Expr.h revision 60adf4acf40b72227740bf966fb87eebddff3f37
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "clang/AST/UsuallyTinyPtrVector.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include <vector>
28
29namespace clang {
30  class ASTContext;
31  class APValue;
32  class Decl;
33  class IdentifierInfo;
34  class ParmVarDecl;
35  class NamedDecl;
36  class ValueDecl;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXOperatorCallExpr;
40  class CXXMemberCallExpr;
41  class TemplateArgumentLoc;
42  class TemplateArgumentListInfo;
43
44/// \brief A simple array of base specifiers.
45typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
46
47/// Expr - This represents one expression.  Note that Expr's are subclasses of
48/// Stmt.  This allows an expression to be transparently used any place a Stmt
49/// is required.
50///
51class Expr : public Stmt {
52  QualType TR;
53
54  virtual void ANCHOR(); // key function.
55protected:
56  /// TypeDependent - Whether this expression is type-dependent
57  /// (C++ [temp.dep.expr]).
58  bool TypeDependent : 1;
59
60  /// ValueDependent - Whether this expression is value-dependent
61  /// (C++ [temp.dep.constexpr]).
62  bool ValueDependent : 1;
63
64  enum { BitsRemaining = 30 };
65
66  Expr(StmtClass SC, QualType T, bool TD, bool VD)
67    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
68    setType(T);
69  }
70
71  /// \brief Construct an empty expression.
72  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
73
74public:
75  /// \brief Increases the reference count for this expression.
76  ///
77  /// Invoke the Retain() operation when this expression
78  /// is being shared by another owner.
79  Expr *Retain() {
80    Stmt::Retain();
81    return this;
82  }
83
84  QualType getType() const { return TR; }
85  void setType(QualType t) {
86    // In C++, the type of an expression is always adjusted so that it
87    // will not have reference type an expression will never have
88    // reference type (C++ [expr]p6). Use
89    // QualType::getNonReferenceType() to retrieve the non-reference
90    // type. Additionally, inspect Expr::isLvalue to determine whether
91    // an expression that is adjusted in this manner should be
92    // considered an lvalue.
93    assert((t.isNull() || !t->isReferenceType()) &&
94           "Expressions can't have reference type");
95
96    TR = t;
97  }
98
99  /// isValueDependent - Determines whether this expression is
100  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
101  /// array bound of "Chars" in the following example is
102  /// value-dependent.
103  /// @code
104  /// template<int Size, char (&Chars)[Size]> struct meta_string;
105  /// @endcode
106  bool isValueDependent() const { return ValueDependent; }
107
108  /// \brief Set whether this expression is value-dependent or not.
109  void setValueDependent(bool VD) { ValueDependent = VD; }
110
111  /// isTypeDependent - Determines whether this expression is
112  /// type-dependent (C++ [temp.dep.expr]), which means that its type
113  /// could change from one template instantiation to the next. For
114  /// example, the expressions "x" and "x + y" are type-dependent in
115  /// the following code, but "y" is not type-dependent:
116  /// @code
117  /// template<typename T>
118  /// void add(T x, int y) {
119  ///   x + y;
120  /// }
121  /// @endcode
122  bool isTypeDependent() const { return TypeDependent; }
123
124  /// \brief Set whether this expression is type-dependent or not.
125  void setTypeDependent(bool TD) { TypeDependent = TD; }
126
127  /// SourceLocation tokens are not useful in isolation - they are low level
128  /// value objects created/interpreted by SourceManager. We assume AST
129  /// clients will have a pointer to the respective SourceManager.
130  virtual SourceRange getSourceRange() const = 0;
131
132  /// getExprLoc - Return the preferred location for the arrow when diagnosing
133  /// a problem with a generic expression.
134  virtual SourceLocation getExprLoc() const { return getLocStart(); }
135
136  /// isUnusedResultAWarning - Return true if this immediate expression should
137  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
138  /// with location to warn on and the source range[s] to report with the
139  /// warning.
140  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
141                              SourceRange &R2, ASTContext &Ctx) const;
142
143  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
144  /// incomplete type other than void. Nonarray expressions that can be lvalues:
145  ///  - name, where name must be a variable
146  ///  - e[i]
147  ///  - (e), where e must be an lvalue
148  ///  - e.name, where e must be an lvalue
149  ///  - e->name
150  ///  - *e, the type of e cannot be a function type
151  ///  - string-constant
152  ///  - reference type [C++ [expr]]
153  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
154  ///
155  enum isLvalueResult {
156    LV_Valid,
157    LV_NotObjectType,
158    LV_IncompleteVoidType,
159    LV_DuplicateVectorComponents,
160    LV_InvalidExpression,
161    LV_MemberFunction,
162    LV_SubObjCPropertySetting,
163    LV_ClassTemporary
164  };
165  isLvalueResult isLvalue(ASTContext &Ctx) const;
166
167  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
168  /// does not have an incomplete type, does not have a const-qualified type,
169  /// and if it is a structure or union, does not have any member (including,
170  /// recursively, any member or element of all contained aggregates or unions)
171  /// with a const-qualified type.
172  ///
173  /// \param Loc [in] [out] - A source location which *may* be filled
174  /// in with the location of the expression making this a
175  /// non-modifiable lvalue, if specified.
176  enum isModifiableLvalueResult {
177    MLV_Valid,
178    MLV_NotObjectType,
179    MLV_IncompleteVoidType,
180    MLV_DuplicateVectorComponents,
181    MLV_InvalidExpression,
182    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
183    MLV_IncompleteType,
184    MLV_ConstQualified,
185    MLV_ArrayType,
186    MLV_NotBlockQualified,
187    MLV_ReadonlyProperty,
188    MLV_NoSetterProperty,
189    MLV_MemberFunction,
190    MLV_SubObjCPropertySetting,
191    MLV_ClassTemporary
192  };
193  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
194                                              SourceLocation *Loc = 0) const;
195
196  /// \brief The return type of classify(). Represents the C++0x expression
197  ///        taxonomy.
198  class Classification {
199  public:
200    /// \brief The various classification results. Most of these mean prvalue.
201    enum Kinds {
202      CL_LValue,
203      CL_XValue,
204      CL_Function, // Functions cannot be lvalues in C.
205      CL_Void, // Void cannot be an lvalue in C.
206      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
207      CL_MemberFunction, // An expression referring to a member function
208      CL_SubObjCPropertySetting,
209      CL_ClassTemporary, // A prvalue of class type
210      CL_PRValue // A prvalue for any other reason, of any other type
211    };
212    /// \brief The results of modification testing.
213    enum ModifiableType {
214      CM_Untested, // testModifiable was false.
215      CM_Modifiable,
216      CM_RValue, // Not modifiable because it's an rvalue
217      CM_Function, // Not modifiable because it's a function; C++ only
218      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
219      CM_NotBlockQualified, // Not captured in the closure
220      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
221      CM_ConstQualified,
222      CM_ArrayType,
223      CM_IncompleteType
224    };
225
226  private:
227    friend class Expr;
228
229    unsigned short Kind;
230    unsigned short Modifiable;
231
232    explicit Classification(Kinds k, ModifiableType m)
233      : Kind(k), Modifiable(m)
234    {}
235
236  public:
237    Classification() {}
238
239    Kinds getKind() const { return static_cast<Kinds>(Kind); }
240    ModifiableType getModifiable() const {
241      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
242      return static_cast<ModifiableType>(Modifiable);
243    }
244    bool isLValue() const { return Kind == CL_LValue; }
245    bool isXValue() const { return Kind == CL_XValue; }
246    bool isGLValue() const { return Kind <= CL_XValue; }
247    bool isPRValue() const { return Kind >= CL_Function; }
248    bool isRValue() const { return Kind >= CL_XValue; }
249    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
250  };
251  /// \brief classify - Classify this expression according to the C++0x
252  ///        expression taxonomy.
253  ///
254  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
255  /// old lvalue vs rvalue. This function determines the type of expression this
256  /// is. There are three expression types:
257  /// - lvalues are classical lvalues as in C++03.
258  /// - prvalues are equivalent to rvalues in C++03.
259  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
260  ///   function returning an rvalue reference.
261  /// lvalues and xvalues are collectively referred to as glvalues, while
262  /// prvalues and xvalues together form rvalues.
263  Classification Classify(ASTContext &Ctx) const {
264    return ClassifyImpl(Ctx, 0);
265  }
266
267  /// \brief classifyModifiable - Classify this expression according to the
268  ///        C++0x expression taxonomy, and see if it is valid on the left side
269  ///        of an assignment.
270  ///
271  /// This function extends classify in that it also tests whether the
272  /// expression is modifiable (C99 6.3.2.1p1).
273  /// \param Loc A source location that might be filled with a relevant location
274  ///            if the expression is not modifiable.
275  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
276    return ClassifyImpl(Ctx, &Loc);
277  }
278
279private:
280  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
281
282public:
283
284  /// \brief If this expression refers to a bit-field, retrieve the
285  /// declaration of that bit-field.
286  FieldDecl *getBitField();
287
288  const FieldDecl *getBitField() const {
289    return const_cast<Expr*>(this)->getBitField();
290  }
291
292  /// \brief Returns whether this expression refers to a vector element.
293  bool refersToVectorElement() const;
294
295  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
296  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
297  /// but also int expressions which are produced by things like comparisons in
298  /// C.
299  bool isKnownToHaveBooleanValue() const;
300
301  /// isIntegerConstantExpr - Return true if this expression is a valid integer
302  /// constant expression, and, if so, return its value in Result.  If not a
303  /// valid i-c-e, return false and fill in Loc (if specified) with the location
304  /// of the invalid expression.
305  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
306                             SourceLocation *Loc = 0,
307                             bool isEvaluated = true) const;
308  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
309    llvm::APSInt X;
310    return isIntegerConstantExpr(X, Ctx, Loc);
311  }
312  /// isConstantInitializer - Returns true if this expression is a constant
313  /// initializer, which can be emitted at compile-time.
314  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
315
316  /// EvalResult is a struct with detailed info about an evaluated expression.
317  struct EvalResult {
318    /// Val - This is the value the expression can be folded to.
319    APValue Val;
320
321    /// HasSideEffects - Whether the evaluated expression has side effects.
322    /// For example, (f() && 0) can be folded, but it still has side effects.
323    bool HasSideEffects;
324
325    /// Diag - If the expression is unfoldable, then Diag contains a note
326    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
327    /// position for the error, and DiagExpr is the expression that caused
328    /// the error.
329    /// If the expression is foldable, but not an integer constant expression,
330    /// Diag contains a note diagnostic that describes why it isn't an integer
331    /// constant expression. If the expression *is* an integer constant
332    /// expression, then Diag will be zero.
333    unsigned Diag;
334    const Expr *DiagExpr;
335    SourceLocation DiagLoc;
336
337    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
338
339    // isGlobalLValue - Return true if the evaluated lvalue expression
340    // is global.
341    bool isGlobalLValue() const;
342    // hasSideEffects - Return true if the evaluated expression has
343    // side effects.
344    bool hasSideEffects() const {
345      return HasSideEffects;
346    }
347  };
348
349  /// Evaluate - Return true if this is a constant which we can fold using
350  /// any crazy technique (that has nothing to do with language standards) that
351  /// we want to.  If this function returns true, it returns the folded constant
352  /// in Result.
353  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
354
355  /// EvaluateAsBooleanCondition - Return true if this is a constant
356  /// which we we can fold and convert to a boolean condition using
357  /// any crazy technique that we want to.
358  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
359
360  /// isEvaluatable - Call Evaluate to see if this expression can be constant
361  /// folded, but discard the result.
362  bool isEvaluatable(ASTContext &Ctx) const;
363
364  /// HasSideEffects - This routine returns true for all those expressions
365  /// which must be evaluated each time and must not be optimization away
366  /// or evaluated at compile time. Example is a function call, volatile
367  /// variable read.
368  bool HasSideEffects(ASTContext &Ctx) const;
369
370  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
371  /// must be called on an expression that constant folds to an integer.
372  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
373
374  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
375  /// with link time known address.
376  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
377
378  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
379  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
380
381  /// \brief Enumeration used to describe how \c isNullPointerConstant()
382  /// should cope with value-dependent expressions.
383  enum NullPointerConstantValueDependence {
384    /// \brief Specifies that the expression should never be value-dependent.
385    NPC_NeverValueDependent = 0,
386
387    /// \brief Specifies that a value-dependent expression of integral or
388    /// dependent type should be considered a null pointer constant.
389    NPC_ValueDependentIsNull,
390
391    /// \brief Specifies that a value-dependent expression should be considered
392    /// to never be a null pointer constant.
393    NPC_ValueDependentIsNotNull
394  };
395
396  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
397  /// integer constant expression with the value zero, or if this is one that is
398  /// cast to void*.
399  bool isNullPointerConstant(ASTContext &Ctx,
400                             NullPointerConstantValueDependence NPC) const;
401
402  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
403  /// write barrier.
404  bool isOBJCGCCandidate(ASTContext &Ctx) const;
405
406  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
407  ///  its subexpression.  If that subexpression is also a ParenExpr,
408  ///  then this method recursively returns its subexpression, and so forth.
409  ///  Otherwise, the method returns the current Expr.
410  Expr *IgnoreParens();
411
412  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
413  /// or CastExprs, returning their operand.
414  Expr *IgnoreParenCasts();
415
416  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
417  /// ParenExpr or ImplicitCastExprs, returning their operand.
418  Expr *IgnoreParenImpCasts();
419
420  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
421  /// value (including ptr->int casts of the same size).  Strip off any
422  /// ParenExpr or CastExprs, returning their operand.
423  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
424
425  /// \brief Determine whether this expression is a default function argument.
426  ///
427  /// Default arguments are implicitly generated in the abstract syntax tree
428  /// by semantic analysis for function calls, object constructions, etc. in
429  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
430  /// this routine also looks through any implicit casts to determine whether
431  /// the expression is a default argument.
432  bool isDefaultArgument() const;
433
434  /// \brief Determine whether this expression directly creates a
435  /// temporary object (of class type).
436  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
437
438  /// \brief If this expression directly creates a temporary object of
439  /// class type, return the expression that actually constructs that
440  /// temporary object.
441  const Expr *getTemporaryObject() const;
442
443  const Expr *IgnoreParens() const {
444    return const_cast<Expr*>(this)->IgnoreParens();
445  }
446  const Expr *IgnoreParenCasts() const {
447    return const_cast<Expr*>(this)->IgnoreParenCasts();
448  }
449  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
450    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
451  }
452
453  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
454  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
455
456  static bool classof(const Stmt *T) {
457    return T->getStmtClass() >= firstExprConstant &&
458           T->getStmtClass() <= lastExprConstant;
459  }
460  static bool classof(const Expr *) { return true; }
461};
462
463
464//===----------------------------------------------------------------------===//
465// Primary Expressions.
466//===----------------------------------------------------------------------===//
467
468/// \brief Represents the qualifier that may precede a C++ name, e.g., the
469/// "std::" in "std::sort".
470struct NameQualifier {
471  /// \brief The nested name specifier.
472  NestedNameSpecifier *NNS;
473
474  /// \brief The source range covered by the nested name specifier.
475  SourceRange Range;
476};
477
478/// \brief Represents an explicit template argument list in C++, e.g.,
479/// the "<int>" in "sort<int>".
480struct ExplicitTemplateArgumentList {
481  /// \brief The source location of the left angle bracket ('<');
482  SourceLocation LAngleLoc;
483
484  /// \brief The source location of the right angle bracket ('>');
485  SourceLocation RAngleLoc;
486
487  /// \brief The number of template arguments in TemplateArgs.
488  /// The actual template arguments (if any) are stored after the
489  /// ExplicitTemplateArgumentList structure.
490  unsigned NumTemplateArgs;
491
492  /// \brief Retrieve the template arguments
493  TemplateArgumentLoc *getTemplateArgs() {
494    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
495  }
496
497  /// \brief Retrieve the template arguments
498  const TemplateArgumentLoc *getTemplateArgs() const {
499    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
500  }
501
502  void initializeFrom(const TemplateArgumentListInfo &List);
503  void copyInto(TemplateArgumentListInfo &List) const;
504  static std::size_t sizeFor(unsigned NumTemplateArgs);
505  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
506};
507
508/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
509/// enum, etc.
510class DeclRefExpr : public Expr {
511  enum {
512    // Flag on DecoratedD that specifies when this declaration reference
513    // expression has a C++ nested-name-specifier.
514    HasQualifierFlag = 0x01,
515    // Flag on DecoratedD that specifies when this declaration reference
516    // expression has an explicit C++ template argument list.
517    HasExplicitTemplateArgumentListFlag = 0x02
518  };
519
520  // DecoratedD - The declaration that we are referencing, plus two bits to
521  // indicate whether (1) the declaration's name was explicitly qualified and
522  // (2) the declaration's name was followed by an explicit template
523  // argument list.
524  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
525
526  // Loc - The location of the declaration name itself.
527  SourceLocation Loc;
528
529  /// DNLoc - Provides source/type location info for the
530  /// declaration name embedded in DecoratedD.
531  DeclarationNameLoc DNLoc;
532
533  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
534  NameQualifier *getNameQualifier() {
535    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
536      return 0;
537
538    return reinterpret_cast<NameQualifier *> (this + 1);
539  }
540
541  /// \brief Retrieve the qualifier that preceded the member name, if any.
542  const NameQualifier *getNameQualifier() const {
543    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
544  }
545
546  /// \brief Retrieve the explicit template argument list that followed the
547  /// member template name, if any.
548  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
549    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
550      return 0;
551
552    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
553      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
554
555    return reinterpret_cast<ExplicitTemplateArgumentList *>(
556                                                      getNameQualifier() + 1);
557  }
558
559  /// \brief Retrieve the explicit template argument list that followed the
560  /// member template name, if any.
561  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
562    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
563  }
564
565  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
566              ValueDecl *D, SourceLocation NameLoc,
567              const TemplateArgumentListInfo *TemplateArgs,
568              QualType T);
569
570  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
571              ValueDecl *D, const DeclarationNameInfo &NameInfo,
572              const TemplateArgumentListInfo *TemplateArgs,
573              QualType T);
574
575  /// \brief Construct an empty declaration reference expression.
576  explicit DeclRefExpr(EmptyShell Empty)
577    : Expr(DeclRefExprClass, Empty) { }
578
579  /// \brief Computes the type- and value-dependence flags for this
580  /// declaration reference expression.
581  void computeDependence();
582
583public:
584  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
585    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
586    computeDependence();
587  }
588
589  static DeclRefExpr *Create(ASTContext &Context,
590                             NestedNameSpecifier *Qualifier,
591                             SourceRange QualifierRange,
592                             ValueDecl *D,
593                             SourceLocation NameLoc,
594                             QualType T,
595                             const TemplateArgumentListInfo *TemplateArgs = 0);
596
597  static DeclRefExpr *Create(ASTContext &Context,
598                             NestedNameSpecifier *Qualifier,
599                             SourceRange QualifierRange,
600                             ValueDecl *D,
601                             const DeclarationNameInfo &NameInfo,
602                             QualType T,
603                             const TemplateArgumentListInfo *TemplateArgs = 0);
604
605  /// \brief Construct an empty declaration reference expression.
606  static DeclRefExpr *CreateEmpty(ASTContext &Context,
607                                  bool HasQualifier, unsigned NumTemplateArgs);
608
609  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
610  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
611  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
612
613  DeclarationNameInfo getNameInfo() const {
614    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
615  }
616
617  SourceLocation getLocation() const { return Loc; }
618  void setLocation(SourceLocation L) { Loc = L; }
619  virtual SourceRange getSourceRange() const;
620
621  /// \brief Determine whether this declaration reference was preceded by a
622  /// C++ nested-name-specifier, e.g., \c N::foo.
623  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
624
625  /// \brief If the name was qualified, retrieves the source range of
626  /// the nested-name-specifier that precedes the name. Otherwise,
627  /// returns an empty source range.
628  SourceRange getQualifierRange() const {
629    if (!hasQualifier())
630      return SourceRange();
631
632    return getNameQualifier()->Range;
633  }
634
635  /// \brief If the name was qualified, retrieves the nested-name-specifier
636  /// that precedes the name. Otherwise, returns NULL.
637  NestedNameSpecifier *getQualifier() const {
638    if (!hasQualifier())
639      return 0;
640
641    return getNameQualifier()->NNS;
642  }
643
644  /// \brief Determines whether this member expression actually had a C++
645  /// template argument list explicitly specified, e.g., x.f<int>.
646  bool hasExplicitTemplateArgumentList() const {
647    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
648  }
649
650  /// \brief Copies the template arguments (if present) into the given
651  /// structure.
652  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
653    if (hasExplicitTemplateArgumentList())
654      getExplicitTemplateArgumentList()->copyInto(List);
655  }
656
657  /// \brief Retrieve the location of the left angle bracket following the
658  /// member name ('<'), if any.
659  SourceLocation getLAngleLoc() const {
660    if (!hasExplicitTemplateArgumentList())
661      return SourceLocation();
662
663    return getExplicitTemplateArgumentList()->LAngleLoc;
664  }
665
666  /// \brief Retrieve the template arguments provided as part of this
667  /// template-id.
668  const TemplateArgumentLoc *getTemplateArgs() const {
669    if (!hasExplicitTemplateArgumentList())
670      return 0;
671
672    return getExplicitTemplateArgumentList()->getTemplateArgs();
673  }
674
675  /// \brief Retrieve the number of template arguments provided as part of this
676  /// template-id.
677  unsigned getNumTemplateArgs() const {
678    if (!hasExplicitTemplateArgumentList())
679      return 0;
680
681    return getExplicitTemplateArgumentList()->NumTemplateArgs;
682  }
683
684  /// \brief Retrieve the location of the right angle bracket following the
685  /// template arguments ('>').
686  SourceLocation getRAngleLoc() const {
687    if (!hasExplicitTemplateArgumentList())
688      return SourceLocation();
689
690    return getExplicitTemplateArgumentList()->RAngleLoc;
691  }
692
693  static bool classof(const Stmt *T) {
694    return T->getStmtClass() == DeclRefExprClass;
695  }
696  static bool classof(const DeclRefExpr *) { return true; }
697
698  // Iterators
699  virtual child_iterator child_begin();
700  virtual child_iterator child_end();
701
702  friend class ASTStmtReader;
703  friend class ASTStmtWriter;
704};
705
706/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
707class PredefinedExpr : public Expr {
708public:
709  enum IdentType {
710    Func,
711    Function,
712    PrettyFunction,
713    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
714    /// 'virtual' keyword is omitted for virtual member functions.
715    PrettyFunctionNoVirtual
716  };
717
718private:
719  SourceLocation Loc;
720  IdentType Type;
721public:
722  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
723    : Expr(PredefinedExprClass, type, type->isDependentType(),
724           type->isDependentType()), Loc(l), Type(IT) {}
725
726  /// \brief Construct an empty predefined expression.
727  explicit PredefinedExpr(EmptyShell Empty)
728    : Expr(PredefinedExprClass, Empty) { }
729
730  IdentType getIdentType() const { return Type; }
731  void setIdentType(IdentType IT) { Type = IT; }
732
733  SourceLocation getLocation() const { return Loc; }
734  void setLocation(SourceLocation L) { Loc = L; }
735
736  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
737
738  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
739
740  static bool classof(const Stmt *T) {
741    return T->getStmtClass() == PredefinedExprClass;
742  }
743  static bool classof(const PredefinedExpr *) { return true; }
744
745  // Iterators
746  virtual child_iterator child_begin();
747  virtual child_iterator child_end();
748};
749
750class IntegerLiteral : public Expr {
751  llvm::APInt Value;
752  SourceLocation Loc;
753public:
754  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
755  // or UnsignedLongLongTy
756  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
757    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
758    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
759  }
760
761  /// \brief Construct an empty integer literal.
762  explicit IntegerLiteral(EmptyShell Empty)
763    : Expr(IntegerLiteralClass, Empty) { }
764
765  const llvm::APInt &getValue() const { return Value; }
766  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
767
768  /// \brief Retrieve the location of the literal.
769  SourceLocation getLocation() const { return Loc; }
770
771  void setValue(const llvm::APInt &Val) { Value = Val; }
772  void setLocation(SourceLocation Location) { Loc = Location; }
773
774  static bool classof(const Stmt *T) {
775    return T->getStmtClass() == IntegerLiteralClass;
776  }
777  static bool classof(const IntegerLiteral *) { return true; }
778
779  // Iterators
780  virtual child_iterator child_begin();
781  virtual child_iterator child_end();
782};
783
784class CharacterLiteral : public Expr {
785  unsigned Value;
786  SourceLocation Loc;
787  bool IsWide;
788public:
789  // type should be IntTy
790  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
791    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
792      IsWide(iswide) {
793  }
794
795  /// \brief Construct an empty character literal.
796  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
797
798  SourceLocation getLocation() const { return Loc; }
799  bool isWide() const { return IsWide; }
800
801  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
802
803  unsigned getValue() const { return Value; }
804
805  void setLocation(SourceLocation Location) { Loc = Location; }
806  void setWide(bool W) { IsWide = W; }
807  void setValue(unsigned Val) { Value = Val; }
808
809  static bool classof(const Stmt *T) {
810    return T->getStmtClass() == CharacterLiteralClass;
811  }
812  static bool classof(const CharacterLiteral *) { return true; }
813
814  // Iterators
815  virtual child_iterator child_begin();
816  virtual child_iterator child_end();
817};
818
819class FloatingLiteral : public Expr {
820  llvm::APFloat Value;
821  bool IsExact : 1;
822  SourceLocation Loc;
823public:
824  FloatingLiteral(const llvm::APFloat &V, bool isexact,
825                  QualType Type, SourceLocation L)
826    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
827      IsExact(isexact), Loc(L) {}
828
829  /// \brief Construct an empty floating-point literal.
830  explicit FloatingLiteral(EmptyShell Empty)
831    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
832
833  const llvm::APFloat &getValue() const { return Value; }
834  void setValue(const llvm::APFloat &Val) { Value = Val; }
835
836  bool isExact() const { return IsExact; }
837  void setExact(bool E) { IsExact = E; }
838
839  /// getValueAsApproximateDouble - This returns the value as an inaccurate
840  /// double.  Note that this may cause loss of precision, but is useful for
841  /// debugging dumps, etc.
842  double getValueAsApproximateDouble() const;
843
844  SourceLocation getLocation() const { return Loc; }
845  void setLocation(SourceLocation L) { Loc = L; }
846
847  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
848
849  static bool classof(const Stmt *T) {
850    return T->getStmtClass() == FloatingLiteralClass;
851  }
852  static bool classof(const FloatingLiteral *) { return true; }
853
854  // Iterators
855  virtual child_iterator child_begin();
856  virtual child_iterator child_end();
857};
858
859/// ImaginaryLiteral - We support imaginary integer and floating point literals,
860/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
861/// IntegerLiteral classes.  Instances of this class always have a Complex type
862/// whose element type matches the subexpression.
863///
864class ImaginaryLiteral : public Expr {
865  Stmt *Val;
866public:
867  ImaginaryLiteral(Expr *val, QualType Ty)
868    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
869
870  /// \brief Build an empty imaginary literal.
871  explicit ImaginaryLiteral(EmptyShell Empty)
872    : Expr(ImaginaryLiteralClass, Empty) { }
873
874  const Expr *getSubExpr() const { return cast<Expr>(Val); }
875  Expr *getSubExpr() { return cast<Expr>(Val); }
876  void setSubExpr(Expr *E) { Val = E; }
877
878  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
879  static bool classof(const Stmt *T) {
880    return T->getStmtClass() == ImaginaryLiteralClass;
881  }
882  static bool classof(const ImaginaryLiteral *) { return true; }
883
884  // Iterators
885  virtual child_iterator child_begin();
886  virtual child_iterator child_end();
887};
888
889/// StringLiteral - This represents a string literal expression, e.g. "foo"
890/// or L"bar" (wide strings).  The actual string is returned by getStrData()
891/// is NOT null-terminated, and the length of the string is determined by
892/// calling getByteLength().  The C type for a string is always a
893/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
894/// not.
895///
896/// Note that strings in C can be formed by concatenation of multiple string
897/// literal pptokens in translation phase #6.  This keeps track of the locations
898/// of each of these pieces.
899///
900/// Strings in C can also be truncated and extended by assigning into arrays,
901/// e.g. with constructs like:
902///   char X[2] = "foobar";
903/// In this case, getByteLength() will return 6, but the string literal will
904/// have type "char[2]".
905class StringLiteral : public Expr {
906  const char *StrData;
907  unsigned ByteLength;
908  bool IsWide;
909  unsigned NumConcatenated;
910  SourceLocation TokLocs[1];
911
912  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
913
914public:
915  /// This is the "fully general" constructor that allows representation of
916  /// strings formed from multiple concatenated tokens.
917  static StringLiteral *Create(ASTContext &C, const char *StrData,
918                               unsigned ByteLength, bool Wide, QualType Ty,
919                               const SourceLocation *Loc, unsigned NumStrs);
920
921  /// Simple constructor for string literals made from one token.
922  static StringLiteral *Create(ASTContext &C, const char *StrData,
923                               unsigned ByteLength,
924                               bool Wide, QualType Ty, SourceLocation Loc) {
925    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
926  }
927
928  /// \brief Construct an empty string literal.
929  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
930
931  llvm::StringRef getString() const {
932    return llvm::StringRef(StrData, ByteLength);
933  }
934
935  unsigned getByteLength() const { return ByteLength; }
936
937  /// \brief Sets the string data to the given string data.
938  void setString(ASTContext &C, llvm::StringRef Str);
939
940  bool isWide() const { return IsWide; }
941  void setWide(bool W) { IsWide = W; }
942
943  bool containsNonAsciiOrNull() const {
944    llvm::StringRef Str = getString();
945    for (unsigned i = 0, e = Str.size(); i != e; ++i)
946      if (!isascii(Str[i]) || !Str[i])
947        return true;
948    return false;
949  }
950  /// getNumConcatenated - Get the number of string literal tokens that were
951  /// concatenated in translation phase #6 to form this string literal.
952  unsigned getNumConcatenated() const { return NumConcatenated; }
953
954  SourceLocation getStrTokenLoc(unsigned TokNum) const {
955    assert(TokNum < NumConcatenated && "Invalid tok number");
956    return TokLocs[TokNum];
957  }
958  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
959    assert(TokNum < NumConcatenated && "Invalid tok number");
960    TokLocs[TokNum] = L;
961  }
962
963  typedef const SourceLocation *tokloc_iterator;
964  tokloc_iterator tokloc_begin() const { return TokLocs; }
965  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
966
967  virtual SourceRange getSourceRange() const {
968    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
969  }
970  static bool classof(const Stmt *T) {
971    return T->getStmtClass() == StringLiteralClass;
972  }
973  static bool classof(const StringLiteral *) { return true; }
974
975  // Iterators
976  virtual child_iterator child_begin();
977  virtual child_iterator child_end();
978};
979
980/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
981/// AST node is only formed if full location information is requested.
982class ParenExpr : public Expr {
983  SourceLocation L, R;
984  Stmt *Val;
985public:
986  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
987    : Expr(ParenExprClass, val->getType(),
988           val->isTypeDependent(), val->isValueDependent()),
989      L(l), R(r), Val(val) {}
990
991  /// \brief Construct an empty parenthesized expression.
992  explicit ParenExpr(EmptyShell Empty)
993    : Expr(ParenExprClass, Empty) { }
994
995  const Expr *getSubExpr() const { return cast<Expr>(Val); }
996  Expr *getSubExpr() { return cast<Expr>(Val); }
997  void setSubExpr(Expr *E) { Val = E; }
998
999  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1000
1001  /// \brief Get the location of the left parentheses '('.
1002  SourceLocation getLParen() const { return L; }
1003  void setLParen(SourceLocation Loc) { L = Loc; }
1004
1005  /// \brief Get the location of the right parentheses ')'.
1006  SourceLocation getRParen() const { return R; }
1007  void setRParen(SourceLocation Loc) { R = Loc; }
1008
1009  static bool classof(const Stmt *T) {
1010    return T->getStmtClass() == ParenExprClass;
1011  }
1012  static bool classof(const ParenExpr *) { return true; }
1013
1014  // Iterators
1015  virtual child_iterator child_begin();
1016  virtual child_iterator child_end();
1017};
1018
1019
1020/// UnaryOperator - This represents the unary-expression's (except sizeof and
1021/// alignof), the postinc/postdec operators from postfix-expression, and various
1022/// extensions.
1023///
1024/// Notes on various nodes:
1025///
1026/// Real/Imag - These return the real/imag part of a complex operand.  If
1027///   applied to a non-complex value, the former returns its operand and the
1028///   later returns zero in the type of the operand.
1029///
1030class UnaryOperator : public Expr {
1031public:
1032  // Note that additions to this should also update the StmtVisitor class.
1033  enum Opcode {
1034    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
1035    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
1036    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
1037    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
1038    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
1039    Real, Imag,       // "__real expr"/"__imag expr" Extension.
1040    Extension         // __extension__ marker.
1041  };
1042private:
1043  Stmt *Val;
1044  Opcode Opc;
1045  SourceLocation Loc;
1046public:
1047
1048  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1049    : Expr(UnaryOperatorClass, type,
1050           input->isTypeDependent() || type->isDependentType(),
1051           input->isValueDependent()),
1052      Val(input), Opc(opc), Loc(l) {}
1053
1054  /// \brief Build an empty unary operator.
1055  explicit UnaryOperator(EmptyShell Empty)
1056    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
1057
1058  Opcode getOpcode() const { return Opc; }
1059  void setOpcode(Opcode O) { Opc = O; }
1060
1061  Expr *getSubExpr() const { return cast<Expr>(Val); }
1062  void setSubExpr(Expr *E) { Val = E; }
1063
1064  /// getOperatorLoc - Return the location of the operator.
1065  SourceLocation getOperatorLoc() const { return Loc; }
1066  void setOperatorLoc(SourceLocation L) { Loc = L; }
1067
1068  /// isPostfix - Return true if this is a postfix operation, like x++.
1069  static bool isPostfix(Opcode Op) {
1070    return Op == PostInc || Op == PostDec;
1071  }
1072
1073  /// isPostfix - Return true if this is a prefix operation, like --x.
1074  static bool isPrefix(Opcode Op) {
1075    return Op == PreInc || Op == PreDec;
1076  }
1077
1078  bool isPrefix() const { return isPrefix(Opc); }
1079  bool isPostfix() const { return isPostfix(Opc); }
1080  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
1081  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
1082  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
1083  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
1084
1085  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1086  /// corresponds to, e.g. "sizeof" or "[pre]++"
1087  static const char *getOpcodeStr(Opcode Op);
1088
1089  /// \brief Retrieve the unary opcode that corresponds to the given
1090  /// overloaded operator.
1091  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1092
1093  /// \brief Retrieve the overloaded operator kind that corresponds to
1094  /// the given unary opcode.
1095  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1096
1097  virtual SourceRange getSourceRange() const {
1098    if (isPostfix())
1099      return SourceRange(Val->getLocStart(), Loc);
1100    else
1101      return SourceRange(Loc, Val->getLocEnd());
1102  }
1103  virtual SourceLocation getExprLoc() const { return Loc; }
1104
1105  static bool classof(const Stmt *T) {
1106    return T->getStmtClass() == UnaryOperatorClass;
1107  }
1108  static bool classof(const UnaryOperator *) { return true; }
1109
1110  // Iterators
1111  virtual child_iterator child_begin();
1112  virtual child_iterator child_end();
1113};
1114
1115/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1116/// offsetof(record-type, member-designator). For example, given:
1117/// @code
1118/// struct S {
1119///   float f;
1120///   double d;
1121/// };
1122/// struct T {
1123///   int i;
1124///   struct S s[10];
1125/// };
1126/// @endcode
1127/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1128
1129class OffsetOfExpr : public Expr {
1130public:
1131  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1132  class OffsetOfNode {
1133  public:
1134    /// \brief The kind of offsetof node we have.
1135    enum Kind {
1136      /// \brief An index into an array.
1137      Array = 0x00,
1138      /// \brief A field.
1139      Field = 0x01,
1140      /// \brief A field in a dependent type, known only by its name.
1141      Identifier = 0x02,
1142      /// \brief An implicit indirection through a C++ base class, when the
1143      /// field found is in a base class.
1144      Base = 0x03
1145    };
1146
1147  private:
1148    enum { MaskBits = 2, Mask = 0x03 };
1149
1150    /// \brief The source range that covers this part of the designator.
1151    SourceRange Range;
1152
1153    /// \brief The data describing the designator, which comes in three
1154    /// different forms, depending on the lower two bits.
1155    ///   - An unsigned index into the array of Expr*'s stored after this node
1156    ///     in memory, for [constant-expression] designators.
1157    ///   - A FieldDecl*, for references to a known field.
1158    ///   - An IdentifierInfo*, for references to a field with a given name
1159    ///     when the class type is dependent.
1160    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1161    ///     base class.
1162    uintptr_t Data;
1163
1164  public:
1165    /// \brief Create an offsetof node that refers to an array element.
1166    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1167                 SourceLocation RBracketLoc)
1168      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1169
1170    /// \brief Create an offsetof node that refers to a field.
1171    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1172                 SourceLocation NameLoc)
1173      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1174        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1175
1176    /// \brief Create an offsetof node that refers to an identifier.
1177    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1178                 SourceLocation NameLoc)
1179      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1180        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1181
1182    /// \brief Create an offsetof node that refers into a C++ base class.
1183    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1184      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1185
1186    /// \brief Determine what kind of offsetof node this is.
1187    Kind getKind() const {
1188      return static_cast<Kind>(Data & Mask);
1189    }
1190
1191    /// \brief For an array element node, returns the index into the array
1192    /// of expressions.
1193    unsigned getArrayExprIndex() const {
1194      assert(getKind() == Array);
1195      return Data >> 2;
1196    }
1197
1198    /// \brief For a field offsetof node, returns the field.
1199    FieldDecl *getField() const {
1200      assert(getKind() == Field);
1201      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1202    }
1203
1204    /// \brief For a field or identifier offsetof node, returns the name of
1205    /// the field.
1206    IdentifierInfo *getFieldName() const;
1207
1208    /// \brief For a base class node, returns the base specifier.
1209    CXXBaseSpecifier *getBase() const {
1210      assert(getKind() == Base);
1211      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1212    }
1213
1214    /// \brief Retrieve the source range that covers this offsetof node.
1215    ///
1216    /// For an array element node, the source range contains the locations of
1217    /// the square brackets. For a field or identifier node, the source range
1218    /// contains the location of the period (if there is one) and the
1219    /// identifier.
1220    SourceRange getRange() const { return Range; }
1221  };
1222
1223private:
1224
1225  SourceLocation OperatorLoc, RParenLoc;
1226  // Base type;
1227  TypeSourceInfo *TSInfo;
1228  // Number of sub-components (i.e. instances of OffsetOfNode).
1229  unsigned NumComps;
1230  // Number of sub-expressions (i.e. array subscript expressions).
1231  unsigned NumExprs;
1232
1233  OffsetOfExpr(ASTContext &C, QualType type,
1234               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1235               OffsetOfNode* compsPtr, unsigned numComps,
1236               Expr** exprsPtr, unsigned numExprs,
1237               SourceLocation RParenLoc);
1238
1239  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1240    : Expr(OffsetOfExprClass, EmptyShell()),
1241      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1242
1243public:
1244
1245  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1246                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1247                              OffsetOfNode* compsPtr, unsigned numComps,
1248                              Expr** exprsPtr, unsigned numExprs,
1249                              SourceLocation RParenLoc);
1250
1251  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1252                                   unsigned NumComps, unsigned NumExprs);
1253
1254  /// getOperatorLoc - Return the location of the operator.
1255  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1256  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1257
1258  /// \brief Return the location of the right parentheses.
1259  SourceLocation getRParenLoc() const { return RParenLoc; }
1260  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1261
1262  TypeSourceInfo *getTypeSourceInfo() const {
1263    return TSInfo;
1264  }
1265  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1266    TSInfo = tsi;
1267  }
1268
1269  const OffsetOfNode &getComponent(unsigned Idx) {
1270    assert(Idx < NumComps && "Subscript out of range");
1271    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1272  }
1273
1274  void setComponent(unsigned Idx, OffsetOfNode ON) {
1275    assert(Idx < NumComps && "Subscript out of range");
1276    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1277  }
1278
1279  unsigned getNumComponents() const {
1280    return NumComps;
1281  }
1282
1283  Expr* getIndexExpr(unsigned Idx) {
1284    assert(Idx < NumExprs && "Subscript out of range");
1285    return reinterpret_cast<Expr **>(
1286                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1287  }
1288
1289  void setIndexExpr(unsigned Idx, Expr* E) {
1290    assert(Idx < NumComps && "Subscript out of range");
1291    reinterpret_cast<Expr **>(
1292                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1293  }
1294
1295  unsigned getNumExpressions() const {
1296    return NumExprs;
1297  }
1298
1299  virtual SourceRange getSourceRange() const {
1300    return SourceRange(OperatorLoc, RParenLoc);
1301  }
1302
1303  static bool classof(const Stmt *T) {
1304    return T->getStmtClass() == OffsetOfExprClass;
1305  }
1306
1307  static bool classof(const OffsetOfExpr *) { return true; }
1308
1309  // Iterators
1310  virtual child_iterator child_begin();
1311  virtual child_iterator child_end();
1312};
1313
1314/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1315/// types and expressions.
1316class SizeOfAlignOfExpr : public Expr {
1317  bool isSizeof : 1;  // true if sizeof, false if alignof.
1318  bool isType : 1;    // true if operand is a type, false if an expression
1319  union {
1320    TypeSourceInfo *Ty;
1321    Stmt *Ex;
1322  } Argument;
1323  SourceLocation OpLoc, RParenLoc;
1324
1325public:
1326  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1327                    QualType resultType, SourceLocation op,
1328                    SourceLocation rp) :
1329      Expr(SizeOfAlignOfExprClass, resultType,
1330           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1331           // Value-dependent if the argument is type-dependent.
1332           TInfo->getType()->isDependentType()),
1333      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1334    Argument.Ty = TInfo;
1335  }
1336
1337  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1338                    QualType resultType, SourceLocation op,
1339                    SourceLocation rp) :
1340      Expr(SizeOfAlignOfExprClass, resultType,
1341           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1342           // Value-dependent if the argument is type-dependent.
1343           E->isTypeDependent()),
1344      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1345    Argument.Ex = E;
1346  }
1347
1348  /// \brief Construct an empty sizeof/alignof expression.
1349  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1350    : Expr(SizeOfAlignOfExprClass, Empty) { }
1351
1352  bool isSizeOf() const { return isSizeof; }
1353  void setSizeof(bool S) { isSizeof = S; }
1354
1355  bool isArgumentType() const { return isType; }
1356  QualType getArgumentType() const {
1357    return getArgumentTypeInfo()->getType();
1358  }
1359  TypeSourceInfo *getArgumentTypeInfo() const {
1360    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1361    return Argument.Ty;
1362  }
1363  Expr *getArgumentExpr() {
1364    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1365    return static_cast<Expr*>(Argument.Ex);
1366  }
1367  const Expr *getArgumentExpr() const {
1368    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1369  }
1370
1371  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1372  void setArgument(TypeSourceInfo *TInfo) {
1373    Argument.Ty = TInfo;
1374    isType = true;
1375  }
1376
1377  /// Gets the argument type, or the type of the argument expression, whichever
1378  /// is appropriate.
1379  QualType getTypeOfArgument() const {
1380    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1381  }
1382
1383  SourceLocation getOperatorLoc() const { return OpLoc; }
1384  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1385
1386  SourceLocation getRParenLoc() const { return RParenLoc; }
1387  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1388
1389  virtual SourceRange getSourceRange() const {
1390    return SourceRange(OpLoc, RParenLoc);
1391  }
1392
1393  static bool classof(const Stmt *T) {
1394    return T->getStmtClass() == SizeOfAlignOfExprClass;
1395  }
1396  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1397
1398  // Iterators
1399  virtual child_iterator child_begin();
1400  virtual child_iterator child_end();
1401};
1402
1403//===----------------------------------------------------------------------===//
1404// Postfix Operators.
1405//===----------------------------------------------------------------------===//
1406
1407/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1408class ArraySubscriptExpr : public Expr {
1409  enum { LHS, RHS, END_EXPR=2 };
1410  Stmt* SubExprs[END_EXPR];
1411  SourceLocation RBracketLoc;
1412public:
1413  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1414                     SourceLocation rbracketloc)
1415  : Expr(ArraySubscriptExprClass, t,
1416         lhs->isTypeDependent() || rhs->isTypeDependent(),
1417         lhs->isValueDependent() || rhs->isValueDependent()),
1418    RBracketLoc(rbracketloc) {
1419    SubExprs[LHS] = lhs;
1420    SubExprs[RHS] = rhs;
1421  }
1422
1423  /// \brief Create an empty array subscript expression.
1424  explicit ArraySubscriptExpr(EmptyShell Shell)
1425    : Expr(ArraySubscriptExprClass, Shell) { }
1426
1427  /// An array access can be written A[4] or 4[A] (both are equivalent).
1428  /// - getBase() and getIdx() always present the normalized view: A[4].
1429  ///    In this case getBase() returns "A" and getIdx() returns "4".
1430  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1431  ///    4[A] getLHS() returns "4".
1432  /// Note: Because vector element access is also written A[4] we must
1433  /// predicate the format conversion in getBase and getIdx only on the
1434  /// the type of the RHS, as it is possible for the LHS to be a vector of
1435  /// integer type
1436  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1437  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1438  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1439
1440  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1441  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1442  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1443
1444  Expr *getBase() {
1445    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1446  }
1447
1448  const Expr *getBase() const {
1449    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1450  }
1451
1452  Expr *getIdx() {
1453    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1454  }
1455
1456  const Expr *getIdx() const {
1457    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1458  }
1459
1460  virtual SourceRange getSourceRange() const {
1461    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1462  }
1463
1464  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1465  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1466
1467  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1468
1469  static bool classof(const Stmt *T) {
1470    return T->getStmtClass() == ArraySubscriptExprClass;
1471  }
1472  static bool classof(const ArraySubscriptExpr *) { return true; }
1473
1474  // Iterators
1475  virtual child_iterator child_begin();
1476  virtual child_iterator child_end();
1477};
1478
1479
1480/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1481/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1482/// while its subclasses may represent alternative syntax that (semantically)
1483/// results in a function call. For example, CXXOperatorCallExpr is
1484/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1485/// "str1 + str2" to resolve to a function call.
1486class CallExpr : public Expr {
1487  enum { FN=0, ARGS_START=1 };
1488  Stmt **SubExprs;
1489  unsigned NumArgs;
1490  SourceLocation RParenLoc;
1491
1492protected:
1493  // This version of the constructor is for derived classes.
1494  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1495           QualType t, SourceLocation rparenloc);
1496
1497public:
1498  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1499           SourceLocation rparenloc);
1500
1501  /// \brief Build an empty call expression.
1502  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1503
1504  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1505  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1506  void setCallee(Expr *F) { SubExprs[FN] = F; }
1507
1508  Decl *getCalleeDecl();
1509  const Decl *getCalleeDecl() const {
1510    return const_cast<CallExpr*>(this)->getCalleeDecl();
1511  }
1512
1513  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1514  FunctionDecl *getDirectCallee();
1515  const FunctionDecl *getDirectCallee() const {
1516    return const_cast<CallExpr*>(this)->getDirectCallee();
1517  }
1518
1519  /// getNumArgs - Return the number of actual arguments to this call.
1520  ///
1521  unsigned getNumArgs() const { return NumArgs; }
1522
1523  /// getArg - Return the specified argument.
1524  Expr *getArg(unsigned Arg) {
1525    assert(Arg < NumArgs && "Arg access out of range!");
1526    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1527  }
1528  const Expr *getArg(unsigned Arg) const {
1529    assert(Arg < NumArgs && "Arg access out of range!");
1530    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1531  }
1532
1533  /// setArg - Set the specified argument.
1534  void setArg(unsigned Arg, Expr *ArgExpr) {
1535    assert(Arg < NumArgs && "Arg access out of range!");
1536    SubExprs[Arg+ARGS_START] = ArgExpr;
1537  }
1538
1539  /// setNumArgs - This changes the number of arguments present in this call.
1540  /// Any orphaned expressions are deleted by this, and any new operands are set
1541  /// to null.
1542  void setNumArgs(ASTContext& C, unsigned NumArgs);
1543
1544  typedef ExprIterator arg_iterator;
1545  typedef ConstExprIterator const_arg_iterator;
1546
1547  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1548  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1549  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1550  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1551
1552  /// getNumCommas - Return the number of commas that must have been present in
1553  /// this function call.
1554  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1555
1556  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1557  /// not, return 0.
1558  unsigned isBuiltinCall(ASTContext &Context) const;
1559
1560  /// getCallReturnType - Get the return type of the call expr. This is not
1561  /// always the type of the expr itself, if the return type is a reference
1562  /// type.
1563  QualType getCallReturnType() const;
1564
1565  SourceLocation getRParenLoc() const { return RParenLoc; }
1566  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1567
1568  virtual SourceRange getSourceRange() const {
1569    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1570  }
1571
1572  static bool classof(const Stmt *T) {
1573    return T->getStmtClass() >= firstCallExprConstant &&
1574           T->getStmtClass() <= lastCallExprConstant;
1575  }
1576  static bool classof(const CallExpr *) { return true; }
1577
1578  // Iterators
1579  virtual child_iterator child_begin();
1580  virtual child_iterator child_end();
1581};
1582
1583/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1584///
1585class MemberExpr : public Expr {
1586  /// Extra data stored in some member expressions.
1587  struct MemberNameQualifier : public NameQualifier {
1588    DeclAccessPair FoundDecl;
1589  };
1590
1591  /// Base - the expression for the base pointer or structure references.  In
1592  /// X.F, this is "X".
1593  Stmt *Base;
1594
1595  /// MemberDecl - This is the decl being referenced by the field/member name.
1596  /// In X.F, this is the decl referenced by F.
1597  ValueDecl *MemberDecl;
1598
1599  /// MemberLoc - This is the location of the member name.
1600  SourceLocation MemberLoc;
1601
1602  /// MemberDNLoc - Provides source/type location info for the
1603  /// declaration name embedded in MemberDecl.
1604  DeclarationNameLoc MemberDNLoc;
1605
1606  /// IsArrow - True if this is "X->F", false if this is "X.F".
1607  bool IsArrow : 1;
1608
1609  /// \brief True if this member expression used a nested-name-specifier to
1610  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1611  /// declaration.  When true, a MemberNameQualifier
1612  /// structure is allocated immediately after the MemberExpr.
1613  bool HasQualifierOrFoundDecl : 1;
1614
1615  /// \brief True if this member expression specified a template argument list
1616  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1617  /// structure (and its TemplateArguments) are allocated immediately after
1618  /// the MemberExpr or, if the member expression also has a qualifier, after
1619  /// the MemberNameQualifier structure.
1620  bool HasExplicitTemplateArgumentList : 1;
1621
1622  /// \brief Retrieve the qualifier that preceded the member name, if any.
1623  MemberNameQualifier *getMemberQualifier() {
1624    assert(HasQualifierOrFoundDecl);
1625    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1626  }
1627
1628  /// \brief Retrieve the qualifier that preceded the member name, if any.
1629  const MemberNameQualifier *getMemberQualifier() const {
1630    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1631  }
1632
1633  /// \brief Retrieve the explicit template argument list that followed the
1634  /// member template name, if any.
1635  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1636    if (!HasExplicitTemplateArgumentList)
1637      return 0;
1638
1639    if (!HasQualifierOrFoundDecl)
1640      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1641
1642    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1643                                                      getMemberQualifier() + 1);
1644  }
1645
1646  /// \brief Retrieve the explicit template argument list that followed the
1647  /// member template name, if any.
1648  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1649    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1650  }
1651
1652public:
1653  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1654             const DeclarationNameInfo &NameInfo, QualType ty)
1655    : Expr(MemberExprClass, ty,
1656           base->isTypeDependent(), base->isValueDependent()),
1657      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1658      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1659      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1660    assert(memberdecl->getDeclName() == NameInfo.getName());
1661  }
1662
1663  // NOTE: this constructor should be used only when it is known that
1664  // the member name can not provide additional syntactic info
1665  // (i.e., source locations for C++ operator names or type source info
1666  // for constructors, destructors and conversion oeprators).
1667  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1668             SourceLocation l, QualType ty)
1669    : Expr(MemberExprClass, ty,
1670           base->isTypeDependent(), base->isValueDependent()),
1671      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1672      IsArrow(isarrow),
1673      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1674
1675  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1676                            NestedNameSpecifier *qual, SourceRange qualrange,
1677                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1678                            DeclarationNameInfo MemberNameInfo,
1679                            const TemplateArgumentListInfo *targs,
1680                            QualType ty);
1681
1682  void setBase(Expr *E) { Base = E; }
1683  Expr *getBase() const { return cast<Expr>(Base); }
1684
1685  /// \brief Retrieve the member declaration to which this expression refers.
1686  ///
1687  /// The returned declaration will either be a FieldDecl or (in C++)
1688  /// a CXXMethodDecl.
1689  ValueDecl *getMemberDecl() const { return MemberDecl; }
1690  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1691
1692  /// \brief Retrieves the declaration found by lookup.
1693  DeclAccessPair getFoundDecl() const {
1694    if (!HasQualifierOrFoundDecl)
1695      return DeclAccessPair::make(getMemberDecl(),
1696                                  getMemberDecl()->getAccess());
1697    return getMemberQualifier()->FoundDecl;
1698  }
1699
1700  /// \brief Determines whether this member expression actually had
1701  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1702  /// x->Base::foo.
1703  bool hasQualifier() const { return getQualifier() != 0; }
1704
1705  /// \brief If the member name was qualified, retrieves the source range of
1706  /// the nested-name-specifier that precedes the member name. Otherwise,
1707  /// returns an empty source range.
1708  SourceRange getQualifierRange() const {
1709    if (!HasQualifierOrFoundDecl)
1710      return SourceRange();
1711
1712    return getMemberQualifier()->Range;
1713  }
1714
1715  /// \brief If the member name was qualified, retrieves the
1716  /// nested-name-specifier that precedes the member name. Otherwise, returns
1717  /// NULL.
1718  NestedNameSpecifier *getQualifier() const {
1719    if (!HasQualifierOrFoundDecl)
1720      return 0;
1721
1722    return getMemberQualifier()->NNS;
1723  }
1724
1725  /// \brief Determines whether this member expression actually had a C++
1726  /// template argument list explicitly specified, e.g., x.f<int>.
1727  bool hasExplicitTemplateArgumentList() const {
1728    return HasExplicitTemplateArgumentList;
1729  }
1730
1731  /// \brief Copies the template arguments (if present) into the given
1732  /// structure.
1733  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1734    if (hasExplicitTemplateArgumentList())
1735      getExplicitTemplateArgumentList()->copyInto(List);
1736  }
1737
1738  /// \brief Retrieve the location of the left angle bracket following the
1739  /// member name ('<'), if any.
1740  SourceLocation getLAngleLoc() const {
1741    if (!HasExplicitTemplateArgumentList)
1742      return SourceLocation();
1743
1744    return getExplicitTemplateArgumentList()->LAngleLoc;
1745  }
1746
1747  /// \brief Retrieve the template arguments provided as part of this
1748  /// template-id.
1749  const TemplateArgumentLoc *getTemplateArgs() const {
1750    if (!HasExplicitTemplateArgumentList)
1751      return 0;
1752
1753    return getExplicitTemplateArgumentList()->getTemplateArgs();
1754  }
1755
1756  /// \brief Retrieve the number of template arguments provided as part of this
1757  /// template-id.
1758  unsigned getNumTemplateArgs() const {
1759    if (!HasExplicitTemplateArgumentList)
1760      return 0;
1761
1762    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1763  }
1764
1765  /// \brief Retrieve the location of the right angle bracket following the
1766  /// template arguments ('>').
1767  SourceLocation getRAngleLoc() const {
1768    if (!HasExplicitTemplateArgumentList)
1769      return SourceLocation();
1770
1771    return getExplicitTemplateArgumentList()->RAngleLoc;
1772  }
1773
1774  /// \brief Retrieve the member declaration name info.
1775  DeclarationNameInfo getMemberNameInfo() const {
1776    return DeclarationNameInfo(MemberDecl->getDeclName(),
1777                               MemberLoc, MemberDNLoc);
1778  }
1779
1780  bool isArrow() const { return IsArrow; }
1781  void setArrow(bool A) { IsArrow = A; }
1782
1783  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1784  /// location of 'F'.
1785  SourceLocation getMemberLoc() const { return MemberLoc; }
1786  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1787
1788  virtual SourceRange getSourceRange() const {
1789    // If we have an implicit base (like a C++ implicit this),
1790    // make sure not to return its location
1791    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1792      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1793
1794    SourceLocation BaseLoc = getBase()->getLocStart();
1795    if (BaseLoc.isInvalid())
1796      return SourceRange(MemberLoc, EndLoc);
1797    return SourceRange(BaseLoc, EndLoc);
1798  }
1799
1800  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1801
1802  static bool classof(const Stmt *T) {
1803    return T->getStmtClass() == MemberExprClass;
1804  }
1805  static bool classof(const MemberExpr *) { return true; }
1806
1807  // Iterators
1808  virtual child_iterator child_begin();
1809  virtual child_iterator child_end();
1810};
1811
1812/// CompoundLiteralExpr - [C99 6.5.2.5]
1813///
1814class CompoundLiteralExpr : public Expr {
1815  /// LParenLoc - If non-null, this is the location of the left paren in a
1816  /// compound literal like "(int){4}".  This can be null if this is a
1817  /// synthesized compound expression.
1818  SourceLocation LParenLoc;
1819
1820  /// The type as written.  This can be an incomplete array type, in
1821  /// which case the actual expression type will be different.
1822  TypeSourceInfo *TInfo;
1823  Stmt *Init;
1824  bool FileScope;
1825public:
1826  // FIXME: Can compound literals be value-dependent?
1827  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1828                      QualType T, Expr *init, bool fileScope)
1829    : Expr(CompoundLiteralExprClass, T,
1830           tinfo->getType()->isDependentType(), false),
1831      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1832
1833  /// \brief Construct an empty compound literal.
1834  explicit CompoundLiteralExpr(EmptyShell Empty)
1835    : Expr(CompoundLiteralExprClass, Empty) { }
1836
1837  const Expr *getInitializer() const { return cast<Expr>(Init); }
1838  Expr *getInitializer() { return cast<Expr>(Init); }
1839  void setInitializer(Expr *E) { Init = E; }
1840
1841  bool isFileScope() const { return FileScope; }
1842  void setFileScope(bool FS) { FileScope = FS; }
1843
1844  SourceLocation getLParenLoc() const { return LParenLoc; }
1845  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1846
1847  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1848  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1849
1850  virtual SourceRange getSourceRange() const {
1851    // FIXME: Init should never be null.
1852    if (!Init)
1853      return SourceRange();
1854    if (LParenLoc.isInvalid())
1855      return Init->getSourceRange();
1856    return SourceRange(LParenLoc, Init->getLocEnd());
1857  }
1858
1859  static bool classof(const Stmt *T) {
1860    return T->getStmtClass() == CompoundLiteralExprClass;
1861  }
1862  static bool classof(const CompoundLiteralExpr *) { return true; }
1863
1864  // Iterators
1865  virtual child_iterator child_begin();
1866  virtual child_iterator child_end();
1867};
1868
1869/// CastExpr - Base class for type casts, including both implicit
1870/// casts (ImplicitCastExpr) and explicit casts that have some
1871/// representation in the source code (ExplicitCastExpr's derived
1872/// classes).
1873class CastExpr : public Expr {
1874public:
1875  /// CastKind - the kind of cast this represents.
1876  enum CastKind {
1877    /// CK_Unknown - Unknown cast kind.
1878    /// FIXME: The goal is to get rid of this and make all casts have a
1879    /// kind so that the AST client doesn't have to try to figure out what's
1880    /// going on.
1881    CK_Unknown,
1882
1883    /// CK_BitCast - Used for reinterpret_cast.
1884    CK_BitCast,
1885
1886    /// CK_LValueBitCast - Used for reinterpret_cast of expressions to
1887    /// a reference type.
1888    CK_LValueBitCast,
1889
1890    /// CK_NoOp - Used for const_cast.
1891    CK_NoOp,
1892
1893    /// CK_BaseToDerived - Base to derived class casts.
1894    CK_BaseToDerived,
1895
1896    /// CK_DerivedToBase - Derived to base class casts.
1897    CK_DerivedToBase,
1898
1899    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1900    /// assume that the derived pointer is not null.
1901    CK_UncheckedDerivedToBase,
1902
1903    /// CK_Dynamic - Dynamic cast.
1904    CK_Dynamic,
1905
1906    /// CK_ToUnion - Cast to union (GCC extension).
1907    CK_ToUnion,
1908
1909    /// CK_ArrayToPointerDecay - Array to pointer decay.
1910    CK_ArrayToPointerDecay,
1911
1912    // CK_FunctionToPointerDecay - Function to pointer decay.
1913    CK_FunctionToPointerDecay,
1914
1915    /// CK_NullToMemberPointer - Null pointer to member pointer.
1916    CK_NullToMemberPointer,
1917
1918    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1919    /// member pointer in derived class.
1920    CK_BaseToDerivedMemberPointer,
1921
1922    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1923    /// member pointer in base class.
1924    CK_DerivedToBaseMemberPointer,
1925
1926    /// CK_UserDefinedConversion - Conversion using a user defined type
1927    /// conversion function.
1928    CK_UserDefinedConversion,
1929
1930    /// CK_ConstructorConversion - Conversion by constructor
1931    CK_ConstructorConversion,
1932
1933    /// CK_IntegralToPointer - Integral to pointer
1934    CK_IntegralToPointer,
1935
1936    /// CK_PointerToIntegral - Pointer to integral
1937    CK_PointerToIntegral,
1938
1939    /// CK_ToVoid - Cast to void.
1940    CK_ToVoid,
1941
1942    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1943    /// vector type with the same element type as the src type. Splats the
1944    /// src expression into the destination expression.
1945    CK_VectorSplat,
1946
1947    /// CK_IntegralCast - Casting between integral types of different size.
1948    CK_IntegralCast,
1949
1950    /// CK_IntegralToFloating - Integral to floating point.
1951    CK_IntegralToFloating,
1952
1953    /// CK_FloatingToIntegral - Floating point to integral.
1954    CK_FloatingToIntegral,
1955
1956    /// CK_FloatingCast - Casting between floating types of different size.
1957    CK_FloatingCast,
1958
1959    /// CK_MemberPointerToBoolean - Member pointer to boolean
1960    CK_MemberPointerToBoolean,
1961
1962    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1963    /// pointer
1964    CK_AnyPointerToObjCPointerCast,
1965    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1966    /// pointer
1967    CK_AnyPointerToBlockPointerCast,
1968
1969    /// \brief Converting between two Objective-C object types, which
1970    /// can occur when performing reference binding to an Objective-C
1971    /// object.
1972    CK_ObjCObjectLValueCast
1973  };
1974
1975private:
1976  unsigned Kind : 5;
1977  unsigned BasePathSize : BitsRemaining - 5;
1978  Stmt *Op;
1979
1980  void CheckBasePath() const {
1981#ifndef NDEBUG
1982    switch (getCastKind()) {
1983    case CK_DerivedToBase:
1984    case CK_UncheckedDerivedToBase:
1985    case CK_DerivedToBaseMemberPointer:
1986    case CK_BaseToDerived:
1987    case CK_BaseToDerivedMemberPointer:
1988      assert(!path_empty() && "Cast kind should have a base path!");
1989      break;
1990
1991    // These should not have an inheritance path.
1992    case CK_Unknown:
1993    case CK_BitCast:
1994    case CK_LValueBitCast:
1995    case CK_NoOp:
1996    case CK_Dynamic:
1997    case CK_ToUnion:
1998    case CK_ArrayToPointerDecay:
1999    case CK_FunctionToPointerDecay:
2000    case CK_NullToMemberPointer:
2001    case CK_UserDefinedConversion:
2002    case CK_ConstructorConversion:
2003    case CK_IntegralToPointer:
2004    case CK_PointerToIntegral:
2005    case CK_ToVoid:
2006    case CK_VectorSplat:
2007    case CK_IntegralCast:
2008    case CK_IntegralToFloating:
2009    case CK_FloatingToIntegral:
2010    case CK_FloatingCast:
2011    case CK_MemberPointerToBoolean:
2012    case CK_AnyPointerToObjCPointerCast:
2013    case CK_AnyPointerToBlockPointerCast:
2014    case CK_ObjCObjectLValueCast:
2015      assert(path_empty() && "Cast kind should not have a base path!");
2016      break;
2017    }
2018#endif
2019  }
2020
2021  const CXXBaseSpecifier * const *path_buffer() const {
2022    return const_cast<CastExpr*>(this)->path_buffer();
2023  }
2024  CXXBaseSpecifier **path_buffer();
2025
2026protected:
2027  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
2028           unsigned BasePathSize) :
2029    Expr(SC, ty,
2030         // Cast expressions are type-dependent if the type is
2031         // dependent (C++ [temp.dep.expr]p3).
2032         ty->isDependentType(),
2033         // Cast expressions are value-dependent if the type is
2034         // dependent or if the subexpression is value-dependent.
2035         ty->isDependentType() || (op && op->isValueDependent())),
2036    Kind(kind), BasePathSize(BasePathSize), Op(op) {
2037    CheckBasePath();
2038  }
2039
2040  /// \brief Construct an empty cast.
2041  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2042    : Expr(SC, Empty), BasePathSize(BasePathSize) { }
2043
2044public:
2045  CastKind getCastKind() const { return static_cast<CastKind>(Kind); }
2046  void setCastKind(CastKind K) { Kind = K; }
2047  const char *getCastKindName() const;
2048
2049  Expr *getSubExpr() { return cast<Expr>(Op); }
2050  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2051  void setSubExpr(Expr *E) { Op = E; }
2052
2053  /// \brief Retrieve the cast subexpression as it was written in the source
2054  /// code, looking through any implicit casts or other intermediate nodes
2055  /// introduced by semantic analysis.
2056  Expr *getSubExprAsWritten();
2057  const Expr *getSubExprAsWritten() const {
2058    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2059  }
2060
2061  typedef CXXBaseSpecifier **path_iterator;
2062  typedef const CXXBaseSpecifier * const *path_const_iterator;
2063  bool path_empty() const { return BasePathSize == 0; }
2064  unsigned path_size() const { return BasePathSize; }
2065  path_iterator path_begin() { return path_buffer(); }
2066  path_iterator path_end() { return path_buffer() + path_size(); }
2067  path_const_iterator path_begin() const { return path_buffer(); }
2068  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2069
2070  void setCastPath(const CXXCastPath &Path);
2071
2072  static bool classof(const Stmt *T) {
2073    return T->getStmtClass() >= firstCastExprConstant &&
2074           T->getStmtClass() <= lastCastExprConstant;
2075  }
2076  static bool classof(const CastExpr *) { return true; }
2077
2078  // Iterators
2079  virtual child_iterator child_begin();
2080  virtual child_iterator child_end();
2081};
2082
2083/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2084/// conversions, which have no direct representation in the original
2085/// source code. For example: converting T[]->T*, void f()->void
2086/// (*f)(), float->double, short->int, etc.
2087///
2088/// In C, implicit casts always produce rvalues. However, in C++, an
2089/// implicit cast whose result is being bound to a reference will be
2090/// an lvalue or xvalue. For example:
2091///
2092/// @code
2093/// class Base { };
2094/// class Derived : public Base { };
2095/// Derived &&ref();
2096/// void f(Derived d) {
2097///   Base& b = d; // initializer is an ImplicitCastExpr
2098///                // to an lvalue of type Base
2099///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2100///                     // to an xvalue of type Base
2101/// }
2102/// @endcode
2103class ImplicitCastExpr : public CastExpr {
2104public:
2105  enum ResultCategory {
2106    RValue, LValue, XValue
2107  };
2108
2109private:
2110  /// Category - The category this cast produces.
2111  ResultCategory Category;
2112
2113  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2114                   unsigned BasePathLength, ResultCategory Cat)
2115    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePathLength),
2116      Category(Cat) { }
2117
2118  /// \brief Construct an empty implicit cast.
2119  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2120    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2121
2122public:
2123  enum OnStack_t { OnStack };
2124  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2125                   ResultCategory Cat)
2126    : CastExpr(ImplicitCastExprClass, ty, kind, op, 0),
2127      Category(Cat) { }
2128
2129  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2130                                  CastKind Kind, Expr *Operand,
2131                                  const CXXCastPath *BasePath,
2132                                  ResultCategory Cat);
2133
2134  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2135
2136  virtual SourceRange getSourceRange() const {
2137    return getSubExpr()->getSourceRange();
2138  }
2139
2140  /// getCategory - The value category this cast produces.
2141  ResultCategory getCategory() const { return Category; }
2142
2143  /// setCategory - Set the value category this cast produces.
2144  void setCategory(ResultCategory Cat) { Category = Cat; }
2145
2146  static bool classof(const Stmt *T) {
2147    return T->getStmtClass() == ImplicitCastExprClass;
2148  }
2149  static bool classof(const ImplicitCastExpr *) { return true; }
2150};
2151
2152/// ExplicitCastExpr - An explicit cast written in the source
2153/// code.
2154///
2155/// This class is effectively an abstract class, because it provides
2156/// the basic representation of an explicitly-written cast without
2157/// specifying which kind of cast (C cast, functional cast, static
2158/// cast, etc.) was written; specific derived classes represent the
2159/// particular style of cast and its location information.
2160///
2161/// Unlike implicit casts, explicit cast nodes have two different
2162/// types: the type that was written into the source code, and the
2163/// actual type of the expression as determined by semantic
2164/// analysis. These types may differ slightly. For example, in C++ one
2165/// can cast to a reference type, which indicates that the resulting
2166/// expression will be an lvalue or xvalue. The reference type, however,
2167/// will not be used as the type of the expression.
2168class ExplicitCastExpr : public CastExpr {
2169  /// TInfo - Source type info for the (written) type
2170  /// this expression is casting to.
2171  TypeSourceInfo *TInfo;
2172
2173protected:
2174  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2175                   Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy)
2176    : CastExpr(SC, exprTy, kind, op, PathSize), TInfo(writtenTy) {}
2177
2178  /// \brief Construct an empty explicit cast.
2179  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2180    : CastExpr(SC, Shell, PathSize) { }
2181
2182public:
2183  /// getTypeInfoAsWritten - Returns the type source info for the type
2184  /// that this expression is casting to.
2185  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2186  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2187
2188  /// getTypeAsWritten - Returns the type that this expression is
2189  /// casting to, as written in the source code.
2190  QualType getTypeAsWritten() const { return TInfo->getType(); }
2191
2192  static bool classof(const Stmt *T) {
2193     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2194            T->getStmtClass() <= lastExplicitCastExprConstant;
2195  }
2196  static bool classof(const ExplicitCastExpr *) { return true; }
2197};
2198
2199/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2200/// cast in C++ (C++ [expr.cast]), which uses the syntax
2201/// (Type)expr. For example: @c (int)f.
2202class CStyleCastExpr : public ExplicitCastExpr {
2203  SourceLocation LPLoc; // the location of the left paren
2204  SourceLocation RPLoc; // the location of the right paren
2205
2206  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2207                 unsigned PathSize, TypeSourceInfo *writtenTy,
2208                 SourceLocation l, SourceLocation r)
2209    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, PathSize,
2210                       writtenTy), LPLoc(l), RPLoc(r) {}
2211
2212  /// \brief Construct an empty C-style explicit cast.
2213  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2214    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2215
2216public:
2217  static CStyleCastExpr *Create(ASTContext &Context, QualType T, CastKind K,
2218                                Expr *Op, const CXXCastPath *BasePath,
2219                                TypeSourceInfo *WrittenTy, SourceLocation L,
2220                                SourceLocation R);
2221
2222  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2223
2224  SourceLocation getLParenLoc() const { return LPLoc; }
2225  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2226
2227  SourceLocation getRParenLoc() const { return RPLoc; }
2228  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2229
2230  virtual SourceRange getSourceRange() const {
2231    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2232  }
2233  static bool classof(const Stmt *T) {
2234    return T->getStmtClass() == CStyleCastExprClass;
2235  }
2236  static bool classof(const CStyleCastExpr *) { return true; }
2237};
2238
2239/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2240///
2241/// This expression node kind describes a builtin binary operation,
2242/// such as "x + y" for integer values "x" and "y". The operands will
2243/// already have been converted to appropriate types (e.g., by
2244/// performing promotions or conversions).
2245///
2246/// In C++, where operators may be overloaded, a different kind of
2247/// expression node (CXXOperatorCallExpr) is used to express the
2248/// invocation of an overloaded operator with operator syntax. Within
2249/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2250/// used to store an expression "x + y" depends on the subexpressions
2251/// for x and y. If neither x or y is type-dependent, and the "+"
2252/// operator resolves to a built-in operation, BinaryOperator will be
2253/// used to express the computation (x and y may still be
2254/// value-dependent). If either x or y is type-dependent, or if the
2255/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2256/// be used to express the computation.
2257class BinaryOperator : public Expr {
2258public:
2259  enum Opcode {
2260    // Operators listed in order of precedence.
2261    // Note that additions to this should also update the StmtVisitor class.
2262    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2263    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2264    Add, Sub,         // [C99 6.5.6] Additive operators.
2265    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2266    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2267    EQ, NE,           // [C99 6.5.9] Equality operators.
2268    And,              // [C99 6.5.10] Bitwise AND operator.
2269    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2270    Or,               // [C99 6.5.12] Bitwise OR operator.
2271    LAnd,             // [C99 6.5.13] Logical AND operator.
2272    LOr,              // [C99 6.5.14] Logical OR operator.
2273    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2274    DivAssign, RemAssign,
2275    AddAssign, SubAssign,
2276    ShlAssign, ShrAssign,
2277    AndAssign, XorAssign,
2278    OrAssign,
2279    Comma             // [C99 6.5.17] Comma operator.
2280  };
2281private:
2282  enum { LHS, RHS, END_EXPR };
2283  Stmt* SubExprs[END_EXPR];
2284  Opcode Opc;
2285  SourceLocation OpLoc;
2286public:
2287
2288  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2289                 SourceLocation opLoc)
2290    : Expr(BinaryOperatorClass, ResTy,
2291           lhs->isTypeDependent() || rhs->isTypeDependent(),
2292           lhs->isValueDependent() || rhs->isValueDependent()),
2293      Opc(opc), OpLoc(opLoc) {
2294    SubExprs[LHS] = lhs;
2295    SubExprs[RHS] = rhs;
2296    assert(!isCompoundAssignmentOp() &&
2297           "Use ArithAssignBinaryOperator for compound assignments");
2298  }
2299
2300  /// \brief Construct an empty binary operator.
2301  explicit BinaryOperator(EmptyShell Empty)
2302    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2303
2304  SourceLocation getOperatorLoc() const { return OpLoc; }
2305  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2306
2307  Opcode getOpcode() const { return Opc; }
2308  void setOpcode(Opcode O) { Opc = O; }
2309
2310  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2311  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2312  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2313  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2314
2315  virtual SourceRange getSourceRange() const {
2316    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2317  }
2318
2319  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2320  /// corresponds to, e.g. "<<=".
2321  static const char *getOpcodeStr(Opcode Op);
2322
2323  const char *getOpcodeStr() const { return getOpcodeStr(Opc); }
2324
2325  /// \brief Retrieve the binary opcode that corresponds to the given
2326  /// overloaded operator.
2327  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2328
2329  /// \brief Retrieve the overloaded operator kind that corresponds to
2330  /// the given binary opcode.
2331  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2332
2333  /// predicates to categorize the respective opcodes.
2334  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2335  static bool isAdditiveOp(Opcode Opc) { return Opc == Add || Opc == Sub; }
2336  bool isAdditiveOp() const { return isAdditiveOp(Opc); }
2337  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2338  bool isShiftOp() const { return isShiftOp(Opc); }
2339
2340  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2341  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2342
2343  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2344  bool isRelationalOp() const { return isRelationalOp(Opc); }
2345
2346  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2347  bool isEqualityOp() const { return isEqualityOp(Opc); }
2348
2349  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2350  bool isComparisonOp() const { return isComparisonOp(Opc); }
2351
2352  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2353  bool isLogicalOp() const { return isLogicalOp(Opc); }
2354
2355  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2356  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2357  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2358
2359  static bool classof(const Stmt *S) {
2360    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2361           S->getStmtClass() <= lastBinaryOperatorConstant;
2362  }
2363  static bool classof(const BinaryOperator *) { return true; }
2364
2365  // Iterators
2366  virtual child_iterator child_begin();
2367  virtual child_iterator child_end();
2368
2369protected:
2370  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2371                 SourceLocation opLoc, bool dead)
2372    : Expr(CompoundAssignOperatorClass, ResTy,
2373           lhs->isTypeDependent() || rhs->isTypeDependent(),
2374           lhs->isValueDependent() || rhs->isValueDependent()),
2375      Opc(opc), OpLoc(opLoc) {
2376    SubExprs[LHS] = lhs;
2377    SubExprs[RHS] = rhs;
2378  }
2379
2380  BinaryOperator(StmtClass SC, EmptyShell Empty)
2381    : Expr(SC, Empty), Opc(MulAssign) { }
2382};
2383
2384/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2385/// track of the type the operation is performed in.  Due to the semantics of
2386/// these operators, the operands are promoted, the aritmetic performed, an
2387/// implicit conversion back to the result type done, then the assignment takes
2388/// place.  This captures the intermediate type which the computation is done
2389/// in.
2390class CompoundAssignOperator : public BinaryOperator {
2391  QualType ComputationLHSType;
2392  QualType ComputationResultType;
2393public:
2394  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2395                         QualType ResType, QualType CompLHSType,
2396                         QualType CompResultType,
2397                         SourceLocation OpLoc)
2398    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2399      ComputationLHSType(CompLHSType),
2400      ComputationResultType(CompResultType) {
2401    assert(isCompoundAssignmentOp() &&
2402           "Only should be used for compound assignments");
2403  }
2404
2405  /// \brief Build an empty compound assignment operator expression.
2406  explicit CompoundAssignOperator(EmptyShell Empty)
2407    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2408
2409  // The two computation types are the type the LHS is converted
2410  // to for the computation and the type of the result; the two are
2411  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2412  QualType getComputationLHSType() const { return ComputationLHSType; }
2413  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2414
2415  QualType getComputationResultType() const { return ComputationResultType; }
2416  void setComputationResultType(QualType T) { ComputationResultType = T; }
2417
2418  static bool classof(const CompoundAssignOperator *) { return true; }
2419  static bool classof(const Stmt *S) {
2420    return S->getStmtClass() == CompoundAssignOperatorClass;
2421  }
2422};
2423
2424/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2425/// GNU "missing LHS" extension is in use.
2426///
2427class ConditionalOperator : public Expr {
2428  enum { COND, LHS, RHS, END_EXPR };
2429  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2430  SourceLocation QuestionLoc, ColonLoc;
2431public:
2432  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2433                      SourceLocation CLoc, Expr *rhs, QualType t)
2434    : Expr(ConditionalOperatorClass, t,
2435           // FIXME: the type of the conditional operator doesn't
2436           // depend on the type of the conditional, but the standard
2437           // seems to imply that it could. File a bug!
2438           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2439           (cond->isValueDependent() ||
2440            (lhs && lhs->isValueDependent()) ||
2441            (rhs && rhs->isValueDependent()))),
2442      QuestionLoc(QLoc),
2443      ColonLoc(CLoc) {
2444    SubExprs[COND] = cond;
2445    SubExprs[LHS] = lhs;
2446    SubExprs[RHS] = rhs;
2447  }
2448
2449  /// \brief Build an empty conditional operator.
2450  explicit ConditionalOperator(EmptyShell Empty)
2451    : Expr(ConditionalOperatorClass, Empty) { }
2452
2453  // getCond - Return the expression representing the condition for
2454  //  the ?: operator.
2455  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2456  void setCond(Expr *E) { SubExprs[COND] = E; }
2457
2458  // getTrueExpr - Return the subexpression representing the value of the ?:
2459  //  expression if the condition evaluates to true.  In most cases this value
2460  //  will be the same as getLHS() except a GCC extension allows the left
2461  //  subexpression to be omitted, and instead of the condition be returned.
2462  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2463  //  is only evaluated once.
2464  Expr *getTrueExpr() const {
2465    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2466  }
2467
2468  // getTrueExpr - Return the subexpression representing the value of the ?:
2469  // expression if the condition evaluates to false. This is the same as getRHS.
2470  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2471
2472  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2473  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2474
2475  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2476  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2477
2478  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2479  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2480
2481  SourceLocation getColonLoc() const { return ColonLoc; }
2482  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2483
2484  virtual SourceRange getSourceRange() const {
2485    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2486  }
2487  static bool classof(const Stmt *T) {
2488    return T->getStmtClass() == ConditionalOperatorClass;
2489  }
2490  static bool classof(const ConditionalOperator *) { return true; }
2491
2492  // Iterators
2493  virtual child_iterator child_begin();
2494  virtual child_iterator child_end();
2495};
2496
2497/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2498class AddrLabelExpr : public Expr {
2499  SourceLocation AmpAmpLoc, LabelLoc;
2500  LabelStmt *Label;
2501public:
2502  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2503                QualType t)
2504    : Expr(AddrLabelExprClass, t, false, false),
2505      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2506
2507  /// \brief Build an empty address of a label expression.
2508  explicit AddrLabelExpr(EmptyShell Empty)
2509    : Expr(AddrLabelExprClass, Empty) { }
2510
2511  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2512  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2513  SourceLocation getLabelLoc() const { return LabelLoc; }
2514  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2515
2516  virtual SourceRange getSourceRange() const {
2517    return SourceRange(AmpAmpLoc, LabelLoc);
2518  }
2519
2520  LabelStmt *getLabel() const { return Label; }
2521  void setLabel(LabelStmt *S) { Label = S; }
2522
2523  static bool classof(const Stmt *T) {
2524    return T->getStmtClass() == AddrLabelExprClass;
2525  }
2526  static bool classof(const AddrLabelExpr *) { return true; }
2527
2528  // Iterators
2529  virtual child_iterator child_begin();
2530  virtual child_iterator child_end();
2531};
2532
2533/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2534/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2535/// takes the value of the last subexpression.
2536class StmtExpr : public Expr {
2537  Stmt *SubStmt;
2538  SourceLocation LParenLoc, RParenLoc;
2539public:
2540  // FIXME: Does type-dependence need to be computed differently?
2541  StmtExpr(CompoundStmt *substmt, QualType T,
2542           SourceLocation lp, SourceLocation rp) :
2543    Expr(StmtExprClass, T, T->isDependentType(), false),
2544    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2545
2546  /// \brief Build an empty statement expression.
2547  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2548
2549  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2550  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2551  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2552
2553  virtual SourceRange getSourceRange() const {
2554    return SourceRange(LParenLoc, RParenLoc);
2555  }
2556
2557  SourceLocation getLParenLoc() const { return LParenLoc; }
2558  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2559  SourceLocation getRParenLoc() const { return RParenLoc; }
2560  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2561
2562  static bool classof(const Stmt *T) {
2563    return T->getStmtClass() == StmtExprClass;
2564  }
2565  static bool classof(const StmtExpr *) { return true; }
2566
2567  // Iterators
2568  virtual child_iterator child_begin();
2569  virtual child_iterator child_end();
2570};
2571
2572/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2573/// This AST node represents a function that returns 1 if two *types* (not
2574/// expressions) are compatible. The result of this built-in function can be
2575/// used in integer constant expressions.
2576class TypesCompatibleExpr : public Expr {
2577  TypeSourceInfo *TInfo1;
2578  TypeSourceInfo *TInfo2;
2579  SourceLocation BuiltinLoc, RParenLoc;
2580public:
2581  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2582                      TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
2583                      SourceLocation RP) :
2584    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2585    TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2586
2587  /// \brief Build an empty __builtin_type_compatible_p expression.
2588  explicit TypesCompatibleExpr(EmptyShell Empty)
2589    : Expr(TypesCompatibleExprClass, Empty) { }
2590
2591  TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
2592  void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
2593  TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
2594  void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
2595
2596  QualType getArgType1() const { return TInfo1->getType(); }
2597  QualType getArgType2() const { return TInfo2->getType(); }
2598
2599  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2600  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2601
2602  SourceLocation getRParenLoc() const { return RParenLoc; }
2603  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2604
2605  virtual SourceRange getSourceRange() const {
2606    return SourceRange(BuiltinLoc, RParenLoc);
2607  }
2608  static bool classof(const Stmt *T) {
2609    return T->getStmtClass() == TypesCompatibleExprClass;
2610  }
2611  static bool classof(const TypesCompatibleExpr *) { return true; }
2612
2613  // Iterators
2614  virtual child_iterator child_begin();
2615  virtual child_iterator child_end();
2616};
2617
2618/// ShuffleVectorExpr - clang-specific builtin-in function
2619/// __builtin_shufflevector.
2620/// This AST node represents a operator that does a constant
2621/// shuffle, similar to LLVM's shufflevector instruction. It takes
2622/// two vectors and a variable number of constant indices,
2623/// and returns the appropriately shuffled vector.
2624class ShuffleVectorExpr : public Expr {
2625  SourceLocation BuiltinLoc, RParenLoc;
2626
2627  // SubExprs - the list of values passed to the __builtin_shufflevector
2628  // function. The first two are vectors, and the rest are constant
2629  // indices.  The number of values in this list is always
2630  // 2+the number of indices in the vector type.
2631  Stmt **SubExprs;
2632  unsigned NumExprs;
2633
2634public:
2635  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2636  // to be computed differently?
2637  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2638                    QualType Type, SourceLocation BLoc,
2639                    SourceLocation RP) :
2640    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2641    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2642
2643    SubExprs = new (C) Stmt*[nexpr];
2644    for (unsigned i = 0; i < nexpr; i++)
2645      SubExprs[i] = args[i];
2646  }
2647
2648  /// \brief Build an empty vector-shuffle expression.
2649  explicit ShuffleVectorExpr(EmptyShell Empty)
2650    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2651
2652  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2653  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2654
2655  SourceLocation getRParenLoc() const { return RParenLoc; }
2656  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2657
2658  virtual SourceRange getSourceRange() const {
2659    return SourceRange(BuiltinLoc, RParenLoc);
2660  }
2661  static bool classof(const Stmt *T) {
2662    return T->getStmtClass() == ShuffleVectorExprClass;
2663  }
2664  static bool classof(const ShuffleVectorExpr *) { return true; }
2665
2666  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2667  /// constant expression, the actual arguments passed in, and the function
2668  /// pointers.
2669  unsigned getNumSubExprs() const { return NumExprs; }
2670
2671  /// getExpr - Return the Expr at the specified index.
2672  Expr *getExpr(unsigned Index) {
2673    assert((Index < NumExprs) && "Arg access out of range!");
2674    return cast<Expr>(SubExprs[Index]);
2675  }
2676  const Expr *getExpr(unsigned Index) const {
2677    assert((Index < NumExprs) && "Arg access out of range!");
2678    return cast<Expr>(SubExprs[Index]);
2679  }
2680
2681  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2682
2683  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2684    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2685    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2686  }
2687
2688  // Iterators
2689  virtual child_iterator child_begin();
2690  virtual child_iterator child_end();
2691};
2692
2693/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2694/// This AST node is similar to the conditional operator (?:) in C, with
2695/// the following exceptions:
2696/// - the test expression must be a integer constant expression.
2697/// - the expression returned acts like the chosen subexpression in every
2698///   visible way: the type is the same as that of the chosen subexpression,
2699///   and all predicates (whether it's an l-value, whether it's an integer
2700///   constant expression, etc.) return the same result as for the chosen
2701///   sub-expression.
2702class ChooseExpr : public Expr {
2703  enum { COND, LHS, RHS, END_EXPR };
2704  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2705  SourceLocation BuiltinLoc, RParenLoc;
2706public:
2707  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2708             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2709    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2710      BuiltinLoc(BLoc), RParenLoc(RP) {
2711      SubExprs[COND] = cond;
2712      SubExprs[LHS] = lhs;
2713      SubExprs[RHS] = rhs;
2714    }
2715
2716  /// \brief Build an empty __builtin_choose_expr.
2717  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2718
2719  /// isConditionTrue - Return whether the condition is true (i.e. not
2720  /// equal to zero).
2721  bool isConditionTrue(ASTContext &C) const;
2722
2723  /// getChosenSubExpr - Return the subexpression chosen according to the
2724  /// condition.
2725  Expr *getChosenSubExpr(ASTContext &C) const {
2726    return isConditionTrue(C) ? getLHS() : getRHS();
2727  }
2728
2729  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2730  void setCond(Expr *E) { SubExprs[COND] = E; }
2731  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2732  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2733  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2734  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2735
2736  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2737  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2738
2739  SourceLocation getRParenLoc() const { return RParenLoc; }
2740  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2741
2742  virtual SourceRange getSourceRange() const {
2743    return SourceRange(BuiltinLoc, RParenLoc);
2744  }
2745  static bool classof(const Stmt *T) {
2746    return T->getStmtClass() == ChooseExprClass;
2747  }
2748  static bool classof(const ChooseExpr *) { return true; }
2749
2750  // Iterators
2751  virtual child_iterator child_begin();
2752  virtual child_iterator child_end();
2753};
2754
2755/// GNUNullExpr - Implements the GNU __null extension, which is a name
2756/// for a null pointer constant that has integral type (e.g., int or
2757/// long) and is the same size and alignment as a pointer. The __null
2758/// extension is typically only used by system headers, which define
2759/// NULL as __null in C++ rather than using 0 (which is an integer
2760/// that may not match the size of a pointer).
2761class GNUNullExpr : public Expr {
2762  /// TokenLoc - The location of the __null keyword.
2763  SourceLocation TokenLoc;
2764
2765public:
2766  GNUNullExpr(QualType Ty, SourceLocation Loc)
2767    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2768
2769  /// \brief Build an empty GNU __null expression.
2770  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2771
2772  /// getTokenLocation - The location of the __null token.
2773  SourceLocation getTokenLocation() const { return TokenLoc; }
2774  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2775
2776  virtual SourceRange getSourceRange() const {
2777    return SourceRange(TokenLoc);
2778  }
2779  static bool classof(const Stmt *T) {
2780    return T->getStmtClass() == GNUNullExprClass;
2781  }
2782  static bool classof(const GNUNullExpr *) { return true; }
2783
2784  // Iterators
2785  virtual child_iterator child_begin();
2786  virtual child_iterator child_end();
2787};
2788
2789/// VAArgExpr, used for the builtin function __builtin_va_arg.
2790class VAArgExpr : public Expr {
2791  Stmt *Val;
2792  TypeSourceInfo *TInfo;
2793  SourceLocation BuiltinLoc, RParenLoc;
2794public:
2795  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2796            SourceLocation RPLoc, QualType t)
2797    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2798      Val(e), TInfo(TInfo),
2799      BuiltinLoc(BLoc),
2800      RParenLoc(RPLoc) { }
2801
2802  /// \brief Create an empty __builtin_va_arg expression.
2803  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2804
2805  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2806  Expr *getSubExpr() { return cast<Expr>(Val); }
2807  void setSubExpr(Expr *E) { Val = E; }
2808
2809  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2810  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2811
2812  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2813  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2814
2815  SourceLocation getRParenLoc() const { return RParenLoc; }
2816  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2817
2818  virtual SourceRange getSourceRange() const {
2819    return SourceRange(BuiltinLoc, RParenLoc);
2820  }
2821  static bool classof(const Stmt *T) {
2822    return T->getStmtClass() == VAArgExprClass;
2823  }
2824  static bool classof(const VAArgExpr *) { return true; }
2825
2826  // Iterators
2827  virtual child_iterator child_begin();
2828  virtual child_iterator child_end();
2829};
2830
2831/// @brief Describes an C or C++ initializer list.
2832///
2833/// InitListExpr describes an initializer list, which can be used to
2834/// initialize objects of different types, including
2835/// struct/class/union types, arrays, and vectors. For example:
2836///
2837/// @code
2838/// struct foo x = { 1, { 2, 3 } };
2839/// @endcode
2840///
2841/// Prior to semantic analysis, an initializer list will represent the
2842/// initializer list as written by the user, but will have the
2843/// placeholder type "void". This initializer list is called the
2844/// syntactic form of the initializer, and may contain C99 designated
2845/// initializers (represented as DesignatedInitExprs), initializations
2846/// of subobject members without explicit braces, and so on. Clients
2847/// interested in the original syntax of the initializer list should
2848/// use the syntactic form of the initializer list.
2849///
2850/// After semantic analysis, the initializer list will represent the
2851/// semantic form of the initializer, where the initializations of all
2852/// subobjects are made explicit with nested InitListExpr nodes and
2853/// C99 designators have been eliminated by placing the designated
2854/// initializations into the subobject they initialize. Additionally,
2855/// any "holes" in the initialization, where no initializer has been
2856/// specified for a particular subobject, will be replaced with
2857/// implicitly-generated ImplicitValueInitExpr expressions that
2858/// value-initialize the subobjects. Note, however, that the
2859/// initializer lists may still have fewer initializers than there are
2860/// elements to initialize within the object.
2861///
2862/// Given the semantic form of the initializer list, one can retrieve
2863/// the original syntactic form of that initializer list (if it
2864/// exists) using getSyntacticForm(). Since many initializer lists
2865/// have the same syntactic and semantic forms, getSyntacticForm() may
2866/// return NULL, indicating that the current initializer list also
2867/// serves as its syntactic form.
2868class InitListExpr : public Expr {
2869  // FIXME: Eliminate this vector in favor of ASTContext allocation
2870  typedef ASTVector<Stmt *> InitExprsTy;
2871  InitExprsTy InitExprs;
2872  SourceLocation LBraceLoc, RBraceLoc;
2873
2874  /// Contains the initializer list that describes the syntactic form
2875  /// written in the source code.
2876  InitListExpr *SyntacticForm;
2877
2878  /// If this initializer list initializes a union, specifies which
2879  /// field within the union will be initialized.
2880  FieldDecl *UnionFieldInit;
2881
2882  /// Whether this initializer list originally had a GNU array-range
2883  /// designator in it. This is a temporary marker used by CodeGen.
2884  bool HadArrayRangeDesignator;
2885
2886public:
2887  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2888               Expr **initexprs, unsigned numinits,
2889               SourceLocation rbraceloc);
2890
2891  /// \brief Build an empty initializer list.
2892  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2893    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2894
2895  unsigned getNumInits() const { return InitExprs.size(); }
2896
2897  const Expr* getInit(unsigned Init) const {
2898    assert(Init < getNumInits() && "Initializer access out of range!");
2899    return cast_or_null<Expr>(InitExprs[Init]);
2900  }
2901
2902  Expr* getInit(unsigned Init) {
2903    assert(Init < getNumInits() && "Initializer access out of range!");
2904    return cast_or_null<Expr>(InitExprs[Init]);
2905  }
2906
2907  void setInit(unsigned Init, Expr *expr) {
2908    assert(Init < getNumInits() && "Initializer access out of range!");
2909    InitExprs[Init] = expr;
2910  }
2911
2912  /// \brief Reserve space for some number of initializers.
2913  void reserveInits(ASTContext &C, unsigned NumInits);
2914
2915  /// @brief Specify the number of initializers
2916  ///
2917  /// If there are more than @p NumInits initializers, the remaining
2918  /// initializers will be destroyed. If there are fewer than @p
2919  /// NumInits initializers, NULL expressions will be added for the
2920  /// unknown initializers.
2921  void resizeInits(ASTContext &Context, unsigned NumInits);
2922
2923  /// @brief Updates the initializer at index @p Init with the new
2924  /// expression @p expr, and returns the old expression at that
2925  /// location.
2926  ///
2927  /// When @p Init is out of range for this initializer list, the
2928  /// initializer list will be extended with NULL expressions to
2929  /// accomodate the new entry.
2930  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2931
2932  /// \brief If this initializes a union, specifies which field in the
2933  /// union to initialize.
2934  ///
2935  /// Typically, this field is the first named field within the
2936  /// union. However, a designated initializer can specify the
2937  /// initialization of a different field within the union.
2938  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2939  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2940
2941  // Explicit InitListExpr's originate from source code (and have valid source
2942  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2943  bool isExplicit() {
2944    return LBraceLoc.isValid() && RBraceLoc.isValid();
2945  }
2946
2947  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2948  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2949  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2950  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2951
2952  /// @brief Retrieve the initializer list that describes the
2953  /// syntactic form of the initializer.
2954  ///
2955  ///
2956  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2957  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2958
2959  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2960  void sawArrayRangeDesignator(bool ARD = true) {
2961    HadArrayRangeDesignator = ARD;
2962  }
2963
2964  virtual SourceRange getSourceRange() const {
2965    return SourceRange(LBraceLoc, RBraceLoc);
2966  }
2967  static bool classof(const Stmt *T) {
2968    return T->getStmtClass() == InitListExprClass;
2969  }
2970  static bool classof(const InitListExpr *) { return true; }
2971
2972  // Iterators
2973  virtual child_iterator child_begin();
2974  virtual child_iterator child_end();
2975
2976  typedef InitExprsTy::iterator iterator;
2977  typedef InitExprsTy::const_iterator const_iterator;
2978  typedef InitExprsTy::reverse_iterator reverse_iterator;
2979  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
2980
2981  iterator begin() { return InitExprs.begin(); }
2982  const_iterator begin() const { return InitExprs.begin(); }
2983  iterator end() { return InitExprs.end(); }
2984  const_iterator end() const { return InitExprs.end(); }
2985  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2986  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
2987  reverse_iterator rend() { return InitExprs.rend(); }
2988  const_reverse_iterator rend() const { return InitExprs.rend(); }
2989};
2990
2991/// @brief Represents a C99 designated initializer expression.
2992///
2993/// A designated initializer expression (C99 6.7.8) contains one or
2994/// more designators (which can be field designators, array
2995/// designators, or GNU array-range designators) followed by an
2996/// expression that initializes the field or element(s) that the
2997/// designators refer to. For example, given:
2998///
2999/// @code
3000/// struct point {
3001///   double x;
3002///   double y;
3003/// };
3004/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3005/// @endcode
3006///
3007/// The InitListExpr contains three DesignatedInitExprs, the first of
3008/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3009/// designators, one array designator for @c [2] followed by one field
3010/// designator for @c .y. The initalization expression will be 1.0.
3011class DesignatedInitExpr : public Expr {
3012public:
3013  /// \brief Forward declaration of the Designator class.
3014  class Designator;
3015
3016private:
3017  /// The location of the '=' or ':' prior to the actual initializer
3018  /// expression.
3019  SourceLocation EqualOrColonLoc;
3020
3021  /// Whether this designated initializer used the GNU deprecated
3022  /// syntax rather than the C99 '=' syntax.
3023  bool GNUSyntax : 1;
3024
3025  /// The number of designators in this initializer expression.
3026  unsigned NumDesignators : 15;
3027
3028  /// \brief The designators in this designated initialization
3029  /// expression.
3030  Designator *Designators;
3031
3032  /// The number of subexpressions of this initializer expression,
3033  /// which contains both the initializer and any additional
3034  /// expressions used by array and array-range designators.
3035  unsigned NumSubExprs : 16;
3036
3037
3038  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3039                     const Designator *Designators,
3040                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3041                     Expr **IndexExprs, unsigned NumIndexExprs,
3042                     Expr *Init);
3043
3044  explicit DesignatedInitExpr(unsigned NumSubExprs)
3045    : Expr(DesignatedInitExprClass, EmptyShell()),
3046      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3047
3048public:
3049  /// A field designator, e.g., ".x".
3050  struct FieldDesignator {
3051    /// Refers to the field that is being initialized. The low bit
3052    /// of this field determines whether this is actually a pointer
3053    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3054    /// initially constructed, a field designator will store an
3055    /// IdentifierInfo*. After semantic analysis has resolved that
3056    /// name, the field designator will instead store a FieldDecl*.
3057    uintptr_t NameOrField;
3058
3059    /// The location of the '.' in the designated initializer.
3060    unsigned DotLoc;
3061
3062    /// The location of the field name in the designated initializer.
3063    unsigned FieldLoc;
3064  };
3065
3066  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3067  struct ArrayOrRangeDesignator {
3068    /// Location of the first index expression within the designated
3069    /// initializer expression's list of subexpressions.
3070    unsigned Index;
3071    /// The location of the '[' starting the array range designator.
3072    unsigned LBracketLoc;
3073    /// The location of the ellipsis separating the start and end
3074    /// indices. Only valid for GNU array-range designators.
3075    unsigned EllipsisLoc;
3076    /// The location of the ']' terminating the array range designator.
3077    unsigned RBracketLoc;
3078  };
3079
3080  /// @brief Represents a single C99 designator.
3081  ///
3082  /// @todo This class is infuriatingly similar to clang::Designator,
3083  /// but minor differences (storing indices vs. storing pointers)
3084  /// keep us from reusing it. Try harder, later, to rectify these
3085  /// differences.
3086  class Designator {
3087    /// @brief The kind of designator this describes.
3088    enum {
3089      FieldDesignator,
3090      ArrayDesignator,
3091      ArrayRangeDesignator
3092    } Kind;
3093
3094    union {
3095      /// A field designator, e.g., ".x".
3096      struct FieldDesignator Field;
3097      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3098      struct ArrayOrRangeDesignator ArrayOrRange;
3099    };
3100    friend class DesignatedInitExpr;
3101
3102  public:
3103    Designator() {}
3104
3105    /// @brief Initializes a field designator.
3106    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3107               SourceLocation FieldLoc)
3108      : Kind(FieldDesignator) {
3109      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3110      Field.DotLoc = DotLoc.getRawEncoding();
3111      Field.FieldLoc = FieldLoc.getRawEncoding();
3112    }
3113
3114    /// @brief Initializes an array designator.
3115    Designator(unsigned Index, SourceLocation LBracketLoc,
3116               SourceLocation RBracketLoc)
3117      : Kind(ArrayDesignator) {
3118      ArrayOrRange.Index = Index;
3119      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3120      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3121      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3122    }
3123
3124    /// @brief Initializes a GNU array-range designator.
3125    Designator(unsigned Index, SourceLocation LBracketLoc,
3126               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3127      : Kind(ArrayRangeDesignator) {
3128      ArrayOrRange.Index = Index;
3129      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3130      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3131      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3132    }
3133
3134    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3135    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3136    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3137
3138    IdentifierInfo * getFieldName();
3139
3140    FieldDecl *getField() {
3141      assert(Kind == FieldDesignator && "Only valid on a field designator");
3142      if (Field.NameOrField & 0x01)
3143        return 0;
3144      else
3145        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3146    }
3147
3148    void setField(FieldDecl *FD) {
3149      assert(Kind == FieldDesignator && "Only valid on a field designator");
3150      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3151    }
3152
3153    SourceLocation getDotLoc() const {
3154      assert(Kind == FieldDesignator && "Only valid on a field designator");
3155      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3156    }
3157
3158    SourceLocation getFieldLoc() const {
3159      assert(Kind == FieldDesignator && "Only valid on a field designator");
3160      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3161    }
3162
3163    SourceLocation getLBracketLoc() const {
3164      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3165             "Only valid on an array or array-range designator");
3166      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3167    }
3168
3169    SourceLocation getRBracketLoc() const {
3170      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3171             "Only valid on an array or array-range designator");
3172      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3173    }
3174
3175    SourceLocation getEllipsisLoc() const {
3176      assert(Kind == ArrayRangeDesignator &&
3177             "Only valid on an array-range designator");
3178      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3179    }
3180
3181    unsigned getFirstExprIndex() const {
3182      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3183             "Only valid on an array or array-range designator");
3184      return ArrayOrRange.Index;
3185    }
3186
3187    SourceLocation getStartLocation() const {
3188      if (Kind == FieldDesignator)
3189        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3190      else
3191        return getLBracketLoc();
3192    }
3193  };
3194
3195  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3196                                    unsigned NumDesignators,
3197                                    Expr **IndexExprs, unsigned NumIndexExprs,
3198                                    SourceLocation EqualOrColonLoc,
3199                                    bool GNUSyntax, Expr *Init);
3200
3201  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3202
3203  /// @brief Returns the number of designators in this initializer.
3204  unsigned size() const { return NumDesignators; }
3205
3206  // Iterator access to the designators.
3207  typedef Designator* designators_iterator;
3208  designators_iterator designators_begin() { return Designators; }
3209  designators_iterator designators_end() {
3210    return Designators + NumDesignators;
3211  }
3212
3213  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3214
3215  void setDesignators(ASTContext &C, const Designator *Desigs,
3216                      unsigned NumDesigs);
3217
3218  Expr *getArrayIndex(const Designator& D);
3219  Expr *getArrayRangeStart(const Designator& D);
3220  Expr *getArrayRangeEnd(const Designator& D);
3221
3222  /// @brief Retrieve the location of the '=' that precedes the
3223  /// initializer value itself, if present.
3224  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3225  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3226
3227  /// @brief Determines whether this designated initializer used the
3228  /// deprecated GNU syntax for designated initializers.
3229  bool usesGNUSyntax() const { return GNUSyntax; }
3230  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3231
3232  /// @brief Retrieve the initializer value.
3233  Expr *getInit() const {
3234    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3235  }
3236
3237  void setInit(Expr *init) {
3238    *child_begin() = init;
3239  }
3240
3241  /// \brief Retrieve the total number of subexpressions in this
3242  /// designated initializer expression, including the actual
3243  /// initialized value and any expressions that occur within array
3244  /// and array-range designators.
3245  unsigned getNumSubExprs() const { return NumSubExprs; }
3246
3247  Expr *getSubExpr(unsigned Idx) {
3248    assert(Idx < NumSubExprs && "Subscript out of range");
3249    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3250    Ptr += sizeof(DesignatedInitExpr);
3251    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3252  }
3253
3254  void setSubExpr(unsigned Idx, Expr *E) {
3255    assert(Idx < NumSubExprs && "Subscript out of range");
3256    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3257    Ptr += sizeof(DesignatedInitExpr);
3258    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3259  }
3260
3261  /// \brief Replaces the designator at index @p Idx with the series
3262  /// of designators in [First, Last).
3263  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3264                        const Designator *Last);
3265
3266  virtual SourceRange getSourceRange() const;
3267
3268  static bool classof(const Stmt *T) {
3269    return T->getStmtClass() == DesignatedInitExprClass;
3270  }
3271  static bool classof(const DesignatedInitExpr *) { return true; }
3272
3273  // Iterators
3274  virtual child_iterator child_begin();
3275  virtual child_iterator child_end();
3276};
3277
3278/// \brief Represents an implicitly-generated value initialization of
3279/// an object of a given type.
3280///
3281/// Implicit value initializations occur within semantic initializer
3282/// list expressions (InitListExpr) as placeholders for subobject
3283/// initializations not explicitly specified by the user.
3284///
3285/// \see InitListExpr
3286class ImplicitValueInitExpr : public Expr {
3287public:
3288  explicit ImplicitValueInitExpr(QualType ty)
3289    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3290
3291  /// \brief Construct an empty implicit value initialization.
3292  explicit ImplicitValueInitExpr(EmptyShell Empty)
3293    : Expr(ImplicitValueInitExprClass, Empty) { }
3294
3295  static bool classof(const Stmt *T) {
3296    return T->getStmtClass() == ImplicitValueInitExprClass;
3297  }
3298  static bool classof(const ImplicitValueInitExpr *) { return true; }
3299
3300  virtual SourceRange getSourceRange() const {
3301    return SourceRange();
3302  }
3303
3304  // Iterators
3305  virtual child_iterator child_begin();
3306  virtual child_iterator child_end();
3307};
3308
3309
3310class ParenListExpr : public Expr {
3311  Stmt **Exprs;
3312  unsigned NumExprs;
3313  SourceLocation LParenLoc, RParenLoc;
3314
3315public:
3316  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3317                unsigned numexprs, SourceLocation rparenloc);
3318
3319  /// \brief Build an empty paren list.
3320  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3321
3322  unsigned getNumExprs() const { return NumExprs; }
3323
3324  const Expr* getExpr(unsigned Init) const {
3325    assert(Init < getNumExprs() && "Initializer access out of range!");
3326    return cast_or_null<Expr>(Exprs[Init]);
3327  }
3328
3329  Expr* getExpr(unsigned Init) {
3330    assert(Init < getNumExprs() && "Initializer access out of range!");
3331    return cast_or_null<Expr>(Exprs[Init]);
3332  }
3333
3334  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3335
3336  SourceLocation getLParenLoc() const { return LParenLoc; }
3337  SourceLocation getRParenLoc() const { return RParenLoc; }
3338
3339  virtual SourceRange getSourceRange() const {
3340    return SourceRange(LParenLoc, RParenLoc);
3341  }
3342  static bool classof(const Stmt *T) {
3343    return T->getStmtClass() == ParenListExprClass;
3344  }
3345  static bool classof(const ParenListExpr *) { return true; }
3346
3347  // Iterators
3348  virtual child_iterator child_begin();
3349  virtual child_iterator child_end();
3350
3351  friend class ASTStmtReader;
3352  friend class ASTStmtWriter;
3353};
3354
3355
3356//===----------------------------------------------------------------------===//
3357// Clang Extensions
3358//===----------------------------------------------------------------------===//
3359
3360
3361/// ExtVectorElementExpr - This represents access to specific elements of a
3362/// vector, and may occur on the left hand side or right hand side.  For example
3363/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3364///
3365/// Note that the base may have either vector or pointer to vector type, just
3366/// like a struct field reference.
3367///
3368class ExtVectorElementExpr : public Expr {
3369  Stmt *Base;
3370  IdentifierInfo *Accessor;
3371  SourceLocation AccessorLoc;
3372public:
3373  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3374                       SourceLocation loc)
3375    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3376           base->isValueDependent()),
3377      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3378
3379  /// \brief Build an empty vector element expression.
3380  explicit ExtVectorElementExpr(EmptyShell Empty)
3381    : Expr(ExtVectorElementExprClass, Empty) { }
3382
3383  const Expr *getBase() const { return cast<Expr>(Base); }
3384  Expr *getBase() { return cast<Expr>(Base); }
3385  void setBase(Expr *E) { Base = E; }
3386
3387  IdentifierInfo &getAccessor() const { return *Accessor; }
3388  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3389
3390  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3391  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3392
3393  /// getNumElements - Get the number of components being selected.
3394  unsigned getNumElements() const;
3395
3396  /// containsDuplicateElements - Return true if any element access is
3397  /// repeated.
3398  bool containsDuplicateElements() const;
3399
3400  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3401  /// aggregate Constant of ConstantInt(s).
3402  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3403
3404  virtual SourceRange getSourceRange() const {
3405    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3406  }
3407
3408  /// isArrow - Return true if the base expression is a pointer to vector,
3409  /// return false if the base expression is a vector.
3410  bool isArrow() const;
3411
3412  static bool classof(const Stmt *T) {
3413    return T->getStmtClass() == ExtVectorElementExprClass;
3414  }
3415  static bool classof(const ExtVectorElementExpr *) { return true; }
3416
3417  // Iterators
3418  virtual child_iterator child_begin();
3419  virtual child_iterator child_end();
3420};
3421
3422
3423/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3424/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3425class BlockExpr : public Expr {
3426protected:
3427  BlockDecl *TheBlock;
3428  bool HasBlockDeclRefExprs;
3429public:
3430  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3431    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3432      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3433
3434  /// \brief Build an empty block expression.
3435  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3436
3437  const BlockDecl *getBlockDecl() const { return TheBlock; }
3438  BlockDecl *getBlockDecl() { return TheBlock; }
3439  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3440
3441  // Convenience functions for probing the underlying BlockDecl.
3442  SourceLocation getCaretLocation() const;
3443  const Stmt *getBody() const;
3444  Stmt *getBody();
3445
3446  virtual SourceRange getSourceRange() const {
3447    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3448  }
3449
3450  /// getFunctionType - Return the underlying function type for this block.
3451  const FunctionType *getFunctionType() const;
3452
3453  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3454  /// inside of the block that reference values outside the block.
3455  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3456  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3457
3458  static bool classof(const Stmt *T) {
3459    return T->getStmtClass() == BlockExprClass;
3460  }
3461  static bool classof(const BlockExpr *) { return true; }
3462
3463  // Iterators
3464  virtual child_iterator child_begin();
3465  virtual child_iterator child_end();
3466};
3467
3468/// BlockDeclRefExpr - A reference to a declared variable, function,
3469/// enum, etc.
3470class BlockDeclRefExpr : public Expr {
3471  ValueDecl *D;
3472  SourceLocation Loc;
3473  bool IsByRef : 1;
3474  bool ConstQualAdded : 1;
3475  Stmt *CopyConstructorVal;
3476public:
3477  // FIXME: Fix type/value dependence!
3478  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3479                   bool constAdded = false,
3480                   Stmt *copyConstructorVal = 0)
3481  : Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false),
3482    D(d), Loc(l), IsByRef(ByRef),
3483    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3484
3485  // \brief Build an empty reference to a declared variable in a
3486  // block.
3487  explicit BlockDeclRefExpr(EmptyShell Empty)
3488    : Expr(BlockDeclRefExprClass, Empty) { }
3489
3490  ValueDecl *getDecl() { return D; }
3491  const ValueDecl *getDecl() const { return D; }
3492  void setDecl(ValueDecl *VD) { D = VD; }
3493
3494  SourceLocation getLocation() const { return Loc; }
3495  void setLocation(SourceLocation L) { Loc = L; }
3496
3497  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3498
3499  bool isByRef() const { return IsByRef; }
3500  void setByRef(bool BR) { IsByRef = BR; }
3501
3502  bool isConstQualAdded() const { return ConstQualAdded; }
3503  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3504
3505  const Expr *getCopyConstructorExpr() const
3506    { return cast_or_null<Expr>(CopyConstructorVal); }
3507  Expr *getCopyConstructorExpr()
3508    { return cast_or_null<Expr>(CopyConstructorVal); }
3509  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3510
3511  static bool classof(const Stmt *T) {
3512    return T->getStmtClass() == BlockDeclRefExprClass;
3513  }
3514  static bool classof(const BlockDeclRefExpr *) { return true; }
3515
3516  // Iterators
3517  virtual child_iterator child_begin();
3518  virtual child_iterator child_end();
3519};
3520
3521}  // end namespace clang
3522
3523#endif
3524