Expr.h revision 4c67834407ca6ab344dcf44fc599ad4938cfa96d
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// hasLocalSideEffect - Return true if this immediate expression has side
114  /// effects, not counting any sub-expressions.
115  bool hasLocalSideEffect() const;
116
117  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
118  /// incomplete type other than void. Nonarray expressions that can be lvalues:
119  ///  - name, where name must be a variable
120  ///  - e[i]
121  ///  - (e), where e must be an lvalue
122  ///  - e.name, where e must be an lvalue
123  ///  - e->name
124  ///  - *e, the type of e cannot be a function type
125  ///  - string-constant
126  ///  - reference type [C++ [expr]]
127  ///
128  enum isLvalueResult {
129    LV_Valid,
130    LV_NotObjectType,
131    LV_IncompleteVoidType,
132    LV_DuplicateVectorComponents,
133    LV_InvalidExpression,
134    LV_MemberFunction
135  };
136  isLvalueResult isLvalue(ASTContext &Ctx) const;
137
138  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
139  /// does not have an incomplete type, does not have a const-qualified type,
140  /// and if it is a structure or union, does not have any member (including,
141  /// recursively, any member or element of all contained aggregates or unions)
142  /// with a const-qualified type.
143  enum isModifiableLvalueResult {
144    MLV_Valid,
145    MLV_NotObjectType,
146    MLV_IncompleteVoidType,
147    MLV_DuplicateVectorComponents,
148    MLV_InvalidExpression,
149    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
150    MLV_IncompleteType,
151    MLV_ConstQualified,
152    MLV_ArrayType,
153    MLV_NotBlockQualified,
154    MLV_ReadonlyProperty,
155    MLV_NoSetterProperty,
156    MLV_MemberFunction
157  };
158  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
159
160  bool isBitField();
161
162  /// getIntegerConstantExprValue() - Return the value of an integer
163  /// constant expression. The expression must be a valid integer
164  /// constant expression as determined by isIntegerConstantExpr.
165  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
166    llvm::APSInt X;
167    bool success = isIntegerConstantExpr(X, Ctx);
168    success = success;
169    assert(success && "Illegal argument to getIntegerConstantExpr");
170    return X;
171  }
172
173  /// isIntegerConstantExpr - Return true if this expression is a valid integer
174  /// constant expression, and, if so, return its value in Result.  If not a
175  /// valid i-c-e, return false and fill in Loc (if specified) with the location
176  /// of the invalid expression.
177  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
178                             SourceLocation *Loc = 0,
179                             bool isEvaluated = true) const;
180  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
181    llvm::APSInt X;
182    return isIntegerConstantExpr(X, Ctx, Loc);
183  }
184  /// isConstantInitializer - Returns true if this expression is a constant
185  /// initializer, which can be emitted at compile-time.
186  bool isConstantInitializer(ASTContext &Ctx) const;
187
188  /// @brief Determines whether this expression (or any of its
189  /// subexpressions) has side effects.
190  bool hasSideEffects(ASTContext &Ctx) const;
191
192  /// EvalResult is a struct with detailed info about an evaluated expression.
193  struct EvalResult {
194    /// Val - This is the scalar value the expression can be folded to.
195    APValue Val;
196
197    /// HasSideEffects - Whether the evaluated expression has side effects.
198    /// For example, (f() && 0) can be folded, but it still has side effects.
199    bool HasSideEffects;
200
201    /// Diag - If the expression is unfoldable, then Diag contains a note
202    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
203    /// position for the error, and DiagExpr is the expression that caused
204    /// the error.
205    /// If the expression is foldable, but not an integer constant expression,
206    /// Diag contains a note diagnostic that describes why it isn't an integer
207    /// constant expression. If the expression *is* an integer constant
208    /// expression, then Diag will be zero.
209    unsigned Diag;
210    const Expr *DiagExpr;
211    SourceLocation DiagLoc;
212
213    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
214  };
215
216  /// Evaluate - Return true if this is a constant which we can fold using
217  /// any crazy technique (that has nothing to do with language standards) that
218  /// we want to.  If this function returns true, it returns the folded constant
219  /// in Result.
220  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
221
222  /// isEvaluatable - Call Evaluate to see if this expression can be constant
223  /// folded, but discard the result.
224  bool isEvaluatable(ASTContext &Ctx) const;
225
226  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
227  /// must be called on an expression that constant folds to an integer.
228  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
229
230  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
231  /// integer constant expression with the value zero, or if this is one that is
232  /// cast to void*.
233  bool isNullPointerConstant(ASTContext &Ctx) const;
234
235  /// hasGlobalStorage - Return true if this expression has static storage
236  /// duration.  This means that the address of this expression is a link-time
237  /// constant.
238  bool hasGlobalStorage() const;
239
240  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
241  ///  its subexpression.  If that subexpression is also a ParenExpr,
242  ///  then this method recursively returns its subexpression, and so forth.
243  ///  Otherwise, the method returns the current Expr.
244  Expr* IgnoreParens();
245
246  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
247  /// or CastExprs, returning their operand.
248  Expr *IgnoreParenCasts();
249
250  const Expr* IgnoreParens() const {
251    return const_cast<Expr*>(this)->IgnoreParens();
252  }
253  const Expr *IgnoreParenCasts() const {
254    return const_cast<Expr*>(this)->IgnoreParenCasts();
255  }
256
257  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
258  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
259
260  static bool classof(const Stmt *T) {
261    return T->getStmtClass() >= firstExprConstant &&
262           T->getStmtClass() <= lastExprConstant;
263  }
264  static bool classof(const Expr *) { return true; }
265
266  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
267    return cast<Expr>(Stmt::Create(D, C));
268  }
269};
270
271
272//===----------------------------------------------------------------------===//
273// Primary Expressions.
274//===----------------------------------------------------------------------===//
275
276/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
277/// enum, etc.
278class DeclRefExpr : public Expr {
279  NamedDecl *D;
280  SourceLocation Loc;
281
282protected:
283  // FIXME: Eventually, this constructor will go away and all subclasses
284  // will have to provide the type- and value-dependent flags.
285  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
286    Expr(SC, t), D(d), Loc(l) {}
287
288  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
289              bool VD) :
290    Expr(SC, t, TD, VD), D(d), Loc(l) {}
291
292public:
293  // FIXME: Eventually, this constructor will go away and all clients
294  // will have to provide the type- and value-dependent flags.
295  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
296    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
297
298  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
299    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
300
301  NamedDecl *getDecl() { return D; }
302  const NamedDecl *getDecl() const { return D; }
303  void setDecl(NamedDecl *NewD) { D = NewD; }
304
305  SourceLocation getLocation() const { return Loc; }
306  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
307
308  static bool classof(const Stmt *T) {
309    return T->getStmtClass() == DeclRefExprClass ||
310           T->getStmtClass() == CXXConditionDeclExprClass ||
311           T->getStmtClass() == QualifiedDeclRefExprClass;
312  }
313  static bool classof(const DeclRefExpr *) { return true; }
314
315  // Iterators
316  virtual child_iterator child_begin();
317  virtual child_iterator child_end();
318
319  virtual void EmitImpl(llvm::Serializer& S) const;
320  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
321};
322
323/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
324class PredefinedExpr : public Expr {
325public:
326  enum IdentType {
327    Func,
328    Function,
329    PrettyFunction
330  };
331
332private:
333  SourceLocation Loc;
334  IdentType Type;
335public:
336  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
337    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
338
339  IdentType getIdentType() const { return Type; }
340
341  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
342
343  static bool classof(const Stmt *T) {
344    return T->getStmtClass() == PredefinedExprClass;
345  }
346  static bool classof(const PredefinedExpr *) { return true; }
347
348  // Iterators
349  virtual child_iterator child_begin();
350  virtual child_iterator child_end();
351
352  virtual void EmitImpl(llvm::Serializer& S) const;
353  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
354};
355
356class IntegerLiteral : public Expr {
357  llvm::APInt Value;
358  SourceLocation Loc;
359public:
360  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
361  // or UnsignedLongLongTy
362  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
363    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
364    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
365  }
366  const llvm::APInt &getValue() const { return Value; }
367  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
368
369  static bool classof(const Stmt *T) {
370    return T->getStmtClass() == IntegerLiteralClass;
371  }
372  static bool classof(const IntegerLiteral *) { return true; }
373
374  // Iterators
375  virtual child_iterator child_begin();
376  virtual child_iterator child_end();
377
378  virtual void EmitImpl(llvm::Serializer& S) const;
379  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
380};
381
382class CharacterLiteral : public Expr {
383  unsigned Value;
384  SourceLocation Loc;
385  bool IsWide;
386public:
387  // type should be IntTy
388  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
389    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
390  }
391  SourceLocation getLoc() const { return Loc; }
392  bool isWide() const { return IsWide; }
393
394  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
395
396  unsigned getValue() const { return Value; }
397
398  static bool classof(const Stmt *T) {
399    return T->getStmtClass() == CharacterLiteralClass;
400  }
401  static bool classof(const CharacterLiteral *) { return true; }
402
403  // Iterators
404  virtual child_iterator child_begin();
405  virtual child_iterator child_end();
406
407  virtual void EmitImpl(llvm::Serializer& S) const;
408  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
409};
410
411class FloatingLiteral : public Expr {
412  llvm::APFloat Value;
413  bool IsExact : 1;
414  SourceLocation Loc;
415public:
416  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
417                  QualType Type, SourceLocation L)
418    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
419
420  const llvm::APFloat &getValue() const { return Value; }
421
422  bool isExact() const { return IsExact; }
423
424  /// getValueAsApproximateDouble - This returns the value as an inaccurate
425  /// double.  Note that this may cause loss of precision, but is useful for
426  /// debugging dumps, etc.
427  double getValueAsApproximateDouble() const;
428
429  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
430
431  static bool classof(const Stmt *T) {
432    return T->getStmtClass() == FloatingLiteralClass;
433  }
434  static bool classof(const FloatingLiteral *) { return true; }
435
436  // Iterators
437  virtual child_iterator child_begin();
438  virtual child_iterator child_end();
439
440  virtual void EmitImpl(llvm::Serializer& S) const;
441  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
442};
443
444/// ImaginaryLiteral - We support imaginary integer and floating point literals,
445/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
446/// IntegerLiteral classes.  Instances of this class always have a Complex type
447/// whose element type matches the subexpression.
448///
449class ImaginaryLiteral : public Expr {
450  Stmt *Val;
451public:
452  ImaginaryLiteral(Expr *val, QualType Ty)
453    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
454
455  const Expr *getSubExpr() const { return cast<Expr>(Val); }
456  Expr *getSubExpr() { return cast<Expr>(Val); }
457
458  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
459  static bool classof(const Stmt *T) {
460    return T->getStmtClass() == ImaginaryLiteralClass;
461  }
462  static bool classof(const ImaginaryLiteral *) { return true; }
463
464  // Iterators
465  virtual child_iterator child_begin();
466  virtual child_iterator child_end();
467
468  virtual void EmitImpl(llvm::Serializer& S) const;
469  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
470};
471
472/// StringLiteral - This represents a string literal expression, e.g. "foo"
473/// or L"bar" (wide strings).  The actual string is returned by getStrData()
474/// is NOT null-terminated, and the length of the string is determined by
475/// calling getByteLength().  The C type for a string is always a
476/// ConstantArrayType.
477class StringLiteral : public Expr {
478  const char *StrData;
479  unsigned ByteLength;
480  bool IsWide;
481  // if the StringLiteral was composed using token pasting, both locations
482  // are needed. If not (the common case), firstTokLoc == lastTokLoc.
483  // FIXME: if space becomes an issue, we should create a sub-class.
484  SourceLocation firstTokLoc, lastTokLoc;
485public:
486  StringLiteral(const char *strData, unsigned byteLength, bool Wide,
487                QualType t, SourceLocation b, SourceLocation e);
488  virtual ~StringLiteral();
489
490  const char *getStrData() const { return StrData; }
491  unsigned getByteLength() const { return ByteLength; }
492  bool isWide() const { return IsWide; }
493
494  virtual SourceRange getSourceRange() const {
495    return SourceRange(firstTokLoc,lastTokLoc);
496  }
497  static bool classof(const Stmt *T) {
498    return T->getStmtClass() == StringLiteralClass;
499  }
500  static bool classof(const StringLiteral *) { return true; }
501
502  // Iterators
503  virtual child_iterator child_begin();
504  virtual child_iterator child_end();
505
506  virtual void EmitImpl(llvm::Serializer& S) const;
507  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
508};
509
510/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
511/// AST node is only formed if full location information is requested.
512class ParenExpr : public Expr {
513  SourceLocation L, R;
514  Stmt *Val;
515public:
516  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
517    : Expr(ParenExprClass, val->getType(),
518           val->isTypeDependent(), val->isValueDependent()),
519      L(l), R(r), Val(val) {}
520
521  const Expr *getSubExpr() const { return cast<Expr>(Val); }
522  Expr *getSubExpr() { return cast<Expr>(Val); }
523  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
524
525  static bool classof(const Stmt *T) {
526    return T->getStmtClass() == ParenExprClass;
527  }
528  static bool classof(const ParenExpr *) { return true; }
529
530  // Iterators
531  virtual child_iterator child_begin();
532  virtual child_iterator child_end();
533
534  virtual void EmitImpl(llvm::Serializer& S) const;
535  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
536};
537
538
539/// UnaryOperator - This represents the unary-expression's (except sizeof and
540/// alignof), the postinc/postdec operators from postfix-expression, and various
541/// extensions.
542///
543/// Notes on various nodes:
544///
545/// Real/Imag - These return the real/imag part of a complex operand.  If
546///   applied to a non-complex value, the former returns its operand and the
547///   later returns zero in the type of the operand.
548///
549/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
550///   subexpression is a compound literal with the various MemberExpr and
551///   ArraySubscriptExpr's applied to it.
552///
553class UnaryOperator : public Expr {
554public:
555  // Note that additions to this should also update the StmtVisitor class.
556  enum Opcode {
557    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
558    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
559    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
560    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
561    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
562    Real, Imag,       // "__real expr"/"__imag expr" Extension.
563    Extension,        // __extension__ marker.
564    OffsetOf          // __builtin_offsetof
565  };
566private:
567  Stmt *Val;
568  Opcode Opc;
569  SourceLocation Loc;
570public:
571
572  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
573    : Expr(UnaryOperatorClass, type,
574           input->isTypeDependent() && opc != OffsetOf,
575           input->isValueDependent()),
576      Val(input), Opc(opc), Loc(l) {}
577
578  Opcode getOpcode() const { return Opc; }
579  Expr *getSubExpr() const { return cast<Expr>(Val); }
580
581  /// getOperatorLoc - Return the location of the operator.
582  SourceLocation getOperatorLoc() const { return Loc; }
583
584  /// isPostfix - Return true if this is a postfix operation, like x++.
585  static bool isPostfix(Opcode Op);
586
587  /// isPostfix - Return true if this is a prefix operation, like --x.
588  static bool isPrefix(Opcode Op);
589
590  bool isPrefix() const { return isPrefix(Opc); }
591  bool isPostfix() const { return isPostfix(Opc); }
592  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
593  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
594  bool isOffsetOfOp() const { return Opc == OffsetOf; }
595  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
596
597  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
598  /// corresponds to, e.g. "sizeof" or "[pre]++"
599  static const char *getOpcodeStr(Opcode Op);
600
601  virtual SourceRange getSourceRange() const {
602    if (isPostfix())
603      return SourceRange(Val->getLocStart(), Loc);
604    else
605      return SourceRange(Loc, Val->getLocEnd());
606  }
607  virtual SourceLocation getExprLoc() const { return Loc; }
608
609  static bool classof(const Stmt *T) {
610    return T->getStmtClass() == UnaryOperatorClass;
611  }
612  static bool classof(const UnaryOperator *) { return true; }
613
614  int64_t evaluateOffsetOf(ASTContext& C) const;
615
616  // Iterators
617  virtual child_iterator child_begin();
618  virtual child_iterator child_end();
619
620  virtual void EmitImpl(llvm::Serializer& S) const;
621  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
622};
623
624/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
625/// types and expressions.
626class SizeOfAlignOfExpr : public Expr {
627  bool isSizeof : 1;  // true if sizeof, false if alignof.
628  bool isType : 1;    // true if operand is a type, false if an expression
629  union {
630    void *Ty;
631    Stmt *Ex;
632  } Argument;
633  SourceLocation OpLoc, RParenLoc;
634public:
635  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
636                    QualType resultType, SourceLocation op,
637                    SourceLocation rp) :
638      Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
639      isType(istype), OpLoc(op), RParenLoc(rp) {
640    if (isType)
641      Argument.Ty = argument;
642    else
643      // argument was an Expr*, so cast it back to that to be safe
644      Argument.Ex = static_cast<Expr*>(argument);
645  }
646
647  virtual void Destroy(ASTContext& C);
648
649  bool isSizeOf() const { return isSizeof; }
650  bool isArgumentType() const { return isType; }
651  QualType getArgumentType() const {
652    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
653    return QualType::getFromOpaquePtr(Argument.Ty);
654  }
655  Expr *getArgumentExpr() {
656    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
657    return static_cast<Expr*>(Argument.Ex);
658  }
659  const Expr *getArgumentExpr() const {
660    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
661  }
662
663  /// Gets the argument type, or the type of the argument expression, whichever
664  /// is appropriate.
665  QualType getTypeOfArgument() const {
666    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
667  }
668
669  SourceLocation getOperatorLoc() const { return OpLoc; }
670
671  virtual SourceRange getSourceRange() const {
672    return SourceRange(OpLoc, RParenLoc);
673  }
674
675  static bool classof(const Stmt *T) {
676    return T->getStmtClass() == SizeOfAlignOfExprClass;
677  }
678  static bool classof(const SizeOfAlignOfExpr *) { return true; }
679
680  // Iterators
681  virtual child_iterator child_begin();
682  virtual child_iterator child_end();
683
684  virtual void EmitImpl(llvm::Serializer& S) const;
685  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
686};
687
688//===----------------------------------------------------------------------===//
689// Postfix Operators.
690//===----------------------------------------------------------------------===//
691
692/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
693class ArraySubscriptExpr : public Expr {
694  enum { LHS, RHS, END_EXPR=2 };
695  Stmt* SubExprs[END_EXPR];
696  SourceLocation RBracketLoc;
697public:
698  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
699                     SourceLocation rbracketloc)
700  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
701    SubExprs[LHS] = lhs;
702    SubExprs[RHS] = rhs;
703  }
704
705  /// An array access can be written A[4] or 4[A] (both are equivalent).
706  /// - getBase() and getIdx() always present the normalized view: A[4].
707  ///    In this case getBase() returns "A" and getIdx() returns "4".
708  /// - getLHS() and getRHS() present the syntactic view. e.g. for
709  ///    4[A] getLHS() returns "4".
710  /// Note: Because vector element access is also written A[4] we must
711  /// predicate the format conversion in getBase and getIdx only on the
712  /// the type of the RHS, as it is possible for the LHS to be a vector of
713  /// integer type
714  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
715  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
716
717  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
718  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
719
720  Expr *getBase() {
721    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
722  }
723
724  const Expr *getBase() const {
725    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
726  }
727
728  Expr *getIdx() {
729    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
730  }
731
732  const Expr *getIdx() const {
733    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
734  }
735
736  virtual SourceRange getSourceRange() const {
737    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
738  }
739
740  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
741
742  static bool classof(const Stmt *T) {
743    return T->getStmtClass() == ArraySubscriptExprClass;
744  }
745  static bool classof(const ArraySubscriptExpr *) { return true; }
746
747  // Iterators
748  virtual child_iterator child_begin();
749  virtual child_iterator child_end();
750
751  virtual void EmitImpl(llvm::Serializer& S) const;
752  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
753};
754
755
756/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
757/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
758/// while its subclasses may represent alternative syntax that (semantically)
759/// results in a function call. For example, CXXOperatorCallExpr is
760/// a subclass for overloaded operator calls that use operator syntax, e.g.,
761/// "str1 + str2" to resolve to a function call.
762class CallExpr : public Expr {
763  enum { FN=0, ARGS_START=1 };
764  Stmt **SubExprs;
765  unsigned NumArgs;
766  SourceLocation RParenLoc;
767
768  // This version of the ctor is for deserialization.
769  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
770           SourceLocation rparenloc)
771  : Expr(SC,t), SubExprs(subexprs),
772    NumArgs(numargs), RParenLoc(rparenloc) {}
773
774protected:
775  // This version of the constructor is for derived classes.
776  CallExpr(StmtClass SC, Expr *fn, Expr **args, unsigned numargs, QualType t,
777           SourceLocation rparenloc);
778
779public:
780  CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
781           SourceLocation rparenloc);
782  ~CallExpr() {
783    delete [] SubExprs;
784  }
785
786  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
787  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
788  void setCallee(Expr *F) { SubExprs[FN] = F; }
789
790  /// getNumArgs - Return the number of actual arguments to this call.
791  ///
792  unsigned getNumArgs() const { return NumArgs; }
793
794  /// getArg - Return the specified argument.
795  Expr *getArg(unsigned Arg) {
796    assert(Arg < NumArgs && "Arg access out of range!");
797    return cast<Expr>(SubExprs[Arg+ARGS_START]);
798  }
799  const Expr *getArg(unsigned Arg) const {
800    assert(Arg < NumArgs && "Arg access out of range!");
801    return cast<Expr>(SubExprs[Arg+ARGS_START]);
802  }
803  /// setArg - Set the specified argument.
804  void setArg(unsigned Arg, Expr *ArgExpr) {
805    assert(Arg < NumArgs && "Arg access out of range!");
806    SubExprs[Arg+ARGS_START] = ArgExpr;
807  }
808
809  /// setNumArgs - This changes the number of arguments present in this call.
810  /// Any orphaned expressions are deleted by this, and any new operands are set
811  /// to null.
812  void setNumArgs(unsigned NumArgs);
813
814  typedef ExprIterator arg_iterator;
815  typedef ConstExprIterator const_arg_iterator;
816
817  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
818  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
819  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
820  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
821
822  /// getNumCommas - Return the number of commas that must have been present in
823  /// this function call.
824  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
825
826  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
827  /// not, return 0.
828  unsigned isBuiltinCall() const;
829
830  SourceLocation getRParenLoc() const { return RParenLoc; }
831
832  virtual SourceRange getSourceRange() const {
833    return SourceRange(getCallee()->getLocStart(), RParenLoc);
834  }
835
836  static bool classof(const Stmt *T) {
837    return T->getStmtClass() == CallExprClass ||
838           T->getStmtClass() == CXXOperatorCallExprClass ||
839           T->getStmtClass() == CXXMemberCallExprClass;
840  }
841  static bool classof(const CallExpr *) { return true; }
842  static bool classof(const CXXOperatorCallExpr *) { return true; }
843  static bool classof(const CXXMemberCallExpr *) { return true; }
844
845  // Iterators
846  virtual child_iterator child_begin();
847  virtual child_iterator child_end();
848
849  virtual void EmitImpl(llvm::Serializer& S) const;
850  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
851                              StmtClass SC);
852};
853
854/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
855///
856class MemberExpr : public Expr {
857  Stmt *Base;
858  NamedDecl *MemberDecl;
859  SourceLocation MemberLoc;
860  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
861public:
862  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
863             QualType ty)
864    : Expr(MemberExprClass, ty),
865      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
866
867  void setBase(Expr *E) { Base = E; }
868  Expr *getBase() const { return cast<Expr>(Base); }
869  NamedDecl *getMemberDecl() const { return MemberDecl; }
870  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
871  bool isArrow() const { return IsArrow; }
872
873  virtual SourceRange getSourceRange() const {
874    return SourceRange(getBase()->getLocStart(), MemberLoc);
875  }
876
877  virtual SourceLocation getExprLoc() const { return MemberLoc; }
878
879  static bool classof(const Stmt *T) {
880    return T->getStmtClass() == MemberExprClass;
881  }
882  static bool classof(const MemberExpr *) { return true; }
883
884  // Iterators
885  virtual child_iterator child_begin();
886  virtual child_iterator child_end();
887
888  virtual void EmitImpl(llvm::Serializer& S) const;
889  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
890};
891
892/// CompoundLiteralExpr - [C99 6.5.2.5]
893///
894class CompoundLiteralExpr : public Expr {
895  /// LParenLoc - If non-null, this is the location of the left paren in a
896  /// compound literal like "(int){4}".  This can be null if this is a
897  /// synthesized compound expression.
898  SourceLocation LParenLoc;
899  Stmt *Init;
900  bool FileScope;
901public:
902  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
903                      bool fileScope)
904    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
905      FileScope(fileScope) {}
906
907  const Expr *getInitializer() const { return cast<Expr>(Init); }
908  Expr *getInitializer() { return cast<Expr>(Init); }
909
910  bool isFileScope() const { return FileScope; }
911
912  SourceLocation getLParenLoc() const { return LParenLoc; }
913
914  virtual SourceRange getSourceRange() const {
915    // FIXME: Init should never be null.
916    if (!Init)
917      return SourceRange();
918    if (LParenLoc.isInvalid())
919      return Init->getSourceRange();
920    return SourceRange(LParenLoc, Init->getLocEnd());
921  }
922
923  static bool classof(const Stmt *T) {
924    return T->getStmtClass() == CompoundLiteralExprClass;
925  }
926  static bool classof(const CompoundLiteralExpr *) { return true; }
927
928  // Iterators
929  virtual child_iterator child_begin();
930  virtual child_iterator child_end();
931
932  virtual void EmitImpl(llvm::Serializer& S) const;
933  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
934};
935
936/// CastExpr - Base class for type casts, including both implicit
937/// casts (ImplicitCastExpr) and explicit casts that have some
938/// representation in the source code (ExplicitCastExpr's derived
939/// classes).
940class CastExpr : public Expr {
941  Stmt *Op;
942protected:
943  CastExpr(StmtClass SC, QualType ty, Expr *op) :
944    Expr(SC, ty,
945         // Cast expressions are type-dependent if the type is
946         // dependent (C++ [temp.dep.expr]p3).
947         ty->isDependentType(),
948         // Cast expressions are value-dependent if the type is
949         // dependent or if the subexpression is value-dependent.
950         ty->isDependentType() || (op && op->isValueDependent())),
951    Op(op) {}
952
953public:
954  Expr *getSubExpr() { return cast<Expr>(Op); }
955  const Expr *getSubExpr() const { return cast<Expr>(Op); }
956
957  static bool classof(const Stmt *T) {
958    StmtClass SC = T->getStmtClass();
959    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
960      return true;
961
962    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
963      return true;
964
965    return false;
966  }
967  static bool classof(const CastExpr *) { return true; }
968
969  // Iterators
970  virtual child_iterator child_begin();
971  virtual child_iterator child_end();
972};
973
974/// ImplicitCastExpr - Allows us to explicitly represent implicit type
975/// conversions, which have no direct representation in the original
976/// source code. For example: converting T[]->T*, void f()->void
977/// (*f)(), float->double, short->int, etc.
978///
979/// In C, implicit casts always produce rvalues. However, in C++, an
980/// implicit cast whose result is being bound to a reference will be
981/// an lvalue. For example:
982///
983/// @code
984/// class Base { };
985/// class Derived : public Base { };
986/// void f(Derived d) {
987///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
988/// }
989/// @endcode
990class ImplicitCastExpr : public CastExpr {
991  /// LvalueCast - Whether this cast produces an lvalue.
992  bool LvalueCast;
993
994public:
995  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
996    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
997
998  virtual SourceRange getSourceRange() const {
999    return getSubExpr()->getSourceRange();
1000  }
1001
1002  /// isLvalueCast - Whether this cast produces an lvalue.
1003  bool isLvalueCast() const { return LvalueCast; }
1004
1005  /// setLvalueCast - Set whether this cast produces an lvalue.
1006  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1007
1008  static bool classof(const Stmt *T) {
1009    return T->getStmtClass() == ImplicitCastExprClass;
1010  }
1011  static bool classof(const ImplicitCastExpr *) { return true; }
1012
1013  virtual void EmitImpl(llvm::Serializer& S) const;
1014  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1015};
1016
1017/// ExplicitCastExpr - An explicit cast written in the source
1018/// code.
1019///
1020/// This class is effectively an abstract class, because it provides
1021/// the basic representation of an explicitly-written cast without
1022/// specifying which kind of cast (C cast, functional cast, static
1023/// cast, etc.) was written; specific derived classes represent the
1024/// particular style of cast and its location information.
1025///
1026/// Unlike implicit casts, explicit cast nodes have two different
1027/// types: the type that was written into the source code, and the
1028/// actual type of the expression as determined by semantic
1029/// analysis. These types may differ slightly. For example, in C++ one
1030/// can cast to a reference type, which indicates that the resulting
1031/// expression will be an lvalue. The reference type, however, will
1032/// not be used as the type of the expression.
1033class ExplicitCastExpr : public CastExpr {
1034  /// TypeAsWritten - The type that this expression is casting to, as
1035  /// written in the source code.
1036  QualType TypeAsWritten;
1037
1038protected:
1039  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1040    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1041
1042public:
1043  /// getTypeAsWritten - Returns the type that this expression is
1044  /// casting to, as written in the source code.
1045  QualType getTypeAsWritten() const { return TypeAsWritten; }
1046
1047  static bool classof(const Stmt *T) {
1048    StmtClass SC = T->getStmtClass();
1049    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1050      return true;
1051    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1052      return true;
1053
1054    return false;
1055  }
1056  static bool classof(const ExplicitCastExpr *) { return true; }
1057};
1058
1059/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1060/// cast in C++ (C++ [expr.cast]), which uses the syntax
1061/// (Type)expr. For example: @c (int)f.
1062class CStyleCastExpr : public ExplicitCastExpr {
1063  SourceLocation LPLoc; // the location of the left paren
1064  SourceLocation RPLoc; // the location of the right paren
1065public:
1066  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1067                    SourceLocation l, SourceLocation r) :
1068    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1069    LPLoc(l), RPLoc(r) {}
1070
1071  SourceLocation getLParenLoc() const { return LPLoc; }
1072  SourceLocation getRParenLoc() const { return RPLoc; }
1073
1074  virtual SourceRange getSourceRange() const {
1075    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1076  }
1077  static bool classof(const Stmt *T) {
1078    return T->getStmtClass() == CStyleCastExprClass;
1079  }
1080  static bool classof(const CStyleCastExpr *) { return true; }
1081
1082  virtual void EmitImpl(llvm::Serializer& S) const;
1083  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1084};
1085
1086class BinaryOperator : public Expr {
1087public:
1088  enum Opcode {
1089    // Operators listed in order of precedence.
1090    // Note that additions to this should also update the StmtVisitor class.
1091    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1092    Add, Sub,         // [C99 6.5.6] Additive operators.
1093    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1094    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1095    EQ, NE,           // [C99 6.5.9] Equality operators.
1096    And,              // [C99 6.5.10] Bitwise AND operator.
1097    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1098    Or,               // [C99 6.5.12] Bitwise OR operator.
1099    LAnd,             // [C99 6.5.13] Logical AND operator.
1100    LOr,              // [C99 6.5.14] Logical OR operator.
1101    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1102    DivAssign, RemAssign,
1103    AddAssign, SubAssign,
1104    ShlAssign, ShrAssign,
1105    AndAssign, XorAssign,
1106    OrAssign,
1107    Comma             // [C99 6.5.17] Comma operator.
1108  };
1109private:
1110  enum { LHS, RHS, END_EXPR };
1111  Stmt* SubExprs[END_EXPR];
1112  Opcode Opc;
1113  SourceLocation OpLoc;
1114public:
1115
1116  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1117                 SourceLocation opLoc)
1118    : Expr(BinaryOperatorClass, ResTy,
1119           lhs->isTypeDependent() || rhs->isTypeDependent(),
1120           lhs->isValueDependent() || rhs->isValueDependent()),
1121      Opc(opc), OpLoc(opLoc) {
1122    SubExprs[LHS] = lhs;
1123    SubExprs[RHS] = rhs;
1124    assert(!isCompoundAssignmentOp() &&
1125           "Use ArithAssignBinaryOperator for compound assignments");
1126  }
1127
1128  SourceLocation getOperatorLoc() const { return OpLoc; }
1129  Opcode getOpcode() const { return Opc; }
1130  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1131  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1132  virtual SourceRange getSourceRange() const {
1133    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1134  }
1135
1136  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1137  /// corresponds to, e.g. "<<=".
1138  static const char *getOpcodeStr(Opcode Op);
1139
1140  /// predicates to categorize the respective opcodes.
1141  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1142  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1143  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1144  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1145
1146  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1147  bool isRelationalOp() const { return isRelationalOp(Opc); }
1148
1149  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1150  bool isEqualityOp() const { return isEqualityOp(Opc); }
1151
1152  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1153  bool isLogicalOp() const { return isLogicalOp(Opc); }
1154
1155  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1156  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1157  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1158
1159  static bool classof(const Stmt *S) {
1160    return S->getStmtClass() == BinaryOperatorClass ||
1161           S->getStmtClass() == CompoundAssignOperatorClass;
1162  }
1163  static bool classof(const BinaryOperator *) { return true; }
1164
1165  // Iterators
1166  virtual child_iterator child_begin();
1167  virtual child_iterator child_end();
1168
1169  virtual void EmitImpl(llvm::Serializer& S) const;
1170  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1171
1172protected:
1173  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1174                 SourceLocation oploc, bool dead)
1175    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1176    SubExprs[LHS] = lhs;
1177    SubExprs[RHS] = rhs;
1178  }
1179};
1180
1181/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1182/// track of the type the operation is performed in.  Due to the semantics of
1183/// these operators, the operands are promoted, the aritmetic performed, an
1184/// implicit conversion back to the result type done, then the assignment takes
1185/// place.  This captures the intermediate type which the computation is done
1186/// in.
1187class CompoundAssignOperator : public BinaryOperator {
1188  QualType ComputationType;
1189public:
1190  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1191                         QualType ResType, QualType CompType,
1192                         SourceLocation OpLoc)
1193    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1194      ComputationType(CompType) {
1195    assert(isCompoundAssignmentOp() &&
1196           "Only should be used for compound assignments");
1197  }
1198
1199  QualType getComputationType() const { return ComputationType; }
1200
1201  static bool classof(const CompoundAssignOperator *) { return true; }
1202  static bool classof(const Stmt *S) {
1203    return S->getStmtClass() == CompoundAssignOperatorClass;
1204  }
1205
1206  virtual void EmitImpl(llvm::Serializer& S) const;
1207  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1208                                            ASTContext& C);
1209};
1210
1211/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1212/// GNU "missing LHS" extension is in use.
1213///
1214class ConditionalOperator : public Expr {
1215  enum { COND, LHS, RHS, END_EXPR };
1216  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1217public:
1218  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1219    : Expr(ConditionalOperatorClass, t,
1220           // FIXME: the type of the conditional operator doesn't
1221           // depend on the type of the conditional, but the standard
1222           // seems to imply that it could. File a bug!
1223           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1224           (cond->isValueDependent() ||
1225            (lhs && lhs->isValueDependent()) ||
1226            (rhs && rhs->isValueDependent()))) {
1227    SubExprs[COND] = cond;
1228    SubExprs[LHS] = lhs;
1229    SubExprs[RHS] = rhs;
1230  }
1231
1232  // getCond - Return the expression representing the condition for
1233  //  the ?: operator.
1234  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1235
1236  // getTrueExpr - Return the subexpression representing the value of the ?:
1237  //  expression if the condition evaluates to true.  In most cases this value
1238  //  will be the same as getLHS() except a GCC extension allows the left
1239  //  subexpression to be omitted, and instead of the condition be returned.
1240  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1241  //  is only evaluated once.
1242  Expr *getTrueExpr() const {
1243    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1244  }
1245
1246  // getTrueExpr - Return the subexpression representing the value of the ?:
1247  // expression if the condition evaluates to false. This is the same as getRHS.
1248  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1249
1250  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1251  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1252
1253  virtual SourceRange getSourceRange() const {
1254    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1255  }
1256  static bool classof(const Stmt *T) {
1257    return T->getStmtClass() == ConditionalOperatorClass;
1258  }
1259  static bool classof(const ConditionalOperator *) { return true; }
1260
1261  // Iterators
1262  virtual child_iterator child_begin();
1263  virtual child_iterator child_end();
1264
1265  virtual void EmitImpl(llvm::Serializer& S) const;
1266  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1267};
1268
1269/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1270class AddrLabelExpr : public Expr {
1271  SourceLocation AmpAmpLoc, LabelLoc;
1272  LabelStmt *Label;
1273public:
1274  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1275                QualType t)
1276    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1277
1278  virtual SourceRange getSourceRange() const {
1279    return SourceRange(AmpAmpLoc, LabelLoc);
1280  }
1281
1282  LabelStmt *getLabel() const { return Label; }
1283
1284  static bool classof(const Stmt *T) {
1285    return T->getStmtClass() == AddrLabelExprClass;
1286  }
1287  static bool classof(const AddrLabelExpr *) { return true; }
1288
1289  // Iterators
1290  virtual child_iterator child_begin();
1291  virtual child_iterator child_end();
1292
1293  virtual void EmitImpl(llvm::Serializer& S) const;
1294  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1295};
1296
1297/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1298/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1299/// takes the value of the last subexpression.
1300class StmtExpr : public Expr {
1301  Stmt *SubStmt;
1302  SourceLocation LParenLoc, RParenLoc;
1303public:
1304  StmtExpr(CompoundStmt *substmt, QualType T,
1305           SourceLocation lp, SourceLocation rp) :
1306    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1307
1308  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1309  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1310
1311  virtual SourceRange getSourceRange() const {
1312    return SourceRange(LParenLoc, RParenLoc);
1313  }
1314
1315  static bool classof(const Stmt *T) {
1316    return T->getStmtClass() == StmtExprClass;
1317  }
1318  static bool classof(const StmtExpr *) { return true; }
1319
1320  // Iterators
1321  virtual child_iterator child_begin();
1322  virtual child_iterator child_end();
1323
1324  virtual void EmitImpl(llvm::Serializer& S) const;
1325  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1326};
1327
1328/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1329/// This AST node represents a function that returns 1 if two *types* (not
1330/// expressions) are compatible. The result of this built-in function can be
1331/// used in integer constant expressions.
1332class TypesCompatibleExpr : public Expr {
1333  QualType Type1;
1334  QualType Type2;
1335  SourceLocation BuiltinLoc, RParenLoc;
1336public:
1337  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1338                      QualType t1, QualType t2, SourceLocation RP) :
1339    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1340    BuiltinLoc(BLoc), RParenLoc(RP) {}
1341
1342  QualType getArgType1() const { return Type1; }
1343  QualType getArgType2() const { return Type2; }
1344
1345  virtual SourceRange getSourceRange() const {
1346    return SourceRange(BuiltinLoc, RParenLoc);
1347  }
1348  static bool classof(const Stmt *T) {
1349    return T->getStmtClass() == TypesCompatibleExprClass;
1350  }
1351  static bool classof(const TypesCompatibleExpr *) { return true; }
1352
1353  // Iterators
1354  virtual child_iterator child_begin();
1355  virtual child_iterator child_end();
1356
1357  virtual void EmitImpl(llvm::Serializer& S) const;
1358  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1359};
1360
1361/// ShuffleVectorExpr - clang-specific builtin-in function
1362/// __builtin_shufflevector.
1363/// This AST node represents a operator that does a constant
1364/// shuffle, similar to LLVM's shufflevector instruction. It takes
1365/// two vectors and a variable number of constant indices,
1366/// and returns the appropriately shuffled vector.
1367class ShuffleVectorExpr : public Expr {
1368  SourceLocation BuiltinLoc, RParenLoc;
1369
1370  // SubExprs - the list of values passed to the __builtin_shufflevector
1371  // function. The first two are vectors, and the rest are constant
1372  // indices.  The number of values in this list is always
1373  // 2+the number of indices in the vector type.
1374  Stmt **SubExprs;
1375  unsigned NumExprs;
1376
1377public:
1378  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1379                    QualType Type, SourceLocation BLoc,
1380                    SourceLocation RP) :
1381    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1382    RParenLoc(RP), NumExprs(nexpr) {
1383
1384    SubExprs = new Stmt*[nexpr];
1385    for (unsigned i = 0; i < nexpr; i++)
1386      SubExprs[i] = args[i];
1387  }
1388
1389  virtual SourceRange getSourceRange() const {
1390    return SourceRange(BuiltinLoc, RParenLoc);
1391  }
1392  static bool classof(const Stmt *T) {
1393    return T->getStmtClass() == ShuffleVectorExprClass;
1394  }
1395  static bool classof(const ShuffleVectorExpr *) { return true; }
1396
1397  ~ShuffleVectorExpr() {
1398    delete [] SubExprs;
1399  }
1400
1401  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1402  /// constant expression, the actual arguments passed in, and the function
1403  /// pointers.
1404  unsigned getNumSubExprs() const { return NumExprs; }
1405
1406  /// getExpr - Return the Expr at the specified index.
1407  Expr *getExpr(unsigned Index) {
1408    assert((Index < NumExprs) && "Arg access out of range!");
1409    return cast<Expr>(SubExprs[Index]);
1410  }
1411  const Expr *getExpr(unsigned Index) const {
1412    assert((Index < NumExprs) && "Arg access out of range!");
1413    return cast<Expr>(SubExprs[Index]);
1414  }
1415
1416  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1417    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1418    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1419  }
1420
1421  // Iterators
1422  virtual child_iterator child_begin();
1423  virtual child_iterator child_end();
1424
1425  virtual void EmitImpl(llvm::Serializer& S) const;
1426  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1427};
1428
1429/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1430/// This AST node is similar to the conditional operator (?:) in C, with
1431/// the following exceptions:
1432/// - the test expression must be a constant expression.
1433/// - the expression returned has it's type unaltered by promotion rules.
1434/// - does not evaluate the expression that was not chosen.
1435class ChooseExpr : public Expr {
1436  enum { COND, LHS, RHS, END_EXPR };
1437  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1438  SourceLocation BuiltinLoc, RParenLoc;
1439public:
1440  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1441             SourceLocation RP)
1442    : Expr(ChooseExprClass, t),
1443      BuiltinLoc(BLoc), RParenLoc(RP) {
1444      SubExprs[COND] = cond;
1445      SubExprs[LHS] = lhs;
1446      SubExprs[RHS] = rhs;
1447    }
1448
1449  /// isConditionTrue - Return true if the condition is true.  This is always
1450  /// statically knowable for a well-formed choosexpr.
1451  bool isConditionTrue(ASTContext &C) const;
1452
1453  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1454  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1455  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1456
1457  virtual SourceRange getSourceRange() const {
1458    return SourceRange(BuiltinLoc, RParenLoc);
1459  }
1460  static bool classof(const Stmt *T) {
1461    return T->getStmtClass() == ChooseExprClass;
1462  }
1463  static bool classof(const ChooseExpr *) { return true; }
1464
1465  // Iterators
1466  virtual child_iterator child_begin();
1467  virtual child_iterator child_end();
1468
1469  virtual void EmitImpl(llvm::Serializer& S) const;
1470  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1471};
1472
1473/// GNUNullExpr - Implements the GNU __null extension, which is a name
1474/// for a null pointer constant that has integral type (e.g., int or
1475/// long) and is the same size and alignment as a pointer. The __null
1476/// extension is typically only used by system headers, which define
1477/// NULL as __null in C++ rather than using 0 (which is an integer
1478/// that may not match the size of a pointer).
1479class GNUNullExpr : public Expr {
1480  /// TokenLoc - The location of the __null keyword.
1481  SourceLocation TokenLoc;
1482
1483public:
1484  GNUNullExpr(QualType Ty, SourceLocation Loc)
1485    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1486
1487  /// getTokenLocation - The location of the __null token.
1488  SourceLocation getTokenLocation() const { return TokenLoc; }
1489
1490  virtual SourceRange getSourceRange() const {
1491    return SourceRange(TokenLoc);
1492  }
1493  static bool classof(const Stmt *T) {
1494    return T->getStmtClass() == GNUNullExprClass;
1495  }
1496  static bool classof(const GNUNullExpr *) { return true; }
1497
1498  // Iterators
1499  virtual child_iterator child_begin();
1500  virtual child_iterator child_end();
1501
1502  virtual void EmitImpl(llvm::Serializer& S) const;
1503  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1504};
1505
1506/// OverloadExpr - Clang builtin function __builtin_overload.
1507/// This AST node provides a way to overload functions in C.
1508///
1509/// The first argument is required to be a constant expression, for the number
1510/// of arguments passed to each candidate function.
1511///
1512/// The next N arguments, where N is the value of the constant expression,
1513/// are the values to be passed as arguments.
1514///
1515/// The rest of the arguments are values of pointer to function type, which
1516/// are the candidate functions for overloading.
1517///
1518/// The result is a equivalent to a CallExpr taking N arguments to the
1519/// candidate function whose parameter types match the types of the N arguments.
1520///
1521/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1522/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1523/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1524class OverloadExpr : public Expr {
1525  // SubExprs - the list of values passed to the __builtin_overload function.
1526  // SubExpr[0] is a constant expression
1527  // SubExpr[1-N] are the parameters to pass to the matching function call
1528  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1529  Stmt **SubExprs;
1530
1531  // NumExprs - the size of the SubExprs array
1532  unsigned NumExprs;
1533
1534  // The index of the matching candidate function
1535  unsigned FnIndex;
1536
1537  SourceLocation BuiltinLoc;
1538  SourceLocation RParenLoc;
1539public:
1540  OverloadExpr(Expr **args, unsigned nexprs, unsigned idx, QualType t,
1541               SourceLocation bloc, SourceLocation rploc)
1542    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1543      BuiltinLoc(bloc), RParenLoc(rploc) {
1544    SubExprs = new Stmt*[nexprs];
1545    for (unsigned i = 0; i != nexprs; ++i)
1546      SubExprs[i] = args[i];
1547  }
1548  ~OverloadExpr() {
1549    delete [] SubExprs;
1550  }
1551
1552  /// arg_begin - Return a pointer to the list of arguments that will be passed
1553  /// to the matching candidate function, skipping over the initial constant
1554  /// expression.
1555  typedef ConstExprIterator const_arg_iterator;
1556  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1557  const_arg_iterator arg_end(ASTContext& Ctx) const {
1558    return &SubExprs[0]+1+getNumArgs(Ctx);
1559  }
1560
1561  /// getNumArgs - Return the number of arguments to pass to the candidate
1562  /// functions.
1563  unsigned getNumArgs(ASTContext &Ctx) const {
1564    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1565  }
1566
1567  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1568  /// constant expression, the actual arguments passed in, and the function
1569  /// pointers.
1570  unsigned getNumSubExprs() const { return NumExprs; }
1571
1572  /// getExpr - Return the Expr at the specified index.
1573  Expr *getExpr(unsigned Index) const {
1574    assert((Index < NumExprs) && "Arg access out of range!");
1575    return cast<Expr>(SubExprs[Index]);
1576  }
1577
1578  /// getFn - Return the matching candidate function for this OverloadExpr.
1579  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1580
1581  virtual SourceRange getSourceRange() const {
1582    return SourceRange(BuiltinLoc, RParenLoc);
1583  }
1584  static bool classof(const Stmt *T) {
1585    return T->getStmtClass() == OverloadExprClass;
1586  }
1587  static bool classof(const OverloadExpr *) { return true; }
1588
1589  // Iterators
1590  virtual child_iterator child_begin();
1591  virtual child_iterator child_end();
1592
1593  virtual void EmitImpl(llvm::Serializer& S) const;
1594  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1595};
1596
1597/// VAArgExpr, used for the builtin function __builtin_va_start.
1598class VAArgExpr : public Expr {
1599  Stmt *Val;
1600  SourceLocation BuiltinLoc, RParenLoc;
1601public:
1602  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1603    : Expr(VAArgExprClass, t),
1604      Val(e),
1605      BuiltinLoc(BLoc),
1606      RParenLoc(RPLoc) { }
1607
1608  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1609  Expr *getSubExpr() { return cast<Expr>(Val); }
1610  virtual SourceRange getSourceRange() const {
1611    return SourceRange(BuiltinLoc, RParenLoc);
1612  }
1613  static bool classof(const Stmt *T) {
1614    return T->getStmtClass() == VAArgExprClass;
1615  }
1616  static bool classof(const VAArgExpr *) { return true; }
1617
1618  // Iterators
1619  virtual child_iterator child_begin();
1620  virtual child_iterator child_end();
1621
1622  virtual void EmitImpl(llvm::Serializer& S) const;
1623  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1624};
1625
1626/// @brief Describes an C or C++ initializer list.
1627///
1628/// InitListExpr describes an initializer list, which can be used to
1629/// initialize objects of different types, including
1630/// struct/class/union types, arrays, and vectors. For example:
1631///
1632/// @code
1633/// struct foo x = { 1, { 2, 3 } };
1634/// @endcode
1635///
1636/// Prior to semantic analysis, an initializer list will represent the
1637/// initializer list as written by the user, but will have the
1638/// placeholder type "void". This initializer list is called the
1639/// syntactic form of the initializer, and may contain C99 designated
1640/// initializers (represented as DesignatedInitExprs), initializations
1641/// of subobject members without explicit braces, and so on. Clients
1642/// interested in the original syntax of the initializer list should
1643/// use the syntactic form of the initializer list.
1644///
1645/// After semantic analysis, the initializer list will represent the
1646/// semantic form of the initializer, where the initializations of all
1647/// subobjects are made explicit with nested InitListExpr nodes and
1648/// C99 designators have been eliminated by placing the designated
1649/// initializations into the subobject they initialize. Additionally,
1650/// any "holes" in the initialization, where no initializer has been
1651/// specified for a particular subobject, will be replaced with
1652/// implicitly-generated CXXZeroInitValueExpr expressions that
1653/// value-initialize the subobjects. Note, however, that the
1654/// initializer lists may still have fewer initializers than there are
1655/// elements to initialize within the object.
1656///
1657/// Given the semantic form of the initializer list, one can retrieve
1658/// the original syntactic form of that initializer list (if it
1659/// exists) using getSyntacticForm(). Since many initializer lists
1660/// have the same syntactic and semantic forms, getSyntacticForm() may
1661/// return NULL, indicating that the current initializer list also
1662/// serves as its syntactic form.
1663class InitListExpr : public Expr {
1664  std::vector<Stmt *> InitExprs;
1665  SourceLocation LBraceLoc, RBraceLoc;
1666
1667  /// Contains the initializer list that describes the syntactic form
1668  /// written in the source code.
1669  InitListExpr *SyntacticForm;
1670
1671public:
1672  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1673               SourceLocation rbraceloc);
1674
1675  unsigned getNumInits() const { return InitExprs.size(); }
1676
1677  const Expr* getInit(unsigned Init) const {
1678    assert(Init < getNumInits() && "Initializer access out of range!");
1679    return cast_or_null<Expr>(InitExprs[Init]);
1680  }
1681
1682  Expr* getInit(unsigned Init) {
1683    assert(Init < getNumInits() && "Initializer access out of range!");
1684    return cast_or_null<Expr>(InitExprs[Init]);
1685  }
1686
1687  void setInit(unsigned Init, Expr *expr) {
1688    assert(Init < getNumInits() && "Initializer access out of range!");
1689    InitExprs[Init] = expr;
1690  }
1691
1692  /// @brief Specify the number of initializers
1693  ///
1694  /// If there are more than @p NumInits initializers, the remaining
1695  /// initializers will be destroyed. If there are fewer than @p
1696  /// NumInits initializers, NULL expressions will be added for the
1697  /// unknown initializers.
1698  void resizeInits(ASTContext &Context, unsigned NumInits);
1699
1700  /// @brief Updates the initializer at index @p Init with the new
1701  /// expression @p expr, and returns the old expression at that
1702  /// location.
1703  ///
1704  /// When @p Init is out of range for this initializer list, the
1705  /// initializer list will be extended with NULL expressions to
1706  /// accomodate the new entry.
1707  Expr *updateInit(unsigned Init, Expr *expr);
1708
1709  // Explicit InitListExpr's originate from source code (and have valid source
1710  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1711  bool isExplicit() {
1712    return LBraceLoc.isValid() && RBraceLoc.isValid();
1713  }
1714
1715  /// @brief Retrieve the initializer list that describes the
1716  /// syntactic form of the initializer.
1717  ///
1718  ///
1719  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1720  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1721
1722  virtual SourceRange getSourceRange() const {
1723    return SourceRange(LBraceLoc, RBraceLoc);
1724  }
1725  static bool classof(const Stmt *T) {
1726    return T->getStmtClass() == InitListExprClass;
1727  }
1728  static bool classof(const InitListExpr *) { return true; }
1729
1730  // Iterators
1731  virtual child_iterator child_begin();
1732  virtual child_iterator child_end();
1733
1734  typedef std::vector<Stmt *>::iterator iterator;
1735  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1736
1737  iterator begin() { return InitExprs.begin(); }
1738  iterator end() { return InitExprs.end(); }
1739  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1740  reverse_iterator rend() { return InitExprs.rend(); }
1741
1742  // Serailization.
1743  virtual void EmitImpl(llvm::Serializer& S) const;
1744  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1745
1746private:
1747  // Used by serializer.
1748  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1749};
1750
1751/// @brief Represents a C99 designated initializer expression.
1752///
1753/// A designated initializer expression (C99 6.7.8) contains one or
1754/// more designators (which can be field designators, array
1755/// designators, or GNU array-range designators) followed by an
1756/// expression that initializes the field or element(s) that the
1757/// designators refer to. For example, given:
1758///
1759/// @code
1760/// struct point {
1761///   double x;
1762///   double y;
1763/// };
1764/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1765/// @endcode
1766///
1767/// The InitListExpr contains three DesignatedInitExprs, the first of
1768/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1769/// designators, one array designator for @c [2] followed by one field
1770/// designator for @c .y. The initalization expression will be 1.0.
1771class DesignatedInitExpr : public Expr {
1772  /// The location of the '=' or ':' prior to the actual initializer
1773  /// expression.
1774  SourceLocation EqualOrColonLoc;
1775
1776  /// Whether this designated initializer used the GNU deprecated ':'
1777  /// syntax rather than the C99 '=' syntax.
1778  bool UsesColonSyntax : 1;
1779
1780  /// The number of designators in this initializer expression.
1781  unsigned NumDesignators : 15;
1782
1783  /// The number of subexpressions of this initializer expression,
1784  /// which contains both the initializer and any additional
1785  /// expressions used by array and array-range designators.
1786  unsigned NumSubExprs : 16;
1787
1788  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1789                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1790                     unsigned NumSubExprs)
1791    : Expr(DesignatedInitExprClass, Ty),
1792      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1793      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1794
1795public:
1796  /// A field designator, e.g., ".x".
1797  struct FieldDesignator {
1798    /// Refers to the field that is being initialized. The low bit
1799    /// of this field determines whether this is actually a pointer
1800    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1801    /// initially constructed, a field designator will store an
1802    /// IdentifierInfo*. After semantic analysis has resolved that
1803    /// name, the field designator will instead store a FieldDecl*.
1804    uintptr_t NameOrField;
1805
1806    /// The location of the '.' in the designated initializer.
1807    unsigned DotLoc;
1808
1809    /// The location of the field name in the designated initializer.
1810    unsigned FieldLoc;
1811  };
1812
1813  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1814  struct ArrayOrRangeDesignator {
1815    /// Location of the first index expression within the designated
1816    /// initializer expression's list of subexpressions.
1817    unsigned Index;
1818    /// The location of the '[' starting the array range designator.
1819    unsigned LBracketLoc;
1820    /// The location of the ellipsis separating the start and end
1821    /// indices. Only valid for GNU array-range designators.
1822    unsigned EllipsisLoc;
1823    /// The location of the ']' terminating the array range designator.
1824    unsigned RBracketLoc;
1825  };
1826
1827  /// @brief Represents a single C99 designator.
1828  ///
1829  /// @todo This class is infuriatingly similar to clang::Designator,
1830  /// but minor differences (storing indices vs. storing pointers)
1831  /// keep us from reusing it. Try harder, later, to rectify these
1832  /// differences.
1833  class Designator {
1834    /// @brief The kind of designator this describes.
1835    enum {
1836      FieldDesignator,
1837      ArrayDesignator,
1838      ArrayRangeDesignator
1839    } Kind;
1840
1841    union {
1842      /// A field designator, e.g., ".x".
1843      struct FieldDesignator Field;
1844      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1845      struct ArrayOrRangeDesignator ArrayOrRange;
1846    };
1847    friend class DesignatedInitExpr;
1848
1849  public:
1850    /// @brief Initializes a field designator.
1851    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1852               SourceLocation FieldLoc)
1853      : Kind(FieldDesignator) {
1854      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1855      Field.DotLoc = DotLoc.getRawEncoding();
1856      Field.FieldLoc = FieldLoc.getRawEncoding();
1857    }
1858
1859    /// @brief Initializes an array designator.
1860    Designator(unsigned Index, SourceLocation LBracketLoc,
1861               SourceLocation RBracketLoc)
1862      : Kind(ArrayDesignator) {
1863      ArrayOrRange.Index = Index;
1864      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1865      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1866      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1867    }
1868
1869    /// @brief Initializes a GNU array-range designator.
1870    Designator(unsigned Index, SourceLocation LBracketLoc,
1871               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1872      : Kind(ArrayRangeDesignator) {
1873      ArrayOrRange.Index = Index;
1874      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1875      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1876      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1877    }
1878
1879    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1880    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1881    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1882
1883    IdentifierInfo * getFieldName();
1884
1885    FieldDecl *getField() {
1886      assert(Kind == FieldDesignator && "Only valid on a field designator");
1887      if (Field.NameOrField & 0x01)
1888        return 0;
1889      else
1890        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1891    }
1892
1893    void setField(FieldDecl *FD) {
1894      assert(Kind == FieldDesignator && "Only valid on a field designator");
1895      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1896    }
1897
1898    SourceLocation getDotLoc() const {
1899      assert(Kind == FieldDesignator && "Only valid on a field designator");
1900      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1901    }
1902
1903    SourceLocation getFieldLoc() const {
1904      assert(Kind == FieldDesignator && "Only valid on a field designator");
1905      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1906    }
1907
1908    SourceLocation getLBracketLoc() const {
1909      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1910             "Only valid on an array or array-range designator");
1911      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1912    }
1913
1914    SourceLocation getRBracketLoc() const {
1915      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1916             "Only valid on an array or array-range designator");
1917      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1918    }
1919
1920    SourceLocation getEllipsisLoc() const {
1921      assert(Kind == ArrayRangeDesignator &&
1922             "Only valid on an array-range designator");
1923      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1924    }
1925
1926    SourceLocation getStartLocation() const {
1927      if (Kind == FieldDesignator)
1928        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1929      else
1930        return getLBracketLoc();
1931    }
1932  };
1933
1934  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1935                                    unsigned NumDesignators,
1936                                    Expr **IndexExprs, unsigned NumIndexExprs,
1937                                    SourceLocation EqualOrColonLoc,
1938                                    bool UsesColonSyntax, Expr *Init);
1939
1940  /// @brief Returns the number of designators in this initializer.
1941  unsigned size() const { return NumDesignators; }
1942
1943  // Iterator access to the designators.
1944  typedef Designator* designators_iterator;
1945  designators_iterator designators_begin();
1946  designators_iterator designators_end();
1947
1948  Expr *getArrayIndex(const Designator& D);
1949  Expr *getArrayRangeStart(const Designator& D);
1950  Expr *getArrayRangeEnd(const Designator& D);
1951
1952  /// @brief Retrieve the location of the '=' that precedes the
1953  /// initializer value itself, if present.
1954  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
1955
1956  /// @brief Determines whether this designated initializer used the
1957  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
1958  bool usesColonSyntax() const { return UsesColonSyntax; }
1959
1960  /// @brief Retrieve the initializer value.
1961  Expr *getInit() const {
1962    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
1963  }
1964
1965  void setInit(Expr *init) {
1966    *child_begin() = init;
1967  }
1968
1969  virtual SourceRange getSourceRange() const;
1970
1971  static bool classof(const Stmt *T) {
1972    return T->getStmtClass() == DesignatedInitExprClass;
1973  }
1974  static bool classof(const DesignatedInitExpr *) { return true; }
1975
1976  // Iterators
1977  virtual child_iterator child_begin();
1978  virtual child_iterator child_end();
1979};
1980
1981//===----------------------------------------------------------------------===//
1982// Clang Extensions
1983//===----------------------------------------------------------------------===//
1984
1985
1986/// ExtVectorElementExpr - This represents access to specific elements of a
1987/// vector, and may occur on the left hand side or right hand side.  For example
1988/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
1989///
1990class ExtVectorElementExpr : public Expr {
1991  Stmt *Base;
1992  IdentifierInfo &Accessor;
1993  SourceLocation AccessorLoc;
1994public:
1995  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
1996                       SourceLocation loc)
1997    : Expr(ExtVectorElementExprClass, ty),
1998      Base(base), Accessor(accessor), AccessorLoc(loc) {}
1999
2000  const Expr *getBase() const { return cast<Expr>(Base); }
2001  Expr *getBase() { return cast<Expr>(Base); }
2002
2003  IdentifierInfo &getAccessor() const { return Accessor; }
2004
2005  /// getNumElements - Get the number of components being selected.
2006  unsigned getNumElements() const;
2007
2008  /// containsDuplicateElements - Return true if any element access is
2009  /// repeated.
2010  bool containsDuplicateElements() const;
2011
2012  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2013  /// aggregate Constant of ConstantInt(s).
2014  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2015
2016  virtual SourceRange getSourceRange() const {
2017    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2018  }
2019
2020  static bool classof(const Stmt *T) {
2021    return T->getStmtClass() == ExtVectorElementExprClass;
2022  }
2023  static bool classof(const ExtVectorElementExpr *) { return true; }
2024
2025  // Iterators
2026  virtual child_iterator child_begin();
2027  virtual child_iterator child_end();
2028
2029  virtual void EmitImpl(llvm::Serializer& S) const;
2030  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2031};
2032
2033
2034/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2035/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2036class BlockExpr : public Expr {
2037protected:
2038  BlockDecl *TheBlock;
2039public:
2040  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
2041            TheBlock(BD) {}
2042
2043  BlockDecl *getBlockDecl() { return TheBlock; }
2044
2045  // Convenience functions for probing the underlying BlockDecl.
2046  SourceLocation getCaretLocation() const;
2047  const Stmt *getBody() const;
2048  Stmt *getBody();
2049
2050  virtual SourceRange getSourceRange() const {
2051    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2052  }
2053
2054  /// getFunctionType - Return the underlying function type for this block.
2055  const FunctionType *getFunctionType() const;
2056
2057  static bool classof(const Stmt *T) {
2058    return T->getStmtClass() == BlockExprClass;
2059  }
2060  static bool classof(const BlockExpr *) { return true; }
2061
2062  // Iterators
2063  virtual child_iterator child_begin();
2064  virtual child_iterator child_end();
2065
2066  virtual void EmitImpl(llvm::Serializer& S) const;
2067  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2068};
2069
2070/// BlockDeclRefExpr - A reference to a declared variable, function,
2071/// enum, etc.
2072class BlockDeclRefExpr : public Expr {
2073  ValueDecl *D;
2074  SourceLocation Loc;
2075  bool IsByRef;
2076public:
2077  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2078       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2079
2080  ValueDecl *getDecl() { return D; }
2081  const ValueDecl *getDecl() const { return D; }
2082  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2083
2084  bool isByRef() const { return IsByRef; }
2085
2086  static bool classof(const Stmt *T) {
2087    return T->getStmtClass() == BlockDeclRefExprClass;
2088  }
2089  static bool classof(const BlockDeclRefExpr *) { return true; }
2090
2091  // Iterators
2092  virtual child_iterator child_begin();
2093  virtual child_iterator child_end();
2094
2095  virtual void EmitImpl(llvm::Serializer& S) const;
2096  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2097};
2098
2099}  // end namespace clang
2100
2101#endif
2102