Expr.h revision 4423ac0282acb8ba801eb05b38712438dc0c1e3e
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include <cctype>
30#include <vector>
31
32namespace clang {
33  class ASTContext;
34  class APValue;
35  class Decl;
36  class IdentifierInfo;
37  class ParmVarDecl;
38  class NamedDecl;
39  class ValueDecl;
40  class BlockDecl;
41  class CXXBaseSpecifier;
42  class CXXOperatorCallExpr;
43  class CXXMemberCallExpr;
44  class ObjCPropertyRefExpr;
45  class TemplateArgumentLoc;
46  class TemplateArgumentListInfo;
47  class OpaqueValueExpr;
48
49/// \brief A simple array of base specifiers.
50typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
51
52/// Expr - This represents one expression.  Note that Expr's are subclasses of
53/// Stmt.  This allows an expression to be transparently used any place a Stmt
54/// is required.
55///
56class Expr : public Stmt {
57  QualType TR;
58
59protected:
60  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
61       bool TD, bool VD, bool ContainsUnexpandedParameterPack) : Stmt(SC) {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.ValueKind = VK;
65    ExprBits.ObjectKind = OK;
66    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
67    setType(T);
68  }
69
70  /// \brief Construct an empty expression.
71  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
72
73public:
74  QualType getType() const { return TR; }
75  void setType(QualType t) {
76    // In C++, the type of an expression is always adjusted so that it
77    // will not have reference type an expression will never have
78    // reference type (C++ [expr]p6). Use
79    // QualType::getNonReferenceType() to retrieve the non-reference
80    // type. Additionally, inspect Expr::isLvalue to determine whether
81    // an expression that is adjusted in this manner should be
82    // considered an lvalue.
83    assert((t.isNull() || !t->isReferenceType()) &&
84           "Expressions can't have reference type");
85
86    TR = t;
87  }
88
89  /// isValueDependent - Determines whether this expression is
90  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
91  /// array bound of "Chars" in the following example is
92  /// value-dependent.
93  /// @code
94  /// template<int Size, char (&Chars)[Size]> struct meta_string;
95  /// @endcode
96  bool isValueDependent() const { return ExprBits.ValueDependent; }
97
98  /// \brief Set whether this expression is value-dependent or not.
99  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
100
101  /// isTypeDependent - Determines whether this expression is
102  /// type-dependent (C++ [temp.dep.expr]), which means that its type
103  /// could change from one template instantiation to the next. For
104  /// example, the expressions "x" and "x + y" are type-dependent in
105  /// the following code, but "y" is not type-dependent:
106  /// @code
107  /// template<typename T>
108  /// void add(T x, int y) {
109  ///   x + y;
110  /// }
111  /// @endcode
112  bool isTypeDependent() const { return ExprBits.TypeDependent; }
113
114  /// \brief Set whether this expression is type-dependent or not.
115  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
116
117  /// \brief Whether this expression contains an unexpanded parameter
118  /// pack (for C++0x variadic templates).
119  ///
120  /// Given the following function template:
121  ///
122  /// \code
123  /// template<typename F, typename ...Types>
124  /// void forward(const F &f, Types &&...args) {
125  ///   f(static_cast<Types&&>(args)...);
126  /// }
127  /// \endcode
128  ///
129  /// The expressions \c args and \c static_cast<Types&&>(args) both
130  /// contain parameter packs.
131  bool containsUnexpandedParameterPack() const {
132    return ExprBits.ContainsUnexpandedParameterPack;
133  }
134
135  /// \brief Set the bit that describes whether this expression
136  /// contains an unexpanded parameter pack.
137  void setContainsUnexpandedParameterPack(bool PP = true) {
138    ExprBits.ContainsUnexpandedParameterPack = PP;
139  }
140
141  /// getExprLoc - Return the preferred location for the arrow when diagnosing
142  /// a problem with a generic expression.
143  SourceLocation getExprLoc() const;
144
145  /// isUnusedResultAWarning - Return true if this immediate expression should
146  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
147  /// with location to warn on and the source range[s] to report with the
148  /// warning.
149  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
150                              SourceRange &R2, ASTContext &Ctx) const;
151
152  /// isLValue - True if this expression is an "l-value" according to
153  /// the rules of the current language.  C and C++ give somewhat
154  /// different rules for this concept, but in general, the result of
155  /// an l-value expression identifies a specific object whereas the
156  /// result of an r-value expression is a value detached from any
157  /// specific storage.
158  ///
159  /// C++0x divides the concept of "r-value" into pure r-values
160  /// ("pr-values") and so-called expiring values ("x-values"), which
161  /// identify specific objects that can be safely cannibalized for
162  /// their resources.  This is an unfortunate abuse of terminology on
163  /// the part of the C++ committee.  In Clang, when we say "r-value",
164  /// we generally mean a pr-value.
165  bool isLValue() const { return getValueKind() == VK_LValue; }
166  bool isRValue() const { return getValueKind() == VK_RValue; }
167  bool isXValue() const { return getValueKind() == VK_XValue; }
168  bool isGLValue() const { return getValueKind() != VK_RValue; }
169
170  enum LValueClassification {
171    LV_Valid,
172    LV_NotObjectType,
173    LV_IncompleteVoidType,
174    LV_DuplicateVectorComponents,
175    LV_InvalidExpression,
176    LV_InvalidMessageExpression,
177    LV_MemberFunction,
178    LV_SubObjCPropertySetting,
179    LV_ClassTemporary
180  };
181  /// Reasons why an expression might not be an l-value.
182  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
183
184  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
185  /// does not have an incomplete type, does not have a const-qualified type,
186  /// and if it is a structure or union, does not have any member (including,
187  /// recursively, any member or element of all contained aggregates or unions)
188  /// with a const-qualified type.
189  ///
190  /// \param Loc [in] [out] - A source location which *may* be filled
191  /// in with the location of the expression making this a
192  /// non-modifiable lvalue, if specified.
193  enum isModifiableLvalueResult {
194    MLV_Valid,
195    MLV_NotObjectType,
196    MLV_IncompleteVoidType,
197    MLV_DuplicateVectorComponents,
198    MLV_InvalidExpression,
199    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
200    MLV_IncompleteType,
201    MLV_ConstQualified,
202    MLV_ArrayType,
203    MLV_NotBlockQualified,
204    MLV_ReadonlyProperty,
205    MLV_NoSetterProperty,
206    MLV_MemberFunction,
207    MLV_SubObjCPropertySetting,
208    MLV_InvalidMessageExpression,
209    MLV_ClassTemporary
210  };
211  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
212                                              SourceLocation *Loc = 0) const;
213
214  /// \brief The return type of classify(). Represents the C++0x expression
215  ///        taxonomy.
216  class Classification {
217  public:
218    /// \brief The various classification results. Most of these mean prvalue.
219    enum Kinds {
220      CL_LValue,
221      CL_XValue,
222      CL_Function, // Functions cannot be lvalues in C.
223      CL_Void, // Void cannot be an lvalue in C.
224      CL_AddressableVoid, // Void expression whose address can be taken in C.
225      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
226      CL_MemberFunction, // An expression referring to a member function
227      CL_SubObjCPropertySetting,
228      CL_ClassTemporary, // A prvalue of class type
229      CL_ObjCMessageRValue, // ObjC message is an rvalue
230      CL_PRValue // A prvalue for any other reason, of any other type
231    };
232    /// \brief The results of modification testing.
233    enum ModifiableType {
234      CM_Untested, // testModifiable was false.
235      CM_Modifiable,
236      CM_RValue, // Not modifiable because it's an rvalue
237      CM_Function, // Not modifiable because it's a function; C++ only
238      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
239      CM_NotBlockQualified, // Not captured in the closure
240      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
241      CM_ConstQualified,
242      CM_ArrayType,
243      CM_IncompleteType
244    };
245
246  private:
247    friend class Expr;
248
249    unsigned short Kind;
250    unsigned short Modifiable;
251
252    explicit Classification(Kinds k, ModifiableType m)
253      : Kind(k), Modifiable(m)
254    {}
255
256  public:
257    Classification() {}
258
259    Kinds getKind() const { return static_cast<Kinds>(Kind); }
260    ModifiableType getModifiable() const {
261      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
262      return static_cast<ModifiableType>(Modifiable);
263    }
264    bool isLValue() const { return Kind == CL_LValue; }
265    bool isXValue() const { return Kind == CL_XValue; }
266    bool isGLValue() const { return Kind <= CL_XValue; }
267    bool isPRValue() const { return Kind >= CL_Function; }
268    bool isRValue() const { return Kind >= CL_XValue; }
269    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
270
271    /// \brief Create a simple, modifiably lvalue
272    static Classification makeSimpleLValue() {
273      return Classification(CL_LValue, CM_Modifiable);
274    }
275
276  };
277  /// \brief Classify - Classify this expression according to the C++0x
278  ///        expression taxonomy.
279  ///
280  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
281  /// old lvalue vs rvalue. This function determines the type of expression this
282  /// is. There are three expression types:
283  /// - lvalues are classical lvalues as in C++03.
284  /// - prvalues are equivalent to rvalues in C++03.
285  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
286  ///   function returning an rvalue reference.
287  /// lvalues and xvalues are collectively referred to as glvalues, while
288  /// prvalues and xvalues together form rvalues.
289  Classification Classify(ASTContext &Ctx) const {
290    return ClassifyImpl(Ctx, 0);
291  }
292
293  /// \brief ClassifyModifiable - Classify this expression according to the
294  ///        C++0x expression taxonomy, and see if it is valid on the left side
295  ///        of an assignment.
296  ///
297  /// This function extends classify in that it also tests whether the
298  /// expression is modifiable (C99 6.3.2.1p1).
299  /// \param Loc A source location that might be filled with a relevant location
300  ///            if the expression is not modifiable.
301  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
302    return ClassifyImpl(Ctx, &Loc);
303  }
304
305  /// getValueKindForType - Given a formal return or parameter type,
306  /// give its value kind.
307  static ExprValueKind getValueKindForType(QualType T) {
308    if (const ReferenceType *RT = T->getAs<ReferenceType>())
309      return (isa<LValueReferenceType>(RT)
310                ? VK_LValue
311                : (RT->getPointeeType()->isFunctionType()
312                     ? VK_LValue : VK_XValue));
313    return VK_RValue;
314  }
315
316  /// getValueKind - The value kind that this expression produces.
317  ExprValueKind getValueKind() const {
318    return static_cast<ExprValueKind>(ExprBits.ValueKind);
319  }
320
321  /// getObjectKind - The object kind that this expression produces.
322  /// Object kinds are meaningful only for expressions that yield an
323  /// l-value or x-value.
324  ExprObjectKind getObjectKind() const {
325    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
326  }
327
328  bool isOrdinaryOrBitFieldObject() const {
329    ExprObjectKind OK = getObjectKind();
330    return (OK == OK_Ordinary || OK == OK_BitField);
331  }
332
333  /// setValueKind - Set the value kind produced by this expression.
334  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
335
336  /// setObjectKind - Set the object kind produced by this expression.
337  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
338
339private:
340  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
341
342public:
343
344  /// \brief If this expression refers to a bit-field, retrieve the
345  /// declaration of that bit-field.
346  FieldDecl *getBitField();
347
348  const FieldDecl *getBitField() const {
349    return const_cast<Expr*>(this)->getBitField();
350  }
351
352  /// \brief If this expression is an l-value for an Objective C
353  /// property, find the underlying property reference expression.
354  const ObjCPropertyRefExpr *getObjCProperty() const;
355
356  /// \brief Returns whether this expression refers to a vector element.
357  bool refersToVectorElement() const;
358
359  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
360  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
361  /// but also int expressions which are produced by things like comparisons in
362  /// C.
363  bool isKnownToHaveBooleanValue() const;
364
365  /// isIntegerConstantExpr - Return true if this expression is a valid integer
366  /// constant expression, and, if so, return its value in Result.  If not a
367  /// valid i-c-e, return false and fill in Loc (if specified) with the location
368  /// of the invalid expression.
369  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
370                             SourceLocation *Loc = 0,
371                             bool isEvaluated = true) const;
372  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
373    llvm::APSInt X;
374    return isIntegerConstantExpr(X, Ctx, Loc);
375  }
376  /// isConstantInitializer - Returns true if this expression is a constant
377  /// initializer, which can be emitted at compile-time.
378  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
379
380  /// EvalResult is a struct with detailed info about an evaluated expression.
381  struct EvalResult {
382    /// Val - This is the value the expression can be folded to.
383    APValue Val;
384
385    /// HasSideEffects - Whether the evaluated expression has side effects.
386    /// For example, (f() && 0) can be folded, but it still has side effects.
387    bool HasSideEffects;
388
389    /// Diag - If the expression is unfoldable, then Diag contains a note
390    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
391    /// position for the error, and DiagExpr is the expression that caused
392    /// the error.
393    /// If the expression is foldable, but not an integer constant expression,
394    /// Diag contains a note diagnostic that describes why it isn't an integer
395    /// constant expression. If the expression *is* an integer constant
396    /// expression, then Diag will be zero.
397    unsigned Diag;
398    const Expr *DiagExpr;
399    SourceLocation DiagLoc;
400
401    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
402
403    // isGlobalLValue - Return true if the evaluated lvalue expression
404    // is global.
405    bool isGlobalLValue() const;
406    // hasSideEffects - Return true if the evaluated expression has
407    // side effects.
408    bool hasSideEffects() const {
409      return HasSideEffects;
410    }
411  };
412
413  /// Evaluate - Return true if this is a constant which we can fold using
414  /// any crazy technique (that has nothing to do with language standards) that
415  /// we want to.  If this function returns true, it returns the folded constant
416  /// in Result.
417  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
418
419  /// EvaluateAsBooleanCondition - Return true if this is a constant
420  /// which we we can fold and convert to a boolean condition using
421  /// any crazy technique that we want to.
422  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
423
424  /// isEvaluatable - Call Evaluate to see if this expression can be constant
425  /// folded, but discard the result.
426  bool isEvaluatable(const ASTContext &Ctx) const;
427
428  /// HasSideEffects - This routine returns true for all those expressions
429  /// which must be evaluated each time and must not be optimized away
430  /// or evaluated at compile time. Example is a function call, volatile
431  /// variable read.
432  bool HasSideEffects(const ASTContext &Ctx) const;
433
434  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
435  /// must be called on an expression that constant folds to an integer.
436  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
437
438  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
439  /// with link time known address.
440  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
441
442  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
443  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
444
445  /// \brief Enumeration used to describe the kind of Null pointer constant
446  /// returned from \c isNullPointerConstant().
447  enum NullPointerConstantKind {
448    /// \brief Expression is not a Null pointer constant.
449    NPCK_NotNull = 0,
450
451    /// \brief Expression is a Null pointer constant built from a zero integer.
452    NPCK_ZeroInteger,
453
454    /// \brief Expression is a C++0X nullptr.
455    NPCK_CXX0X_nullptr,
456
457    /// \brief Expression is a GNU-style __null constant.
458    NPCK_GNUNull
459  };
460
461  /// \brief Enumeration used to describe how \c isNullPointerConstant()
462  /// should cope with value-dependent expressions.
463  enum NullPointerConstantValueDependence {
464    /// \brief Specifies that the expression should never be value-dependent.
465    NPC_NeverValueDependent = 0,
466
467    /// \brief Specifies that a value-dependent expression of integral or
468    /// dependent type should be considered a null pointer constant.
469    NPC_ValueDependentIsNull,
470
471    /// \brief Specifies that a value-dependent expression should be considered
472    /// to never be a null pointer constant.
473    NPC_ValueDependentIsNotNull
474  };
475
476  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
477  /// a Null pointer constant. The return value can further distinguish the
478  /// kind of NULL pointer constant that was detected.
479  NullPointerConstantKind isNullPointerConstant(
480      ASTContext &Ctx,
481      NullPointerConstantValueDependence NPC) const;
482
483  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
484  /// write barrier.
485  bool isOBJCGCCandidate(ASTContext &Ctx) const;
486
487  /// \brief Returns true if this expression is a bound member function.
488  bool isBoundMemberFunction(ASTContext &Ctx) const;
489
490  /// \brief Result type of CanThrow().
491  enum CanThrowResult {
492    CT_Cannot,
493    CT_Dependent,
494    CT_Can
495  };
496  /// \brief Test if this expression, if evaluated, might throw, according to
497  ///        the rules of C++ [expr.unary.noexcept].
498  CanThrowResult CanThrow(ASTContext &C) const;
499
500  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
501  ///  its subexpression.  If that subexpression is also a ParenExpr,
502  ///  then this method recursively returns its subexpression, and so forth.
503  ///  Otherwise, the method returns the current Expr.
504  Expr *IgnoreParens();
505
506  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
507  /// or CastExprs, returning their operand.
508  Expr *IgnoreParenCasts();
509
510  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
511  /// ParenExpr or ImplicitCastExprs, returning their operand.
512  Expr *IgnoreParenImpCasts();
513
514  const Expr *IgnoreParenImpCasts() const {
515    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
516  }
517
518  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
519  /// CastExprs that represent lvalue casts, returning their operand.
520  Expr *IgnoreParenLValueCasts();
521
522  const Expr *IgnoreParenLValueCasts() const {
523    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
524  }
525
526  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
527  /// value (including ptr->int casts of the same size).  Strip off any
528  /// ParenExpr or CastExprs, returning their operand.
529  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
530
531  /// \brief Determine whether this expression is a default function argument.
532  ///
533  /// Default arguments are implicitly generated in the abstract syntax tree
534  /// by semantic analysis for function calls, object constructions, etc. in
535  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
536  /// this routine also looks through any implicit casts to determine whether
537  /// the expression is a default argument.
538  bool isDefaultArgument() const;
539
540  /// \brief Determine whether the result of this expression is a
541  /// temporary object of the given class type.
542  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
543
544  /// \brief Whether this expression is an implicit reference to 'this' in C++.
545  bool isImplicitCXXThis() const;
546
547  const Expr *IgnoreParens() const {
548    return const_cast<Expr*>(this)->IgnoreParens();
549  }
550  const Expr *IgnoreParenCasts() const {
551    return const_cast<Expr*>(this)->IgnoreParenCasts();
552  }
553  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
554    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
555  }
556
557  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
558  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
559
560  static bool classof(const Stmt *T) {
561    return T->getStmtClass() >= firstExprConstant &&
562           T->getStmtClass() <= lastExprConstant;
563  }
564  static bool classof(const Expr *) { return true; }
565};
566
567
568//===----------------------------------------------------------------------===//
569// Primary Expressions.
570//===----------------------------------------------------------------------===//
571
572/// OpaqueValueExpr - An expression referring to an opaque object of a
573/// fixed type and value class.  These don't correspond to concrete
574/// syntax; instead they're used to express operations (usually copy
575/// operations) on values whose source is generally obvious from
576/// context.
577class OpaqueValueExpr : public Expr {
578  friend class ASTStmtReader;
579  Expr *SourceExpr;
580  SourceLocation Loc;
581
582public:
583  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
584                  ExprObjectKind OK = OK_Ordinary)
585    : Expr(OpaqueValueExprClass, T, VK, OK,
586           T->isDependentType(), T->isDependentType(), false),
587      SourceExpr(0), Loc(Loc) {
588  }
589
590  /// Given an expression which invokes a copy constructor --- i.e.  a
591  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
592  /// find the OpaqueValueExpr that's the source of the construction.
593  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
594
595  explicit OpaqueValueExpr(EmptyShell Empty)
596    : Expr(OpaqueValueExprClass, Empty) { }
597
598  /// \brief Retrieve the location of this expression.
599  SourceLocation getLocation() const { return Loc; }
600
601  SourceRange getSourceRange() const {
602    if (SourceExpr) return SourceExpr->getSourceRange();
603    return Loc;
604  }
605  SourceLocation getExprLoc() const {
606    if (SourceExpr) return SourceExpr->getExprLoc();
607    return Loc;
608  }
609
610  child_range children() { return child_range(); }
611
612  /// The source expression of an opaque value expression is the
613  /// expression which originally generated the value.  This is
614  /// provided as a convenience for analyses that don't wish to
615  /// precisely model the execution behavior of the program.
616  ///
617  /// The source expression is typically set when building the
618  /// expression which binds the opaque value expression in the first
619  /// place.
620  Expr *getSourceExpr() const { return SourceExpr; }
621  void setSourceExpr(Expr *e) { SourceExpr = e; }
622
623  static bool classof(const Stmt *T) {
624    return T->getStmtClass() == OpaqueValueExprClass;
625  }
626  static bool classof(const OpaqueValueExpr *) { return true; }
627};
628
629/// \brief Represents the qualifier that may precede a C++ name, e.g., the
630/// "std::" in "std::sort".
631struct NameQualifier {
632  /// \brief The nested-name-specifier that qualifies the name, including
633  /// source-location information.
634  NestedNameSpecifierLoc QualifierLoc;
635};
636
637/// \brief Represents an explicit template argument list in C++, e.g.,
638/// the "<int>" in "sort<int>".
639struct ExplicitTemplateArgumentList {
640  /// \brief The source location of the left angle bracket ('<');
641  SourceLocation LAngleLoc;
642
643  /// \brief The source location of the right angle bracket ('>');
644  SourceLocation RAngleLoc;
645
646  /// \brief The number of template arguments in TemplateArgs.
647  /// The actual template arguments (if any) are stored after the
648  /// ExplicitTemplateArgumentList structure.
649  unsigned NumTemplateArgs;
650
651  /// \brief Retrieve the template arguments
652  TemplateArgumentLoc *getTemplateArgs() {
653    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
654  }
655
656  /// \brief Retrieve the template arguments
657  const TemplateArgumentLoc *getTemplateArgs() const {
658    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
659  }
660
661  void initializeFrom(const TemplateArgumentListInfo &List);
662  void initializeFrom(const TemplateArgumentListInfo &List,
663                      bool &Dependent, bool &ContainsUnexpandedParameterPack);
664  void copyInto(TemplateArgumentListInfo &List) const;
665  static std::size_t sizeFor(unsigned NumTemplateArgs);
666  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
667};
668
669/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
670/// enum, etc.
671class DeclRefExpr : public Expr {
672  enum {
673    // Flag on DecoratedD that specifies when this declaration reference
674    // expression has a C++ nested-name-specifier.
675    HasQualifierFlag = 0x01,
676    // Flag on DecoratedD that specifies when this declaration reference
677    // expression has an explicit C++ template argument list.
678    HasExplicitTemplateArgumentListFlag = 0x02
679  };
680
681  // DecoratedD - The declaration that we are referencing, plus two bits to
682  // indicate whether (1) the declaration's name was explicitly qualified and
683  // (2) the declaration's name was followed by an explicit template
684  // argument list.
685  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
686
687  // Loc - The location of the declaration name itself.
688  SourceLocation Loc;
689
690  /// DNLoc - Provides source/type location info for the
691  /// declaration name embedded in DecoratedD.
692  DeclarationNameLoc DNLoc;
693
694  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
695  NameQualifier *getNameQualifier() {
696    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
697      return 0;
698
699    return reinterpret_cast<NameQualifier *> (this + 1);
700  }
701
702  /// \brief Retrieve the qualifier that preceded the member name, if any.
703  const NameQualifier *getNameQualifier() const {
704    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
705  }
706
707  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
708              ValueDecl *D, SourceLocation NameLoc,
709              const TemplateArgumentListInfo *TemplateArgs,
710              QualType T, ExprValueKind VK);
711
712  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
713              ValueDecl *D, const DeclarationNameInfo &NameInfo,
714              const TemplateArgumentListInfo *TemplateArgs,
715              QualType T, ExprValueKind VK);
716
717  /// \brief Construct an empty declaration reference expression.
718  explicit DeclRefExpr(EmptyShell Empty)
719    : Expr(DeclRefExprClass, Empty) { }
720
721  /// \brief Computes the type- and value-dependence flags for this
722  /// declaration reference expression.
723  void computeDependence();
724
725public:
726  DeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK, SourceLocation l) :
727    Expr(DeclRefExprClass, t, VK, OK_Ordinary, false, false, false),
728    DecoratedD(d, 0), Loc(l) {
729    computeDependence();
730  }
731
732  static DeclRefExpr *Create(ASTContext &Context,
733                             NestedNameSpecifierLoc QualifierLoc,
734                             ValueDecl *D,
735                             SourceLocation NameLoc,
736                             QualType T, ExprValueKind VK,
737                             const TemplateArgumentListInfo *TemplateArgs = 0);
738
739  static DeclRefExpr *Create(ASTContext &Context,
740                             NestedNameSpecifierLoc QualifierLoc,
741                             ValueDecl *D,
742                             const DeclarationNameInfo &NameInfo,
743                             QualType T, ExprValueKind VK,
744                             const TemplateArgumentListInfo *TemplateArgs = 0);
745
746  /// \brief Construct an empty declaration reference expression.
747  static DeclRefExpr *CreateEmpty(ASTContext &Context,
748                                  bool HasQualifier,
749                                  bool HasExplicitTemplateArgs,
750                                  unsigned NumTemplateArgs);
751
752  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
753  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
754  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
755
756  DeclarationNameInfo getNameInfo() const {
757    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
758  }
759
760  SourceLocation getLocation() const { return Loc; }
761  void setLocation(SourceLocation L) { Loc = L; }
762  SourceRange getSourceRange() const;
763
764  /// \brief Determine whether this declaration reference was preceded by a
765  /// C++ nested-name-specifier, e.g., \c N::foo.
766  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
767
768  /// \brief If the name was qualified, retrieves the nested-name-specifier
769  /// that precedes the name. Otherwise, returns NULL.
770  NestedNameSpecifier *getQualifier() const {
771    if (!hasQualifier())
772      return 0;
773
774    return getNameQualifier()->QualifierLoc.getNestedNameSpecifier();
775  }
776
777  /// \brief If the name was qualified, retrieves the nested-name-specifier
778  /// that precedes the name, with source-location information.
779  NestedNameSpecifierLoc getQualifierLoc() const {
780    if (!hasQualifier())
781      return NestedNameSpecifierLoc();
782
783    return getNameQualifier()->QualifierLoc;
784  }
785
786  bool hasExplicitTemplateArgs() const {
787    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
788  }
789
790  /// \brief Retrieve the explicit template argument list that followed the
791  /// member template name.
792  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
793    assert(hasExplicitTemplateArgs());
794
795    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
796      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
797
798    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
799                                                      getNameQualifier() + 1);
800  }
801
802  /// \brief Retrieve the explicit template argument list that followed the
803  /// member template name.
804  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
805    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
806  }
807
808  /// \brief Retrieves the optional explicit template arguments.
809  /// This points to the same data as getExplicitTemplateArgs(), but
810  /// returns null if there are no explicit template arguments.
811  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
812    if (!hasExplicitTemplateArgs()) return 0;
813    return &getExplicitTemplateArgs();
814  }
815
816  /// \brief Copies the template arguments (if present) into the given
817  /// structure.
818  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
819    if (hasExplicitTemplateArgs())
820      getExplicitTemplateArgs().copyInto(List);
821  }
822
823  /// \brief Retrieve the location of the left angle bracket following the
824  /// member name ('<'), if any.
825  SourceLocation getLAngleLoc() const {
826    if (!hasExplicitTemplateArgs())
827      return SourceLocation();
828
829    return getExplicitTemplateArgs().LAngleLoc;
830  }
831
832  /// \brief Retrieve the template arguments provided as part of this
833  /// template-id.
834  const TemplateArgumentLoc *getTemplateArgs() const {
835    if (!hasExplicitTemplateArgs())
836      return 0;
837
838    return getExplicitTemplateArgs().getTemplateArgs();
839  }
840
841  /// \brief Retrieve the number of template arguments provided as part of this
842  /// template-id.
843  unsigned getNumTemplateArgs() const {
844    if (!hasExplicitTemplateArgs())
845      return 0;
846
847    return getExplicitTemplateArgs().NumTemplateArgs;
848  }
849
850  /// \brief Retrieve the location of the right angle bracket following the
851  /// template arguments ('>').
852  SourceLocation getRAngleLoc() const {
853    if (!hasExplicitTemplateArgs())
854      return SourceLocation();
855
856    return getExplicitTemplateArgs().RAngleLoc;
857  }
858
859  static bool classof(const Stmt *T) {
860    return T->getStmtClass() == DeclRefExprClass;
861  }
862  static bool classof(const DeclRefExpr *) { return true; }
863
864  // Iterators
865  child_range children() { return child_range(); }
866
867  friend class ASTStmtReader;
868  friend class ASTStmtWriter;
869};
870
871/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
872class PredefinedExpr : public Expr {
873public:
874  enum IdentType {
875    Func,
876    Function,
877    PrettyFunction,
878    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
879    /// 'virtual' keyword is omitted for virtual member functions.
880    PrettyFunctionNoVirtual
881  };
882
883private:
884  SourceLocation Loc;
885  IdentType Type;
886public:
887  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
888    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
889           type->isDependentType(), type->isDependentType(),
890           /*ContainsUnexpandedParameterPack=*/false),
891      Loc(l), Type(IT) {}
892
893  /// \brief Construct an empty predefined expression.
894  explicit PredefinedExpr(EmptyShell Empty)
895    : Expr(PredefinedExprClass, Empty) { }
896
897  IdentType getIdentType() const { return Type; }
898  void setIdentType(IdentType IT) { Type = IT; }
899
900  SourceLocation getLocation() const { return Loc; }
901  void setLocation(SourceLocation L) { Loc = L; }
902
903  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
904
905  SourceRange getSourceRange() const { return SourceRange(Loc); }
906
907  static bool classof(const Stmt *T) {
908    return T->getStmtClass() == PredefinedExprClass;
909  }
910  static bool classof(const PredefinedExpr *) { return true; }
911
912  // Iterators
913  child_range children() { return child_range(); }
914};
915
916/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
917/// leaking memory.
918///
919/// For large floats/integers, APFloat/APInt will allocate memory from the heap
920/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
921/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
922/// the APFloat/APInt values will never get freed. APNumericStorage uses
923/// ASTContext's allocator for memory allocation.
924class APNumericStorage {
925  unsigned BitWidth;
926  union {
927    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
928    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
929  };
930
931  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
932
933  APNumericStorage(const APNumericStorage&); // do not implement
934  APNumericStorage& operator=(const APNumericStorage&); // do not implement
935
936protected:
937  APNumericStorage() : BitWidth(0), VAL(0) { }
938
939  llvm::APInt getIntValue() const {
940    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
941    if (NumWords > 1)
942      return llvm::APInt(BitWidth, NumWords, pVal);
943    else
944      return llvm::APInt(BitWidth, VAL);
945  }
946  void setIntValue(ASTContext &C, const llvm::APInt &Val);
947};
948
949class APIntStorage : public APNumericStorage {
950public:
951  llvm::APInt getValue() const { return getIntValue(); }
952  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
953};
954
955class APFloatStorage : public APNumericStorage {
956public:
957  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
958  void setValue(ASTContext &C, const llvm::APFloat &Val) {
959    setIntValue(C, Val.bitcastToAPInt());
960  }
961};
962
963class IntegerLiteral : public Expr {
964  APIntStorage Num;
965  SourceLocation Loc;
966
967  /// \brief Construct an empty integer literal.
968  explicit IntegerLiteral(EmptyShell Empty)
969    : Expr(IntegerLiteralClass, Empty) { }
970
971public:
972  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
973  // or UnsignedLongLongTy
974  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
975                 QualType type, SourceLocation l)
976    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
977           false),
978      Loc(l) {
979    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
980    setValue(C, V);
981  }
982
983  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
984  // or UnsignedLongLongTy
985  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
986                                QualType type, SourceLocation l);
987  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
988
989  llvm::APInt getValue() const { return Num.getValue(); }
990  SourceRange getSourceRange() const { return SourceRange(Loc); }
991
992  /// \brief Retrieve the location of the literal.
993  SourceLocation getLocation() const { return Loc; }
994
995  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
996  void setLocation(SourceLocation Location) { Loc = Location; }
997
998  static bool classof(const Stmt *T) {
999    return T->getStmtClass() == IntegerLiteralClass;
1000  }
1001  static bool classof(const IntegerLiteral *) { return true; }
1002
1003  // Iterators
1004  child_range children() { return child_range(); }
1005};
1006
1007class CharacterLiteral : public Expr {
1008  unsigned Value;
1009  SourceLocation Loc;
1010  bool IsWide;
1011public:
1012  // type should be IntTy
1013  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
1014    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1015           false),
1016      Value(value), Loc(l), IsWide(iswide) {
1017  }
1018
1019  /// \brief Construct an empty character literal.
1020  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1021
1022  SourceLocation getLocation() const { return Loc; }
1023  bool isWide() const { return IsWide; }
1024
1025  SourceRange getSourceRange() const { return SourceRange(Loc); }
1026
1027  unsigned getValue() const { return Value; }
1028
1029  void setLocation(SourceLocation Location) { Loc = Location; }
1030  void setWide(bool W) { IsWide = W; }
1031  void setValue(unsigned Val) { Value = Val; }
1032
1033  static bool classof(const Stmt *T) {
1034    return T->getStmtClass() == CharacterLiteralClass;
1035  }
1036  static bool classof(const CharacterLiteral *) { return true; }
1037
1038  // Iterators
1039  child_range children() { return child_range(); }
1040};
1041
1042class FloatingLiteral : public Expr {
1043  APFloatStorage Num;
1044  bool IsExact : 1;
1045  SourceLocation Loc;
1046
1047  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1048                  QualType Type, SourceLocation L)
1049    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1050           false),
1051      IsExact(isexact), Loc(L) {
1052    setValue(C, V);
1053  }
1054
1055  /// \brief Construct an empty floating-point literal.
1056  explicit FloatingLiteral(EmptyShell Empty)
1057    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1058
1059public:
1060  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1061                                 bool isexact, QualType Type, SourceLocation L);
1062  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1063
1064  llvm::APFloat getValue() const { return Num.getValue(); }
1065  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1066    Num.setValue(C, Val);
1067  }
1068
1069  bool isExact() const { return IsExact; }
1070  void setExact(bool E) { IsExact = E; }
1071
1072  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1073  /// double.  Note that this may cause loss of precision, but is useful for
1074  /// debugging dumps, etc.
1075  double getValueAsApproximateDouble() const;
1076
1077  SourceLocation getLocation() const { return Loc; }
1078  void setLocation(SourceLocation L) { Loc = L; }
1079
1080  SourceRange getSourceRange() const { return SourceRange(Loc); }
1081
1082  static bool classof(const Stmt *T) {
1083    return T->getStmtClass() == FloatingLiteralClass;
1084  }
1085  static bool classof(const FloatingLiteral *) { return true; }
1086
1087  // Iterators
1088  child_range children() { return child_range(); }
1089};
1090
1091/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1092/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1093/// IntegerLiteral classes.  Instances of this class always have a Complex type
1094/// whose element type matches the subexpression.
1095///
1096class ImaginaryLiteral : public Expr {
1097  Stmt *Val;
1098public:
1099  ImaginaryLiteral(Expr *val, QualType Ty)
1100    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1101           false),
1102      Val(val) {}
1103
1104  /// \brief Build an empty imaginary literal.
1105  explicit ImaginaryLiteral(EmptyShell Empty)
1106    : Expr(ImaginaryLiteralClass, Empty) { }
1107
1108  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1109  Expr *getSubExpr() { return cast<Expr>(Val); }
1110  void setSubExpr(Expr *E) { Val = E; }
1111
1112  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1113  static bool classof(const Stmt *T) {
1114    return T->getStmtClass() == ImaginaryLiteralClass;
1115  }
1116  static bool classof(const ImaginaryLiteral *) { return true; }
1117
1118  // Iterators
1119  child_range children() { return child_range(&Val, &Val+1); }
1120};
1121
1122/// StringLiteral - This represents a string literal expression, e.g. "foo"
1123/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1124/// is NOT null-terminated, and the length of the string is determined by
1125/// calling getByteLength().  The C type for a string is always a
1126/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1127/// not.
1128///
1129/// Note that strings in C can be formed by concatenation of multiple string
1130/// literal pptokens in translation phase #6.  This keeps track of the locations
1131/// of each of these pieces.
1132///
1133/// Strings in C can also be truncated and extended by assigning into arrays,
1134/// e.g. with constructs like:
1135///   char X[2] = "foobar";
1136/// In this case, getByteLength() will return 6, but the string literal will
1137/// have type "char[2]".
1138class StringLiteral : public Expr {
1139  friend class ASTStmtReader;
1140
1141  const char *StrData;
1142  unsigned ByteLength;
1143  bool IsWide;
1144  bool IsPascal;
1145  unsigned NumConcatenated;
1146  SourceLocation TokLocs[1];
1147
1148  StringLiteral(QualType Ty) :
1149    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false) {}
1150
1151public:
1152  /// This is the "fully general" constructor that allows representation of
1153  /// strings formed from multiple concatenated tokens.
1154  static StringLiteral *Create(ASTContext &C, const char *StrData,
1155                               unsigned ByteLength, bool Wide, bool Pascal,
1156                               QualType Ty,
1157                               const SourceLocation *Loc, unsigned NumStrs);
1158
1159  /// Simple constructor for string literals made from one token.
1160  static StringLiteral *Create(ASTContext &C, const char *StrData,
1161                               unsigned ByteLength, bool Wide,
1162                               bool Pascal, QualType Ty, SourceLocation Loc) {
1163    return Create(C, StrData, ByteLength, Wide, Pascal, Ty, &Loc, 1);
1164  }
1165
1166  /// \brief Construct an empty string literal.
1167  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1168
1169  llvm::StringRef getString() const {
1170    return llvm::StringRef(StrData, ByteLength);
1171  }
1172
1173  unsigned getByteLength() const { return ByteLength; }
1174
1175  /// \brief Sets the string data to the given string data.
1176  void setString(ASTContext &C, llvm::StringRef Str);
1177
1178  bool isWide() const { return IsWide; }
1179  bool isPascal() const { return IsPascal; }
1180
1181  bool containsNonAsciiOrNull() const {
1182    llvm::StringRef Str = getString();
1183    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1184      if (!isascii(Str[i]) || !Str[i])
1185        return true;
1186    return false;
1187  }
1188  /// getNumConcatenated - Get the number of string literal tokens that were
1189  /// concatenated in translation phase #6 to form this string literal.
1190  unsigned getNumConcatenated() const { return NumConcatenated; }
1191
1192  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1193    assert(TokNum < NumConcatenated && "Invalid tok number");
1194    return TokLocs[TokNum];
1195  }
1196  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1197    assert(TokNum < NumConcatenated && "Invalid tok number");
1198    TokLocs[TokNum] = L;
1199  }
1200
1201  /// getLocationOfByte - Return a source location that points to the specified
1202  /// byte of this string literal.
1203  ///
1204  /// Strings are amazingly complex.  They can be formed from multiple tokens
1205  /// and can have escape sequences in them in addition to the usual trigraph
1206  /// and escaped newline business.  This routine handles this complexity.
1207  ///
1208  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1209                                   const LangOptions &Features,
1210                                   const TargetInfo &Target) const;
1211
1212  typedef const SourceLocation *tokloc_iterator;
1213  tokloc_iterator tokloc_begin() const { return TokLocs; }
1214  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1215
1216  SourceRange getSourceRange() const {
1217    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1218  }
1219  static bool classof(const Stmt *T) {
1220    return T->getStmtClass() == StringLiteralClass;
1221  }
1222  static bool classof(const StringLiteral *) { return true; }
1223
1224  // Iterators
1225  child_range children() { return child_range(); }
1226};
1227
1228/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1229/// AST node is only formed if full location information is requested.
1230class ParenExpr : public Expr {
1231  SourceLocation L, R;
1232  Stmt *Val;
1233public:
1234  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1235    : Expr(ParenExprClass, val->getType(),
1236           val->getValueKind(), val->getObjectKind(),
1237           val->isTypeDependent(), val->isValueDependent(),
1238           val->containsUnexpandedParameterPack()),
1239      L(l), R(r), Val(val) {}
1240
1241  /// \brief Construct an empty parenthesized expression.
1242  explicit ParenExpr(EmptyShell Empty)
1243    : Expr(ParenExprClass, Empty) { }
1244
1245  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1246  Expr *getSubExpr() { return cast<Expr>(Val); }
1247  void setSubExpr(Expr *E) { Val = E; }
1248
1249  SourceRange getSourceRange() const { return SourceRange(L, R); }
1250
1251  /// \brief Get the location of the left parentheses '('.
1252  SourceLocation getLParen() const { return L; }
1253  void setLParen(SourceLocation Loc) { L = Loc; }
1254
1255  /// \brief Get the location of the right parentheses ')'.
1256  SourceLocation getRParen() const { return R; }
1257  void setRParen(SourceLocation Loc) { R = Loc; }
1258
1259  static bool classof(const Stmt *T) {
1260    return T->getStmtClass() == ParenExprClass;
1261  }
1262  static bool classof(const ParenExpr *) { return true; }
1263
1264  // Iterators
1265  child_range children() { return child_range(&Val, &Val+1); }
1266};
1267
1268
1269/// UnaryOperator - This represents the unary-expression's (except sizeof and
1270/// alignof), the postinc/postdec operators from postfix-expression, and various
1271/// extensions.
1272///
1273/// Notes on various nodes:
1274///
1275/// Real/Imag - These return the real/imag part of a complex operand.  If
1276///   applied to a non-complex value, the former returns its operand and the
1277///   later returns zero in the type of the operand.
1278///
1279class UnaryOperator : public Expr {
1280public:
1281  typedef UnaryOperatorKind Opcode;
1282
1283private:
1284  unsigned Opc : 5;
1285  SourceLocation Loc;
1286  Stmt *Val;
1287public:
1288
1289  UnaryOperator(Expr *input, Opcode opc, QualType type,
1290                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1291    : Expr(UnaryOperatorClass, type, VK, OK,
1292           input->isTypeDependent() || type->isDependentType(),
1293           input->isValueDependent(),
1294           input->containsUnexpandedParameterPack()),
1295      Opc(opc), Loc(l), Val(input) {}
1296
1297  /// \brief Build an empty unary operator.
1298  explicit UnaryOperator(EmptyShell Empty)
1299    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1300
1301  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1302  void setOpcode(Opcode O) { Opc = O; }
1303
1304  Expr *getSubExpr() const { return cast<Expr>(Val); }
1305  void setSubExpr(Expr *E) { Val = E; }
1306
1307  /// getOperatorLoc - Return the location of the operator.
1308  SourceLocation getOperatorLoc() const { return Loc; }
1309  void setOperatorLoc(SourceLocation L) { Loc = L; }
1310
1311  /// isPostfix - Return true if this is a postfix operation, like x++.
1312  static bool isPostfix(Opcode Op) {
1313    return Op == UO_PostInc || Op == UO_PostDec;
1314  }
1315
1316  /// isPrefix - Return true if this is a prefix operation, like --x.
1317  static bool isPrefix(Opcode Op) {
1318    return Op == UO_PreInc || Op == UO_PreDec;
1319  }
1320
1321  bool isPrefix() const { return isPrefix(getOpcode()); }
1322  bool isPostfix() const { return isPostfix(getOpcode()); }
1323  bool isIncrementOp() const {
1324    return Opc == UO_PreInc || Opc == UO_PostInc;
1325  }
1326  bool isIncrementDecrementOp() const {
1327    return Opc <= UO_PreDec;
1328  }
1329  static bool isArithmeticOp(Opcode Op) {
1330    return Op >= UO_Plus && Op <= UO_LNot;
1331  }
1332  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1333
1334  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1335  /// corresponds to, e.g. "sizeof" or "[pre]++"
1336  static const char *getOpcodeStr(Opcode Op);
1337
1338  /// \brief Retrieve the unary opcode that corresponds to the given
1339  /// overloaded operator.
1340  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1341
1342  /// \brief Retrieve the overloaded operator kind that corresponds to
1343  /// the given unary opcode.
1344  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1345
1346  SourceRange getSourceRange() const {
1347    if (isPostfix())
1348      return SourceRange(Val->getLocStart(), Loc);
1349    else
1350      return SourceRange(Loc, Val->getLocEnd());
1351  }
1352  SourceLocation getExprLoc() const { return Loc; }
1353
1354  static bool classof(const Stmt *T) {
1355    return T->getStmtClass() == UnaryOperatorClass;
1356  }
1357  static bool classof(const UnaryOperator *) { return true; }
1358
1359  // Iterators
1360  child_range children() { return child_range(&Val, &Val+1); }
1361};
1362
1363/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1364/// offsetof(record-type, member-designator). For example, given:
1365/// @code
1366/// struct S {
1367///   float f;
1368///   double d;
1369/// };
1370/// struct T {
1371///   int i;
1372///   struct S s[10];
1373/// };
1374/// @endcode
1375/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1376
1377class OffsetOfExpr : public Expr {
1378public:
1379  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1380  class OffsetOfNode {
1381  public:
1382    /// \brief The kind of offsetof node we have.
1383    enum Kind {
1384      /// \brief An index into an array.
1385      Array = 0x00,
1386      /// \brief A field.
1387      Field = 0x01,
1388      /// \brief A field in a dependent type, known only by its name.
1389      Identifier = 0x02,
1390      /// \brief An implicit indirection through a C++ base class, when the
1391      /// field found is in a base class.
1392      Base = 0x03
1393    };
1394
1395  private:
1396    enum { MaskBits = 2, Mask = 0x03 };
1397
1398    /// \brief The source range that covers this part of the designator.
1399    SourceRange Range;
1400
1401    /// \brief The data describing the designator, which comes in three
1402    /// different forms, depending on the lower two bits.
1403    ///   - An unsigned index into the array of Expr*'s stored after this node
1404    ///     in memory, for [constant-expression] designators.
1405    ///   - A FieldDecl*, for references to a known field.
1406    ///   - An IdentifierInfo*, for references to a field with a given name
1407    ///     when the class type is dependent.
1408    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1409    ///     base class.
1410    uintptr_t Data;
1411
1412  public:
1413    /// \brief Create an offsetof node that refers to an array element.
1414    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1415                 SourceLocation RBracketLoc)
1416      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1417
1418    /// \brief Create an offsetof node that refers to a field.
1419    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1420                 SourceLocation NameLoc)
1421      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1422        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1423
1424    /// \brief Create an offsetof node that refers to an identifier.
1425    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1426                 SourceLocation NameLoc)
1427      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1428        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1429
1430    /// \brief Create an offsetof node that refers into a C++ base class.
1431    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1432      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1433
1434    /// \brief Determine what kind of offsetof node this is.
1435    Kind getKind() const {
1436      return static_cast<Kind>(Data & Mask);
1437    }
1438
1439    /// \brief For an array element node, returns the index into the array
1440    /// of expressions.
1441    unsigned getArrayExprIndex() const {
1442      assert(getKind() == Array);
1443      return Data >> 2;
1444    }
1445
1446    /// \brief For a field offsetof node, returns the field.
1447    FieldDecl *getField() const {
1448      assert(getKind() == Field);
1449      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1450    }
1451
1452    /// \brief For a field or identifier offsetof node, returns the name of
1453    /// the field.
1454    IdentifierInfo *getFieldName() const;
1455
1456    /// \brief For a base class node, returns the base specifier.
1457    CXXBaseSpecifier *getBase() const {
1458      assert(getKind() == Base);
1459      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1460    }
1461
1462    /// \brief Retrieve the source range that covers this offsetof node.
1463    ///
1464    /// For an array element node, the source range contains the locations of
1465    /// the square brackets. For a field or identifier node, the source range
1466    /// contains the location of the period (if there is one) and the
1467    /// identifier.
1468    SourceRange getSourceRange() const { return Range; }
1469  };
1470
1471private:
1472
1473  SourceLocation OperatorLoc, RParenLoc;
1474  // Base type;
1475  TypeSourceInfo *TSInfo;
1476  // Number of sub-components (i.e. instances of OffsetOfNode).
1477  unsigned NumComps;
1478  // Number of sub-expressions (i.e. array subscript expressions).
1479  unsigned NumExprs;
1480
1481  OffsetOfExpr(ASTContext &C, QualType type,
1482               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1483               OffsetOfNode* compsPtr, unsigned numComps,
1484               Expr** exprsPtr, unsigned numExprs,
1485               SourceLocation RParenLoc);
1486
1487  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1488    : Expr(OffsetOfExprClass, EmptyShell()),
1489      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1490
1491public:
1492
1493  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1494                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1495                              OffsetOfNode* compsPtr, unsigned numComps,
1496                              Expr** exprsPtr, unsigned numExprs,
1497                              SourceLocation RParenLoc);
1498
1499  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1500                                   unsigned NumComps, unsigned NumExprs);
1501
1502  /// getOperatorLoc - Return the location of the operator.
1503  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1504  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1505
1506  /// \brief Return the location of the right parentheses.
1507  SourceLocation getRParenLoc() const { return RParenLoc; }
1508  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1509
1510  TypeSourceInfo *getTypeSourceInfo() const {
1511    return TSInfo;
1512  }
1513  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1514    TSInfo = tsi;
1515  }
1516
1517  const OffsetOfNode &getComponent(unsigned Idx) {
1518    assert(Idx < NumComps && "Subscript out of range");
1519    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1520  }
1521
1522  void setComponent(unsigned Idx, OffsetOfNode ON) {
1523    assert(Idx < NumComps && "Subscript out of range");
1524    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1525  }
1526
1527  unsigned getNumComponents() const {
1528    return NumComps;
1529  }
1530
1531  Expr* getIndexExpr(unsigned Idx) {
1532    assert(Idx < NumExprs && "Subscript out of range");
1533    return reinterpret_cast<Expr **>(
1534                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1535  }
1536
1537  void setIndexExpr(unsigned Idx, Expr* E) {
1538    assert(Idx < NumComps && "Subscript out of range");
1539    reinterpret_cast<Expr **>(
1540                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1541  }
1542
1543  unsigned getNumExpressions() const {
1544    return NumExprs;
1545  }
1546
1547  SourceRange getSourceRange() const {
1548    return SourceRange(OperatorLoc, RParenLoc);
1549  }
1550
1551  static bool classof(const Stmt *T) {
1552    return T->getStmtClass() == OffsetOfExprClass;
1553  }
1554
1555  static bool classof(const OffsetOfExpr *) { return true; }
1556
1557  // Iterators
1558  child_range children() {
1559    Stmt **begin =
1560      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1561                               + NumComps);
1562    return child_range(begin, begin + NumExprs);
1563  }
1564};
1565
1566/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1567/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1568/// vec_step (OpenCL 1.1 6.11.12).
1569class UnaryExprOrTypeTraitExpr : public Expr {
1570  unsigned Kind : 2;
1571  bool isType : 1;    // true if operand is a type, false if an expression
1572  union {
1573    TypeSourceInfo *Ty;
1574    Stmt *Ex;
1575  } Argument;
1576  SourceLocation OpLoc, RParenLoc;
1577
1578public:
1579  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1580                           QualType resultType, SourceLocation op,
1581                           SourceLocation rp) :
1582      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1583           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1584           // Value-dependent if the argument is type-dependent.
1585           TInfo->getType()->isDependentType(),
1586           TInfo->getType()->containsUnexpandedParameterPack()),
1587      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1588    Argument.Ty = TInfo;
1589  }
1590
1591  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1592                           QualType resultType, SourceLocation op,
1593                           SourceLocation rp) :
1594      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1595           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1596           // Value-dependent if the argument is type-dependent.
1597           E->isTypeDependent(),
1598           E->containsUnexpandedParameterPack()),
1599      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1600    Argument.Ex = E;
1601  }
1602
1603  /// \brief Construct an empty sizeof/alignof expression.
1604  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1605    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1606
1607  UnaryExprOrTypeTrait getKind() const {
1608    return static_cast<UnaryExprOrTypeTrait>(Kind);
1609  }
1610  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1611
1612  bool isArgumentType() const { return isType; }
1613  QualType getArgumentType() const {
1614    return getArgumentTypeInfo()->getType();
1615  }
1616  TypeSourceInfo *getArgumentTypeInfo() const {
1617    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1618    return Argument.Ty;
1619  }
1620  Expr *getArgumentExpr() {
1621    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1622    return static_cast<Expr*>(Argument.Ex);
1623  }
1624  const Expr *getArgumentExpr() const {
1625    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1626  }
1627
1628  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1629  void setArgument(TypeSourceInfo *TInfo) {
1630    Argument.Ty = TInfo;
1631    isType = true;
1632  }
1633
1634  /// Gets the argument type, or the type of the argument expression, whichever
1635  /// is appropriate.
1636  QualType getTypeOfArgument() const {
1637    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1638  }
1639
1640  SourceLocation getOperatorLoc() const { return OpLoc; }
1641  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1642
1643  SourceLocation getRParenLoc() const { return RParenLoc; }
1644  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1645
1646  SourceRange getSourceRange() const {
1647    return SourceRange(OpLoc, RParenLoc);
1648  }
1649
1650  static bool classof(const Stmt *T) {
1651    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1652  }
1653  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1654
1655  // Iterators
1656  child_range children();
1657};
1658
1659//===----------------------------------------------------------------------===//
1660// Postfix Operators.
1661//===----------------------------------------------------------------------===//
1662
1663/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1664class ArraySubscriptExpr : public Expr {
1665  enum { LHS, RHS, END_EXPR=2 };
1666  Stmt* SubExprs[END_EXPR];
1667  SourceLocation RBracketLoc;
1668public:
1669  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1670                     ExprValueKind VK, ExprObjectKind OK,
1671                     SourceLocation rbracketloc)
1672  : Expr(ArraySubscriptExprClass, t, VK, OK,
1673         lhs->isTypeDependent() || rhs->isTypeDependent(),
1674         lhs->isValueDependent() || rhs->isValueDependent(),
1675         (lhs->containsUnexpandedParameterPack() ||
1676          rhs->containsUnexpandedParameterPack())),
1677    RBracketLoc(rbracketloc) {
1678    SubExprs[LHS] = lhs;
1679    SubExprs[RHS] = rhs;
1680  }
1681
1682  /// \brief Create an empty array subscript expression.
1683  explicit ArraySubscriptExpr(EmptyShell Shell)
1684    : Expr(ArraySubscriptExprClass, Shell) { }
1685
1686  /// An array access can be written A[4] or 4[A] (both are equivalent).
1687  /// - getBase() and getIdx() always present the normalized view: A[4].
1688  ///    In this case getBase() returns "A" and getIdx() returns "4".
1689  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1690  ///    4[A] getLHS() returns "4".
1691  /// Note: Because vector element access is also written A[4] we must
1692  /// predicate the format conversion in getBase and getIdx only on the
1693  /// the type of the RHS, as it is possible for the LHS to be a vector of
1694  /// integer type
1695  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1696  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1697  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1698
1699  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1700  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1701  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1702
1703  Expr *getBase() {
1704    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1705  }
1706
1707  const Expr *getBase() const {
1708    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1709  }
1710
1711  Expr *getIdx() {
1712    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1713  }
1714
1715  const Expr *getIdx() const {
1716    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1717  }
1718
1719  SourceRange getSourceRange() const {
1720    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1721  }
1722
1723  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1724  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1725
1726  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1727
1728  static bool classof(const Stmt *T) {
1729    return T->getStmtClass() == ArraySubscriptExprClass;
1730  }
1731  static bool classof(const ArraySubscriptExpr *) { return true; }
1732
1733  // Iterators
1734  child_range children() {
1735    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1736  }
1737};
1738
1739
1740/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1741/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1742/// while its subclasses may represent alternative syntax that (semantically)
1743/// results in a function call. For example, CXXOperatorCallExpr is
1744/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1745/// "str1 + str2" to resolve to a function call.
1746class CallExpr : public Expr {
1747  enum { FN=0, PREARGS_START=1 };
1748  Stmt **SubExprs;
1749  unsigned NumArgs;
1750  SourceLocation RParenLoc;
1751
1752protected:
1753  // These versions of the constructor are for derived classes.
1754  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1755           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1756           SourceLocation rparenloc);
1757  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1758
1759  Stmt *getPreArg(unsigned i) {
1760    assert(i < getNumPreArgs() && "Prearg access out of range!");
1761    return SubExprs[PREARGS_START+i];
1762  }
1763  const Stmt *getPreArg(unsigned i) const {
1764    assert(i < getNumPreArgs() && "Prearg access out of range!");
1765    return SubExprs[PREARGS_START+i];
1766  }
1767  void setPreArg(unsigned i, Stmt *PreArg) {
1768    assert(i < getNumPreArgs() && "Prearg access out of range!");
1769    SubExprs[PREARGS_START+i] = PreArg;
1770  }
1771
1772  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1773
1774public:
1775  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1776           ExprValueKind VK, SourceLocation rparenloc);
1777
1778  /// \brief Build an empty call expression.
1779  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1780
1781  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1782  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1783  void setCallee(Expr *F) { SubExprs[FN] = F; }
1784
1785  Decl *getCalleeDecl();
1786  const Decl *getCalleeDecl() const {
1787    return const_cast<CallExpr*>(this)->getCalleeDecl();
1788  }
1789
1790  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1791  FunctionDecl *getDirectCallee();
1792  const FunctionDecl *getDirectCallee() const {
1793    return const_cast<CallExpr*>(this)->getDirectCallee();
1794  }
1795
1796  /// getNumArgs - Return the number of actual arguments to this call.
1797  ///
1798  unsigned getNumArgs() const { return NumArgs; }
1799
1800  /// \brief Retrieve the call arguments.
1801  Expr **getArgs() {
1802    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1803  }
1804
1805  /// getArg - Return the specified argument.
1806  Expr *getArg(unsigned Arg) {
1807    assert(Arg < NumArgs && "Arg access out of range!");
1808    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1809  }
1810  const Expr *getArg(unsigned Arg) const {
1811    assert(Arg < NumArgs && "Arg access out of range!");
1812    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1813  }
1814
1815  /// setArg - Set the specified argument.
1816  void setArg(unsigned Arg, Expr *ArgExpr) {
1817    assert(Arg < NumArgs && "Arg access out of range!");
1818    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1819  }
1820
1821  /// setNumArgs - This changes the number of arguments present in this call.
1822  /// Any orphaned expressions are deleted by this, and any new operands are set
1823  /// to null.
1824  void setNumArgs(ASTContext& C, unsigned NumArgs);
1825
1826  typedef ExprIterator arg_iterator;
1827  typedef ConstExprIterator const_arg_iterator;
1828
1829  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1830  arg_iterator arg_end() {
1831    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1832  }
1833  const_arg_iterator arg_begin() const {
1834    return SubExprs+PREARGS_START+getNumPreArgs();
1835  }
1836  const_arg_iterator arg_end() const {
1837    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1838  }
1839
1840  /// getNumCommas - Return the number of commas that must have been present in
1841  /// this function call.
1842  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1843
1844  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1845  /// not, return 0.
1846  unsigned isBuiltinCall(const ASTContext &Context) const;
1847
1848  /// getCallReturnType - Get the return type of the call expr. This is not
1849  /// always the type of the expr itself, if the return type is a reference
1850  /// type.
1851  QualType getCallReturnType() const;
1852
1853  SourceLocation getRParenLoc() const { return RParenLoc; }
1854  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1855
1856  SourceRange getSourceRange() const;
1857
1858  static bool classof(const Stmt *T) {
1859    return T->getStmtClass() >= firstCallExprConstant &&
1860           T->getStmtClass() <= lastCallExprConstant;
1861  }
1862  static bool classof(const CallExpr *) { return true; }
1863
1864  // Iterators
1865  child_range children() {
1866    return child_range(&SubExprs[0],
1867                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
1868  }
1869};
1870
1871/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1872///
1873class MemberExpr : public Expr {
1874  /// Extra data stored in some member expressions.
1875  struct MemberNameQualifier : public NameQualifier {
1876    DeclAccessPair FoundDecl;
1877  };
1878
1879  /// Base - the expression for the base pointer or structure references.  In
1880  /// X.F, this is "X".
1881  Stmt *Base;
1882
1883  /// MemberDecl - This is the decl being referenced by the field/member name.
1884  /// In X.F, this is the decl referenced by F.
1885  ValueDecl *MemberDecl;
1886
1887  /// MemberLoc - This is the location of the member name.
1888  SourceLocation MemberLoc;
1889
1890  /// MemberDNLoc - Provides source/type location info for the
1891  /// declaration name embedded in MemberDecl.
1892  DeclarationNameLoc MemberDNLoc;
1893
1894  /// IsArrow - True if this is "X->F", false if this is "X.F".
1895  bool IsArrow : 1;
1896
1897  /// \brief True if this member expression used a nested-name-specifier to
1898  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1899  /// declaration.  When true, a MemberNameQualifier
1900  /// structure is allocated immediately after the MemberExpr.
1901  bool HasQualifierOrFoundDecl : 1;
1902
1903  /// \brief True if this member expression specified a template argument list
1904  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1905  /// structure (and its TemplateArguments) are allocated immediately after
1906  /// the MemberExpr or, if the member expression also has a qualifier, after
1907  /// the MemberNameQualifier structure.
1908  bool HasExplicitTemplateArgumentList : 1;
1909
1910  /// \brief Retrieve the qualifier that preceded the member name, if any.
1911  MemberNameQualifier *getMemberQualifier() {
1912    assert(HasQualifierOrFoundDecl);
1913    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1914  }
1915
1916  /// \brief Retrieve the qualifier that preceded the member name, if any.
1917  const MemberNameQualifier *getMemberQualifier() const {
1918    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1919  }
1920
1921public:
1922  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1923             const DeclarationNameInfo &NameInfo, QualType ty,
1924             ExprValueKind VK, ExprObjectKind OK)
1925    : Expr(MemberExprClass, ty, VK, OK,
1926           base->isTypeDependent(), base->isValueDependent(),
1927           base->containsUnexpandedParameterPack()),
1928      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1929      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1930      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1931    assert(memberdecl->getDeclName() == NameInfo.getName());
1932  }
1933
1934  // NOTE: this constructor should be used only when it is known that
1935  // the member name can not provide additional syntactic info
1936  // (i.e., source locations for C++ operator names or type source info
1937  // for constructors, destructors and conversion oeprators).
1938  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1939             SourceLocation l, QualType ty,
1940             ExprValueKind VK, ExprObjectKind OK)
1941    : Expr(MemberExprClass, ty, VK, OK,
1942           base->isTypeDependent(), base->isValueDependent(),
1943           base->containsUnexpandedParameterPack()),
1944      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1945      IsArrow(isarrow),
1946      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1947
1948  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1949                            NestedNameSpecifierLoc QualifierLoc,
1950                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1951                            DeclarationNameInfo MemberNameInfo,
1952                            const TemplateArgumentListInfo *targs,
1953                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1954
1955  void setBase(Expr *E) { Base = E; }
1956  Expr *getBase() const { return cast<Expr>(Base); }
1957
1958  /// \brief Retrieve the member declaration to which this expression refers.
1959  ///
1960  /// The returned declaration will either be a FieldDecl or (in C++)
1961  /// a CXXMethodDecl.
1962  ValueDecl *getMemberDecl() const { return MemberDecl; }
1963  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1964
1965  /// \brief Retrieves the declaration found by lookup.
1966  DeclAccessPair getFoundDecl() const {
1967    if (!HasQualifierOrFoundDecl)
1968      return DeclAccessPair::make(getMemberDecl(),
1969                                  getMemberDecl()->getAccess());
1970    return getMemberQualifier()->FoundDecl;
1971  }
1972
1973  /// \brief Determines whether this member expression actually had
1974  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1975  /// x->Base::foo.
1976  bool hasQualifier() const { return getQualifier() != 0; }
1977
1978  /// \brief If the member name was qualified, retrieves the
1979  /// nested-name-specifier that precedes the member name. Otherwise, returns
1980  /// NULL.
1981  NestedNameSpecifier *getQualifier() const {
1982    if (!HasQualifierOrFoundDecl)
1983      return 0;
1984
1985    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
1986  }
1987
1988  /// \brief If the member name was qualified, retrieves the
1989  /// nested-name-specifier that precedes the member name, with source-location
1990  /// information.
1991  NestedNameSpecifierLoc getQualifierLoc() const {
1992    if (!hasQualifier())
1993      return NestedNameSpecifierLoc();
1994
1995    return getMemberQualifier()->QualifierLoc;
1996  }
1997
1998  /// \brief Determines whether this member expression actually had a C++
1999  /// template argument list explicitly specified, e.g., x.f<int>.
2000  bool hasExplicitTemplateArgs() const {
2001    return HasExplicitTemplateArgumentList;
2002  }
2003
2004  /// \brief Copies the template arguments (if present) into the given
2005  /// structure.
2006  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2007    if (hasExplicitTemplateArgs())
2008      getExplicitTemplateArgs().copyInto(List);
2009  }
2010
2011  /// \brief Retrieve the explicit template argument list that
2012  /// follow the member template name.  This must only be called on an
2013  /// expression with explicit template arguments.
2014  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2015    assert(HasExplicitTemplateArgumentList);
2016    if (!HasQualifierOrFoundDecl)
2017      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2018
2019    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
2020                                                      getMemberQualifier() + 1);
2021  }
2022
2023  /// \brief Retrieve the explicit template argument list that
2024  /// followed the member template name.  This must only be called on
2025  /// an expression with explicit template arguments.
2026  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2027    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2028  }
2029
2030  /// \brief Retrieves the optional explicit template arguments.
2031  /// This points to the same data as getExplicitTemplateArgs(), but
2032  /// returns null if there are no explicit template arguments.
2033  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
2034    if (!hasExplicitTemplateArgs()) return 0;
2035    return &getExplicitTemplateArgs();
2036  }
2037
2038  /// \brief Retrieve the location of the left angle bracket following the
2039  /// member name ('<'), if any.
2040  SourceLocation getLAngleLoc() const {
2041    if (!HasExplicitTemplateArgumentList)
2042      return SourceLocation();
2043
2044    return getExplicitTemplateArgs().LAngleLoc;
2045  }
2046
2047  /// \brief Retrieve the template arguments provided as part of this
2048  /// template-id.
2049  const TemplateArgumentLoc *getTemplateArgs() const {
2050    if (!HasExplicitTemplateArgumentList)
2051      return 0;
2052
2053    return getExplicitTemplateArgs().getTemplateArgs();
2054  }
2055
2056  /// \brief Retrieve the number of template arguments provided as part of this
2057  /// template-id.
2058  unsigned getNumTemplateArgs() const {
2059    if (!HasExplicitTemplateArgumentList)
2060      return 0;
2061
2062    return getExplicitTemplateArgs().NumTemplateArgs;
2063  }
2064
2065  /// \brief Retrieve the location of the right angle bracket following the
2066  /// template arguments ('>').
2067  SourceLocation getRAngleLoc() const {
2068    if (!HasExplicitTemplateArgumentList)
2069      return SourceLocation();
2070
2071    return getExplicitTemplateArgs().RAngleLoc;
2072  }
2073
2074  /// \brief Retrieve the member declaration name info.
2075  DeclarationNameInfo getMemberNameInfo() const {
2076    return DeclarationNameInfo(MemberDecl->getDeclName(),
2077                               MemberLoc, MemberDNLoc);
2078  }
2079
2080  bool isArrow() const { return IsArrow; }
2081  void setArrow(bool A) { IsArrow = A; }
2082
2083  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2084  /// location of 'F'.
2085  SourceLocation getMemberLoc() const { return MemberLoc; }
2086  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2087
2088  SourceRange getSourceRange() const;
2089
2090  SourceLocation getExprLoc() const { return MemberLoc; }
2091
2092  /// \brief Determine whether the base of this explicit is implicit.
2093  bool isImplicitAccess() const {
2094    return getBase() && getBase()->isImplicitCXXThis();
2095  }
2096
2097  static bool classof(const Stmt *T) {
2098    return T->getStmtClass() == MemberExprClass;
2099  }
2100  static bool classof(const MemberExpr *) { return true; }
2101
2102  // Iterators
2103  child_range children() { return child_range(&Base, &Base+1); }
2104
2105  friend class ASTReader;
2106  friend class ASTStmtWriter;
2107};
2108
2109/// CompoundLiteralExpr - [C99 6.5.2.5]
2110///
2111class CompoundLiteralExpr : public Expr {
2112  /// LParenLoc - If non-null, this is the location of the left paren in a
2113  /// compound literal like "(int){4}".  This can be null if this is a
2114  /// synthesized compound expression.
2115  SourceLocation LParenLoc;
2116
2117  /// The type as written.  This can be an incomplete array type, in
2118  /// which case the actual expression type will be different.
2119  TypeSourceInfo *TInfo;
2120  Stmt *Init;
2121  bool FileScope;
2122public:
2123  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2124                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2125    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2126           tinfo->getType()->isDependentType(),
2127           init->isValueDependent(),
2128           init->containsUnexpandedParameterPack()),
2129      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2130
2131  /// \brief Construct an empty compound literal.
2132  explicit CompoundLiteralExpr(EmptyShell Empty)
2133    : Expr(CompoundLiteralExprClass, Empty) { }
2134
2135  const Expr *getInitializer() const { return cast<Expr>(Init); }
2136  Expr *getInitializer() { return cast<Expr>(Init); }
2137  void setInitializer(Expr *E) { Init = E; }
2138
2139  bool isFileScope() const { return FileScope; }
2140  void setFileScope(bool FS) { FileScope = FS; }
2141
2142  SourceLocation getLParenLoc() const { return LParenLoc; }
2143  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2144
2145  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2146  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2147
2148  SourceRange getSourceRange() const {
2149    // FIXME: Init should never be null.
2150    if (!Init)
2151      return SourceRange();
2152    if (LParenLoc.isInvalid())
2153      return Init->getSourceRange();
2154    return SourceRange(LParenLoc, Init->getLocEnd());
2155  }
2156
2157  static bool classof(const Stmt *T) {
2158    return T->getStmtClass() == CompoundLiteralExprClass;
2159  }
2160  static bool classof(const CompoundLiteralExpr *) { return true; }
2161
2162  // Iterators
2163  child_range children() { return child_range(&Init, &Init+1); }
2164};
2165
2166/// CastExpr - Base class for type casts, including both implicit
2167/// casts (ImplicitCastExpr) and explicit casts that have some
2168/// representation in the source code (ExplicitCastExpr's derived
2169/// classes).
2170class CastExpr : public Expr {
2171public:
2172  typedef clang::CastKind CastKind;
2173
2174private:
2175  Stmt *Op;
2176
2177  void CheckCastConsistency() const {
2178#ifndef NDEBUG
2179    switch (getCastKind()) {
2180    case CK_DerivedToBase:
2181    case CK_UncheckedDerivedToBase:
2182    case CK_DerivedToBaseMemberPointer:
2183    case CK_BaseToDerived:
2184    case CK_BaseToDerivedMemberPointer:
2185      assert(!path_empty() && "Cast kind should have a base path!");
2186      break;
2187
2188    // These should not have an inheritance path.
2189    case CK_BitCast:
2190    case CK_Dynamic:
2191    case CK_ToUnion:
2192    case CK_ArrayToPointerDecay:
2193    case CK_FunctionToPointerDecay:
2194    case CK_NullToMemberPointer:
2195    case CK_NullToPointer:
2196    case CK_ConstructorConversion:
2197    case CK_IntegralToPointer:
2198    case CK_PointerToIntegral:
2199    case CK_ToVoid:
2200    case CK_VectorSplat:
2201    case CK_IntegralCast:
2202    case CK_IntegralToFloating:
2203    case CK_FloatingToIntegral:
2204    case CK_FloatingCast:
2205    case CK_AnyPointerToObjCPointerCast:
2206    case CK_AnyPointerToBlockPointerCast:
2207    case CK_ObjCObjectLValueCast:
2208    case CK_FloatingRealToComplex:
2209    case CK_FloatingComplexToReal:
2210    case CK_FloatingComplexCast:
2211    case CK_FloatingComplexToIntegralComplex:
2212    case CK_IntegralRealToComplex:
2213    case CK_IntegralComplexToReal:
2214    case CK_IntegralComplexCast:
2215    case CK_IntegralComplexToFloatingComplex:
2216      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2217      // fallthrough to check for null base path
2218
2219    case CK_Dependent:
2220    case CK_LValueToRValue:
2221    case CK_GetObjCProperty:
2222    case CK_NoOp:
2223    case CK_PointerToBoolean:
2224    case CK_IntegralToBoolean:
2225    case CK_FloatingToBoolean:
2226    case CK_MemberPointerToBoolean:
2227    case CK_FloatingComplexToBoolean:
2228    case CK_IntegralComplexToBoolean:
2229    case CK_LValueBitCast:            // -> bool&
2230    case CK_UserDefinedConversion:    // operator bool()
2231      assert(path_empty() && "Cast kind should not have a base path!");
2232      break;
2233    }
2234#endif
2235  }
2236
2237  const CXXBaseSpecifier * const *path_buffer() const {
2238    return const_cast<CastExpr*>(this)->path_buffer();
2239  }
2240  CXXBaseSpecifier **path_buffer();
2241
2242protected:
2243  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2244           const CastKind kind, Expr *op, unsigned BasePathSize) :
2245    Expr(SC, ty, VK, OK_Ordinary,
2246         // Cast expressions are type-dependent if the type is
2247         // dependent (C++ [temp.dep.expr]p3).
2248         ty->isDependentType(),
2249         // Cast expressions are value-dependent if the type is
2250         // dependent or if the subexpression is value-dependent.
2251         ty->isDependentType() || (op && op->isValueDependent()),
2252         (ty->containsUnexpandedParameterPack() ||
2253          op->containsUnexpandedParameterPack())),
2254    Op(op) {
2255    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2256    CastExprBits.Kind = kind;
2257    CastExprBits.BasePathSize = BasePathSize;
2258    CheckCastConsistency();
2259  }
2260
2261  /// \brief Construct an empty cast.
2262  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2263    : Expr(SC, Empty) {
2264    CastExprBits.BasePathSize = BasePathSize;
2265  }
2266
2267public:
2268  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2269  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2270  const char *getCastKindName() const;
2271
2272  Expr *getSubExpr() { return cast<Expr>(Op); }
2273  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2274  void setSubExpr(Expr *E) { Op = E; }
2275
2276  /// \brief Retrieve the cast subexpression as it was written in the source
2277  /// code, looking through any implicit casts or other intermediate nodes
2278  /// introduced by semantic analysis.
2279  Expr *getSubExprAsWritten();
2280  const Expr *getSubExprAsWritten() const {
2281    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2282  }
2283
2284  typedef CXXBaseSpecifier **path_iterator;
2285  typedef const CXXBaseSpecifier * const *path_const_iterator;
2286  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2287  unsigned path_size() const { return CastExprBits.BasePathSize; }
2288  path_iterator path_begin() { return path_buffer(); }
2289  path_iterator path_end() { return path_buffer() + path_size(); }
2290  path_const_iterator path_begin() const { return path_buffer(); }
2291  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2292
2293  void setCastPath(const CXXCastPath &Path);
2294
2295  static bool classof(const Stmt *T) {
2296    return T->getStmtClass() >= firstCastExprConstant &&
2297           T->getStmtClass() <= lastCastExprConstant;
2298  }
2299  static bool classof(const CastExpr *) { return true; }
2300
2301  // Iterators
2302  child_range children() { return child_range(&Op, &Op+1); }
2303};
2304
2305/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2306/// conversions, which have no direct representation in the original
2307/// source code. For example: converting T[]->T*, void f()->void
2308/// (*f)(), float->double, short->int, etc.
2309///
2310/// In C, implicit casts always produce rvalues. However, in C++, an
2311/// implicit cast whose result is being bound to a reference will be
2312/// an lvalue or xvalue. For example:
2313///
2314/// @code
2315/// class Base { };
2316/// class Derived : public Base { };
2317/// Derived &&ref();
2318/// void f(Derived d) {
2319///   Base& b = d; // initializer is an ImplicitCastExpr
2320///                // to an lvalue of type Base
2321///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2322///                     // to an xvalue of type Base
2323/// }
2324/// @endcode
2325class ImplicitCastExpr : public CastExpr {
2326private:
2327  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2328                   unsigned BasePathLength, ExprValueKind VK)
2329    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2330  }
2331
2332  /// \brief Construct an empty implicit cast.
2333  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2334    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2335
2336public:
2337  enum OnStack_t { OnStack };
2338  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2339                   ExprValueKind VK)
2340    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2341  }
2342
2343  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2344                                  CastKind Kind, Expr *Operand,
2345                                  const CXXCastPath *BasePath,
2346                                  ExprValueKind Cat);
2347
2348  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2349
2350  SourceRange getSourceRange() const {
2351    return getSubExpr()->getSourceRange();
2352  }
2353
2354  static bool classof(const Stmt *T) {
2355    return T->getStmtClass() == ImplicitCastExprClass;
2356  }
2357  static bool classof(const ImplicitCastExpr *) { return true; }
2358};
2359
2360/// ExplicitCastExpr - An explicit cast written in the source
2361/// code.
2362///
2363/// This class is effectively an abstract class, because it provides
2364/// the basic representation of an explicitly-written cast without
2365/// specifying which kind of cast (C cast, functional cast, static
2366/// cast, etc.) was written; specific derived classes represent the
2367/// particular style of cast and its location information.
2368///
2369/// Unlike implicit casts, explicit cast nodes have two different
2370/// types: the type that was written into the source code, and the
2371/// actual type of the expression as determined by semantic
2372/// analysis. These types may differ slightly. For example, in C++ one
2373/// can cast to a reference type, which indicates that the resulting
2374/// expression will be an lvalue or xvalue. The reference type, however,
2375/// will not be used as the type of the expression.
2376class ExplicitCastExpr : public CastExpr {
2377  /// TInfo - Source type info for the (written) type
2378  /// this expression is casting to.
2379  TypeSourceInfo *TInfo;
2380
2381protected:
2382  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2383                   CastKind kind, Expr *op, unsigned PathSize,
2384                   TypeSourceInfo *writtenTy)
2385    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2386
2387  /// \brief Construct an empty explicit cast.
2388  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2389    : CastExpr(SC, Shell, PathSize) { }
2390
2391public:
2392  /// getTypeInfoAsWritten - Returns the type source info for the type
2393  /// that this expression is casting to.
2394  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2395  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2396
2397  /// getTypeAsWritten - Returns the type that this expression is
2398  /// casting to, as written in the source code.
2399  QualType getTypeAsWritten() const { return TInfo->getType(); }
2400
2401  static bool classof(const Stmt *T) {
2402     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2403            T->getStmtClass() <= lastExplicitCastExprConstant;
2404  }
2405  static bool classof(const ExplicitCastExpr *) { return true; }
2406};
2407
2408/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2409/// cast in C++ (C++ [expr.cast]), which uses the syntax
2410/// (Type)expr. For example: @c (int)f.
2411class CStyleCastExpr : public ExplicitCastExpr {
2412  SourceLocation LPLoc; // the location of the left paren
2413  SourceLocation RPLoc; // the location of the right paren
2414
2415  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2416                 unsigned PathSize, TypeSourceInfo *writtenTy,
2417                 SourceLocation l, SourceLocation r)
2418    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2419                       writtenTy), LPLoc(l), RPLoc(r) {}
2420
2421  /// \brief Construct an empty C-style explicit cast.
2422  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2423    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2424
2425public:
2426  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2427                                ExprValueKind VK, CastKind K,
2428                                Expr *Op, const CXXCastPath *BasePath,
2429                                TypeSourceInfo *WrittenTy, SourceLocation L,
2430                                SourceLocation R);
2431
2432  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2433
2434  SourceLocation getLParenLoc() const { return LPLoc; }
2435  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2436
2437  SourceLocation getRParenLoc() const { return RPLoc; }
2438  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2439
2440  SourceRange getSourceRange() const {
2441    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2442  }
2443  static bool classof(const Stmt *T) {
2444    return T->getStmtClass() == CStyleCastExprClass;
2445  }
2446  static bool classof(const CStyleCastExpr *) { return true; }
2447};
2448
2449/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2450///
2451/// This expression node kind describes a builtin binary operation,
2452/// such as "x + y" for integer values "x" and "y". The operands will
2453/// already have been converted to appropriate types (e.g., by
2454/// performing promotions or conversions).
2455///
2456/// In C++, where operators may be overloaded, a different kind of
2457/// expression node (CXXOperatorCallExpr) is used to express the
2458/// invocation of an overloaded operator with operator syntax. Within
2459/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2460/// used to store an expression "x + y" depends on the subexpressions
2461/// for x and y. If neither x or y is type-dependent, and the "+"
2462/// operator resolves to a built-in operation, BinaryOperator will be
2463/// used to express the computation (x and y may still be
2464/// value-dependent). If either x or y is type-dependent, or if the
2465/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2466/// be used to express the computation.
2467class BinaryOperator : public Expr {
2468public:
2469  typedef BinaryOperatorKind Opcode;
2470
2471private:
2472  unsigned Opc : 6;
2473  SourceLocation OpLoc;
2474
2475  enum { LHS, RHS, END_EXPR };
2476  Stmt* SubExprs[END_EXPR];
2477public:
2478
2479  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2480                 ExprValueKind VK, ExprObjectKind OK,
2481                 SourceLocation opLoc)
2482    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2483           lhs->isTypeDependent() || rhs->isTypeDependent(),
2484           lhs->isValueDependent() || rhs->isValueDependent(),
2485           (lhs->containsUnexpandedParameterPack() ||
2486            rhs->containsUnexpandedParameterPack())),
2487      Opc(opc), OpLoc(opLoc) {
2488    SubExprs[LHS] = lhs;
2489    SubExprs[RHS] = rhs;
2490    assert(!isCompoundAssignmentOp() &&
2491           "Use ArithAssignBinaryOperator for compound assignments");
2492  }
2493
2494  /// \brief Construct an empty binary operator.
2495  explicit BinaryOperator(EmptyShell Empty)
2496    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2497
2498  SourceLocation getOperatorLoc() const { return OpLoc; }
2499  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2500
2501  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2502  void setOpcode(Opcode O) { Opc = O; }
2503
2504  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2505  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2506  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2507  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2508
2509  SourceRange getSourceRange() const {
2510    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2511  }
2512
2513  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2514  /// corresponds to, e.g. "<<=".
2515  static const char *getOpcodeStr(Opcode Op);
2516
2517  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2518
2519  /// \brief Retrieve the binary opcode that corresponds to the given
2520  /// overloaded operator.
2521  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2522
2523  /// \brief Retrieve the overloaded operator kind that corresponds to
2524  /// the given binary opcode.
2525  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2526
2527  /// predicates to categorize the respective opcodes.
2528  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2529  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2530  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2531  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2532  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2533  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2534
2535  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2536  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2537
2538  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2539  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2540
2541  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2542  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2543
2544  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2545  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2546
2547  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2548  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2549
2550  static bool isAssignmentOp(Opcode Opc) {
2551    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2552  }
2553  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2554
2555  static bool isCompoundAssignmentOp(Opcode Opc) {
2556    return Opc > BO_Assign && Opc <= BO_OrAssign;
2557  }
2558  bool isCompoundAssignmentOp() const {
2559    return isCompoundAssignmentOp(getOpcode());
2560  }
2561
2562  static bool isShiftAssignOp(Opcode Opc) {
2563    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2564  }
2565  bool isShiftAssignOp() const {
2566    return isShiftAssignOp(getOpcode());
2567  }
2568
2569  static bool classof(const Stmt *S) {
2570    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2571           S->getStmtClass() <= lastBinaryOperatorConstant;
2572  }
2573  static bool classof(const BinaryOperator *) { return true; }
2574
2575  // Iterators
2576  child_range children() {
2577    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2578  }
2579
2580protected:
2581  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2582                 ExprValueKind VK, ExprObjectKind OK,
2583                 SourceLocation opLoc, bool dead)
2584    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2585           lhs->isTypeDependent() || rhs->isTypeDependent(),
2586           lhs->isValueDependent() || rhs->isValueDependent(),
2587           (lhs->containsUnexpandedParameterPack() ||
2588            rhs->containsUnexpandedParameterPack())),
2589      Opc(opc), OpLoc(opLoc) {
2590    SubExprs[LHS] = lhs;
2591    SubExprs[RHS] = rhs;
2592  }
2593
2594  BinaryOperator(StmtClass SC, EmptyShell Empty)
2595    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2596};
2597
2598/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2599/// track of the type the operation is performed in.  Due to the semantics of
2600/// these operators, the operands are promoted, the aritmetic performed, an
2601/// implicit conversion back to the result type done, then the assignment takes
2602/// place.  This captures the intermediate type which the computation is done
2603/// in.
2604class CompoundAssignOperator : public BinaryOperator {
2605  QualType ComputationLHSType;
2606  QualType ComputationResultType;
2607public:
2608  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2609                         ExprValueKind VK, ExprObjectKind OK,
2610                         QualType CompLHSType, QualType CompResultType,
2611                         SourceLocation OpLoc)
2612    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2613      ComputationLHSType(CompLHSType),
2614      ComputationResultType(CompResultType) {
2615    assert(isCompoundAssignmentOp() &&
2616           "Only should be used for compound assignments");
2617  }
2618
2619  /// \brief Build an empty compound assignment operator expression.
2620  explicit CompoundAssignOperator(EmptyShell Empty)
2621    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2622
2623  // The two computation types are the type the LHS is converted
2624  // to for the computation and the type of the result; the two are
2625  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2626  QualType getComputationLHSType() const { return ComputationLHSType; }
2627  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2628
2629  QualType getComputationResultType() const { return ComputationResultType; }
2630  void setComputationResultType(QualType T) { ComputationResultType = T; }
2631
2632  static bool classof(const CompoundAssignOperator *) { return true; }
2633  static bool classof(const Stmt *S) {
2634    return S->getStmtClass() == CompoundAssignOperatorClass;
2635  }
2636};
2637
2638/// AbstractConditionalOperator - An abstract base class for
2639/// ConditionalOperator and BinaryConditionalOperator.
2640class AbstractConditionalOperator : public Expr {
2641  SourceLocation QuestionLoc, ColonLoc;
2642  friend class ASTStmtReader;
2643
2644protected:
2645  AbstractConditionalOperator(StmtClass SC, QualType T,
2646                              ExprValueKind VK, ExprObjectKind OK,
2647                              bool TD, bool VD,
2648                              bool ContainsUnexpandedParameterPack,
2649                              SourceLocation qloc,
2650                              SourceLocation cloc)
2651    : Expr(SC, T, VK, OK, TD, VD, ContainsUnexpandedParameterPack),
2652      QuestionLoc(qloc), ColonLoc(cloc) {}
2653
2654  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2655    : Expr(SC, Empty) { }
2656
2657public:
2658  // getCond - Return the expression representing the condition for
2659  //   the ?: operator.
2660  Expr *getCond() const;
2661
2662  // getTrueExpr - Return the subexpression representing the value of
2663  //   the expression if the condition evaluates to true.
2664  Expr *getTrueExpr() const;
2665
2666  // getFalseExpr - Return the subexpression representing the value of
2667  //   the expression if the condition evaluates to false.  This is
2668  //   the same as getRHS.
2669  Expr *getFalseExpr() const;
2670
2671  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2672  SourceLocation getColonLoc() const { return ColonLoc; }
2673
2674  static bool classof(const Stmt *T) {
2675    return T->getStmtClass() == ConditionalOperatorClass ||
2676           T->getStmtClass() == BinaryConditionalOperatorClass;
2677  }
2678  static bool classof(const AbstractConditionalOperator *) { return true; }
2679};
2680
2681/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2682/// middle" extension is a BinaryConditionalOperator.
2683class ConditionalOperator : public AbstractConditionalOperator {
2684  enum { COND, LHS, RHS, END_EXPR };
2685  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2686
2687  friend class ASTStmtReader;
2688public:
2689  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2690                      SourceLocation CLoc, Expr *rhs,
2691                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2692    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2693           // FIXME: the type of the conditional operator doesn't
2694           // depend on the type of the conditional, but the standard
2695           // seems to imply that it could. File a bug!
2696           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2697           (cond->isValueDependent() || lhs->isValueDependent() ||
2698            rhs->isValueDependent()),
2699           (cond->containsUnexpandedParameterPack() ||
2700            lhs->containsUnexpandedParameterPack() ||
2701            rhs->containsUnexpandedParameterPack()),
2702                                  QLoc, CLoc) {
2703    SubExprs[COND] = cond;
2704    SubExprs[LHS] = lhs;
2705    SubExprs[RHS] = rhs;
2706  }
2707
2708  /// \brief Build an empty conditional operator.
2709  explicit ConditionalOperator(EmptyShell Empty)
2710    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2711
2712  // getCond - Return the expression representing the condition for
2713  //   the ?: operator.
2714  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2715
2716  // getTrueExpr - Return the subexpression representing the value of
2717  //   the expression if the condition evaluates to true.
2718  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2719
2720  // getFalseExpr - Return the subexpression representing the value of
2721  //   the expression if the condition evaluates to false.  This is
2722  //   the same as getRHS.
2723  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2724
2725  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2726  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2727
2728  SourceRange getSourceRange() const {
2729    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2730  }
2731  static bool classof(const Stmt *T) {
2732    return T->getStmtClass() == ConditionalOperatorClass;
2733  }
2734  static bool classof(const ConditionalOperator *) { return true; }
2735
2736  // Iterators
2737  child_range children() {
2738    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2739  }
2740};
2741
2742/// BinaryConditionalOperator - The GNU extension to the conditional
2743/// operator which allows the middle operand to be omitted.
2744///
2745/// This is a different expression kind on the assumption that almost
2746/// every client ends up needing to know that these are different.
2747class BinaryConditionalOperator : public AbstractConditionalOperator {
2748  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2749
2750  /// - the common condition/left-hand-side expression, which will be
2751  ///   evaluated as the opaque value
2752  /// - the condition, expressed in terms of the opaque value
2753  /// - the left-hand-side, expressed in terms of the opaque value
2754  /// - the right-hand-side
2755  Stmt *SubExprs[NUM_SUBEXPRS];
2756  OpaqueValueExpr *OpaqueValue;
2757
2758  friend class ASTStmtReader;
2759public:
2760  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2761                            Expr *cond, Expr *lhs, Expr *rhs,
2762                            SourceLocation qloc, SourceLocation cloc,
2763                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2764    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2765           (common->isTypeDependent() || rhs->isTypeDependent()),
2766           (common->isValueDependent() || rhs->isValueDependent()),
2767           (common->containsUnexpandedParameterPack() ||
2768            rhs->containsUnexpandedParameterPack()),
2769                                  qloc, cloc),
2770      OpaqueValue(opaqueValue) {
2771    SubExprs[COMMON] = common;
2772    SubExprs[COND] = cond;
2773    SubExprs[LHS] = lhs;
2774    SubExprs[RHS] = rhs;
2775
2776    OpaqueValue->setSourceExpr(common);
2777  }
2778
2779  /// \brief Build an empty conditional operator.
2780  explicit BinaryConditionalOperator(EmptyShell Empty)
2781    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2782
2783  /// \brief getCommon - Return the common expression, written to the
2784  ///   left of the condition.  The opaque value will be bound to the
2785  ///   result of this expression.
2786  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2787
2788  /// \brief getOpaqueValue - Return the opaque value placeholder.
2789  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2790
2791  /// \brief getCond - Return the condition expression; this is defined
2792  ///   in terms of the opaque value.
2793  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2794
2795  /// \brief getTrueExpr - Return the subexpression which will be
2796  ///   evaluated if the condition evaluates to true;  this is defined
2797  ///   in terms of the opaque value.
2798  Expr *getTrueExpr() const {
2799    return cast<Expr>(SubExprs[LHS]);
2800  }
2801
2802  /// \brief getFalseExpr - Return the subexpression which will be
2803  ///   evaluated if the condnition evaluates to false; this is
2804  ///   defined in terms of the opaque value.
2805  Expr *getFalseExpr() const {
2806    return cast<Expr>(SubExprs[RHS]);
2807  }
2808
2809  SourceRange getSourceRange() const {
2810    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2811  }
2812  static bool classof(const Stmt *T) {
2813    return T->getStmtClass() == BinaryConditionalOperatorClass;
2814  }
2815  static bool classof(const BinaryConditionalOperator *) { return true; }
2816
2817  // Iterators
2818  child_range children() {
2819    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2820  }
2821};
2822
2823inline Expr *AbstractConditionalOperator::getCond() const {
2824  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2825    return co->getCond();
2826  return cast<BinaryConditionalOperator>(this)->getCond();
2827}
2828
2829inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2830  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2831    return co->getTrueExpr();
2832  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2833}
2834
2835inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2836  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2837    return co->getFalseExpr();
2838  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2839}
2840
2841/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2842class AddrLabelExpr : public Expr {
2843  SourceLocation AmpAmpLoc, LabelLoc;
2844  LabelDecl *Label;
2845public:
2846  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2847                QualType t)
2848    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false),
2849      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2850
2851  /// \brief Build an empty address of a label expression.
2852  explicit AddrLabelExpr(EmptyShell Empty)
2853    : Expr(AddrLabelExprClass, Empty) { }
2854
2855  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2856  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2857  SourceLocation getLabelLoc() const { return LabelLoc; }
2858  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2859
2860  SourceRange getSourceRange() const {
2861    return SourceRange(AmpAmpLoc, LabelLoc);
2862  }
2863
2864  LabelDecl *getLabel() const { return Label; }
2865  void setLabel(LabelDecl *L) { Label = L; }
2866
2867  static bool classof(const Stmt *T) {
2868    return T->getStmtClass() == AddrLabelExprClass;
2869  }
2870  static bool classof(const AddrLabelExpr *) { return true; }
2871
2872  // Iterators
2873  child_range children() { return child_range(); }
2874};
2875
2876/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2877/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2878/// takes the value of the last subexpression.
2879///
2880/// A StmtExpr is always an r-value; values "returned" out of a
2881/// StmtExpr will be copied.
2882class StmtExpr : public Expr {
2883  Stmt *SubStmt;
2884  SourceLocation LParenLoc, RParenLoc;
2885public:
2886  // FIXME: Does type-dependence need to be computed differently?
2887  StmtExpr(CompoundStmt *substmt, QualType T,
2888           SourceLocation lp, SourceLocation rp) :
2889    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2890         T->isDependentType(), false, false),
2891    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2892
2893  /// \brief Build an empty statement expression.
2894  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2895
2896  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2897  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2898  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2899
2900  SourceRange getSourceRange() const {
2901    return SourceRange(LParenLoc, RParenLoc);
2902  }
2903
2904  SourceLocation getLParenLoc() const { return LParenLoc; }
2905  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2906  SourceLocation getRParenLoc() const { return RParenLoc; }
2907  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2908
2909  static bool classof(const Stmt *T) {
2910    return T->getStmtClass() == StmtExprClass;
2911  }
2912  static bool classof(const StmtExpr *) { return true; }
2913
2914  // Iterators
2915  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
2916};
2917
2918
2919/// ShuffleVectorExpr - clang-specific builtin-in function
2920/// __builtin_shufflevector.
2921/// This AST node represents a operator that does a constant
2922/// shuffle, similar to LLVM's shufflevector instruction. It takes
2923/// two vectors and a variable number of constant indices,
2924/// and returns the appropriately shuffled vector.
2925class ShuffleVectorExpr : public Expr {
2926  SourceLocation BuiltinLoc, RParenLoc;
2927
2928  // SubExprs - the list of values passed to the __builtin_shufflevector
2929  // function. The first two are vectors, and the rest are constant
2930  // indices.  The number of values in this list is always
2931  // 2+the number of indices in the vector type.
2932  Stmt **SubExprs;
2933  unsigned NumExprs;
2934
2935public:
2936  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2937                    QualType Type, SourceLocation BLoc,
2938                    SourceLocation RP);
2939
2940  /// \brief Build an empty vector-shuffle expression.
2941  explicit ShuffleVectorExpr(EmptyShell Empty)
2942    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2943
2944  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2945  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2946
2947  SourceLocation getRParenLoc() const { return RParenLoc; }
2948  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2949
2950  SourceRange getSourceRange() const {
2951    return SourceRange(BuiltinLoc, RParenLoc);
2952  }
2953  static bool classof(const Stmt *T) {
2954    return T->getStmtClass() == ShuffleVectorExprClass;
2955  }
2956  static bool classof(const ShuffleVectorExpr *) { return true; }
2957
2958  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2959  /// constant expression, the actual arguments passed in, and the function
2960  /// pointers.
2961  unsigned getNumSubExprs() const { return NumExprs; }
2962
2963  /// \brief Retrieve the array of expressions.
2964  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
2965
2966  /// getExpr - Return the Expr at the specified index.
2967  Expr *getExpr(unsigned Index) {
2968    assert((Index < NumExprs) && "Arg access out of range!");
2969    return cast<Expr>(SubExprs[Index]);
2970  }
2971  const Expr *getExpr(unsigned Index) const {
2972    assert((Index < NumExprs) && "Arg access out of range!");
2973    return cast<Expr>(SubExprs[Index]);
2974  }
2975
2976  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2977
2978  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2979    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2980    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2981  }
2982
2983  // Iterators
2984  child_range children() {
2985    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
2986  }
2987};
2988
2989/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2990/// This AST node is similar to the conditional operator (?:) in C, with
2991/// the following exceptions:
2992/// - the test expression must be a integer constant expression.
2993/// - the expression returned acts like the chosen subexpression in every
2994///   visible way: the type is the same as that of the chosen subexpression,
2995///   and all predicates (whether it's an l-value, whether it's an integer
2996///   constant expression, etc.) return the same result as for the chosen
2997///   sub-expression.
2998class ChooseExpr : public Expr {
2999  enum { COND, LHS, RHS, END_EXPR };
3000  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3001  SourceLocation BuiltinLoc, RParenLoc;
3002public:
3003  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3004             QualType t, ExprValueKind VK, ExprObjectKind OK,
3005             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3006    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3007           (cond->containsUnexpandedParameterPack() ||
3008            lhs->containsUnexpandedParameterPack() ||
3009            rhs->containsUnexpandedParameterPack())),
3010      BuiltinLoc(BLoc), RParenLoc(RP) {
3011      SubExprs[COND] = cond;
3012      SubExprs[LHS] = lhs;
3013      SubExprs[RHS] = rhs;
3014    }
3015
3016  /// \brief Build an empty __builtin_choose_expr.
3017  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3018
3019  /// isConditionTrue - Return whether the condition is true (i.e. not
3020  /// equal to zero).
3021  bool isConditionTrue(const ASTContext &C) const;
3022
3023  /// getChosenSubExpr - Return the subexpression chosen according to the
3024  /// condition.
3025  Expr *getChosenSubExpr(const ASTContext &C) const {
3026    return isConditionTrue(C) ? getLHS() : getRHS();
3027  }
3028
3029  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3030  void setCond(Expr *E) { SubExprs[COND] = E; }
3031  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3032  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3033  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3034  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3035
3036  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3037  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3038
3039  SourceLocation getRParenLoc() const { return RParenLoc; }
3040  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3041
3042  SourceRange getSourceRange() const {
3043    return SourceRange(BuiltinLoc, RParenLoc);
3044  }
3045  static bool classof(const Stmt *T) {
3046    return T->getStmtClass() == ChooseExprClass;
3047  }
3048  static bool classof(const ChooseExpr *) { return true; }
3049
3050  // Iterators
3051  child_range children() {
3052    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3053  }
3054};
3055
3056/// GNUNullExpr - Implements the GNU __null extension, which is a name
3057/// for a null pointer constant that has integral type (e.g., int or
3058/// long) and is the same size and alignment as a pointer. The __null
3059/// extension is typically only used by system headers, which define
3060/// NULL as __null in C++ rather than using 0 (which is an integer
3061/// that may not match the size of a pointer).
3062class GNUNullExpr : public Expr {
3063  /// TokenLoc - The location of the __null keyword.
3064  SourceLocation TokenLoc;
3065
3066public:
3067  GNUNullExpr(QualType Ty, SourceLocation Loc)
3068    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false),
3069      TokenLoc(Loc) { }
3070
3071  /// \brief Build an empty GNU __null expression.
3072  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3073
3074  /// getTokenLocation - The location of the __null token.
3075  SourceLocation getTokenLocation() const { return TokenLoc; }
3076  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3077
3078  SourceRange getSourceRange() const {
3079    return SourceRange(TokenLoc);
3080  }
3081  static bool classof(const Stmt *T) {
3082    return T->getStmtClass() == GNUNullExprClass;
3083  }
3084  static bool classof(const GNUNullExpr *) { return true; }
3085
3086  // Iterators
3087  child_range children() { return child_range(); }
3088};
3089
3090/// VAArgExpr, used for the builtin function __builtin_va_arg.
3091class VAArgExpr : public Expr {
3092  Stmt *Val;
3093  TypeSourceInfo *TInfo;
3094  SourceLocation BuiltinLoc, RParenLoc;
3095public:
3096  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3097            SourceLocation RPLoc, QualType t)
3098    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3099           t->isDependentType(), false,
3100           (TInfo->getType()->containsUnexpandedParameterPack() ||
3101            e->containsUnexpandedParameterPack())),
3102      Val(e), TInfo(TInfo),
3103      BuiltinLoc(BLoc),
3104      RParenLoc(RPLoc) { }
3105
3106  /// \brief Create an empty __builtin_va_arg expression.
3107  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3108
3109  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3110  Expr *getSubExpr() { return cast<Expr>(Val); }
3111  void setSubExpr(Expr *E) { Val = E; }
3112
3113  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3114  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3115
3116  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3117  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3118
3119  SourceLocation getRParenLoc() const { return RParenLoc; }
3120  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3121
3122  SourceRange getSourceRange() const {
3123    return SourceRange(BuiltinLoc, RParenLoc);
3124  }
3125  static bool classof(const Stmt *T) {
3126    return T->getStmtClass() == VAArgExprClass;
3127  }
3128  static bool classof(const VAArgExpr *) { return true; }
3129
3130  // Iterators
3131  child_range children() { return child_range(&Val, &Val+1); }
3132};
3133
3134/// @brief Describes an C or C++ initializer list.
3135///
3136/// InitListExpr describes an initializer list, which can be used to
3137/// initialize objects of different types, including
3138/// struct/class/union types, arrays, and vectors. For example:
3139///
3140/// @code
3141/// struct foo x = { 1, { 2, 3 } };
3142/// @endcode
3143///
3144/// Prior to semantic analysis, an initializer list will represent the
3145/// initializer list as written by the user, but will have the
3146/// placeholder type "void". This initializer list is called the
3147/// syntactic form of the initializer, and may contain C99 designated
3148/// initializers (represented as DesignatedInitExprs), initializations
3149/// of subobject members without explicit braces, and so on. Clients
3150/// interested in the original syntax of the initializer list should
3151/// use the syntactic form of the initializer list.
3152///
3153/// After semantic analysis, the initializer list will represent the
3154/// semantic form of the initializer, where the initializations of all
3155/// subobjects are made explicit with nested InitListExpr nodes and
3156/// C99 designators have been eliminated by placing the designated
3157/// initializations into the subobject they initialize. Additionally,
3158/// any "holes" in the initialization, where no initializer has been
3159/// specified for a particular subobject, will be replaced with
3160/// implicitly-generated ImplicitValueInitExpr expressions that
3161/// value-initialize the subobjects. Note, however, that the
3162/// initializer lists may still have fewer initializers than there are
3163/// elements to initialize within the object.
3164///
3165/// Given the semantic form of the initializer list, one can retrieve
3166/// the original syntactic form of that initializer list (if it
3167/// exists) using getSyntacticForm(). Since many initializer lists
3168/// have the same syntactic and semantic forms, getSyntacticForm() may
3169/// return NULL, indicating that the current initializer list also
3170/// serves as its syntactic form.
3171class InitListExpr : public Expr {
3172  // FIXME: Eliminate this vector in favor of ASTContext allocation
3173  typedef ASTVector<Stmt *> InitExprsTy;
3174  InitExprsTy InitExprs;
3175  SourceLocation LBraceLoc, RBraceLoc;
3176
3177  /// Contains the initializer list that describes the syntactic form
3178  /// written in the source code.
3179  InitListExpr *SyntacticForm;
3180
3181  /// \brief Either:
3182  ///  If this initializer list initializes an array with more elements than
3183  ///  there are initializers in the list, specifies an expression to be used
3184  ///  for value initialization of the rest of the elements.
3185  /// Or
3186  ///  If this initializer list initializes a union, specifies which
3187  ///  field within the union will be initialized.
3188  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3189
3190  /// Whether this initializer list originally had a GNU array-range
3191  /// designator in it. This is a temporary marker used by CodeGen.
3192  bool HadArrayRangeDesignator;
3193
3194public:
3195  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3196               Expr **initexprs, unsigned numinits,
3197               SourceLocation rbraceloc);
3198
3199  /// \brief Build an empty initializer list.
3200  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3201    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3202
3203  unsigned getNumInits() const { return InitExprs.size(); }
3204
3205  /// \brief Retrieve the set of initializers.
3206  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3207
3208  const Expr *getInit(unsigned Init) const {
3209    assert(Init < getNumInits() && "Initializer access out of range!");
3210    return cast_or_null<Expr>(InitExprs[Init]);
3211  }
3212
3213  Expr *getInit(unsigned Init) {
3214    assert(Init < getNumInits() && "Initializer access out of range!");
3215    return cast_or_null<Expr>(InitExprs[Init]);
3216  }
3217
3218  void setInit(unsigned Init, Expr *expr) {
3219    assert(Init < getNumInits() && "Initializer access out of range!");
3220    InitExprs[Init] = expr;
3221  }
3222
3223  /// \brief Reserve space for some number of initializers.
3224  void reserveInits(ASTContext &C, unsigned NumInits);
3225
3226  /// @brief Specify the number of initializers
3227  ///
3228  /// If there are more than @p NumInits initializers, the remaining
3229  /// initializers will be destroyed. If there are fewer than @p
3230  /// NumInits initializers, NULL expressions will be added for the
3231  /// unknown initializers.
3232  void resizeInits(ASTContext &Context, unsigned NumInits);
3233
3234  /// @brief Updates the initializer at index @p Init with the new
3235  /// expression @p expr, and returns the old expression at that
3236  /// location.
3237  ///
3238  /// When @p Init is out of range for this initializer list, the
3239  /// initializer list will be extended with NULL expressions to
3240  /// accommodate the new entry.
3241  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3242
3243  /// \brief If this initializer list initializes an array with more elements
3244  /// than there are initializers in the list, specifies an expression to be
3245  /// used for value initialization of the rest of the elements.
3246  Expr *getArrayFiller() {
3247    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3248  }
3249  void setArrayFiller(Expr *filler) {
3250    ArrayFillerOrUnionFieldInit = filler;
3251  }
3252
3253  /// \brief If this initializes a union, specifies which field in the
3254  /// union to initialize.
3255  ///
3256  /// Typically, this field is the first named field within the
3257  /// union. However, a designated initializer can specify the
3258  /// initialization of a different field within the union.
3259  FieldDecl *getInitializedFieldInUnion() {
3260    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3261  }
3262  void setInitializedFieldInUnion(FieldDecl *FD) {
3263    ArrayFillerOrUnionFieldInit = FD;
3264  }
3265
3266  // Explicit InitListExpr's originate from source code (and have valid source
3267  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3268  bool isExplicit() {
3269    return LBraceLoc.isValid() && RBraceLoc.isValid();
3270  }
3271
3272  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3273  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3274  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3275  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3276
3277  /// @brief Retrieve the initializer list that describes the
3278  /// syntactic form of the initializer.
3279  ///
3280  ///
3281  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3282  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3283
3284  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3285  void sawArrayRangeDesignator(bool ARD = true) {
3286    HadArrayRangeDesignator = ARD;
3287  }
3288
3289  SourceRange getSourceRange() const;
3290
3291  static bool classof(const Stmt *T) {
3292    return T->getStmtClass() == InitListExprClass;
3293  }
3294  static bool classof(const InitListExpr *) { return true; }
3295
3296  // Iterators
3297  child_range children() {
3298    if (InitExprs.empty()) return child_range();
3299    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3300  }
3301
3302  typedef InitExprsTy::iterator iterator;
3303  typedef InitExprsTy::const_iterator const_iterator;
3304  typedef InitExprsTy::reverse_iterator reverse_iterator;
3305  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3306
3307  iterator begin() { return InitExprs.begin(); }
3308  const_iterator begin() const { return InitExprs.begin(); }
3309  iterator end() { return InitExprs.end(); }
3310  const_iterator end() const { return InitExprs.end(); }
3311  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3312  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3313  reverse_iterator rend() { return InitExprs.rend(); }
3314  const_reverse_iterator rend() const { return InitExprs.rend(); }
3315
3316  friend class ASTStmtReader;
3317  friend class ASTStmtWriter;
3318};
3319
3320/// @brief Represents a C99 designated initializer expression.
3321///
3322/// A designated initializer expression (C99 6.7.8) contains one or
3323/// more designators (which can be field designators, array
3324/// designators, or GNU array-range designators) followed by an
3325/// expression that initializes the field or element(s) that the
3326/// designators refer to. For example, given:
3327///
3328/// @code
3329/// struct point {
3330///   double x;
3331///   double y;
3332/// };
3333/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3334/// @endcode
3335///
3336/// The InitListExpr contains three DesignatedInitExprs, the first of
3337/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3338/// designators, one array designator for @c [2] followed by one field
3339/// designator for @c .y. The initalization expression will be 1.0.
3340class DesignatedInitExpr : public Expr {
3341public:
3342  /// \brief Forward declaration of the Designator class.
3343  class Designator;
3344
3345private:
3346  /// The location of the '=' or ':' prior to the actual initializer
3347  /// expression.
3348  SourceLocation EqualOrColonLoc;
3349
3350  /// Whether this designated initializer used the GNU deprecated
3351  /// syntax rather than the C99 '=' syntax.
3352  bool GNUSyntax : 1;
3353
3354  /// The number of designators in this initializer expression.
3355  unsigned NumDesignators : 15;
3356
3357  /// \brief The designators in this designated initialization
3358  /// expression.
3359  Designator *Designators;
3360
3361  /// The number of subexpressions of this initializer expression,
3362  /// which contains both the initializer and any additional
3363  /// expressions used by array and array-range designators.
3364  unsigned NumSubExprs : 16;
3365
3366
3367  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3368                     const Designator *Designators,
3369                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3370                     Expr **IndexExprs, unsigned NumIndexExprs,
3371                     Expr *Init);
3372
3373  explicit DesignatedInitExpr(unsigned NumSubExprs)
3374    : Expr(DesignatedInitExprClass, EmptyShell()),
3375      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3376
3377public:
3378  /// A field designator, e.g., ".x".
3379  struct FieldDesignator {
3380    /// Refers to the field that is being initialized. The low bit
3381    /// of this field determines whether this is actually a pointer
3382    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3383    /// initially constructed, a field designator will store an
3384    /// IdentifierInfo*. After semantic analysis has resolved that
3385    /// name, the field designator will instead store a FieldDecl*.
3386    uintptr_t NameOrField;
3387
3388    /// The location of the '.' in the designated initializer.
3389    unsigned DotLoc;
3390
3391    /// The location of the field name in the designated initializer.
3392    unsigned FieldLoc;
3393  };
3394
3395  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3396  struct ArrayOrRangeDesignator {
3397    /// Location of the first index expression within the designated
3398    /// initializer expression's list of subexpressions.
3399    unsigned Index;
3400    /// The location of the '[' starting the array range designator.
3401    unsigned LBracketLoc;
3402    /// The location of the ellipsis separating the start and end
3403    /// indices. Only valid for GNU array-range designators.
3404    unsigned EllipsisLoc;
3405    /// The location of the ']' terminating the array range designator.
3406    unsigned RBracketLoc;
3407  };
3408
3409  /// @brief Represents a single C99 designator.
3410  ///
3411  /// @todo This class is infuriatingly similar to clang::Designator,
3412  /// but minor differences (storing indices vs. storing pointers)
3413  /// keep us from reusing it. Try harder, later, to rectify these
3414  /// differences.
3415  class Designator {
3416    /// @brief The kind of designator this describes.
3417    enum {
3418      FieldDesignator,
3419      ArrayDesignator,
3420      ArrayRangeDesignator
3421    } Kind;
3422
3423    union {
3424      /// A field designator, e.g., ".x".
3425      struct FieldDesignator Field;
3426      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3427      struct ArrayOrRangeDesignator ArrayOrRange;
3428    };
3429    friend class DesignatedInitExpr;
3430
3431  public:
3432    Designator() {}
3433
3434    /// @brief Initializes a field designator.
3435    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3436               SourceLocation FieldLoc)
3437      : Kind(FieldDesignator) {
3438      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3439      Field.DotLoc = DotLoc.getRawEncoding();
3440      Field.FieldLoc = FieldLoc.getRawEncoding();
3441    }
3442
3443    /// @brief Initializes an array designator.
3444    Designator(unsigned Index, SourceLocation LBracketLoc,
3445               SourceLocation RBracketLoc)
3446      : Kind(ArrayDesignator) {
3447      ArrayOrRange.Index = Index;
3448      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3449      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3450      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3451    }
3452
3453    /// @brief Initializes a GNU array-range designator.
3454    Designator(unsigned Index, SourceLocation LBracketLoc,
3455               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3456      : Kind(ArrayRangeDesignator) {
3457      ArrayOrRange.Index = Index;
3458      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3459      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3460      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3461    }
3462
3463    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3464    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3465    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3466
3467    IdentifierInfo * getFieldName();
3468
3469    FieldDecl *getField() {
3470      assert(Kind == FieldDesignator && "Only valid on a field designator");
3471      if (Field.NameOrField & 0x01)
3472        return 0;
3473      else
3474        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3475    }
3476
3477    void setField(FieldDecl *FD) {
3478      assert(Kind == FieldDesignator && "Only valid on a field designator");
3479      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3480    }
3481
3482    SourceLocation getDotLoc() const {
3483      assert(Kind == FieldDesignator && "Only valid on a field designator");
3484      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3485    }
3486
3487    SourceLocation getFieldLoc() const {
3488      assert(Kind == FieldDesignator && "Only valid on a field designator");
3489      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3490    }
3491
3492    SourceLocation getLBracketLoc() const {
3493      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3494             "Only valid on an array or array-range designator");
3495      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3496    }
3497
3498    SourceLocation getRBracketLoc() const {
3499      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3500             "Only valid on an array or array-range designator");
3501      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3502    }
3503
3504    SourceLocation getEllipsisLoc() const {
3505      assert(Kind == ArrayRangeDesignator &&
3506             "Only valid on an array-range designator");
3507      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3508    }
3509
3510    unsigned getFirstExprIndex() const {
3511      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3512             "Only valid on an array or array-range designator");
3513      return ArrayOrRange.Index;
3514    }
3515
3516    SourceLocation getStartLocation() const {
3517      if (Kind == FieldDesignator)
3518        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3519      else
3520        return getLBracketLoc();
3521    }
3522    SourceLocation getEndLocation() const {
3523      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3524    }
3525    SourceRange getSourceRange() const {
3526      return SourceRange(getStartLocation(), getEndLocation());
3527    }
3528  };
3529
3530  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3531                                    unsigned NumDesignators,
3532                                    Expr **IndexExprs, unsigned NumIndexExprs,
3533                                    SourceLocation EqualOrColonLoc,
3534                                    bool GNUSyntax, Expr *Init);
3535
3536  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3537
3538  /// @brief Returns the number of designators in this initializer.
3539  unsigned size() const { return NumDesignators; }
3540
3541  // Iterator access to the designators.
3542  typedef Designator* designators_iterator;
3543  designators_iterator designators_begin() { return Designators; }
3544  designators_iterator designators_end() {
3545    return Designators + NumDesignators;
3546  }
3547
3548  typedef std::reverse_iterator<designators_iterator>
3549          reverse_designators_iterator;
3550  reverse_designators_iterator designators_rbegin() {
3551    return reverse_designators_iterator(designators_end());
3552  }
3553  reverse_designators_iterator designators_rend() {
3554    return reverse_designators_iterator(designators_begin());
3555  }
3556
3557  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3558
3559  void setDesignators(ASTContext &C, const Designator *Desigs,
3560                      unsigned NumDesigs);
3561
3562  Expr *getArrayIndex(const Designator& D);
3563  Expr *getArrayRangeStart(const Designator& D);
3564  Expr *getArrayRangeEnd(const Designator& D);
3565
3566  /// @brief Retrieve the location of the '=' that precedes the
3567  /// initializer value itself, if present.
3568  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3569  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3570
3571  /// @brief Determines whether this designated initializer used the
3572  /// deprecated GNU syntax for designated initializers.
3573  bool usesGNUSyntax() const { return GNUSyntax; }
3574  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3575
3576  /// @brief Retrieve the initializer value.
3577  Expr *getInit() const {
3578    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3579  }
3580
3581  void setInit(Expr *init) {
3582    *child_begin() = init;
3583  }
3584
3585  /// \brief Retrieve the total number of subexpressions in this
3586  /// designated initializer expression, including the actual
3587  /// initialized value and any expressions that occur within array
3588  /// and array-range designators.
3589  unsigned getNumSubExprs() const { return NumSubExprs; }
3590
3591  Expr *getSubExpr(unsigned Idx) {
3592    assert(Idx < NumSubExprs && "Subscript out of range");
3593    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3594    Ptr += sizeof(DesignatedInitExpr);
3595    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3596  }
3597
3598  void setSubExpr(unsigned Idx, Expr *E) {
3599    assert(Idx < NumSubExprs && "Subscript out of range");
3600    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3601    Ptr += sizeof(DesignatedInitExpr);
3602    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3603  }
3604
3605  /// \brief Replaces the designator at index @p Idx with the series
3606  /// of designators in [First, Last).
3607  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3608                        const Designator *Last);
3609
3610  SourceRange getDesignatorsSourceRange() const;
3611
3612  SourceRange getSourceRange() const;
3613
3614  static bool classof(const Stmt *T) {
3615    return T->getStmtClass() == DesignatedInitExprClass;
3616  }
3617  static bool classof(const DesignatedInitExpr *) { return true; }
3618
3619  // Iterators
3620  child_range children() {
3621    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3622    return child_range(begin, begin + NumSubExprs);
3623  }
3624};
3625
3626/// \brief Represents an implicitly-generated value initialization of
3627/// an object of a given type.
3628///
3629/// Implicit value initializations occur within semantic initializer
3630/// list expressions (InitListExpr) as placeholders for subobject
3631/// initializations not explicitly specified by the user.
3632///
3633/// \see InitListExpr
3634class ImplicitValueInitExpr : public Expr {
3635public:
3636  explicit ImplicitValueInitExpr(QualType ty)
3637    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3638           false, false, false) { }
3639
3640  /// \brief Construct an empty implicit value initialization.
3641  explicit ImplicitValueInitExpr(EmptyShell Empty)
3642    : Expr(ImplicitValueInitExprClass, Empty) { }
3643
3644  static bool classof(const Stmt *T) {
3645    return T->getStmtClass() == ImplicitValueInitExprClass;
3646  }
3647  static bool classof(const ImplicitValueInitExpr *) { return true; }
3648
3649  SourceRange getSourceRange() const {
3650    return SourceRange();
3651  }
3652
3653  // Iterators
3654  child_range children() { return child_range(); }
3655};
3656
3657
3658class ParenListExpr : public Expr {
3659  Stmt **Exprs;
3660  unsigned NumExprs;
3661  SourceLocation LParenLoc, RParenLoc;
3662
3663public:
3664  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3665                unsigned numexprs, SourceLocation rparenloc);
3666
3667  /// \brief Build an empty paren list.
3668  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3669
3670  unsigned getNumExprs() const { return NumExprs; }
3671
3672  const Expr* getExpr(unsigned Init) const {
3673    assert(Init < getNumExprs() && "Initializer access out of range!");
3674    return cast_or_null<Expr>(Exprs[Init]);
3675  }
3676
3677  Expr* getExpr(unsigned Init) {
3678    assert(Init < getNumExprs() && "Initializer access out of range!");
3679    return cast_or_null<Expr>(Exprs[Init]);
3680  }
3681
3682  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3683
3684  SourceLocation getLParenLoc() const { return LParenLoc; }
3685  SourceLocation getRParenLoc() const { return RParenLoc; }
3686
3687  SourceRange getSourceRange() const {
3688    return SourceRange(LParenLoc, RParenLoc);
3689  }
3690  static bool classof(const Stmt *T) {
3691    return T->getStmtClass() == ParenListExprClass;
3692  }
3693  static bool classof(const ParenListExpr *) { return true; }
3694
3695  // Iterators
3696  child_range children() {
3697    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3698  }
3699
3700  friend class ASTStmtReader;
3701  friend class ASTStmtWriter;
3702};
3703
3704
3705/// \brief Represents a C1X generic selection.
3706///
3707/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3708/// expression, followed by one or more generic associations.  Each generic
3709/// association specifies a type name and an expression, or "default" and an
3710/// expression (in which case it is known as a default generic association).
3711/// The type and value of the generic selection are identical to those of its
3712/// result expression, which is defined as the expression in the generic
3713/// association with a type name that is compatible with the type of the
3714/// controlling expression, or the expression in the default generic association
3715/// if no types are compatible.  For example:
3716///
3717/// @code
3718/// _Generic(X, double: 1, float: 2, default: 3)
3719/// @endcode
3720///
3721/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3722/// or 3 if "hello".
3723///
3724/// As an extension, generic selections are allowed in C++, where the following
3725/// additional semantics apply:
3726///
3727/// Any generic selection whose controlling expression is type-dependent or
3728/// which names a dependent type in its association list is result-dependent,
3729/// which means that the choice of result expression is dependent.
3730/// Result-dependent generic associations are both type- and value-dependent.
3731class GenericSelectionExpr : public Expr {
3732  enum { CONTROLLING, END_EXPR };
3733  TypeSourceInfo **AssocTypes;
3734  Stmt **SubExprs;
3735  unsigned NumAssocs, ResultIndex;
3736  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3737
3738public:
3739  GenericSelectionExpr(ASTContext &Context,
3740                       SourceLocation GenericLoc, Expr *ControllingExpr,
3741                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3742                       unsigned NumAssocs, SourceLocation DefaultLoc,
3743                       SourceLocation RParenLoc,
3744                       bool ContainsUnexpandedParameterPack,
3745                       unsigned ResultIndex);
3746
3747  /// This constructor is used in the result-dependent case.
3748  GenericSelectionExpr(ASTContext &Context,
3749                       SourceLocation GenericLoc, Expr *ControllingExpr,
3750                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3751                       unsigned NumAssocs, SourceLocation DefaultLoc,
3752                       SourceLocation RParenLoc,
3753                       bool ContainsUnexpandedParameterPack);
3754
3755  explicit GenericSelectionExpr(EmptyShell Empty)
3756    : Expr(GenericSelectionExprClass, Empty) { }
3757
3758  unsigned getNumAssocs() const { return NumAssocs; }
3759
3760  SourceLocation getGenericLoc() const { return GenericLoc; }
3761  SourceLocation getDefaultLoc() const { return DefaultLoc; }
3762  SourceLocation getRParenLoc() const { return RParenLoc; }
3763
3764  const Expr *getAssocExpr(unsigned i) const {
3765    return cast<Expr>(SubExprs[END_EXPR+i]);
3766  }
3767  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
3768
3769  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
3770    return AssocTypes[i];
3771  }
3772  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
3773
3774  QualType getAssocType(unsigned i) const {
3775    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
3776      return TS->getType();
3777    else
3778      return QualType();
3779  }
3780
3781  const Expr *getControllingExpr() const {
3782    return cast<Expr>(SubExprs[CONTROLLING]);
3783  }
3784  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
3785
3786  /// Whether this generic selection is result-dependent.
3787  bool isResultDependent() const { return ResultIndex == -1U; }
3788
3789  /// The zero-based index of the result expression's generic association in
3790  /// the generic selection's association list.  Defined only if the
3791  /// generic selection is not result-dependent.
3792  unsigned getResultIndex() const {
3793    assert(!isResultDependent() && "Generic selection is result-dependent");
3794    return ResultIndex;
3795  }
3796
3797  /// The generic selection's result expression.  Defined only if the
3798  /// generic selection is not result-dependent.
3799  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
3800  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
3801
3802  SourceRange getSourceRange() const {
3803    return SourceRange(GenericLoc, RParenLoc);
3804  }
3805  static bool classof(const Stmt *T) {
3806    return T->getStmtClass() == GenericSelectionExprClass;
3807  }
3808  static bool classof(const GenericSelectionExpr *) { return true; }
3809
3810  child_range children() {
3811    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
3812  }
3813
3814  friend class ASTStmtReader;
3815};
3816
3817//===----------------------------------------------------------------------===//
3818// Clang Extensions
3819//===----------------------------------------------------------------------===//
3820
3821
3822/// ExtVectorElementExpr - This represents access to specific elements of a
3823/// vector, and may occur on the left hand side or right hand side.  For example
3824/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3825///
3826/// Note that the base may have either vector or pointer to vector type, just
3827/// like a struct field reference.
3828///
3829class ExtVectorElementExpr : public Expr {
3830  Stmt *Base;
3831  IdentifierInfo *Accessor;
3832  SourceLocation AccessorLoc;
3833public:
3834  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3835                       IdentifierInfo &accessor, SourceLocation loc)
3836    : Expr(ExtVectorElementExprClass, ty, VK,
3837           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3838           base->isTypeDependent(), base->isValueDependent(),
3839           base->containsUnexpandedParameterPack()),
3840      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3841
3842  /// \brief Build an empty vector element expression.
3843  explicit ExtVectorElementExpr(EmptyShell Empty)
3844    : Expr(ExtVectorElementExprClass, Empty) { }
3845
3846  const Expr *getBase() const { return cast<Expr>(Base); }
3847  Expr *getBase() { return cast<Expr>(Base); }
3848  void setBase(Expr *E) { Base = E; }
3849
3850  IdentifierInfo &getAccessor() const { return *Accessor; }
3851  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3852
3853  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3854  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3855
3856  /// getNumElements - Get the number of components being selected.
3857  unsigned getNumElements() const;
3858
3859  /// containsDuplicateElements - Return true if any element access is
3860  /// repeated.
3861  bool containsDuplicateElements() const;
3862
3863  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3864  /// aggregate Constant of ConstantInt(s).
3865  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3866
3867  SourceRange getSourceRange() const {
3868    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3869  }
3870
3871  /// isArrow - Return true if the base expression is a pointer to vector,
3872  /// return false if the base expression is a vector.
3873  bool isArrow() const;
3874
3875  static bool classof(const Stmt *T) {
3876    return T->getStmtClass() == ExtVectorElementExprClass;
3877  }
3878  static bool classof(const ExtVectorElementExpr *) { return true; }
3879
3880  // Iterators
3881  child_range children() { return child_range(&Base, &Base+1); }
3882};
3883
3884
3885/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3886/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3887class BlockExpr : public Expr {
3888protected:
3889  BlockDecl *TheBlock;
3890public:
3891  BlockExpr(BlockDecl *BD, QualType ty)
3892    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3893           ty->isDependentType(), false, false),
3894      TheBlock(BD) {}
3895
3896  /// \brief Build an empty block expression.
3897  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3898
3899  const BlockDecl *getBlockDecl() const { return TheBlock; }
3900  BlockDecl *getBlockDecl() { return TheBlock; }
3901  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3902
3903  // Convenience functions for probing the underlying BlockDecl.
3904  SourceLocation getCaretLocation() const;
3905  const Stmt *getBody() const;
3906  Stmt *getBody();
3907
3908  SourceRange getSourceRange() const {
3909    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3910  }
3911
3912  /// getFunctionType - Return the underlying function type for this block.
3913  const FunctionType *getFunctionType() const;
3914
3915  static bool classof(const Stmt *T) {
3916    return T->getStmtClass() == BlockExprClass;
3917  }
3918  static bool classof(const BlockExpr *) { return true; }
3919
3920  // Iterators
3921  child_range children() { return child_range(); }
3922};
3923
3924/// BlockDeclRefExpr - A reference to a local variable declared in an
3925/// enclosing scope.
3926class BlockDeclRefExpr : public Expr {
3927  VarDecl *D;
3928  SourceLocation Loc;
3929  bool IsByRef : 1;
3930  bool ConstQualAdded : 1;
3931public:
3932  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3933                   SourceLocation l, bool ByRef, bool constAdded = false);
3934
3935  // \brief Build an empty reference to a declared variable in a
3936  // block.
3937  explicit BlockDeclRefExpr(EmptyShell Empty)
3938    : Expr(BlockDeclRefExprClass, Empty) { }
3939
3940  VarDecl *getDecl() { return D; }
3941  const VarDecl *getDecl() const { return D; }
3942  void setDecl(VarDecl *VD) { D = VD; }
3943
3944  SourceLocation getLocation() const { return Loc; }
3945  void setLocation(SourceLocation L) { Loc = L; }
3946
3947  SourceRange getSourceRange() const { return SourceRange(Loc); }
3948
3949  bool isByRef() const { return IsByRef; }
3950  void setByRef(bool BR) { IsByRef = BR; }
3951
3952  bool isConstQualAdded() const { return ConstQualAdded; }
3953  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3954
3955  static bool classof(const Stmt *T) {
3956    return T->getStmtClass() == BlockDeclRefExprClass;
3957  }
3958  static bool classof(const BlockDeclRefExpr *) { return true; }
3959
3960  // Iterators
3961  child_range children() { return child_range(); }
3962};
3963
3964}  // end namespace clang
3965
3966#endif
3967