Expr.h revision 690398188ea5b428f06aa13c7d4ce6eb741ad4f9
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
243  ///  its subexpression.  If that subexpression is also a ParenExpr,
244  ///  then this method recursively returns its subexpression, and so forth.
245  ///  Otherwise, the method returns the current Expr.
246  Expr* IgnoreParens();
247
248  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
249  /// or CastExprs, returning their operand.
250  Expr *IgnoreParenCasts();
251
252  const Expr* IgnoreParens() const {
253    return const_cast<Expr*>(this)->IgnoreParens();
254  }
255  const Expr *IgnoreParenCasts() const {
256    return const_cast<Expr*>(this)->IgnoreParenCasts();
257  }
258
259  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
260  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
261
262  static bool classof(const Stmt *T) {
263    return T->getStmtClass() >= firstExprConstant &&
264           T->getStmtClass() <= lastExprConstant;
265  }
266  static bool classof(const Expr *) { return true; }
267
268  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
269    return cast<Expr>(Stmt::Create(D, C));
270  }
271};
272
273
274//===----------------------------------------------------------------------===//
275// Primary Expressions.
276//===----------------------------------------------------------------------===//
277
278/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
279/// enum, etc.
280class DeclRefExpr : public Expr {
281  NamedDecl *D;
282  SourceLocation Loc;
283
284protected:
285  // FIXME: Eventually, this constructor will go away and all subclasses
286  // will have to provide the type- and value-dependent flags.
287  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
288    Expr(SC, t), D(d), Loc(l) {}
289
290  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
291              bool VD) :
292    Expr(SC, t, TD, VD), D(d), Loc(l) {}
293
294public:
295  // FIXME: Eventually, this constructor will go away and all clients
296  // will have to provide the type- and value-dependent flags.
297  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
298    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
299
300  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
301    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
302
303  NamedDecl *getDecl() { return D; }
304  const NamedDecl *getDecl() const { return D; }
305  void setDecl(NamedDecl *NewD) { D = NewD; }
306
307  SourceLocation getLocation() const { return Loc; }
308  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
309
310  static bool classof(const Stmt *T) {
311    return T->getStmtClass() == DeclRefExprClass ||
312           T->getStmtClass() == CXXConditionDeclExprClass ||
313           T->getStmtClass() == QualifiedDeclRefExprClass;
314  }
315  static bool classof(const DeclRefExpr *) { return true; }
316
317  // Iterators
318  virtual child_iterator child_begin();
319  virtual child_iterator child_end();
320
321  virtual void EmitImpl(llvm::Serializer& S) const;
322  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
323};
324
325/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
326class PredefinedExpr : public Expr {
327public:
328  enum IdentType {
329    Func,
330    Function,
331    PrettyFunction
332  };
333
334private:
335  SourceLocation Loc;
336  IdentType Type;
337public:
338  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
339    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
340
341  IdentType getIdentType() const { return Type; }
342
343  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
344
345  static bool classof(const Stmt *T) {
346    return T->getStmtClass() == PredefinedExprClass;
347  }
348  static bool classof(const PredefinedExpr *) { return true; }
349
350  // Iterators
351  virtual child_iterator child_begin();
352  virtual child_iterator child_end();
353
354  virtual void EmitImpl(llvm::Serializer& S) const;
355  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
356};
357
358class IntegerLiteral : public Expr {
359  llvm::APInt Value;
360  SourceLocation Loc;
361public:
362  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
363  // or UnsignedLongLongTy
364  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
365    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
366    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
367  }
368  const llvm::APInt &getValue() const { return Value; }
369  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
370
371  static bool classof(const Stmt *T) {
372    return T->getStmtClass() == IntegerLiteralClass;
373  }
374  static bool classof(const IntegerLiteral *) { return true; }
375
376  // Iterators
377  virtual child_iterator child_begin();
378  virtual child_iterator child_end();
379
380  virtual void EmitImpl(llvm::Serializer& S) const;
381  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
382};
383
384class CharacterLiteral : public Expr {
385  unsigned Value;
386  SourceLocation Loc;
387  bool IsWide;
388public:
389  // type should be IntTy
390  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
391    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
392  }
393  SourceLocation getLoc() const { return Loc; }
394  bool isWide() const { return IsWide; }
395
396  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
397
398  unsigned getValue() const { return Value; }
399
400  static bool classof(const Stmt *T) {
401    return T->getStmtClass() == CharacterLiteralClass;
402  }
403  static bool classof(const CharacterLiteral *) { return true; }
404
405  // Iterators
406  virtual child_iterator child_begin();
407  virtual child_iterator child_end();
408
409  virtual void EmitImpl(llvm::Serializer& S) const;
410  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
411};
412
413class FloatingLiteral : public Expr {
414  llvm::APFloat Value;
415  bool IsExact : 1;
416  SourceLocation Loc;
417public:
418  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
419                  QualType Type, SourceLocation L)
420    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
421
422  const llvm::APFloat &getValue() const { return Value; }
423
424  bool isExact() const { return IsExact; }
425
426  /// getValueAsApproximateDouble - This returns the value as an inaccurate
427  /// double.  Note that this may cause loss of precision, but is useful for
428  /// debugging dumps, etc.
429  double getValueAsApproximateDouble() const;
430
431  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
432
433  static bool classof(const Stmt *T) {
434    return T->getStmtClass() == FloatingLiteralClass;
435  }
436  static bool classof(const FloatingLiteral *) { return true; }
437
438  // Iterators
439  virtual child_iterator child_begin();
440  virtual child_iterator child_end();
441
442  virtual void EmitImpl(llvm::Serializer& S) const;
443  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
444};
445
446/// ImaginaryLiteral - We support imaginary integer and floating point literals,
447/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
448/// IntegerLiteral classes.  Instances of this class always have a Complex type
449/// whose element type matches the subexpression.
450///
451class ImaginaryLiteral : public Expr {
452  Stmt *Val;
453public:
454  ImaginaryLiteral(Expr *val, QualType Ty)
455    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
456
457  const Expr *getSubExpr() const { return cast<Expr>(Val); }
458  Expr *getSubExpr() { return cast<Expr>(Val); }
459
460  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
461  static bool classof(const Stmt *T) {
462    return T->getStmtClass() == ImaginaryLiteralClass;
463  }
464  static bool classof(const ImaginaryLiteral *) { return true; }
465
466  // Iterators
467  virtual child_iterator child_begin();
468  virtual child_iterator child_end();
469
470  virtual void EmitImpl(llvm::Serializer& S) const;
471  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
472};
473
474/// StringLiteral - This represents a string literal expression, e.g. "foo"
475/// or L"bar" (wide strings).  The actual string is returned by getStrData()
476/// is NOT null-terminated, and the length of the string is determined by
477/// calling getByteLength().  The C type for a string is always a
478/// ConstantArrayType.
479///
480/// Note that strings in C can be formed by concatenation of multiple string
481/// literal pptokens in trnaslation phase #6.  This keeps track of the locations
482/// of each of these pieces.
483class StringLiteral : public Expr {
484  const char *StrData;
485  unsigned ByteLength;
486  bool IsWide;
487  unsigned NumConcatenated;
488  SourceLocation TokLocs[1];
489public:
490  StringLiteral(ASTContext &C, const char *StrData, unsigned ByteLength,
491                bool Wide, QualType t, SourceLocation Loc);
492  StringLiteral(ASTContext &C, const char *StrData, unsigned ByteLength,
493                bool Wide, QualType t, SourceLocation *Loc, unsigned NumStrs);
494
495  void Destroy(ASTContext &C);
496
497  const char *getStrData() const { return StrData; }
498  unsigned getByteLength() const { return ByteLength; }
499  bool isWide() const { return IsWide; }
500
501  /// getNumConcatenated - Get the number of string literal tokens that were
502  /// concatenated in translation phase #6 to form this string literal.
503  unsigned getNumConcatenated() const { return NumConcatenated; }
504
505  SourceLocation getStrTokenLoc(unsigned TokNum) const {
506    assert(TokNum < NumConcatenated && "Invalid tok number");
507    return TokLocs[TokNum];
508  }
509
510  virtual SourceRange getSourceRange() const {
511    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
512  }
513  static bool classof(const Stmt *T) {
514    return T->getStmtClass() == StringLiteralClass;
515  }
516  static bool classof(const StringLiteral *) { return true; }
517
518  // Iterators
519  virtual child_iterator child_begin();
520  virtual child_iterator child_end();
521
522  virtual void EmitImpl(llvm::Serializer& S) const;
523  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
524};
525
526/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
527/// AST node is only formed if full location information is requested.
528class ParenExpr : public Expr {
529  SourceLocation L, R;
530  Stmt *Val;
531public:
532  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
533    : Expr(ParenExprClass, val->getType(),
534           val->isTypeDependent(), val->isValueDependent()),
535      L(l), R(r), Val(val) {}
536
537  const Expr *getSubExpr() const { return cast<Expr>(Val); }
538  Expr *getSubExpr() { return cast<Expr>(Val); }
539  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
540
541  static bool classof(const Stmt *T) {
542    return T->getStmtClass() == ParenExprClass;
543  }
544  static bool classof(const ParenExpr *) { return true; }
545
546  // Iterators
547  virtual child_iterator child_begin();
548  virtual child_iterator child_end();
549
550  virtual void EmitImpl(llvm::Serializer& S) const;
551  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
552};
553
554
555/// UnaryOperator - This represents the unary-expression's (except sizeof and
556/// alignof), the postinc/postdec operators from postfix-expression, and various
557/// extensions.
558///
559/// Notes on various nodes:
560///
561/// Real/Imag - These return the real/imag part of a complex operand.  If
562///   applied to a non-complex value, the former returns its operand and the
563///   later returns zero in the type of the operand.
564///
565/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
566///   subexpression is a compound literal with the various MemberExpr and
567///   ArraySubscriptExpr's applied to it.
568///
569class UnaryOperator : public Expr {
570public:
571  // Note that additions to this should also update the StmtVisitor class.
572  enum Opcode {
573    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
574    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
575    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
576    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
577    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
578    Real, Imag,       // "__real expr"/"__imag expr" Extension.
579    Extension,        // __extension__ marker.
580    OffsetOf          // __builtin_offsetof
581  };
582private:
583  Stmt *Val;
584  Opcode Opc;
585  SourceLocation Loc;
586public:
587
588  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
589    : Expr(UnaryOperatorClass, type,
590           input->isTypeDependent() && opc != OffsetOf,
591           input->isValueDependent()),
592      Val(input), Opc(opc), Loc(l) {}
593
594  Opcode getOpcode() const { return Opc; }
595  Expr *getSubExpr() const { return cast<Expr>(Val); }
596
597  /// getOperatorLoc - Return the location of the operator.
598  SourceLocation getOperatorLoc() const { return Loc; }
599
600  /// isPostfix - Return true if this is a postfix operation, like x++.
601  static bool isPostfix(Opcode Op);
602
603  /// isPostfix - Return true if this is a prefix operation, like --x.
604  static bool isPrefix(Opcode Op);
605
606  bool isPrefix() const { return isPrefix(Opc); }
607  bool isPostfix() const { return isPostfix(Opc); }
608  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
609  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
610  bool isOffsetOfOp() const { return Opc == OffsetOf; }
611  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
612
613  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
614  /// corresponds to, e.g. "sizeof" or "[pre]++"
615  static const char *getOpcodeStr(Opcode Op);
616
617  virtual SourceRange getSourceRange() const {
618    if (isPostfix())
619      return SourceRange(Val->getLocStart(), Loc);
620    else
621      return SourceRange(Loc, Val->getLocEnd());
622  }
623  virtual SourceLocation getExprLoc() const { return Loc; }
624
625  static bool classof(const Stmt *T) {
626    return T->getStmtClass() == UnaryOperatorClass;
627  }
628  static bool classof(const UnaryOperator *) { return true; }
629
630  int64_t evaluateOffsetOf(ASTContext& C) const;
631
632  // Iterators
633  virtual child_iterator child_begin();
634  virtual child_iterator child_end();
635
636  virtual void EmitImpl(llvm::Serializer& S) const;
637  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
638};
639
640/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
641/// types and expressions.
642class SizeOfAlignOfExpr : public Expr {
643  bool isSizeof : 1;  // true if sizeof, false if alignof.
644  bool isType : 1;    // true if operand is a type, false if an expression
645  union {
646    void *Ty;
647    Stmt *Ex;
648  } Argument;
649  SourceLocation OpLoc, RParenLoc;
650public:
651  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
652                    QualType resultType, SourceLocation op,
653                    SourceLocation rp) :
654      Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
655      isType(istype), OpLoc(op), RParenLoc(rp) {
656    if (isType)
657      Argument.Ty = argument;
658    else
659      // argument was an Expr*, so cast it back to that to be safe
660      Argument.Ex = static_cast<Expr*>(argument);
661  }
662
663  virtual void Destroy(ASTContext& C);
664
665  bool isSizeOf() const { return isSizeof; }
666  bool isArgumentType() const { return isType; }
667  QualType getArgumentType() const {
668    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
669    return QualType::getFromOpaquePtr(Argument.Ty);
670  }
671  Expr *getArgumentExpr() {
672    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
673    return static_cast<Expr*>(Argument.Ex);
674  }
675  const Expr *getArgumentExpr() const {
676    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
677  }
678
679  /// Gets the argument type, or the type of the argument expression, whichever
680  /// is appropriate.
681  QualType getTypeOfArgument() const {
682    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
683  }
684
685  SourceLocation getOperatorLoc() const { return OpLoc; }
686
687  virtual SourceRange getSourceRange() const {
688    return SourceRange(OpLoc, RParenLoc);
689  }
690
691  static bool classof(const Stmt *T) {
692    return T->getStmtClass() == SizeOfAlignOfExprClass;
693  }
694  static bool classof(const SizeOfAlignOfExpr *) { return true; }
695
696  // Iterators
697  virtual child_iterator child_begin();
698  virtual child_iterator child_end();
699
700  virtual void EmitImpl(llvm::Serializer& S) const;
701  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
702};
703
704//===----------------------------------------------------------------------===//
705// Postfix Operators.
706//===----------------------------------------------------------------------===//
707
708/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
709class ArraySubscriptExpr : public Expr {
710  enum { LHS, RHS, END_EXPR=2 };
711  Stmt* SubExprs[END_EXPR];
712  SourceLocation RBracketLoc;
713public:
714  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
715                     SourceLocation rbracketloc)
716  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
717    SubExprs[LHS] = lhs;
718    SubExprs[RHS] = rhs;
719  }
720
721  /// An array access can be written A[4] or 4[A] (both are equivalent).
722  /// - getBase() and getIdx() always present the normalized view: A[4].
723  ///    In this case getBase() returns "A" and getIdx() returns "4".
724  /// - getLHS() and getRHS() present the syntactic view. e.g. for
725  ///    4[A] getLHS() returns "4".
726  /// Note: Because vector element access is also written A[4] we must
727  /// predicate the format conversion in getBase and getIdx only on the
728  /// the type of the RHS, as it is possible for the LHS to be a vector of
729  /// integer type
730  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
731  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
732
733  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
734  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
735
736  Expr *getBase() {
737    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
738  }
739
740  const Expr *getBase() const {
741    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
742  }
743
744  Expr *getIdx() {
745    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
746  }
747
748  const Expr *getIdx() const {
749    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
750  }
751
752  virtual SourceRange getSourceRange() const {
753    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
754  }
755
756  SourceLocation getRBracketLoc() const { return RBracketLoc; }
757  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
758
759  static bool classof(const Stmt *T) {
760    return T->getStmtClass() == ArraySubscriptExprClass;
761  }
762  static bool classof(const ArraySubscriptExpr *) { return true; }
763
764  // Iterators
765  virtual child_iterator child_begin();
766  virtual child_iterator child_end();
767
768  virtual void EmitImpl(llvm::Serializer& S) const;
769  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
770};
771
772
773/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
774/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
775/// while its subclasses may represent alternative syntax that (semantically)
776/// results in a function call. For example, CXXOperatorCallExpr is
777/// a subclass for overloaded operator calls that use operator syntax, e.g.,
778/// "str1 + str2" to resolve to a function call.
779class CallExpr : public Expr {
780  enum { FN=0, ARGS_START=1 };
781  Stmt **SubExprs;
782  unsigned NumArgs;
783  SourceLocation RParenLoc;
784
785  // This version of the ctor is for deserialization.
786  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
787           SourceLocation rparenloc)
788  : Expr(SC,t), SubExprs(subexprs),
789    NumArgs(numargs), RParenLoc(rparenloc) {}
790
791protected:
792  // This version of the constructor is for derived classes.
793  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
794           QualType t, SourceLocation rparenloc);
795
796public:
797  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
798           SourceLocation rparenloc);
799
800  ~CallExpr() {}
801
802  void Destroy(ASTContext& C);
803
804  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
805  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
806  void setCallee(Expr *F) { SubExprs[FN] = F; }
807
808  /// getNumArgs - Return the number of actual arguments to this call.
809  ///
810  unsigned getNumArgs() const { return NumArgs; }
811
812  /// getArg - Return the specified argument.
813  Expr *getArg(unsigned Arg) {
814    assert(Arg < NumArgs && "Arg access out of range!");
815    return cast<Expr>(SubExprs[Arg+ARGS_START]);
816  }
817  const Expr *getArg(unsigned Arg) const {
818    assert(Arg < NumArgs && "Arg access out of range!");
819    return cast<Expr>(SubExprs[Arg+ARGS_START]);
820  }
821
822  // FIXME: Why is this needed?  Why not just create the CallExpr with the
823  // corect number of arguments?  It makes the ASTs less brittle.
824  /// setArg - Set the specified argument.
825  void setArg(unsigned Arg, Expr *ArgExpr) {
826    assert(Arg < NumArgs && "Arg access out of range!");
827    SubExprs[Arg+ARGS_START] = ArgExpr;
828  }
829
830  // FIXME: It would be great to just get rid of this.  There is only one
831  // callee of this method, and it probably could be refactored to not use
832  // this method and instead just create a CallExpr with the right number of
833  // arguments.
834  /// setNumArgs - This changes the number of arguments present in this call.
835  /// Any orphaned expressions are deleted by this, and any new operands are set
836  /// to null.
837  void setNumArgs(ASTContext& C, unsigned NumArgs);
838
839  typedef ExprIterator arg_iterator;
840  typedef ConstExprIterator const_arg_iterator;
841
842  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
843  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
844  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
845  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
846
847  /// getNumCommas - Return the number of commas that must have been present in
848  /// this function call.
849  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
850
851  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
852  /// not, return 0.
853  unsigned isBuiltinCall(ASTContext &Context) const;
854
855  SourceLocation getRParenLoc() const { return RParenLoc; }
856
857  virtual SourceRange getSourceRange() const {
858    return SourceRange(getCallee()->getLocStart(), RParenLoc);
859  }
860
861  static bool classof(const Stmt *T) {
862    return T->getStmtClass() == CallExprClass ||
863           T->getStmtClass() == CXXOperatorCallExprClass ||
864           T->getStmtClass() == CXXMemberCallExprClass;
865  }
866  static bool classof(const CallExpr *) { return true; }
867  static bool classof(const CXXOperatorCallExpr *) { return true; }
868  static bool classof(const CXXMemberCallExpr *) { return true; }
869
870  // Iterators
871  virtual child_iterator child_begin();
872  virtual child_iterator child_end();
873
874  virtual void EmitImpl(llvm::Serializer& S) const;
875  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
876                              StmtClass SC);
877};
878
879/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
880///
881class MemberExpr : public Expr {
882  Stmt *Base;
883  NamedDecl *MemberDecl;
884  SourceLocation MemberLoc;
885  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
886public:
887  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
888             QualType ty)
889    : Expr(MemberExprClass, ty),
890      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
891
892  void setBase(Expr *E) { Base = E; }
893  Expr *getBase() const { return cast<Expr>(Base); }
894  NamedDecl *getMemberDecl() const { return MemberDecl; }
895  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
896  bool isArrow() const { return IsArrow; }
897  SourceLocation getMemberLoc() const { return MemberLoc; }
898
899  virtual SourceRange getSourceRange() const {
900    return SourceRange(getBase()->getLocStart(), MemberLoc);
901  }
902
903  virtual SourceLocation getExprLoc() const { return MemberLoc; }
904
905  static bool classof(const Stmt *T) {
906    return T->getStmtClass() == MemberExprClass;
907  }
908  static bool classof(const MemberExpr *) { return true; }
909
910  // Iterators
911  virtual child_iterator child_begin();
912  virtual child_iterator child_end();
913
914  virtual void EmitImpl(llvm::Serializer& S) const;
915  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
916};
917
918/// CompoundLiteralExpr - [C99 6.5.2.5]
919///
920class CompoundLiteralExpr : public Expr {
921  /// LParenLoc - If non-null, this is the location of the left paren in a
922  /// compound literal like "(int){4}".  This can be null if this is a
923  /// synthesized compound expression.
924  SourceLocation LParenLoc;
925  Stmt *Init;
926  bool FileScope;
927public:
928  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
929                      bool fileScope)
930    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
931      FileScope(fileScope) {}
932
933  const Expr *getInitializer() const { return cast<Expr>(Init); }
934  Expr *getInitializer() { return cast<Expr>(Init); }
935
936  bool isFileScope() const { return FileScope; }
937
938  SourceLocation getLParenLoc() const { return LParenLoc; }
939
940  virtual SourceRange getSourceRange() const {
941    // FIXME: Init should never be null.
942    if (!Init)
943      return SourceRange();
944    if (LParenLoc.isInvalid())
945      return Init->getSourceRange();
946    return SourceRange(LParenLoc, Init->getLocEnd());
947  }
948
949  static bool classof(const Stmt *T) {
950    return T->getStmtClass() == CompoundLiteralExprClass;
951  }
952  static bool classof(const CompoundLiteralExpr *) { return true; }
953
954  // Iterators
955  virtual child_iterator child_begin();
956  virtual child_iterator child_end();
957
958  virtual void EmitImpl(llvm::Serializer& S) const;
959  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
960};
961
962/// CastExpr - Base class for type casts, including both implicit
963/// casts (ImplicitCastExpr) and explicit casts that have some
964/// representation in the source code (ExplicitCastExpr's derived
965/// classes).
966class CastExpr : public Expr {
967  Stmt *Op;
968protected:
969  CastExpr(StmtClass SC, QualType ty, Expr *op) :
970    Expr(SC, ty,
971         // Cast expressions are type-dependent if the type is
972         // dependent (C++ [temp.dep.expr]p3).
973         ty->isDependentType(),
974         // Cast expressions are value-dependent if the type is
975         // dependent or if the subexpression is value-dependent.
976         ty->isDependentType() || (op && op->isValueDependent())),
977    Op(op) {}
978
979public:
980  Expr *getSubExpr() { return cast<Expr>(Op); }
981  const Expr *getSubExpr() const { return cast<Expr>(Op); }
982
983  static bool classof(const Stmt *T) {
984    StmtClass SC = T->getStmtClass();
985    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
986      return true;
987
988    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
989      return true;
990
991    return false;
992  }
993  static bool classof(const CastExpr *) { return true; }
994
995  // Iterators
996  virtual child_iterator child_begin();
997  virtual child_iterator child_end();
998};
999
1000/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1001/// conversions, which have no direct representation in the original
1002/// source code. For example: converting T[]->T*, void f()->void
1003/// (*f)(), float->double, short->int, etc.
1004///
1005/// In C, implicit casts always produce rvalues. However, in C++, an
1006/// implicit cast whose result is being bound to a reference will be
1007/// an lvalue. For example:
1008///
1009/// @code
1010/// class Base { };
1011/// class Derived : public Base { };
1012/// void f(Derived d) {
1013///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1014/// }
1015/// @endcode
1016class ImplicitCastExpr : public CastExpr {
1017  /// LvalueCast - Whether this cast produces an lvalue.
1018  bool LvalueCast;
1019
1020public:
1021  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1022    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1023
1024  virtual SourceRange getSourceRange() const {
1025    return getSubExpr()->getSourceRange();
1026  }
1027
1028  /// isLvalueCast - Whether this cast produces an lvalue.
1029  bool isLvalueCast() const { return LvalueCast; }
1030
1031  /// setLvalueCast - Set whether this cast produces an lvalue.
1032  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1033
1034  static bool classof(const Stmt *T) {
1035    return T->getStmtClass() == ImplicitCastExprClass;
1036  }
1037  static bool classof(const ImplicitCastExpr *) { return true; }
1038
1039  virtual void EmitImpl(llvm::Serializer& S) const;
1040  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1041};
1042
1043/// ExplicitCastExpr - An explicit cast written in the source
1044/// code.
1045///
1046/// This class is effectively an abstract class, because it provides
1047/// the basic representation of an explicitly-written cast without
1048/// specifying which kind of cast (C cast, functional cast, static
1049/// cast, etc.) was written; specific derived classes represent the
1050/// particular style of cast and its location information.
1051///
1052/// Unlike implicit casts, explicit cast nodes have two different
1053/// types: the type that was written into the source code, and the
1054/// actual type of the expression as determined by semantic
1055/// analysis. These types may differ slightly. For example, in C++ one
1056/// can cast to a reference type, which indicates that the resulting
1057/// expression will be an lvalue. The reference type, however, will
1058/// not be used as the type of the expression.
1059class ExplicitCastExpr : public CastExpr {
1060  /// TypeAsWritten - The type that this expression is casting to, as
1061  /// written in the source code.
1062  QualType TypeAsWritten;
1063
1064protected:
1065  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1066    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1067
1068public:
1069  /// getTypeAsWritten - Returns the type that this expression is
1070  /// casting to, as written in the source code.
1071  QualType getTypeAsWritten() const { return TypeAsWritten; }
1072
1073  static bool classof(const Stmt *T) {
1074    StmtClass SC = T->getStmtClass();
1075    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1076      return true;
1077    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1078      return true;
1079
1080    return false;
1081  }
1082  static bool classof(const ExplicitCastExpr *) { return true; }
1083};
1084
1085/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1086/// cast in C++ (C++ [expr.cast]), which uses the syntax
1087/// (Type)expr. For example: @c (int)f.
1088class CStyleCastExpr : public ExplicitCastExpr {
1089  SourceLocation LPLoc; // the location of the left paren
1090  SourceLocation RPLoc; // the location of the right paren
1091public:
1092  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1093                    SourceLocation l, SourceLocation r) :
1094    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1095    LPLoc(l), RPLoc(r) {}
1096
1097  SourceLocation getLParenLoc() const { return LPLoc; }
1098  SourceLocation getRParenLoc() const { return RPLoc; }
1099
1100  virtual SourceRange getSourceRange() const {
1101    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1102  }
1103  static bool classof(const Stmt *T) {
1104    return T->getStmtClass() == CStyleCastExprClass;
1105  }
1106  static bool classof(const CStyleCastExpr *) { return true; }
1107
1108  virtual void EmitImpl(llvm::Serializer& S) const;
1109  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1110};
1111
1112class BinaryOperator : public Expr {
1113public:
1114  enum Opcode {
1115    // Operators listed in order of precedence.
1116    // Note that additions to this should also update the StmtVisitor class.
1117    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1118    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1119    Add, Sub,         // [C99 6.5.6] Additive operators.
1120    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1121    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1122    EQ, NE,           // [C99 6.5.9] Equality operators.
1123    And,              // [C99 6.5.10] Bitwise AND operator.
1124    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1125    Or,               // [C99 6.5.12] Bitwise OR operator.
1126    LAnd,             // [C99 6.5.13] Logical AND operator.
1127    LOr,              // [C99 6.5.14] Logical OR operator.
1128    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1129    DivAssign, RemAssign,
1130    AddAssign, SubAssign,
1131    ShlAssign, ShrAssign,
1132    AndAssign, XorAssign,
1133    OrAssign,
1134    Comma             // [C99 6.5.17] Comma operator.
1135  };
1136private:
1137  enum { LHS, RHS, END_EXPR };
1138  Stmt* SubExprs[END_EXPR];
1139  Opcode Opc;
1140  SourceLocation OpLoc;
1141public:
1142
1143  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1144                 SourceLocation opLoc)
1145    : Expr(BinaryOperatorClass, ResTy,
1146           lhs->isTypeDependent() || rhs->isTypeDependent(),
1147           lhs->isValueDependent() || rhs->isValueDependent()),
1148      Opc(opc), OpLoc(opLoc) {
1149    SubExprs[LHS] = lhs;
1150    SubExprs[RHS] = rhs;
1151    assert(!isCompoundAssignmentOp() &&
1152           "Use ArithAssignBinaryOperator for compound assignments");
1153  }
1154
1155  SourceLocation getOperatorLoc() const { return OpLoc; }
1156  Opcode getOpcode() const { return Opc; }
1157  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1158  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1159  virtual SourceRange getSourceRange() const {
1160    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1161  }
1162
1163  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1164  /// corresponds to, e.g. "<<=".
1165  static const char *getOpcodeStr(Opcode Op);
1166
1167  /// predicates to categorize the respective opcodes.
1168  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1169  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1170  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1171  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1172
1173  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1174  bool isRelationalOp() const { return isRelationalOp(Opc); }
1175
1176  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1177  bool isEqualityOp() const { return isEqualityOp(Opc); }
1178
1179  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1180  bool isLogicalOp() const { return isLogicalOp(Opc); }
1181
1182  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1183  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1184  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1185
1186  static bool classof(const Stmt *S) {
1187    return S->getStmtClass() == BinaryOperatorClass ||
1188           S->getStmtClass() == CompoundAssignOperatorClass;
1189  }
1190  static bool classof(const BinaryOperator *) { return true; }
1191
1192  // Iterators
1193  virtual child_iterator child_begin();
1194  virtual child_iterator child_end();
1195
1196  virtual void EmitImpl(llvm::Serializer& S) const;
1197  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1198
1199protected:
1200  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1201                 SourceLocation oploc, bool dead)
1202    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1203    SubExprs[LHS] = lhs;
1204    SubExprs[RHS] = rhs;
1205  }
1206};
1207
1208/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1209/// track of the type the operation is performed in.  Due to the semantics of
1210/// these operators, the operands are promoted, the aritmetic performed, an
1211/// implicit conversion back to the result type done, then the assignment takes
1212/// place.  This captures the intermediate type which the computation is done
1213/// in.
1214class CompoundAssignOperator : public BinaryOperator {
1215  QualType ComputationType;
1216public:
1217  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1218                         QualType ResType, QualType CompType,
1219                         SourceLocation OpLoc)
1220    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1221      ComputationType(CompType) {
1222    assert(isCompoundAssignmentOp() &&
1223           "Only should be used for compound assignments");
1224  }
1225
1226  QualType getComputationType() const { return ComputationType; }
1227
1228  static bool classof(const CompoundAssignOperator *) { return true; }
1229  static bool classof(const Stmt *S) {
1230    return S->getStmtClass() == CompoundAssignOperatorClass;
1231  }
1232
1233  virtual void EmitImpl(llvm::Serializer& S) const;
1234  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1235                                            ASTContext& C);
1236};
1237
1238/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1239/// GNU "missing LHS" extension is in use.
1240///
1241class ConditionalOperator : public Expr {
1242  enum { COND, LHS, RHS, END_EXPR };
1243  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1244public:
1245  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1246    : Expr(ConditionalOperatorClass, t,
1247           // FIXME: the type of the conditional operator doesn't
1248           // depend on the type of the conditional, but the standard
1249           // seems to imply that it could. File a bug!
1250           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1251           (cond->isValueDependent() ||
1252            (lhs && lhs->isValueDependent()) ||
1253            (rhs && rhs->isValueDependent()))) {
1254    SubExprs[COND] = cond;
1255    SubExprs[LHS] = lhs;
1256    SubExprs[RHS] = rhs;
1257  }
1258
1259  // getCond - Return the expression representing the condition for
1260  //  the ?: operator.
1261  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1262
1263  // getTrueExpr - Return the subexpression representing the value of the ?:
1264  //  expression if the condition evaluates to true.  In most cases this value
1265  //  will be the same as getLHS() except a GCC extension allows the left
1266  //  subexpression to be omitted, and instead of the condition be returned.
1267  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1268  //  is only evaluated once.
1269  Expr *getTrueExpr() const {
1270    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1271  }
1272
1273  // getTrueExpr - Return the subexpression representing the value of the ?:
1274  // expression if the condition evaluates to false. This is the same as getRHS.
1275  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1276
1277  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1278  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1279
1280  virtual SourceRange getSourceRange() const {
1281    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1282  }
1283  static bool classof(const Stmt *T) {
1284    return T->getStmtClass() == ConditionalOperatorClass;
1285  }
1286  static bool classof(const ConditionalOperator *) { return true; }
1287
1288  // Iterators
1289  virtual child_iterator child_begin();
1290  virtual child_iterator child_end();
1291
1292  virtual void EmitImpl(llvm::Serializer& S) const;
1293  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1294};
1295
1296/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1297class AddrLabelExpr : public Expr {
1298  SourceLocation AmpAmpLoc, LabelLoc;
1299  LabelStmt *Label;
1300public:
1301  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1302                QualType t)
1303    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1304
1305  virtual SourceRange getSourceRange() const {
1306    return SourceRange(AmpAmpLoc, LabelLoc);
1307  }
1308
1309  LabelStmt *getLabel() const { return Label; }
1310
1311  static bool classof(const Stmt *T) {
1312    return T->getStmtClass() == AddrLabelExprClass;
1313  }
1314  static bool classof(const AddrLabelExpr *) { return true; }
1315
1316  // Iterators
1317  virtual child_iterator child_begin();
1318  virtual child_iterator child_end();
1319
1320  virtual void EmitImpl(llvm::Serializer& S) const;
1321  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1322};
1323
1324/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1325/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1326/// takes the value of the last subexpression.
1327class StmtExpr : public Expr {
1328  Stmt *SubStmt;
1329  SourceLocation LParenLoc, RParenLoc;
1330public:
1331  StmtExpr(CompoundStmt *substmt, QualType T,
1332           SourceLocation lp, SourceLocation rp) :
1333    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1334
1335  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1336  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1337
1338  virtual SourceRange getSourceRange() const {
1339    return SourceRange(LParenLoc, RParenLoc);
1340  }
1341
1342  SourceLocation getLParenLoc() const { return LParenLoc; }
1343  SourceLocation getRParenLoc() const { return RParenLoc; }
1344
1345  static bool classof(const Stmt *T) {
1346    return T->getStmtClass() == StmtExprClass;
1347  }
1348  static bool classof(const StmtExpr *) { return true; }
1349
1350  // Iterators
1351  virtual child_iterator child_begin();
1352  virtual child_iterator child_end();
1353
1354  virtual void EmitImpl(llvm::Serializer& S) const;
1355  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1356};
1357
1358/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1359/// This AST node represents a function that returns 1 if two *types* (not
1360/// expressions) are compatible. The result of this built-in function can be
1361/// used in integer constant expressions.
1362class TypesCompatibleExpr : public Expr {
1363  QualType Type1;
1364  QualType Type2;
1365  SourceLocation BuiltinLoc, RParenLoc;
1366public:
1367  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1368                      QualType t1, QualType t2, SourceLocation RP) :
1369    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1370    BuiltinLoc(BLoc), RParenLoc(RP) {}
1371
1372  QualType getArgType1() const { return Type1; }
1373  QualType getArgType2() const { return Type2; }
1374
1375  virtual SourceRange getSourceRange() const {
1376    return SourceRange(BuiltinLoc, RParenLoc);
1377  }
1378  static bool classof(const Stmt *T) {
1379    return T->getStmtClass() == TypesCompatibleExprClass;
1380  }
1381  static bool classof(const TypesCompatibleExpr *) { return true; }
1382
1383  // Iterators
1384  virtual child_iterator child_begin();
1385  virtual child_iterator child_end();
1386
1387  virtual void EmitImpl(llvm::Serializer& S) const;
1388  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1389};
1390
1391/// ShuffleVectorExpr - clang-specific builtin-in function
1392/// __builtin_shufflevector.
1393/// This AST node represents a operator that does a constant
1394/// shuffle, similar to LLVM's shufflevector instruction. It takes
1395/// two vectors and a variable number of constant indices,
1396/// and returns the appropriately shuffled vector.
1397class ShuffleVectorExpr : public Expr {
1398  SourceLocation BuiltinLoc, RParenLoc;
1399
1400  // SubExprs - the list of values passed to the __builtin_shufflevector
1401  // function. The first two are vectors, and the rest are constant
1402  // indices.  The number of values in this list is always
1403  // 2+the number of indices in the vector type.
1404  Stmt **SubExprs;
1405  unsigned NumExprs;
1406
1407public:
1408  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1409                    QualType Type, SourceLocation BLoc,
1410                    SourceLocation RP) :
1411    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1412    RParenLoc(RP), NumExprs(nexpr) {
1413
1414    SubExprs = new Stmt*[nexpr];
1415    for (unsigned i = 0; i < nexpr; i++)
1416      SubExprs[i] = args[i];
1417  }
1418
1419  virtual SourceRange getSourceRange() const {
1420    return SourceRange(BuiltinLoc, RParenLoc);
1421  }
1422  static bool classof(const Stmt *T) {
1423    return T->getStmtClass() == ShuffleVectorExprClass;
1424  }
1425  static bool classof(const ShuffleVectorExpr *) { return true; }
1426
1427  ~ShuffleVectorExpr() {
1428    delete [] SubExprs;
1429  }
1430
1431  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1432  /// constant expression, the actual arguments passed in, and the function
1433  /// pointers.
1434  unsigned getNumSubExprs() const { return NumExprs; }
1435
1436  /// getExpr - Return the Expr at the specified index.
1437  Expr *getExpr(unsigned Index) {
1438    assert((Index < NumExprs) && "Arg access out of range!");
1439    return cast<Expr>(SubExprs[Index]);
1440  }
1441  const Expr *getExpr(unsigned Index) const {
1442    assert((Index < NumExprs) && "Arg access out of range!");
1443    return cast<Expr>(SubExprs[Index]);
1444  }
1445
1446  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1447    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1448    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1449  }
1450
1451  // Iterators
1452  virtual child_iterator child_begin();
1453  virtual child_iterator child_end();
1454
1455  virtual void EmitImpl(llvm::Serializer& S) const;
1456  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1457};
1458
1459/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1460/// This AST node is similar to the conditional operator (?:) in C, with
1461/// the following exceptions:
1462/// - the test expression must be a constant expression.
1463/// - the expression returned has it's type unaltered by promotion rules.
1464/// - does not evaluate the expression that was not chosen.
1465class ChooseExpr : public Expr {
1466  enum { COND, LHS, RHS, END_EXPR };
1467  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1468  SourceLocation BuiltinLoc, RParenLoc;
1469public:
1470  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1471             SourceLocation RP)
1472    : Expr(ChooseExprClass, t),
1473      BuiltinLoc(BLoc), RParenLoc(RP) {
1474      SubExprs[COND] = cond;
1475      SubExprs[LHS] = lhs;
1476      SubExprs[RHS] = rhs;
1477    }
1478
1479  /// isConditionTrue - Return true if the condition is true.  This is always
1480  /// statically knowable for a well-formed choosexpr.
1481  bool isConditionTrue(ASTContext &C) const;
1482
1483  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1484  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1485  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1486
1487  virtual SourceRange getSourceRange() const {
1488    return SourceRange(BuiltinLoc, RParenLoc);
1489  }
1490  static bool classof(const Stmt *T) {
1491    return T->getStmtClass() == ChooseExprClass;
1492  }
1493  static bool classof(const ChooseExpr *) { return true; }
1494
1495  // Iterators
1496  virtual child_iterator child_begin();
1497  virtual child_iterator child_end();
1498
1499  virtual void EmitImpl(llvm::Serializer& S) const;
1500  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1501};
1502
1503/// GNUNullExpr - Implements the GNU __null extension, which is a name
1504/// for a null pointer constant that has integral type (e.g., int or
1505/// long) and is the same size and alignment as a pointer. The __null
1506/// extension is typically only used by system headers, which define
1507/// NULL as __null in C++ rather than using 0 (which is an integer
1508/// that may not match the size of a pointer).
1509class GNUNullExpr : public Expr {
1510  /// TokenLoc - The location of the __null keyword.
1511  SourceLocation TokenLoc;
1512
1513public:
1514  GNUNullExpr(QualType Ty, SourceLocation Loc)
1515    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1516
1517  /// getTokenLocation - The location of the __null token.
1518  SourceLocation getTokenLocation() const { return TokenLoc; }
1519
1520  virtual SourceRange getSourceRange() const {
1521    return SourceRange(TokenLoc);
1522  }
1523  static bool classof(const Stmt *T) {
1524    return T->getStmtClass() == GNUNullExprClass;
1525  }
1526  static bool classof(const GNUNullExpr *) { return true; }
1527
1528  // Iterators
1529  virtual child_iterator child_begin();
1530  virtual child_iterator child_end();
1531
1532  virtual void EmitImpl(llvm::Serializer& S) const;
1533  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1534};
1535
1536/// OverloadExpr - Clang builtin function __builtin_overload.
1537/// This AST node provides a way to overload functions in C.
1538///
1539/// The first argument is required to be a constant expression, for the number
1540/// of arguments passed to each candidate function.
1541///
1542/// The next N arguments, where N is the value of the constant expression,
1543/// are the values to be passed as arguments.
1544///
1545/// The rest of the arguments are values of pointer to function type, which
1546/// are the candidate functions for overloading.
1547///
1548/// The result is a equivalent to a CallExpr taking N arguments to the
1549/// candidate function whose parameter types match the types of the N arguments.
1550///
1551/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1552/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1553/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1554class OverloadExpr : public Expr {
1555  // SubExprs - the list of values passed to the __builtin_overload function.
1556  // SubExpr[0] is a constant expression
1557  // SubExpr[1-N] are the parameters to pass to the matching function call
1558  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1559  Stmt **SubExprs;
1560
1561  // NumExprs - the size of the SubExprs array
1562  unsigned NumExprs;
1563
1564  // The index of the matching candidate function
1565  unsigned FnIndex;
1566
1567  SourceLocation BuiltinLoc;
1568  SourceLocation RParenLoc;
1569public:
1570  OverloadExpr(ASTContext& C, Expr **args, unsigned nexprs, unsigned idx,
1571               QualType t, SourceLocation bloc, SourceLocation rploc)
1572    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1573      BuiltinLoc(bloc), RParenLoc(rploc) {
1574    SubExprs = new (C) Stmt*[nexprs];
1575    for (unsigned i = 0; i != nexprs; ++i)
1576      SubExprs[i] = args[i];
1577  }
1578
1579  ~OverloadExpr() {}
1580
1581  void Destroy(ASTContext& C);
1582
1583  /// arg_begin - Return a pointer to the list of arguments that will be passed
1584  /// to the matching candidate function, skipping over the initial constant
1585  /// expression.
1586  typedef ConstExprIterator const_arg_iterator;
1587  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1588  const_arg_iterator arg_end(ASTContext& Ctx) const {
1589    return &SubExprs[0]+1+getNumArgs(Ctx);
1590  }
1591
1592  /// getNumArgs - Return the number of arguments to pass to the candidate
1593  /// functions.
1594  unsigned getNumArgs(ASTContext &Ctx) const {
1595    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1596  }
1597
1598  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1599  /// constant expression, the actual arguments passed in, and the function
1600  /// pointers.
1601  unsigned getNumSubExprs() const { return NumExprs; }
1602
1603  /// getExpr - Return the Expr at the specified index.
1604  Expr *getExpr(unsigned Index) const {
1605    assert((Index < NumExprs) && "Arg access out of range!");
1606    return cast<Expr>(SubExprs[Index]);
1607  }
1608
1609  /// getFn - Return the matching candidate function for this OverloadExpr.
1610  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1611
1612  virtual SourceRange getSourceRange() const {
1613    return SourceRange(BuiltinLoc, RParenLoc);
1614  }
1615  static bool classof(const Stmt *T) {
1616    return T->getStmtClass() == OverloadExprClass;
1617  }
1618  static bool classof(const OverloadExpr *) { return true; }
1619
1620  // Iterators
1621  virtual child_iterator child_begin();
1622  virtual child_iterator child_end();
1623
1624  virtual void EmitImpl(llvm::Serializer& S) const;
1625  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1626};
1627
1628/// VAArgExpr, used for the builtin function __builtin_va_start.
1629class VAArgExpr : public Expr {
1630  Stmt *Val;
1631  SourceLocation BuiltinLoc, RParenLoc;
1632public:
1633  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1634    : Expr(VAArgExprClass, t),
1635      Val(e),
1636      BuiltinLoc(BLoc),
1637      RParenLoc(RPLoc) { }
1638
1639  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1640  Expr *getSubExpr() { return cast<Expr>(Val); }
1641  virtual SourceRange getSourceRange() const {
1642    return SourceRange(BuiltinLoc, RParenLoc);
1643  }
1644  static bool classof(const Stmt *T) {
1645    return T->getStmtClass() == VAArgExprClass;
1646  }
1647  static bool classof(const VAArgExpr *) { return true; }
1648
1649  // Iterators
1650  virtual child_iterator child_begin();
1651  virtual child_iterator child_end();
1652
1653  virtual void EmitImpl(llvm::Serializer& S) const;
1654  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1655};
1656
1657/// @brief Describes an C or C++ initializer list.
1658///
1659/// InitListExpr describes an initializer list, which can be used to
1660/// initialize objects of different types, including
1661/// struct/class/union types, arrays, and vectors. For example:
1662///
1663/// @code
1664/// struct foo x = { 1, { 2, 3 } };
1665/// @endcode
1666///
1667/// Prior to semantic analysis, an initializer list will represent the
1668/// initializer list as written by the user, but will have the
1669/// placeholder type "void". This initializer list is called the
1670/// syntactic form of the initializer, and may contain C99 designated
1671/// initializers (represented as DesignatedInitExprs), initializations
1672/// of subobject members without explicit braces, and so on. Clients
1673/// interested in the original syntax of the initializer list should
1674/// use the syntactic form of the initializer list.
1675///
1676/// After semantic analysis, the initializer list will represent the
1677/// semantic form of the initializer, where the initializations of all
1678/// subobjects are made explicit with nested InitListExpr nodes and
1679/// C99 designators have been eliminated by placing the designated
1680/// initializations into the subobject they initialize. Additionally,
1681/// any "holes" in the initialization, where no initializer has been
1682/// specified for a particular subobject, will be replaced with
1683/// implicitly-generated ImplicitValueInitExpr expressions that
1684/// value-initialize the subobjects. Note, however, that the
1685/// initializer lists may still have fewer initializers than there are
1686/// elements to initialize within the object.
1687///
1688/// Given the semantic form of the initializer list, one can retrieve
1689/// the original syntactic form of that initializer list (if it
1690/// exists) using getSyntacticForm(). Since many initializer lists
1691/// have the same syntactic and semantic forms, getSyntacticForm() may
1692/// return NULL, indicating that the current initializer list also
1693/// serves as its syntactic form.
1694class InitListExpr : public Expr {
1695  std::vector<Stmt *> InitExprs;
1696  SourceLocation LBraceLoc, RBraceLoc;
1697
1698  /// Contains the initializer list that describes the syntactic form
1699  /// written in the source code.
1700  InitListExpr *SyntacticForm;
1701
1702  /// If this initializer list initializes a union, specifies which
1703  /// field within the union will be initialized.
1704  FieldDecl *UnionFieldInit;
1705
1706  /// Whether this initializer list originally had a GNU array-range
1707  /// designator in it. This is a temporary marker used by CodeGen.
1708  bool HadArrayRangeDesignator;
1709
1710public:
1711  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1712               SourceLocation rbraceloc);
1713
1714  unsigned getNumInits() const { return InitExprs.size(); }
1715
1716  const Expr* getInit(unsigned Init) const {
1717    assert(Init < getNumInits() && "Initializer access out of range!");
1718    return cast_or_null<Expr>(InitExprs[Init]);
1719  }
1720
1721  Expr* getInit(unsigned Init) {
1722    assert(Init < getNumInits() && "Initializer access out of range!");
1723    return cast_or_null<Expr>(InitExprs[Init]);
1724  }
1725
1726  void setInit(unsigned Init, Expr *expr) {
1727    assert(Init < getNumInits() && "Initializer access out of range!");
1728    InitExprs[Init] = expr;
1729  }
1730
1731  /// @brief Specify the number of initializers
1732  ///
1733  /// If there are more than @p NumInits initializers, the remaining
1734  /// initializers will be destroyed. If there are fewer than @p
1735  /// NumInits initializers, NULL expressions will be added for the
1736  /// unknown initializers.
1737  void resizeInits(ASTContext &Context, unsigned NumInits);
1738
1739  /// @brief Updates the initializer at index @p Init with the new
1740  /// expression @p expr, and returns the old expression at that
1741  /// location.
1742  ///
1743  /// When @p Init is out of range for this initializer list, the
1744  /// initializer list will be extended with NULL expressions to
1745  /// accomodate the new entry.
1746  Expr *updateInit(unsigned Init, Expr *expr);
1747
1748  /// \brief If this initializes a union, specifies which field in the
1749  /// union to initialize.
1750  ///
1751  /// Typically, this field is the first named field within the
1752  /// union. However, a designated initializer can specify the
1753  /// initialization of a different field within the union.
1754  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1755  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1756
1757  // Explicit InitListExpr's originate from source code (and have valid source
1758  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1759  bool isExplicit() {
1760    return LBraceLoc.isValid() && RBraceLoc.isValid();
1761  }
1762
1763  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1764
1765  /// @brief Retrieve the initializer list that describes the
1766  /// syntactic form of the initializer.
1767  ///
1768  ///
1769  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1770  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1771
1772  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1773  void sawArrayRangeDesignator() {
1774    HadArrayRangeDesignator = true;
1775  }
1776
1777  virtual SourceRange getSourceRange() const {
1778    return SourceRange(LBraceLoc, RBraceLoc);
1779  }
1780  static bool classof(const Stmt *T) {
1781    return T->getStmtClass() == InitListExprClass;
1782  }
1783  static bool classof(const InitListExpr *) { return true; }
1784
1785  // Iterators
1786  virtual child_iterator child_begin();
1787  virtual child_iterator child_end();
1788
1789  typedef std::vector<Stmt *>::iterator iterator;
1790  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1791
1792  iterator begin() { return InitExprs.begin(); }
1793  iterator end() { return InitExprs.end(); }
1794  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1795  reverse_iterator rend() { return InitExprs.rend(); }
1796
1797  // Serailization.
1798  virtual void EmitImpl(llvm::Serializer& S) const;
1799  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1800
1801private:
1802  // Used by serializer.
1803  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1804};
1805
1806/// @brief Represents a C99 designated initializer expression.
1807///
1808/// A designated initializer expression (C99 6.7.8) contains one or
1809/// more designators (which can be field designators, array
1810/// designators, or GNU array-range designators) followed by an
1811/// expression that initializes the field or element(s) that the
1812/// designators refer to. For example, given:
1813///
1814/// @code
1815/// struct point {
1816///   double x;
1817///   double y;
1818/// };
1819/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1820/// @endcode
1821///
1822/// The InitListExpr contains three DesignatedInitExprs, the first of
1823/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1824/// designators, one array designator for @c [2] followed by one field
1825/// designator for @c .y. The initalization expression will be 1.0.
1826class DesignatedInitExpr : public Expr {
1827  /// The location of the '=' or ':' prior to the actual initializer
1828  /// expression.
1829  SourceLocation EqualOrColonLoc;
1830
1831  /// Whether this designated initializer used the GNU deprecated ':'
1832  /// syntax rather than the C99 '=' syntax.
1833  bool UsesColonSyntax : 1;
1834
1835  /// The number of designators in this initializer expression.
1836  unsigned NumDesignators : 15;
1837
1838  /// The number of subexpressions of this initializer expression,
1839  /// which contains both the initializer and any additional
1840  /// expressions used by array and array-range designators.
1841  unsigned NumSubExprs : 16;
1842
1843  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1844                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1845                     unsigned NumSubExprs)
1846    : Expr(DesignatedInitExprClass, Ty),
1847      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1848      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1849
1850public:
1851  /// A field designator, e.g., ".x".
1852  struct FieldDesignator {
1853    /// Refers to the field that is being initialized. The low bit
1854    /// of this field determines whether this is actually a pointer
1855    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1856    /// initially constructed, a field designator will store an
1857    /// IdentifierInfo*. After semantic analysis has resolved that
1858    /// name, the field designator will instead store a FieldDecl*.
1859    uintptr_t NameOrField;
1860
1861    /// The location of the '.' in the designated initializer.
1862    unsigned DotLoc;
1863
1864    /// The location of the field name in the designated initializer.
1865    unsigned FieldLoc;
1866  };
1867
1868  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1869  struct ArrayOrRangeDesignator {
1870    /// Location of the first index expression within the designated
1871    /// initializer expression's list of subexpressions.
1872    unsigned Index;
1873    /// The location of the '[' starting the array range designator.
1874    unsigned LBracketLoc;
1875    /// The location of the ellipsis separating the start and end
1876    /// indices. Only valid for GNU array-range designators.
1877    unsigned EllipsisLoc;
1878    /// The location of the ']' terminating the array range designator.
1879    unsigned RBracketLoc;
1880  };
1881
1882  /// @brief Represents a single C99 designator.
1883  ///
1884  /// @todo This class is infuriatingly similar to clang::Designator,
1885  /// but minor differences (storing indices vs. storing pointers)
1886  /// keep us from reusing it. Try harder, later, to rectify these
1887  /// differences.
1888  class Designator {
1889    /// @brief The kind of designator this describes.
1890    enum {
1891      FieldDesignator,
1892      ArrayDesignator,
1893      ArrayRangeDesignator
1894    } Kind;
1895
1896    union {
1897      /// A field designator, e.g., ".x".
1898      struct FieldDesignator Field;
1899      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1900      struct ArrayOrRangeDesignator ArrayOrRange;
1901    };
1902    friend class DesignatedInitExpr;
1903
1904  public:
1905    /// @brief Initializes a field designator.
1906    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1907               SourceLocation FieldLoc)
1908      : Kind(FieldDesignator) {
1909      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1910      Field.DotLoc = DotLoc.getRawEncoding();
1911      Field.FieldLoc = FieldLoc.getRawEncoding();
1912    }
1913
1914    /// @brief Initializes an array designator.
1915    Designator(unsigned Index, SourceLocation LBracketLoc,
1916               SourceLocation RBracketLoc)
1917      : Kind(ArrayDesignator) {
1918      ArrayOrRange.Index = Index;
1919      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1920      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1921      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1922    }
1923
1924    /// @brief Initializes a GNU array-range designator.
1925    Designator(unsigned Index, SourceLocation LBracketLoc,
1926               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1927      : Kind(ArrayRangeDesignator) {
1928      ArrayOrRange.Index = Index;
1929      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1930      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1931      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1932    }
1933
1934    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1935    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1936    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1937
1938    IdentifierInfo * getFieldName();
1939
1940    FieldDecl *getField() {
1941      assert(Kind == FieldDesignator && "Only valid on a field designator");
1942      if (Field.NameOrField & 0x01)
1943        return 0;
1944      else
1945        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1946    }
1947
1948    void setField(FieldDecl *FD) {
1949      assert(Kind == FieldDesignator && "Only valid on a field designator");
1950      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1951    }
1952
1953    SourceLocation getDotLoc() const {
1954      assert(Kind == FieldDesignator && "Only valid on a field designator");
1955      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1956    }
1957
1958    SourceLocation getFieldLoc() const {
1959      assert(Kind == FieldDesignator && "Only valid on a field designator");
1960      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1961    }
1962
1963    SourceLocation getLBracketLoc() const {
1964      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1965             "Only valid on an array or array-range designator");
1966      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1967    }
1968
1969    SourceLocation getRBracketLoc() const {
1970      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1971             "Only valid on an array or array-range designator");
1972      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1973    }
1974
1975    SourceLocation getEllipsisLoc() const {
1976      assert(Kind == ArrayRangeDesignator &&
1977             "Only valid on an array-range designator");
1978      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1979    }
1980
1981    SourceLocation getStartLocation() const {
1982      if (Kind == FieldDesignator)
1983        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1984      else
1985        return getLBracketLoc();
1986    }
1987  };
1988
1989  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1990                                    unsigned NumDesignators,
1991                                    Expr **IndexExprs, unsigned NumIndexExprs,
1992                                    SourceLocation EqualOrColonLoc,
1993                                    bool UsesColonSyntax, Expr *Init);
1994
1995  /// @brief Returns the number of designators in this initializer.
1996  unsigned size() const { return NumDesignators; }
1997
1998  // Iterator access to the designators.
1999  typedef Designator* designators_iterator;
2000  designators_iterator designators_begin();
2001  designators_iterator designators_end();
2002
2003  Expr *getArrayIndex(const Designator& D);
2004  Expr *getArrayRangeStart(const Designator& D);
2005  Expr *getArrayRangeEnd(const Designator& D);
2006
2007  /// @brief Retrieve the location of the '=' that precedes the
2008  /// initializer value itself, if present.
2009  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2010
2011  /// @brief Determines whether this designated initializer used the
2012  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
2013  bool usesColonSyntax() const { return UsesColonSyntax; }
2014
2015  /// @brief Retrieve the initializer value.
2016  Expr *getInit() const {
2017    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2018  }
2019
2020  void setInit(Expr *init) {
2021    *child_begin() = init;
2022  }
2023
2024  virtual SourceRange getSourceRange() const;
2025
2026  static bool classof(const Stmt *T) {
2027    return T->getStmtClass() == DesignatedInitExprClass;
2028  }
2029  static bool classof(const DesignatedInitExpr *) { return true; }
2030
2031  // Iterators
2032  virtual child_iterator child_begin();
2033  virtual child_iterator child_end();
2034};
2035
2036/// \brief Represents an implicitly-generated value initialization of
2037/// an object of a given type.
2038///
2039/// Implicit value initializations occur within semantic initializer
2040/// list expressions (InitListExpr) as placeholders for subobject
2041/// initializations not explicitly specified by the user.
2042///
2043/// \see InitListExpr
2044class ImplicitValueInitExpr : public Expr {
2045public:
2046  explicit ImplicitValueInitExpr(QualType ty)
2047    : Expr(ImplicitValueInitExprClass, ty) { }
2048
2049  static bool classof(const Stmt *T) {
2050    return T->getStmtClass() == ImplicitValueInitExprClass;
2051  }
2052  static bool classof(const ImplicitValueInitExpr *) { return true; }
2053
2054  virtual SourceRange getSourceRange() const {
2055    return SourceRange();
2056  }
2057
2058  // Iterators
2059  virtual child_iterator child_begin();
2060  virtual child_iterator child_end();
2061};
2062
2063//===----------------------------------------------------------------------===//
2064// Clang Extensions
2065//===----------------------------------------------------------------------===//
2066
2067
2068/// ExtVectorElementExpr - This represents access to specific elements of a
2069/// vector, and may occur on the left hand side or right hand side.  For example
2070/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2071///
2072/// Note that the base may have either vector or pointer to vector type, just
2073/// like a struct field reference.
2074///
2075class ExtVectorElementExpr : public Expr {
2076  Stmt *Base;
2077  IdentifierInfo &Accessor;
2078  SourceLocation AccessorLoc;
2079public:
2080  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2081                       SourceLocation loc)
2082    : Expr(ExtVectorElementExprClass, ty),
2083      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2084
2085  const Expr *getBase() const { return cast<Expr>(Base); }
2086  Expr *getBase() { return cast<Expr>(Base); }
2087
2088  IdentifierInfo &getAccessor() const { return Accessor; }
2089
2090  /// getNumElements - Get the number of components being selected.
2091  unsigned getNumElements() const;
2092
2093  /// containsDuplicateElements - Return true if any element access is
2094  /// repeated.
2095  bool containsDuplicateElements() const;
2096
2097  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2098  /// aggregate Constant of ConstantInt(s).
2099  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2100
2101  virtual SourceRange getSourceRange() const {
2102    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2103  }
2104
2105  /// isArrow - Return true if the base expression is a pointer to vector,
2106  /// return false if the base expression is a vector.
2107  bool isArrow() const;
2108
2109  static bool classof(const Stmt *T) {
2110    return T->getStmtClass() == ExtVectorElementExprClass;
2111  }
2112  static bool classof(const ExtVectorElementExpr *) { return true; }
2113
2114  // Iterators
2115  virtual child_iterator child_begin();
2116  virtual child_iterator child_end();
2117
2118  virtual void EmitImpl(llvm::Serializer& S) const;
2119  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2120};
2121
2122
2123/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2124/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2125class BlockExpr : public Expr {
2126protected:
2127  BlockDecl *TheBlock;
2128public:
2129  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
2130            TheBlock(BD) {}
2131
2132  const BlockDecl *getBlockDecl() const { return TheBlock; }
2133  BlockDecl *getBlockDecl() { return TheBlock; }
2134
2135  // Convenience functions for probing the underlying BlockDecl.
2136  SourceLocation getCaretLocation() const;
2137  const Stmt *getBody() const;
2138  Stmt *getBody();
2139
2140  virtual SourceRange getSourceRange() const {
2141    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2142  }
2143
2144  /// getFunctionType - Return the underlying function type for this block.
2145  const FunctionType *getFunctionType() const;
2146
2147  static bool classof(const Stmt *T) {
2148    return T->getStmtClass() == BlockExprClass;
2149  }
2150  static bool classof(const BlockExpr *) { return true; }
2151
2152  // Iterators
2153  virtual child_iterator child_begin();
2154  virtual child_iterator child_end();
2155
2156  virtual void EmitImpl(llvm::Serializer& S) const;
2157  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2158};
2159
2160/// BlockDeclRefExpr - A reference to a declared variable, function,
2161/// enum, etc.
2162class BlockDeclRefExpr : public Expr {
2163  ValueDecl *D;
2164  SourceLocation Loc;
2165  bool IsByRef;
2166public:
2167  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2168       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2169
2170  ValueDecl *getDecl() { return D; }
2171  const ValueDecl *getDecl() const { return D; }
2172  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2173
2174  bool isByRef() const { return IsByRef; }
2175
2176  static bool classof(const Stmt *T) {
2177    return T->getStmtClass() == BlockDeclRefExprClass;
2178  }
2179  static bool classof(const BlockDeclRefExpr *) { return true; }
2180
2181  // Iterators
2182  virtual child_iterator child_begin();
2183  virtual child_iterator child_end();
2184
2185  virtual void EmitImpl(llvm::Serializer& S) const;
2186  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2187};
2188
2189}  // end namespace clang
2190
2191#endif
2192