversion in getBase and getIdx only on the
1419  /// the type of the RHS, as it is possible for the LHS to be a vector of
1420  /// integer type
1421  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1422  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1423  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1424
1425  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1426  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1427  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1428
1429  Expr *getBase() {
1430    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1431  }
1432
1433  const Expr *getBase() const {
1434    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1435  }
1436
1437  Expr *getIdx() {
1438    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1439  }
1440
1441  const Expr *getIdx() const {
1442    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1443  }
1444
1445  virtual SourceRange getSourceRange() const {
1446    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1447  }
1448
1449  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1450  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1451
1452  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1453
1454  static bool classof(const Stmt *T) {
1455    return T->getStmtClass() == ArraySubscriptExprClass;
1456  }
1457  static bool classof(const ArraySubscriptExpr *) { return true; }
1458
1459  // Iterators
1460  virtual child_iterator child_begin();
1461  virtual child_iterator child_end();
1462};
1463
1464
1465/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1466/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1467/// while its subclasses may represent alternative syntax that (semantically)
1468/// results in a function call. For example, CXXOperatorCallExpr is
1469/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1470/// "str1 + str2" to resolve to a function call.
1471class CallExpr : public Expr {
1472  enum { FN=0, ARGS_START=1 };
1473  Stmt **SubExprs;
1474  unsigned NumArgs;
1475  SourceLocation RParenLoc;
1476
1477protected:
1478  // This version of the constructor is for derived classes.
1479  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1480           QualType t, SourceLocation rparenloc);
1481
1482public:
1483  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1484           SourceLocation rparenloc);
1485
1486  /// \brief Build an empty call expression.
1487  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1488
1489  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1490  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1491  void setCallee(Expr *F) { SubExprs[FN] = F; }
1492
1493  Decl *getCalleeDecl();
1494  const Decl *getCalleeDecl() const {
1495    return const_cast<CallExpr*>(this)->getCalleeDecl();
1496  }
1497
1498  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1499  FunctionDecl *getDirectCallee();
1500  const FunctionDecl *getDirectCallee() const {
1501    return const_cast<CallExpr*>(this)->getDirectCallee();
1502  }
1503
1504  /// getNumArgs - Return the number of actual arguments to this call.
1505  ///
1506  unsigned getNumArgs() const { return NumArgs; }
1507
1508  /// getArg - Return the specified argument.
1509  Expr *getArg(unsigned Arg) {
1510    assert(Arg < NumArgs && "Arg access out of range!");
1511    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1512  }
1513  const Expr *getArg(unsigned Arg) const {
1514    assert(Arg < NumArgs && "Arg access out of range!");
1515    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1516  }
1517
1518  /// setArg - Set the specified argument.
1519  void setArg(unsigned Arg, Expr *ArgExpr) {
1520    assert(Arg < NumArgs && "Arg access out of range!");
1521    SubExprs[Arg+ARGS_START] = ArgExpr;
1522  }
1523
1524  /// setNumArgs - This changes the number of arguments present in this call.
1525  /// Any orphaned expressions are deleted by this, and any new operands are set
1526  /// to null.
1527  void setNumArgs(ASTContext& C, unsigned NumArgs);
1528
1529  typedef ExprIterator arg_iterator;
1530  typedef ConstExprIterator const_arg_iterator;
1531
1532  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1533  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1534  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1535  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1536
1537  /// getNumCommas - Return the number of commas that must have been present in
1538  /// this function call.
1539  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1540
1541  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1542  /// not, return 0.
1543  unsigned isBuiltinCall(ASTContext &Context) const;
1544
1545  /// getCallReturnType - Get the return type of the call expr. This is not
1546  /// always the type of the expr itself, if the return type is a reference
1547  /// type.
1548  QualType getCallReturnType() const;
1549
1550  SourceLocation getRParenLoc() const { return RParenLoc; }
1551  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1552
1553  virtual SourceRange getSourceRange() const {
1554    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1555  }
1556
1557  static bool classof(const Stmt *T) {
1558    return T->getStmtClass() >= firstCallExprConstant &&
1559           T->getStmtClass() <= lastCallExprConstant;
1560  }
1561  static bool classof(const CallExpr *) { return true; }
1562
1563  // Iterators
1564  virtual child_iterator child_begin();
1565  virtual child_iterator child_end();
1566};
1567
1568/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1569///
1570class MemberExpr : public Expr {
1571  /// Extra data stored in some member expressions.
1572  struct MemberNameQualifier : public NameQualifier {
1573    DeclAccessPair FoundDecl;
1574  };
1575
1576  /// Base - the expression for the base pointer or structure references.  In
1577  /// X.F, this is "X".
1578  Stmt *Base;
1579
1580  /// MemberDecl - This is the decl being referenced by the field/member name.
1581  /// In X.F, this is the decl referenced by F.
1582  ValueDecl *MemberDecl;
1583
1584  /// MemberLoc - This is the location of the member name.
1585  SourceLocation MemberLoc;
1586
1587  /// IsArrow - True if this is "X->F", false if this is "X.F".
1588  bool IsArrow : 1;
1589
1590  /// \brief True if this member expression used a nested-name-specifier to
1591  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1592  /// declaration.  When true, a MemberNameQualifier
1593  /// structure is allocated immediately after the MemberExpr.
1594  bool HasQualifierOrFoundDecl : 1;
1595
1596  /// \brief True if this member expression specified a template argument list
1597  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1598  /// structure (and its TemplateArguments) are allocated immediately after
1599  /// the MemberExpr or, if the member expression also has a qualifier, after
1600  /// the MemberNameQualifier structure.
1601  bool HasExplicitTemplateArgumentList : 1;
1602
1603  /// \brief Retrieve the qualifier that preceded the member name, if any.
1604  MemberNameQualifier *getMemberQualifier() {
1605    assert(HasQualifierOrFoundDecl);
1606    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1607  }
1608
1609  /// \brief Retrieve the qualifier that preceded the member name, if any.
1610  const MemberNameQualifier *getMemberQualifier() const {
1611    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1612  }
1613
1614  /// \brief Retrieve the explicit template argument list that followed the
1615  /// member template name, if any.
1616  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1617    if (!HasExplicitTemplateArgumentList)
1618      return 0;
1619
1620    if (!HasQualifierOrFoundDecl)
1621      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1622
1623    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1624                                                      getMemberQualifier() + 1);
1625  }
1626
1627  /// \brief Retrieve the explicit template argument list that followed the
1628  /// member template name, if any.
1629  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1630    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1631  }
1632
1633public:
1634  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1635             SourceLocation l, QualType ty)
1636    : Expr(MemberExprClass, ty,
1637           base->isTypeDependent(), base->isValueDependent()),
1638      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1639      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1640
1641  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1642                            NestedNameSpecifier *qual, SourceRange qualrange,
1643                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1644                            SourceLocation l,
1645                            const TemplateArgumentListInfo *targs,
1646                            QualType ty);
1647
1648  void setBase(Expr *E) { Base = E; }
1649  Expr *getBase() const { return cast<Expr>(Base); }
1650
1651  /// \brief Retrieve the member declaration to which this expression refers.
1652  ///
1653  /// The returned declaration will either be a FieldDecl or (in C++)
1654  /// a CXXMethodDecl.
1655  ValueDecl *getMemberDecl() const { return MemberDecl; }
1656  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1657
1658  /// \brief Retrieves the declaration found by lookup.
1659  DeclAccessPair getFoundDecl() const {
1660    if (!HasQualifierOrFoundDecl)
1661      return DeclAccessPair::make(getMemberDecl(),
1662                                  getMemberDecl()->getAccess());
1663    return getMemberQualifier()->FoundDecl;
1664  }
1665
1666  /// \brief Determines whether this member expression actually had
1667  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1668  /// x->Base::foo.
1669  bool hasQualifier() const { return getQualifier() != 0; }
1670
1671  /// \brief If the member name was qualified, retrieves the source range of
1672  /// the nested-name-specifier that precedes the member name. Otherwise,
1673  /// returns an empty source range.
1674  SourceRange getQualifierRange() const {
1675    if (!HasQualifierOrFoundDecl)
1676      return SourceRange();
1677
1678    return getMemberQualifier()->Range;
1679  }
1680
1681  /// \brief If the member name was qualified, retrieves the
1682  /// nested-name-specifier that precedes the member name. Otherwise, returns
1683  /// NULL.
1684  NestedNameSpecifier *getQualifier() const {
1685    if (!HasQualifierOrFoundDecl)
1686      return 0;
1687
1688    return getMemberQualifier()->NNS;
1689  }
1690
1691  /// \brief Determines whether this member expression actually had a C++
1692  /// template argument list explicitly specified, e.g., x.f<int>.
1693  bool hasExplicitTemplateArgumentList() const {
1694    return HasExplicitTemplateArgumentList;
1695  }
1696
1697  /// \brief Copies the template arguments (if present) into the given
1698  /// structure.
1699  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1700    if (hasExplicitTemplateArgumentList())
1701      getExplicitTemplateArgumentList()->copyInto(List);
1702  }
1703
1704  /// \brief Retrieve the location of the left angle bracket following the
1705  /// member name ('<'), if any.
1706  SourceLocation getLAngleLoc() const {
1707    if (!HasExplicitTemplateArgumentList)
1708      return SourceLocation();
1709
1710    return getExplicitTemplateArgumentList()->LAngleLoc;
1711  }
1712
1713  /// \brief Retrieve the template arguments provided as part of this
1714  /// template-id.
1715  const TemplateArgumentLoc *getTemplateArgs() const {
1716    if (!HasExplicitTemplateArgumentList)
1717      return 0;
1718
1719    return getExplicitTemplateArgumentList()->getTemplateArgs();
1720  }
1721
1722  /// \brief Retrieve the number of template arguments provided as part of this
1723  /// template-id.
1724  unsigned getNumTemplateArgs() const {
1725    if (!HasExplicitTemplateArgumentList)
1726      return 0;
1727
1728    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1729  }
1730
1731  /// \brief Retrieve the location of the right angle bracket following the
1732  /// template arguments ('>').
1733  SourceLocation getRAngleLoc() const {
1734    if (!HasExplicitTemplateArgumentList)
1735      return SourceLocation();
1736
1737    return getExplicitTemplateArgumentList()->RAngleLoc;
1738  }
1739
1740  bool isArrow() const { return IsArrow; }
1741  void setArrow(bool A) { IsArrow = A; }
1742
1743  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1744  /// location of 'F'.
1745  SourceLocation getMemberLoc() const { return MemberLoc; }
1746  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1747
1748  virtual SourceRange getSourceRange() const {
1749    // If we have an implicit base (like a C++ implicit this),
1750    // make sure not to return its location
1751    SourceLocation EndLoc = MemberLoc;
1752    if (HasExplicitTemplateArgumentList)
1753      EndLoc = getRAngleLoc();
1754
1755    SourceLocation BaseLoc = getBase()->getLocStart();
1756    if (BaseLoc.isInvalid())
1757      return SourceRange(MemberLoc, EndLoc);
1758    return SourceRange(BaseLoc, EndLoc);
1759  }
1760
1761  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1762
1763  static bool classof(const Stmt *T) {
1764    return T->getStmtClass() == MemberExprClass;
1765  }
1766  static bool classof(const MemberExpr *) { return true; }
1767
1768  // Iterators
1769  virtual child_iterator child_begin();
1770  virtual child_iterator child_end();
1771};
1772
1773/// CompoundLiteralExpr - [C99 6.5.2.5]
1774///
1775class CompoundLiteralExpr : public Expr {
1776  /// LParenLoc - If non-null, this is the location of the left paren in a
1777  /// compound literal like "(int){4}".  This can be null if this is a
1778  /// synthesized compound expression.
1779  SourceLocation LParenLoc;
1780
1781  /// The type as written.  This can be an incomplete array type, in
1782  /// which case the actual expression type will be different.
1783  TypeSourceInfo *TInfo;
1784  Stmt *Init;
1785  bool FileScope;
1786public:
1787  // FIXME: Can compound literals be value-dependent?
1788  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1789                      QualType T, Expr *init, bool fileScope)
1790    : Expr(CompoundLiteralExprClass, T,
1791           tinfo->getType()->isDependentType(), false),
1792      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1793
1794  /// \brief Construct an empty compound literal.
1795  explicit CompoundLiteralExpr(EmptyShell Empty)
1796    : Expr(CompoundLiteralExprClass, Empty) { }
1797
1798  const Expr *getInitializer() const { return cast<Expr>(Init); }
1799  Expr *getInitializer() { return cast<Expr>(Init); }
1800  void setInitializer(Expr *E) { Init = E; }
1801
1802  bool isFileScope() const { return FileScope; }
1803  void setFileScope(bool FS) { FileScope = FS; }
1804
1805  SourceLocation getLParenLoc() const { return LParenLoc; }
1806  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1807
1808  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1809  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1810
1811  virtual SourceRange getSourceRange() const {
1812    // FIXME: Init should never be null.
1813    if (!Init)
1814      return SourceRange();
1815    if (LParenLoc.isInvalid())
1816      return Init->getSourceRange();
1817    return SourceRange(LParenLoc, Init->getLocEnd());
1818  }
1819
1820  static bool classof(const Stmt *T) {
1821    return T->getStmtClass() == CompoundLiteralExprClass;
1822  }
1823  static bool classof(const CompoundLiteralExpr *) { return true; }
1824
1825  // Iterators
1826  virtual child_iterator child_begin();
1827  virtual child_iterator child_end();
1828};
1829
1830/// CastExpr - Base class for type casts, including both implicit
1831/// casts (ImplicitCastExpr) and explicit casts that have some
1832/// representation in the source code (ExplicitCastExpr's derived
1833/// classes).
1834class CastExpr : public Expr {
1835public:
1836  /// CastKind - the kind of cast this represents.
1837  enum CastKind {
1838    /// CK_Unknown - Unknown cast kind.
1839    /// FIXME: The goal is to get rid of this and make all casts have a
1840    /// kind so that the AST client doesn't have to try to figure out what's
1841    /// going on.
1842    CK_Unknown,
1843
1844    /// CK_BitCast - Used for reinterpret_cast.
1845    CK_BitCast,
1846
1847    /// CK_LValueBitCast - Used for reinterpret_cast of expressions to
1848    /// a reference type.
1849    CK_LValueBitCast,
1850
1851    /// CK_NoOp - Used for const_cast.
1852    CK_NoOp,
1853
1854    /// CK_BaseToDerived - Base to derived class casts.
1855    CK_BaseToDerived,
1856
1857    /// CK_DerivedToBase - Derived to base class casts.
1858    CK_DerivedToBase,
1859
1860    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1861    /// assume that the derived pointer is not null.
1862    CK_UncheckedDerivedToBase,
1863
1864    /// CK_Dynamic - Dynamic cast.
1865    CK_Dynamic,
1866
1867    /// CK_ToUnion - Cast to union (GCC extension).
1868    CK_ToUnion,
1869
1870    /// CK_ArrayToPointerDecay - Array to pointer decay.
1871    CK_ArrayToPointerDecay,
1872
1873    // CK_FunctionToPointerDecay - Function to pointer decay.
1874    CK_FunctionToPointerDecay,
1875
1876    /// CK_NullToMemberPointer - Null pointer to member pointer.
1877    CK_NullToMemberPointer,
1878
1879    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1880    /// member pointer in derived class.
1881    CK_BaseToDerivedMemberPointer,
1882
1883    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1884    /// member pointer in base class.
1885    CK_DerivedToBaseMemberPointer,
1886
1887    /// CK_UserDefinedConversion - Conversion using a user defined type
1888    /// conversion function.
1889    CK_UserDefinedConversion,
1890
1891    /// CK_ConstructorConversion - Conversion by constructor
1892    CK_ConstructorConversion,
1893
1894    /// CK_IntegralToPointer - Integral to pointer
1895    CK_IntegralToPointer,
1896
1897    /// CK_PointerToIntegral - Pointer to integral
1898    CK_PointerToIntegral,
1899
1900    /// CK_ToVoid - Cast to void.
1901    CK_ToVoid,
1902
1903    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1904    /// vector type with the same element type as the src type. Splats the
1905    /// src expression into the destination expression.
1906    CK_VectorSplat,
1907
1908    /// CK_IntegralCast - Casting between integral types of different size.
1909    CK_IntegralCast,
1910
1911    /// CK_IntegralToFloating - Integral to floating point.
1912    CK_IntegralToFloating,
1913
1914    /// CK_FloatingToIntegral - Floating point to integral.
1915    CK_FloatingToIntegral,
1916
1917    /// CK_FloatingCast - Casting between floating types of different size.
1918    CK_FloatingCast,
1919
1920    /// CK_MemberPointerToBoolean - Member pointer to boolean
1921    CK_MemberPointerToBoolean,
1922
1923    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1924    /// pointer
1925    CK_AnyPointerToObjCPointerCast,
1926    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1927    /// pointer
1928    CK_AnyPointerToBlockPointerCast
1929
1930  };
1931
1932private:
1933  CastKind Kind;
1934  Stmt *Op;
1935
1936  /// BasePath - For derived-to-base and base-to-derived casts, the base array
1937  /// contains the inheritance path.
1938  CXXBaseSpecifierArray BasePath;
1939
1940  void CheckBasePath() const {
1941#ifndef NDEBUG
1942    switch (getCastKind()) {
1943    case CK_DerivedToBase:
1944    case CK_UncheckedDerivedToBase:
1945    case CK_DerivedToBaseMemberPointer:
1946    case CK_BaseToDerived:
1947    case CK_BaseToDerivedMemberPointer:
1948      assert(!BasePath.empty() && "Cast kind should have a base path!");
1949      break;
1950
1951    // These should not have an inheritance path.
1952    case CK_Unknown:
1953    case CK_BitCast:
1954    case CK_LValueBitCast:
1955    case CK_NoOp:
1956    case CK_Dynamic:
1957    case CK_ToUnion:
1958    case CK_ArrayToPointerDecay:
1959    case CK_FunctionToPointerDecay:
1960    case CK_NullToMemberPointer:
1961    case CK_UserDefinedConversion:
1962    case CK_ConstructorConversion:
1963    case CK_IntegralToPointer:
1964    case CK_PointerToIntegral:
1965    case CK_ToVoid:
1966    case CK_VectorSplat:
1967    case CK_IntegralCast:
1968    case CK_IntegralToFloating:
1969    case CK_FloatingToIntegral:
1970    case CK_FloatingCast:
1971    case CK_MemberPointerToBoolean:
1972    case CK_AnyPointerToObjCPointerCast:
1973    case CK_AnyPointerToBlockPointerCast:
1974      assert(BasePath.empty() && "Cast kind should not have a base path!");
1975      break;
1976    }
1977#endif
1978  }
1979
1980protected:
1981  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
1982           CXXBaseSpecifierArray BasePath) :
1983    Expr(SC, ty,
1984         // Cast expressions are type-dependent if the type is
1985         // dependent (C++ [temp.dep.expr]p3).
1986         ty->isDependentType(),
1987         // Cast expressions are value-dependent if the type is
1988         // dependent or if the subexpression is value-dependent.
1989         ty->isDependentType() || (op && op->isValueDependent())),
1990    Kind(kind), Op(op), BasePath(BasePath) {
1991      CheckBasePath();
1992    }
1993
1994  /// \brief Construct an empty cast.
1995  CastExpr(StmtClass SC, EmptyShell Empty)
1996    : Expr(SC, Empty) { }
1997
1998public:
1999  CastKind getCastKind() const { return Kind; }
2000  void setCastKind(CastKind K) { Kind = K; }
2001  const char *getCastKindName() const;
2002
2003  Expr *getSubExpr() { return cast<Expr>(Op); }
2004  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2005  void setSubExpr(Expr *E) { Op = E; }
2006
2007  /// \brief Retrieve the cast subexpression as it was written in the source
2008  /// code, looking through any implicit casts or other intermediate nodes
2009  /// introduced by semantic analysis.
2010  Expr *getSubExprAsWritten();
2011  const Expr *getSubExprAsWritten() const {
2012    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2013  }
2014
2015  const CXXBaseSpecifierArray& getBasePath() const { return BasePath; }
2016        CXXBaseSpecifierArray& getBasePath()       { return BasePath; }
2017
2018  static bool classof(const Stmt *T) {
2019    return T->getStmtClass() >= firstCastExprConstant &&
2020           T->getStmtClass() <= lastCastExprConstant;
2021  }
2022  static bool classof(const CastExpr *) { return true; }
2023
2024  // Iterators
2025  virtual child_iterator child_begin();
2026  virtual child_iterator child_end();
2027};
2028
2029/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2030/// conversions, which have no direct representation in the original
2031/// source code. For example: converting T[]->T*, void f()->void
2032/// (*f)(), float->double, short->int, etc.
2033///
2034/// In C, implicit casts always produce rvalues. However, in C++, an
2035/// implicit cast whose result is being bound to a reference will be
2036/// an lvalue or xvalue. For example:
2037///
2038/// @code
2039/// class Base { };
2040/// class Derived : public Base { };
2041/// Derived &&ref();
2042/// void f(Derived d) {
2043///   Base& b = d; // initializer is an ImplicitCastExpr
2044///                // to an lvalue of type Base
2045///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2046///                     // to an xvalue of type Base
2047/// }
2048/// @endcode
2049class ImplicitCastExpr : public CastExpr {
2050public:
2051  enum ResultCategory {
2052    RValue, LValue, XValue
2053  };
2054
2055private:
2056  /// Category - The category this cast produces.
2057  ResultCategory Category;
2058
2059public:
2060  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2061                   CXXBaseSpecifierArray BasePath, ResultCategory Cat)
2062    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePath), Category(Cat) { }
2063
2064  /// \brief Construct an empty implicit cast.
2065  explicit ImplicitCastExpr(EmptyShell Shell)
2066    : CastExpr(ImplicitCastExprClass, Shell) { }
2067
2068  virtual SourceRange getSourceRange() const {
2069    return getSubExpr()->getSourceRange();
2070  }
2071
2072  /// getCategory - The value category this cast produces.
2073  ResultCategory getCategory() const { return Category; }
2074
2075  /// setCategory - Set the value category this cast produces.
2076  void setCategory(ResultCategory Cat) { Category = Cat; }
2077
2078  static bool classof(const Stmt *T) {
2079    return T->getStmtClass() == ImplicitCastExprClass;
2080  }
2081  static bool classof(const ImplicitCastExpr *) { return true; }
2082};
2083
2084/// ExplicitCastExpr - An explicit cast written in the source
2085/// code.
2086///
2087/// This class is effectively an abstract class, because it provides
2088/// the basic representation of an explicitly-written cast without
2089/// specifying which kind of cast (C cast, functional cast, static
2090/// cast, etc.) was written; specific derived classes represent the
2091/// particular style of cast and its location information.
2092///
2093/// Unlike implicit casts, explicit cast nodes have two different
2094/// types: the type that was written into the source code, and the
2095/// actual type of the expression as determined by semantic
2096/// analysis. These types may differ slightly. For example, in C++ one
2097/// can cast to a reference type, which indicates that the resulting
2098/// expression will be an lvalue or xvalue. The reference type, however,
2099/// will not be used as the type of the expression.
2100class ExplicitCastExpr : public CastExpr {
2101  /// TInfo - Source type info for the (written) type
2102  /// this expression is casting to.
2103  TypeSourceInfo *TInfo;
2104
2105protected:
2106  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2107                   Expr *op, CXXBaseSpecifierArray BasePath,
2108                   TypeSourceInfo *writtenTy)
2109    : CastExpr(SC, exprTy, kind, op, BasePath), TInfo(writtenTy) {}
2110
2111  /// \brief Construct an empty explicit cast.
2112  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
2113    : CastExpr(SC, Shell) { }
2114
2115public:
2116  /// getTypeInfoAsWritten - Returns the type source info for the type
2117  /// that this expression is casting to.
2118  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2119  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2120
2121  /// getTypeAsWritten - Returns the type that this expression is
2122  /// casting to, as written in the source code.
2123  QualType getTypeAsWritten() const { return TInfo->getType(); }
2124
2125  static bool classof(const Stmt *T) {
2126     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2127            T->getStmtClass() <= lastExplicitCastExprConstant;
2128  }
2129  static bool classof(const ExplicitCastExpr *) { return true; }
2130};
2131
2132/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2133/// cast in C++ (C++ [expr.cast]), which uses the syntax
2134/// (Type)expr. For example: @c (int)f.
2135class CStyleCastExpr : public ExplicitCastExpr {
2136  SourceLocation LPLoc; // the location of the left paren
2137  SourceLocation RPLoc; // the location of the right paren
2138public:
2139  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2140                 CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
2141                 SourceLocation l, SourceLocation r)
2142    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, BasePath,
2143                       writtenTy), LPLoc(l), RPLoc(r) {}
2144
2145  /// \brief Construct an empty C-style explicit cast.
2146  explicit CStyleCastExpr(EmptyShell Shell)
2147    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
2148
2149  SourceLocation getLParenLoc() const { return LPLoc; }
2150  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2151
2152  SourceLocation getRParenLoc() const { return RPLoc; }
2153  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2154
2155  virtual SourceRange getSourceRange() const {
2156    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2157  }
2158  static bool classof(const Stmt *T) {
2159    return T->getStmtClass() == CStyleCastExprClass;
2160  }
2161  static bool classof(const CStyleCastExpr *) { return true; }
2162};
2163
2164/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2165///
2166/// This expression node kind describes a builtin binary operation,
2167/// such as "x + y" for integer values "x" and "y". The operands will
2168/// already have been converted to appropriate types (e.g., by
2169/// performing promotions or conversions).
2170///
2171/// In C++, where operators may be overloaded, a different kind of
2172/// expression node (CXXOperatorCallExpr) is used to express the
2173/// invocation of an overloaded operator with operator syntax. Within
2174/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2175/// used to store an expression "x + y" depends on the subexpressions
2176/// for x and y. If neither x or y is type-dependent, and the "+"
2177/// operator resolves to a built-in operation, BinaryOperator will be
2178/// used to express the computation (x and y may still be
2179/// value-dependent). If either x or y is type-dependent, or if the
2180/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2181/// be used to express the computation.
2182class BinaryOperator : public Expr {
2183public:
2184  enum Opcode {
2185    // Operators listed in order of precedence.
2186    // Note that additions to this should also update the StmtVisitor class.
2187    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2188    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2189    Add, Sub,         // [C99 6.5.6] Additive operators.
2190    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2191    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2192    EQ, NE,           // [C99 6.5.9] Equality operators.
2193    And,              // [C99 6.5.10] Bitwise AND operator.
2194    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2195    Or,               // [C99 6.5.12] Bitwise OR operator.
2196    LAnd,             // [C99 6.5.13] Logical AND operator.
2197    LOr,              // [C99 6.5.14] Logical OR operator.
2198    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2199    DivAssign, RemAssign,
2200    AddAssign, SubAssign,
2201    ShlAssign, ShrAssign,
2202    AndAssign, XorAssign,
2203    OrAssign,
2204    Comma             // [C99 6.5.17] Comma operator.
2205  };
2206private:
2207  enum { LHS, RHS, END_EXPR };
2208  Stmt* SubExprs[END_EXPR];
2209  Opcode Opc;
2210  SourceLocation OpLoc;
2211public:
2212
2213  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2214                 SourceLocation opLoc)
2215    : Expr(BinaryOperatorClass, ResTy,
2216           lhs->isTypeDependent() || rhs->isTypeDependent(),
2217           lhs->isValueDependent() || rhs->isValueDependent()),
2218      Opc(opc), OpLoc(opLoc) {
2219    SubExprs[LHS] = lhs;
2220    SubExprs[RHS] = rhs;
2221    assert(!isCompoundAssignmentOp() &&
2222           "Use ArithAssignBinaryOperator for compound assignments");
2223  }
2224
2225  /// \brief Construct an empty binary operator.
2226  explicit BinaryOperator(EmptyShell Empty)
2227    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2228
2229  SourceLocation getOperatorLoc() const { return OpLoc; }
2230  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2231
2232  Opcode getOpcode() const { return Opc; }
2233  void setOpcode(Opcode O) { Opc = O; }
2234
2235  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2236  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2237  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2238  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2239
2240  virtual SourceRange getSourceRange() const {
2241    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2242  }
2243
2244  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2245  /// corresponds to, e.g. "<<=".
2246  static const char *getOpcodeStr(Opcode Op);
2247
2248  const char *getOpcodeStr() const { return getOpcodeStr(Opc); }
2249
2250  /// \brief Retrieve the binary opcode that corresponds to the given
2251  /// overloaded operator.
2252  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2253
2254  /// \brief Retrieve the overloaded operator kind that corresponds to
2255  /// the given binary opcode.
2256  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2257
2258  /// predicates to categorize the respective opcodes.
2259  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2260  static bool isAdditiveOp(Opcode Opc) { return Opc == Add || Opc == Sub; }
2261  bool isAdditiveOp() const { return isAdditiveOp(Opc); }
2262  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2263  bool isShiftOp() const { return isShiftOp(Opc); }
2264
2265  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2266  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2267
2268  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2269  bool isRelationalOp() const { return isRelationalOp(Opc); }
2270
2271  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2272  bool isEqualityOp() const { return isEqualityOp(Opc); }
2273
2274  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2275  bool isComparisonOp() const { return isComparisonOp(Opc); }
2276
2277  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2278  bool isLogicalOp() const { return isLogicalOp(Opc); }
2279
2280  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2281  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2282  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2283
2284  static bool classof(const Stmt *S) {
2285    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2286           S->getStmtClass() <= lastBinaryOperatorConstant;
2287  }
2288  static bool classof(const BinaryOperator *) { return true; }
2289
2290  // Iterators
2291  virtual child_iterator child_begin();
2292  virtual child_iterator child_end();
2293
2294protected:
2295  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2296                 SourceLocation opLoc, bool dead)
2297    : Expr(CompoundAssignOperatorClass, ResTy,
2298           lhs->isTypeDependent() || rhs->isTypeDependent(),
2299           lhs->isValueDependent() || rhs->isValueDependent()),
2300      Opc(opc), OpLoc(opLoc) {
2301    SubExprs[LHS] = lhs;
2302    SubExprs[RHS] = rhs;
2303  }
2304
2305  BinaryOperator(StmtClass SC, EmptyShell Empty)
2306    : Expr(SC, Empty), Opc(MulAssign) { }
2307};
2308
2309/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2310/// track of the type the operation is performed in.  Due to the semantics of
2311/// these operators, the operands are promoted, the aritmetic performed, an
2312/// implicit conversion back to the result type done, then the assignment takes
2313/// place.  This captures the intermediate type which the computation is done
2314/// in.
2315class CompoundAssignOperator : public BinaryOperator {
2316  QualType ComputationLHSType;
2317  QualType ComputationResultType;
2318public:
2319  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2320                         QualType ResType, QualType CompLHSType,
2321                         QualType CompResultType,
2322                         SourceLocation OpLoc)
2323    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2324      ComputationLHSType(CompLHSType),
2325      ComputationResultType(CompResultType) {
2326    assert(isCompoundAssignmentOp() &&
2327           "Only should be used for compound assignments");
2328  }
2329
2330  /// \brief Build an empty compound assignment operator expression.
2331  explicit CompoundAssignOperator(EmptyShell Empty)
2332    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2333
2334  // The two computation types are the type the LHS is converted
2335  // to for the computation and the type of the result; the two are
2336  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2337  QualType getComputationLHSType() const { return ComputationLHSType; }
2338  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2339
2340  QualType getComputationResultType() const { return ComputationResultType; }
2341  void setComputationResultType(QualType T) { ComputationResultType = T; }
2342
2343  static bool classof(const CompoundAssignOperator *) { return true; }
2344  static bool classof(const Stmt *S) {
2345    return S->getStmtClass() == CompoundAssignOperatorClass;
2346  }
2347};
2348
2349/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2350/// GNU "missing LHS" extension is in use.
2351///
2352class ConditionalOperator : public Expr {
2353  enum { COND, LHS, RHS, END_EXPR };
2354  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2355  SourceLocation QuestionLoc, ColonLoc;
2356public:
2357  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2358                      SourceLocation CLoc, Expr *rhs, QualType t)
2359    : Expr(ConditionalOperatorClass, t,
2360           // FIXME: the type of the conditional operator doesn't
2361           // depend on the type of the conditional, but the standard
2362           // seems to imply that it could. File a bug!
2363           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2364           (cond->isValueDependent() ||
2365            (lhs && lhs->isValueDependent()) ||
2366            (rhs && rhs->isValueDependent()))),
2367      QuestionLoc(QLoc),
2368      ColonLoc(CLoc) {
2369    SubExprs[COND] = cond;
2370    SubExprs[LHS] = lhs;
2371    SubExprs[RHS] = rhs;
2372  }
2373
2374  /// \brief Build an empty conditional operator.
2375  explicit ConditionalOperator(EmptyShell Empty)
2376    : Expr(ConditionalOperatorClass, Empty) { }
2377
2378  // getCond - Return the expression representing the condition for
2379  //  the ?: operator.
2380  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2381  void setCond(Expr *E) { SubExprs[COND] = E; }
2382
2383  // getTrueExpr - Return the subexpression representing the value of the ?:
2384  //  expression if the condition evaluates to true.  In most cases this value
2385  //  will be the same as getLHS() except a GCC extension allows the left
2386  //  subexpression to be omitted, and instead of the condition be returned.
2387  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2388  //  is only evaluated once.
2389  Expr *getTrueExpr() const {
2390    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2391  }
2392
2393  // getTrueExpr - Return the subexpression representing the value of the ?:
2394  // expression if the condition evaluates to false. This is the same as getRHS.
2395  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2396
2397  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2398  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2399
2400  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2401  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2402
2403  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2404  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2405
2406  SourceLocation getColonLoc() const { return ColonLoc; }
2407  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2408
2409  virtual SourceRange getSourceRange() const {
2410    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2411  }
2412  static bool classof(const Stmt *T) {
2413    return T->getStmtClass() == ConditionalOperatorClass;
2414  }
2415  static bool classof(const ConditionalOperator *) { return true; }
2416
2417  // Iterators
2418  virtual child_iterator child_begin();
2419  virtual child_iterator child_end();
2420};
2421
2422/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2423class AddrLabelExpr : public Expr {
2424  SourceLocation AmpAmpLoc, LabelLoc;
2425  LabelStmt *Label;
2426public:
2427  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2428                QualType t)
2429    : Expr(AddrLabelExprClass, t, false, false),
2430      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2431
2432  /// \brief Build an empty address of a label expression.
2433  explicit AddrLabelExpr(EmptyShell Empty)
2434    : Expr(AddrLabelExprClass, Empty) { }
2435
2436  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2437  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2438  SourceLocation getLabelLoc() const { return LabelLoc; }
2439  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2440
2441  virtual SourceRange getSourceRange() const {
2442    return SourceRange(AmpAmpLoc, LabelLoc);
2443  }
2444
2445  LabelStmt *getLabel() const { return Label; }
2446  void setLabel(LabelStmt *S) { Label = S; }
2447
2448  static bool classof(const Stmt *T) {
2449    return T->getStmtClass() == AddrLabelExprClass;
2450  }
2451  static bool classof(const AddrLabelExpr *) { return true; }
2452
2453  // Iterators
2454  virtual child_iterator child_begin();
2455  virtual child_iterator child_end();
2456};
2457
2458/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2459/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2460/// takes the value of the last subexpression.
2461class StmtExpr : public Expr {
2462  Stmt *SubStmt;
2463  SourceLocation LParenLoc, RParenLoc;
2464public:
2465  // FIXME: Does type-dependence need to be computed differently?
2466  StmtExpr(CompoundStmt *substmt, QualType T,
2467           SourceLocation lp, SourceLocation rp) :
2468    Expr(StmtExprClass, T, T->isDependentType(), false),
2469    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2470
2471  /// \brief Build an empty statement expression.
2472  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2473
2474  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2475  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2476  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2477
2478  virtual SourceRange getSourceRange() const {
2479    return SourceRange(LParenLoc, RParenLoc);
2480  }
2481
2482  SourceLocation getLParenLoc() const { return LParenLoc; }
2483  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2484  SourceLocation getRParenLoc() const { return RParenLoc; }
2485  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2486
2487  static bool classof(const Stmt *T) {
2488    return T->getStmtClass() == StmtExprClass;
2489  }
2490  static bool classof(const StmtExpr *) { return true; }
2491
2492  // Iterators
2493  virtual child_iterator child_begin();
2494  virtual child_iterator child_end();
2495};
2496
2497/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2498/// This AST node represents a function that returns 1 if two *types* (not
2499/// expressions) are compatible. The result of this built-in function can be
2500/// used in integer constant expressions.
2501class TypesCompatibleExpr : public Expr {
2502  QualType Type1;
2503  QualType Type2;
2504  SourceLocation BuiltinLoc, RParenLoc;
2505public:
2506  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2507                      QualType t1, QualType t2, SourceLocation RP) :
2508    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2509    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2510
2511  /// \brief Build an empty __builtin_type_compatible_p expression.
2512  explicit TypesCompatibleExpr(EmptyShell Empty)
2513    : Expr(TypesCompatibleExprClass, Empty) { }
2514
2515  QualType getArgType1() const { return Type1; }
2516  void setArgType1(QualType T) { Type1 = T; }
2517  QualType getArgType2() const { return Type2; }
2518  void setArgType2(QualType T) { Type2 = T; }
2519
2520  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2521  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2522
2523  SourceLocation getRParenLoc() const { return RParenLoc; }
2524  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2525
2526  virtual SourceRange getSourceRange() const {
2527    return SourceRange(BuiltinLoc, RParenLoc);
2528  }
2529  static bool classof(const Stmt *T) {
2530    return T->getStmtClass() == TypesCompatibleExprClass;
2531  }
2532  static bool classof(const TypesCompatibleExpr *) { return true; }
2533
2534  // Iterators
2535  virtual child_iterator child_begin();
2536  virtual child_iterator child_end();
2537};
2538
2539/// ShuffleVectorExpr - clang-specific builtin-in function
2540/// __builtin_shufflevector.
2541/// This AST node represents a operator that does a constant
2542/// shuffle, similar to LLVM's shufflevector instruction. It takes
2543/// two vectors and a variable number of constant indices,
2544/// and returns the appropriately shuffled vector.
2545class ShuffleVectorExpr : public Expr {
2546  SourceLocation BuiltinLoc, RParenLoc;
2547
2548  // SubExprs - the list of values passed to the __builtin_shufflevector
2549  // function. The first two are vectors, and the rest are constant
2550  // indices.  The number of values in this list is always
2551  // 2+the number of indices in the vector type.
2552  Stmt **SubExprs;
2553  unsigned NumExprs;
2554
2555public:
2556  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2557  // to be computed differently?
2558  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2559                    QualType Type, SourceLocation BLoc,
2560                    SourceLocation RP) :
2561    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2562    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2563
2564    SubExprs = new (C) Stmt*[nexpr];
2565    for (unsigned i = 0; i < nexpr; i++)
2566      SubExprs[i] = args[i];
2567  }
2568
2569  /// \brief Build an empty vector-shuffle expression.
2570  explicit ShuffleVectorExpr(EmptyShell Empty)
2571    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2572
2573  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2574  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2575
2576  SourceLocation getRParenLoc() const { return RParenLoc; }
2577  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2578
2579  virtual SourceRange getSourceRange() const {
2580    return SourceRange(BuiltinLoc, RParenLoc);
2581  }
2582  static bool classof(const Stmt *T) {
2583    return T->getStmtClass() == ShuffleVectorExprClass;
2584  }
2585  static bool classof(const ShuffleVectorExpr *) { return true; }
2586
2587  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2588  /// constant expression, the actual arguments passed in, and the function
2589  /// pointers.
2590  unsigned getNumSubExprs() const { return NumExprs; }
2591
2592  /// getExpr - Return the Expr at the specified index.
2593  Expr *getExpr(unsigned Index) {
2594    assert((Index < NumExprs) && "Arg access out of range!");
2595    return cast<Expr>(SubExprs[Index]);
2596  }
2597  const Expr *getExpr(unsigned Index) const {
2598    assert((Index < NumExprs) && "Arg access out of range!");
2599    return cast<Expr>(SubExprs[Index]);
2600  }
2601
2602  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2603
2604  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2605    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2606    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2607  }
2608
2609  // Iterators
2610  virtual child_iterator child_begin();
2611  virtual child_iterator child_end();
2612};
2613
2614/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2615/// This AST node is similar to the conditional operator (?:) in C, with
2616/// the following exceptions:
2617/// - the test expression must be a integer constant expression.
2618/// - the expression returned acts like the chosen subexpression in every
2619///   visible way: the type is the same as that of the chosen subexpression,
2620///   and all predicates (whether it's an l-value, whether it's an integer
2621///   constant expression, etc.) return the same result as for the chosen
2622///   sub-expression.
2623class ChooseExpr : public Expr {
2624  enum { COND, LHS, RHS, END_EXPR };
2625  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2626  SourceLocation BuiltinLoc, RParenLoc;
2627public:
2628  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2629             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2630    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2631      BuiltinLoc(BLoc), RParenLoc(RP) {
2632      SubExprs[COND] = cond;
2633      SubExprs[LHS] = lhs;
2634      SubExprs[RHS] = rhs;
2635    }
2636
2637  /// \brief Build an empty __builtin_choose_expr.
2638  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2639
2640  /// isConditionTrue - Return whether the condition is true (i.e. not
2641  /// equal to zero).
2642  bool isConditionTrue(ASTContext &C) const;
2643
2644  /// getChosenSubExpr - Return the subexpression chosen according to the
2645  /// condition.
2646  Expr *getChosenSubExpr(ASTContext &C) const {
2647    return isConditionTrue(C) ? getLHS() : getRHS();
2648  }
2649
2650  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2651  void setCond(Expr *E) { SubExprs[COND] = E; }
2652  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2653  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2654  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2655  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2656
2657  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2658  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2659
2660  SourceLocation getRParenLoc() const { return RParenLoc; }
2661  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2662
2663  virtual SourceRange getSourceRange() const {
2664    return SourceRange(BuiltinLoc, RParenLoc);
2665  }
2666  static bool classof(const Stmt *T) {
2667    return T->getStmtClass() == ChooseExprClass;
2668  }
2669  static bool classof(const ChooseExpr *) { return true; }
2670
2671  // Iterators
2672  virtual child_iterator child_begin();
2673  virtual child_iterator child_end();
2674};
2675
2676/// GNUNullExpr - Implements the GNU __null extension, which is a name
2677/// for a null pointer constant that has integral type (e.g., int or
2678/// long) and is the same size and alignment as a pointer. The __null
2679/// extension is typically only used by system headers, which define
2680/// NULL as __null in C++ rather than using 0 (which is an integer
2681/// that may not match the size of a pointer).
2682class GNUNullExpr : public Expr {
2683  /// TokenLoc - The location of the __null keyword.
2684  SourceLocation TokenLoc;
2685
2686public:
2687  GNUNullExpr(QualType Ty, SourceLocation Loc)
2688    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2689
2690  /// \brief Build an empty GNU __null expression.
2691  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2692
2693  /// getTokenLocation - The location of the __null token.
2694  SourceLocation getTokenLocation() const { return TokenLoc; }
2695  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2696
2697  virtual SourceRange getSourceRange() const {
2698    return SourceRange(TokenLoc);
2699  }
2700  static bool classof(const Stmt *T) {
2701    return T->getStmtClass() == GNUNullExprClass;
2702  }
2703  static bool classof(const GNUNullExpr *) { return true; }
2704
2705  // Iterators
2706  virtual child_iterator child_begin();
2707  virtual child_iterator child_end();
2708};
2709
2710/// VAArgExpr, used for the builtin function __builtin_va_arg.
2711class VAArgExpr : public Expr {
2712  Stmt *Val;
2713  SourceLocation BuiltinLoc, RParenLoc;
2714public:
2715  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2716    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2717      Val(e),
2718      BuiltinLoc(BLoc),
2719      RParenLoc(RPLoc) { }
2720
2721  /// \brief Create an empty __builtin_va_arg expression.
2722  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2723
2724  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2725  Expr *getSubExpr() { return cast<Expr>(Val); }
2726  void setSubExpr(Expr *E) { Val = E; }
2727
2728  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2729  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2730
2731  SourceLocation getRParenLoc() const { return RParenLoc; }
2732  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2733
2734  virtual SourceRange getSourceRange() const {
2735    return SourceRange(BuiltinLoc, RParenLoc);
2736  }
2737  static bool classof(const Stmt *T) {
2738    return T->getStmtClass() == VAArgExprClass;
2739  }
2740  static bool classof(const VAArgExpr *) { return true; }
2741
2742  // Iterators
2743  virtual child_iterator child_begin();
2744  virtual child_iterator child_end();
2745};
2746
2747/// @brief Describes an C or C++ initializer list.
2748///
2749/// InitListExpr describes an initializer list, which can be used to
2750/// initialize objects of different types, including
2751/// struct/class/union types, arrays, and vectors. For example:
2752///
2753/// @code
2754/// struct foo x = { 1, { 2, 3 } };
2755/// @endcode
2756///
2757/// Prior to semantic analysis, an initializer list will represent the
2758/// initializer list as written by the user, but will have the
2759/// placeholder type "void". This initializer list is called the
2760/// syntactic form of the initializer, and may contain C99 designated
2761/// initializers (represented as DesignatedInitExprs), initializations
2762/// of subobject members without explicit braces, and so on. Clients
2763/// interested in the original syntax of the initializer list should
2764/// use the syntactic form of the initializer list.
2765///
2766/// After semantic analysis, the initializer list will represent the
2767/// semantic form of the initializer, where the initializations of all
2768/// subobjects are made explicit with nested InitListExpr nodes and
2769/// C99 designators have been eliminated by placing the designated
2770/// initializations into the subobject they initialize. Additionally,
2771/// any "holes" in the initialization, where no initializer has been
2772/// specified for a particular subobject, will be replaced with
2773/// implicitly-generated ImplicitValueInitExpr expressions that
2774/// value-initialize the subobjects. Note, however, that the
2775/// initializer lists may still have fewer initializers than there are
2776/// elements to initialize within the object.
2777///
2778/// Given the semantic form of the initializer list, one can retrieve
2779/// the original syntactic form of that initializer list (if it
2780/// exists) using getSyntacticForm(). Since many initializer lists
2781/// have the same syntactic and semantic forms, getSyntacticForm() may
2782/// return NULL, indicating that the current initializer list also
2783/// serves as its syntactic form.
2784class InitListExpr : public Expr {
2785  // FIXME: Eliminate this vector in favor of ASTContext allocation
2786  typedef ASTVector<Stmt *> InitExprsTy;
2787  InitExprsTy InitExprs;
2788  SourceLocation LBraceLoc, RBraceLoc;
2789
2790  /// Contains the initializer list that describes the syntactic form
2791  /// written in the source code.
2792  InitListExpr *SyntacticForm;
2793
2794  /// If this initializer list initializes a union, specifies which
2795  /// field within the union will be initialized.
2796  FieldDecl *UnionFieldInit;
2797
2798  /// Whether this initializer list originally had a GNU array-range
2799  /// designator in it. This is a temporary marker used by CodeGen.
2800  bool HadArrayRangeDesignator;
2801
2802public:
2803  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2804               Expr **initexprs, unsigned numinits,
2805               SourceLocation rbraceloc);
2806
2807  /// \brief Build an empty initializer list.
2808  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2809    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2810
2811  unsigned getNumInits() const { return InitExprs.size(); }
2812
2813  const Expr* getInit(unsigned Init) const {
2814    assert(Init < getNumInits() && "Initializer access out of range!");
2815    return cast_or_null<Expr>(InitExprs[Init]);
2816  }
2817
2818  Expr* getInit(unsigned Init) {
2819    assert(Init < getNumInits() && "Initializer access out of range!");
2820    return cast_or_null<Expr>(InitExprs[Init]);
2821  }
2822
2823  void setInit(unsigned Init, Expr *expr) {
2824    assert(Init < getNumInits() && "Initializer access out of range!");
2825    InitExprs[Init] = expr;
2826  }
2827
2828  /// \brief Reserve space for some number of initializers.
2829  void reserveInits(ASTContext &C, unsigned NumInits);
2830
2831  /// @brief Specify the number of initializers
2832  ///
2833  /// If there are more than @p NumInits initializers, the remaining
2834  /// initializers will be destroyed. If there are fewer than @p
2835  /// NumInits initializers, NULL expressions will be added for the
2836  /// unknown initializers.
2837  void resizeInits(ASTContext &Context, unsigned NumInits);
2838
2839  /// @brief Updates the initializer at index @p Init with the new
2840  /// expression @p expr, and returns the old expression at that
2841  /// location.
2842  ///
2843  /// When @p Init is out of range for this initializer list, the
2844  /// initializer list will be extended with NULL expressions to
2845  /// accomodate the new entry.
2846  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2847
2848  /// \brief If this initializes a union, specifies which field in the
2849  /// union to initialize.
2850  ///
2851  /// Typically, this field is the first named field within the
2852  /// union. However, a designated initializer can specify the
2853  /// initialization of a different field within the union.
2854  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2855  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2856
2857  // Explicit InitListExpr's originate from source code (and have valid source
2858  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2859  bool isExplicit() {
2860    return LBraceLoc.isValid() && RBraceLoc.isValid();
2861  }
2862
2863  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2864  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2865  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2866  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2867
2868  /// @brief Retrieve the initializer list that describes the
2869  /// syntactic form of the initializer.
2870  ///
2871  ///
2872  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2873  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2874
2875  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2876  void sawArrayRangeDesignator(bool ARD = true) {
2877    HadArrayRangeDesignator = ARD;
2878  }
2879
2880  virtual SourceRange getSourceRange() const {
2881    return SourceRange(LBraceLoc, RBraceLoc);
2882  }
2883  static bool classof(const Stmt *T) {
2884    return T->getStmtClass() == InitListExprClass;
2885  }
2886  static bool classof(const InitListExpr *) { return true; }
2887
2888  // Iterators
2889  virtual child_iterator child_begin();
2890  virtual child_iterator child_end();
2891
2892  typedef InitExprsTy::iterator iterator;
2893  typedef InitExprsTy::const_iterator const_iterator;
2894  typedef InitExprsTy::reverse_iterator reverse_iterator;
2895  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
2896
2897  iterator begin() { return InitExprs.begin(); }
2898  const_iterator begin() const { return InitExprs.begin(); }
2899  iterator end() { return InitExprs.end(); }
2900  const_iterator end() const { return InitExprs.end(); }
2901  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2902  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
2903  reverse_iterator rend() { return InitExprs.rend(); }
2904  const_reverse_iterator rend() const { return InitExprs.rend(); }
2905};
2906
2907/// @brief Represents a C99 designated initializer expression.
2908///
2909/// A designated initializer expression (C99 6.7.8) contains one or
2910/// more designators (which can be field designators, array
2911/// designators, or GNU array-range designators) followed by an
2912/// expression that initializes the field or element(s) that the
2913/// designators refer to. For example, given:
2914///
2915/// @code
2916/// struct point {
2917///   double x;
2918///   double y;
2919/// };
2920/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2921/// @endcode
2922///
2923/// The InitListExpr contains three DesignatedInitExprs, the first of
2924/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2925/// designators, one array designator for @c [2] followed by one field
2926/// designator for @c .y. The initalization expression will be 1.0.
2927class DesignatedInitExpr : public Expr {
2928public:
2929  /// \brief Forward declaration of the Designator class.
2930  class Designator;
2931
2932private:
2933  /// The location of the '=' or ':' prior to the actual initializer
2934  /// expression.
2935  SourceLocation EqualOrColonLoc;
2936
2937  /// Whether this designated initializer used the GNU deprecated
2938  /// syntax rather than the C99 '=' syntax.
2939  bool GNUSyntax : 1;
2940
2941  /// The number of designators in this initializer expression.
2942  unsigned NumDesignators : 15;
2943
2944  /// \brief The designators in this designated initialization
2945  /// expression.
2946  Designator *Designators;
2947
2948  /// The number of subexpressions of this initializer expression,
2949  /// which contains both the initializer and any additional
2950  /// expressions used by array and array-range designators.
2951  unsigned NumSubExprs : 16;
2952
2953
2954  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2955                     const Designator *Designators,
2956                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2957                     Expr **IndexExprs, unsigned NumIndexExprs,
2958                     Expr *Init);
2959
2960  explicit DesignatedInitExpr(unsigned NumSubExprs)
2961    : Expr(DesignatedInitExprClass, EmptyShell()),
2962      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2963
2964public:
2965  /// A field designator, e.g., ".x".
2966  struct FieldDesignator {
2967    /// Refers to the field that is being initialized. The low bit
2968    /// of this field determines whether this is actually a pointer
2969    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2970    /// initially constructed, a field designator will store an
2971    /// IdentifierInfo*. After semantic analysis has resolved that
2972    /// name, the field designator will instead store a FieldDecl*.
2973    uintptr_t NameOrField;
2974
2975    /// The location of the '.' in the designated initializer.
2976    unsigned DotLoc;
2977
2978    /// The location of the field name in the designated initializer.
2979    unsigned FieldLoc;
2980  };
2981
2982  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2983  struct ArrayOrRangeDesignator {
2984    /// Location of the first index expression within the designated
2985    /// initializer expression's list of subexpressions.
2986    unsigned Index;
2987    /// The location of the '[' starting the array range designator.
2988    unsigned LBracketLoc;
2989    /// The location of the ellipsis separating the start and end
2990    /// indices. Only valid for GNU array-range designators.
2991    unsigned EllipsisLoc;
2992    /// The location of the ']' terminating the array range designator.
2993    unsigned RBracketLoc;
2994  };
2995
2996  /// @brief Represents a single C99 designator.
2997  ///
2998  /// @todo This class is infuriatingly similar to clang::Designator,
2999  /// but minor differences (storing indices vs. storing pointers)
3000  /// keep us from reusing it. Try harder, later, to rectify these
3001  /// differences.
3002  class Designator {
3003    /// @brief The kind of designator this describes.
3004    enum {
3005      FieldDesignator,
3006      ArrayDesignator,
3007      ArrayRangeDesignator
3008    } Kind;
3009
3010    union {
3011      /// A field designator, e.g., ".x".
3012      struct FieldDesignator Field;
3013      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3014      struct ArrayOrRangeDesignator ArrayOrRange;
3015    };
3016    friend class DesignatedInitExpr;
3017
3018  public:
3019    Designator() {}
3020
3021    /// @brief Initializes a field designator.
3022    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3023               SourceLocation FieldLoc)
3024      : Kind(FieldDesignator) {
3025      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3026      Field.DotLoc = DotLoc.getRawEncoding();
3027      Field.FieldLoc = FieldLoc.getRawEncoding();
3028    }
3029
3030    /// @brief Initializes an array designator.
3031    Designator(unsigned Index, SourceLocation LBracketLoc,
3032               SourceLocation RBracketLoc)
3033      : Kind(ArrayDesignator) {
3034      ArrayOrRange.Index = Index;
3035      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3036      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3037      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3038    }
3039
3040    /// @brief Initializes a GNU array-range designator.
3041    Designator(unsigned Index, SourceLocation LBracketLoc,
3042               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3043      : Kind(ArrayRangeDesignator) {
3044      ArrayOrRange.Index = Index;
3045      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3046      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3047      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3048    }
3049
3050    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3051    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3052    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3053
3054    IdentifierInfo * getFieldName();
3055
3056    FieldDecl *getField() {
3057      assert(Kind == FieldDesignator && "Only valid on a field designator");
3058      if (Field.NameOrField & 0x01)
3059        return 0;
3060      else
3061        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3062    }
3063
3064    void setField(FieldDecl *FD) {
3065      assert(Kind == FieldDesignator && "Only valid on a field designator");
3066      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3067    }
3068
3069    SourceLocation getDotLoc() const {
3070      assert(Kind == FieldDesignator && "Only valid on a field designator");
3071      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3072    }
3073
3074    SourceLocation getFieldLoc() const {
3075      assert(Kind == FieldDesignator && "Only valid on a field designator");
3076      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3077    }
3078
3079    SourceLocation getLBracketLoc() const {
3080      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3081             "Only valid on an array or array-range designator");
3082      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3083    }
3084
3085    SourceLocation getRBracketLoc() const {
3086      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3087             "Only valid on an array or array-range designator");
3088      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3089    }
3090
3091    SourceLocation getEllipsisLoc() const {
3092      assert(Kind == ArrayRangeDesignator &&
3093             "Only valid on an array-range designator");
3094      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3095    }
3096
3097    unsigned getFirstExprIndex() const {
3098      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3099             "Only valid on an array or array-range designator");
3100      return ArrayOrRange.Index;
3101    }
3102
3103    SourceLocation getStartLocation() const {
3104      if (Kind == FieldDesignator)
3105        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3106      else
3107        return getLBracketLoc();
3108    }
3109  };
3110
3111  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3112                                    unsigned NumDesignators,
3113                                    Expr **IndexExprs, unsigned NumIndexExprs,
3114                                    SourceLocation EqualOrColonLoc,
3115                                    bool GNUSyntax, Expr *Init);
3116
3117  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3118
3119  /// @brief Returns the number of designators in this initializer.
3120  unsigned size() const { return NumDesignators; }
3121
3122  // Iterator access to the designators.
3123  typedef Designator* designators_iterator;
3124  designators_iterator designators_begin() { return Designators; }
3125  designators_iterator designators_end() {
3126    return Designators + NumDesignators;
3127  }
3128
3129  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3130
3131  void setDesignators(ASTContext &C, const Designator *Desigs,
3132                      unsigned NumDesigs);
3133
3134  Expr *getArrayIndex(const Designator& D);
3135  Expr *getArrayRangeStart(const Designator& D);
3136  Expr *getArrayRangeEnd(const Designator& D);
3137
3138  /// @brief Retrieve the location of the '=' that precedes the
3139  /// initializer value itself, if present.
3140  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3141  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3142
3143  /// @brief Determines whether this designated initializer used the
3144  /// deprecated GNU syntax for designated initializers.
3145  bool usesGNUSyntax() const { return GNUSyntax; }
3146  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3147
3148  /// @brief Retrieve the initializer value.
3149  Expr *getInit() const {
3150    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3151  }
3152
3153  void setInit(Expr *init) {
3154    *child_begin() = init;
3155  }
3156
3157  /// \brief Retrieve the total number of subexpressions in this
3158  /// designated initializer expression, including the actual
3159  /// initialized value and any expressions that occur within array
3160  /// and array-range designators.
3161  unsigned getNumSubExprs() const { return NumSubExprs; }
3162
3163  Expr *getSubExpr(unsigned Idx) {
3164    assert(Idx < NumSubExprs && "Subscript out of range");
3165    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3166    Ptr += sizeof(DesignatedInitExpr);
3167    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3168  }
3169
3170  void setSubExpr(unsigned Idx, Expr *E) {
3171    assert(Idx < NumSubExprs && "Subscript out of range");
3172    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3173    Ptr += sizeof(DesignatedInitExpr);
3174    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3175  }
3176
3177  /// \brief Replaces the designator at index @p Idx with the series
3178  /// of designators in [First, Last).
3179  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3180                        const Designator *Last);
3181
3182  virtual SourceRange getSourceRange() const;
3183
3184  static bool classof(const Stmt *T) {
3185    return T->getStmtClass() == DesignatedInitExprClass;
3186  }
3187  static bool classof(const DesignatedInitExpr *) { return true; }
3188
3189  // Iterators
3190  virtual child_iterator child_begin();
3191  virtual child_iterator child_end();
3192};
3193
3194/// \brief Represents an implicitly-generated value initialization of
3195/// an object of a given type.
3196///
3197/// Implicit value initializations occur within semantic initializer
3198/// list expressions (InitListExpr) as placeholders for subobject
3199/// initializations not explicitly specified by the user.
3200///
3201/// \see InitListExpr
3202class ImplicitValueInitExpr : public Expr {
3203public:
3204  explicit ImplicitValueInitExpr(QualType ty)
3205    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3206
3207  /// \brief Construct an empty implicit value initialization.
3208  explicit ImplicitValueInitExpr(EmptyShell Empty)
3209    : Expr(ImplicitValueInitExprClass, Empty) { }
3210
3211  static bool classof(const Stmt *T) {
3212    return T->getStmtClass() == ImplicitValueInitExprClass;
3213  }
3214  static bool classof(const ImplicitValueInitExpr *) { return true; }
3215
3216  virtual SourceRange getSourceRange() const {
3217    return SourceRange();
3218  }
3219
3220  // Iterators
3221  virtual child_iterator child_begin();
3222  virtual child_iterator child_end();
3223};
3224
3225
3226class ParenListExpr : public Expr {
3227  Stmt **Exprs;
3228  unsigned NumExprs;
3229  SourceLocation LParenLoc, RParenLoc;
3230
3231public:
3232  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3233                unsigned numexprs, SourceLocation rparenloc);
3234
3235  /// \brief Build an empty paren list.
3236  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3237
3238  unsigned getNumExprs() const { return NumExprs; }
3239
3240  const Expr* getExpr(unsigned Init) const {
3241    assert(Init < getNumExprs() && "Initializer access out of range!");
3242    return cast_or_null<Expr>(Exprs[Init]);
3243  }
3244
3245  Expr* getExpr(unsigned Init) {
3246    assert(Init < getNumExprs() && "Initializer access out of range!");
3247    return cast_or_null<Expr>(Exprs[Init]);
3248  }
3249
3250  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3251
3252  SourceLocation getLParenLoc() const { return LParenLoc; }
3253  SourceLocation getRParenLoc() const { return RParenLoc; }
3254
3255  virtual SourceRange getSourceRange() const {
3256    return SourceRange(LParenLoc, RParenLoc);
3257  }
3258  static bool classof(const Stmt *T) {
3259    return T->getStmtClass() == ParenListExprClass;
3260  }
3261  static bool classof(const ParenListExpr *) { return true; }
3262
3263  // Iterators
3264  virtual child_iterator child_begin();
3265  virtual child_iterator child_end();
3266
3267  friend class PCHStmtReader;
3268  friend class PCHStmtWriter;
3269};
3270
3271
3272//===----------------------------------------------------------------------===//
3273// Clang Extensions
3274//===----------------------------------------------------------------------===//
3275
3276
3277/// ExtVectorElementExpr - This represents access to specific elements of a
3278/// vector, and may occur on the left hand side or right hand side.  For example
3279/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3280///
3281/// Note that the base may have either vector or pointer to vector type, just
3282/// like a struct field reference.
3283///
3284class ExtVectorElementExpr : public Expr {
3285  Stmt *Base;
3286  IdentifierInfo *Accessor;
3287  SourceLocation AccessorLoc;
3288public:
3289  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3290                       SourceLocation loc)
3291    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3292           base->isValueDependent()),
3293      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3294
3295  /// \brief Build an empty vector element expression.
3296  explicit ExtVectorElementExpr(EmptyShell Empty)
3297    : Expr(ExtVectorElementExprClass, Empty) { }
3298
3299  const Expr *getBase() const { return cast<Expr>(Base); }
3300  Expr *getBase() { return cast<Expr>(Base); }
3301  void setBase(Expr *E) { Base = E; }
3302
3303  IdentifierInfo &getAccessor() const { return *Accessor; }
3304  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3305
3306  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3307  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3308
3309  /// getNumElements - Get the number of components being selected.
3310  unsigned getNumElements() const;
3311
3312  /// containsDuplicateElements - Return true if any element access is
3313  /// repeated.
3314  bool containsDuplicateElements() const;
3315
3316  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3317  /// aggregate Constant of ConstantInt(s).
3318  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3319
3320  virtual SourceRange getSourceRange() const {
3321    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3322  }
3323
3324  /// isArrow - Return true if the base expression is a pointer to vector,
3325  /// return false if the base expression is a vector.
3326  bool isArrow() const;
3327
3328  static bool classof(const Stmt *T) {
3329    return T->getStmtClass() == ExtVectorElementExprClass;
3330  }
3331  static bool classof(const ExtVectorElementExpr *) { return true; }
3332
3333  // Iterators
3334  virtual child_iterator child_begin();
3335  virtual child_iterator child_end();
3336};
3337
3338
3339/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3340/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3341class BlockExpr : public Expr {
3342protected:
3343  BlockDecl *TheBlock;
3344  bool HasBlockDeclRefExprs;
3345public:
3346  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3347    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3348      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3349
3350  /// \brief Build an empty block expression.
3351  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3352
3353  const BlockDecl *getBlockDecl() const { return TheBlock; }
3354  BlockDecl *getBlockDecl() { return TheBlock; }
3355  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3356
3357  // Convenience functions for probing the underlying BlockDecl.
3358  SourceLocation getCaretLocation() const;
3359  const Stmt *getBody() const;
3360  Stmt *getBody();
3361
3362  virtual SourceRange getSourceRange() const {
3363    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3364  }
3365
3366  /// getFunctionType - Return the underlying function type for this block.
3367  const FunctionType *getFunctionType() const;
3368
3369  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3370  /// inside of the block that reference values outside the block.
3371  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3372  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3373
3374  static bool classof(const Stmt *T) {
3375    return T->getStmtClass() == BlockExprClass;
3376  }
3377  static bool classof(const BlockExpr *) { return true; }
3378
3379  // Iterators
3380  virtual child_iterator child_begin();
3381  virtual child_iterator child_end();
3382};
3383
3384/// BlockDeclRefExpr - A reference to a declared variable, function,
3385/// enum, etc.
3386class BlockDeclRefExpr : public Expr {
3387  ValueDecl *D;
3388  SourceLocation Loc;
3389  bool IsByRef : 1;
3390  bool ConstQualAdded : 1;
3391  Stmt *CopyConstructorVal;
3392public:
3393  // FIXME: Fix type/value dependence!
3394  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3395                   bool constAdded = false,
3396                   Stmt *copyConstructorVal = 0)
3397  : Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false),
3398    D(d), Loc(l), IsByRef(ByRef),
3399    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3400
3401  // \brief Build an empty reference to a declared variable in a
3402  // block.
3403  explicit BlockDeclRefExpr(EmptyShell Empty)
3404    : Expr(BlockDeclRefExprClass, Empty) { }
3405
3406  ValueDecl *getDecl() { return D; }
3407  const ValueDecl *getDecl() const { return D; }
3408  void setDecl(ValueDecl *VD) { D = VD; }
3409
3410  SourceLocation getLocation() const { return Loc; }
3411  void setLocation(SourceLocation L) { Loc = L; }
3412
3413  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3414
3415  bool isByRef() const { return IsByRef; }
3416  void setByRef(bool BR) { IsByRef = BR; }
3417
3418  bool isConstQualAdded() const { return ConstQualAdded; }
3419  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3420
3421  const Expr *getCopyConstructorExpr() const
3422    { return cast_or_null<Expr>(CopyConstructorVal); }
3423  Expr *getCopyConstructorExpr()
3424    { return cast_or_null<Expr>(CopyConstructorVal); }
3425  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3426
3427  static bool classof(const Stmt *T) {
3428    return T->getStmtClass() == BlockDeclRefExprClass;
3429  }
3430  static bool classof(const BlockDeclRefExpr *) { return true; }
3431
3432  // Iterators
3433  virtual child_iterator child_begin();
3434  virtual child_iterator child_end();
3435};
3436
3437}  // end namespace clang
3438
3439#endif
3440