Expr.h revision 663e380d7b2de2bbf20e886e05371195bea9adc4
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "clang/AST/UsuallyTinyPtrVector.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include <vector>
28
29namespace clang {
30  class ASTContext;
31  class APValue;
32  class Decl;
33  class IdentifierInfo;
34  class ParmVarDecl;
35  class NamedDecl;
36  class ValueDecl;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXOperatorCallExpr;
40  class CXXMemberCallExpr;
41  class TemplateArgumentLoc;
42  class TemplateArgumentListInfo;
43
44/// \brief A simple array of base specifiers.
45typedef UsuallyTinyPtrVector<const CXXBaseSpecifier> CXXBaseSpecifierArray;
46
47/// Expr - This represents one expression.  Note that Expr's are subclasses of
48/// Stmt.  This allows an expression to be transparently used any place a Stmt
49/// is required.
50///
51class Expr : public Stmt {
52  QualType TR;
53
54  virtual void ANCHOR(); // key function.
55protected:
56  /// TypeDependent - Whether this expression is type-dependent
57  /// (C++ [temp.dep.expr]).
58  bool TypeDependent : 1;
59
60  /// ValueDependent - Whether this expression is value-dependent
61  /// (C++ [temp.dep.constexpr]).
62  bool ValueDependent : 1;
63
64  Expr(StmtClass SC, QualType T, bool TD, bool VD)
65    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
66    setType(T);
67  }
68
69  /// \brief Construct an empty expression.
70  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71
72public:
73  /// \brief Increases the reference count for this expression.
74  ///
75  /// Invoke the Retain() operation when this expression
76  /// is being shared by another owner.
77  Expr *Retain() {
78    Stmt::Retain();
79    return this;
80  }
81
82  QualType getType() const { return TR; }
83  void setType(QualType t) {
84    // In C++, the type of an expression is always adjusted so that it
85    // will not have reference type an expression will never have
86    // reference type (C++ [expr]p6). Use
87    // QualType::getNonReferenceType() to retrieve the non-reference
88    // type. Additionally, inspect Expr::isLvalue to determine whether
89    // an expression that is adjusted in this manner should be
90    // considered an lvalue.
91    assert((t.isNull() || !t->isReferenceType()) &&
92           "Expressions can't have reference type");
93
94    TR = t;
95  }
96
97  /// isValueDependent - Determines whether this expression is
98  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
99  /// array bound of "Chars" in the following example is
100  /// value-dependent.
101  /// @code
102  /// template<int Size, char (&Chars)[Size]> struct meta_string;
103  /// @endcode
104  bool isValueDependent() const { return ValueDependent; }
105
106  /// \brief Set whether this expression is value-dependent or not.
107  void setValueDependent(bool VD) { ValueDependent = VD; }
108
109  /// isTypeDependent - Determines whether this expression is
110  /// type-dependent (C++ [temp.dep.expr]), which means that its type
111  /// could change from one template instantiation to the next. For
112  /// example, the expressions "x" and "x + y" are type-dependent in
113  /// the following code, but "y" is not type-dependent:
114  /// @code
115  /// template<typename T>
116  /// void add(T x, int y) {
117  ///   x + y;
118  /// }
119  /// @endcode
120  bool isTypeDependent() const { return TypeDependent; }
121
122  /// \brief Set whether this expression is type-dependent or not.
123  void setTypeDependent(bool TD) { TypeDependent = TD; }
124
125  /// SourceLocation tokens are not useful in isolation - they are low level
126  /// value objects created/interpreted by SourceManager. We assume AST
127  /// clients will have a pointer to the respective SourceManager.
128  virtual SourceRange getSourceRange() const = 0;
129
130  /// getExprLoc - Return the preferred location for the arrow when diagnosing
131  /// a problem with a generic expression.
132  virtual SourceLocation getExprLoc() const { return getLocStart(); }
133
134  /// isUnusedResultAWarning - Return true if this immediate expression should
135  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
136  /// with location to warn on and the source range[s] to report with the
137  /// warning.
138  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
139                              SourceRange &R2, ASTContext &Ctx) const;
140
141  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
142  /// incomplete type other than void. Nonarray expressions that can be lvalues:
143  ///  - name, where name must be a variable
144  ///  - e[i]
145  ///  - (e), where e must be an lvalue
146  ///  - e.name, where e must be an lvalue
147  ///  - e->name
148  ///  - *e, the type of e cannot be a function type
149  ///  - string-constant
150  ///  - reference type [C++ [expr]]
151  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
152  ///
153  enum isLvalueResult {
154    LV_Valid,
155    LV_NotObjectType,
156    LV_IncompleteVoidType,
157    LV_DuplicateVectorComponents,
158    LV_InvalidExpression,
159    LV_MemberFunction,
160    LV_SubObjCPropertySetting,
161    LV_ClassTemporary
162  };
163  isLvalueResult isLvalue(ASTContext &Ctx) const;
164
165  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
166  /// does not have an incomplete type, does not have a const-qualified type,
167  /// and if it is a structure or union, does not have any member (including,
168  /// recursively, any member or element of all contained aggregates or unions)
169  /// with a const-qualified type.
170  ///
171  /// \param Loc [in] [out] - A source location which *may* be filled
172  /// in with the location of the expression making this a
173  /// non-modifiable lvalue, if specified.
174  enum isModifiableLvalueResult {
175    MLV_Valid,
176    MLV_NotObjectType,
177    MLV_IncompleteVoidType,
178    MLV_DuplicateVectorComponents,
179    MLV_InvalidExpression,
180    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
181    MLV_IncompleteType,
182    MLV_ConstQualified,
183    MLV_ArrayType,
184    MLV_NotBlockQualified,
185    MLV_ReadonlyProperty,
186    MLV_NoSetterProperty,
187    MLV_MemberFunction,
188    MLV_SubObjCPropertySetting,
189    MLV_ClassTemporary
190  };
191  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
192                                              SourceLocation *Loc = 0) const;
193
194  /// \brief The return type of classify(). Represents the C++0x expression
195  ///        taxonomy.
196  class Classification {
197  public:
198    /// \brief The various classification results. Most of these mean prvalue.
199    enum Kinds {
200      CL_LValue,
201      CL_XValue,
202      CL_Function, // Functions cannot be lvalues in C.
203      CL_Void, // Void cannot be an lvalue in C.
204      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
205      CL_MemberFunction, // An expression referring to a member function
206      CL_SubObjCPropertySetting,
207      CL_ClassTemporary, // A prvalue of class type
208      CL_PRValue // A prvalue for any other reason, of any other type
209    };
210    /// \brief The results of modification testing.
211    enum ModifiableType {
212      CM_Untested, // testModifiable was false.
213      CM_Modifiable,
214      CM_RValue, // Not modifiable because it's an rvalue
215      CM_Function, // Not modifiable because it's a function; C++ only
216      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
217      CM_NotBlockQualified, // Not captured in the closure
218      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
219      CM_ConstQualified,
220      CM_ArrayType,
221      CM_IncompleteType
222    };
223
224  private:
225    friend class Expr;
226
227    unsigned short Kind;
228    unsigned short Modifiable;
229
230    explicit Classification(Kinds k, ModifiableType m)
231      : Kind(k), Modifiable(m)
232    {}
233
234  public:
235    Classification() {}
236
237    Kinds getKind() const { return static_cast<Kinds>(Kind); }
238    ModifiableType getModifiable() const {
239      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
240      return static_cast<ModifiableType>(Modifiable);
241    }
242    bool isLValue() const { return Kind == CL_LValue; }
243    bool isXValue() const { return Kind == CL_XValue; }
244    bool isGLValue() const { return Kind <= CL_XValue; }
245    bool isPRValue() const { return Kind >= CL_Function; }
246    bool isRValue() const { return Kind >= CL_XValue; }
247    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
248  };
249  /// \brief classify - Classify this expression according to the C++0x
250  ///        expression taxonomy.
251  ///
252  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
253  /// old lvalue vs rvalue. This function determines the type of expression this
254  /// is. There are three expression types:
255  /// - lvalues are classical lvalues as in C++03.
256  /// - prvalues are equivalent to rvalues in C++03.
257  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
258  ///   function returning an rvalue reference.
259  /// lvalues and xvalues are collectively referred to as glvalues, while
260  /// prvalues and xvalues together form rvalues.
261  /// If a
262  Classification Classify(ASTContext &Ctx) const {
263    return ClassifyImpl(Ctx, 0);
264  }
265
266  /// \brief classifyModifiable - Classify this expression according to the
267  ///        C++0x expression taxonomy, and see if it is valid on the left side
268  ///        of an assignment.
269  ///
270  /// This function extends classify in that it also tests whether the
271  /// expression is modifiable (C99 6.3.2.1p1).
272  /// \param Loc A source location that might be filled with a relevant location
273  ///            if the expression is not modifiable.
274  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
275    return ClassifyImpl(Ctx, &Loc);
276  }
277
278private:
279  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
280
281public:
282
283  /// \brief If this expression refers to a bit-field, retrieve the
284  /// declaration of that bit-field.
285  FieldDecl *getBitField();
286
287  const FieldDecl *getBitField() const {
288    return const_cast<Expr*>(this)->getBitField();
289  }
290
291  /// \brief Returns whether this expression refers to a vector element.
292  bool refersToVectorElement() const;
293
294  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
295  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
296  /// but also int expressions which are produced by things like comparisons in
297  /// C.
298  bool isKnownToHaveBooleanValue() const;
299
300  /// isIntegerConstantExpr - Return true if this expression is a valid integer
301  /// constant expression, and, if so, return its value in Result.  If not a
302  /// valid i-c-e, return false and fill in Loc (if specified) with the location
303  /// of the invalid expression.
304  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
305                             SourceLocation *Loc = 0,
306                             bool isEvaluated = true) const;
307  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
308    llvm::APSInt X;
309    return isIntegerConstantExpr(X, Ctx, Loc);
310  }
311  /// isConstantInitializer - Returns true if this expression is a constant
312  /// initializer, which can be emitted at compile-time.
313  bool isConstantInitializer(ASTContext &Ctx) const;
314
315  /// EvalResult is a struct with detailed info about an evaluated expression.
316  struct EvalResult {
317    /// Val - This is the value the expression can be folded to.
318    APValue Val;
319
320    /// HasSideEffects - Whether the evaluated expression has side effects.
321    /// For example, (f() && 0) can be folded, but it still has side effects.
322    bool HasSideEffects;
323
324    /// Diag - If the expression is unfoldable, then Diag contains a note
325    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
326    /// position for the error, and DiagExpr is the expression that caused
327    /// the error.
328    /// If the expression is foldable, but not an integer constant expression,
329    /// Diag contains a note diagnostic that describes why it isn't an integer
330    /// constant expression. If the expression *is* an integer constant
331    /// expression, then Diag will be zero.
332    unsigned Diag;
333    const Expr *DiagExpr;
334    SourceLocation DiagLoc;
335
336    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
337
338    // isGlobalLValue - Return true if the evaluated lvalue expression
339    // is global.
340    bool isGlobalLValue() const;
341    // hasSideEffects - Return true if the evaluated expression has
342    // side effects.
343    bool hasSideEffects() const {
344      return HasSideEffects;
345    }
346  };
347
348  /// Evaluate - Return true if this is a constant which we can fold using
349  /// any crazy technique (that has nothing to do with language standards) that
350  /// we want to.  If this function returns true, it returns the folded constant
351  /// in Result.
352  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
353
354  /// EvaluateAsBooleanCondition - Return true if this is a constant
355  /// which we we can fold and convert to a boolean condition using
356  /// any crazy technique that we want to.
357  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
358
359  /// isEvaluatable - Call Evaluate to see if this expression can be constant
360  /// folded, but discard the result.
361  bool isEvaluatable(ASTContext &Ctx) const;
362
363  /// HasSideEffects - This routine returns true for all those expressions
364  /// which must be evaluated each time and must not be optimization away
365  /// or evaluated at compile time. Example is a function call, volatile
366  /// variable read.
367  bool HasSideEffects(ASTContext &Ctx) const;
368
369  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
370  /// must be called on an expression that constant folds to an integer.
371  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
372
373  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
374  /// with link time known address.
375  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
376
377  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
378  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
379
380  /// \brief Enumeration used to describe how \c isNullPointerConstant()
381  /// should cope with value-dependent expressions.
382  enum NullPointerConstantValueDependence {
383    /// \brief Specifies that the expression should never be value-dependent.
384    NPC_NeverValueDependent = 0,
385
386    /// \brief Specifies that a value-dependent expression of integral or
387    /// dependent type should be considered a null pointer constant.
388    NPC_ValueDependentIsNull,
389
390    /// \brief Specifies that a value-dependent expression should be considered
391    /// to never be a null pointer constant.
392    NPC_ValueDependentIsNotNull
393  };
394
395  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
396  /// integer constant expression with the value zero, or if this is one that is
397  /// cast to void*.
398  bool isNullPointerConstant(ASTContext &Ctx,
399                             NullPointerConstantValueDependence NPC) const;
400
401  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
402  /// write barrier.
403  bool isOBJCGCCandidate(ASTContext &Ctx) const;
404
405  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
406  ///  its subexpression.  If that subexpression is also a ParenExpr,
407  ///  then this method recursively returns its subexpression, and so forth.
408  ///  Otherwise, the method returns the current Expr.
409  Expr *IgnoreParens();
410
411  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
412  /// or CastExprs, returning their operand.
413  Expr *IgnoreParenCasts();
414
415  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
416  /// ParenExpr or ImplicitCastExprs, returning their operand.
417  Expr *IgnoreParenImpCasts();
418
419  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
420  /// value (including ptr->int casts of the same size).  Strip off any
421  /// ParenExpr or CastExprs, returning their operand.
422  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
423
424  /// \brief Determine whether this expression is a default function argument.
425  ///
426  /// Default arguments are implicitly generated in the abstract syntax tree
427  /// by semantic analysis for function calls, object constructions, etc. in
428  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
429  /// this routine also looks through any implicit casts to determine whether
430  /// the expression is a default argument.
431  bool isDefaultArgument() const;
432
433  /// \brief Determine whether this expression directly creates a
434  /// temporary object (of class type).
435  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
436
437  /// \brief If this expression directly creates a temporary object of
438  /// class type, return the expression that actually constructs that
439  /// temporary object.
440  const Expr *getTemporaryObject() const;
441
442  const Expr *IgnoreParens() const {
443    return const_cast<Expr*>(this)->IgnoreParens();
444  }
445  const Expr *IgnoreParenCasts() const {
446    return const_cast<Expr*>(this)->IgnoreParenCasts();
447  }
448  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
449    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
450  }
451
452  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
453  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
454
455  static bool classof(const Stmt *T) {
456    return T->getStmtClass() >= firstExprConstant &&
457           T->getStmtClass() <= lastExprConstant;
458  }
459  static bool classof(const Expr *) { return true; }
460};
461
462
463//===----------------------------------------------------------------------===//
464// Primary Expressions.
465//===----------------------------------------------------------------------===//
466
467/// \brief Represents the qualifier that may precede a C++ name, e.g., the
468/// "std::" in "std::sort".
469struct NameQualifier {
470  /// \brief The nested name specifier.
471  NestedNameSpecifier *NNS;
472
473  /// \brief The source range covered by the nested name specifier.
474  SourceRange Range;
475};
476
477/// \brief Represents an explicit template argument list in C++, e.g.,
478/// the "<int>" in "sort<int>".
479struct ExplicitTemplateArgumentList {
480  /// \brief The source location of the left angle bracket ('<');
481  SourceLocation LAngleLoc;
482
483  /// \brief The source location of the right angle bracket ('>');
484  SourceLocation RAngleLoc;
485
486  /// \brief The number of template arguments in TemplateArgs.
487  /// The actual template arguments (if any) are stored after the
488  /// ExplicitTemplateArgumentList structure.
489  unsigned NumTemplateArgs;
490
491  /// \brief Retrieve the template arguments
492  TemplateArgumentLoc *getTemplateArgs() {
493    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
494  }
495
496  /// \brief Retrieve the template arguments
497  const TemplateArgumentLoc *getTemplateArgs() const {
498    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
499  }
500
501  void initializeFrom(const TemplateArgumentListInfo &List);
502  void copyInto(TemplateArgumentListInfo &List) const;
503  static std::size_t sizeFor(unsigned NumTemplateArgs);
504  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
505};
506
507/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
508/// enum, etc.
509class DeclRefExpr : public Expr {
510  enum {
511    // Flag on DecoratedD that specifies when this declaration reference
512    // expression has a C++ nested-name-specifier.
513    HasQualifierFlag = 0x01,
514    // Flag on DecoratedD that specifies when this declaration reference
515    // expression has an explicit C++ template argument list.
516    HasExplicitTemplateArgumentListFlag = 0x02
517  };
518
519  // DecoratedD - The declaration that we are referencing, plus two bits to
520  // indicate whether (1) the declaration's name was explicitly qualified and
521  // (2) the declaration's name was followed by an explicit template
522  // argument list.
523  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
524
525  // Loc - The location of the declaration name itself.
526  SourceLocation Loc;
527
528  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
529  NameQualifier *getNameQualifier() {
530    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
531      return 0;
532
533    return reinterpret_cast<NameQualifier *> (this + 1);
534  }
535
536  /// \brief Retrieve the qualifier that preceded the member name, if any.
537  const NameQualifier *getNameQualifier() const {
538    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
539  }
540
541  /// \brief Retrieve the explicit template argument list that followed the
542  /// member template name, if any.
543  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
544    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
545      return 0;
546
547    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
548      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
549
550    return reinterpret_cast<ExplicitTemplateArgumentList *>(
551                                                      getNameQualifier() + 1);
552  }
553
554  /// \brief Retrieve the explicit template argument list that followed the
555  /// member template name, if any.
556  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
557    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
558  }
559
560  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
561              ValueDecl *D, SourceLocation NameLoc,
562              const TemplateArgumentListInfo *TemplateArgs,
563              QualType T);
564
565  /// \brief Construct an empty declaration reference expression.
566  explicit DeclRefExpr(EmptyShell Empty)
567    : Expr(DeclRefExprClass, Empty) { }
568
569  /// \brief Computes the type- and value-dependence flags for this
570  /// declaration reference expression.
571  void computeDependence();
572
573public:
574  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
575    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
576    computeDependence();
577  }
578
579  static DeclRefExpr *Create(ASTContext &Context,
580                             NestedNameSpecifier *Qualifier,
581                             SourceRange QualifierRange,
582                             ValueDecl *D,
583                             SourceLocation NameLoc,
584                             QualType T,
585                             const TemplateArgumentListInfo *TemplateArgs = 0);
586
587  /// \brief Construct an empty declaration reference expression.
588  static DeclRefExpr *CreateEmpty(ASTContext &Context,
589                                  bool HasQualifier, unsigned NumTemplateArgs);
590
591  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
592  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
593  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
594
595  SourceLocation getLocation() const { return Loc; }
596  void setLocation(SourceLocation L) { Loc = L; }
597  virtual SourceRange getSourceRange() const;
598
599  /// \brief Determine whether this declaration reference was preceded by a
600  /// C++ nested-name-specifier, e.g., \c N::foo.
601  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
602
603  /// \brief If the name was qualified, retrieves the source range of
604  /// the nested-name-specifier that precedes the name. Otherwise,
605  /// returns an empty source range.
606  SourceRange getQualifierRange() const {
607    if (!hasQualifier())
608      return SourceRange();
609
610    return getNameQualifier()->Range;
611  }
612
613  /// \brief If the name was qualified, retrieves the nested-name-specifier
614  /// that precedes the name. Otherwise, returns NULL.
615  NestedNameSpecifier *getQualifier() const {
616    if (!hasQualifier())
617      return 0;
618
619    return getNameQualifier()->NNS;
620  }
621
622  /// \brief Determines whether this member expression actually had a C++
623  /// template argument list explicitly specified, e.g., x.f<int>.
624  bool hasExplicitTemplateArgumentList() const {
625    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
626  }
627
628  /// \brief Copies the template arguments (if present) into the given
629  /// structure.
630  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
631    if (hasExplicitTemplateArgumentList())
632      getExplicitTemplateArgumentList()->copyInto(List);
633  }
634
635  /// \brief Retrieve the location of the left angle bracket following the
636  /// member name ('<'), if any.
637  SourceLocation getLAngleLoc() const {
638    if (!hasExplicitTemplateArgumentList())
639      return SourceLocation();
640
641    return getExplicitTemplateArgumentList()->LAngleLoc;
642  }
643
644  /// \brief Retrieve the template arguments provided as part of this
645  /// template-id.
646  const TemplateArgumentLoc *getTemplateArgs() const {
647    if (!hasExplicitTemplateArgumentList())
648      return 0;
649
650    return getExplicitTemplateArgumentList()->getTemplateArgs();
651  }
652
653  /// \brief Retrieve the number of template arguments provided as part of this
654  /// template-id.
655  unsigned getNumTemplateArgs() const {
656    if (!hasExplicitTemplateArgumentList())
657      return 0;
658
659    return getExplicitTemplateArgumentList()->NumTemplateArgs;
660  }
661
662  /// \brief Retrieve the location of the right angle bracket following the
663  /// template arguments ('>').
664  SourceLocation getRAngleLoc() const {
665    if (!hasExplicitTemplateArgumentList())
666      return SourceLocation();
667
668    return getExplicitTemplateArgumentList()->RAngleLoc;
669  }
670
671  static bool classof(const Stmt *T) {
672    return T->getStmtClass() == DeclRefExprClass;
673  }
674  static bool classof(const DeclRefExpr *) { return true; }
675
676  // Iterators
677  virtual child_iterator child_begin();
678  virtual child_iterator child_end();
679
680  friend class PCHStmtReader;
681  friend class PCHStmtWriter;
682};
683
684/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
685class PredefinedExpr : public Expr {
686public:
687  enum IdentType {
688    Func,
689    Function,
690    PrettyFunction,
691    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
692    /// 'virtual' keyword is omitted for virtual member functions.
693    PrettyFunctionNoVirtual
694  };
695
696private:
697  SourceLocation Loc;
698  IdentType Type;
699public:
700  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
701    : Expr(PredefinedExprClass, type, type->isDependentType(),
702           type->isDependentType()), Loc(l), Type(IT) {}
703
704  /// \brief Construct an empty predefined expression.
705  explicit PredefinedExpr(EmptyShell Empty)
706    : Expr(PredefinedExprClass, Empty) { }
707
708  IdentType getIdentType() const { return Type; }
709  void setIdentType(IdentType IT) { Type = IT; }
710
711  SourceLocation getLocation() const { return Loc; }
712  void setLocation(SourceLocation L) { Loc = L; }
713
714  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
715
716  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
717
718  static bool classof(const Stmt *T) {
719    return T->getStmtClass() == PredefinedExprClass;
720  }
721  static bool classof(const PredefinedExpr *) { return true; }
722
723  // Iterators
724  virtual child_iterator child_begin();
725  virtual child_iterator child_end();
726};
727
728class IntegerLiteral : public Expr {
729  llvm::APInt Value;
730  SourceLocation Loc;
731public:
732  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
733  // or UnsignedLongLongTy
734  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
735    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
736    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
737  }
738
739  /// \brief Construct an empty integer literal.
740  explicit IntegerLiteral(EmptyShell Empty)
741    : Expr(IntegerLiteralClass, Empty) { }
742
743  const llvm::APInt &getValue() const { return Value; }
744  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
745
746  /// \brief Retrieve the location of the literal.
747  SourceLocation getLocation() const { return Loc; }
748
749  void setValue(const llvm::APInt &Val) { Value = Val; }
750  void setLocation(SourceLocation Location) { Loc = Location; }
751
752  static bool classof(const Stmt *T) {
753    return T->getStmtClass() == IntegerLiteralClass;
754  }
755  static bool classof(const IntegerLiteral *) { return true; }
756
757  // Iterators
758  virtual child_iterator child_begin();
759  virtual child_iterator child_end();
760};
761
762class CharacterLiteral : public Expr {
763  unsigned Value;
764  SourceLocation Loc;
765  bool IsWide;
766public:
767  // type should be IntTy
768  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
769    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
770      IsWide(iswide) {
771  }
772
773  /// \brief Construct an empty character literal.
774  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
775
776  SourceLocation getLocation() const { return Loc; }
777  bool isWide() const { return IsWide; }
778
779  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
780
781  unsigned getValue() const { return Value; }
782
783  void setLocation(SourceLocation Location) { Loc = Location; }
784  void setWide(bool W) { IsWide = W; }
785  void setValue(unsigned Val) { Value = Val; }
786
787  static bool classof(const Stmt *T) {
788    return T->getStmtClass() == CharacterLiteralClass;
789  }
790  static bool classof(const CharacterLiteral *) { return true; }
791
792  // Iterators
793  virtual child_iterator child_begin();
794  virtual child_iterator child_end();
795};
796
797class FloatingLiteral : public Expr {
798  llvm::APFloat Value;
799  bool IsExact : 1;
800  SourceLocation Loc;
801public:
802  FloatingLiteral(const llvm::APFloat &V, bool isexact,
803                  QualType Type, SourceLocation L)
804    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
805      IsExact(isexact), Loc(L) {}
806
807  /// \brief Construct an empty floating-point literal.
808  explicit FloatingLiteral(EmptyShell Empty)
809    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
810
811  const llvm::APFloat &getValue() const { return Value; }
812  void setValue(const llvm::APFloat &Val) { Value = Val; }
813
814  bool isExact() const { return IsExact; }
815  void setExact(bool E) { IsExact = E; }
816
817  /// getValueAsApproximateDouble - This returns the value as an inaccurate
818  /// double.  Note that this may cause loss of precision, but is useful for
819  /// debugging dumps, etc.
820  double getValueAsApproximateDouble() const;
821
822  SourceLocation getLocation() const { return Loc; }
823  void setLocation(SourceLocation L) { Loc = L; }
824
825  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
826
827  static bool classof(const Stmt *T) {
828    return T->getStmtClass() == FloatingLiteralClass;
829  }
830  static bool classof(const FloatingLiteral *) { return true; }
831
832  // Iterators
833  virtual child_iterator child_begin();
834  virtual child_iterator child_end();
835};
836
837/// ImaginaryLiteral - We support imaginary integer and floating point literals,
838/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
839/// IntegerLiteral classes.  Instances of this class always have a Complex type
840/// whose element type matches the subexpression.
841///
842class ImaginaryLiteral : public Expr {
843  Stmt *Val;
844public:
845  ImaginaryLiteral(Expr *val, QualType Ty)
846    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
847
848  /// \brief Build an empty imaginary literal.
849  explicit ImaginaryLiteral(EmptyShell Empty)
850    : Expr(ImaginaryLiteralClass, Empty) { }
851
852  const Expr *getSubExpr() const { return cast<Expr>(Val); }
853  Expr *getSubExpr() { return cast<Expr>(Val); }
854  void setSubExpr(Expr *E) { Val = E; }
855
856  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
857  static bool classof(const Stmt *T) {
858    return T->getStmtClass() == ImaginaryLiteralClass;
859  }
860  static bool classof(const ImaginaryLiteral *) { return true; }
861
862  // Iterators
863  virtual child_iterator child_begin();
864  virtual child_iterator child_end();
865};
866
867/// StringLiteral - This represents a string literal expression, e.g. "foo"
868/// or L"bar" (wide strings).  The actual string is returned by getStrData()
869/// is NOT null-terminated, and the length of the string is determined by
870/// calling getByteLength().  The C type for a string is always a
871/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
872/// not.
873///
874/// Note that strings in C can be formed by concatenation of multiple string
875/// literal pptokens in translation phase #6.  This keeps track of the locations
876/// of each of these pieces.
877///
878/// Strings in C can also be truncated and extended by assigning into arrays,
879/// e.g. with constructs like:
880///   char X[2] = "foobar";
881/// In this case, getByteLength() will return 6, but the string literal will
882/// have type "char[2]".
883class StringLiteral : public Expr {
884  const char *StrData;
885  unsigned ByteLength;
886  bool IsWide;
887  unsigned NumConcatenated;
888  SourceLocation TokLocs[1];
889
890  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
891
892protected:
893  virtual void DoDestroy(ASTContext &C);
894
895public:
896  /// This is the "fully general" constructor that allows representation of
897  /// strings formed from multiple concatenated tokens.
898  static StringLiteral *Create(ASTContext &C, const char *StrData,
899                               unsigned ByteLength, bool Wide, QualType Ty,
900                               const SourceLocation *Loc, unsigned NumStrs);
901
902  /// Simple constructor for string literals made from one token.
903  static StringLiteral *Create(ASTContext &C, const char *StrData,
904                               unsigned ByteLength,
905                               bool Wide, QualType Ty, SourceLocation Loc) {
906    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
907  }
908
909  /// \brief Construct an empty string literal.
910  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
911
912  llvm::StringRef getString() const {
913    return llvm::StringRef(StrData, ByteLength);
914  }
915  // FIXME: These are deprecated, replace with StringRef.
916  const char *getStrData() const { return StrData; }
917  unsigned getByteLength() const { return ByteLength; }
918
919  /// \brief Sets the string data to the given string data.
920  void setString(ASTContext &C, llvm::StringRef Str);
921
922  bool isWide() const { return IsWide; }
923  void setWide(bool W) { IsWide = W; }
924
925  bool containsNonAsciiOrNull() const {
926    llvm::StringRef Str = getString();
927    for (unsigned i = 0, e = Str.size(); i != e; ++i)
928      if (!isascii(Str[i]) || !Str[i])
929        return true;
930    return false;
931  }
932  /// getNumConcatenated - Get the number of string literal tokens that were
933  /// concatenated in translation phase #6 to form this string literal.
934  unsigned getNumConcatenated() const { return NumConcatenated; }
935
936  SourceLocation getStrTokenLoc(unsigned TokNum) const {
937    assert(TokNum < NumConcatenated && "Invalid tok number");
938    return TokLocs[TokNum];
939  }
940  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
941    assert(TokNum < NumConcatenated && "Invalid tok number");
942    TokLocs[TokNum] = L;
943  }
944
945  typedef const SourceLocation *tokloc_iterator;
946  tokloc_iterator tokloc_begin() const { return TokLocs; }
947  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
948
949  virtual SourceRange getSourceRange() const {
950    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
951  }
952  static bool classof(const Stmt *T) {
953    return T->getStmtClass() == StringLiteralClass;
954  }
955  static bool classof(const StringLiteral *) { return true; }
956
957  // Iterators
958  virtual child_iterator child_begin();
959  virtual child_iterator child_end();
960};
961
962/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
963/// AST node is only formed if full location information is requested.
964class ParenExpr : public Expr {
965  SourceLocation L, R;
966  Stmt *Val;
967public:
968  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
969    : Expr(ParenExprClass, val->getType(),
970           val->isTypeDependent(), val->isValueDependent()),
971      L(l), R(r), Val(val) {}
972
973  /// \brief Construct an empty parenthesized expression.
974  explicit ParenExpr(EmptyShell Empty)
975    : Expr(ParenExprClass, Empty) { }
976
977  const Expr *getSubExpr() const { return cast<Expr>(Val); }
978  Expr *getSubExpr() { return cast<Expr>(Val); }
979  void setSubExpr(Expr *E) { Val = E; }
980
981  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
982
983  /// \brief Get the location of the left parentheses '('.
984  SourceLocation getLParen() const { return L; }
985  void setLParen(SourceLocation Loc) { L = Loc; }
986
987  /// \brief Get the location of the right parentheses ')'.
988  SourceLocation getRParen() const { return R; }
989  void setRParen(SourceLocation Loc) { R = Loc; }
990
991  static bool classof(const Stmt *T) {
992    return T->getStmtClass() == ParenExprClass;
993  }
994  static bool classof(const ParenExpr *) { return true; }
995
996  // Iterators
997  virtual child_iterator child_begin();
998  virtual child_iterator child_end();
999};
1000
1001
1002/// UnaryOperator - This represents the unary-expression's (except sizeof and
1003/// alignof), the postinc/postdec operators from postfix-expression, and various
1004/// extensions.
1005///
1006/// Notes on various nodes:
1007///
1008/// Real/Imag - These return the real/imag part of a complex operand.  If
1009///   applied to a non-complex value, the former returns its operand and the
1010///   later returns zero in the type of the operand.
1011///
1012/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
1013///   subexpression is a compound literal with the various MemberExpr and
1014///   ArraySubscriptExpr's applied to it. (This is only used in C)
1015///
1016class UnaryOperator : public Expr {
1017public:
1018  // Note that additions to this should also update the StmtVisitor class.
1019  enum Opcode {
1020    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
1021    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
1022    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
1023    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
1024    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
1025    Real, Imag,       // "__real expr"/"__imag expr" Extension.
1026    Extension,        // __extension__ marker.
1027    OffsetOf          // __builtin_offsetof
1028  };
1029private:
1030  Stmt *Val;
1031  Opcode Opc;
1032  SourceLocation Loc;
1033public:
1034
1035  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1036    : Expr(UnaryOperatorClass, type,
1037           input->isTypeDependent() && opc != OffsetOf,
1038           input->isValueDependent()),
1039      Val(input), Opc(opc), Loc(l) {}
1040
1041  /// \brief Build an empty unary operator.
1042  explicit UnaryOperator(EmptyShell Empty)
1043    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
1044
1045  Opcode getOpcode() const { return Opc; }
1046  void setOpcode(Opcode O) { Opc = O; }
1047
1048  Expr *getSubExpr() const { return cast<Expr>(Val); }
1049  void setSubExpr(Expr *E) { Val = E; }
1050
1051  /// getOperatorLoc - Return the location of the operator.
1052  SourceLocation getOperatorLoc() const { return Loc; }
1053  void setOperatorLoc(SourceLocation L) { Loc = L; }
1054
1055  /// isPostfix - Return true if this is a postfix operation, like x++.
1056  static bool isPostfix(Opcode Op) {
1057    return Op == PostInc || Op == PostDec;
1058  }
1059
1060  /// isPostfix - Return true if this is a prefix operation, like --x.
1061  static bool isPrefix(Opcode Op) {
1062    return Op == PreInc || Op == PreDec;
1063  }
1064
1065  bool isPrefix() const { return isPrefix(Opc); }
1066  bool isPostfix() const { return isPostfix(Opc); }
1067  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
1068  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
1069  bool isOffsetOfOp() const { return Opc == OffsetOf; }
1070  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
1071  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
1072
1073  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1074  /// corresponds to, e.g. "sizeof" or "[pre]++"
1075  static const char *getOpcodeStr(Opcode Op);
1076
1077  /// \brief Retrieve the unary opcode that corresponds to the given
1078  /// overloaded operator.
1079  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1080
1081  /// \brief Retrieve the overloaded operator kind that corresponds to
1082  /// the given unary opcode.
1083  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1084
1085  virtual SourceRange getSourceRange() const {
1086    if (isPostfix())
1087      return SourceRange(Val->getLocStart(), Loc);
1088    else
1089      return SourceRange(Loc, Val->getLocEnd());
1090  }
1091  virtual SourceLocation getExprLoc() const { return Loc; }
1092
1093  static bool classof(const Stmt *T) {
1094    return T->getStmtClass() == UnaryOperatorClass;
1095  }
1096  static bool classof(const UnaryOperator *) { return true; }
1097
1098  // Iterators
1099  virtual child_iterator child_begin();
1100  virtual child_iterator child_end();
1101};
1102
1103/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1104/// offsetof(record-type, member-designator). For example, given:
1105/// @code
1106/// struct S {
1107///   float f;
1108///   double d;
1109/// };
1110/// struct T {
1111///   int i;
1112///   struct S s[10];
1113/// };
1114/// @endcode
1115/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1116
1117class OffsetOfExpr : public Expr {
1118public:
1119  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1120  class OffsetOfNode {
1121  public:
1122    /// \brief The kind of offsetof node we have.
1123    enum Kind {
1124      /// \brief An index into an array.
1125      Array = 0x00,
1126      /// \brief A field.
1127      Field = 0x01,
1128      /// \brief A field in a dependent type, known only by its name.
1129      Identifier = 0x02,
1130      /// \brief An implicit indirection through a C++ base class, when the
1131      /// field found is in a base class.
1132      Base = 0x03
1133    };
1134
1135  private:
1136    enum { MaskBits = 2, Mask = 0x03 };
1137
1138    /// \brief The source range that covers this part of the designator.
1139    SourceRange Range;
1140
1141    /// \brief The data describing the designator, which comes in three
1142    /// different forms, depending on the lower two bits.
1143    ///   - An unsigned index into the array of Expr*'s stored after this node
1144    ///     in memory, for [constant-expression] designators.
1145    ///   - A FieldDecl*, for references to a known field.
1146    ///   - An IdentifierInfo*, for references to a field with a given name
1147    ///     when the class type is dependent.
1148    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1149    ///     base class.
1150    uintptr_t Data;
1151
1152  public:
1153    /// \brief Create an offsetof node that refers to an array element.
1154    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1155                 SourceLocation RBracketLoc)
1156      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1157
1158    /// \brief Create an offsetof node that refers to a field.
1159    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1160                 SourceLocation NameLoc)
1161      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1162        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1163
1164    /// \brief Create an offsetof node that refers to an identifier.
1165    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1166                 SourceLocation NameLoc)
1167      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1168        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1169
1170    /// \brief Create an offsetof node that refers into a C++ base class.
1171    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1172      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1173
1174    /// \brief Determine what kind of offsetof node this is.
1175    Kind getKind() const {
1176      return static_cast<Kind>(Data & Mask);
1177    }
1178
1179    /// \brief For an array element node, returns the index into the array
1180    /// of expressions.
1181    unsigned getArrayExprIndex() const {
1182      assert(getKind() == Array);
1183      return Data >> 2;
1184    }
1185
1186    /// \brief For a field offsetof node, returns the field.
1187    FieldDecl *getField() const {
1188      assert(getKind() == Field);
1189      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1190    }
1191
1192    /// \brief For a field or identifier offsetof node, returns the name of
1193    /// the field.
1194    IdentifierInfo *getFieldName() const;
1195
1196    /// \brief For a base class node, returns the base specifier.
1197    CXXBaseSpecifier *getBase() const {
1198      assert(getKind() == Base);
1199      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1200    }
1201
1202    /// \brief Retrieve the source range that covers this offsetof node.
1203    ///
1204    /// For an array element node, the source range contains the locations of
1205    /// the square brackets. For a field or identifier node, the source range
1206    /// contains the location of the period (if there is one) and the
1207    /// identifier.
1208    SourceRange getRange() const { return Range; }
1209  };
1210
1211private:
1212
1213  SourceLocation OperatorLoc, RParenLoc;
1214  // Base type;
1215  TypeSourceInfo *TSInfo;
1216  // Number of sub-components (i.e. instances of OffsetOfNode).
1217  unsigned NumComps;
1218  // Number of sub-expressions (i.e. array subscript expressions).
1219  unsigned NumExprs;
1220
1221  OffsetOfExpr(ASTContext &C, QualType type,
1222               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1223               OffsetOfNode* compsPtr, unsigned numComps,
1224               Expr** exprsPtr, unsigned numExprs,
1225               SourceLocation RParenLoc);
1226
1227  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1228    : Expr(OffsetOfExprClass, EmptyShell()),
1229      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1230
1231public:
1232
1233  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1234                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1235                              OffsetOfNode* compsPtr, unsigned numComps,
1236                              Expr** exprsPtr, unsigned numExprs,
1237                              SourceLocation RParenLoc);
1238
1239  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1240                                   unsigned NumComps, unsigned NumExprs);
1241
1242  /// getOperatorLoc - Return the location of the operator.
1243  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1244  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1245
1246  /// \brief Return the location of the right parentheses.
1247  SourceLocation getRParenLoc() const { return RParenLoc; }
1248  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1249
1250  TypeSourceInfo *getTypeSourceInfo() const {
1251    return TSInfo;
1252  }
1253  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1254    TSInfo = tsi;
1255  }
1256
1257  const OffsetOfNode &getComponent(unsigned Idx) {
1258    assert(Idx < NumComps && "Subscript out of range");
1259    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1260  }
1261
1262  void setComponent(unsigned Idx, OffsetOfNode ON) {
1263    assert(Idx < NumComps && "Subscript out of range");
1264    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1265  }
1266
1267  unsigned getNumComponents() const {
1268    return NumComps;
1269  }
1270
1271  Expr* getIndexExpr(unsigned Idx) {
1272    assert(Idx < NumExprs && "Subscript out of range");
1273    return reinterpret_cast<Expr **>(
1274                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1275  }
1276
1277  void setIndexExpr(unsigned Idx, Expr* E) {
1278    assert(Idx < NumComps && "Subscript out of range");
1279    reinterpret_cast<Expr **>(
1280                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1281  }
1282
1283  unsigned getNumExpressions() const {
1284    return NumExprs;
1285  }
1286
1287  virtual SourceRange getSourceRange() const {
1288    return SourceRange(OperatorLoc, RParenLoc);
1289  }
1290
1291  static bool classof(const Stmt *T) {
1292    return T->getStmtClass() == OffsetOfExprClass;
1293  }
1294
1295  static bool classof(const OffsetOfExpr *) { return true; }
1296
1297  // Iterators
1298  virtual child_iterator child_begin();
1299  virtual child_iterator child_end();
1300};
1301
1302/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1303/// types and expressions.
1304class SizeOfAlignOfExpr : public Expr {
1305  bool isSizeof : 1;  // true if sizeof, false if alignof.
1306  bool isType : 1;    // true if operand is a type, false if an expression
1307  union {
1308    TypeSourceInfo *Ty;
1309    Stmt *Ex;
1310  } Argument;
1311  SourceLocation OpLoc, RParenLoc;
1312
1313protected:
1314  virtual void DoDestroy(ASTContext& C);
1315
1316public:
1317  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1318                    QualType resultType, SourceLocation op,
1319                    SourceLocation rp) :
1320      Expr(SizeOfAlignOfExprClass, resultType,
1321           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1322           // Value-dependent if the argument is type-dependent.
1323           TInfo->getType()->isDependentType()),
1324      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1325    Argument.Ty = TInfo;
1326  }
1327
1328  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1329                    QualType resultType, SourceLocation op,
1330                    SourceLocation rp) :
1331      Expr(SizeOfAlignOfExprClass, resultType,
1332           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1333           // Value-dependent if the argument is type-dependent.
1334           E->isTypeDependent()),
1335      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1336    Argument.Ex = E;
1337  }
1338
1339  /// \brief Construct an empty sizeof/alignof expression.
1340  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1341    : Expr(SizeOfAlignOfExprClass, Empty) { }
1342
1343  bool isSizeOf() const { return isSizeof; }
1344  void setSizeof(bool S) { isSizeof = S; }
1345
1346  bool isArgumentType() const { return isType; }
1347  QualType getArgumentType() const {
1348    return getArgumentTypeInfo()->getType();
1349  }
1350  TypeSourceInfo *getArgumentTypeInfo() const {
1351    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1352    return Argument.Ty;
1353  }
1354  Expr *getArgumentExpr() {
1355    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1356    return static_cast<Expr*>(Argument.Ex);
1357  }
1358  const Expr *getArgumentExpr() const {
1359    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1360  }
1361
1362  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1363  void setArgument(TypeSourceInfo *TInfo) {
1364    Argument.Ty = TInfo;
1365    isType = true;
1366  }
1367
1368  /// Gets the argument type, or the type of the argument expression, whichever
1369  /// is appropriate.
1370  QualType getTypeOfArgument() const {
1371    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1372  }
1373
1374  SourceLocation getOperatorLoc() const { return OpLoc; }
1375  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1376
1377  SourceLocation getRParenLoc() const { return RParenLoc; }
1378  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1379
1380  virtual SourceRange getSourceRange() const {
1381    return SourceRange(OpLoc, RParenLoc);
1382  }
1383
1384  static bool classof(const Stmt *T) {
1385    return T->getStmtClass() == SizeOfAlignOfExprClass;
1386  }
1387  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1388
1389  // Iterators
1390  virtual child_iterator child_begin();
1391  virtual child_iterator child_end();
1392};
1393
1394//===----------------------------------------------------------------------===//
1395// Postfix Operators.
1396//===----------------------------------------------------------------------===//
1397
1398/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1399class ArraySubscriptExpr : public Expr {
1400  enum { LHS, RHS, END_EXPR=2 };
1401  Stmt* SubExprs[END_EXPR];
1402  SourceLocation RBracketLoc;
1403public:
1404  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1405                     SourceLocation rbracketloc)
1406  : Expr(ArraySubscriptExprClass, t,
1407         lhs->isTypeDependent() || rhs->isTypeDependent(),
1408         lhs->isValueDependent() || rhs->isValueDependent()),
1409    RBracketLoc(rbracketloc) {
1410    SubExprs[LHS] = lhs;
1411    SubExprs[RHS] = rhs;
1412  }
1413
1414  /// \brief Create an empty array subscript expression.
1415  explicit ArraySubscriptExpr(EmptyShell Shell)
1416    : Expr(ArraySubscriptExprClass, Shell) { }
1417
1418  /// An array access can be written A[4] or 4[A] (both are equivalent).
1419  /// - getBase() and getIdx() always present the normalized view: A[4].
1420  ///    In this case getBase() returns "A" and getIdx() returns "4".
1421  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1422  ///    4[A] getLHS() returns "4".
1423  /// Note: Because vector element access is also written A[4] we must
1424  /// predicate the format conversion in getBase and getIdx only on the
1425  /// the type of the RHS, as it is possible for the LHS to be a vector of
1426  /// integer type
1427  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1428  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1429  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1430
1431  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1432  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1433  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1434
1435  Expr *getBase() {
1436    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1437  }
1438
1439  const Expr *getBase() const {
1440    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1441  }
1442
1443  Expr *getIdx() {
1444    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1445  }
1446
1447  const Expr *getIdx() const {
1448    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1449  }
1450
1451  virtual SourceRange getSourceRange() const {
1452    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1453  }
1454
1455  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1456  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1457
1458  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1459
1460  static bool classof(const Stmt *T) {
1461    return T->getStmtClass() == ArraySubscriptExprClass;
1462  }
1463  static bool classof(const ArraySubscriptExpr *) { return true; }
1464
1465  // Iterators
1466  virtual child_iterator child_begin();
1467  virtual child_iterator child_end();
1468};
1469
1470
1471/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1472/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1473/// while its subclasses may represent alternative syntax that (semantically)
1474/// results in a function call. For example, CXXOperatorCallExpr is
1475/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1476/// "str1 + str2" to resolve to a function call.
1477class CallExpr : public Expr {
1478  enum { FN=0, ARGS_START=1 };
1479  Stmt **SubExprs;
1480  unsigned NumArgs;
1481  SourceLocation RParenLoc;
1482
1483protected:
1484  // This version of the constructor is for derived classes.
1485  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1486           QualType t, SourceLocation rparenloc);
1487
1488  virtual void DoDestroy(ASTContext& C);
1489
1490public:
1491  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1492           SourceLocation rparenloc);
1493
1494  /// \brief Build an empty call expression.
1495  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1496
1497  ~CallExpr() {}
1498
1499  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1500  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1501  void setCallee(Expr *F) { SubExprs[FN] = F; }
1502
1503  Decl *getCalleeDecl();
1504  const Decl *getCalleeDecl() const {
1505    return const_cast<CallExpr*>(this)->getCalleeDecl();
1506  }
1507
1508  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1509  FunctionDecl *getDirectCallee();
1510  const FunctionDecl *getDirectCallee() const {
1511    return const_cast<CallExpr*>(this)->getDirectCallee();
1512  }
1513
1514  /// getNumArgs - Return the number of actual arguments to this call.
1515  ///
1516  unsigned getNumArgs() const { return NumArgs; }
1517
1518  /// getArg - Return the specified argument.
1519  Expr *getArg(unsigned Arg) {
1520    assert(Arg < NumArgs && "Arg access out of range!");
1521    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1522  }
1523  const Expr *getArg(unsigned Arg) const {
1524    assert(Arg < NumArgs && "Arg access out of range!");
1525    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1526  }
1527
1528  /// setArg - Set the specified argument.
1529  void setArg(unsigned Arg, Expr *ArgExpr) {
1530    assert(Arg < NumArgs && "Arg access out of range!");
1531    SubExprs[Arg+ARGS_START] = ArgExpr;
1532  }
1533
1534  /// setNumArgs - This changes the number of arguments present in this call.
1535  /// Any orphaned expressions are deleted by this, and any new operands are set
1536  /// to null.
1537  void setNumArgs(ASTContext& C, unsigned NumArgs);
1538
1539  typedef ExprIterator arg_iterator;
1540  typedef ConstExprIterator const_arg_iterator;
1541
1542  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1543  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1544  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1545  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1546
1547  /// getNumCommas - Return the number of commas that must have been present in
1548  /// this function call.
1549  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1550
1551  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1552  /// not, return 0.
1553  unsigned isBuiltinCall(ASTContext &Context) const;
1554
1555  /// getCallReturnType - Get the return type of the call expr. This is not
1556  /// always the type of the expr itself, if the return type is a reference
1557  /// type.
1558  QualType getCallReturnType() const;
1559
1560  SourceLocation getRParenLoc() const { return RParenLoc; }
1561  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1562
1563  virtual SourceRange getSourceRange() const {
1564    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1565  }
1566
1567  static bool classof(const Stmt *T) {
1568    return T->getStmtClass() >= firstCallExprConstant &&
1569           T->getStmtClass() <= lastCallExprConstant;
1570  }
1571  static bool classof(const CallExpr *) { return true; }
1572
1573  // Iterators
1574  virtual child_iterator child_begin();
1575  virtual child_iterator child_end();
1576};
1577
1578/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1579///
1580class MemberExpr : public Expr {
1581  /// Extra data stored in some member expressions.
1582  struct MemberNameQualifier : public NameQualifier {
1583    DeclAccessPair FoundDecl;
1584  };
1585
1586  /// Base - the expression for the base pointer or structure references.  In
1587  /// X.F, this is "X".
1588  Stmt *Base;
1589
1590  /// MemberDecl - This is the decl being referenced by the field/member name.
1591  /// In X.F, this is the decl referenced by F.
1592  ValueDecl *MemberDecl;
1593
1594  /// MemberLoc - This is the location of the member name.
1595  SourceLocation MemberLoc;
1596
1597  /// IsArrow - True if this is "X->F", false if this is "X.F".
1598  bool IsArrow : 1;
1599
1600  /// \brief True if this member expression used a nested-name-specifier to
1601  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1602  /// declaration.  When true, a MemberNameQualifier
1603  /// structure is allocated immediately after the MemberExpr.
1604  bool HasQualifierOrFoundDecl : 1;
1605
1606  /// \brief True if this member expression specified a template argument list
1607  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1608  /// structure (and its TemplateArguments) are allocated immediately after
1609  /// the MemberExpr or, if the member expression also has a qualifier, after
1610  /// the MemberNameQualifier structure.
1611  bool HasExplicitTemplateArgumentList : 1;
1612
1613  /// \brief Retrieve the qualifier that preceded the member name, if any.
1614  MemberNameQualifier *getMemberQualifier() {
1615    assert(HasQualifierOrFoundDecl);
1616    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1617  }
1618
1619  /// \brief Retrieve the qualifier that preceded the member name, if any.
1620  const MemberNameQualifier *getMemberQualifier() const {
1621    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1622  }
1623
1624  /// \brief Retrieve the explicit template argument list that followed the
1625  /// member template name, if any.
1626  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1627    if (!HasExplicitTemplateArgumentList)
1628      return 0;
1629
1630    if (!HasQualifierOrFoundDecl)
1631      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1632
1633    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1634                                                      getMemberQualifier() + 1);
1635  }
1636
1637  /// \brief Retrieve the explicit template argument list that followed the
1638  /// member template name, if any.
1639  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1640    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1641  }
1642
1643public:
1644  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1645             SourceLocation l, QualType ty)
1646    : Expr(MemberExprClass, ty,
1647           base->isTypeDependent(), base->isValueDependent()),
1648      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1649      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1650
1651  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1652                            NestedNameSpecifier *qual, SourceRange qualrange,
1653                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1654                            SourceLocation l,
1655                            const TemplateArgumentListInfo *targs,
1656                            QualType ty);
1657
1658  void setBase(Expr *E) { Base = E; }
1659  Expr *getBase() const { return cast<Expr>(Base); }
1660
1661  /// \brief Retrieve the member declaration to which this expression refers.
1662  ///
1663  /// The returned declaration will either be a FieldDecl or (in C++)
1664  /// a CXXMethodDecl.
1665  ValueDecl *getMemberDecl() const { return MemberDecl; }
1666  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1667
1668  /// \brief Retrieves the declaration found by lookup.
1669  DeclAccessPair getFoundDecl() const {
1670    if (!HasQualifierOrFoundDecl)
1671      return DeclAccessPair::make(getMemberDecl(),
1672                                  getMemberDecl()->getAccess());
1673    return getMemberQualifier()->FoundDecl;
1674  }
1675
1676  /// \brief Determines whether this member expression actually had
1677  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1678  /// x->Base::foo.
1679  bool hasQualifier() const { return getQualifier() != 0; }
1680
1681  /// \brief If the member name was qualified, retrieves the source range of
1682  /// the nested-name-specifier that precedes the member name. Otherwise,
1683  /// returns an empty source range.
1684  SourceRange getQualifierRange() const {
1685    if (!HasQualifierOrFoundDecl)
1686      return SourceRange();
1687
1688    return getMemberQualifier()->Range;
1689  }
1690
1691  /// \brief If the member name was qualified, retrieves the
1692  /// nested-name-specifier that precedes the member name. Otherwise, returns
1693  /// NULL.
1694  NestedNameSpecifier *getQualifier() const {
1695    if (!HasQualifierOrFoundDecl)
1696      return 0;
1697
1698    return getMemberQualifier()->NNS;
1699  }
1700
1701  /// \brief Determines whether this member expression actually had a C++
1702  /// template argument list explicitly specified, e.g., x.f<int>.
1703  bool hasExplicitTemplateArgumentList() const {
1704    return HasExplicitTemplateArgumentList;
1705  }
1706
1707  /// \brief Copies the template arguments (if present) into the given
1708  /// structure.
1709  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1710    if (hasExplicitTemplateArgumentList())
1711      getExplicitTemplateArgumentList()->copyInto(List);
1712  }
1713
1714  /// \brief Retrieve the location of the left angle bracket following the
1715  /// member name ('<'), if any.
1716  SourceLocation getLAngleLoc() const {
1717    if (!HasExplicitTemplateArgumentList)
1718      return SourceLocation();
1719
1720    return getExplicitTemplateArgumentList()->LAngleLoc;
1721  }
1722
1723  /// \brief Retrieve the template arguments provided as part of this
1724  /// template-id.
1725  const TemplateArgumentLoc *getTemplateArgs() const {
1726    if (!HasExplicitTemplateArgumentList)
1727      return 0;
1728
1729    return getExplicitTemplateArgumentList()->getTemplateArgs();
1730  }
1731
1732  /// \brief Retrieve the number of template arguments provided as part of this
1733  /// template-id.
1734  unsigned getNumTemplateArgs() const {
1735    if (!HasExplicitTemplateArgumentList)
1736      return 0;
1737
1738    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1739  }
1740
1741  /// \brief Retrieve the location of the right angle bracket following the
1742  /// template arguments ('>').
1743  SourceLocation getRAngleLoc() const {
1744    if (!HasExplicitTemplateArgumentList)
1745      return SourceLocation();
1746
1747    return getExplicitTemplateArgumentList()->RAngleLoc;
1748  }
1749
1750  bool isArrow() const { return IsArrow; }
1751  void setArrow(bool A) { IsArrow = A; }
1752
1753  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1754  /// location of 'F'.
1755  SourceLocation getMemberLoc() const { return MemberLoc; }
1756  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1757
1758  virtual SourceRange getSourceRange() const {
1759    // If we have an implicit base (like a C++ implicit this),
1760    // make sure not to return its location
1761    SourceLocation EndLoc = MemberLoc;
1762    if (HasExplicitTemplateArgumentList)
1763      EndLoc = getRAngleLoc();
1764
1765    SourceLocation BaseLoc = getBase()->getLocStart();
1766    if (BaseLoc.isInvalid())
1767      return SourceRange(MemberLoc, EndLoc);
1768    return SourceRange(BaseLoc, EndLoc);
1769  }
1770
1771  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1772
1773  static bool classof(const Stmt *T) {
1774    return T->getStmtClass() == MemberExprClass;
1775  }
1776  static bool classof(const MemberExpr *) { return true; }
1777
1778  // Iterators
1779  virtual child_iterator child_begin();
1780  virtual child_iterator child_end();
1781};
1782
1783/// CompoundLiteralExpr - [C99 6.5.2.5]
1784///
1785class CompoundLiteralExpr : public Expr {
1786  /// LParenLoc - If non-null, this is the location of the left paren in a
1787  /// compound literal like "(int){4}".  This can be null if this is a
1788  /// synthesized compound expression.
1789  SourceLocation LParenLoc;
1790
1791  /// The type as written.  This can be an incomplete array type, in
1792  /// which case the actual expression type will be different.
1793  TypeSourceInfo *TInfo;
1794  Stmt *Init;
1795  bool FileScope;
1796public:
1797  // FIXME: Can compound literals be value-dependent?
1798  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1799                      QualType T, Expr *init, bool fileScope)
1800    : Expr(CompoundLiteralExprClass, T,
1801           tinfo->getType()->isDependentType(), false),
1802      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1803
1804  /// \brief Construct an empty compound literal.
1805  explicit CompoundLiteralExpr(EmptyShell Empty)
1806    : Expr(CompoundLiteralExprClass, Empty) { }
1807
1808  const Expr *getInitializer() const { return cast<Expr>(Init); }
1809  Expr *getInitializer() { return cast<Expr>(Init); }
1810  void setInitializer(Expr *E) { Init = E; }
1811
1812  bool isFileScope() const { return FileScope; }
1813  void setFileScope(bool FS) { FileScope = FS; }
1814
1815  SourceLocation getLParenLoc() const { return LParenLoc; }
1816  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1817
1818  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1819  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1820
1821  virtual SourceRange getSourceRange() const {
1822    // FIXME: Init should never be null.
1823    if (!Init)
1824      return SourceRange();
1825    if (LParenLoc.isInvalid())
1826      return Init->getSourceRange();
1827    return SourceRange(LParenLoc, Init->getLocEnd());
1828  }
1829
1830  static bool classof(const Stmt *T) {
1831    return T->getStmtClass() == CompoundLiteralExprClass;
1832  }
1833  static bool classof(const CompoundLiteralExpr *) { return true; }
1834
1835  // Iterators
1836  virtual child_iterator child_begin();
1837  virtual child_iterator child_end();
1838};
1839
1840/// CastExpr - Base class for type casts, including both implicit
1841/// casts (ImplicitCastExpr) and explicit casts that have some
1842/// representation in the source code (ExplicitCastExpr's derived
1843/// classes).
1844class CastExpr : public Expr {
1845public:
1846  /// CastKind - the kind of cast this represents.
1847  enum CastKind {
1848    /// CK_Unknown - Unknown cast kind.
1849    /// FIXME: The goal is to get rid of this and make all casts have a
1850    /// kind so that the AST client doesn't have to try to figure out what's
1851    /// going on.
1852    CK_Unknown,
1853
1854    /// CK_BitCast - Used for reinterpret_cast.
1855    CK_BitCast,
1856
1857    /// CK_NoOp - Used for const_cast.
1858    CK_NoOp,
1859
1860    /// CK_BaseToDerived - Base to derived class casts.
1861    CK_BaseToDerived,
1862
1863    /// CK_DerivedToBase - Derived to base class casts.
1864    CK_DerivedToBase,
1865
1866    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1867    /// assume that the derived pointer is not null.
1868    CK_UncheckedDerivedToBase,
1869
1870    /// CK_Dynamic - Dynamic cast.
1871    CK_Dynamic,
1872
1873    /// CK_ToUnion - Cast to union (GCC extension).
1874    CK_ToUnion,
1875
1876    /// CK_ArrayToPointerDecay - Array to pointer decay.
1877    CK_ArrayToPointerDecay,
1878
1879    // CK_FunctionToPointerDecay - Function to pointer decay.
1880    CK_FunctionToPointerDecay,
1881
1882    /// CK_NullToMemberPointer - Null pointer to member pointer.
1883    CK_NullToMemberPointer,
1884
1885    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1886    /// member pointer in derived class.
1887    CK_BaseToDerivedMemberPointer,
1888
1889    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1890    /// member pointer in base class.
1891    CK_DerivedToBaseMemberPointer,
1892
1893    /// CK_UserDefinedConversion - Conversion using a user defined type
1894    /// conversion function.
1895    CK_UserDefinedConversion,
1896
1897    /// CK_ConstructorConversion - Conversion by constructor
1898    CK_ConstructorConversion,
1899
1900    /// CK_IntegralToPointer - Integral to pointer
1901    CK_IntegralToPointer,
1902
1903    /// CK_PointerToIntegral - Pointer to integral
1904    CK_PointerToIntegral,
1905
1906    /// CK_ToVoid - Cast to void.
1907    CK_ToVoid,
1908
1909    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1910    /// vector type with the same element type as the src type. Splats the
1911    /// src expression into the destination expression.
1912    CK_VectorSplat,
1913
1914    /// CK_IntegralCast - Casting between integral types of different size.
1915    CK_IntegralCast,
1916
1917    /// CK_IntegralToFloating - Integral to floating point.
1918    CK_IntegralToFloating,
1919
1920    /// CK_FloatingToIntegral - Floating point to integral.
1921    CK_FloatingToIntegral,
1922
1923    /// CK_FloatingCast - Casting between floating types of different size.
1924    CK_FloatingCast,
1925
1926    /// CK_MemberPointerToBoolean - Member pointer to boolean
1927    CK_MemberPointerToBoolean,
1928
1929    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1930    /// pointer
1931    CK_AnyPointerToObjCPointerCast,
1932    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1933    /// pointer
1934    CK_AnyPointerToBlockPointerCast
1935
1936  };
1937
1938private:
1939  CastKind Kind;
1940  Stmt *Op;
1941
1942  /// BasePath - For derived-to-base and base-to-derived casts, the base array
1943  /// contains the inheritance path.
1944  CXXBaseSpecifierArray BasePath;
1945
1946  void CheckBasePath() const {
1947#ifndef NDEBUG
1948    switch (getCastKind()) {
1949    case CK_DerivedToBase:
1950    case CK_UncheckedDerivedToBase:
1951    case CK_DerivedToBaseMemberPointer:
1952    case CK_BaseToDerived:
1953    case CK_BaseToDerivedMemberPointer:
1954      assert(!BasePath.empty() && "Cast kind should have a base path!");
1955      break;
1956
1957    // These should not have an inheritance path.
1958    case CK_Unknown:
1959    case CK_BitCast:
1960    case CK_NoOp:
1961    case CK_Dynamic:
1962    case CK_ToUnion:
1963    case CK_ArrayToPointerDecay:
1964    case CK_FunctionToPointerDecay:
1965    case CK_NullToMemberPointer:
1966    case CK_UserDefinedConversion:
1967    case CK_ConstructorConversion:
1968    case CK_IntegralToPointer:
1969    case CK_PointerToIntegral:
1970    case CK_ToVoid:
1971    case CK_VectorSplat:
1972    case CK_IntegralCast:
1973    case CK_IntegralToFloating:
1974    case CK_FloatingToIntegral:
1975    case CK_FloatingCast:
1976    case CK_MemberPointerToBoolean:
1977    case CK_AnyPointerToObjCPointerCast:
1978    case CK_AnyPointerToBlockPointerCast:
1979      assert(BasePath.empty() && "Cast kind should not have a base path!");
1980      break;
1981    }
1982#endif
1983  }
1984
1985protected:
1986  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
1987           CXXBaseSpecifierArray BasePath) :
1988    Expr(SC, ty,
1989         // Cast expressions are type-dependent if the type is
1990         // dependent (C++ [temp.dep.expr]p3).
1991         ty->isDependentType(),
1992         // Cast expressions are value-dependent if the type is
1993         // dependent or if the subexpression is value-dependent.
1994         ty->isDependentType() || (op && op->isValueDependent())),
1995    Kind(kind), Op(op), BasePath(BasePath) {
1996      CheckBasePath();
1997    }
1998
1999  /// \brief Construct an empty cast.
2000  CastExpr(StmtClass SC, EmptyShell Empty)
2001    : Expr(SC, Empty) { }
2002
2003  virtual void DoDestroy(ASTContext &C);
2004
2005public:
2006  CastKind getCastKind() const { return Kind; }
2007  void setCastKind(CastKind K) { Kind = K; }
2008  const char *getCastKindName() const;
2009
2010  Expr *getSubExpr() { return cast<Expr>(Op); }
2011  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2012  void setSubExpr(Expr *E) { Op = E; }
2013
2014  /// \brief Retrieve the cast subexpression as it was written in the source
2015  /// code, looking through any implicit casts or other intermediate nodes
2016  /// introduced by semantic analysis.
2017  Expr *getSubExprAsWritten();
2018  const Expr *getSubExprAsWritten() const {
2019    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2020  }
2021
2022  const CXXBaseSpecifierArray& getBasePath() const { return BasePath; }
2023        CXXBaseSpecifierArray& getBasePath()       { return BasePath; }
2024
2025  static bool classof(const Stmt *T) {
2026    return T->getStmtClass() >= firstCastExprConstant &&
2027           T->getStmtClass() <= lastCastExprConstant;
2028  }
2029  static bool classof(const CastExpr *) { return true; }
2030
2031  // Iterators
2032  virtual child_iterator child_begin();
2033  virtual child_iterator child_end();
2034};
2035
2036/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2037/// conversions, which have no direct representation in the original
2038/// source code. For example: converting T[]->T*, void f()->void
2039/// (*f)(), float->double, short->int, etc.
2040///
2041/// In C, implicit casts always produce rvalues. However, in C++, an
2042/// implicit cast whose result is being bound to a reference will be
2043/// an lvalue. For example:
2044///
2045/// @code
2046/// class Base { };
2047/// class Derived : public Base { };
2048/// void f(Derived d) {
2049///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
2050/// }
2051/// @endcode
2052class ImplicitCastExpr : public CastExpr {
2053  /// LvalueCast - Whether this cast produces an lvalue.
2054  bool LvalueCast;
2055
2056public:
2057  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2058                   CXXBaseSpecifierArray BasePath, bool Lvalue)
2059    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePath),
2060    LvalueCast(Lvalue) { }
2061
2062  /// \brief Construct an empty implicit cast.
2063  explicit ImplicitCastExpr(EmptyShell Shell)
2064    : CastExpr(ImplicitCastExprClass, Shell) { }
2065
2066  virtual SourceRange getSourceRange() const {
2067    return getSubExpr()->getSourceRange();
2068  }
2069
2070  /// isLvalueCast - Whether this cast produces an lvalue.
2071  bool isLvalueCast() const { return LvalueCast; }
2072
2073  /// setLvalueCast - Set whether this cast produces an lvalue.
2074  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
2075
2076  static bool classof(const Stmt *T) {
2077    return T->getStmtClass() == ImplicitCastExprClass;
2078  }
2079  static bool classof(const ImplicitCastExpr *) { return true; }
2080};
2081
2082/// ExplicitCastExpr - An explicit cast written in the source
2083/// code.
2084///
2085/// This class is effectively an abstract class, because it provides
2086/// the basic representation of an explicitly-written cast without
2087/// specifying which kind of cast (C cast, functional cast, static
2088/// cast, etc.) was written; specific derived classes represent the
2089/// particular style of cast and its location information.
2090///
2091/// Unlike implicit casts, explicit cast nodes have two different
2092/// types: the type that was written into the source code, and the
2093/// actual type of the expression as determined by semantic
2094/// analysis. These types may differ slightly. For example, in C++ one
2095/// can cast to a reference type, which indicates that the resulting
2096/// expression will be an lvalue. The reference type, however, will
2097/// not be used as the type of the expression.
2098class ExplicitCastExpr : public CastExpr {
2099  /// TInfo - Source type info for the (written) type
2100  /// this expression is casting to.
2101  TypeSourceInfo *TInfo;
2102
2103protected:
2104  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2105                   Expr *op, CXXBaseSpecifierArray BasePath,
2106                   TypeSourceInfo *writtenTy)
2107    : CastExpr(SC, exprTy, kind, op, BasePath), TInfo(writtenTy) {}
2108
2109  /// \brief Construct an empty explicit cast.
2110  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
2111    : CastExpr(SC, Shell) { }
2112
2113public:
2114  /// getTypeInfoAsWritten - Returns the type source info for the type
2115  /// that this expression is casting to.
2116  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2117  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2118
2119  /// getTypeAsWritten - Returns the type that this expression is
2120  /// casting to, as written in the source code.
2121  QualType getTypeAsWritten() const { return TInfo->getType(); }
2122
2123  static bool classof(const Stmt *T) {
2124     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2125            T->getStmtClass() <= lastExplicitCastExprConstant;
2126  }
2127  static bool classof(const ExplicitCastExpr *) { return true; }
2128};
2129
2130/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2131/// cast in C++ (C++ [expr.cast]), which uses the syntax
2132/// (Type)expr. For example: @c (int)f.
2133class CStyleCastExpr : public ExplicitCastExpr {
2134  SourceLocation LPLoc; // the location of the left paren
2135  SourceLocation RPLoc; // the location of the right paren
2136public:
2137  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2138                 CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
2139                 SourceLocation l, SourceLocation r)
2140    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, BasePath,
2141                       writtenTy), LPLoc(l), RPLoc(r) {}
2142
2143  /// \brief Construct an empty C-style explicit cast.
2144  explicit CStyleCastExpr(EmptyShell Shell)
2145    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
2146
2147  SourceLocation getLParenLoc() const { return LPLoc; }
2148  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2149
2150  SourceLocation getRParenLoc() const { return RPLoc; }
2151  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2152
2153  virtual SourceRange getSourceRange() const {
2154    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2155  }
2156  static bool classof(const Stmt *T) {
2157    return T->getStmtClass() == CStyleCastExprClass;
2158  }
2159  static bool classof(const CStyleCastExpr *) { return true; }
2160};
2161
2162/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2163///
2164/// This expression node kind describes a builtin binary operation,
2165/// such as "x + y" for integer values "x" and "y". The operands will
2166/// already have been converted to appropriate types (e.g., by
2167/// performing promotions or conversions).
2168///
2169/// In C++, where operators may be overloaded, a different kind of
2170/// expression node (CXXOperatorCallExpr) is used to express the
2171/// invocation of an overloaded operator with operator syntax. Within
2172/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2173/// used to store an expression "x + y" depends on the subexpressions
2174/// for x and y. If neither x or y is type-dependent, and the "+"
2175/// operator resolves to a built-in operation, BinaryOperator will be
2176/// used to express the computation (x and y may still be
2177/// value-dependent). If either x or y is type-dependent, or if the
2178/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2179/// be used to express the computation.
2180class BinaryOperator : public Expr {
2181public:
2182  enum Opcode {
2183    // Operators listed in order of precedence.
2184    // Note that additions to this should also update the StmtVisitor class.
2185    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2186    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2187    Add, Sub,         // [C99 6.5.6] Additive operators.
2188    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2189    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2190    EQ, NE,           // [C99 6.5.9] Equality operators.
2191    And,              // [C99 6.5.10] Bitwise AND operator.
2192    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2193    Or,               // [C99 6.5.12] Bitwise OR operator.
2194    LAnd,             // [C99 6.5.13] Logical AND operator.
2195    LOr,              // [C99 6.5.14] Logical OR operator.
2196    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2197    DivAssign, RemAssign,
2198    AddAssign, SubAssign,
2199    ShlAssign, ShrAssign,
2200    AndAssign, XorAssign,
2201    OrAssign,
2202    Comma             // [C99 6.5.17] Comma operator.
2203  };
2204private:
2205  enum { LHS, RHS, END_EXPR };
2206  Stmt* SubExprs[END_EXPR];
2207  Opcode Opc;
2208  SourceLocation OpLoc;
2209public:
2210
2211  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2212                 SourceLocation opLoc)
2213    : Expr(BinaryOperatorClass, ResTy,
2214           lhs->isTypeDependent() || rhs->isTypeDependent(),
2215           lhs->isValueDependent() || rhs->isValueDependent()),
2216      Opc(opc), OpLoc(opLoc) {
2217    SubExprs[LHS] = lhs;
2218    SubExprs[RHS] = rhs;
2219    assert(!isCompoundAssignmentOp() &&
2220           "Use ArithAssignBinaryOperator for compound assignments");
2221  }
2222
2223  /// \brief Construct an empty binary operator.
2224  explicit BinaryOperator(EmptyShell Empty)
2225    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2226
2227  SourceLocation getOperatorLoc() const { return OpLoc; }
2228  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2229
2230  Opcode getOpcode() const { return Opc; }
2231  void setOpcode(Opcode O) { Opc = O; }
2232
2233  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2234  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2235  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2236  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2237
2238  virtual SourceRange getSourceRange() const {
2239    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2240  }
2241
2242  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2243  /// corresponds to, e.g. "<<=".
2244  static const char *getOpcodeStr(Opcode Op);
2245
2246  /// \brief Retrieve the binary opcode that corresponds to the given
2247  /// overloaded operator.
2248  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2249
2250  /// \brief Retrieve the overloaded operator kind that corresponds to
2251  /// the given binary opcode.
2252  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2253
2254  /// predicates to categorize the respective opcodes.
2255  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2256  static bool isAdditiveOp(Opcode Opc) { return Opc == Add || Opc == Sub; }
2257  bool isAdditiveOp() const { return isAdditiveOp(Opc); }
2258  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2259  bool isShiftOp() const { return isShiftOp(Opc); }
2260
2261  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2262  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2263
2264  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2265  bool isRelationalOp() const { return isRelationalOp(Opc); }
2266
2267  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2268  bool isEqualityOp() const { return isEqualityOp(Opc); }
2269
2270  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2271  bool isComparisonOp() const { return isComparisonOp(Opc); }
2272
2273  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2274  bool isLogicalOp() const { return isLogicalOp(Opc); }
2275
2276  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2277  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2278  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2279
2280  static bool classof(const Stmt *S) {
2281    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2282           S->getStmtClass() <= lastBinaryOperatorConstant;
2283  }
2284  static bool classof(const BinaryOperator *) { return true; }
2285
2286  // Iterators
2287  virtual child_iterator child_begin();
2288  virtual child_iterator child_end();
2289
2290protected:
2291  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2292                 SourceLocation opLoc, bool dead)
2293    : Expr(CompoundAssignOperatorClass, ResTy,
2294           lhs->isTypeDependent() || rhs->isTypeDependent(),
2295           lhs->isValueDependent() || rhs->isValueDependent()),
2296      Opc(opc), OpLoc(opLoc) {
2297    SubExprs[LHS] = lhs;
2298    SubExprs[RHS] = rhs;
2299  }
2300
2301  BinaryOperator(StmtClass SC, EmptyShell Empty)
2302    : Expr(SC, Empty), Opc(MulAssign) { }
2303};
2304
2305/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2306/// track of the type the operation is performed in.  Due to the semantics of
2307/// these operators, the operands are promoted, the aritmetic performed, an
2308/// implicit conversion back to the result type done, then the assignment takes
2309/// place.  This captures the intermediate type which the computation is done
2310/// in.
2311class CompoundAssignOperator : public BinaryOperator {
2312  QualType ComputationLHSType;
2313  QualType ComputationResultType;
2314public:
2315  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2316                         QualType ResType, QualType CompLHSType,
2317                         QualType CompResultType,
2318                         SourceLocation OpLoc)
2319    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2320      ComputationLHSType(CompLHSType),
2321      ComputationResultType(CompResultType) {
2322    assert(isCompoundAssignmentOp() &&
2323           "Only should be used for compound assignments");
2324  }
2325
2326  /// \brief Build an empty compound assignment operator expression.
2327  explicit CompoundAssignOperator(EmptyShell Empty)
2328    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2329
2330  // The two computation types are the type the LHS is converted
2331  // to for the computation and the type of the result; the two are
2332  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2333  QualType getComputationLHSType() const { return ComputationLHSType; }
2334  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2335
2336  QualType getComputationResultType() const { return ComputationResultType; }
2337  void setComputationResultType(QualType T) { ComputationResultType = T; }
2338
2339  static bool classof(const CompoundAssignOperator *) { return true; }
2340  static bool classof(const Stmt *S) {
2341    return S->getStmtClass() == CompoundAssignOperatorClass;
2342  }
2343};
2344
2345/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2346/// GNU "missing LHS" extension is in use.
2347///
2348class ConditionalOperator : public Expr {
2349  enum { COND, LHS, RHS, END_EXPR };
2350  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2351  SourceLocation QuestionLoc, ColonLoc;
2352public:
2353  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2354                      SourceLocation CLoc, Expr *rhs, QualType t)
2355    : Expr(ConditionalOperatorClass, t,
2356           // FIXME: the type of the conditional operator doesn't
2357           // depend on the type of the conditional, but the standard
2358           // seems to imply that it could. File a bug!
2359           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2360           (cond->isValueDependent() ||
2361            (lhs && lhs->isValueDependent()) ||
2362            (rhs && rhs->isValueDependent()))),
2363      QuestionLoc(QLoc),
2364      ColonLoc(CLoc) {
2365    SubExprs[COND] = cond;
2366    SubExprs[LHS] = lhs;
2367    SubExprs[RHS] = rhs;
2368  }
2369
2370  /// \brief Build an empty conditional operator.
2371  explicit ConditionalOperator(EmptyShell Empty)
2372    : Expr(ConditionalOperatorClass, Empty) { }
2373
2374  // getCond - Return the expression representing the condition for
2375  //  the ?: operator.
2376  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2377  void setCond(Expr *E) { SubExprs[COND] = E; }
2378
2379  // getTrueExpr - Return the subexpression representing the value of the ?:
2380  //  expression if the condition evaluates to true.  In most cases this value
2381  //  will be the same as getLHS() except a GCC extension allows the left
2382  //  subexpression to be omitted, and instead of the condition be returned.
2383  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2384  //  is only evaluated once.
2385  Expr *getTrueExpr() const {
2386    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2387  }
2388
2389  // getTrueExpr - Return the subexpression representing the value of the ?:
2390  // expression if the condition evaluates to false. This is the same as getRHS.
2391  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2392
2393  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2394  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2395
2396  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2397  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2398
2399  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2400  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2401
2402  SourceLocation getColonLoc() const { return ColonLoc; }
2403  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2404
2405  virtual SourceRange getSourceRange() const {
2406    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2407  }
2408  static bool classof(const Stmt *T) {
2409    return T->getStmtClass() == ConditionalOperatorClass;
2410  }
2411  static bool classof(const ConditionalOperator *) { return true; }
2412
2413  // Iterators
2414  virtual child_iterator child_begin();
2415  virtual child_iterator child_end();
2416};
2417
2418/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2419class AddrLabelExpr : public Expr {
2420  SourceLocation AmpAmpLoc, LabelLoc;
2421  LabelStmt *Label;
2422public:
2423  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2424                QualType t)
2425    : Expr(AddrLabelExprClass, t, false, false),
2426      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2427
2428  /// \brief Build an empty address of a label expression.
2429  explicit AddrLabelExpr(EmptyShell Empty)
2430    : Expr(AddrLabelExprClass, Empty) { }
2431
2432  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2433  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2434  SourceLocation getLabelLoc() const { return LabelLoc; }
2435  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2436
2437  virtual SourceRange getSourceRange() const {
2438    return SourceRange(AmpAmpLoc, LabelLoc);
2439  }
2440
2441  LabelStmt *getLabel() const { return Label; }
2442  void setLabel(LabelStmt *S) { Label = S; }
2443
2444  static bool classof(const Stmt *T) {
2445    return T->getStmtClass() == AddrLabelExprClass;
2446  }
2447  static bool classof(const AddrLabelExpr *) { return true; }
2448
2449  // Iterators
2450  virtual child_iterator child_begin();
2451  virtual child_iterator child_end();
2452};
2453
2454/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2455/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2456/// takes the value of the last subexpression.
2457class StmtExpr : public Expr {
2458  Stmt *SubStmt;
2459  SourceLocation LParenLoc, RParenLoc;
2460public:
2461  // FIXME: Does type-dependence need to be computed differently?
2462  StmtExpr(CompoundStmt *substmt, QualType T,
2463           SourceLocation lp, SourceLocation rp) :
2464    Expr(StmtExprClass, T, T->isDependentType(), false),
2465    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2466
2467  /// \brief Build an empty statement expression.
2468  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2469
2470  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2471  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2472  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2473
2474  virtual SourceRange getSourceRange() const {
2475    return SourceRange(LParenLoc, RParenLoc);
2476  }
2477
2478  SourceLocation getLParenLoc() const { return LParenLoc; }
2479  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2480  SourceLocation getRParenLoc() const { return RParenLoc; }
2481  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2482
2483  static bool classof(const Stmt *T) {
2484    return T->getStmtClass() == StmtExprClass;
2485  }
2486  static bool classof(const StmtExpr *) { return true; }
2487
2488  // Iterators
2489  virtual child_iterator child_begin();
2490  virtual child_iterator child_end();
2491};
2492
2493/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2494/// This AST node represents a function that returns 1 if two *types* (not
2495/// expressions) are compatible. The result of this built-in function can be
2496/// used in integer constant expressions.
2497class TypesCompatibleExpr : public Expr {
2498  QualType Type1;
2499  QualType Type2;
2500  SourceLocation BuiltinLoc, RParenLoc;
2501public:
2502  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2503                      QualType t1, QualType t2, SourceLocation RP) :
2504    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2505    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2506
2507  /// \brief Build an empty __builtin_type_compatible_p expression.
2508  explicit TypesCompatibleExpr(EmptyShell Empty)
2509    : Expr(TypesCompatibleExprClass, Empty) { }
2510
2511  QualType getArgType1() const { return Type1; }
2512  void setArgType1(QualType T) { Type1 = T; }
2513  QualType getArgType2() const { return Type2; }
2514  void setArgType2(QualType T) { Type2 = T; }
2515
2516  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2517  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2518
2519  SourceLocation getRParenLoc() const { return RParenLoc; }
2520  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2521
2522  virtual SourceRange getSourceRange() const {
2523    return SourceRange(BuiltinLoc, RParenLoc);
2524  }
2525  static bool classof(const Stmt *T) {
2526    return T->getStmtClass() == TypesCompatibleExprClass;
2527  }
2528  static bool classof(const TypesCompatibleExpr *) { return true; }
2529
2530  // Iterators
2531  virtual child_iterator child_begin();
2532  virtual child_iterator child_end();
2533};
2534
2535/// ShuffleVectorExpr - clang-specific builtin-in function
2536/// __builtin_shufflevector.
2537/// This AST node represents a operator that does a constant
2538/// shuffle, similar to LLVM's shufflevector instruction. It takes
2539/// two vectors and a variable number of constant indices,
2540/// and returns the appropriately shuffled vector.
2541class ShuffleVectorExpr : public Expr {
2542  SourceLocation BuiltinLoc, RParenLoc;
2543
2544  // SubExprs - the list of values passed to the __builtin_shufflevector
2545  // function. The first two are vectors, and the rest are constant
2546  // indices.  The number of values in this list is always
2547  // 2+the number of indices in the vector type.
2548  Stmt **SubExprs;
2549  unsigned NumExprs;
2550
2551protected:
2552  virtual void DoDestroy(ASTContext &C);
2553
2554public:
2555  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2556  // to be computed differently?
2557  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2558                    QualType Type, SourceLocation BLoc,
2559                    SourceLocation RP) :
2560    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2561    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2562
2563    SubExprs = new (C) Stmt*[nexpr];
2564    for (unsigned i = 0; i < nexpr; i++)
2565      SubExprs[i] = args[i];
2566  }
2567
2568  /// \brief Build an empty vector-shuffle expression.
2569  explicit ShuffleVectorExpr(EmptyShell Empty)
2570    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2571
2572  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2573  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2574
2575  SourceLocation getRParenLoc() const { return RParenLoc; }
2576  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2577
2578  virtual SourceRange getSourceRange() const {
2579    return SourceRange(BuiltinLoc, RParenLoc);
2580  }
2581  static bool classof(const Stmt *T) {
2582    return T->getStmtClass() == ShuffleVectorExprClass;
2583  }
2584  static bool classof(const ShuffleVectorExpr *) { return true; }
2585
2586  ~ShuffleVectorExpr() {}
2587
2588  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2589  /// constant expression, the actual arguments passed in, and the function
2590  /// pointers.
2591  unsigned getNumSubExprs() const { return NumExprs; }
2592
2593  /// getExpr - Return the Expr at the specified index.
2594  Expr *getExpr(unsigned Index) {
2595    assert((Index < NumExprs) && "Arg access out of range!");
2596    return cast<Expr>(SubExprs[Index]);
2597  }
2598  const Expr *getExpr(unsigned Index) const {
2599    assert((Index < NumExprs) && "Arg access out of range!");
2600    return cast<Expr>(SubExprs[Index]);
2601  }
2602
2603  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2604
2605  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2606    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2607    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2608  }
2609
2610  // Iterators
2611  virtual child_iterator child_begin();
2612  virtual child_iterator child_end();
2613};
2614
2615/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2616/// This AST node is similar to the conditional operator (?:) in C, with
2617/// the following exceptions:
2618/// - the test expression must be a integer constant expression.
2619/// - the expression returned acts like the chosen subexpression in every
2620///   visible way: the type is the same as that of the chosen subexpression,
2621///   and all predicates (whether it's an l-value, whether it's an integer
2622///   constant expression, etc.) return the same result as for the chosen
2623///   sub-expression.
2624class ChooseExpr : public Expr {
2625  enum { COND, LHS, RHS, END_EXPR };
2626  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2627  SourceLocation BuiltinLoc, RParenLoc;
2628public:
2629  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2630             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2631    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2632      BuiltinLoc(BLoc), RParenLoc(RP) {
2633      SubExprs[COND] = cond;
2634      SubExprs[LHS] = lhs;
2635      SubExprs[RHS] = rhs;
2636    }
2637
2638  /// \brief Build an empty __builtin_choose_expr.
2639  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2640
2641  /// isConditionTrue - Return whether the condition is true (i.e. not
2642  /// equal to zero).
2643  bool isConditionTrue(ASTContext &C) const;
2644
2645  /// getChosenSubExpr - Return the subexpression chosen according to the
2646  /// condition.
2647  Expr *getChosenSubExpr(ASTContext &C) const {
2648    return isConditionTrue(C) ? getLHS() : getRHS();
2649  }
2650
2651  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2652  void setCond(Expr *E) { SubExprs[COND] = E; }
2653  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2654  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2655  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2656  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2657
2658  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2659  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2660
2661  SourceLocation getRParenLoc() const { return RParenLoc; }
2662  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2663
2664  virtual SourceRange getSourceRange() const {
2665    return SourceRange(BuiltinLoc, RParenLoc);
2666  }
2667  static bool classof(const Stmt *T) {
2668    return T->getStmtClass() == ChooseExprClass;
2669  }
2670  static bool classof(const ChooseExpr *) { return true; }
2671
2672  // Iterators
2673  virtual child_iterator child_begin();
2674  virtual child_iterator child_end();
2675};
2676
2677/// GNUNullExpr - Implements the GNU __null extension, which is a name
2678/// for a null pointer constant that has integral type (e.g., int or
2679/// long) and is the same size and alignment as a pointer. The __null
2680/// extension is typically only used by system headers, which define
2681/// NULL as __null in C++ rather than using 0 (which is an integer
2682/// that may not match the size of a pointer).
2683class GNUNullExpr : public Expr {
2684  /// TokenLoc - The location of the __null keyword.
2685  SourceLocation TokenLoc;
2686
2687public:
2688  GNUNullExpr(QualType Ty, SourceLocation Loc)
2689    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2690
2691  /// \brief Build an empty GNU __null expression.
2692  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2693
2694  /// getTokenLocation - The location of the __null token.
2695  SourceLocation getTokenLocation() const { return TokenLoc; }
2696  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2697
2698  virtual SourceRange getSourceRange() const {
2699    return SourceRange(TokenLoc);
2700  }
2701  static bool classof(const Stmt *T) {
2702    return T->getStmtClass() == GNUNullExprClass;
2703  }
2704  static bool classof(const GNUNullExpr *) { return true; }
2705
2706  // Iterators
2707  virtual child_iterator child_begin();
2708  virtual child_iterator child_end();
2709};
2710
2711/// VAArgExpr, used for the builtin function __builtin_va_arg.
2712class VAArgExpr : public Expr {
2713  Stmt *Val;
2714  SourceLocation BuiltinLoc, RParenLoc;
2715public:
2716  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2717    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2718      Val(e),
2719      BuiltinLoc(BLoc),
2720      RParenLoc(RPLoc) { }
2721
2722  /// \brief Create an empty __builtin_va_arg expression.
2723  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2724
2725  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2726  Expr *getSubExpr() { return cast<Expr>(Val); }
2727  void setSubExpr(Expr *E) { Val = E; }
2728
2729  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2730  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2731
2732  SourceLocation getRParenLoc() const { return RParenLoc; }
2733  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2734
2735  virtual SourceRange getSourceRange() const {
2736    return SourceRange(BuiltinLoc, RParenLoc);
2737  }
2738  static bool classof(const Stmt *T) {
2739    return T->getStmtClass() == VAArgExprClass;
2740  }
2741  static bool classof(const VAArgExpr *) { return true; }
2742
2743  // Iterators
2744  virtual child_iterator child_begin();
2745  virtual child_iterator child_end();
2746};
2747
2748/// @brief Describes an C or C++ initializer list.
2749///
2750/// InitListExpr describes an initializer list, which can be used to
2751/// initialize objects of different types, including
2752/// struct/class/union types, arrays, and vectors. For example:
2753///
2754/// @code
2755/// struct foo x = { 1, { 2, 3 } };
2756/// @endcode
2757///
2758/// Prior to semantic analysis, an initializer list will represent the
2759/// initializer list as written by the user, but will have the
2760/// placeholder type "void". This initializer list is called the
2761/// syntactic form of the initializer, and may contain C99 designated
2762/// initializers (represented as DesignatedInitExprs), initializations
2763/// of subobject members without explicit braces, and so on. Clients
2764/// interested in the original syntax of the initializer list should
2765/// use the syntactic form of the initializer list.
2766///
2767/// After semantic analysis, the initializer list will represent the
2768/// semantic form of the initializer, where the initializations of all
2769/// subobjects are made explicit with nested InitListExpr nodes and
2770/// C99 designators have been eliminated by placing the designated
2771/// initializations into the subobject they initialize. Additionally,
2772/// any "holes" in the initialization, where no initializer has been
2773/// specified for a particular subobject, will be replaced with
2774/// implicitly-generated ImplicitValueInitExpr expressions that
2775/// value-initialize the subobjects. Note, however, that the
2776/// initializer lists may still have fewer initializers than there are
2777/// elements to initialize within the object.
2778///
2779/// Given the semantic form of the initializer list, one can retrieve
2780/// the original syntactic form of that initializer list (if it
2781/// exists) using getSyntacticForm(). Since many initializer lists
2782/// have the same syntactic and semantic forms, getSyntacticForm() may
2783/// return NULL, indicating that the current initializer list also
2784/// serves as its syntactic form.
2785class InitListExpr : public Expr {
2786  // FIXME: Eliminate this vector in favor of ASTContext allocation
2787  typedef ASTVector<Stmt *> InitExprsTy;
2788  InitExprsTy InitExprs;
2789  SourceLocation LBraceLoc, RBraceLoc;
2790
2791  /// Contains the initializer list that describes the syntactic form
2792  /// written in the source code.
2793  InitListExpr *SyntacticForm;
2794
2795  /// If this initializer list initializes a union, specifies which
2796  /// field within the union will be initialized.
2797  FieldDecl *UnionFieldInit;
2798
2799  /// Whether this initializer list originally had a GNU array-range
2800  /// designator in it. This is a temporary marker used by CodeGen.
2801  bool HadArrayRangeDesignator;
2802
2803public:
2804  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2805               Expr **initexprs, unsigned numinits,
2806               SourceLocation rbraceloc);
2807
2808  /// \brief Build an empty initializer list.
2809  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2810    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2811
2812  unsigned getNumInits() const { return InitExprs.size(); }
2813
2814  const Expr* getInit(unsigned Init) const {
2815    assert(Init < getNumInits() && "Initializer access out of range!");
2816    return cast_or_null<Expr>(InitExprs[Init]);
2817  }
2818
2819  Expr* getInit(unsigned Init) {
2820    assert(Init < getNumInits() && "Initializer access out of range!");
2821    return cast_or_null<Expr>(InitExprs[Init]);
2822  }
2823
2824  void setInit(unsigned Init, Expr *expr) {
2825    assert(Init < getNumInits() && "Initializer access out of range!");
2826    InitExprs[Init] = expr;
2827  }
2828
2829  /// \brief Reserve space for some number of initializers.
2830  void reserveInits(ASTContext &C, unsigned NumInits);
2831
2832  /// @brief Specify the number of initializers
2833  ///
2834  /// If there are more than @p NumInits initializers, the remaining
2835  /// initializers will be destroyed. If there are fewer than @p
2836  /// NumInits initializers, NULL expressions will be added for the
2837  /// unknown initializers.
2838  void resizeInits(ASTContext &Context, unsigned NumInits);
2839
2840  /// @brief Updates the initializer at index @p Init with the new
2841  /// expression @p expr, and returns the old expression at that
2842  /// location.
2843  ///
2844  /// When @p Init is out of range for this initializer list, the
2845  /// initializer list will be extended with NULL expressions to
2846  /// accomodate the new entry.
2847  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2848
2849  /// \brief If this initializes a union, specifies which field in the
2850  /// union to initialize.
2851  ///
2852  /// Typically, this field is the first named field within the
2853  /// union. However, a designated initializer can specify the
2854  /// initialization of a different field within the union.
2855  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2856  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2857
2858  // Explicit InitListExpr's originate from source code (and have valid source
2859  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2860  bool isExplicit() {
2861    return LBraceLoc.isValid() && RBraceLoc.isValid();
2862  }
2863
2864  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2865  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2866  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2867  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2868
2869  /// @brief Retrieve the initializer list that describes the
2870  /// syntactic form of the initializer.
2871  ///
2872  ///
2873  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2874  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2875
2876  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2877  void sawArrayRangeDesignator(bool ARD = true) {
2878    HadArrayRangeDesignator = ARD;
2879  }
2880
2881  virtual SourceRange getSourceRange() const {
2882    return SourceRange(LBraceLoc, RBraceLoc);
2883  }
2884  static bool classof(const Stmt *T) {
2885    return T->getStmtClass() == InitListExprClass;
2886  }
2887  static bool classof(const InitListExpr *) { return true; }
2888
2889  // Iterators
2890  virtual child_iterator child_begin();
2891  virtual child_iterator child_end();
2892
2893  typedef InitExprsTy::iterator iterator;
2894  typedef InitExprsTy::reverse_iterator reverse_iterator;
2895
2896  iterator begin() { return InitExprs.begin(); }
2897  iterator end() { return InitExprs.end(); }
2898  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2899  reverse_iterator rend() { return InitExprs.rend(); }
2900};
2901
2902/// @brief Represents a C99 designated initializer expression.
2903///
2904/// A designated initializer expression (C99 6.7.8) contains one or
2905/// more designators (which can be field designators, array
2906/// designators, or GNU array-range designators) followed by an
2907/// expression that initializes the field or element(s) that the
2908/// designators refer to. For example, given:
2909///
2910/// @code
2911/// struct point {
2912///   double x;
2913///   double y;
2914/// };
2915/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2916/// @endcode
2917///
2918/// The InitListExpr contains three DesignatedInitExprs, the first of
2919/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2920/// designators, one array designator for @c [2] followed by one field
2921/// designator for @c .y. The initalization expression will be 1.0.
2922class DesignatedInitExpr : public Expr {
2923public:
2924  /// \brief Forward declaration of the Designator class.
2925  class Designator;
2926
2927private:
2928  /// The location of the '=' or ':' prior to the actual initializer
2929  /// expression.
2930  SourceLocation EqualOrColonLoc;
2931
2932  /// Whether this designated initializer used the GNU deprecated
2933  /// syntax rather than the C99 '=' syntax.
2934  bool GNUSyntax : 1;
2935
2936  /// The number of designators in this initializer expression.
2937  unsigned NumDesignators : 15;
2938
2939  /// \brief The designators in this designated initialization
2940  /// expression.
2941  Designator *Designators;
2942
2943  /// The number of subexpressions of this initializer expression,
2944  /// which contains both the initializer and any additional
2945  /// expressions used by array and array-range designators.
2946  unsigned NumSubExprs : 16;
2947
2948
2949  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2950                     const Designator *Designators,
2951                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2952                     Expr **IndexExprs, unsigned NumIndexExprs,
2953                     Expr *Init);
2954
2955  explicit DesignatedInitExpr(unsigned NumSubExprs)
2956    : Expr(DesignatedInitExprClass, EmptyShell()),
2957      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2958
2959protected:
2960  virtual void DoDestroy(ASTContext &C);
2961
2962  void DestroyDesignators(ASTContext &C);
2963
2964public:
2965  /// A field designator, e.g., ".x".
2966  struct FieldDesignator {
2967    /// Refers to the field that is being initialized. The low bit
2968    /// of this field determines whether this is actually a pointer
2969    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2970    /// initially constructed, a field designator will store an
2971    /// IdentifierInfo*. After semantic analysis has resolved that
2972    /// name, the field designator will instead store a FieldDecl*.
2973    uintptr_t NameOrField;
2974
2975    /// The location of the '.' in the designated initializer.
2976    unsigned DotLoc;
2977
2978    /// The location of the field name in the designated initializer.
2979    unsigned FieldLoc;
2980  };
2981
2982  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2983  struct ArrayOrRangeDesignator {
2984    /// Location of the first index expression within the designated
2985    /// initializer expression's list of subexpressions.
2986    unsigned Index;
2987    /// The location of the '[' starting the array range designator.
2988    unsigned LBracketLoc;
2989    /// The location of the ellipsis separating the start and end
2990    /// indices. Only valid for GNU array-range designators.
2991    unsigned EllipsisLoc;
2992    /// The location of the ']' terminating the array range designator.
2993    unsigned RBracketLoc;
2994  };
2995
2996  /// @brief Represents a single C99 designator.
2997  ///
2998  /// @todo This class is infuriatingly similar to clang::Designator,
2999  /// but minor differences (storing indices vs. storing pointers)
3000  /// keep us from reusing it. Try harder, later, to rectify these
3001  /// differences.
3002  class Designator {
3003    /// @brief The kind of designator this describes.
3004    enum {
3005      FieldDesignator,
3006      ArrayDesignator,
3007      ArrayRangeDesignator
3008    } Kind;
3009
3010    union {
3011      /// A field designator, e.g., ".x".
3012      struct FieldDesignator Field;
3013      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3014      struct ArrayOrRangeDesignator ArrayOrRange;
3015    };
3016    friend class DesignatedInitExpr;
3017
3018  public:
3019    Designator() {}
3020
3021    /// @brief Initializes a field designator.
3022    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3023               SourceLocation FieldLoc)
3024      : Kind(FieldDesignator) {
3025      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3026      Field.DotLoc = DotLoc.getRawEncoding();
3027      Field.FieldLoc = FieldLoc.getRawEncoding();
3028    }
3029
3030    /// @brief Initializes an array designator.
3031    Designator(unsigned Index, SourceLocation LBracketLoc,
3032               SourceLocation RBracketLoc)
3033      : Kind(ArrayDesignator) {
3034      ArrayOrRange.Index = Index;
3035      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3036      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3037      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3038    }
3039
3040    /// @brief Initializes a GNU array-range designator.
3041    Designator(unsigned Index, SourceLocation LBracketLoc,
3042               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3043      : Kind(ArrayRangeDesignator) {
3044      ArrayOrRange.Index = Index;
3045      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3046      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3047      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3048    }
3049
3050    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3051    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3052    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3053
3054    IdentifierInfo * getFieldName();
3055
3056    FieldDecl *getField() {
3057      assert(Kind == FieldDesignator && "Only valid on a field designator");
3058      if (Field.NameOrField & 0x01)
3059        return 0;
3060      else
3061        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3062    }
3063
3064    void setField(FieldDecl *FD) {
3065      assert(Kind == FieldDesignator && "Only valid on a field designator");
3066      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3067    }
3068
3069    SourceLocation getDotLoc() const {
3070      assert(Kind == FieldDesignator && "Only valid on a field designator");
3071      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3072    }
3073
3074    SourceLocation getFieldLoc() const {
3075      assert(Kind == FieldDesignator && "Only valid on a field designator");
3076      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3077    }
3078
3079    SourceLocation getLBracketLoc() const {
3080      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3081             "Only valid on an array or array-range designator");
3082      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3083    }
3084
3085    SourceLocation getRBracketLoc() const {
3086      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3087             "Only valid on an array or array-range designator");
3088      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3089    }
3090
3091    SourceLocation getEllipsisLoc() const {
3092      assert(Kind == ArrayRangeDesignator &&
3093             "Only valid on an array-range designator");
3094      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3095    }
3096
3097    unsigned getFirstExprIndex() const {
3098      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3099             "Only valid on an array or array-range designator");
3100      return ArrayOrRange.Index;
3101    }
3102
3103    SourceLocation getStartLocation() const {
3104      if (Kind == FieldDesignator)
3105        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3106      else
3107        return getLBracketLoc();
3108    }
3109  };
3110
3111  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3112                                    unsigned NumDesignators,
3113                                    Expr **IndexExprs, unsigned NumIndexExprs,
3114                                    SourceLocation EqualOrColonLoc,
3115                                    bool GNUSyntax, Expr *Init);
3116
3117  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3118
3119  /// @brief Returns the number of designators in this initializer.
3120  unsigned size() const { return NumDesignators; }
3121
3122  // Iterator access to the designators.
3123  typedef Designator* designators_iterator;
3124  designators_iterator designators_begin() { return Designators; }
3125  designators_iterator designators_end() {
3126    return Designators + NumDesignators;
3127  }
3128
3129  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3130
3131  void setDesignators(ASTContext &C, const Designator *Desigs,
3132                      unsigned NumDesigs);
3133
3134  Expr *getArrayIndex(const Designator& D);
3135  Expr *getArrayRangeStart(const Designator& D);
3136  Expr *getArrayRangeEnd(const Designator& D);
3137
3138  /// @brief Retrieve the location of the '=' that precedes the
3139  /// initializer value itself, if present.
3140  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3141  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3142
3143  /// @brief Determines whether this designated initializer used the
3144  /// deprecated GNU syntax for designated initializers.
3145  bool usesGNUSyntax() const { return GNUSyntax; }
3146  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3147
3148  /// @brief Retrieve the initializer value.
3149  Expr *getInit() const {
3150    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3151  }
3152
3153  void setInit(Expr *init) {
3154    *child_begin() = init;
3155  }
3156
3157  /// \brief Retrieve the total number of subexpressions in this
3158  /// designated initializer expression, including the actual
3159  /// initialized value and any expressions that occur within array
3160  /// and array-range designators.
3161  unsigned getNumSubExprs() const { return NumSubExprs; }
3162
3163  Expr *getSubExpr(unsigned Idx) {
3164    assert(Idx < NumSubExprs && "Subscript out of range");
3165    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3166    Ptr += sizeof(DesignatedInitExpr);
3167    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3168  }
3169
3170  void setSubExpr(unsigned Idx, Expr *E) {
3171    assert(Idx < NumSubExprs && "Subscript out of range");
3172    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3173    Ptr += sizeof(DesignatedInitExpr);
3174    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3175  }
3176
3177  /// \brief Replaces the designator at index @p Idx with the series
3178  /// of designators in [First, Last).
3179  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3180                        const Designator *Last);
3181
3182  virtual SourceRange getSourceRange() const;
3183
3184  static bool classof(const Stmt *T) {
3185    return T->getStmtClass() == DesignatedInitExprClass;
3186  }
3187  static bool classof(const DesignatedInitExpr *) { return true; }
3188
3189  // Iterators
3190  virtual child_iterator child_begin();
3191  virtual child_iterator child_end();
3192};
3193
3194/// \brief Represents an implicitly-generated value initialization of
3195/// an object of a given type.
3196///
3197/// Implicit value initializations occur within semantic initializer
3198/// list expressions (InitListExpr) as placeholders for subobject
3199/// initializations not explicitly specified by the user.
3200///
3201/// \see InitListExpr
3202class ImplicitValueInitExpr : public Expr {
3203public:
3204  explicit ImplicitValueInitExpr(QualType ty)
3205    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3206
3207  /// \brief Construct an empty implicit value initialization.
3208  explicit ImplicitValueInitExpr(EmptyShell Empty)
3209    : Expr(ImplicitValueInitExprClass, Empty) { }
3210
3211  static bool classof(const Stmt *T) {
3212    return T->getStmtClass() == ImplicitValueInitExprClass;
3213  }
3214  static bool classof(const ImplicitValueInitExpr *) { return true; }
3215
3216  virtual SourceRange getSourceRange() const {
3217    return SourceRange();
3218  }
3219
3220  // Iterators
3221  virtual child_iterator child_begin();
3222  virtual child_iterator child_end();
3223};
3224
3225
3226class ParenListExpr : public Expr {
3227  Stmt **Exprs;
3228  unsigned NumExprs;
3229  SourceLocation LParenLoc, RParenLoc;
3230
3231protected:
3232  virtual void DoDestroy(ASTContext& C);
3233
3234public:
3235  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3236                unsigned numexprs, SourceLocation rparenloc);
3237
3238  ~ParenListExpr() {}
3239
3240  /// \brief Build an empty paren list.
3241  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3242
3243  unsigned getNumExprs() const { return NumExprs; }
3244
3245  const Expr* getExpr(unsigned Init) const {
3246    assert(Init < getNumExprs() && "Initializer access out of range!");
3247    return cast_or_null<Expr>(Exprs[Init]);
3248  }
3249
3250  Expr* getExpr(unsigned Init) {
3251    assert(Init < getNumExprs() && "Initializer access out of range!");
3252    return cast_or_null<Expr>(Exprs[Init]);
3253  }
3254
3255  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3256
3257  SourceLocation getLParenLoc() const { return LParenLoc; }
3258  SourceLocation getRParenLoc() const { return RParenLoc; }
3259
3260  virtual SourceRange getSourceRange() const {
3261    return SourceRange(LParenLoc, RParenLoc);
3262  }
3263  static bool classof(const Stmt *T) {
3264    return T->getStmtClass() == ParenListExprClass;
3265  }
3266  static bool classof(const ParenListExpr *) { return true; }
3267
3268  // Iterators
3269  virtual child_iterator child_begin();
3270  virtual child_iterator child_end();
3271
3272  friend class PCHStmtReader;
3273  friend class PCHStmtWriter;
3274};
3275
3276
3277//===----------------------------------------------------------------------===//
3278// Clang Extensions
3279//===----------------------------------------------------------------------===//
3280
3281
3282/// ExtVectorElementExpr - This represents access to specific elements of a
3283/// vector, and may occur on the left hand side or right hand side.  For example
3284/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3285///
3286/// Note that the base may have either vector or pointer to vector type, just
3287/// like a struct field reference.
3288///
3289class ExtVectorElementExpr : public Expr {
3290  Stmt *Base;
3291  IdentifierInfo *Accessor;
3292  SourceLocation AccessorLoc;
3293public:
3294  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3295                       SourceLocation loc)
3296    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3297           base->isValueDependent()),
3298      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3299
3300  /// \brief Build an empty vector element expression.
3301  explicit ExtVectorElementExpr(EmptyShell Empty)
3302    : Expr(ExtVectorElementExprClass, Empty) { }
3303
3304  const Expr *getBase() const { return cast<Expr>(Base); }
3305  Expr *getBase() { return cast<Expr>(Base); }
3306  void setBase(Expr *E) { Base = E; }
3307
3308  IdentifierInfo &getAccessor() const { return *Accessor; }
3309  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3310
3311  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3312  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3313
3314  /// getNumElements - Get the number of components being selected.
3315  unsigned getNumElements() const;
3316
3317  /// containsDuplicateElements - Return true if any element access is
3318  /// repeated.
3319  bool containsDuplicateElements() const;
3320
3321  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3322  /// aggregate Constant of ConstantInt(s).
3323  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3324
3325  virtual SourceRange getSourceRange() const {
3326    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3327  }
3328
3329  /// isArrow - Return true if the base expression is a pointer to vector,
3330  /// return false if the base expression is a vector.
3331  bool isArrow() const;
3332
3333  static bool classof(const Stmt *T) {
3334    return T->getStmtClass() == ExtVectorElementExprClass;
3335  }
3336  static bool classof(const ExtVectorElementExpr *) { return true; }
3337
3338  // Iterators
3339  virtual child_iterator child_begin();
3340  virtual child_iterator child_end();
3341};
3342
3343
3344/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3345/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3346class BlockExpr : public Expr {
3347protected:
3348  BlockDecl *TheBlock;
3349  bool HasBlockDeclRefExprs;
3350public:
3351  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3352    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3353      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3354
3355  /// \brief Build an empty block expression.
3356  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3357
3358  const BlockDecl *getBlockDecl() const { return TheBlock; }
3359  BlockDecl *getBlockDecl() { return TheBlock; }
3360  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3361
3362  // Convenience functions for probing the underlying BlockDecl.
3363  SourceLocation getCaretLocation() const;
3364  const Stmt *getBody() const;
3365  Stmt *getBody();
3366
3367  virtual SourceRange getSourceRange() const {
3368    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3369  }
3370
3371  /// getFunctionType - Return the underlying function type for this block.
3372  const FunctionType *getFunctionType() const;
3373
3374  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3375  /// inside of the block that reference values outside the block.
3376  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3377  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3378
3379  static bool classof(const Stmt *T) {
3380    return T->getStmtClass() == BlockExprClass;
3381  }
3382  static bool classof(const BlockExpr *) { return true; }
3383
3384  // Iterators
3385  virtual child_iterator child_begin();
3386  virtual child_iterator child_end();
3387};
3388
3389/// BlockDeclRefExpr - A reference to a declared variable, function,
3390/// enum, etc.
3391class BlockDeclRefExpr : public Expr {
3392  ValueDecl *D;
3393  SourceLocation Loc;
3394  bool IsByRef : 1;
3395  bool ConstQualAdded : 1;
3396  Stmt *CopyConstructorVal;
3397public:
3398  // FIXME: Fix type/value dependence!
3399  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3400                   bool constAdded = false,
3401                   Stmt *copyConstructorVal = 0)
3402  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3403    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3404
3405  // \brief Build an empty reference to a declared variable in a
3406  // block.
3407  explicit BlockDeclRefExpr(EmptyShell Empty)
3408    : Expr(BlockDeclRefExprClass, Empty) { }
3409
3410  ValueDecl *getDecl() { return D; }
3411  const ValueDecl *getDecl() const { return D; }
3412  void setDecl(ValueDecl *VD) { D = VD; }
3413
3414  SourceLocation getLocation() const { return Loc; }
3415  void setLocation(SourceLocation L) { Loc = L; }
3416
3417  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3418
3419  bool isByRef() const { return IsByRef; }
3420  void setByRef(bool BR) { IsByRef = BR; }
3421
3422  bool isConstQualAdded() const { return ConstQualAdded; }
3423  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3424
3425  const Expr *getCopyConstructorExpr() const
3426    { return cast_or_null<Expr>(CopyConstructorVal); }
3427  Expr *getCopyConstructorExpr()
3428    { return cast_or_null<Expr>(CopyConstructorVal); }
3429  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3430
3431  static bool classof(const Stmt *T) {
3432    return T->getStmtClass() == BlockDeclRefExprClass;
3433  }
3434  static bool classof(const BlockDeclRefExpr *) { return true; }
3435
3436  // Iterators
3437  virtual child_iterator child_begin();
3438  virtual child_iterator child_end();
3439};
3440
3441}  // end namespace clang
3442
3443#endif
3444