Expr.h revision 70488e201ccd94d4bb1ef0868cc13cca2b7d4ff6
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include <cctype>
32
33namespace clang {
34  class ASTContext;
35  class APValue;
36  class Decl;
37  class IdentifierInfo;
38  class ParmVarDecl;
39  class NamedDecl;
40  class ValueDecl;
41  class BlockDecl;
42  class CXXBaseSpecifier;
43  class CXXOperatorCallExpr;
44  class CXXMemberCallExpr;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_NotBlockQualified,
240    MLV_ReadonlyProperty,
241    MLV_NoSetterProperty,
242    MLV_MemberFunction,
243    MLV_SubObjCPropertySetting,
244    MLV_InvalidMessageExpression,
245    MLV_ClassTemporary
246  };
247  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
248                                              SourceLocation *Loc = 0) const;
249
250  /// \brief The return type of classify(). Represents the C++0x expression
251  ///        taxonomy.
252  class Classification {
253  public:
254    /// \brief The various classification results. Most of these mean prvalue.
255    enum Kinds {
256      CL_LValue,
257      CL_XValue,
258      CL_Function, // Functions cannot be lvalues in C.
259      CL_Void, // Void cannot be an lvalue in C.
260      CL_AddressableVoid, // Void expression whose address can be taken in C.
261      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
262      CL_MemberFunction, // An expression referring to a member function
263      CL_SubObjCPropertySetting,
264      CL_ClassTemporary, // A prvalue of class type
265      CL_ObjCMessageRValue, // ObjC message is an rvalue
266      CL_PRValue // A prvalue for any other reason, of any other type
267    };
268    /// \brief The results of modification testing.
269    enum ModifiableType {
270      CM_Untested, // testModifiable was false.
271      CM_Modifiable,
272      CM_RValue, // Not modifiable because it's an rvalue
273      CM_Function, // Not modifiable because it's a function; C++ only
274      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
275      CM_NotBlockQualified, // Not captured in the closure
276      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
277      CM_ConstQualified,
278      CM_ArrayType,
279      CM_IncompleteType
280    };
281
282  private:
283    friend class Expr;
284
285    unsigned short Kind;
286    unsigned short Modifiable;
287
288    explicit Classification(Kinds k, ModifiableType m)
289      : Kind(k), Modifiable(m)
290    {}
291
292  public:
293    Classification() {}
294
295    Kinds getKind() const { return static_cast<Kinds>(Kind); }
296    ModifiableType getModifiable() const {
297      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
298      return static_cast<ModifiableType>(Modifiable);
299    }
300    bool isLValue() const { return Kind == CL_LValue; }
301    bool isXValue() const { return Kind == CL_XValue; }
302    bool isGLValue() const { return Kind <= CL_XValue; }
303    bool isPRValue() const { return Kind >= CL_Function; }
304    bool isRValue() const { return Kind >= CL_XValue; }
305    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
306
307    /// \brief Create a simple, modifiably lvalue
308    static Classification makeSimpleLValue() {
309      return Classification(CL_LValue, CM_Modifiable);
310    }
311
312  };
313  /// \brief Classify - Classify this expression according to the C++0x
314  ///        expression taxonomy.
315  ///
316  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
317  /// old lvalue vs rvalue. This function determines the type of expression this
318  /// is. There are three expression types:
319  /// - lvalues are classical lvalues as in C++03.
320  /// - prvalues are equivalent to rvalues in C++03.
321  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
322  ///   function returning an rvalue reference.
323  /// lvalues and xvalues are collectively referred to as glvalues, while
324  /// prvalues and xvalues together form rvalues.
325  Classification Classify(ASTContext &Ctx) const {
326    return ClassifyImpl(Ctx, 0);
327  }
328
329  /// \brief ClassifyModifiable - Classify this expression according to the
330  ///        C++0x expression taxonomy, and see if it is valid on the left side
331  ///        of an assignment.
332  ///
333  /// This function extends classify in that it also tests whether the
334  /// expression is modifiable (C99 6.3.2.1p1).
335  /// \param Loc A source location that might be filled with a relevant location
336  ///            if the expression is not modifiable.
337  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
338    return ClassifyImpl(Ctx, &Loc);
339  }
340
341  /// getValueKindForType - Given a formal return or parameter type,
342  /// give its value kind.
343  static ExprValueKind getValueKindForType(QualType T) {
344    if (const ReferenceType *RT = T->getAs<ReferenceType>())
345      return (isa<LValueReferenceType>(RT)
346                ? VK_LValue
347                : (RT->getPointeeType()->isFunctionType()
348                     ? VK_LValue : VK_XValue));
349    return VK_RValue;
350  }
351
352  /// getValueKind - The value kind that this expression produces.
353  ExprValueKind getValueKind() const {
354    return static_cast<ExprValueKind>(ExprBits.ValueKind);
355  }
356
357  /// getObjectKind - The object kind that this expression produces.
358  /// Object kinds are meaningful only for expressions that yield an
359  /// l-value or x-value.
360  ExprObjectKind getObjectKind() const {
361    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
362  }
363
364  bool isOrdinaryOrBitFieldObject() const {
365    ExprObjectKind OK = getObjectKind();
366    return (OK == OK_Ordinary || OK == OK_BitField);
367  }
368
369  /// setValueKind - Set the value kind produced by this expression.
370  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
371
372  /// setObjectKind - Set the object kind produced by this expression.
373  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
374
375private:
376  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
377
378public:
379
380  /// \brief If this expression refers to a bit-field, retrieve the
381  /// declaration of that bit-field.
382  FieldDecl *getBitField();
383
384  const FieldDecl *getBitField() const {
385    return const_cast<Expr*>(this)->getBitField();
386  }
387
388  /// \brief If this expression is an l-value for an Objective C
389  /// property, find the underlying property reference expression.
390  const ObjCPropertyRefExpr *getObjCProperty() const;
391
392  /// \brief Returns whether this expression refers to a vector element.
393  bool refersToVectorElement() const;
394
395  /// \brief Returns whether this expression has a placeholder type.
396  bool hasPlaceholderType() const {
397    return getType()->isPlaceholderType();
398  }
399
400  /// \brief Returns whether this expression has a specific placeholder type.
401  bool hasPlaceholderType(BuiltinType::Kind K) const {
402    assert(BuiltinType::isPlaceholderTypeKind(K));
403    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
404      return BT->getKind() == K;
405    return false;
406  }
407
408  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
409  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
410  /// but also int expressions which are produced by things like comparisons in
411  /// C.
412  bool isKnownToHaveBooleanValue() const;
413
414  /// isIntegerConstantExpr - Return true if this expression is a valid integer
415  /// constant expression, and, if so, return its value in Result.  If not a
416  /// valid i-c-e, return false and fill in Loc (if specified) with the location
417  /// of the invalid expression.
418  ///
419  /// Note: This does not perform the implicit conversions required by C++11
420  /// [expr.const]p5.
421  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
422                             SourceLocation *Loc = 0,
423                             bool isEvaluated = true) const;
424  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
425
426  /// isCXX98IntegralConstantExpr - Return true if this expression is an
427  /// integral constant expression in C++98. Can only be used in C++.
428  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
429
430  /// isCXX11ConstantExpr - Return true if this expression is a constant
431  /// expression in C++11. Can only be used in C++.
432  ///
433  /// Note: This does not perform the implicit conversions required by C++11
434  /// [expr.const]p5.
435  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
436                           SourceLocation *Loc = 0) const;
437
438  /// isPotentialConstantExpr - Return true if this function's definition
439  /// might be usable in a constant expression in C++11, if it were marked
440  /// constexpr. Return false if the function can never produce a constant
441  /// expression, along with diagnostics describing why not.
442  static bool isPotentialConstantExpr(const FunctionDecl *FD,
443                                      llvm::SmallVectorImpl<
444                                        PartialDiagnosticAt> &Diags);
445
446  /// isConstantInitializer - Returns true if this expression can be emitted to
447  /// IR as a constant, and thus can be used as a constant initializer in C.
448  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
449
450  /// EvalStatus is a struct with detailed info about an evaluation in progress.
451  struct EvalStatus {
452    /// HasSideEffects - Whether the evaluated expression has side effects.
453    /// For example, (f() && 0) can be folded, but it still has side effects.
454    bool HasSideEffects;
455
456    /// Diag - If this is non-null, it will be filled in with a stack of notes
457    /// indicating why evaluation failed (or why it failed to produce a constant
458    /// expression).
459    /// If the expression is unfoldable, the notes will indicate why it's not
460    /// foldable. If the expression is foldable, but not a constant expression,
461    /// the notes will describes why it isn't a constant expression. If the
462    /// expression *is* a constant expression, no notes will be produced.
463    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
464
465    EvalStatus() : HasSideEffects(false), Diag(0) {}
466
467    // hasSideEffects - Return true if the evaluated expression has
468    // side effects.
469    bool hasSideEffects() const {
470      return HasSideEffects;
471    }
472  };
473
474  /// EvalResult is a struct with detailed info about an evaluated expression.
475  struct EvalResult : EvalStatus {
476    /// Val - This is the value the expression can be folded to.
477    APValue Val;
478
479    // isGlobalLValue - Return true if the evaluated lvalue expression
480    // is global.
481    bool isGlobalLValue() const;
482  };
483
484  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
485  /// an rvalue using any crazy technique (that has nothing to do with language
486  /// standards) that we want to, even if the expression has side-effects. If
487  /// this function returns true, it returns the folded constant in Result. If
488  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
489  /// applied.
490  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
491
492  /// EvaluateAsBooleanCondition - Return true if this is a constant
493  /// which we we can fold and convert to a boolean condition using
494  /// any crazy technique that we want to, even if the expression has
495  /// side-effects.
496  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
497
498  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
499
500  /// EvaluateAsInt - Return true if this is a constant which we can fold and
501  /// convert to an integer, using any crazy technique that we want to.
502  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
503                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
504
505  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
506  /// constant folded without side-effects, but discard the result.
507  bool isEvaluatable(const ASTContext &Ctx) const;
508
509  /// HasSideEffects - This routine returns true for all those expressions
510  /// which must be evaluated each time and must not be optimized away
511  /// or evaluated at compile time. Example is a function call, volatile
512  /// variable read.
513  bool HasSideEffects(const ASTContext &Ctx) const;
514
515  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
516  /// integer. This must be called on an expression that constant folds to an
517  /// integer.
518  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
519
520  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
521  /// lvalue with link time known address, with no side-effects.
522  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
523
524  /// EvaluateAsInitializer - Evaluate an expression as if it were the
525  /// initializer of the given declaration. Returns true if the initializer
526  /// can be folded to a constant, and produces any relevant notes. In C++11,
527  /// notes will be produced if the expression is not a constant expression.
528  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
529                             const VarDecl *VD,
530                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
531
532  /// \brief Enumeration used to describe the kind of Null pointer constant
533  /// returned from \c isNullPointerConstant().
534  enum NullPointerConstantKind {
535    /// \brief Expression is not a Null pointer constant.
536    NPCK_NotNull = 0,
537
538    /// \brief Expression is a Null pointer constant built from a zero integer.
539    NPCK_ZeroInteger,
540
541    /// \brief Expression is a C++0X nullptr.
542    NPCK_CXX0X_nullptr,
543
544    /// \brief Expression is a GNU-style __null constant.
545    NPCK_GNUNull
546  };
547
548  /// \brief Enumeration used to describe how \c isNullPointerConstant()
549  /// should cope with value-dependent expressions.
550  enum NullPointerConstantValueDependence {
551    /// \brief Specifies that the expression should never be value-dependent.
552    NPC_NeverValueDependent = 0,
553
554    /// \brief Specifies that a value-dependent expression of integral or
555    /// dependent type should be considered a null pointer constant.
556    NPC_ValueDependentIsNull,
557
558    /// \brief Specifies that a value-dependent expression should be considered
559    /// to never be a null pointer constant.
560    NPC_ValueDependentIsNotNull
561  };
562
563  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
564  /// a Null pointer constant. The return value can further distinguish the
565  /// kind of NULL pointer constant that was detected.
566  NullPointerConstantKind isNullPointerConstant(
567      ASTContext &Ctx,
568      NullPointerConstantValueDependence NPC) const;
569
570  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
571  /// write barrier.
572  bool isOBJCGCCandidate(ASTContext &Ctx) const;
573
574  /// \brief Returns true if this expression is a bound member function.
575  bool isBoundMemberFunction(ASTContext &Ctx) const;
576
577  /// \brief Given an expression of bound-member type, find the type
578  /// of the member.  Returns null if this is an *overloaded* bound
579  /// member expression.
580  static QualType findBoundMemberType(const Expr *expr);
581
582  /// \brief Result type of CanThrow().
583  enum CanThrowResult {
584    CT_Cannot,
585    CT_Dependent,
586    CT_Can
587  };
588  /// \brief Test if this expression, if evaluated, might throw, according to
589  ///        the rules of C++ [expr.unary.noexcept].
590  CanThrowResult CanThrow(ASTContext &C) const;
591
592  /// IgnoreImpCasts - Skip past any implicit casts which might
593  /// surround this expression.  Only skips ImplicitCastExprs.
594  Expr *IgnoreImpCasts();
595
596  /// IgnoreImplicit - Skip past any implicit AST nodes which might
597  /// surround this expression.
598  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
599
600  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
601  ///  its subexpression.  If that subexpression is also a ParenExpr,
602  ///  then this method recursively returns its subexpression, and so forth.
603  ///  Otherwise, the method returns the current Expr.
604  Expr *IgnoreParens();
605
606  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
607  /// or CastExprs, returning their operand.
608  Expr *IgnoreParenCasts();
609
610  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
611  /// any ParenExpr or ImplicitCastExprs, returning their operand.
612  Expr *IgnoreParenImpCasts();
613
614  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
615  /// call to a conversion operator, return the argument.
616  Expr *IgnoreConversionOperator();
617
618  const Expr *IgnoreConversionOperator() const {
619    return const_cast<Expr*>(this)->IgnoreConversionOperator();
620  }
621
622  const Expr *IgnoreParenImpCasts() const {
623    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
624  }
625
626  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
627  /// CastExprs that represent lvalue casts, returning their operand.
628  Expr *IgnoreParenLValueCasts();
629
630  const Expr *IgnoreParenLValueCasts() const {
631    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
632  }
633
634  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
635  /// value (including ptr->int casts of the same size).  Strip off any
636  /// ParenExpr or CastExprs, returning their operand.
637  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
638
639  /// \brief Determine whether this expression is a default function argument.
640  ///
641  /// Default arguments are implicitly generated in the abstract syntax tree
642  /// by semantic analysis for function calls, object constructions, etc. in
643  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
644  /// this routine also looks through any implicit casts to determine whether
645  /// the expression is a default argument.
646  bool isDefaultArgument() const;
647
648  /// \brief Determine whether the result of this expression is a
649  /// temporary object of the given class type.
650  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
651
652  /// \brief Whether this expression is an implicit reference to 'this' in C++.
653  bool isImplicitCXXThis() const;
654
655  const Expr *IgnoreImpCasts() const {
656    return const_cast<Expr*>(this)->IgnoreImpCasts();
657  }
658  const Expr *IgnoreParens() const {
659    return const_cast<Expr*>(this)->IgnoreParens();
660  }
661  const Expr *IgnoreParenCasts() const {
662    return const_cast<Expr*>(this)->IgnoreParenCasts();
663  }
664  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
665    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
666  }
667
668  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
669  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
670
671  static bool classof(const Stmt *T) {
672    return T->getStmtClass() >= firstExprConstant &&
673           T->getStmtClass() <= lastExprConstant;
674  }
675  static bool classof(const Expr *) { return true; }
676};
677
678
679//===----------------------------------------------------------------------===//
680// Primary Expressions.
681//===----------------------------------------------------------------------===//
682
683/// OpaqueValueExpr - An expression referring to an opaque object of a
684/// fixed type and value class.  These don't correspond to concrete
685/// syntax; instead they're used to express operations (usually copy
686/// operations) on values whose source is generally obvious from
687/// context.
688class OpaqueValueExpr : public Expr {
689  friend class ASTStmtReader;
690  Expr *SourceExpr;
691  SourceLocation Loc;
692
693public:
694  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
695                  ExprObjectKind OK = OK_Ordinary)
696    : Expr(OpaqueValueExprClass, T, VK, OK,
697           T->isDependentType(), T->isDependentType(),
698           T->isInstantiationDependentType(),
699           false),
700      SourceExpr(0), Loc(Loc) {
701  }
702
703  /// Given an expression which invokes a copy constructor --- i.e.  a
704  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
705  /// find the OpaqueValueExpr that's the source of the construction.
706  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
707
708  explicit OpaqueValueExpr(EmptyShell Empty)
709    : Expr(OpaqueValueExprClass, Empty) { }
710
711  /// \brief Retrieve the location of this expression.
712  SourceLocation getLocation() const { return Loc; }
713
714  SourceRange getSourceRange() const {
715    if (SourceExpr) return SourceExpr->getSourceRange();
716    return Loc;
717  }
718  SourceLocation getExprLoc() const {
719    if (SourceExpr) return SourceExpr->getExprLoc();
720    return Loc;
721  }
722
723  child_range children() { return child_range(); }
724
725  /// The source expression of an opaque value expression is the
726  /// expression which originally generated the value.  This is
727  /// provided as a convenience for analyses that don't wish to
728  /// precisely model the execution behavior of the program.
729  ///
730  /// The source expression is typically set when building the
731  /// expression which binds the opaque value expression in the first
732  /// place.
733  Expr *getSourceExpr() const { return SourceExpr; }
734  void setSourceExpr(Expr *e) { SourceExpr = e; }
735
736  static bool classof(const Stmt *T) {
737    return T->getStmtClass() == OpaqueValueExprClass;
738  }
739  static bool classof(const OpaqueValueExpr *) { return true; }
740};
741
742/// \brief A reference to a declared variable, function, enum, etc.
743/// [C99 6.5.1p2]
744///
745/// This encodes all the information about how a declaration is referenced
746/// within an expression.
747///
748/// There are several optional constructs attached to DeclRefExprs only when
749/// they apply in order to conserve memory. These are laid out past the end of
750/// the object, and flags in the DeclRefExprBitfield track whether they exist:
751///
752///   DeclRefExprBits.HasQualifier:
753///       Specifies when this declaration reference expression has a C++
754///       nested-name-specifier.
755///   DeclRefExprBits.HasFoundDecl:
756///       Specifies when this declaration reference expression has a record of
757///       a NamedDecl (different from the referenced ValueDecl) which was found
758///       during name lookup and/or overload resolution.
759///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
760///       Specifies when this declaration reference expression has an explicit
761///       C++ template keyword and/or template argument list.
762class DeclRefExpr : public Expr {
763  /// \brief The declaration that we are referencing.
764  ValueDecl *D;
765
766  /// \brief The location of the declaration name itself.
767  SourceLocation Loc;
768
769  /// \brief Provides source/type location info for the declaration name
770  /// embedded in D.
771  DeclarationNameLoc DNLoc;
772
773  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
774  NestedNameSpecifierLoc &getInternalQualifierLoc() {
775    assert(hasQualifier());
776    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
777  }
778
779  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
780  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
781    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
782  }
783
784  /// \brief Test whether there is a distinct FoundDecl attached to the end of
785  /// this DRE.
786  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
787
788  /// \brief Helper to retrieve the optional NamedDecl through which this
789  /// reference occured.
790  NamedDecl *&getInternalFoundDecl() {
791    assert(hasFoundDecl());
792    if (hasQualifier())
793      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
794    return *reinterpret_cast<NamedDecl **>(this + 1);
795  }
796
797  /// \brief Helper to retrieve the optional NamedDecl through which this
798  /// reference occured.
799  NamedDecl *getInternalFoundDecl() const {
800    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
801  }
802
803  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
804              SourceLocation TemplateKWLoc,
805              ValueDecl *D, const DeclarationNameInfo &NameInfo,
806              NamedDecl *FoundD,
807              const TemplateArgumentListInfo *TemplateArgs,
808              QualType T, ExprValueKind VK);
809
810  /// \brief Construct an empty declaration reference expression.
811  explicit DeclRefExpr(EmptyShell Empty)
812    : Expr(DeclRefExprClass, Empty) { }
813
814  /// \brief Computes the type- and value-dependence flags for this
815  /// declaration reference expression.
816  void computeDependence();
817
818public:
819  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
820              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
821    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
822      D(D), Loc(L), DNLoc(LocInfo) {
823    DeclRefExprBits.HasQualifier = 0;
824    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
825    DeclRefExprBits.HasFoundDecl = 0;
826    DeclRefExprBits.HadMultipleCandidates = 0;
827    computeDependence();
828  }
829
830  static DeclRefExpr *Create(ASTContext &Context,
831                             NestedNameSpecifierLoc QualifierLoc,
832                             SourceLocation TemplateKWLoc,
833                             ValueDecl *D,
834                             SourceLocation NameLoc,
835                             QualType T, ExprValueKind VK,
836                             NamedDecl *FoundD = 0,
837                             const TemplateArgumentListInfo *TemplateArgs = 0);
838
839  static DeclRefExpr *Create(ASTContext &Context,
840                             NestedNameSpecifierLoc QualifierLoc,
841                             SourceLocation TemplateKWLoc,
842                             ValueDecl *D,
843                             const DeclarationNameInfo &NameInfo,
844                             QualType T, ExprValueKind VK,
845                             NamedDecl *FoundD = 0,
846                             const TemplateArgumentListInfo *TemplateArgs = 0);
847
848  /// \brief Construct an empty declaration reference expression.
849  static DeclRefExpr *CreateEmpty(ASTContext &Context,
850                                  bool HasQualifier,
851                                  bool HasFoundDecl,
852                                  bool HasTemplateKWAndArgsInfo,
853                                  unsigned NumTemplateArgs);
854
855  ValueDecl *getDecl() { return D; }
856  const ValueDecl *getDecl() const { return D; }
857  void setDecl(ValueDecl *NewD) { D = NewD; }
858
859  DeclarationNameInfo getNameInfo() const {
860    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
861  }
862
863  SourceLocation getLocation() const { return Loc; }
864  void setLocation(SourceLocation L) { Loc = L; }
865  SourceRange getSourceRange() const;
866
867  /// \brief Determine whether this declaration reference was preceded by a
868  /// C++ nested-name-specifier, e.g., \c N::foo.
869  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
870
871  /// \brief If the name was qualified, retrieves the nested-name-specifier
872  /// that precedes the name. Otherwise, returns NULL.
873  NestedNameSpecifier *getQualifier() const {
874    if (!hasQualifier())
875      return 0;
876
877    return getInternalQualifierLoc().getNestedNameSpecifier();
878  }
879
880  /// \brief If the name was qualified, retrieves the nested-name-specifier
881  /// that precedes the name, with source-location information.
882  NestedNameSpecifierLoc getQualifierLoc() const {
883    if (!hasQualifier())
884      return NestedNameSpecifierLoc();
885
886    return getInternalQualifierLoc();
887  }
888
889  /// \brief Get the NamedDecl through which this reference occured.
890  ///
891  /// This Decl may be different from the ValueDecl actually referred to in the
892  /// presence of using declarations, etc. It always returns non-NULL, and may
893  /// simple return the ValueDecl when appropriate.
894  NamedDecl *getFoundDecl() {
895    return hasFoundDecl() ? getInternalFoundDecl() : D;
896  }
897
898  /// \brief Get the NamedDecl through which this reference occurred.
899  /// See non-const variant.
900  const NamedDecl *getFoundDecl() const {
901    return hasFoundDecl() ? getInternalFoundDecl() : D;
902  }
903
904  bool hasTemplateKWAndArgsInfo() const {
905    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
906  }
907
908  /// \brief Return the optional template keyword and arguments info.
909  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
910    if (!hasTemplateKWAndArgsInfo())
911      return 0;
912
913    if (hasFoundDecl())
914      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
915        &getInternalFoundDecl() + 1);
916
917    if (hasQualifier())
918      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
919        &getInternalQualifierLoc() + 1);
920
921    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
922  }
923
924  /// \brief Return the optional template keyword and arguments info.
925  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
926    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
927  }
928
929  /// \brief Retrieve the location of the template keyword preceding
930  /// this name, if any.
931  SourceLocation getTemplateKeywordLoc() const {
932    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
933    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
934  }
935
936  /// \brief Retrieve the location of the left angle bracket starting the
937  /// explicit template argument list following the name, if any.
938  SourceLocation getLAngleLoc() const {
939    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
940    return getTemplateKWAndArgsInfo()->LAngleLoc;
941  }
942
943  /// \brief Retrieve the location of the right angle bracket ending the
944  /// explicit template argument list following the name, if any.
945  SourceLocation getRAngleLoc() const {
946    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
947    return getTemplateKWAndArgsInfo()->RAngleLoc;
948  }
949
950  /// \brief Determines whether the name in this declaration reference
951  /// was preceded by the template keyword.
952  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
953
954  /// \brief Determines whether this declaration reference was followed by an
955  /// explicit template argument list.
956  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
957
958  /// \brief Retrieve the explicit template argument list that followed the
959  /// member template name.
960  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
961    assert(hasExplicitTemplateArgs());
962    return *getTemplateKWAndArgsInfo();
963  }
964
965  /// \brief Retrieve the explicit template argument list that followed the
966  /// member template name.
967  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
968    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
969  }
970
971  /// \brief Retrieves the optional explicit template arguments.
972  /// This points to the same data as getExplicitTemplateArgs(), but
973  /// returns null if there are no explicit template arguments.
974  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
975    if (!hasExplicitTemplateArgs()) return 0;
976    return &getExplicitTemplateArgs();
977  }
978
979  /// \brief Copies the template arguments (if present) into the given
980  /// structure.
981  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
982    if (hasExplicitTemplateArgs())
983      getExplicitTemplateArgs().copyInto(List);
984  }
985
986  /// \brief Retrieve the template arguments provided as part of this
987  /// template-id.
988  const TemplateArgumentLoc *getTemplateArgs() const {
989    if (!hasExplicitTemplateArgs())
990      return 0;
991
992    return getExplicitTemplateArgs().getTemplateArgs();
993  }
994
995  /// \brief Retrieve the number of template arguments provided as part of this
996  /// template-id.
997  unsigned getNumTemplateArgs() const {
998    if (!hasExplicitTemplateArgs())
999      return 0;
1000
1001    return getExplicitTemplateArgs().NumTemplateArgs;
1002  }
1003
1004  /// \brief Returns true if this expression refers to a function that
1005  /// was resolved from an overloaded set having size greater than 1.
1006  bool hadMultipleCandidates() const {
1007    return DeclRefExprBits.HadMultipleCandidates;
1008  }
1009  /// \brief Sets the flag telling whether this expression refers to
1010  /// a function that was resolved from an overloaded set having size
1011  /// greater than 1.
1012  void setHadMultipleCandidates(bool V = true) {
1013    DeclRefExprBits.HadMultipleCandidates = V;
1014  }
1015
1016  static bool classof(const Stmt *T) {
1017    return T->getStmtClass() == DeclRefExprClass;
1018  }
1019  static bool classof(const DeclRefExpr *) { return true; }
1020
1021  // Iterators
1022  child_range children() { return child_range(); }
1023
1024  friend class ASTStmtReader;
1025  friend class ASTStmtWriter;
1026};
1027
1028/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1029class PredefinedExpr : public Expr {
1030public:
1031  enum IdentType {
1032    Func,
1033    Function,
1034    PrettyFunction,
1035    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1036    /// 'virtual' keyword is omitted for virtual member functions.
1037    PrettyFunctionNoVirtual
1038  };
1039
1040private:
1041  SourceLocation Loc;
1042  IdentType Type;
1043public:
1044  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1045    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1046           type->isDependentType(), type->isDependentType(),
1047           type->isInstantiationDependentType(),
1048           /*ContainsUnexpandedParameterPack=*/false),
1049      Loc(l), Type(IT) {}
1050
1051  /// \brief Construct an empty predefined expression.
1052  explicit PredefinedExpr(EmptyShell Empty)
1053    : Expr(PredefinedExprClass, Empty) { }
1054
1055  IdentType getIdentType() const { return Type; }
1056  void setIdentType(IdentType IT) { Type = IT; }
1057
1058  SourceLocation getLocation() const { return Loc; }
1059  void setLocation(SourceLocation L) { Loc = L; }
1060
1061  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1062
1063  SourceRange getSourceRange() const { return SourceRange(Loc); }
1064
1065  static bool classof(const Stmt *T) {
1066    return T->getStmtClass() == PredefinedExprClass;
1067  }
1068  static bool classof(const PredefinedExpr *) { return true; }
1069
1070  // Iterators
1071  child_range children() { return child_range(); }
1072};
1073
1074/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1075/// leaking memory.
1076///
1077/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1078/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1079/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1080/// the APFloat/APInt values will never get freed. APNumericStorage uses
1081/// ASTContext's allocator for memory allocation.
1082class APNumericStorage {
1083  unsigned BitWidth;
1084  union {
1085    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1086    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1087  };
1088
1089  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1090
1091  APNumericStorage(const APNumericStorage&); // do not implement
1092  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1093
1094protected:
1095  APNumericStorage() : BitWidth(0), VAL(0) { }
1096
1097  llvm::APInt getIntValue() const {
1098    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1099    if (NumWords > 1)
1100      return llvm::APInt(BitWidth, NumWords, pVal);
1101    else
1102      return llvm::APInt(BitWidth, VAL);
1103  }
1104  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1105};
1106
1107class APIntStorage : public APNumericStorage {
1108public:
1109  llvm::APInt getValue() const { return getIntValue(); }
1110  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1111};
1112
1113class APFloatStorage : public APNumericStorage {
1114public:
1115  llvm::APFloat getValue(bool IsIEEE) const {
1116    return llvm::APFloat(getIntValue(), IsIEEE);
1117  }
1118  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1119    setIntValue(C, Val.bitcastToAPInt());
1120  }
1121};
1122
1123class IntegerLiteral : public Expr {
1124  APIntStorage Num;
1125  SourceLocation Loc;
1126
1127  /// \brief Construct an empty integer literal.
1128  explicit IntegerLiteral(EmptyShell Empty)
1129    : Expr(IntegerLiteralClass, Empty) { }
1130
1131public:
1132  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1133  // or UnsignedLongLongTy
1134  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1135                 QualType type, SourceLocation l)
1136    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1137           false, false),
1138      Loc(l) {
1139    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1140    assert(V.getBitWidth() == C.getIntWidth(type) &&
1141           "Integer type is not the correct size for constant.");
1142    setValue(C, V);
1143  }
1144
1145  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1146  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1147  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1148  /// \param V - the value that the returned integer literal contains.
1149  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1150                                QualType type, SourceLocation l);
1151  /// \brief Returns a new empty integer literal.
1152  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1153
1154  llvm::APInt getValue() const { return Num.getValue(); }
1155  SourceRange getSourceRange() const { return SourceRange(Loc); }
1156
1157  /// \brief Retrieve the location of the literal.
1158  SourceLocation getLocation() const { return Loc; }
1159
1160  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1161  void setLocation(SourceLocation Location) { Loc = Location; }
1162
1163  static bool classof(const Stmt *T) {
1164    return T->getStmtClass() == IntegerLiteralClass;
1165  }
1166  static bool classof(const IntegerLiteral *) { return true; }
1167
1168  // Iterators
1169  child_range children() { return child_range(); }
1170};
1171
1172class CharacterLiteral : public Expr {
1173public:
1174  enum CharacterKind {
1175    Ascii,
1176    Wide,
1177    UTF16,
1178    UTF32
1179  };
1180
1181private:
1182  unsigned Value;
1183  SourceLocation Loc;
1184  unsigned Kind : 2;
1185public:
1186  // type should be IntTy
1187  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1188                   SourceLocation l)
1189    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1190           false, false),
1191      Value(value), Loc(l), Kind(kind) {
1192  }
1193
1194  /// \brief Construct an empty character literal.
1195  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1196
1197  SourceLocation getLocation() const { return Loc; }
1198  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1199
1200  SourceRange getSourceRange() const { return SourceRange(Loc); }
1201
1202  unsigned getValue() const { return Value; }
1203
1204  void setLocation(SourceLocation Location) { Loc = Location; }
1205  void setKind(CharacterKind kind) { Kind = kind; }
1206  void setValue(unsigned Val) { Value = Val; }
1207
1208  static bool classof(const Stmt *T) {
1209    return T->getStmtClass() == CharacterLiteralClass;
1210  }
1211  static bool classof(const CharacterLiteral *) { return true; }
1212
1213  // Iterators
1214  child_range children() { return child_range(); }
1215};
1216
1217class FloatingLiteral : public Expr {
1218  APFloatStorage Num;
1219  bool IsIEEE : 1; // Distinguishes between PPC128 and IEEE128.
1220  bool IsExact : 1;
1221  SourceLocation Loc;
1222
1223  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1224                  QualType Type, SourceLocation L)
1225    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1226           false, false),
1227      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1228             &llvm::APFloat::IEEEquad),
1229      IsExact(isexact), Loc(L) {
1230    setValue(C, V);
1231  }
1232
1233  /// \brief Construct an empty floating-point literal.
1234  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
1235    : Expr(FloatingLiteralClass, Empty),
1236      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1237             &llvm::APFloat::IEEEquad),
1238      IsExact(false) { }
1239
1240public:
1241  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1242                                 bool isexact, QualType Type, SourceLocation L);
1243  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1244
1245  llvm::APFloat getValue() const { return Num.getValue(IsIEEE); }
1246  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1247    Num.setValue(C, Val);
1248  }
1249
1250  bool isExact() const { return IsExact; }
1251  void setExact(bool E) { IsExact = E; }
1252
1253  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1254  /// double.  Note that this may cause loss of precision, but is useful for
1255  /// debugging dumps, etc.
1256  double getValueAsApproximateDouble() const;
1257
1258  SourceLocation getLocation() const { return Loc; }
1259  void setLocation(SourceLocation L) { Loc = L; }
1260
1261  SourceRange getSourceRange() const { return SourceRange(Loc); }
1262
1263  static bool classof(const Stmt *T) {
1264    return T->getStmtClass() == FloatingLiteralClass;
1265  }
1266  static bool classof(const FloatingLiteral *) { return true; }
1267
1268  // Iterators
1269  child_range children() { return child_range(); }
1270};
1271
1272/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1273/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1274/// IntegerLiteral classes.  Instances of this class always have a Complex type
1275/// whose element type matches the subexpression.
1276///
1277class ImaginaryLiteral : public Expr {
1278  Stmt *Val;
1279public:
1280  ImaginaryLiteral(Expr *val, QualType Ty)
1281    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1282           false, false),
1283      Val(val) {}
1284
1285  /// \brief Build an empty imaginary literal.
1286  explicit ImaginaryLiteral(EmptyShell Empty)
1287    : Expr(ImaginaryLiteralClass, Empty) { }
1288
1289  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1290  Expr *getSubExpr() { return cast<Expr>(Val); }
1291  void setSubExpr(Expr *E) { Val = E; }
1292
1293  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1294  static bool classof(const Stmt *T) {
1295    return T->getStmtClass() == ImaginaryLiteralClass;
1296  }
1297  static bool classof(const ImaginaryLiteral *) { return true; }
1298
1299  // Iterators
1300  child_range children() { return child_range(&Val, &Val+1); }
1301};
1302
1303/// StringLiteral - This represents a string literal expression, e.g. "foo"
1304/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1305/// is NOT null-terminated, and the length of the string is determined by
1306/// calling getByteLength().  The C type for a string is always a
1307/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1308/// not.
1309///
1310/// Note that strings in C can be formed by concatenation of multiple string
1311/// literal pptokens in translation phase #6.  This keeps track of the locations
1312/// of each of these pieces.
1313///
1314/// Strings in C can also be truncated and extended by assigning into arrays,
1315/// e.g. with constructs like:
1316///   char X[2] = "foobar";
1317/// In this case, getByteLength() will return 6, but the string literal will
1318/// have type "char[2]".
1319class StringLiteral : public Expr {
1320public:
1321  enum StringKind {
1322    Ascii,
1323    Wide,
1324    UTF8,
1325    UTF16,
1326    UTF32
1327  };
1328
1329private:
1330  friend class ASTStmtReader;
1331
1332  union {
1333    const char *asChar;
1334    const uint16_t *asUInt16;
1335    const uint32_t *asUInt32;
1336  } StrData;
1337  unsigned Length;
1338  unsigned CharByteWidth;
1339  unsigned NumConcatenated;
1340  unsigned Kind : 3;
1341  bool IsPascal : 1;
1342  SourceLocation TokLocs[1];
1343
1344  StringLiteral(QualType Ty) :
1345    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1346         false) {}
1347
1348  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1349
1350public:
1351  /// This is the "fully general" constructor that allows representation of
1352  /// strings formed from multiple concatenated tokens.
1353  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1354                               bool Pascal, QualType Ty,
1355                               const SourceLocation *Loc, unsigned NumStrs);
1356
1357  /// Simple constructor for string literals made from one token.
1358  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1359                               bool Pascal, QualType Ty,
1360                               SourceLocation Loc) {
1361    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1362  }
1363
1364  /// \brief Construct an empty string literal.
1365  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1366
1367  StringRef getString() const {
1368    assert(CharByteWidth==1
1369           && "This function is used in places that assume strings use char");
1370    return StringRef(StrData.asChar, getByteLength());
1371  }
1372
1373  /// Allow clients that need the byte representation, such as ASTWriterStmt
1374  /// ::VisitStringLiteral(), access.
1375  StringRef getBytes() const {
1376    // FIXME: StringRef may not be the right type to use as a result for this.
1377    if (CharByteWidth == 1)
1378      return StringRef(StrData.asChar, getByteLength());
1379    if (CharByteWidth == 4)
1380      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1381                       getByteLength());
1382    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1383    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1384                     getByteLength());
1385  }
1386
1387  uint32_t getCodeUnit(size_t i) const {
1388    assert(i < Length && "out of bounds access");
1389    if (CharByteWidth == 1)
1390      return static_cast<unsigned char>(StrData.asChar[i]);
1391    if (CharByteWidth == 4)
1392      return StrData.asUInt32[i];
1393    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1394    return StrData.asUInt16[i];
1395  }
1396
1397  unsigned getByteLength() const { return CharByteWidth*Length; }
1398  unsigned getLength() const { return Length; }
1399  unsigned getCharByteWidth() const { return CharByteWidth; }
1400
1401  /// \brief Sets the string data to the given string data.
1402  void setString(ASTContext &C, StringRef Str,
1403                 StringKind Kind, bool IsPascal);
1404
1405  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1406
1407
1408  bool isAscii() const { return Kind == Ascii; }
1409  bool isWide() const { return Kind == Wide; }
1410  bool isUTF8() const { return Kind == UTF8; }
1411  bool isUTF16() const { return Kind == UTF16; }
1412  bool isUTF32() const { return Kind == UTF32; }
1413  bool isPascal() const { return IsPascal; }
1414
1415  bool containsNonAsciiOrNull() const {
1416    StringRef Str = getString();
1417    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1418      if (!isascii(Str[i]) || !Str[i])
1419        return true;
1420    return false;
1421  }
1422
1423  /// getNumConcatenated - Get the number of string literal tokens that were
1424  /// concatenated in translation phase #6 to form this string literal.
1425  unsigned getNumConcatenated() const { return NumConcatenated; }
1426
1427  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1428    assert(TokNum < NumConcatenated && "Invalid tok number");
1429    return TokLocs[TokNum];
1430  }
1431  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1432    assert(TokNum < NumConcatenated && "Invalid tok number");
1433    TokLocs[TokNum] = L;
1434  }
1435
1436  /// getLocationOfByte - Return a source location that points to the specified
1437  /// byte of this string literal.
1438  ///
1439  /// Strings are amazingly complex.  They can be formed from multiple tokens
1440  /// and can have escape sequences in them in addition to the usual trigraph
1441  /// and escaped newline business.  This routine handles this complexity.
1442  ///
1443  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1444                                   const LangOptions &Features,
1445                                   const TargetInfo &Target) const;
1446
1447  typedef const SourceLocation *tokloc_iterator;
1448  tokloc_iterator tokloc_begin() const { return TokLocs; }
1449  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1450
1451  SourceRange getSourceRange() const {
1452    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1453  }
1454  static bool classof(const Stmt *T) {
1455    return T->getStmtClass() == StringLiteralClass;
1456  }
1457  static bool classof(const StringLiteral *) { return true; }
1458
1459  // Iterators
1460  child_range children() { return child_range(); }
1461};
1462
1463/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1464/// AST node is only formed if full location information is requested.
1465class ParenExpr : public Expr {
1466  SourceLocation L, R;
1467  Stmt *Val;
1468public:
1469  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1470    : Expr(ParenExprClass, val->getType(),
1471           val->getValueKind(), val->getObjectKind(),
1472           val->isTypeDependent(), val->isValueDependent(),
1473           val->isInstantiationDependent(),
1474           val->containsUnexpandedParameterPack()),
1475      L(l), R(r), Val(val) {}
1476
1477  /// \brief Construct an empty parenthesized expression.
1478  explicit ParenExpr(EmptyShell Empty)
1479    : Expr(ParenExprClass, Empty) { }
1480
1481  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1482  Expr *getSubExpr() { return cast<Expr>(Val); }
1483  void setSubExpr(Expr *E) { Val = E; }
1484
1485  SourceRange getSourceRange() const { return SourceRange(L, R); }
1486
1487  /// \brief Get the location of the left parentheses '('.
1488  SourceLocation getLParen() const { return L; }
1489  void setLParen(SourceLocation Loc) { L = Loc; }
1490
1491  /// \brief Get the location of the right parentheses ')'.
1492  SourceLocation getRParen() const { return R; }
1493  void setRParen(SourceLocation Loc) { R = Loc; }
1494
1495  static bool classof(const Stmt *T) {
1496    return T->getStmtClass() == ParenExprClass;
1497  }
1498  static bool classof(const ParenExpr *) { return true; }
1499
1500  // Iterators
1501  child_range children() { return child_range(&Val, &Val+1); }
1502};
1503
1504
1505/// UnaryOperator - This represents the unary-expression's (except sizeof and
1506/// alignof), the postinc/postdec operators from postfix-expression, and various
1507/// extensions.
1508///
1509/// Notes on various nodes:
1510///
1511/// Real/Imag - These return the real/imag part of a complex operand.  If
1512///   applied to a non-complex value, the former returns its operand and the
1513///   later returns zero in the type of the operand.
1514///
1515class UnaryOperator : public Expr {
1516public:
1517  typedef UnaryOperatorKind Opcode;
1518
1519private:
1520  unsigned Opc : 5;
1521  SourceLocation Loc;
1522  Stmt *Val;
1523public:
1524
1525  UnaryOperator(Expr *input, Opcode opc, QualType type,
1526                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1527    : Expr(UnaryOperatorClass, type, VK, OK,
1528           input->isTypeDependent() || type->isDependentType(),
1529           input->isValueDependent(),
1530           (input->isInstantiationDependent() ||
1531            type->isInstantiationDependentType()),
1532           input->containsUnexpandedParameterPack()),
1533      Opc(opc), Loc(l), Val(input) {}
1534
1535  /// \brief Build an empty unary operator.
1536  explicit UnaryOperator(EmptyShell Empty)
1537    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1538
1539  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1540  void setOpcode(Opcode O) { Opc = O; }
1541
1542  Expr *getSubExpr() const { return cast<Expr>(Val); }
1543  void setSubExpr(Expr *E) { Val = E; }
1544
1545  /// getOperatorLoc - Return the location of the operator.
1546  SourceLocation getOperatorLoc() const { return Loc; }
1547  void setOperatorLoc(SourceLocation L) { Loc = L; }
1548
1549  /// isPostfix - Return true if this is a postfix operation, like x++.
1550  static bool isPostfix(Opcode Op) {
1551    return Op == UO_PostInc || Op == UO_PostDec;
1552  }
1553
1554  /// isPrefix - Return true if this is a prefix operation, like --x.
1555  static bool isPrefix(Opcode Op) {
1556    return Op == UO_PreInc || Op == UO_PreDec;
1557  }
1558
1559  bool isPrefix() const { return isPrefix(getOpcode()); }
1560  bool isPostfix() const { return isPostfix(getOpcode()); }
1561
1562  static bool isIncrementOp(Opcode Op) {
1563    return Op == UO_PreInc || Op == UO_PostInc;
1564  }
1565  bool isIncrementOp() const {
1566    return isIncrementOp(getOpcode());
1567  }
1568
1569  static bool isDecrementOp(Opcode Op) {
1570    return Op == UO_PreDec || Op == UO_PostDec;
1571  }
1572  bool isDecrementOp() const {
1573    return isDecrementOp(getOpcode());
1574  }
1575
1576  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1577  bool isIncrementDecrementOp() const {
1578    return isIncrementDecrementOp(getOpcode());
1579  }
1580
1581  static bool isArithmeticOp(Opcode Op) {
1582    return Op >= UO_Plus && Op <= UO_LNot;
1583  }
1584  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1585
1586  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1587  /// corresponds to, e.g. "sizeof" or "[pre]++"
1588  static const char *getOpcodeStr(Opcode Op);
1589
1590  /// \brief Retrieve the unary opcode that corresponds to the given
1591  /// overloaded operator.
1592  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1593
1594  /// \brief Retrieve the overloaded operator kind that corresponds to
1595  /// the given unary opcode.
1596  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1597
1598  SourceRange getSourceRange() const {
1599    if (isPostfix())
1600      return SourceRange(Val->getLocStart(), Loc);
1601    else
1602      return SourceRange(Loc, Val->getLocEnd());
1603  }
1604  SourceLocation getExprLoc() const { return Loc; }
1605
1606  static bool classof(const Stmt *T) {
1607    return T->getStmtClass() == UnaryOperatorClass;
1608  }
1609  static bool classof(const UnaryOperator *) { return true; }
1610
1611  // Iterators
1612  child_range children() { return child_range(&Val, &Val+1); }
1613};
1614
1615/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1616/// offsetof(record-type, member-designator). For example, given:
1617/// @code
1618/// struct S {
1619///   float f;
1620///   double d;
1621/// };
1622/// struct T {
1623///   int i;
1624///   struct S s[10];
1625/// };
1626/// @endcode
1627/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1628
1629class OffsetOfExpr : public Expr {
1630public:
1631  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1632  class OffsetOfNode {
1633  public:
1634    /// \brief The kind of offsetof node we have.
1635    enum Kind {
1636      /// \brief An index into an array.
1637      Array = 0x00,
1638      /// \brief A field.
1639      Field = 0x01,
1640      /// \brief A field in a dependent type, known only by its name.
1641      Identifier = 0x02,
1642      /// \brief An implicit indirection through a C++ base class, when the
1643      /// field found is in a base class.
1644      Base = 0x03
1645    };
1646
1647  private:
1648    enum { MaskBits = 2, Mask = 0x03 };
1649
1650    /// \brief The source range that covers this part of the designator.
1651    SourceRange Range;
1652
1653    /// \brief The data describing the designator, which comes in three
1654    /// different forms, depending on the lower two bits.
1655    ///   - An unsigned index into the array of Expr*'s stored after this node
1656    ///     in memory, for [constant-expression] designators.
1657    ///   - A FieldDecl*, for references to a known field.
1658    ///   - An IdentifierInfo*, for references to a field with a given name
1659    ///     when the class type is dependent.
1660    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1661    ///     base class.
1662    uintptr_t Data;
1663
1664  public:
1665    /// \brief Create an offsetof node that refers to an array element.
1666    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1667                 SourceLocation RBracketLoc)
1668      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1669
1670    /// \brief Create an offsetof node that refers to a field.
1671    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1672                 SourceLocation NameLoc)
1673      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1674        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1675
1676    /// \brief Create an offsetof node that refers to an identifier.
1677    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1678                 SourceLocation NameLoc)
1679      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1680        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1681
1682    /// \brief Create an offsetof node that refers into a C++ base class.
1683    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1684      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1685
1686    /// \brief Determine what kind of offsetof node this is.
1687    Kind getKind() const {
1688      return static_cast<Kind>(Data & Mask);
1689    }
1690
1691    /// \brief For an array element node, returns the index into the array
1692    /// of expressions.
1693    unsigned getArrayExprIndex() const {
1694      assert(getKind() == Array);
1695      return Data >> 2;
1696    }
1697
1698    /// \brief For a field offsetof node, returns the field.
1699    FieldDecl *getField() const {
1700      assert(getKind() == Field);
1701      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1702    }
1703
1704    /// \brief For a field or identifier offsetof node, returns the name of
1705    /// the field.
1706    IdentifierInfo *getFieldName() const;
1707
1708    /// \brief For a base class node, returns the base specifier.
1709    CXXBaseSpecifier *getBase() const {
1710      assert(getKind() == Base);
1711      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1712    }
1713
1714    /// \brief Retrieve the source range that covers this offsetof node.
1715    ///
1716    /// For an array element node, the source range contains the locations of
1717    /// the square brackets. For a field or identifier node, the source range
1718    /// contains the location of the period (if there is one) and the
1719    /// identifier.
1720    SourceRange getSourceRange() const { return Range; }
1721  };
1722
1723private:
1724
1725  SourceLocation OperatorLoc, RParenLoc;
1726  // Base type;
1727  TypeSourceInfo *TSInfo;
1728  // Number of sub-components (i.e. instances of OffsetOfNode).
1729  unsigned NumComps;
1730  // Number of sub-expressions (i.e. array subscript expressions).
1731  unsigned NumExprs;
1732
1733  OffsetOfExpr(ASTContext &C, QualType type,
1734               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1735               OffsetOfNode* compsPtr, unsigned numComps,
1736               Expr** exprsPtr, unsigned numExprs,
1737               SourceLocation RParenLoc);
1738
1739  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1740    : Expr(OffsetOfExprClass, EmptyShell()),
1741      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1742
1743public:
1744
1745  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1746                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1747                              OffsetOfNode* compsPtr, unsigned numComps,
1748                              Expr** exprsPtr, unsigned numExprs,
1749                              SourceLocation RParenLoc);
1750
1751  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1752                                   unsigned NumComps, unsigned NumExprs);
1753
1754  /// getOperatorLoc - Return the location of the operator.
1755  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1756  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1757
1758  /// \brief Return the location of the right parentheses.
1759  SourceLocation getRParenLoc() const { return RParenLoc; }
1760  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1761
1762  TypeSourceInfo *getTypeSourceInfo() const {
1763    return TSInfo;
1764  }
1765  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1766    TSInfo = tsi;
1767  }
1768
1769  const OffsetOfNode &getComponent(unsigned Idx) const {
1770    assert(Idx < NumComps && "Subscript out of range");
1771    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1772  }
1773
1774  void setComponent(unsigned Idx, OffsetOfNode ON) {
1775    assert(Idx < NumComps && "Subscript out of range");
1776    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1777  }
1778
1779  unsigned getNumComponents() const {
1780    return NumComps;
1781  }
1782
1783  Expr* getIndexExpr(unsigned Idx) {
1784    assert(Idx < NumExprs && "Subscript out of range");
1785    return reinterpret_cast<Expr **>(
1786                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1787  }
1788  const Expr *getIndexExpr(unsigned Idx) const {
1789    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1790  }
1791
1792  void setIndexExpr(unsigned Idx, Expr* E) {
1793    assert(Idx < NumComps && "Subscript out of range");
1794    reinterpret_cast<Expr **>(
1795                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1796  }
1797
1798  unsigned getNumExpressions() const {
1799    return NumExprs;
1800  }
1801
1802  SourceRange getSourceRange() const {
1803    return SourceRange(OperatorLoc, RParenLoc);
1804  }
1805
1806  static bool classof(const Stmt *T) {
1807    return T->getStmtClass() == OffsetOfExprClass;
1808  }
1809
1810  static bool classof(const OffsetOfExpr *) { return true; }
1811
1812  // Iterators
1813  child_range children() {
1814    Stmt **begin =
1815      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1816                               + NumComps);
1817    return child_range(begin, begin + NumExprs);
1818  }
1819};
1820
1821/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1822/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1823/// vec_step (OpenCL 1.1 6.11.12).
1824class UnaryExprOrTypeTraitExpr : public Expr {
1825  unsigned Kind : 2;
1826  bool isType : 1;    // true if operand is a type, false if an expression
1827  union {
1828    TypeSourceInfo *Ty;
1829    Stmt *Ex;
1830  } Argument;
1831  SourceLocation OpLoc, RParenLoc;
1832
1833public:
1834  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1835                           QualType resultType, SourceLocation op,
1836                           SourceLocation rp) :
1837      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1838           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1839           // Value-dependent if the argument is type-dependent.
1840           TInfo->getType()->isDependentType(),
1841           TInfo->getType()->isInstantiationDependentType(),
1842           TInfo->getType()->containsUnexpandedParameterPack()),
1843      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1844    Argument.Ty = TInfo;
1845  }
1846
1847  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1848                           QualType resultType, SourceLocation op,
1849                           SourceLocation rp) :
1850      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1851           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1852           // Value-dependent if the argument is type-dependent.
1853           E->isTypeDependent(),
1854           E->isInstantiationDependent(),
1855           E->containsUnexpandedParameterPack()),
1856      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1857    Argument.Ex = E;
1858  }
1859
1860  /// \brief Construct an empty sizeof/alignof expression.
1861  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1862    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1863
1864  UnaryExprOrTypeTrait getKind() const {
1865    return static_cast<UnaryExprOrTypeTrait>(Kind);
1866  }
1867  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1868
1869  bool isArgumentType() const { return isType; }
1870  QualType getArgumentType() const {
1871    return getArgumentTypeInfo()->getType();
1872  }
1873  TypeSourceInfo *getArgumentTypeInfo() const {
1874    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1875    return Argument.Ty;
1876  }
1877  Expr *getArgumentExpr() {
1878    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1879    return static_cast<Expr*>(Argument.Ex);
1880  }
1881  const Expr *getArgumentExpr() const {
1882    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1883  }
1884
1885  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1886  void setArgument(TypeSourceInfo *TInfo) {
1887    Argument.Ty = TInfo;
1888    isType = true;
1889  }
1890
1891  /// Gets the argument type, or the type of the argument expression, whichever
1892  /// is appropriate.
1893  QualType getTypeOfArgument() const {
1894    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1895  }
1896
1897  SourceLocation getOperatorLoc() const { return OpLoc; }
1898  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1899
1900  SourceLocation getRParenLoc() const { return RParenLoc; }
1901  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1902
1903  SourceRange getSourceRange() const {
1904    return SourceRange(OpLoc, RParenLoc);
1905  }
1906
1907  static bool classof(const Stmt *T) {
1908    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1909  }
1910  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1911
1912  // Iterators
1913  child_range children();
1914};
1915
1916//===----------------------------------------------------------------------===//
1917// Postfix Operators.
1918//===----------------------------------------------------------------------===//
1919
1920/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1921class ArraySubscriptExpr : public Expr {
1922  enum { LHS, RHS, END_EXPR=2 };
1923  Stmt* SubExprs[END_EXPR];
1924  SourceLocation RBracketLoc;
1925public:
1926  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1927                     ExprValueKind VK, ExprObjectKind OK,
1928                     SourceLocation rbracketloc)
1929  : Expr(ArraySubscriptExprClass, t, VK, OK,
1930         lhs->isTypeDependent() || rhs->isTypeDependent(),
1931         lhs->isValueDependent() || rhs->isValueDependent(),
1932         (lhs->isInstantiationDependent() ||
1933          rhs->isInstantiationDependent()),
1934         (lhs->containsUnexpandedParameterPack() ||
1935          rhs->containsUnexpandedParameterPack())),
1936    RBracketLoc(rbracketloc) {
1937    SubExprs[LHS] = lhs;
1938    SubExprs[RHS] = rhs;
1939  }
1940
1941  /// \brief Create an empty array subscript expression.
1942  explicit ArraySubscriptExpr(EmptyShell Shell)
1943    : Expr(ArraySubscriptExprClass, Shell) { }
1944
1945  /// An array access can be written A[4] or 4[A] (both are equivalent).
1946  /// - getBase() and getIdx() always present the normalized view: A[4].
1947  ///    In this case getBase() returns "A" and getIdx() returns "4".
1948  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1949  ///    4[A] getLHS() returns "4".
1950  /// Note: Because vector element access is also written A[4] we must
1951  /// predicate the format conversion in getBase and getIdx only on the
1952  /// the type of the RHS, as it is possible for the LHS to be a vector of
1953  /// integer type
1954  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1955  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1956  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1957
1958  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1959  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1960  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1961
1962  Expr *getBase() {
1963    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1964  }
1965
1966  const Expr *getBase() const {
1967    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1968  }
1969
1970  Expr *getIdx() {
1971    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1972  }
1973
1974  const Expr *getIdx() const {
1975    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1976  }
1977
1978  SourceRange getSourceRange() const {
1979    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1980  }
1981
1982  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1983  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1984
1985  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1986
1987  static bool classof(const Stmt *T) {
1988    return T->getStmtClass() == ArraySubscriptExprClass;
1989  }
1990  static bool classof(const ArraySubscriptExpr *) { return true; }
1991
1992  // Iterators
1993  child_range children() {
1994    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1995  }
1996};
1997
1998
1999/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2000/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2001/// while its subclasses may represent alternative syntax that (semantically)
2002/// results in a function call. For example, CXXOperatorCallExpr is
2003/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2004/// "str1 + str2" to resolve to a function call.
2005class CallExpr : public Expr {
2006  enum { FN=0, PREARGS_START=1 };
2007  Stmt **SubExprs;
2008  unsigned NumArgs;
2009  SourceLocation RParenLoc;
2010
2011protected:
2012  // These versions of the constructor are for derived classes.
2013  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2014           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2015           SourceLocation rparenloc);
2016  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2017
2018  Stmt *getPreArg(unsigned i) {
2019    assert(i < getNumPreArgs() && "Prearg access out of range!");
2020    return SubExprs[PREARGS_START+i];
2021  }
2022  const Stmt *getPreArg(unsigned i) const {
2023    assert(i < getNumPreArgs() && "Prearg access out of range!");
2024    return SubExprs[PREARGS_START+i];
2025  }
2026  void setPreArg(unsigned i, Stmt *PreArg) {
2027    assert(i < getNumPreArgs() && "Prearg access out of range!");
2028    SubExprs[PREARGS_START+i] = PreArg;
2029  }
2030
2031  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2032
2033public:
2034  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2035           ExprValueKind VK, SourceLocation rparenloc);
2036
2037  /// \brief Build an empty call expression.
2038  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2039
2040  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2041  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2042  void setCallee(Expr *F) { SubExprs[FN] = F; }
2043
2044  Decl *getCalleeDecl();
2045  const Decl *getCalleeDecl() const {
2046    return const_cast<CallExpr*>(this)->getCalleeDecl();
2047  }
2048
2049  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2050  FunctionDecl *getDirectCallee();
2051  const FunctionDecl *getDirectCallee() const {
2052    return const_cast<CallExpr*>(this)->getDirectCallee();
2053  }
2054
2055  /// getNumArgs - Return the number of actual arguments to this call.
2056  ///
2057  unsigned getNumArgs() const { return NumArgs; }
2058
2059  /// \brief Retrieve the call arguments.
2060  Expr **getArgs() {
2061    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2062  }
2063  const Expr *const *getArgs() const {
2064    return const_cast<CallExpr*>(this)->getArgs();
2065  }
2066
2067  /// getArg - Return the specified argument.
2068  Expr *getArg(unsigned Arg) {
2069    assert(Arg < NumArgs && "Arg access out of range!");
2070    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2071  }
2072  const Expr *getArg(unsigned Arg) const {
2073    assert(Arg < NumArgs && "Arg access out of range!");
2074    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2075  }
2076
2077  /// setArg - Set the specified argument.
2078  void setArg(unsigned Arg, Expr *ArgExpr) {
2079    assert(Arg < NumArgs && "Arg access out of range!");
2080    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2081  }
2082
2083  /// setNumArgs - This changes the number of arguments present in this call.
2084  /// Any orphaned expressions are deleted by this, and any new operands are set
2085  /// to null.
2086  void setNumArgs(ASTContext& C, unsigned NumArgs);
2087
2088  typedef ExprIterator arg_iterator;
2089  typedef ConstExprIterator const_arg_iterator;
2090
2091  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2092  arg_iterator arg_end() {
2093    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2094  }
2095  const_arg_iterator arg_begin() const {
2096    return SubExprs+PREARGS_START+getNumPreArgs();
2097  }
2098  const_arg_iterator arg_end() const {
2099    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2100  }
2101
2102  /// getNumCommas - Return the number of commas that must have been present in
2103  /// this function call.
2104  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2105
2106  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2107  /// not, return 0.
2108  unsigned isBuiltinCall() const;
2109
2110  /// getCallReturnType - Get the return type of the call expr. This is not
2111  /// always the type of the expr itself, if the return type is a reference
2112  /// type.
2113  QualType getCallReturnType() const;
2114
2115  SourceLocation getRParenLoc() const { return RParenLoc; }
2116  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2117
2118  SourceRange getSourceRange() const;
2119
2120  static bool classof(const Stmt *T) {
2121    return T->getStmtClass() >= firstCallExprConstant &&
2122           T->getStmtClass() <= lastCallExprConstant;
2123  }
2124  static bool classof(const CallExpr *) { return true; }
2125
2126  // Iterators
2127  child_range children() {
2128    return child_range(&SubExprs[0],
2129                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2130  }
2131};
2132
2133/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2134///
2135class MemberExpr : public Expr {
2136  /// Extra data stored in some member expressions.
2137  struct MemberNameQualifier {
2138    /// \brief The nested-name-specifier that qualifies the name, including
2139    /// source-location information.
2140    NestedNameSpecifierLoc QualifierLoc;
2141
2142    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2143    /// name qualifiers.
2144    DeclAccessPair FoundDecl;
2145  };
2146
2147  /// Base - the expression for the base pointer or structure references.  In
2148  /// X.F, this is "X".
2149  Stmt *Base;
2150
2151  /// MemberDecl - This is the decl being referenced by the field/member name.
2152  /// In X.F, this is the decl referenced by F.
2153  ValueDecl *MemberDecl;
2154
2155  /// MemberLoc - This is the location of the member name.
2156  SourceLocation MemberLoc;
2157
2158  /// MemberDNLoc - Provides source/type location info for the
2159  /// declaration name embedded in MemberDecl.
2160  DeclarationNameLoc MemberDNLoc;
2161
2162  /// IsArrow - True if this is "X->F", false if this is "X.F".
2163  bool IsArrow : 1;
2164
2165  /// \brief True if this member expression used a nested-name-specifier to
2166  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2167  /// declaration.  When true, a MemberNameQualifier
2168  /// structure is allocated immediately after the MemberExpr.
2169  bool HasQualifierOrFoundDecl : 1;
2170
2171  /// \brief True if this member expression specified a template keyword
2172  /// and/or a template argument list explicitly, e.g., x->f<int>,
2173  /// x->template f, x->template f<int>.
2174  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2175  /// TemplateArguments (if any) are allocated immediately after
2176  /// the MemberExpr or, if the member expression also has a qualifier,
2177  /// after the MemberNameQualifier structure.
2178  bool HasTemplateKWAndArgsInfo : 1;
2179
2180  /// \brief True if this member expression refers to a method that
2181  /// was resolved from an overloaded set having size greater than 1.
2182  bool HadMultipleCandidates : 1;
2183
2184  /// \brief Retrieve the qualifier that preceded the member name, if any.
2185  MemberNameQualifier *getMemberQualifier() {
2186    assert(HasQualifierOrFoundDecl);
2187    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2188  }
2189
2190  /// \brief Retrieve the qualifier that preceded the member name, if any.
2191  const MemberNameQualifier *getMemberQualifier() const {
2192    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2193  }
2194
2195public:
2196  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2197             const DeclarationNameInfo &NameInfo, QualType ty,
2198             ExprValueKind VK, ExprObjectKind OK)
2199    : Expr(MemberExprClass, ty, VK, OK,
2200           base->isTypeDependent(),
2201           base->isValueDependent(),
2202           base->isInstantiationDependent(),
2203           base->containsUnexpandedParameterPack()),
2204      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2205      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2206      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2207      HadMultipleCandidates(false) {
2208    assert(memberdecl->getDeclName() == NameInfo.getName());
2209  }
2210
2211  // NOTE: this constructor should be used only when it is known that
2212  // the member name can not provide additional syntactic info
2213  // (i.e., source locations for C++ operator names or type source info
2214  // for constructors, destructors and conversion operators).
2215  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2216             SourceLocation l, QualType ty,
2217             ExprValueKind VK, ExprObjectKind OK)
2218    : Expr(MemberExprClass, ty, VK, OK,
2219           base->isTypeDependent(), base->isValueDependent(),
2220           base->isInstantiationDependent(),
2221           base->containsUnexpandedParameterPack()),
2222      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2223      IsArrow(isarrow),
2224      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2225      HadMultipleCandidates(false) {}
2226
2227  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2228                            NestedNameSpecifierLoc QualifierLoc,
2229                            SourceLocation TemplateKWLoc,
2230                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2231                            DeclarationNameInfo MemberNameInfo,
2232                            const TemplateArgumentListInfo *targs,
2233                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2234
2235  void setBase(Expr *E) { Base = E; }
2236  Expr *getBase() const { return cast<Expr>(Base); }
2237
2238  /// \brief Retrieve the member declaration to which this expression refers.
2239  ///
2240  /// The returned declaration will either be a FieldDecl or (in C++)
2241  /// a CXXMethodDecl.
2242  ValueDecl *getMemberDecl() const { return MemberDecl; }
2243  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2244
2245  /// \brief Retrieves the declaration found by lookup.
2246  DeclAccessPair getFoundDecl() const {
2247    if (!HasQualifierOrFoundDecl)
2248      return DeclAccessPair::make(getMemberDecl(),
2249                                  getMemberDecl()->getAccess());
2250    return getMemberQualifier()->FoundDecl;
2251  }
2252
2253  /// \brief Determines whether this member expression actually had
2254  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2255  /// x->Base::foo.
2256  bool hasQualifier() const { return getQualifier() != 0; }
2257
2258  /// \brief If the member name was qualified, retrieves the
2259  /// nested-name-specifier that precedes the member name. Otherwise, returns
2260  /// NULL.
2261  NestedNameSpecifier *getQualifier() const {
2262    if (!HasQualifierOrFoundDecl)
2263      return 0;
2264
2265    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2266  }
2267
2268  /// \brief If the member name was qualified, retrieves the
2269  /// nested-name-specifier that precedes the member name, with source-location
2270  /// information.
2271  NestedNameSpecifierLoc getQualifierLoc() const {
2272    if (!hasQualifier())
2273      return NestedNameSpecifierLoc();
2274
2275    return getMemberQualifier()->QualifierLoc;
2276  }
2277
2278  /// \brief Return the optional template keyword and arguments info.
2279  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2280    if (!HasTemplateKWAndArgsInfo)
2281      return 0;
2282
2283    if (!HasQualifierOrFoundDecl)
2284      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2285
2286    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2287                                                      getMemberQualifier() + 1);
2288  }
2289
2290  /// \brief Return the optional template keyword and arguments info.
2291  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2292    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2293  }
2294
2295  /// \brief Retrieve the location of the template keyword preceding
2296  /// the member name, if any.
2297  SourceLocation getTemplateKeywordLoc() const {
2298    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2299    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2300  }
2301
2302  /// \brief Retrieve the location of the left angle bracket starting the
2303  /// explicit template argument list following the member name, if any.
2304  SourceLocation getLAngleLoc() const {
2305    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2306    return getTemplateKWAndArgsInfo()->LAngleLoc;
2307  }
2308
2309  /// \brief Retrieve the location of the right angle bracket ending the
2310  /// explicit template argument list following the member name, if any.
2311  SourceLocation getRAngleLoc() const {
2312    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2313    return getTemplateKWAndArgsInfo()->RAngleLoc;
2314  }
2315
2316  /// Determines whether the member name was preceded by the template keyword.
2317  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2318
2319  /// \brief Determines whether the member name was followed by an
2320  /// explicit template argument list.
2321  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2322
2323  /// \brief Copies the template arguments (if present) into the given
2324  /// structure.
2325  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2326    if (hasExplicitTemplateArgs())
2327      getExplicitTemplateArgs().copyInto(List);
2328  }
2329
2330  /// \brief Retrieve the explicit template argument list that
2331  /// follow the member template name.  This must only be called on an
2332  /// expression with explicit template arguments.
2333  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2334    assert(hasExplicitTemplateArgs());
2335    return *getTemplateKWAndArgsInfo();
2336  }
2337
2338  /// \brief Retrieve the explicit template argument list that
2339  /// followed the member template name.  This must only be called on
2340  /// an expression with explicit template arguments.
2341  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2342    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2343  }
2344
2345  /// \brief Retrieves the optional explicit template arguments.
2346  /// This points to the same data as getExplicitTemplateArgs(), but
2347  /// returns null if there are no explicit template arguments.
2348  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2349    if (!hasExplicitTemplateArgs()) return 0;
2350    return &getExplicitTemplateArgs();
2351  }
2352
2353  /// \brief Retrieve the template arguments provided as part of this
2354  /// template-id.
2355  const TemplateArgumentLoc *getTemplateArgs() const {
2356    if (!hasExplicitTemplateArgs())
2357      return 0;
2358
2359    return getExplicitTemplateArgs().getTemplateArgs();
2360  }
2361
2362  /// \brief Retrieve the number of template arguments provided as part of this
2363  /// template-id.
2364  unsigned getNumTemplateArgs() const {
2365    if (!hasExplicitTemplateArgs())
2366      return 0;
2367
2368    return getExplicitTemplateArgs().NumTemplateArgs;
2369  }
2370
2371  /// \brief Retrieve the member declaration name info.
2372  DeclarationNameInfo getMemberNameInfo() const {
2373    return DeclarationNameInfo(MemberDecl->getDeclName(),
2374                               MemberLoc, MemberDNLoc);
2375  }
2376
2377  bool isArrow() const { return IsArrow; }
2378  void setArrow(bool A) { IsArrow = A; }
2379
2380  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2381  /// location of 'F'.
2382  SourceLocation getMemberLoc() const { return MemberLoc; }
2383  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2384
2385  SourceRange getSourceRange() const;
2386
2387  SourceLocation getExprLoc() const { return MemberLoc; }
2388
2389  /// \brief Determine whether the base of this explicit is implicit.
2390  bool isImplicitAccess() const {
2391    return getBase() && getBase()->isImplicitCXXThis();
2392  }
2393
2394  /// \brief Returns true if this member expression refers to a method that
2395  /// was resolved from an overloaded set having size greater than 1.
2396  bool hadMultipleCandidates() const {
2397    return HadMultipleCandidates;
2398  }
2399  /// \brief Sets the flag telling whether this expression refers to
2400  /// a method that was resolved from an overloaded set having size
2401  /// greater than 1.
2402  void setHadMultipleCandidates(bool V = true) {
2403    HadMultipleCandidates = V;
2404  }
2405
2406  static bool classof(const Stmt *T) {
2407    return T->getStmtClass() == MemberExprClass;
2408  }
2409  static bool classof(const MemberExpr *) { return true; }
2410
2411  // Iterators
2412  child_range children() { return child_range(&Base, &Base+1); }
2413
2414  friend class ASTReader;
2415  friend class ASTStmtWriter;
2416};
2417
2418/// CompoundLiteralExpr - [C99 6.5.2.5]
2419///
2420class CompoundLiteralExpr : public Expr {
2421  /// LParenLoc - If non-null, this is the location of the left paren in a
2422  /// compound literal like "(int){4}".  This can be null if this is a
2423  /// synthesized compound expression.
2424  SourceLocation LParenLoc;
2425
2426  /// The type as written.  This can be an incomplete array type, in
2427  /// which case the actual expression type will be different.
2428  TypeSourceInfo *TInfo;
2429  Stmt *Init;
2430  bool FileScope;
2431public:
2432  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2433                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2434    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2435           tinfo->getType()->isDependentType(),
2436           init->isValueDependent(),
2437           (init->isInstantiationDependent() ||
2438            tinfo->getType()->isInstantiationDependentType()),
2439           init->containsUnexpandedParameterPack()),
2440      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2441
2442  /// \brief Construct an empty compound literal.
2443  explicit CompoundLiteralExpr(EmptyShell Empty)
2444    : Expr(CompoundLiteralExprClass, Empty) { }
2445
2446  const Expr *getInitializer() const { return cast<Expr>(Init); }
2447  Expr *getInitializer() { return cast<Expr>(Init); }
2448  void setInitializer(Expr *E) { Init = E; }
2449
2450  bool isFileScope() const { return FileScope; }
2451  void setFileScope(bool FS) { FileScope = FS; }
2452
2453  SourceLocation getLParenLoc() const { return LParenLoc; }
2454  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2455
2456  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2457  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2458
2459  SourceRange getSourceRange() const {
2460    // FIXME: Init should never be null.
2461    if (!Init)
2462      return SourceRange();
2463    if (LParenLoc.isInvalid())
2464      return Init->getSourceRange();
2465    return SourceRange(LParenLoc, Init->getLocEnd());
2466  }
2467
2468  static bool classof(const Stmt *T) {
2469    return T->getStmtClass() == CompoundLiteralExprClass;
2470  }
2471  static bool classof(const CompoundLiteralExpr *) { return true; }
2472
2473  // Iterators
2474  child_range children() { return child_range(&Init, &Init+1); }
2475};
2476
2477/// CastExpr - Base class for type casts, including both implicit
2478/// casts (ImplicitCastExpr) and explicit casts that have some
2479/// representation in the source code (ExplicitCastExpr's derived
2480/// classes).
2481class CastExpr : public Expr {
2482public:
2483  typedef clang::CastKind CastKind;
2484
2485private:
2486  Stmt *Op;
2487
2488  void CheckCastConsistency() const;
2489
2490  const CXXBaseSpecifier * const *path_buffer() const {
2491    return const_cast<CastExpr*>(this)->path_buffer();
2492  }
2493  CXXBaseSpecifier **path_buffer();
2494
2495  void setBasePathSize(unsigned basePathSize) {
2496    CastExprBits.BasePathSize = basePathSize;
2497    assert(CastExprBits.BasePathSize == basePathSize &&
2498           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2499  }
2500
2501protected:
2502  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2503           const CastKind kind, Expr *op, unsigned BasePathSize) :
2504    Expr(SC, ty, VK, OK_Ordinary,
2505         // Cast expressions are type-dependent if the type is
2506         // dependent (C++ [temp.dep.expr]p3).
2507         ty->isDependentType(),
2508         // Cast expressions are value-dependent if the type is
2509         // dependent or if the subexpression is value-dependent.
2510         ty->isDependentType() || (op && op->isValueDependent()),
2511         (ty->isInstantiationDependentType() ||
2512          (op && op->isInstantiationDependent())),
2513         (ty->containsUnexpandedParameterPack() ||
2514          op->containsUnexpandedParameterPack())),
2515    Op(op) {
2516    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2517    CastExprBits.Kind = kind;
2518    setBasePathSize(BasePathSize);
2519#ifndef NDEBUG
2520    CheckCastConsistency();
2521#endif
2522  }
2523
2524  /// \brief Construct an empty cast.
2525  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2526    : Expr(SC, Empty) {
2527    setBasePathSize(BasePathSize);
2528  }
2529
2530public:
2531  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2532  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2533  const char *getCastKindName() const;
2534
2535  Expr *getSubExpr() { return cast<Expr>(Op); }
2536  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2537  void setSubExpr(Expr *E) { Op = E; }
2538
2539  /// \brief Retrieve the cast subexpression as it was written in the source
2540  /// code, looking through any implicit casts or other intermediate nodes
2541  /// introduced by semantic analysis.
2542  Expr *getSubExprAsWritten();
2543  const Expr *getSubExprAsWritten() const {
2544    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2545  }
2546
2547  typedef CXXBaseSpecifier **path_iterator;
2548  typedef const CXXBaseSpecifier * const *path_const_iterator;
2549  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2550  unsigned path_size() const { return CastExprBits.BasePathSize; }
2551  path_iterator path_begin() { return path_buffer(); }
2552  path_iterator path_end() { return path_buffer() + path_size(); }
2553  path_const_iterator path_begin() const { return path_buffer(); }
2554  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2555
2556  void setCastPath(const CXXCastPath &Path);
2557
2558  static bool classof(const Stmt *T) {
2559    return T->getStmtClass() >= firstCastExprConstant &&
2560           T->getStmtClass() <= lastCastExprConstant;
2561  }
2562  static bool classof(const CastExpr *) { return true; }
2563
2564  // Iterators
2565  child_range children() { return child_range(&Op, &Op+1); }
2566};
2567
2568/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2569/// conversions, which have no direct representation in the original
2570/// source code. For example: converting T[]->T*, void f()->void
2571/// (*f)(), float->double, short->int, etc.
2572///
2573/// In C, implicit casts always produce rvalues. However, in C++, an
2574/// implicit cast whose result is being bound to a reference will be
2575/// an lvalue or xvalue. For example:
2576///
2577/// @code
2578/// class Base { };
2579/// class Derived : public Base { };
2580/// Derived &&ref();
2581/// void f(Derived d) {
2582///   Base& b = d; // initializer is an ImplicitCastExpr
2583///                // to an lvalue of type Base
2584///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2585///                     // to an xvalue of type Base
2586/// }
2587/// @endcode
2588class ImplicitCastExpr : public CastExpr {
2589private:
2590  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2591                   unsigned BasePathLength, ExprValueKind VK)
2592    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2593  }
2594
2595  /// \brief Construct an empty implicit cast.
2596  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2597    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2598
2599public:
2600  enum OnStack_t { OnStack };
2601  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2602                   ExprValueKind VK)
2603    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2604  }
2605
2606  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2607                                  CastKind Kind, Expr *Operand,
2608                                  const CXXCastPath *BasePath,
2609                                  ExprValueKind Cat);
2610
2611  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2612
2613  SourceRange getSourceRange() const {
2614    return getSubExpr()->getSourceRange();
2615  }
2616
2617  static bool classof(const Stmt *T) {
2618    return T->getStmtClass() == ImplicitCastExprClass;
2619  }
2620  static bool classof(const ImplicitCastExpr *) { return true; }
2621};
2622
2623inline Expr *Expr::IgnoreImpCasts() {
2624  Expr *e = this;
2625  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2626    e = ice->getSubExpr();
2627  return e;
2628}
2629
2630/// ExplicitCastExpr - An explicit cast written in the source
2631/// code.
2632///
2633/// This class is effectively an abstract class, because it provides
2634/// the basic representation of an explicitly-written cast without
2635/// specifying which kind of cast (C cast, functional cast, static
2636/// cast, etc.) was written; specific derived classes represent the
2637/// particular style of cast and its location information.
2638///
2639/// Unlike implicit casts, explicit cast nodes have two different
2640/// types: the type that was written into the source code, and the
2641/// actual type of the expression as determined by semantic
2642/// analysis. These types may differ slightly. For example, in C++ one
2643/// can cast to a reference type, which indicates that the resulting
2644/// expression will be an lvalue or xvalue. The reference type, however,
2645/// will not be used as the type of the expression.
2646class ExplicitCastExpr : public CastExpr {
2647  /// TInfo - Source type info for the (written) type
2648  /// this expression is casting to.
2649  TypeSourceInfo *TInfo;
2650
2651protected:
2652  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2653                   CastKind kind, Expr *op, unsigned PathSize,
2654                   TypeSourceInfo *writtenTy)
2655    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2656
2657  /// \brief Construct an empty explicit cast.
2658  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2659    : CastExpr(SC, Shell, PathSize) { }
2660
2661public:
2662  /// getTypeInfoAsWritten - Returns the type source info for the type
2663  /// that this expression is casting to.
2664  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2665  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2666
2667  /// getTypeAsWritten - Returns the type that this expression is
2668  /// casting to, as written in the source code.
2669  QualType getTypeAsWritten() const { return TInfo->getType(); }
2670
2671  static bool classof(const Stmt *T) {
2672     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2673            T->getStmtClass() <= lastExplicitCastExprConstant;
2674  }
2675  static bool classof(const ExplicitCastExpr *) { return true; }
2676};
2677
2678/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2679/// cast in C++ (C++ [expr.cast]), which uses the syntax
2680/// (Type)expr. For example: @c (int)f.
2681class CStyleCastExpr : public ExplicitCastExpr {
2682  SourceLocation LPLoc; // the location of the left paren
2683  SourceLocation RPLoc; // the location of the right paren
2684
2685  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2686                 unsigned PathSize, TypeSourceInfo *writtenTy,
2687                 SourceLocation l, SourceLocation r)
2688    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2689                       writtenTy), LPLoc(l), RPLoc(r) {}
2690
2691  /// \brief Construct an empty C-style explicit cast.
2692  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2693    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2694
2695public:
2696  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2697                                ExprValueKind VK, CastKind K,
2698                                Expr *Op, const CXXCastPath *BasePath,
2699                                TypeSourceInfo *WrittenTy, SourceLocation L,
2700                                SourceLocation R);
2701
2702  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2703
2704  SourceLocation getLParenLoc() const { return LPLoc; }
2705  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2706
2707  SourceLocation getRParenLoc() const { return RPLoc; }
2708  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2709
2710  SourceRange getSourceRange() const {
2711    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2712  }
2713  static bool classof(const Stmt *T) {
2714    return T->getStmtClass() == CStyleCastExprClass;
2715  }
2716  static bool classof(const CStyleCastExpr *) { return true; }
2717};
2718
2719/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2720///
2721/// This expression node kind describes a builtin binary operation,
2722/// such as "x + y" for integer values "x" and "y". The operands will
2723/// already have been converted to appropriate types (e.g., by
2724/// performing promotions or conversions).
2725///
2726/// In C++, where operators may be overloaded, a different kind of
2727/// expression node (CXXOperatorCallExpr) is used to express the
2728/// invocation of an overloaded operator with operator syntax. Within
2729/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2730/// used to store an expression "x + y" depends on the subexpressions
2731/// for x and y. If neither x or y is type-dependent, and the "+"
2732/// operator resolves to a built-in operation, BinaryOperator will be
2733/// used to express the computation (x and y may still be
2734/// value-dependent). If either x or y is type-dependent, or if the
2735/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2736/// be used to express the computation.
2737class BinaryOperator : public Expr {
2738public:
2739  typedef BinaryOperatorKind Opcode;
2740
2741private:
2742  unsigned Opc : 6;
2743  SourceLocation OpLoc;
2744
2745  enum { LHS, RHS, END_EXPR };
2746  Stmt* SubExprs[END_EXPR];
2747public:
2748
2749  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2750                 ExprValueKind VK, ExprObjectKind OK,
2751                 SourceLocation opLoc)
2752    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2753           lhs->isTypeDependent() || rhs->isTypeDependent(),
2754           lhs->isValueDependent() || rhs->isValueDependent(),
2755           (lhs->isInstantiationDependent() ||
2756            rhs->isInstantiationDependent()),
2757           (lhs->containsUnexpandedParameterPack() ||
2758            rhs->containsUnexpandedParameterPack())),
2759      Opc(opc), OpLoc(opLoc) {
2760    SubExprs[LHS] = lhs;
2761    SubExprs[RHS] = rhs;
2762    assert(!isCompoundAssignmentOp() &&
2763           "Use ArithAssignBinaryOperator for compound assignments");
2764  }
2765
2766  /// \brief Construct an empty binary operator.
2767  explicit BinaryOperator(EmptyShell Empty)
2768    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2769
2770  SourceLocation getExprLoc() const { return OpLoc; }
2771  SourceLocation getOperatorLoc() const { return OpLoc; }
2772  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2773
2774  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2775  void setOpcode(Opcode O) { Opc = O; }
2776
2777  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2778  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2779  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2780  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2781
2782  SourceRange getSourceRange() const {
2783    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2784  }
2785
2786  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2787  /// corresponds to, e.g. "<<=".
2788  static const char *getOpcodeStr(Opcode Op);
2789
2790  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2791
2792  /// \brief Retrieve the binary opcode that corresponds to the given
2793  /// overloaded operator.
2794  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2795
2796  /// \brief Retrieve the overloaded operator kind that corresponds to
2797  /// the given binary opcode.
2798  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2799
2800  /// predicates to categorize the respective opcodes.
2801  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2802  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2803  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2804  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2805  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2806  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2807
2808  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2809  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2810
2811  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2812  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2813
2814  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2815  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2816
2817  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2818  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2819
2820  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2821  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2822
2823  static bool isAssignmentOp(Opcode Opc) {
2824    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2825  }
2826  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2827
2828  static bool isCompoundAssignmentOp(Opcode Opc) {
2829    return Opc > BO_Assign && Opc <= BO_OrAssign;
2830  }
2831  bool isCompoundAssignmentOp() const {
2832    return isCompoundAssignmentOp(getOpcode());
2833  }
2834  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2835    assert(isCompoundAssignmentOp(Opc));
2836    if (Opc >= BO_AndAssign)
2837      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2838    else
2839      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2840  }
2841
2842  static bool isShiftAssignOp(Opcode Opc) {
2843    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2844  }
2845  bool isShiftAssignOp() const {
2846    return isShiftAssignOp(getOpcode());
2847  }
2848
2849  static bool classof(const Stmt *S) {
2850    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2851           S->getStmtClass() <= lastBinaryOperatorConstant;
2852  }
2853  static bool classof(const BinaryOperator *) { return true; }
2854
2855  // Iterators
2856  child_range children() {
2857    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2858  }
2859
2860protected:
2861  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2862                 ExprValueKind VK, ExprObjectKind OK,
2863                 SourceLocation opLoc, bool dead)
2864    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2865           lhs->isTypeDependent() || rhs->isTypeDependent(),
2866           lhs->isValueDependent() || rhs->isValueDependent(),
2867           (lhs->isInstantiationDependent() ||
2868            rhs->isInstantiationDependent()),
2869           (lhs->containsUnexpandedParameterPack() ||
2870            rhs->containsUnexpandedParameterPack())),
2871      Opc(opc), OpLoc(opLoc) {
2872    SubExprs[LHS] = lhs;
2873    SubExprs[RHS] = rhs;
2874  }
2875
2876  BinaryOperator(StmtClass SC, EmptyShell Empty)
2877    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2878};
2879
2880/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2881/// track of the type the operation is performed in.  Due to the semantics of
2882/// these operators, the operands are promoted, the arithmetic performed, an
2883/// implicit conversion back to the result type done, then the assignment takes
2884/// place.  This captures the intermediate type which the computation is done
2885/// in.
2886class CompoundAssignOperator : public BinaryOperator {
2887  QualType ComputationLHSType;
2888  QualType ComputationResultType;
2889public:
2890  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2891                         ExprValueKind VK, ExprObjectKind OK,
2892                         QualType CompLHSType, QualType CompResultType,
2893                         SourceLocation OpLoc)
2894    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2895      ComputationLHSType(CompLHSType),
2896      ComputationResultType(CompResultType) {
2897    assert(isCompoundAssignmentOp() &&
2898           "Only should be used for compound assignments");
2899  }
2900
2901  /// \brief Build an empty compound assignment operator expression.
2902  explicit CompoundAssignOperator(EmptyShell Empty)
2903    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2904
2905  // The two computation types are the type the LHS is converted
2906  // to for the computation and the type of the result; the two are
2907  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2908  QualType getComputationLHSType() const { return ComputationLHSType; }
2909  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2910
2911  QualType getComputationResultType() const { return ComputationResultType; }
2912  void setComputationResultType(QualType T) { ComputationResultType = T; }
2913
2914  static bool classof(const CompoundAssignOperator *) { return true; }
2915  static bool classof(const Stmt *S) {
2916    return S->getStmtClass() == CompoundAssignOperatorClass;
2917  }
2918};
2919
2920/// AbstractConditionalOperator - An abstract base class for
2921/// ConditionalOperator and BinaryConditionalOperator.
2922class AbstractConditionalOperator : public Expr {
2923  SourceLocation QuestionLoc, ColonLoc;
2924  friend class ASTStmtReader;
2925
2926protected:
2927  AbstractConditionalOperator(StmtClass SC, QualType T,
2928                              ExprValueKind VK, ExprObjectKind OK,
2929                              bool TD, bool VD, bool ID,
2930                              bool ContainsUnexpandedParameterPack,
2931                              SourceLocation qloc,
2932                              SourceLocation cloc)
2933    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2934      QuestionLoc(qloc), ColonLoc(cloc) {}
2935
2936  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2937    : Expr(SC, Empty) { }
2938
2939public:
2940  // getCond - Return the expression representing the condition for
2941  //   the ?: operator.
2942  Expr *getCond() const;
2943
2944  // getTrueExpr - Return the subexpression representing the value of
2945  //   the expression if the condition evaluates to true.
2946  Expr *getTrueExpr() const;
2947
2948  // getFalseExpr - Return the subexpression representing the value of
2949  //   the expression if the condition evaluates to false.  This is
2950  //   the same as getRHS.
2951  Expr *getFalseExpr() const;
2952
2953  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2954  SourceLocation getColonLoc() const { return ColonLoc; }
2955
2956  static bool classof(const Stmt *T) {
2957    return T->getStmtClass() == ConditionalOperatorClass ||
2958           T->getStmtClass() == BinaryConditionalOperatorClass;
2959  }
2960  static bool classof(const AbstractConditionalOperator *) { return true; }
2961};
2962
2963/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2964/// middle" extension is a BinaryConditionalOperator.
2965class ConditionalOperator : public AbstractConditionalOperator {
2966  enum { COND, LHS, RHS, END_EXPR };
2967  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2968
2969  friend class ASTStmtReader;
2970public:
2971  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2972                      SourceLocation CLoc, Expr *rhs,
2973                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2974    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2975           // FIXME: the type of the conditional operator doesn't
2976           // depend on the type of the conditional, but the standard
2977           // seems to imply that it could. File a bug!
2978           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2979           (cond->isValueDependent() || lhs->isValueDependent() ||
2980            rhs->isValueDependent()),
2981           (cond->isInstantiationDependent() ||
2982            lhs->isInstantiationDependent() ||
2983            rhs->isInstantiationDependent()),
2984           (cond->containsUnexpandedParameterPack() ||
2985            lhs->containsUnexpandedParameterPack() ||
2986            rhs->containsUnexpandedParameterPack()),
2987                                  QLoc, CLoc) {
2988    SubExprs[COND] = cond;
2989    SubExprs[LHS] = lhs;
2990    SubExprs[RHS] = rhs;
2991  }
2992
2993  /// \brief Build an empty conditional operator.
2994  explicit ConditionalOperator(EmptyShell Empty)
2995    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2996
2997  // getCond - Return the expression representing the condition for
2998  //   the ?: operator.
2999  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3000
3001  // getTrueExpr - Return the subexpression representing the value of
3002  //   the expression if the condition evaluates to true.
3003  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3004
3005  // getFalseExpr - Return the subexpression representing the value of
3006  //   the expression if the condition evaluates to false.  This is
3007  //   the same as getRHS.
3008  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3009
3010  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3011  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3012
3013  SourceRange getSourceRange() const {
3014    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3015  }
3016  static bool classof(const Stmt *T) {
3017    return T->getStmtClass() == ConditionalOperatorClass;
3018  }
3019  static bool classof(const ConditionalOperator *) { return true; }
3020
3021  // Iterators
3022  child_range children() {
3023    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3024  }
3025};
3026
3027/// BinaryConditionalOperator - The GNU extension to the conditional
3028/// operator which allows the middle operand to be omitted.
3029///
3030/// This is a different expression kind on the assumption that almost
3031/// every client ends up needing to know that these are different.
3032class BinaryConditionalOperator : public AbstractConditionalOperator {
3033  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3034
3035  /// - the common condition/left-hand-side expression, which will be
3036  ///   evaluated as the opaque value
3037  /// - the condition, expressed in terms of the opaque value
3038  /// - the left-hand-side, expressed in terms of the opaque value
3039  /// - the right-hand-side
3040  Stmt *SubExprs[NUM_SUBEXPRS];
3041  OpaqueValueExpr *OpaqueValue;
3042
3043  friend class ASTStmtReader;
3044public:
3045  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3046                            Expr *cond, Expr *lhs, Expr *rhs,
3047                            SourceLocation qloc, SourceLocation cloc,
3048                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3049    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3050           (common->isTypeDependent() || rhs->isTypeDependent()),
3051           (common->isValueDependent() || rhs->isValueDependent()),
3052           (common->isInstantiationDependent() ||
3053            rhs->isInstantiationDependent()),
3054           (common->containsUnexpandedParameterPack() ||
3055            rhs->containsUnexpandedParameterPack()),
3056                                  qloc, cloc),
3057      OpaqueValue(opaqueValue) {
3058    SubExprs[COMMON] = common;
3059    SubExprs[COND] = cond;
3060    SubExprs[LHS] = lhs;
3061    SubExprs[RHS] = rhs;
3062
3063    OpaqueValue->setSourceExpr(common);
3064  }
3065
3066  /// \brief Build an empty conditional operator.
3067  explicit BinaryConditionalOperator(EmptyShell Empty)
3068    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3069
3070  /// \brief getCommon - Return the common expression, written to the
3071  ///   left of the condition.  The opaque value will be bound to the
3072  ///   result of this expression.
3073  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3074
3075  /// \brief getOpaqueValue - Return the opaque value placeholder.
3076  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3077
3078  /// \brief getCond - Return the condition expression; this is defined
3079  ///   in terms of the opaque value.
3080  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3081
3082  /// \brief getTrueExpr - Return the subexpression which will be
3083  ///   evaluated if the condition evaluates to true;  this is defined
3084  ///   in terms of the opaque value.
3085  Expr *getTrueExpr() const {
3086    return cast<Expr>(SubExprs[LHS]);
3087  }
3088
3089  /// \brief getFalseExpr - Return the subexpression which will be
3090  ///   evaluated if the condnition evaluates to false; this is
3091  ///   defined in terms of the opaque value.
3092  Expr *getFalseExpr() const {
3093    return cast<Expr>(SubExprs[RHS]);
3094  }
3095
3096  SourceRange getSourceRange() const {
3097    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3098  }
3099  static bool classof(const Stmt *T) {
3100    return T->getStmtClass() == BinaryConditionalOperatorClass;
3101  }
3102  static bool classof(const BinaryConditionalOperator *) { return true; }
3103
3104  // Iterators
3105  child_range children() {
3106    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3107  }
3108};
3109
3110inline Expr *AbstractConditionalOperator::getCond() const {
3111  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3112    return co->getCond();
3113  return cast<BinaryConditionalOperator>(this)->getCond();
3114}
3115
3116inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3117  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3118    return co->getTrueExpr();
3119  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3120}
3121
3122inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3123  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3124    return co->getFalseExpr();
3125  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3126}
3127
3128/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3129class AddrLabelExpr : public Expr {
3130  SourceLocation AmpAmpLoc, LabelLoc;
3131  LabelDecl *Label;
3132public:
3133  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3134                QualType t)
3135    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3136           false),
3137      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3138
3139  /// \brief Build an empty address of a label expression.
3140  explicit AddrLabelExpr(EmptyShell Empty)
3141    : Expr(AddrLabelExprClass, Empty) { }
3142
3143  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3144  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3145  SourceLocation getLabelLoc() const { return LabelLoc; }
3146  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3147
3148  SourceRange getSourceRange() const {
3149    return SourceRange(AmpAmpLoc, LabelLoc);
3150  }
3151
3152  LabelDecl *getLabel() const { return Label; }
3153  void setLabel(LabelDecl *L) { Label = L; }
3154
3155  static bool classof(const Stmt *T) {
3156    return T->getStmtClass() == AddrLabelExprClass;
3157  }
3158  static bool classof(const AddrLabelExpr *) { return true; }
3159
3160  // Iterators
3161  child_range children() { return child_range(); }
3162};
3163
3164/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3165/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3166/// takes the value of the last subexpression.
3167///
3168/// A StmtExpr is always an r-value; values "returned" out of a
3169/// StmtExpr will be copied.
3170class StmtExpr : public Expr {
3171  Stmt *SubStmt;
3172  SourceLocation LParenLoc, RParenLoc;
3173public:
3174  // FIXME: Does type-dependence need to be computed differently?
3175  // FIXME: Do we need to compute instantiation instantiation-dependence for
3176  // statements? (ugh!)
3177  StmtExpr(CompoundStmt *substmt, QualType T,
3178           SourceLocation lp, SourceLocation rp) :
3179    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3180         T->isDependentType(), false, false, false),
3181    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3182
3183  /// \brief Build an empty statement expression.
3184  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3185
3186  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3187  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3188  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3189
3190  SourceRange getSourceRange() const {
3191    return SourceRange(LParenLoc, RParenLoc);
3192  }
3193
3194  SourceLocation getLParenLoc() const { return LParenLoc; }
3195  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3196  SourceLocation getRParenLoc() const { return RParenLoc; }
3197  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3198
3199  static bool classof(const Stmt *T) {
3200    return T->getStmtClass() == StmtExprClass;
3201  }
3202  static bool classof(const StmtExpr *) { return true; }
3203
3204  // Iterators
3205  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3206};
3207
3208
3209/// ShuffleVectorExpr - clang-specific builtin-in function
3210/// __builtin_shufflevector.
3211/// This AST node represents a operator that does a constant
3212/// shuffle, similar to LLVM's shufflevector instruction. It takes
3213/// two vectors and a variable number of constant indices,
3214/// and returns the appropriately shuffled vector.
3215class ShuffleVectorExpr : public Expr {
3216  SourceLocation BuiltinLoc, RParenLoc;
3217
3218  // SubExprs - the list of values passed to the __builtin_shufflevector
3219  // function. The first two are vectors, and the rest are constant
3220  // indices.  The number of values in this list is always
3221  // 2+the number of indices in the vector type.
3222  Stmt **SubExprs;
3223  unsigned NumExprs;
3224
3225public:
3226  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3227                    QualType Type, SourceLocation BLoc,
3228                    SourceLocation RP);
3229
3230  /// \brief Build an empty vector-shuffle expression.
3231  explicit ShuffleVectorExpr(EmptyShell Empty)
3232    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3233
3234  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3235  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3236
3237  SourceLocation getRParenLoc() const { return RParenLoc; }
3238  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3239
3240  SourceRange getSourceRange() const {
3241    return SourceRange(BuiltinLoc, RParenLoc);
3242  }
3243  static bool classof(const Stmt *T) {
3244    return T->getStmtClass() == ShuffleVectorExprClass;
3245  }
3246  static bool classof(const ShuffleVectorExpr *) { return true; }
3247
3248  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3249  /// constant expression, the actual arguments passed in, and the function
3250  /// pointers.
3251  unsigned getNumSubExprs() const { return NumExprs; }
3252
3253  /// \brief Retrieve the array of expressions.
3254  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3255
3256  /// getExpr - Return the Expr at the specified index.
3257  Expr *getExpr(unsigned Index) {
3258    assert((Index < NumExprs) && "Arg access out of range!");
3259    return cast<Expr>(SubExprs[Index]);
3260  }
3261  const Expr *getExpr(unsigned Index) const {
3262    assert((Index < NumExprs) && "Arg access out of range!");
3263    return cast<Expr>(SubExprs[Index]);
3264  }
3265
3266  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3267
3268  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3269    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3270    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3271  }
3272
3273  // Iterators
3274  child_range children() {
3275    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3276  }
3277};
3278
3279/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3280/// This AST node is similar to the conditional operator (?:) in C, with
3281/// the following exceptions:
3282/// - the test expression must be a integer constant expression.
3283/// - the expression returned acts like the chosen subexpression in every
3284///   visible way: the type is the same as that of the chosen subexpression,
3285///   and all predicates (whether it's an l-value, whether it's an integer
3286///   constant expression, etc.) return the same result as for the chosen
3287///   sub-expression.
3288class ChooseExpr : public Expr {
3289  enum { COND, LHS, RHS, END_EXPR };
3290  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3291  SourceLocation BuiltinLoc, RParenLoc;
3292public:
3293  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3294             QualType t, ExprValueKind VK, ExprObjectKind OK,
3295             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3296    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3297           (cond->isInstantiationDependent() ||
3298            lhs->isInstantiationDependent() ||
3299            rhs->isInstantiationDependent()),
3300           (cond->containsUnexpandedParameterPack() ||
3301            lhs->containsUnexpandedParameterPack() ||
3302            rhs->containsUnexpandedParameterPack())),
3303      BuiltinLoc(BLoc), RParenLoc(RP) {
3304      SubExprs[COND] = cond;
3305      SubExprs[LHS] = lhs;
3306      SubExprs[RHS] = rhs;
3307    }
3308
3309  /// \brief Build an empty __builtin_choose_expr.
3310  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3311
3312  /// isConditionTrue - Return whether the condition is true (i.e. not
3313  /// equal to zero).
3314  bool isConditionTrue(const ASTContext &C) const;
3315
3316  /// getChosenSubExpr - Return the subexpression chosen according to the
3317  /// condition.
3318  Expr *getChosenSubExpr(const ASTContext &C) const {
3319    return isConditionTrue(C) ? getLHS() : getRHS();
3320  }
3321
3322  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3323  void setCond(Expr *E) { SubExprs[COND] = E; }
3324  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3325  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3326  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3327  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3328
3329  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3330  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3331
3332  SourceLocation getRParenLoc() const { return RParenLoc; }
3333  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3334
3335  SourceRange getSourceRange() const {
3336    return SourceRange(BuiltinLoc, RParenLoc);
3337  }
3338  static bool classof(const Stmt *T) {
3339    return T->getStmtClass() == ChooseExprClass;
3340  }
3341  static bool classof(const ChooseExpr *) { return true; }
3342
3343  // Iterators
3344  child_range children() {
3345    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3346  }
3347};
3348
3349/// GNUNullExpr - Implements the GNU __null extension, which is a name
3350/// for a null pointer constant that has integral type (e.g., int or
3351/// long) and is the same size and alignment as a pointer. The __null
3352/// extension is typically only used by system headers, which define
3353/// NULL as __null in C++ rather than using 0 (which is an integer
3354/// that may not match the size of a pointer).
3355class GNUNullExpr : public Expr {
3356  /// TokenLoc - The location of the __null keyword.
3357  SourceLocation TokenLoc;
3358
3359public:
3360  GNUNullExpr(QualType Ty, SourceLocation Loc)
3361    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3362           false),
3363      TokenLoc(Loc) { }
3364
3365  /// \brief Build an empty GNU __null expression.
3366  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3367
3368  /// getTokenLocation - The location of the __null token.
3369  SourceLocation getTokenLocation() const { return TokenLoc; }
3370  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3371
3372  SourceRange getSourceRange() const {
3373    return SourceRange(TokenLoc);
3374  }
3375  static bool classof(const Stmt *T) {
3376    return T->getStmtClass() == GNUNullExprClass;
3377  }
3378  static bool classof(const GNUNullExpr *) { return true; }
3379
3380  // Iterators
3381  child_range children() { return child_range(); }
3382};
3383
3384/// VAArgExpr, used for the builtin function __builtin_va_arg.
3385class VAArgExpr : public Expr {
3386  Stmt *Val;
3387  TypeSourceInfo *TInfo;
3388  SourceLocation BuiltinLoc, RParenLoc;
3389public:
3390  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3391            SourceLocation RPLoc, QualType t)
3392    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3393           t->isDependentType(), false,
3394           (TInfo->getType()->isInstantiationDependentType() ||
3395            e->isInstantiationDependent()),
3396           (TInfo->getType()->containsUnexpandedParameterPack() ||
3397            e->containsUnexpandedParameterPack())),
3398      Val(e), TInfo(TInfo),
3399      BuiltinLoc(BLoc),
3400      RParenLoc(RPLoc) { }
3401
3402  /// \brief Create an empty __builtin_va_arg expression.
3403  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3404
3405  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3406  Expr *getSubExpr() { return cast<Expr>(Val); }
3407  void setSubExpr(Expr *E) { Val = E; }
3408
3409  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3410  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3411
3412  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3413  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3414
3415  SourceLocation getRParenLoc() const { return RParenLoc; }
3416  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3417
3418  SourceRange getSourceRange() const {
3419    return SourceRange(BuiltinLoc, RParenLoc);
3420  }
3421  static bool classof(const Stmt *T) {
3422    return T->getStmtClass() == VAArgExprClass;
3423  }
3424  static bool classof(const VAArgExpr *) { return true; }
3425
3426  // Iterators
3427  child_range children() { return child_range(&Val, &Val+1); }
3428};
3429
3430/// @brief Describes an C or C++ initializer list.
3431///
3432/// InitListExpr describes an initializer list, which can be used to
3433/// initialize objects of different types, including
3434/// struct/class/union types, arrays, and vectors. For example:
3435///
3436/// @code
3437/// struct foo x = { 1, { 2, 3 } };
3438/// @endcode
3439///
3440/// Prior to semantic analysis, an initializer list will represent the
3441/// initializer list as written by the user, but will have the
3442/// placeholder type "void". This initializer list is called the
3443/// syntactic form of the initializer, and may contain C99 designated
3444/// initializers (represented as DesignatedInitExprs), initializations
3445/// of subobject members without explicit braces, and so on. Clients
3446/// interested in the original syntax of the initializer list should
3447/// use the syntactic form of the initializer list.
3448///
3449/// After semantic analysis, the initializer list will represent the
3450/// semantic form of the initializer, where the initializations of all
3451/// subobjects are made explicit with nested InitListExpr nodes and
3452/// C99 designators have been eliminated by placing the designated
3453/// initializations into the subobject they initialize. Additionally,
3454/// any "holes" in the initialization, where no initializer has been
3455/// specified for a particular subobject, will be replaced with
3456/// implicitly-generated ImplicitValueInitExpr expressions that
3457/// value-initialize the subobjects. Note, however, that the
3458/// initializer lists may still have fewer initializers than there are
3459/// elements to initialize within the object.
3460///
3461/// Given the semantic form of the initializer list, one can retrieve
3462/// the original syntactic form of that initializer list (if it
3463/// exists) using getSyntacticForm(). Since many initializer lists
3464/// have the same syntactic and semantic forms, getSyntacticForm() may
3465/// return NULL, indicating that the current initializer list also
3466/// serves as its syntactic form.
3467class InitListExpr : public Expr {
3468  // FIXME: Eliminate this vector in favor of ASTContext allocation
3469  typedef ASTVector<Stmt *> InitExprsTy;
3470  InitExprsTy InitExprs;
3471  SourceLocation LBraceLoc, RBraceLoc;
3472
3473  /// Contains the initializer list that describes the syntactic form
3474  /// written in the source code.
3475  InitListExpr *SyntacticForm;
3476
3477  /// \brief Either:
3478  ///  If this initializer list initializes an array with more elements than
3479  ///  there are initializers in the list, specifies an expression to be used
3480  ///  for value initialization of the rest of the elements.
3481  /// Or
3482  ///  If this initializer list initializes a union, specifies which
3483  ///  field within the union will be initialized.
3484  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3485
3486  /// Whether this initializer list originally had a GNU array-range
3487  /// designator in it. This is a temporary marker used by CodeGen.
3488  bool HadArrayRangeDesignator;
3489
3490public:
3491  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3492               Expr **initexprs, unsigned numinits,
3493               SourceLocation rbraceloc);
3494
3495  /// \brief Build an empty initializer list.
3496  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3497    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3498
3499  unsigned getNumInits() const { return InitExprs.size(); }
3500
3501  /// \brief Retrieve the set of initializers.
3502  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3503
3504  const Expr *getInit(unsigned Init) const {
3505    assert(Init < getNumInits() && "Initializer access out of range!");
3506    return cast_or_null<Expr>(InitExprs[Init]);
3507  }
3508
3509  Expr *getInit(unsigned Init) {
3510    assert(Init < getNumInits() && "Initializer access out of range!");
3511    return cast_or_null<Expr>(InitExprs[Init]);
3512  }
3513
3514  void setInit(unsigned Init, Expr *expr) {
3515    assert(Init < getNumInits() && "Initializer access out of range!");
3516    InitExprs[Init] = expr;
3517  }
3518
3519  /// \brief Reserve space for some number of initializers.
3520  void reserveInits(ASTContext &C, unsigned NumInits);
3521
3522  /// @brief Specify the number of initializers
3523  ///
3524  /// If there are more than @p NumInits initializers, the remaining
3525  /// initializers will be destroyed. If there are fewer than @p
3526  /// NumInits initializers, NULL expressions will be added for the
3527  /// unknown initializers.
3528  void resizeInits(ASTContext &Context, unsigned NumInits);
3529
3530  /// @brief Updates the initializer at index @p Init with the new
3531  /// expression @p expr, and returns the old expression at that
3532  /// location.
3533  ///
3534  /// When @p Init is out of range for this initializer list, the
3535  /// initializer list will be extended with NULL expressions to
3536  /// accommodate the new entry.
3537  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3538
3539  /// \brief If this initializer list initializes an array with more elements
3540  /// than there are initializers in the list, specifies an expression to be
3541  /// used for value initialization of the rest of the elements.
3542  Expr *getArrayFiller() {
3543    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3544  }
3545  const Expr *getArrayFiller() const {
3546    return const_cast<InitListExpr *>(this)->getArrayFiller();
3547  }
3548  void setArrayFiller(Expr *filler);
3549
3550  /// \brief Return true if this is an array initializer and its array "filler"
3551  /// has been set.
3552  bool hasArrayFiller() const { return getArrayFiller(); }
3553
3554  /// \brief If this initializes a union, specifies which field in the
3555  /// union to initialize.
3556  ///
3557  /// Typically, this field is the first named field within the
3558  /// union. However, a designated initializer can specify the
3559  /// initialization of a different field within the union.
3560  FieldDecl *getInitializedFieldInUnion() {
3561    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3562  }
3563  const FieldDecl *getInitializedFieldInUnion() const {
3564    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3565  }
3566  void setInitializedFieldInUnion(FieldDecl *FD) {
3567    ArrayFillerOrUnionFieldInit = FD;
3568  }
3569
3570  // Explicit InitListExpr's originate from source code (and have valid source
3571  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3572  bool isExplicit() {
3573    return LBraceLoc.isValid() && RBraceLoc.isValid();
3574  }
3575
3576  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3577  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3578  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3579  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3580
3581  /// @brief Retrieve the initializer list that describes the
3582  /// syntactic form of the initializer.
3583  ///
3584  ///
3585  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3586  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3587
3588  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3589  void sawArrayRangeDesignator(bool ARD = true) {
3590    HadArrayRangeDesignator = ARD;
3591  }
3592
3593  SourceRange getSourceRange() const;
3594
3595  static bool classof(const Stmt *T) {
3596    return T->getStmtClass() == InitListExprClass;
3597  }
3598  static bool classof(const InitListExpr *) { return true; }
3599
3600  // Iterators
3601  child_range children() {
3602    if (InitExprs.empty()) return child_range();
3603    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3604  }
3605
3606  typedef InitExprsTy::iterator iterator;
3607  typedef InitExprsTy::const_iterator const_iterator;
3608  typedef InitExprsTy::reverse_iterator reverse_iterator;
3609  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3610
3611  iterator begin() { return InitExprs.begin(); }
3612  const_iterator begin() const { return InitExprs.begin(); }
3613  iterator end() { return InitExprs.end(); }
3614  const_iterator end() const { return InitExprs.end(); }
3615  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3616  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3617  reverse_iterator rend() { return InitExprs.rend(); }
3618  const_reverse_iterator rend() const { return InitExprs.rend(); }
3619
3620  friend class ASTStmtReader;
3621  friend class ASTStmtWriter;
3622};
3623
3624/// @brief Represents a C99 designated initializer expression.
3625///
3626/// A designated initializer expression (C99 6.7.8) contains one or
3627/// more designators (which can be field designators, array
3628/// designators, or GNU array-range designators) followed by an
3629/// expression that initializes the field or element(s) that the
3630/// designators refer to. For example, given:
3631///
3632/// @code
3633/// struct point {
3634///   double x;
3635///   double y;
3636/// };
3637/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3638/// @endcode
3639///
3640/// The InitListExpr contains three DesignatedInitExprs, the first of
3641/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3642/// designators, one array designator for @c [2] followed by one field
3643/// designator for @c .y. The initalization expression will be 1.0.
3644class DesignatedInitExpr : public Expr {
3645public:
3646  /// \brief Forward declaration of the Designator class.
3647  class Designator;
3648
3649private:
3650  /// The location of the '=' or ':' prior to the actual initializer
3651  /// expression.
3652  SourceLocation EqualOrColonLoc;
3653
3654  /// Whether this designated initializer used the GNU deprecated
3655  /// syntax rather than the C99 '=' syntax.
3656  bool GNUSyntax : 1;
3657
3658  /// The number of designators in this initializer expression.
3659  unsigned NumDesignators : 15;
3660
3661  /// \brief The designators in this designated initialization
3662  /// expression.
3663  Designator *Designators;
3664
3665  /// The number of subexpressions of this initializer expression,
3666  /// which contains both the initializer and any additional
3667  /// expressions used by array and array-range designators.
3668  unsigned NumSubExprs : 16;
3669
3670
3671  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3672                     const Designator *Designators,
3673                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3674                     Expr **IndexExprs, unsigned NumIndexExprs,
3675                     Expr *Init);
3676
3677  explicit DesignatedInitExpr(unsigned NumSubExprs)
3678    : Expr(DesignatedInitExprClass, EmptyShell()),
3679      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3680
3681public:
3682  /// A field designator, e.g., ".x".
3683  struct FieldDesignator {
3684    /// Refers to the field that is being initialized. The low bit
3685    /// of this field determines whether this is actually a pointer
3686    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3687    /// initially constructed, a field designator will store an
3688    /// IdentifierInfo*. After semantic analysis has resolved that
3689    /// name, the field designator will instead store a FieldDecl*.
3690    uintptr_t NameOrField;
3691
3692    /// The location of the '.' in the designated initializer.
3693    unsigned DotLoc;
3694
3695    /// The location of the field name in the designated initializer.
3696    unsigned FieldLoc;
3697  };
3698
3699  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3700  struct ArrayOrRangeDesignator {
3701    /// Location of the first index expression within the designated
3702    /// initializer expression's list of subexpressions.
3703    unsigned Index;
3704    /// The location of the '[' starting the array range designator.
3705    unsigned LBracketLoc;
3706    /// The location of the ellipsis separating the start and end
3707    /// indices. Only valid for GNU array-range designators.
3708    unsigned EllipsisLoc;
3709    /// The location of the ']' terminating the array range designator.
3710    unsigned RBracketLoc;
3711  };
3712
3713  /// @brief Represents a single C99 designator.
3714  ///
3715  /// @todo This class is infuriatingly similar to clang::Designator,
3716  /// but minor differences (storing indices vs. storing pointers)
3717  /// keep us from reusing it. Try harder, later, to rectify these
3718  /// differences.
3719  class Designator {
3720    /// @brief The kind of designator this describes.
3721    enum {
3722      FieldDesignator,
3723      ArrayDesignator,
3724      ArrayRangeDesignator
3725    } Kind;
3726
3727    union {
3728      /// A field designator, e.g., ".x".
3729      struct FieldDesignator Field;
3730      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3731      struct ArrayOrRangeDesignator ArrayOrRange;
3732    };
3733    friend class DesignatedInitExpr;
3734
3735  public:
3736    Designator() {}
3737
3738    /// @brief Initializes a field designator.
3739    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3740               SourceLocation FieldLoc)
3741      : Kind(FieldDesignator) {
3742      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3743      Field.DotLoc = DotLoc.getRawEncoding();
3744      Field.FieldLoc = FieldLoc.getRawEncoding();
3745    }
3746
3747    /// @brief Initializes an array designator.
3748    Designator(unsigned Index, SourceLocation LBracketLoc,
3749               SourceLocation RBracketLoc)
3750      : Kind(ArrayDesignator) {
3751      ArrayOrRange.Index = Index;
3752      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3753      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3754      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3755    }
3756
3757    /// @brief Initializes a GNU array-range designator.
3758    Designator(unsigned Index, SourceLocation LBracketLoc,
3759               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3760      : Kind(ArrayRangeDesignator) {
3761      ArrayOrRange.Index = Index;
3762      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3763      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3764      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3765    }
3766
3767    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3768    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3769    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3770
3771    IdentifierInfo *getFieldName() const;
3772
3773    FieldDecl *getField() const {
3774      assert(Kind == FieldDesignator && "Only valid on a field designator");
3775      if (Field.NameOrField & 0x01)
3776        return 0;
3777      else
3778        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3779    }
3780
3781    void setField(FieldDecl *FD) {
3782      assert(Kind == FieldDesignator && "Only valid on a field designator");
3783      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3784    }
3785
3786    SourceLocation getDotLoc() const {
3787      assert(Kind == FieldDesignator && "Only valid on a field designator");
3788      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3789    }
3790
3791    SourceLocation getFieldLoc() const {
3792      assert(Kind == FieldDesignator && "Only valid on a field designator");
3793      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3794    }
3795
3796    SourceLocation getLBracketLoc() const {
3797      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3798             "Only valid on an array or array-range designator");
3799      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3800    }
3801
3802    SourceLocation getRBracketLoc() const {
3803      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3804             "Only valid on an array or array-range designator");
3805      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3806    }
3807
3808    SourceLocation getEllipsisLoc() const {
3809      assert(Kind == ArrayRangeDesignator &&
3810             "Only valid on an array-range designator");
3811      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3812    }
3813
3814    unsigned getFirstExprIndex() const {
3815      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3816             "Only valid on an array or array-range designator");
3817      return ArrayOrRange.Index;
3818    }
3819
3820    SourceLocation getStartLocation() const {
3821      if (Kind == FieldDesignator)
3822        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3823      else
3824        return getLBracketLoc();
3825    }
3826    SourceLocation getEndLocation() const {
3827      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3828    }
3829    SourceRange getSourceRange() const {
3830      return SourceRange(getStartLocation(), getEndLocation());
3831    }
3832  };
3833
3834  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3835                                    unsigned NumDesignators,
3836                                    Expr **IndexExprs, unsigned NumIndexExprs,
3837                                    SourceLocation EqualOrColonLoc,
3838                                    bool GNUSyntax, Expr *Init);
3839
3840  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3841
3842  /// @brief Returns the number of designators in this initializer.
3843  unsigned size() const { return NumDesignators; }
3844
3845  // Iterator access to the designators.
3846  typedef Designator *designators_iterator;
3847  designators_iterator designators_begin() { return Designators; }
3848  designators_iterator designators_end() {
3849    return Designators + NumDesignators;
3850  }
3851
3852  typedef const Designator *const_designators_iterator;
3853  const_designators_iterator designators_begin() const { return Designators; }
3854  const_designators_iterator designators_end() const {
3855    return Designators + NumDesignators;
3856  }
3857
3858  typedef std::reverse_iterator<designators_iterator>
3859          reverse_designators_iterator;
3860  reverse_designators_iterator designators_rbegin() {
3861    return reverse_designators_iterator(designators_end());
3862  }
3863  reverse_designators_iterator designators_rend() {
3864    return reverse_designators_iterator(designators_begin());
3865  }
3866
3867  typedef std::reverse_iterator<const_designators_iterator>
3868          const_reverse_designators_iterator;
3869  const_reverse_designators_iterator designators_rbegin() const {
3870    return const_reverse_designators_iterator(designators_end());
3871  }
3872  const_reverse_designators_iterator designators_rend() const {
3873    return const_reverse_designators_iterator(designators_begin());
3874  }
3875
3876  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3877
3878  void setDesignators(ASTContext &C, const Designator *Desigs,
3879                      unsigned NumDesigs);
3880
3881  Expr *getArrayIndex(const Designator& D);
3882  Expr *getArrayRangeStart(const Designator& D);
3883  Expr *getArrayRangeEnd(const Designator& D);
3884
3885  /// @brief Retrieve the location of the '=' that precedes the
3886  /// initializer value itself, if present.
3887  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3888  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3889
3890  /// @brief Determines whether this designated initializer used the
3891  /// deprecated GNU syntax for designated initializers.
3892  bool usesGNUSyntax() const { return GNUSyntax; }
3893  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3894
3895  /// @brief Retrieve the initializer value.
3896  Expr *getInit() const {
3897    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3898  }
3899
3900  void setInit(Expr *init) {
3901    *child_begin() = init;
3902  }
3903
3904  /// \brief Retrieve the total number of subexpressions in this
3905  /// designated initializer expression, including the actual
3906  /// initialized value and any expressions that occur within array
3907  /// and array-range designators.
3908  unsigned getNumSubExprs() const { return NumSubExprs; }
3909
3910  Expr *getSubExpr(unsigned Idx) {
3911    assert(Idx < NumSubExprs && "Subscript out of range");
3912    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3913    Ptr += sizeof(DesignatedInitExpr);
3914    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3915  }
3916
3917  void setSubExpr(unsigned Idx, Expr *E) {
3918    assert(Idx < NumSubExprs && "Subscript out of range");
3919    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3920    Ptr += sizeof(DesignatedInitExpr);
3921    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3922  }
3923
3924  /// \brief Replaces the designator at index @p Idx with the series
3925  /// of designators in [First, Last).
3926  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3927                        const Designator *Last);
3928
3929  SourceRange getDesignatorsSourceRange() const;
3930
3931  SourceRange getSourceRange() const;
3932
3933  static bool classof(const Stmt *T) {
3934    return T->getStmtClass() == DesignatedInitExprClass;
3935  }
3936  static bool classof(const DesignatedInitExpr *) { return true; }
3937
3938  // Iterators
3939  child_range children() {
3940    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3941    return child_range(begin, begin + NumSubExprs);
3942  }
3943};
3944
3945/// \brief Represents an implicitly-generated value initialization of
3946/// an object of a given type.
3947///
3948/// Implicit value initializations occur within semantic initializer
3949/// list expressions (InitListExpr) as placeholders for subobject
3950/// initializations not explicitly specified by the user.
3951///
3952/// \see InitListExpr
3953class ImplicitValueInitExpr : public Expr {
3954public:
3955  explicit ImplicitValueInitExpr(QualType ty)
3956    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3957           false, false, ty->isInstantiationDependentType(), false) { }
3958
3959  /// \brief Construct an empty implicit value initialization.
3960  explicit ImplicitValueInitExpr(EmptyShell Empty)
3961    : Expr(ImplicitValueInitExprClass, Empty) { }
3962
3963  static bool classof(const Stmt *T) {
3964    return T->getStmtClass() == ImplicitValueInitExprClass;
3965  }
3966  static bool classof(const ImplicitValueInitExpr *) { return true; }
3967
3968  SourceRange getSourceRange() const {
3969    return SourceRange();
3970  }
3971
3972  // Iterators
3973  child_range children() { return child_range(); }
3974};
3975
3976
3977class ParenListExpr : public Expr {
3978  Stmt **Exprs;
3979  unsigned NumExprs;
3980  SourceLocation LParenLoc, RParenLoc;
3981
3982public:
3983  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3984                unsigned numexprs, SourceLocation rparenloc);
3985
3986  /// \brief Build an empty paren list.
3987  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3988
3989  unsigned getNumExprs() const { return NumExprs; }
3990
3991  const Expr* getExpr(unsigned Init) const {
3992    assert(Init < getNumExprs() && "Initializer access out of range!");
3993    return cast_or_null<Expr>(Exprs[Init]);
3994  }
3995
3996  Expr* getExpr(unsigned Init) {
3997    assert(Init < getNumExprs() && "Initializer access out of range!");
3998    return cast_or_null<Expr>(Exprs[Init]);
3999  }
4000
4001  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4002
4003  SourceLocation getLParenLoc() const { return LParenLoc; }
4004  SourceLocation getRParenLoc() const { return RParenLoc; }
4005
4006  SourceRange getSourceRange() const {
4007    return SourceRange(LParenLoc, RParenLoc);
4008  }
4009  static bool classof(const Stmt *T) {
4010    return T->getStmtClass() == ParenListExprClass;
4011  }
4012  static bool classof(const ParenListExpr *) { return true; }
4013
4014  // Iterators
4015  child_range children() {
4016    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4017  }
4018
4019  friend class ASTStmtReader;
4020  friend class ASTStmtWriter;
4021};
4022
4023
4024/// \brief Represents a C11 generic selection.
4025///
4026/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4027/// expression, followed by one or more generic associations.  Each generic
4028/// association specifies a type name and an expression, or "default" and an
4029/// expression (in which case it is known as a default generic association).
4030/// The type and value of the generic selection are identical to those of its
4031/// result expression, which is defined as the expression in the generic
4032/// association with a type name that is compatible with the type of the
4033/// controlling expression, or the expression in the default generic association
4034/// if no types are compatible.  For example:
4035///
4036/// @code
4037/// _Generic(X, double: 1, float: 2, default: 3)
4038/// @endcode
4039///
4040/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4041/// or 3 if "hello".
4042///
4043/// As an extension, generic selections are allowed in C++, where the following
4044/// additional semantics apply:
4045///
4046/// Any generic selection whose controlling expression is type-dependent or
4047/// which names a dependent type in its association list is result-dependent,
4048/// which means that the choice of result expression is dependent.
4049/// Result-dependent generic associations are both type- and value-dependent.
4050class GenericSelectionExpr : public Expr {
4051  enum { CONTROLLING, END_EXPR };
4052  TypeSourceInfo **AssocTypes;
4053  Stmt **SubExprs;
4054  unsigned NumAssocs, ResultIndex;
4055  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4056
4057public:
4058  GenericSelectionExpr(ASTContext &Context,
4059                       SourceLocation GenericLoc, Expr *ControllingExpr,
4060                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4061                       unsigned NumAssocs, SourceLocation DefaultLoc,
4062                       SourceLocation RParenLoc,
4063                       bool ContainsUnexpandedParameterPack,
4064                       unsigned ResultIndex);
4065
4066  /// This constructor is used in the result-dependent case.
4067  GenericSelectionExpr(ASTContext &Context,
4068                       SourceLocation GenericLoc, Expr *ControllingExpr,
4069                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4070                       unsigned NumAssocs, SourceLocation DefaultLoc,
4071                       SourceLocation RParenLoc,
4072                       bool ContainsUnexpandedParameterPack);
4073
4074  explicit GenericSelectionExpr(EmptyShell Empty)
4075    : Expr(GenericSelectionExprClass, Empty) { }
4076
4077  unsigned getNumAssocs() const { return NumAssocs; }
4078
4079  SourceLocation getGenericLoc() const { return GenericLoc; }
4080  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4081  SourceLocation getRParenLoc() const { return RParenLoc; }
4082
4083  const Expr *getAssocExpr(unsigned i) const {
4084    return cast<Expr>(SubExprs[END_EXPR+i]);
4085  }
4086  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4087
4088  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4089    return AssocTypes[i];
4090  }
4091  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4092
4093  QualType getAssocType(unsigned i) const {
4094    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4095      return TS->getType();
4096    else
4097      return QualType();
4098  }
4099
4100  const Expr *getControllingExpr() const {
4101    return cast<Expr>(SubExprs[CONTROLLING]);
4102  }
4103  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4104
4105  /// Whether this generic selection is result-dependent.
4106  bool isResultDependent() const { return ResultIndex == -1U; }
4107
4108  /// The zero-based index of the result expression's generic association in
4109  /// the generic selection's association list.  Defined only if the
4110  /// generic selection is not result-dependent.
4111  unsigned getResultIndex() const {
4112    assert(!isResultDependent() && "Generic selection is result-dependent");
4113    return ResultIndex;
4114  }
4115
4116  /// The generic selection's result expression.  Defined only if the
4117  /// generic selection is not result-dependent.
4118  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4119  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4120
4121  SourceRange getSourceRange() const {
4122    return SourceRange(GenericLoc, RParenLoc);
4123  }
4124  static bool classof(const Stmt *T) {
4125    return T->getStmtClass() == GenericSelectionExprClass;
4126  }
4127  static bool classof(const GenericSelectionExpr *) { return true; }
4128
4129  child_range children() {
4130    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4131  }
4132
4133  friend class ASTStmtReader;
4134};
4135
4136//===----------------------------------------------------------------------===//
4137// Clang Extensions
4138//===----------------------------------------------------------------------===//
4139
4140
4141/// ExtVectorElementExpr - This represents access to specific elements of a
4142/// vector, and may occur on the left hand side or right hand side.  For example
4143/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4144///
4145/// Note that the base may have either vector or pointer to vector type, just
4146/// like a struct field reference.
4147///
4148class ExtVectorElementExpr : public Expr {
4149  Stmt *Base;
4150  IdentifierInfo *Accessor;
4151  SourceLocation AccessorLoc;
4152public:
4153  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4154                       IdentifierInfo &accessor, SourceLocation loc)
4155    : Expr(ExtVectorElementExprClass, ty, VK,
4156           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4157           base->isTypeDependent(), base->isValueDependent(),
4158           base->isInstantiationDependent(),
4159           base->containsUnexpandedParameterPack()),
4160      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4161
4162  /// \brief Build an empty vector element expression.
4163  explicit ExtVectorElementExpr(EmptyShell Empty)
4164    : Expr(ExtVectorElementExprClass, Empty) { }
4165
4166  const Expr *getBase() const { return cast<Expr>(Base); }
4167  Expr *getBase() { return cast<Expr>(Base); }
4168  void setBase(Expr *E) { Base = E; }
4169
4170  IdentifierInfo &getAccessor() const { return *Accessor; }
4171  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4172
4173  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4174  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4175
4176  /// getNumElements - Get the number of components being selected.
4177  unsigned getNumElements() const;
4178
4179  /// containsDuplicateElements - Return true if any element access is
4180  /// repeated.
4181  bool containsDuplicateElements() const;
4182
4183  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4184  /// aggregate Constant of ConstantInt(s).
4185  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4186
4187  SourceRange getSourceRange() const {
4188    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4189  }
4190
4191  /// isArrow - Return true if the base expression is a pointer to vector,
4192  /// return false if the base expression is a vector.
4193  bool isArrow() const;
4194
4195  static bool classof(const Stmt *T) {
4196    return T->getStmtClass() == ExtVectorElementExprClass;
4197  }
4198  static bool classof(const ExtVectorElementExpr *) { return true; }
4199
4200  // Iterators
4201  child_range children() { return child_range(&Base, &Base+1); }
4202};
4203
4204
4205/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4206/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4207class BlockExpr : public Expr {
4208protected:
4209  BlockDecl *TheBlock;
4210public:
4211  BlockExpr(BlockDecl *BD, QualType ty)
4212    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4213           ty->isDependentType(), false,
4214           // FIXME: Check for instantiate-dependence in the statement?
4215           ty->isInstantiationDependentType(),
4216           false),
4217      TheBlock(BD) {}
4218
4219  /// \brief Build an empty block expression.
4220  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4221
4222  const BlockDecl *getBlockDecl() const { return TheBlock; }
4223  BlockDecl *getBlockDecl() { return TheBlock; }
4224  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4225
4226  // Convenience functions for probing the underlying BlockDecl.
4227  SourceLocation getCaretLocation() const;
4228  const Stmt *getBody() const;
4229  Stmt *getBody();
4230
4231  SourceRange getSourceRange() const {
4232    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4233  }
4234
4235  /// getFunctionType - Return the underlying function type for this block.
4236  const FunctionType *getFunctionType() const;
4237
4238  static bool classof(const Stmt *T) {
4239    return T->getStmtClass() == BlockExprClass;
4240  }
4241  static bool classof(const BlockExpr *) { return true; }
4242
4243  // Iterators
4244  child_range children() { return child_range(); }
4245};
4246
4247/// BlockDeclRefExpr - A reference to a local variable declared in an
4248/// enclosing scope.
4249class BlockDeclRefExpr : public Expr {
4250  VarDecl *D;
4251  SourceLocation Loc;
4252  bool IsByRef : 1;
4253  bool ConstQualAdded : 1;
4254public:
4255  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4256                   SourceLocation l, bool ByRef, bool constAdded = false);
4257
4258  // \brief Build an empty reference to a declared variable in a
4259  // block.
4260  explicit BlockDeclRefExpr(EmptyShell Empty)
4261    : Expr(BlockDeclRefExprClass, Empty) { }
4262
4263  VarDecl *getDecl() { return D; }
4264  const VarDecl *getDecl() const { return D; }
4265  void setDecl(VarDecl *VD) { D = VD; }
4266
4267  SourceLocation getLocation() const { return Loc; }
4268  void setLocation(SourceLocation L) { Loc = L; }
4269
4270  SourceRange getSourceRange() const { return SourceRange(Loc); }
4271
4272  bool isByRef() const { return IsByRef; }
4273  void setByRef(bool BR) { IsByRef = BR; }
4274
4275  bool isConstQualAdded() const { return ConstQualAdded; }
4276  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4277
4278  static bool classof(const Stmt *T) {
4279    return T->getStmtClass() == BlockDeclRefExprClass;
4280  }
4281  static bool classof(const BlockDeclRefExpr *) { return true; }
4282
4283  // Iterators
4284  child_range children() { return child_range(); }
4285};
4286
4287/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4288/// This AST node provides support for reinterpreting a type to another
4289/// type of the same size.
4290class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4291private:
4292  Stmt *SrcExpr;
4293  SourceLocation BuiltinLoc, RParenLoc;
4294
4295  friend class ASTReader;
4296  friend class ASTStmtReader;
4297  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4298
4299public:
4300  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4301             ExprValueKind VK, ExprObjectKind OK,
4302             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4303    : Expr(AsTypeExprClass, DstType, VK, OK,
4304           DstType->isDependentType(),
4305           DstType->isDependentType() || SrcExpr->isValueDependent(),
4306           (DstType->isInstantiationDependentType() ||
4307            SrcExpr->isInstantiationDependent()),
4308           (DstType->containsUnexpandedParameterPack() ||
4309            SrcExpr->containsUnexpandedParameterPack())),
4310  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4311
4312  /// getSrcExpr - Return the Expr to be converted.
4313  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4314
4315  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4316  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4317
4318  /// getRParenLoc - Return the location of final right parenthesis.
4319  SourceLocation getRParenLoc() const { return RParenLoc; }
4320
4321  SourceRange getSourceRange() const {
4322    return SourceRange(BuiltinLoc, RParenLoc);
4323  }
4324
4325  static bool classof(const Stmt *T) {
4326    return T->getStmtClass() == AsTypeExprClass;
4327  }
4328  static bool classof(const AsTypeExpr *) { return true; }
4329
4330  // Iterators
4331  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4332};
4333
4334/// PseudoObjectExpr - An expression which accesses a pseudo-object
4335/// l-value.  A pseudo-object is an abstract object, accesses to which
4336/// are translated to calls.  The pseudo-object expression has a
4337/// syntactic form, which shows how the expression was actually
4338/// written in the source code, and a semantic form, which is a series
4339/// of expressions to be executed in order which detail how the
4340/// operation is actually evaluated.  Optionally, one of the semantic
4341/// forms may also provide a result value for the expression.
4342///
4343/// If any of the semantic-form expressions is an OpaqueValueExpr,
4344/// that OVE is required to have a source expression, and it is bound
4345/// to the result of that source expression.  Such OVEs may appear
4346/// only in subsequent semantic-form expressions and as
4347/// sub-expressions of the syntactic form.
4348///
4349/// PseudoObjectExpr should be used only when an operation can be
4350/// usefully described in terms of fairly simple rewrite rules on
4351/// objects and functions that are meant to be used by end-developers.
4352/// For example, under the Itanium ABI, dynamic casts are implemented
4353/// as a call to a runtime function called __dynamic_cast; using this
4354/// class to describe that would be inappropriate because that call is
4355/// not really part of the user-visible semantics, and instead the
4356/// cast is properly reflected in the AST and IR-generation has been
4357/// taught to generate the call as necessary.  In contrast, an
4358/// Objective-C property access is semantically defined to be
4359/// equivalent to a particular message send, and this is very much
4360/// part of the user model.  The name of this class encourages this
4361/// modelling design.
4362class PseudoObjectExpr : public Expr {
4363  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4364  // Always at least two, because the first sub-expression is the
4365  // syntactic form.
4366
4367  // PseudoObjectExprBits.ResultIndex - The index of the
4368  // sub-expression holding the result.  0 means the result is void,
4369  // which is unambiguous because it's the index of the syntactic
4370  // form.  Note that this is therefore 1 higher than the value passed
4371  // in to Create, which is an index within the semantic forms.
4372  // Note also that ASTStmtWriter assumes this encoding.
4373
4374  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4375  const Expr * const *getSubExprsBuffer() const {
4376    return reinterpret_cast<const Expr * const *>(this + 1);
4377  }
4378
4379  friend class ASTStmtReader;
4380
4381  PseudoObjectExpr(QualType type, ExprValueKind VK,
4382                   Expr *syntactic, ArrayRef<Expr*> semantic,
4383                   unsigned resultIndex);
4384
4385  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4386
4387  unsigned getNumSubExprs() const {
4388    return PseudoObjectExprBits.NumSubExprs;
4389  }
4390
4391public:
4392  /// NoResult - A value for the result index indicating that there is
4393  /// no semantic result.
4394  enum { NoResult = ~0U };
4395
4396  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4397                                  ArrayRef<Expr*> semantic,
4398                                  unsigned resultIndex);
4399
4400  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4401                                  unsigned numSemanticExprs);
4402
4403  /// Return the syntactic form of this expression, i.e. the
4404  /// expression it actually looks like.  Likely to be expressed in
4405  /// terms of OpaqueValueExprs bound in the semantic form.
4406  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4407  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4408
4409  /// Return the index of the result-bearing expression into the semantics
4410  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4411  unsigned getResultExprIndex() const {
4412    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4413    return PseudoObjectExprBits.ResultIndex - 1;
4414  }
4415
4416  /// Return the result-bearing expression, or null if there is none.
4417  Expr *getResultExpr() {
4418    if (PseudoObjectExprBits.ResultIndex == 0)
4419      return 0;
4420    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4421  }
4422  const Expr *getResultExpr() const {
4423    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4424  }
4425
4426  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4427
4428  typedef Expr * const *semantics_iterator;
4429  typedef const Expr * const *const_semantics_iterator;
4430  semantics_iterator semantics_begin() {
4431    return getSubExprsBuffer() + 1;
4432  }
4433  const_semantics_iterator semantics_begin() const {
4434    return getSubExprsBuffer() + 1;
4435  }
4436  semantics_iterator semantics_end() {
4437    return getSubExprsBuffer() + getNumSubExprs();
4438  }
4439  const_semantics_iterator semantics_end() const {
4440    return getSubExprsBuffer() + getNumSubExprs();
4441  }
4442  Expr *getSemanticExpr(unsigned index) {
4443    assert(index + 1 < getNumSubExprs());
4444    return getSubExprsBuffer()[index + 1];
4445  }
4446  const Expr *getSemanticExpr(unsigned index) const {
4447    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4448  }
4449
4450  SourceLocation getExprLoc() const {
4451    return getSyntacticForm()->getExprLoc();
4452  }
4453  SourceRange getSourceRange() const {
4454    return getSyntacticForm()->getSourceRange();
4455  }
4456
4457  child_range children() {
4458    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4459    return child_range(cs, cs + getNumSubExprs());
4460  }
4461
4462  static bool classof(const Stmt *T) {
4463    return T->getStmtClass() == PseudoObjectExprClass;
4464  }
4465  static bool classof(const PseudoObjectExpr *) { return true; }
4466};
4467
4468/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4469/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4470/// similarly-named C++0x instructions.  All of these instructions take one
4471/// primary pointer and at least one memory order.
4472class AtomicExpr : public Expr {
4473public:
4474  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4475                  Add, Sub, And, Or, Xor, Init };
4476private:
4477  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4478  Stmt* SubExprs[END_EXPR];
4479  unsigned NumSubExprs;
4480  SourceLocation BuiltinLoc, RParenLoc;
4481  AtomicOp Op;
4482
4483public:
4484  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4485             AtomicOp op, SourceLocation RP);
4486
4487  /// \brief Build an empty AtomicExpr.
4488  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4489
4490  Expr *getPtr() const {
4491    return cast<Expr>(SubExprs[PTR]);
4492  }
4493  void setPtr(Expr *E) {
4494    SubExprs[PTR] = E;
4495  }
4496  Expr *getOrder() const {
4497    return cast<Expr>(SubExprs[ORDER]);
4498  }
4499  void setOrder(Expr *E) {
4500    SubExprs[ORDER] = E;
4501  }
4502  Expr *getVal1() const {
4503    if (Op == Init)
4504      return cast<Expr>(SubExprs[ORDER]);
4505    assert(NumSubExprs >= 3);
4506    return cast<Expr>(SubExprs[VAL1]);
4507  }
4508  void setVal1(Expr *E) {
4509    if (Op == Init) {
4510      SubExprs[ORDER] = E;
4511      return;
4512    }
4513    assert(NumSubExprs >= 3);
4514    SubExprs[VAL1] = E;
4515  }
4516  Expr *getOrderFail() const {
4517    assert(NumSubExprs == 5);
4518    return cast<Expr>(SubExprs[ORDER_FAIL]);
4519  }
4520  void setOrderFail(Expr *E) {
4521    assert(NumSubExprs == 5);
4522    SubExprs[ORDER_FAIL] = E;
4523  }
4524  Expr *getVal2() const {
4525    assert(NumSubExprs == 5);
4526    return cast<Expr>(SubExprs[VAL2]);
4527  }
4528  void setVal2(Expr *E) {
4529    assert(NumSubExprs == 5);
4530    SubExprs[VAL2] = E;
4531  }
4532
4533  AtomicOp getOp() const { return Op; }
4534  void setOp(AtomicOp op) { Op = op; }
4535  unsigned getNumSubExprs() { return NumSubExprs; }
4536  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4537
4538  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4539
4540  bool isVolatile() const {
4541    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4542  }
4543
4544  bool isCmpXChg() const {
4545    return getOp() == AtomicExpr::CmpXchgStrong ||
4546           getOp() == AtomicExpr::CmpXchgWeak;
4547  }
4548
4549  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4550  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4551
4552  SourceLocation getRParenLoc() const { return RParenLoc; }
4553  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4554
4555  SourceRange getSourceRange() const {
4556    return SourceRange(BuiltinLoc, RParenLoc);
4557  }
4558  static bool classof(const Stmt *T) {
4559    return T->getStmtClass() == AtomicExprClass;
4560  }
4561  static bool classof(const AtomicExpr *) { return true; }
4562
4563  // Iterators
4564  child_range children() {
4565    return child_range(SubExprs, SubExprs+NumSubExprs);
4566  }
4567};
4568}  // end namespace clang
4569
4570#endif
4571