Expr.h revision 73525de7fd9bdd534382dc89a24f1f76db3e04b9
1ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//
3ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//                     The LLVM Compiler Infrastructure
4ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//
5ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao// This file is distributed under the University of Illinois Open Source
6ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao// License. See LICENSE.TXT for details.
7ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//
8ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//===----------------------------------------------------------------------===//
9ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//
10ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//  This file defines the Expr interface and subclasses.
11ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//
12ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao//===----------------------------------------------------------------------===//
13ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao
14ea285162342df160e7860e26528bc7110bc6c0cdShih-wei Liao#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
184    llvm::APSInt X;
185    return isIntegerConstantExpr(X, Ctx, Loc);
186  }
187  /// isConstantInitializer - Returns true if this expression is a constant
188  /// initializer, which can be emitted at compile-time.
189  bool isConstantInitializer(ASTContext &Ctx) const;
190
191  /// EvalResult is a struct with detailed info about an evaluated expression.
192  struct EvalResult {
193    /// Val - This is the scalar value the expression can be folded to.
194    APValue Val;
195
196    /// HasSideEffects - Whether the evaluated expression has side effects.
197    /// For example, (f() && 0) can be folded, but it still has side effects.
198    bool HasSideEffects;
199
200    /// Diag - If the expression is unfoldable, then Diag contains a note
201    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
202    /// position for the error, and DiagExpr is the expression that caused
203    /// the error.
204    /// If the expression is foldable, but not an integer constant expression,
205    /// Diag contains a note diagnostic that describes why it isn't an integer
206    /// constant expression. If the expression *is* an integer constant
207    /// expression, then Diag will be zero.
208    unsigned Diag;
209    const Expr *DiagExpr;
210    SourceLocation DiagLoc;
211
212    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
213  };
214
215  /// Evaluate - Return true if this is a constant which we can fold using
216  /// any crazy technique (that has nothing to do with language standards) that
217  /// we want to.  If this function returns true, it returns the folded constant
218  /// in Result.
219  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
220
221  /// isEvaluatable - Call Evaluate to see if this expression can be constant
222  /// folded, but discard the result.
223  bool isEvaluatable(ASTContext &Ctx) const;
224
225  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
226  /// must be called on an expression that constant folds to an integer.
227  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
228
229  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
230  /// integer constant expression with the value zero, or if this is one that is
231  /// cast to void*.
232  bool isNullPointerConstant(ASTContext &Ctx) const;
233
234  /// hasGlobalStorage - Return true if this expression has static storage
235  /// duration.  This means that the address of this expression is a link-time
236  /// constant.
237  bool hasGlobalStorage() const;
238
239  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
240  ///  its subexpression.  If that subexpression is also a ParenExpr,
241  ///  then this method recursively returns its subexpression, and so forth.
242  ///  Otherwise, the method returns the current Expr.
243  Expr* IgnoreParens();
244
245  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
246  /// or CastExprs, returning their operand.
247  Expr *IgnoreParenCasts();
248
249  const Expr* IgnoreParens() const {
250    return const_cast<Expr*>(this)->IgnoreParens();
251  }
252  const Expr *IgnoreParenCasts() const {
253    return const_cast<Expr*>(this)->IgnoreParenCasts();
254  }
255
256  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
257  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
258
259  static bool classof(const Stmt *T) {
260    return T->getStmtClass() >= firstExprConstant &&
261           T->getStmtClass() <= lastExprConstant;
262  }
263  static bool classof(const Expr *) { return true; }
264
265  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
266    return cast<Expr>(Stmt::Create(D, C));
267  }
268};
269
270
271//===----------------------------------------------------------------------===//
272// Primary Expressions.
273//===----------------------------------------------------------------------===//
274
275/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
276/// enum, etc.
277class DeclRefExpr : public Expr {
278  NamedDecl *D;
279  SourceLocation Loc;
280
281protected:
282  // FIXME: Eventually, this constructor will go away and all subclasses
283  // will have to provide the type- and value-dependent flags.
284  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
285    Expr(SC, t), D(d), Loc(l) {}
286
287  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
288              bool VD) :
289    Expr(SC, t, TD, VD), D(d), Loc(l) {}
290
291public:
292  // FIXME: Eventually, this constructor will go away and all clients
293  // will have to provide the type- and value-dependent flags.
294  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
295    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
296
297  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
298    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
299
300  NamedDecl *getDecl() { return D; }
301  const NamedDecl *getDecl() const { return D; }
302  void setDecl(NamedDecl *NewD) { D = NewD; }
303
304  SourceLocation getLocation() const { return Loc; }
305  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
306
307  static bool classof(const Stmt *T) {
308    return T->getStmtClass() == DeclRefExprClass ||
309           T->getStmtClass() == CXXConditionDeclExprClass ||
310           T->getStmtClass() == QualifiedDeclRefExprClass;
311  }
312  static bool classof(const DeclRefExpr *) { return true; }
313
314  // Iterators
315  virtual child_iterator child_begin();
316  virtual child_iterator child_end();
317
318  virtual void EmitImpl(llvm::Serializer& S) const;
319  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
320};
321
322/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
323class PredefinedExpr : public Expr {
324public:
325  enum IdentType {
326    Func,
327    Function,
328    PrettyFunction
329  };
330
331private:
332  SourceLocation Loc;
333  IdentType Type;
334public:
335  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
336    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
337
338  IdentType getIdentType() const { return Type; }
339
340  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
341
342  static bool classof(const Stmt *T) {
343    return T->getStmtClass() == PredefinedExprClass;
344  }
345  static bool classof(const PredefinedExpr *) { return true; }
346
347  // Iterators
348  virtual child_iterator child_begin();
349  virtual child_iterator child_end();
350
351  virtual void EmitImpl(llvm::Serializer& S) const;
352  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
353};
354
355class IntegerLiteral : public Expr {
356  llvm::APInt Value;
357  SourceLocation Loc;
358public:
359  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
360  // or UnsignedLongLongTy
361  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
362    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
363    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
364  }
365  const llvm::APInt &getValue() const { return Value; }
366  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
367
368  static bool classof(const Stmt *T) {
369    return T->getStmtClass() == IntegerLiteralClass;
370  }
371  static bool classof(const IntegerLiteral *) { return true; }
372
373  // Iterators
374  virtual child_iterator child_begin();
375  virtual child_iterator child_end();
376
377  virtual void EmitImpl(llvm::Serializer& S) const;
378  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
379};
380
381class CharacterLiteral : public Expr {
382  unsigned Value;
383  SourceLocation Loc;
384  bool IsWide;
385public:
386  // type should be IntTy
387  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
388    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
389  }
390  SourceLocation getLoc() const { return Loc; }
391  bool isWide() const { return IsWide; }
392
393  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
394
395  unsigned getValue() const { return Value; }
396
397  static bool classof(const Stmt *T) {
398    return T->getStmtClass() == CharacterLiteralClass;
399  }
400  static bool classof(const CharacterLiteral *) { return true; }
401
402  // Iterators
403  virtual child_iterator child_begin();
404  virtual child_iterator child_end();
405
406  virtual void EmitImpl(llvm::Serializer& S) const;
407  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
408};
409
410class FloatingLiteral : public Expr {
411  llvm::APFloat Value;
412  bool IsExact : 1;
413  SourceLocation Loc;
414public:
415  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
416                  QualType Type, SourceLocation L)
417    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
418
419  const llvm::APFloat &getValue() const { return Value; }
420
421  bool isExact() const { return IsExact; }
422
423  /// getValueAsApproximateDouble - This returns the value as an inaccurate
424  /// double.  Note that this may cause loss of precision, but is useful for
425  /// debugging dumps, etc.
426  double getValueAsApproximateDouble() const;
427
428  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
429
430  static bool classof(const Stmt *T) {
431    return T->getStmtClass() == FloatingLiteralClass;
432  }
433  static bool classof(const FloatingLiteral *) { return true; }
434
435  // Iterators
436  virtual child_iterator child_begin();
437  virtual child_iterator child_end();
438
439  virtual void EmitImpl(llvm::Serializer& S) const;
440  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
441};
442
443/// ImaginaryLiteral - We support imaginary integer and floating point literals,
444/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
445/// IntegerLiteral classes.  Instances of this class always have a Complex type
446/// whose element type matches the subexpression.
447///
448class ImaginaryLiteral : public Expr {
449  Stmt *Val;
450public:
451  ImaginaryLiteral(Expr *val, QualType Ty)
452    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
453
454  const Expr *getSubExpr() const { return cast<Expr>(Val); }
455  Expr *getSubExpr() { return cast<Expr>(Val); }
456
457  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
458  static bool classof(const Stmt *T) {
459    return T->getStmtClass() == ImaginaryLiteralClass;
460  }
461  static bool classof(const ImaginaryLiteral *) { return true; }
462
463  // Iterators
464  virtual child_iterator child_begin();
465  virtual child_iterator child_end();
466
467  virtual void EmitImpl(llvm::Serializer& S) const;
468  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
469};
470
471/// StringLiteral - This represents a string literal expression, e.g. "foo"
472/// or L"bar" (wide strings).  The actual string is returned by getStrData()
473/// is NOT null-terminated, and the length of the string is determined by
474/// calling getByteLength().  The C type for a string is always a
475/// ConstantArrayType.
476class StringLiteral : public Expr {
477  const char *StrData;
478  unsigned ByteLength;
479  bool IsWide;
480  // if the StringLiteral was composed using token pasting, both locations
481  // are needed. If not (the common case), firstTokLoc == lastTokLoc.
482  // FIXME: if space becomes an issue, we should create a sub-class.
483  SourceLocation firstTokLoc, lastTokLoc;
484public:
485  StringLiteral(ASTContext& C, const char *strData, unsigned byteLength,
486                bool Wide, QualType t, SourceLocation b, SourceLocation e);
487
488  void Destroy(ASTContext& C);
489
490  const char *getStrData() const { return StrData; }
491  unsigned getByteLength() const { return ByteLength; }
492  bool isWide() const { return IsWide; }
493
494  virtual SourceRange getSourceRange() const {
495    return SourceRange(firstTokLoc,lastTokLoc);
496  }
497  static bool classof(const Stmt *T) {
498    return T->getStmtClass() == StringLiteralClass;
499  }
500  static bool classof(const StringLiteral *) { return true; }
501
502  // Iterators
503  virtual child_iterator child_begin();
504  virtual child_iterator child_end();
505
506  virtual void EmitImpl(llvm::Serializer& S) const;
507  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
508};
509
510/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
511/// AST node is only formed if full location information is requested.
512class ParenExpr : public Expr {
513  SourceLocation L, R;
514  Stmt *Val;
515public:
516  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
517    : Expr(ParenExprClass, val->getType(),
518           val->isTypeDependent(), val->isValueDependent()),
519      L(l), R(r), Val(val) {}
520
521  const Expr *getSubExpr() const { return cast<Expr>(Val); }
522  Expr *getSubExpr() { return cast<Expr>(Val); }
523  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
524
525  static bool classof(const Stmt *T) {
526    return T->getStmtClass() == ParenExprClass;
527  }
528  static bool classof(const ParenExpr *) { return true; }
529
530  // Iterators
531  virtual child_iterator child_begin();
532  virtual child_iterator child_end();
533
534  virtual void EmitImpl(llvm::Serializer& S) const;
535  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
536};
537
538
539/// UnaryOperator - This represents the unary-expression's (except sizeof and
540/// alignof), the postinc/postdec operators from postfix-expression, and various
541/// extensions.
542///
543/// Notes on various nodes:
544///
545/// Real/Imag - These return the real/imag part of a complex operand.  If
546///   applied to a non-complex value, the former returns its operand and the
547///   later returns zero in the type of the operand.
548///
549/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
550///   subexpression is a compound literal with the various MemberExpr and
551///   ArraySubscriptExpr's applied to it.
552///
553class UnaryOperator : public Expr {
554public:
555  // Note that additions to this should also update the StmtVisitor class.
556  enum Opcode {
557    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
558    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
559    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
560    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
561    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
562    Real, Imag,       // "__real expr"/"__imag expr" Extension.
563    Extension,        // __extension__ marker.
564    OffsetOf          // __builtin_offsetof
565  };
566private:
567  Stmt *Val;
568  Opcode Opc;
569  SourceLocation Loc;
570public:
571
572  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
573    : Expr(UnaryOperatorClass, type,
574           input->isTypeDependent() && opc != OffsetOf,
575           input->isValueDependent()),
576      Val(input), Opc(opc), Loc(l) {}
577
578  Opcode getOpcode() const { return Opc; }
579  Expr *getSubExpr() const { return cast<Expr>(Val); }
580
581  /// getOperatorLoc - Return the location of the operator.
582  SourceLocation getOperatorLoc() const { return Loc; }
583
584  /// isPostfix - Return true if this is a postfix operation, like x++.
585  static bool isPostfix(Opcode Op);
586
587  /// isPostfix - Return true if this is a prefix operation, like --x.
588  static bool isPrefix(Opcode Op);
589
590  bool isPrefix() const { return isPrefix(Opc); }
591  bool isPostfix() const { return isPostfix(Opc); }
592  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
593  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
594  bool isOffsetOfOp() const { return Opc == OffsetOf; }
595  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
596
597  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
598  /// corresponds to, e.g. "sizeof" or "[pre]++"
599  static const char *getOpcodeStr(Opcode Op);
600
601  virtual SourceRange getSourceRange() const {
602    if (isPostfix())
603      return SourceRange(Val->getLocStart(), Loc);
604    else
605      return SourceRange(Loc, Val->getLocEnd());
606  }
607  virtual SourceLocation getExprLoc() const { return Loc; }
608
609  static bool classof(const Stmt *T) {
610    return T->getStmtClass() == UnaryOperatorClass;
611  }
612  static bool classof(const UnaryOperator *) { return true; }
613
614  int64_t evaluateOffsetOf(ASTContext& C) const;
615
616  // Iterators
617  virtual child_iterator child_begin();
618  virtual child_iterator child_end();
619
620  virtual void EmitImpl(llvm::Serializer& S) const;
621  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
622};
623
624/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
625/// types and expressions.
626class SizeOfAlignOfExpr : public Expr {
627  bool isSizeof : 1;  // true if sizeof, false if alignof.
628  bool isType : 1;    // true if operand is a type, false if an expression
629  union {
630    void *Ty;
631    Stmt *Ex;
632  } Argument;
633  SourceLocation OpLoc, RParenLoc;
634public:
635  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
636                    QualType resultType, SourceLocation op,
637                    SourceLocation rp) :
638      Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
639      isType(istype), OpLoc(op), RParenLoc(rp) {
640    if (isType)
641      Argument.Ty = argument;
642    else
643      // argument was an Expr*, so cast it back to that to be safe
644      Argument.Ex = static_cast<Expr*>(argument);
645  }
646
647  virtual void Destroy(ASTContext& C);
648
649  bool isSizeOf() const { return isSizeof; }
650  bool isArgumentType() const { return isType; }
651  QualType getArgumentType() const {
652    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
653    return QualType::getFromOpaquePtr(Argument.Ty);
654  }
655  Expr *getArgumentExpr() {
656    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
657    return static_cast<Expr*>(Argument.Ex);
658  }
659  const Expr *getArgumentExpr() const {
660    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
661  }
662
663  /// Gets the argument type, or the type of the argument expression, whichever
664  /// is appropriate.
665  QualType getTypeOfArgument() const {
666    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
667  }
668
669  SourceLocation getOperatorLoc() const { return OpLoc; }
670
671  virtual SourceRange getSourceRange() const {
672    return SourceRange(OpLoc, RParenLoc);
673  }
674
675  static bool classof(const Stmt *T) {
676    return T->getStmtClass() == SizeOfAlignOfExprClass;
677  }
678  static bool classof(const SizeOfAlignOfExpr *) { return true; }
679
680  // Iterators
681  virtual child_iterator child_begin();
682  virtual child_iterator child_end();
683
684  virtual void EmitImpl(llvm::Serializer& S) const;
685  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
686};
687
688//===----------------------------------------------------------------------===//
689// Postfix Operators.
690//===----------------------------------------------------------------------===//
691
692/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
693class ArraySubscriptExpr : public Expr {
694  enum { LHS, RHS, END_EXPR=2 };
695  Stmt* SubExprs[END_EXPR];
696  SourceLocation RBracketLoc;
697public:
698  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
699                     SourceLocation rbracketloc)
700  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
701    SubExprs[LHS] = lhs;
702    SubExprs[RHS] = rhs;
703  }
704
705  /// An array access can be written A[4] or 4[A] (both are equivalent).
706  /// - getBase() and getIdx() always present the normalized view: A[4].
707  ///    In this case getBase() returns "A" and getIdx() returns "4".
708  /// - getLHS() and getRHS() present the syntactic view. e.g. for
709  ///    4[A] getLHS() returns "4".
710  /// Note: Because vector element access is also written A[4] we must
711  /// predicate the format conversion in getBase and getIdx only on the
712  /// the type of the RHS, as it is possible for the LHS to be a vector of
713  /// integer type
714  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
715  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
716
717  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
718  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
719
720  Expr *getBase() {
721    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
722  }
723
724  const Expr *getBase() const {
725    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
726  }
727
728  Expr *getIdx() {
729    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
730  }
731
732  const Expr *getIdx() const {
733    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
734  }
735
736  virtual SourceRange getSourceRange() const {
737    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
738  }
739
740  SourceLocation getRBracketLoc() const { return RBracketLoc; }
741  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
742
743  static bool classof(const Stmt *T) {
744    return T->getStmtClass() == ArraySubscriptExprClass;
745  }
746  static bool classof(const ArraySubscriptExpr *) { return true; }
747
748  // Iterators
749  virtual child_iterator child_begin();
750  virtual child_iterator child_end();
751
752  virtual void EmitImpl(llvm::Serializer& S) const;
753  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
754};
755
756
757/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
758/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
759/// while its subclasses may represent alternative syntax that (semantically)
760/// results in a function call. For example, CXXOperatorCallExpr is
761/// a subclass for overloaded operator calls that use operator syntax, e.g.,
762/// "str1 + str2" to resolve to a function call.
763class CallExpr : public Expr {
764  enum { FN=0, ARGS_START=1 };
765  Stmt **SubExprs;
766  unsigned NumArgs;
767  SourceLocation RParenLoc;
768
769  // This version of the ctor is for deserialization.
770  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
771           SourceLocation rparenloc)
772  : Expr(SC,t), SubExprs(subexprs),
773    NumArgs(numargs), RParenLoc(rparenloc) {}
774
775protected:
776  // This version of the constructor is for derived classes.
777  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
778           QualType t, SourceLocation rparenloc);
779
780public:
781  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
782           SourceLocation rparenloc);
783
784  ~CallExpr() {}
785
786  void Destroy(ASTContext& C);
787
788  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
789  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
790  void setCallee(Expr *F) { SubExprs[FN] = F; }
791
792  /// getNumArgs - Return the number of actual arguments to this call.
793  ///
794  unsigned getNumArgs() const { return NumArgs; }
795
796  /// getArg - Return the specified argument.
797  Expr *getArg(unsigned Arg) {
798    assert(Arg < NumArgs && "Arg access out of range!");
799    return cast<Expr>(SubExprs[Arg+ARGS_START]);
800  }
801  const Expr *getArg(unsigned Arg) const {
802    assert(Arg < NumArgs && "Arg access out of range!");
803    return cast<Expr>(SubExprs[Arg+ARGS_START]);
804  }
805
806  // FIXME: Why is this needed?  Why not just create the CallExpr with the
807  // corect number of arguments?  It makes the ASTs less brittle.
808  /// setArg - Set the specified argument.
809  void setArg(unsigned Arg, Expr *ArgExpr) {
810    assert(Arg < NumArgs && "Arg access out of range!");
811    SubExprs[Arg+ARGS_START] = ArgExpr;
812  }
813
814  // FIXME: It would be great to just get rid of this.  There is only one
815  // callee of this method, and it probably could be refactored to not use
816  // this method and instead just create a CallExpr with the right number of
817  // arguments.
818  /// setNumArgs - This changes the number of arguments present in this call.
819  /// Any orphaned expressions are deleted by this, and any new operands are set
820  /// to null.
821  void setNumArgs(ASTContext& C, unsigned NumArgs);
822
823  typedef ExprIterator arg_iterator;
824  typedef ConstExprIterator const_arg_iterator;
825
826  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
827  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
828  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
829  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
830
831  /// getNumCommas - Return the number of commas that must have been present in
832  /// this function call.
833  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
834
835  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
836  /// not, return 0.
837  unsigned isBuiltinCall(ASTContext &Context) const;
838
839  SourceLocation getRParenLoc() const { return RParenLoc; }
840
841  virtual SourceRange getSourceRange() const {
842    return SourceRange(getCallee()->getLocStart(), RParenLoc);
843  }
844
845  static bool classof(const Stmt *T) {
846    return T->getStmtClass() == CallExprClass ||
847           T->getStmtClass() == CXXOperatorCallExprClass ||
848           T->getStmtClass() == CXXMemberCallExprClass;
849  }
850  static bool classof(const CallExpr *) { return true; }
851  static bool classof(const CXXOperatorCallExpr *) { return true; }
852  static bool classof(const CXXMemberCallExpr *) { return true; }
853
854  // Iterators
855  virtual child_iterator child_begin();
856  virtual child_iterator child_end();
857
858  virtual void EmitImpl(llvm::Serializer& S) const;
859  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
860                              StmtClass SC);
861};
862
863/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
864///
865class MemberExpr : public Expr {
866  Stmt *Base;
867  NamedDecl *MemberDecl;
868  SourceLocation MemberLoc;
869  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
870public:
871  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
872             QualType ty)
873    : Expr(MemberExprClass, ty),
874      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
875
876  void setBase(Expr *E) { Base = E; }
877  Expr *getBase() const { return cast<Expr>(Base); }
878  NamedDecl *getMemberDecl() const { return MemberDecl; }
879  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
880  bool isArrow() const { return IsArrow; }
881  SourceLocation getMemberLoc() const { return MemberLoc; }
882
883  virtual SourceRange getSourceRange() const {
884    return SourceRange(getBase()->getLocStart(), MemberLoc);
885  }
886
887  virtual SourceLocation getExprLoc() const { return MemberLoc; }
888
889  static bool classof(const Stmt *T) {
890    return T->getStmtClass() == MemberExprClass;
891  }
892  static bool classof(const MemberExpr *) { return true; }
893
894  // Iterators
895  virtual child_iterator child_begin();
896  virtual child_iterator child_end();
897
898  virtual void EmitImpl(llvm::Serializer& S) const;
899  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
900};
901
902/// CompoundLiteralExpr - [C99 6.5.2.5]
903///
904class CompoundLiteralExpr : public Expr {
905  /// LParenLoc - If non-null, this is the location of the left paren in a
906  /// compound literal like "(int){4}".  This can be null if this is a
907  /// synthesized compound expression.
908  SourceLocation LParenLoc;
909  Stmt *Init;
910  bool FileScope;
911public:
912  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
913                      bool fileScope)
914    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
915      FileScope(fileScope) {}
916
917  const Expr *getInitializer() const { return cast<Expr>(Init); }
918  Expr *getInitializer() { return cast<Expr>(Init); }
919
920  bool isFileScope() const { return FileScope; }
921
922  SourceLocation getLParenLoc() const { return LParenLoc; }
923
924  virtual SourceRange getSourceRange() const {
925    // FIXME: Init should never be null.
926    if (!Init)
927      return SourceRange();
928    if (LParenLoc.isInvalid())
929      return Init->getSourceRange();
930    return SourceRange(LParenLoc, Init->getLocEnd());
931  }
932
933  static bool classof(const Stmt *T) {
934    return T->getStmtClass() == CompoundLiteralExprClass;
935  }
936  static bool classof(const CompoundLiteralExpr *) { return true; }
937
938  // Iterators
939  virtual child_iterator child_begin();
940  virtual child_iterator child_end();
941
942  virtual void EmitImpl(llvm::Serializer& S) const;
943  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
944};
945
946/// CastExpr - Base class for type casts, including both implicit
947/// casts (ImplicitCastExpr) and explicit casts that have some
948/// representation in the source code (ExplicitCastExpr's derived
949/// classes).
950class CastExpr : public Expr {
951  Stmt *Op;
952protected:
953  CastExpr(StmtClass SC, QualType ty, Expr *op) :
954    Expr(SC, ty,
955         // Cast expressions are type-dependent if the type is
956         // dependent (C++ [temp.dep.expr]p3).
957         ty->isDependentType(),
958         // Cast expressions are value-dependent if the type is
959         // dependent or if the subexpression is value-dependent.
960         ty->isDependentType() || (op && op->isValueDependent())),
961    Op(op) {}
962
963public:
964  Expr *getSubExpr() { return cast<Expr>(Op); }
965  const Expr *getSubExpr() const { return cast<Expr>(Op); }
966
967  static bool classof(const Stmt *T) {
968    StmtClass SC = T->getStmtClass();
969    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
970      return true;
971
972    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
973      return true;
974
975    return false;
976  }
977  static bool classof(const CastExpr *) { return true; }
978
979  // Iterators
980  virtual child_iterator child_begin();
981  virtual child_iterator child_end();
982};
983
984/// ImplicitCastExpr - Allows us to explicitly represent implicit type
985/// conversions, which have no direct representation in the original
986/// source code. For example: converting T[]->T*, void f()->void
987/// (*f)(), float->double, short->int, etc.
988///
989/// In C, implicit casts always produce rvalues. However, in C++, an
990/// implicit cast whose result is being bound to a reference will be
991/// an lvalue. For example:
992///
993/// @code
994/// class Base { };
995/// class Derived : public Base { };
996/// void f(Derived d) {
997///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
998/// }
999/// @endcode
1000class ImplicitCastExpr : public CastExpr {
1001  /// LvalueCast - Whether this cast produces an lvalue.
1002  bool LvalueCast;
1003
1004public:
1005  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1006    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1007
1008  virtual SourceRange getSourceRange() const {
1009    return getSubExpr()->getSourceRange();
1010  }
1011
1012  /// isLvalueCast - Whether this cast produces an lvalue.
1013  bool isLvalueCast() const { return LvalueCast; }
1014
1015  /// setLvalueCast - Set whether this cast produces an lvalue.
1016  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1017
1018  static bool classof(const Stmt *T) {
1019    return T->getStmtClass() == ImplicitCastExprClass;
1020  }
1021  static bool classof(const ImplicitCastExpr *) { return true; }
1022
1023  virtual void EmitImpl(llvm::Serializer& S) const;
1024  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1025};
1026
1027/// ExplicitCastExpr - An explicit cast written in the source
1028/// code.
1029///
1030/// This class is effectively an abstract class, because it provides
1031/// the basic representation of an explicitly-written cast without
1032/// specifying which kind of cast (C cast, functional cast, static
1033/// cast, etc.) was written; specific derived classes represent the
1034/// particular style of cast and its location information.
1035///
1036/// Unlike implicit casts, explicit cast nodes have two different
1037/// types: the type that was written into the source code, and the
1038/// actual type of the expression as determined by semantic
1039/// analysis. These types may differ slightly. For example, in C++ one
1040/// can cast to a reference type, which indicates that the resulting
1041/// expression will be an lvalue. The reference type, however, will
1042/// not be used as the type of the expression.
1043class ExplicitCastExpr : public CastExpr {
1044  /// TypeAsWritten - The type that this expression is casting to, as
1045  /// written in the source code.
1046  QualType TypeAsWritten;
1047
1048protected:
1049  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1050    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1051
1052public:
1053  /// getTypeAsWritten - Returns the type that this expression is
1054  /// casting to, as written in the source code.
1055  QualType getTypeAsWritten() const { return TypeAsWritten; }
1056
1057  static bool classof(const Stmt *T) {
1058    StmtClass SC = T->getStmtClass();
1059    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1060      return true;
1061    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1062      return true;
1063
1064    return false;
1065  }
1066  static bool classof(const ExplicitCastExpr *) { return true; }
1067};
1068
1069/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1070/// cast in C++ (C++ [expr.cast]), which uses the syntax
1071/// (Type)expr. For example: @c (int)f.
1072class CStyleCastExpr : public ExplicitCastExpr {
1073  SourceLocation LPLoc; // the location of the left paren
1074  SourceLocation RPLoc; // the location of the right paren
1075public:
1076  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1077                    SourceLocation l, SourceLocation r) :
1078    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1079    LPLoc(l), RPLoc(r) {}
1080
1081  SourceLocation getLParenLoc() const { return LPLoc; }
1082  SourceLocation getRParenLoc() const { return RPLoc; }
1083
1084  virtual SourceRange getSourceRange() const {
1085    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1086  }
1087  static bool classof(const Stmt *T) {
1088    return T->getStmtClass() == CStyleCastExprClass;
1089  }
1090  static bool classof(const CStyleCastExpr *) { return true; }
1091
1092  virtual void EmitImpl(llvm::Serializer& S) const;
1093  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1094};
1095
1096class BinaryOperator : public Expr {
1097public:
1098  enum Opcode {
1099    // Operators listed in order of precedence.
1100    // Note that additions to this should also update the StmtVisitor class.
1101    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1102    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1103    Add, Sub,         // [C99 6.5.6] Additive operators.
1104    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1105    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1106    EQ, NE,           // [C99 6.5.9] Equality operators.
1107    And,              // [C99 6.5.10] Bitwise AND operator.
1108    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1109    Or,               // [C99 6.5.12] Bitwise OR operator.
1110    LAnd,             // [C99 6.5.13] Logical AND operator.
1111    LOr,              // [C99 6.5.14] Logical OR operator.
1112    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1113    DivAssign, RemAssign,
1114    AddAssign, SubAssign,
1115    ShlAssign, ShrAssign,
1116    AndAssign, XorAssign,
1117    OrAssign,
1118    Comma             // [C99 6.5.17] Comma operator.
1119  };
1120private:
1121  enum { LHS, RHS, END_EXPR };
1122  Stmt* SubExprs[END_EXPR];
1123  Opcode Opc;
1124  SourceLocation OpLoc;
1125public:
1126
1127  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1128                 SourceLocation opLoc)
1129    : Expr(BinaryOperatorClass, ResTy,
1130           lhs->isTypeDependent() || rhs->isTypeDependent(),
1131           lhs->isValueDependent() || rhs->isValueDependent()),
1132      Opc(opc), OpLoc(opLoc) {
1133    SubExprs[LHS] = lhs;
1134    SubExprs[RHS] = rhs;
1135    assert(!isCompoundAssignmentOp() &&
1136           "Use ArithAssignBinaryOperator for compound assignments");
1137  }
1138
1139  SourceLocation getOperatorLoc() const { return OpLoc; }
1140  Opcode getOpcode() const { return Opc; }
1141  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1142  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1143  virtual SourceRange getSourceRange() const {
1144    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1145  }
1146
1147  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1148  /// corresponds to, e.g. "<<=".
1149  static const char *getOpcodeStr(Opcode Op);
1150
1151  /// predicates to categorize the respective opcodes.
1152  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1153  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1154  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1155  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1156
1157  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1158  bool isRelationalOp() const { return isRelationalOp(Opc); }
1159
1160  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1161  bool isEqualityOp() const { return isEqualityOp(Opc); }
1162
1163  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1164  bool isLogicalOp() const { return isLogicalOp(Opc); }
1165
1166  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1167  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1168  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1169
1170  static bool classof(const Stmt *S) {
1171    return S->getStmtClass() == BinaryOperatorClass ||
1172           S->getStmtClass() == CompoundAssignOperatorClass;
1173  }
1174  static bool classof(const BinaryOperator *) { return true; }
1175
1176  // Iterators
1177  virtual child_iterator child_begin();
1178  virtual child_iterator child_end();
1179
1180  virtual void EmitImpl(llvm::Serializer& S) const;
1181  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1182
1183protected:
1184  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1185                 SourceLocation oploc, bool dead)
1186    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1187    SubExprs[LHS] = lhs;
1188    SubExprs[RHS] = rhs;
1189  }
1190};
1191
1192/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1193/// track of the type the operation is performed in.  Due to the semantics of
1194/// these operators, the operands are promoted, the aritmetic performed, an
1195/// implicit conversion back to the result type done, then the assignment takes
1196/// place.  This captures the intermediate type which the computation is done
1197/// in.
1198class CompoundAssignOperator : public BinaryOperator {
1199  QualType ComputationType;
1200public:
1201  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1202                         QualType ResType, QualType CompType,
1203                         SourceLocation OpLoc)
1204    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1205      ComputationType(CompType) {
1206    assert(isCompoundAssignmentOp() &&
1207           "Only should be used for compound assignments");
1208  }
1209
1210  QualType getComputationType() const { return ComputationType; }
1211
1212  static bool classof(const CompoundAssignOperator *) { return true; }
1213  static bool classof(const Stmt *S) {
1214    return S->getStmtClass() == CompoundAssignOperatorClass;
1215  }
1216
1217  virtual void EmitImpl(llvm::Serializer& S) const;
1218  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1219                                            ASTContext& C);
1220};
1221
1222/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1223/// GNU "missing LHS" extension is in use.
1224///
1225class ConditionalOperator : public Expr {
1226  enum { COND, LHS, RHS, END_EXPR };
1227  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1228public:
1229  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1230    : Expr(ConditionalOperatorClass, t,
1231           // FIXME: the type of the conditional operator doesn't
1232           // depend on the type of the conditional, but the standard
1233           // seems to imply that it could. File a bug!
1234           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1235           (cond->isValueDependent() ||
1236            (lhs && lhs->isValueDependent()) ||
1237            (rhs && rhs->isValueDependent()))) {
1238    SubExprs[COND] = cond;
1239    SubExprs[LHS] = lhs;
1240    SubExprs[RHS] = rhs;
1241  }
1242
1243  // getCond - Return the expression representing the condition for
1244  //  the ?: operator.
1245  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1246
1247  // getTrueExpr - Return the subexpression representing the value of the ?:
1248  //  expression if the condition evaluates to true.  In most cases this value
1249  //  will be the same as getLHS() except a GCC extension allows the left
1250  //  subexpression to be omitted, and instead of the condition be returned.
1251  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1252  //  is only evaluated once.
1253  Expr *getTrueExpr() const {
1254    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1255  }
1256
1257  // getTrueExpr - Return the subexpression representing the value of the ?:
1258  // expression if the condition evaluates to false. This is the same as getRHS.
1259  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1260
1261  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1262  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1263
1264  virtual SourceRange getSourceRange() const {
1265    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1266  }
1267  static bool classof(const Stmt *T) {
1268    return T->getStmtClass() == ConditionalOperatorClass;
1269  }
1270  static bool classof(const ConditionalOperator *) { return true; }
1271
1272  // Iterators
1273  virtual child_iterator child_begin();
1274  virtual child_iterator child_end();
1275
1276  virtual void EmitImpl(llvm::Serializer& S) const;
1277  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1278};
1279
1280/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1281class AddrLabelExpr : public Expr {
1282  SourceLocation AmpAmpLoc, LabelLoc;
1283  LabelStmt *Label;
1284public:
1285  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1286                QualType t)
1287    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1288
1289  virtual SourceRange getSourceRange() const {
1290    return SourceRange(AmpAmpLoc, LabelLoc);
1291  }
1292
1293  LabelStmt *getLabel() const { return Label; }
1294
1295  static bool classof(const Stmt *T) {
1296    return T->getStmtClass() == AddrLabelExprClass;
1297  }
1298  static bool classof(const AddrLabelExpr *) { return true; }
1299
1300  // Iterators
1301  virtual child_iterator child_begin();
1302  virtual child_iterator child_end();
1303
1304  virtual void EmitImpl(llvm::Serializer& S) const;
1305  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1306};
1307
1308/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1309/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1310/// takes the value of the last subexpression.
1311class StmtExpr : public Expr {
1312  Stmt *SubStmt;
1313  SourceLocation LParenLoc, RParenLoc;
1314public:
1315  StmtExpr(CompoundStmt *substmt, QualType T,
1316           SourceLocation lp, SourceLocation rp) :
1317    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1318
1319  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1320  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1321
1322  virtual SourceRange getSourceRange() const {
1323    return SourceRange(LParenLoc, RParenLoc);
1324  }
1325
1326  SourceLocation getLParenLoc() const { return LParenLoc; }
1327  SourceLocation getRParenLoc() const { return RParenLoc; }
1328
1329  static bool classof(const Stmt *T) {
1330    return T->getStmtClass() == StmtExprClass;
1331  }
1332  static bool classof(const StmtExpr *) { return true; }
1333
1334  // Iterators
1335  virtual child_iterator child_begin();
1336  virtual child_iterator child_end();
1337
1338  virtual void EmitImpl(llvm::Serializer& S) const;
1339  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1340};
1341
1342/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1343/// This AST node represents a function that returns 1 if two *types* (not
1344/// expressions) are compatible. The result of this built-in function can be
1345/// used in integer constant expressions.
1346class TypesCompatibleExpr : public Expr {
1347  QualType Type1;
1348  QualType Type2;
1349  SourceLocation BuiltinLoc, RParenLoc;
1350public:
1351  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1352                      QualType t1, QualType t2, SourceLocation RP) :
1353    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1354    BuiltinLoc(BLoc), RParenLoc(RP) {}
1355
1356  QualType getArgType1() const { return Type1; }
1357  QualType getArgType2() const { return Type2; }
1358
1359  virtual SourceRange getSourceRange() const {
1360    return SourceRange(BuiltinLoc, RParenLoc);
1361  }
1362  static bool classof(const Stmt *T) {
1363    return T->getStmtClass() == TypesCompatibleExprClass;
1364  }
1365  static bool classof(const TypesCompatibleExpr *) { return true; }
1366
1367  // Iterators
1368  virtual child_iterator child_begin();
1369  virtual child_iterator child_end();
1370
1371  virtual void EmitImpl(llvm::Serializer& S) const;
1372  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1373};
1374
1375/// ShuffleVectorExpr - clang-specific builtin-in function
1376/// __builtin_shufflevector.
1377/// This AST node represents a operator that does a constant
1378/// shuffle, similar to LLVM's shufflevector instruction. It takes
1379/// two vectors and a variable number of constant indices,
1380/// and returns the appropriately shuffled vector.
1381class ShuffleVectorExpr : public Expr {
1382  SourceLocation BuiltinLoc, RParenLoc;
1383
1384  // SubExprs - the list of values passed to the __builtin_shufflevector
1385  // function. The first two are vectors, and the rest are constant
1386  // indices.  The number of values in this list is always
1387  // 2+the number of indices in the vector type.
1388  Stmt **SubExprs;
1389  unsigned NumExprs;
1390
1391public:
1392  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1393                    QualType Type, SourceLocation BLoc,
1394                    SourceLocation RP) :
1395    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1396    RParenLoc(RP), NumExprs(nexpr) {
1397
1398    SubExprs = new Stmt*[nexpr];
1399    for (unsigned i = 0; i < nexpr; i++)
1400      SubExprs[i] = args[i];
1401  }
1402
1403  virtual SourceRange getSourceRange() const {
1404    return SourceRange(BuiltinLoc, RParenLoc);
1405  }
1406  static bool classof(const Stmt *T) {
1407    return T->getStmtClass() == ShuffleVectorExprClass;
1408  }
1409  static bool classof(const ShuffleVectorExpr *) { return true; }
1410
1411  ~ShuffleVectorExpr() {
1412    delete [] SubExprs;
1413  }
1414
1415  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1416  /// constant expression, the actual arguments passed in, and the function
1417  /// pointers.
1418  unsigned getNumSubExprs() const { return NumExprs; }
1419
1420  /// getExpr - Return the Expr at the specified index.
1421  Expr *getExpr(unsigned Index) {
1422    assert((Index < NumExprs) && "Arg access out of range!");
1423    return cast<Expr>(SubExprs[Index]);
1424  }
1425  const Expr *getExpr(unsigned Index) const {
1426    assert((Index < NumExprs) && "Arg access out of range!");
1427    return cast<Expr>(SubExprs[Index]);
1428  }
1429
1430  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1431    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1432    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1433  }
1434
1435  // Iterators
1436  virtual child_iterator child_begin();
1437  virtual child_iterator child_end();
1438
1439  virtual void EmitImpl(llvm::Serializer& S) const;
1440  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1441};
1442
1443/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1444/// This AST node is similar to the conditional operator (?:) in C, with
1445/// the following exceptions:
1446/// - the test expression must be a constant expression.
1447/// - the expression returned has it's type unaltered by promotion rules.
1448/// - does not evaluate the expression that was not chosen.
1449class ChooseExpr : public Expr {
1450  enum { COND, LHS, RHS, END_EXPR };
1451  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1452  SourceLocation BuiltinLoc, RParenLoc;
1453public:
1454  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1455             SourceLocation RP)
1456    : Expr(ChooseExprClass, t),
1457      BuiltinLoc(BLoc), RParenLoc(RP) {
1458      SubExprs[COND] = cond;
1459      SubExprs[LHS] = lhs;
1460      SubExprs[RHS] = rhs;
1461    }
1462
1463  /// isConditionTrue - Return true if the condition is true.  This is always
1464  /// statically knowable for a well-formed choosexpr.
1465  bool isConditionTrue(ASTContext &C) const;
1466
1467  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1468  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1469  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1470
1471  virtual SourceRange getSourceRange() const {
1472    return SourceRange(BuiltinLoc, RParenLoc);
1473  }
1474  static bool classof(const Stmt *T) {
1475    return T->getStmtClass() == ChooseExprClass;
1476  }
1477  static bool classof(const ChooseExpr *) { return true; }
1478
1479  // Iterators
1480  virtual child_iterator child_begin();
1481  virtual child_iterator child_end();
1482
1483  virtual void EmitImpl(llvm::Serializer& S) const;
1484  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1485};
1486
1487/// GNUNullExpr - Implements the GNU __null extension, which is a name
1488/// for a null pointer constant that has integral type (e.g., int or
1489/// long) and is the same size and alignment as a pointer. The __null
1490/// extension is typically only used by system headers, which define
1491/// NULL as __null in C++ rather than using 0 (which is an integer
1492/// that may not match the size of a pointer).
1493class GNUNullExpr : public Expr {
1494  /// TokenLoc - The location of the __null keyword.
1495  SourceLocation TokenLoc;
1496
1497public:
1498  GNUNullExpr(QualType Ty, SourceLocation Loc)
1499    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1500
1501  /// getTokenLocation - The location of the __null token.
1502  SourceLocation getTokenLocation() const { return TokenLoc; }
1503
1504  virtual SourceRange getSourceRange() const {
1505    return SourceRange(TokenLoc);
1506  }
1507  static bool classof(const Stmt *T) {
1508    return T->getStmtClass() == GNUNullExprClass;
1509  }
1510  static bool classof(const GNUNullExpr *) { return true; }
1511
1512  // Iterators
1513  virtual child_iterator child_begin();
1514  virtual child_iterator child_end();
1515
1516  virtual void EmitImpl(llvm::Serializer& S) const;
1517  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1518};
1519
1520/// OverloadExpr - Clang builtin function __builtin_overload.
1521/// This AST node provides a way to overload functions in C.
1522///
1523/// The first argument is required to be a constant expression, for the number
1524/// of arguments passed to each candidate function.
1525///
1526/// The next N arguments, where N is the value of the constant expression,
1527/// are the values to be passed as arguments.
1528///
1529/// The rest of the arguments are values of pointer to function type, which
1530/// are the candidate functions for overloading.
1531///
1532/// The result is a equivalent to a CallExpr taking N arguments to the
1533/// candidate function whose parameter types match the types of the N arguments.
1534///
1535/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1536/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1537/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1538class OverloadExpr : public Expr {
1539  // SubExprs - the list of values passed to the __builtin_overload function.
1540  // SubExpr[0] is a constant expression
1541  // SubExpr[1-N] are the parameters to pass to the matching function call
1542  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1543  Stmt **SubExprs;
1544
1545  // NumExprs - the size of the SubExprs array
1546  unsigned NumExprs;
1547
1548  // The index of the matching candidate function
1549  unsigned FnIndex;
1550
1551  SourceLocation BuiltinLoc;
1552  SourceLocation RParenLoc;
1553public:
1554  OverloadExpr(ASTContext& C, Expr **args, unsigned nexprs, unsigned idx,
1555               QualType t, SourceLocation bloc, SourceLocation rploc)
1556    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1557      BuiltinLoc(bloc), RParenLoc(rploc) {
1558    SubExprs = new (C) Stmt*[nexprs];
1559    for (unsigned i = 0; i != nexprs; ++i)
1560      SubExprs[i] = args[i];
1561  }
1562
1563  ~OverloadExpr() {}
1564
1565  void Destroy(ASTContext& C);
1566
1567  /// arg_begin - Return a pointer to the list of arguments that will be passed
1568  /// to the matching candidate function, skipping over the initial constant
1569  /// expression.
1570  typedef ConstExprIterator const_arg_iterator;
1571  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1572  const_arg_iterator arg_end(ASTContext& Ctx) const {
1573    return &SubExprs[0]+1+getNumArgs(Ctx);
1574  }
1575
1576  /// getNumArgs - Return the number of arguments to pass to the candidate
1577  /// functions.
1578  unsigned getNumArgs(ASTContext &Ctx) const {
1579    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1580  }
1581
1582  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1583  /// constant expression, the actual arguments passed in, and the function
1584  /// pointers.
1585  unsigned getNumSubExprs() const { return NumExprs; }
1586
1587  /// getExpr - Return the Expr at the specified index.
1588  Expr *getExpr(unsigned Index) const {
1589    assert((Index < NumExprs) && "Arg access out of range!");
1590    return cast<Expr>(SubExprs[Index]);
1591  }
1592
1593  /// getFn - Return the matching candidate function for this OverloadExpr.
1594  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1595
1596  virtual SourceRange getSourceRange() const {
1597    return SourceRange(BuiltinLoc, RParenLoc);
1598  }
1599  static bool classof(const Stmt *T) {
1600    return T->getStmtClass() == OverloadExprClass;
1601  }
1602  static bool classof(const OverloadExpr *) { return true; }
1603
1604  // Iterators
1605  virtual child_iterator child_begin();
1606  virtual child_iterator child_end();
1607
1608  virtual void EmitImpl(llvm::Serializer& S) const;
1609  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1610};
1611
1612/// VAArgExpr, used for the builtin function __builtin_va_start.
1613class VAArgExpr : public Expr {
1614  Stmt *Val;
1615  SourceLocation BuiltinLoc, RParenLoc;
1616public:
1617  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1618    : Expr(VAArgExprClass, t),
1619      Val(e),
1620      BuiltinLoc(BLoc),
1621      RParenLoc(RPLoc) { }
1622
1623  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1624  Expr *getSubExpr() { return cast<Expr>(Val); }
1625  virtual SourceRange getSourceRange() const {
1626    return SourceRange(BuiltinLoc, RParenLoc);
1627  }
1628  static bool classof(const Stmt *T) {
1629    return T->getStmtClass() == VAArgExprClass;
1630  }
1631  static bool classof(const VAArgExpr *) { return true; }
1632
1633  // Iterators
1634  virtual child_iterator child_begin();
1635  virtual child_iterator child_end();
1636
1637  virtual void EmitImpl(llvm::Serializer& S) const;
1638  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1639};
1640
1641/// @brief Describes an C or C++ initializer list.
1642///
1643/// InitListExpr describes an initializer list, which can be used to
1644/// initialize objects of different types, including
1645/// struct/class/union types, arrays, and vectors. For example:
1646///
1647/// @code
1648/// struct foo x = { 1, { 2, 3 } };
1649/// @endcode
1650///
1651/// Prior to semantic analysis, an initializer list will represent the
1652/// initializer list as written by the user, but will have the
1653/// placeholder type "void". This initializer list is called the
1654/// syntactic form of the initializer, and may contain C99 designated
1655/// initializers (represented as DesignatedInitExprs), initializations
1656/// of subobject members without explicit braces, and so on. Clients
1657/// interested in the original syntax of the initializer list should
1658/// use the syntactic form of the initializer list.
1659///
1660/// After semantic analysis, the initializer list will represent the
1661/// semantic form of the initializer, where the initializations of all
1662/// subobjects are made explicit with nested InitListExpr nodes and
1663/// C99 designators have been eliminated by placing the designated
1664/// initializations into the subobject they initialize. Additionally,
1665/// any "holes" in the initialization, where no initializer has been
1666/// specified for a particular subobject, will be replaced with
1667/// implicitly-generated ImplicitValueInitExpr expressions that
1668/// value-initialize the subobjects. Note, however, that the
1669/// initializer lists may still have fewer initializers than there are
1670/// elements to initialize within the object.
1671///
1672/// Given the semantic form of the initializer list, one can retrieve
1673/// the original syntactic form of that initializer list (if it
1674/// exists) using getSyntacticForm(). Since many initializer lists
1675/// have the same syntactic and semantic forms, getSyntacticForm() may
1676/// return NULL, indicating that the current initializer list also
1677/// serves as its syntactic form.
1678class InitListExpr : public Expr {
1679  std::vector<Stmt *> InitExprs;
1680  SourceLocation LBraceLoc, RBraceLoc;
1681
1682  /// Contains the initializer list that describes the syntactic form
1683  /// written in the source code.
1684  InitListExpr *SyntacticForm;
1685
1686  /// If this initializer list initializes a union, specifies which
1687  /// field within the union will be initialized.
1688  FieldDecl *UnionFieldInit;
1689
1690  /// Whether this initializer list originally had a GNU array-range
1691  /// designator in it. This is a temporary marker used by CodeGen.
1692  bool HadArrayRangeDesignator;
1693
1694public:
1695  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1696               SourceLocation rbraceloc);
1697
1698  unsigned getNumInits() const { return InitExprs.size(); }
1699
1700  const Expr* getInit(unsigned Init) const {
1701    assert(Init < getNumInits() && "Initializer access out of range!");
1702    return cast_or_null<Expr>(InitExprs[Init]);
1703  }
1704
1705  Expr* getInit(unsigned Init) {
1706    assert(Init < getNumInits() && "Initializer access out of range!");
1707    return cast_or_null<Expr>(InitExprs[Init]);
1708  }
1709
1710  void setInit(unsigned Init, Expr *expr) {
1711    assert(Init < getNumInits() && "Initializer access out of range!");
1712    InitExprs[Init] = expr;
1713  }
1714
1715  /// @brief Specify the number of initializers
1716  ///
1717  /// If there are more than @p NumInits initializers, the remaining
1718  /// initializers will be destroyed. If there are fewer than @p
1719  /// NumInits initializers, NULL expressions will be added for the
1720  /// unknown initializers.
1721  void resizeInits(ASTContext &Context, unsigned NumInits);
1722
1723  /// @brief Updates the initializer at index @p Init with the new
1724  /// expression @p expr, and returns the old expression at that
1725  /// location.
1726  ///
1727  /// When @p Init is out of range for this initializer list, the
1728  /// initializer list will be extended with NULL expressions to
1729  /// accomodate the new entry.
1730  Expr *updateInit(unsigned Init, Expr *expr);
1731
1732  /// \brief If this initializes a union, specifies which field in the
1733  /// union to initialize.
1734  ///
1735  /// Typically, this field is the first named field within the
1736  /// union. However, a designated initializer can specify the
1737  /// initialization of a different field within the union.
1738  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1739  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1740
1741  // Explicit InitListExpr's originate from source code (and have valid source
1742  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1743  bool isExplicit() {
1744    return LBraceLoc.isValid() && RBraceLoc.isValid();
1745  }
1746
1747  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1748
1749  /// @brief Retrieve the initializer list that describes the
1750  /// syntactic form of the initializer.
1751  ///
1752  ///
1753  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1754  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1755
1756  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1757  void sawArrayRangeDesignator() {
1758    HadArrayRangeDesignator = true;
1759  }
1760
1761  virtual SourceRange getSourceRange() const {
1762    return SourceRange(LBraceLoc, RBraceLoc);
1763  }
1764  static bool classof(const Stmt *T) {
1765    return T->getStmtClass() == InitListExprClass;
1766  }
1767  static bool classof(const InitListExpr *) { return true; }
1768
1769  // Iterators
1770  virtual child_iterator child_begin();
1771  virtual child_iterator child_end();
1772
1773  typedef std::vector<Stmt *>::iterator iterator;
1774  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1775
1776  iterator begin() { return InitExprs.begin(); }
1777  iterator end() { return InitExprs.end(); }
1778  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1779  reverse_iterator rend() { return InitExprs.rend(); }
1780
1781  // Serailization.
1782  virtual void EmitImpl(llvm::Serializer& S) const;
1783  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1784
1785private:
1786  // Used by serializer.
1787  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1788};
1789
1790/// @brief Represents a C99 designated initializer expression.
1791///
1792/// A designated initializer expression (C99 6.7.8) contains one or
1793/// more designators (which can be field designators, array
1794/// designators, or GNU array-range designators) followed by an
1795/// expression that initializes the field or element(s) that the
1796/// designators refer to. For example, given:
1797///
1798/// @code
1799/// struct point {
1800///   double x;
1801///   double y;
1802/// };
1803/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1804/// @endcode
1805///
1806/// The InitListExpr contains three DesignatedInitExprs, the first of
1807/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1808/// designators, one array designator for @c [2] followed by one field
1809/// designator for @c .y. The initalization expression will be 1.0.
1810class DesignatedInitExpr : public Expr {
1811  /// The location of the '=' or ':' prior to the actual initializer
1812  /// expression.
1813  SourceLocation EqualOrColonLoc;
1814
1815  /// Whether this designated initializer used the GNU deprecated ':'
1816  /// syntax rather than the C99 '=' syntax.
1817  bool UsesColonSyntax : 1;
1818
1819  /// The number of designators in this initializer expression.
1820  unsigned NumDesignators : 15;
1821
1822  /// The number of subexpressions of this initializer expression,
1823  /// which contains both the initializer and any additional
1824  /// expressions used by array and array-range designators.
1825  unsigned NumSubExprs : 16;
1826
1827  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1828                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1829                     unsigned NumSubExprs)
1830    : Expr(DesignatedInitExprClass, Ty),
1831      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1832      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1833
1834public:
1835  /// A field designator, e.g., ".x".
1836  struct FieldDesignator {
1837    /// Refers to the field that is being initialized. The low bit
1838    /// of this field determines whether this is actually a pointer
1839    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1840    /// initially constructed, a field designator will store an
1841    /// IdentifierInfo*. After semantic analysis has resolved that
1842    /// name, the field designator will instead store a FieldDecl*.
1843    uintptr_t NameOrField;
1844
1845    /// The location of the '.' in the designated initializer.
1846    unsigned DotLoc;
1847
1848    /// The location of the field name in the designated initializer.
1849    unsigned FieldLoc;
1850  };
1851
1852  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1853  struct ArrayOrRangeDesignator {
1854    /// Location of the first index expression within the designated
1855    /// initializer expression's list of subexpressions.
1856    unsigned Index;
1857    /// The location of the '[' starting the array range designator.
1858    unsigned LBracketLoc;
1859    /// The location of the ellipsis separating the start and end
1860    /// indices. Only valid for GNU array-range designators.
1861    unsigned EllipsisLoc;
1862    /// The location of the ']' terminating the array range designator.
1863    unsigned RBracketLoc;
1864  };
1865
1866  /// @brief Represents a single C99 designator.
1867  ///
1868  /// @todo This class is infuriatingly similar to clang::Designator,
1869  /// but minor differences (storing indices vs. storing pointers)
1870  /// keep us from reusing it. Try harder, later, to rectify these
1871  /// differences.
1872  class Designator {
1873    /// @brief The kind of designator this describes.
1874    enum {
1875      FieldDesignator,
1876      ArrayDesignator,
1877      ArrayRangeDesignator
1878    } Kind;
1879
1880    union {
1881      /// A field designator, e.g., ".x".
1882      struct FieldDesignator Field;
1883      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1884      struct ArrayOrRangeDesignator ArrayOrRange;
1885    };
1886    friend class DesignatedInitExpr;
1887
1888  public:
1889    /// @brief Initializes a field designator.
1890    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1891               SourceLocation FieldLoc)
1892      : Kind(FieldDesignator) {
1893      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1894      Field.DotLoc = DotLoc.getRawEncoding();
1895      Field.FieldLoc = FieldLoc.getRawEncoding();
1896    }
1897
1898    /// @brief Initializes an array designator.
1899    Designator(unsigned Index, SourceLocation LBracketLoc,
1900               SourceLocation RBracketLoc)
1901      : Kind(ArrayDesignator) {
1902      ArrayOrRange.Index = Index;
1903      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1904      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1905      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1906    }
1907
1908    /// @brief Initializes a GNU array-range designator.
1909    Designator(unsigned Index, SourceLocation LBracketLoc,
1910               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1911      : Kind(ArrayRangeDesignator) {
1912      ArrayOrRange.Index = Index;
1913      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1914      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1915      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1916    }
1917
1918    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1919    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1920    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1921
1922    IdentifierInfo * getFieldName();
1923
1924    FieldDecl *getField() {
1925      assert(Kind == FieldDesignator && "Only valid on a field designator");
1926      if (Field.NameOrField & 0x01)
1927        return 0;
1928      else
1929        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1930    }
1931
1932    void setField(FieldDecl *FD) {
1933      assert(Kind == FieldDesignator && "Only valid on a field designator");
1934      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1935    }
1936
1937    SourceLocation getDotLoc() const {
1938      assert(Kind == FieldDesignator && "Only valid on a field designator");
1939      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1940    }
1941
1942    SourceLocation getFieldLoc() const {
1943      assert(Kind == FieldDesignator && "Only valid on a field designator");
1944      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1945    }
1946
1947    SourceLocation getLBracketLoc() const {
1948      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1949             "Only valid on an array or array-range designator");
1950      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1951    }
1952
1953    SourceLocation getRBracketLoc() const {
1954      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1955             "Only valid on an array or array-range designator");
1956      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1957    }
1958
1959    SourceLocation getEllipsisLoc() const {
1960      assert(Kind == ArrayRangeDesignator &&
1961             "Only valid on an array-range designator");
1962      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1963    }
1964
1965    SourceLocation getStartLocation() const {
1966      if (Kind == FieldDesignator)
1967        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1968      else
1969        return getLBracketLoc();
1970    }
1971  };
1972
1973  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1974                                    unsigned NumDesignators,
1975                                    Expr **IndexExprs, unsigned NumIndexExprs,
1976                                    SourceLocation EqualOrColonLoc,
1977                                    bool UsesColonSyntax, Expr *Init);
1978
1979  /// @brief Returns the number of designators in this initializer.
1980  unsigned size() const { return NumDesignators; }
1981
1982  // Iterator access to the designators.
1983  typedef Designator* designators_iterator;
1984  designators_iterator designators_begin();
1985  designators_iterator designators_end();
1986
1987  Expr *getArrayIndex(const Designator& D);
1988  Expr *getArrayRangeStart(const Designator& D);
1989  Expr *getArrayRangeEnd(const Designator& D);
1990
1991  /// @brief Retrieve the location of the '=' that precedes the
1992  /// initializer value itself, if present.
1993  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
1994
1995  /// @brief Determines whether this designated initializer used the
1996  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
1997  bool usesColonSyntax() const { return UsesColonSyntax; }
1998
1999  /// @brief Retrieve the initializer value.
2000  Expr *getInit() const {
2001    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2002  }
2003
2004  void setInit(Expr *init) {
2005    *child_begin() = init;
2006  }
2007
2008  virtual SourceRange getSourceRange() const;
2009
2010  static bool classof(const Stmt *T) {
2011    return T->getStmtClass() == DesignatedInitExprClass;
2012  }
2013  static bool classof(const DesignatedInitExpr *) { return true; }
2014
2015  // Iterators
2016  virtual child_iterator child_begin();
2017  virtual child_iterator child_end();
2018};
2019
2020/// \brief Represents an implicitly-generated value initialization of
2021/// an object of a given type.
2022///
2023/// Implicit value initializations occur within semantic initializer
2024/// list expressions (InitListExpr) as placeholders for subobject
2025/// initializations not explicitly specified by the user.
2026///
2027/// \see InitListExpr
2028class ImplicitValueInitExpr : public Expr {
2029public:
2030  explicit ImplicitValueInitExpr(QualType ty)
2031    : Expr(ImplicitValueInitExprClass, ty) { }
2032
2033  static bool classof(const Stmt *T) {
2034    return T->getStmtClass() == ImplicitValueInitExprClass;
2035  }
2036  static bool classof(const ImplicitValueInitExpr *) { return true; }
2037
2038  virtual SourceRange getSourceRange() const {
2039    return SourceRange();
2040  }
2041
2042  // Iterators
2043  virtual child_iterator child_begin();
2044  virtual child_iterator child_end();
2045};
2046
2047//===----------------------------------------------------------------------===//
2048// Clang Extensions
2049//===----------------------------------------------------------------------===//
2050
2051
2052/// ExtVectorElementExpr - This represents access to specific elements of a
2053/// vector, and may occur on the left hand side or right hand side.  For example
2054/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2055///
2056/// Note that the base may have either vector or pointer to vector type, just
2057/// like a struct field reference.
2058///
2059class ExtVectorElementExpr : public Expr {
2060  Stmt *Base;
2061  IdentifierInfo &Accessor;
2062  SourceLocation AccessorLoc;
2063public:
2064  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2065                       SourceLocation loc)
2066    : Expr(ExtVectorElementExprClass, ty),
2067      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2068
2069  const Expr *getBase() const { return cast<Expr>(Base); }
2070  Expr *getBase() { return cast<Expr>(Base); }
2071
2072  IdentifierInfo &getAccessor() const { return Accessor; }
2073
2074  /// getNumElements - Get the number of components being selected.
2075  unsigned getNumElements() const;
2076
2077  /// containsDuplicateElements - Return true if any element access is
2078  /// repeated.
2079  bool containsDuplicateElements() const;
2080
2081  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2082  /// aggregate Constant of ConstantInt(s).
2083  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2084
2085  virtual SourceRange getSourceRange() const {
2086    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2087  }
2088
2089  static bool classof(const Stmt *T) {
2090    return T->getStmtClass() == ExtVectorElementExprClass;
2091  }
2092  static bool classof(const ExtVectorElementExpr *) { return true; }
2093
2094  // Iterators
2095  virtual child_iterator child_begin();
2096  virtual child_iterator child_end();
2097
2098  virtual void EmitImpl(llvm::Serializer& S) const;
2099  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2100};
2101
2102
2103/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2104/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2105class BlockExpr : public Expr {
2106protected:
2107  BlockDecl *TheBlock;
2108public:
2109  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
2110            TheBlock(BD) {}
2111
2112  const BlockDecl *getBlockDecl() const { return TheBlock; }
2113  BlockDecl *getBlockDecl() { return TheBlock; }
2114
2115  // Convenience functions for probing the underlying BlockDecl.
2116  SourceLocation getCaretLocation() const;
2117  const Stmt *getBody() const;
2118  Stmt *getBody();
2119
2120  virtual SourceRange getSourceRange() const {
2121    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2122  }
2123
2124  /// getFunctionType - Return the underlying function type for this block.
2125  const FunctionType *getFunctionType() const;
2126
2127  static bool classof(const Stmt *T) {
2128    return T->getStmtClass() == BlockExprClass;
2129  }
2130  static bool classof(const BlockExpr *) { return true; }
2131
2132  // Iterators
2133  virtual child_iterator child_begin();
2134  virtual child_iterator child_end();
2135
2136  virtual void EmitImpl(llvm::Serializer& S) const;
2137  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2138};
2139
2140/// BlockDeclRefExpr - A reference to a declared variable, function,
2141/// enum, etc.
2142class BlockDeclRefExpr : public Expr {
2143  ValueDecl *D;
2144  SourceLocation Loc;
2145  bool IsByRef;
2146public:
2147  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2148       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2149
2150  ValueDecl *getDecl() { return D; }
2151  const ValueDecl *getDecl() const { return D; }
2152  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2153
2154  bool isByRef() const { return IsByRef; }
2155
2156  static bool classof(const Stmt *T) {
2157    return T->getStmtClass() == BlockDeclRefExprClass;
2158  }
2159  static bool classof(const BlockDeclRefExpr *) { return true; }
2160
2161  // Iterators
2162  virtual child_iterator child_begin();
2163  virtual child_iterator child_end();
2164
2165  virtual void EmitImpl(llvm::Serializer& S) const;
2166  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2167};
2168
2169}  // end namespace clang
2170
2171#endif
2172