Expr.h revision 74626d6ef2e194fcc911e071556660ff331eb4a8
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/APFloat.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include <vector>
26
27namespace clang {
28  class ASTContext;
29  class APValue;
30  class Decl;
31  class IdentifierInfo;
32  class ParmVarDecl;
33  class NamedDecl;
34  class ValueDecl;
35  class BlockDecl;
36  class CXXOperatorCallExpr;
37  class CXXMemberCallExpr;
38  class TemplateArgumentLoc;
39  class TemplateArgumentListInfo;
40
41/// Expr - This represents one expression.  Note that Expr's are subclasses of
42/// Stmt.  This allows an expression to be transparently used any place a Stmt
43/// is required.
44///
45class Expr : public Stmt {
46  QualType TR;
47
48protected:
49  /// TypeDependent - Whether this expression is type-dependent
50  /// (C++ [temp.dep.expr]).
51  bool TypeDependent : 1;
52
53  /// ValueDependent - Whether this expression is value-dependent
54  /// (C++ [temp.dep.constexpr]).
55  bool ValueDependent : 1;
56
57  Expr(StmtClass SC, QualType T, bool TD, bool VD)
58    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
59    setType(T);
60  }
61
62  /// \brief Construct an empty expression.
63  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
64
65public:
66  /// \brief Increases the reference count for this expression.
67  ///
68  /// Invoke the Retain() operation when this expression
69  /// is being shared by another owner.
70  Expr *Retain() {
71    Stmt::Retain();
72    return this;
73  }
74
75  QualType getType() const { return TR; }
76  void setType(QualType t) {
77    // In C++, the type of an expression is always adjusted so that it
78    // will not have reference type an expression will never have
79    // reference type (C++ [expr]p6). Use
80    // QualType::getNonReferenceType() to retrieve the non-reference
81    // type. Additionally, inspect Expr::isLvalue to determine whether
82    // an expression that is adjusted in this manner should be
83    // considered an lvalue.
84    assert((t.isNull() || !t->isReferenceType()) &&
85           "Expressions can't have reference type");
86
87    TR = t;
88  }
89
90  /// isValueDependent - Determines whether this expression is
91  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
92  /// array bound of "Chars" in the following example is
93  /// value-dependent.
94  /// @code
95  /// template<int Size, char (&Chars)[Size]> struct meta_string;
96  /// @endcode
97  bool isValueDependent() const { return ValueDependent; }
98
99  /// \brief Set whether this expression is value-dependent or not.
100  void setValueDependent(bool VD) { ValueDependent = VD; }
101
102  /// isTypeDependent - Determines whether this expression is
103  /// type-dependent (C++ [temp.dep.expr]), which means that its type
104  /// could change from one template instantiation to the next. For
105  /// example, the expressions "x" and "x + y" are type-dependent in
106  /// the following code, but "y" is not type-dependent:
107  /// @code
108  /// template<typename T>
109  /// void add(T x, int y) {
110  ///   x + y;
111  /// }
112  /// @endcode
113  bool isTypeDependent() const { return TypeDependent; }
114
115  /// \brief Set whether this expression is type-dependent or not.
116  void setTypeDependent(bool TD) { TypeDependent = TD; }
117
118  /// SourceLocation tokens are not useful in isolation - they are low level
119  /// value objects created/interpreted by SourceManager. We assume AST
120  /// clients will have a pointer to the respective SourceManager.
121  virtual SourceRange getSourceRange() const = 0;
122
123  /// getExprLoc - Return the preferred location for the arrow when diagnosing
124  /// a problem with a generic expression.
125  virtual SourceLocation getExprLoc() const { return getLocStart(); }
126
127  /// isUnusedResultAWarning - Return true if this immediate expression should
128  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
129  /// with location to warn on and the source range[s] to report with the
130  /// warning.
131  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
132                              SourceRange &R2, ASTContext &Ctx) const;
133
134  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
135  /// incomplete type other than void. Nonarray expressions that can be lvalues:
136  ///  - name, where name must be a variable
137  ///  - e[i]
138  ///  - (e), where e must be an lvalue
139  ///  - e.name, where e must be an lvalue
140  ///  - e->name
141  ///  - *e, the type of e cannot be a function type
142  ///  - string-constant
143  ///  - reference type [C++ [expr]]
144  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
145  ///
146  enum isLvalueResult {
147    LV_Valid,
148    LV_NotObjectType,
149    LV_IncompleteVoidType,
150    LV_DuplicateVectorComponents,
151    LV_InvalidExpression,
152    LV_MemberFunction,
153    LV_SubObjCPropertySetting,
154    LV_ClassTemporary
155  };
156  isLvalueResult isLvalue(ASTContext &Ctx) const;
157
158  // Same as above, but excluding checks for non-object and void types in C
159  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
160
161  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
162  /// does not have an incomplete type, does not have a const-qualified type,
163  /// and if it is a structure or union, does not have any member (including,
164  /// recursively, any member or element of all contained aggregates or unions)
165  /// with a const-qualified type.
166  ///
167  /// \param Loc [in] [out] - A source location which *may* be filled
168  /// in with the location of the expression making this a
169  /// non-modifiable lvalue, if specified.
170  enum isModifiableLvalueResult {
171    MLV_Valid,
172    MLV_NotObjectType,
173    MLV_IncompleteVoidType,
174    MLV_DuplicateVectorComponents,
175    MLV_InvalidExpression,
176    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
177    MLV_IncompleteType,
178    MLV_ConstQualified,
179    MLV_ArrayType,
180    MLV_NotBlockQualified,
181    MLV_ReadonlyProperty,
182    MLV_NoSetterProperty,
183    MLV_MemberFunction,
184    MLV_SubObjCPropertySetting,
185    MLV_ClassTemporary
186  };
187  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
188                                              SourceLocation *Loc = 0) const;
189
190  /// \brief If this expression refers to a bit-field, retrieve the
191  /// declaration of that bit-field.
192  FieldDecl *getBitField();
193
194  const FieldDecl *getBitField() const {
195    return const_cast<Expr*>(this)->getBitField();
196  }
197
198  /// \brief Returns whether this expression refers to a vector element.
199  bool refersToVectorElement() const;
200
201  /// isIntegerConstantExpr - Return true if this expression is a valid integer
202  /// constant expression, and, if so, return its value in Result.  If not a
203  /// valid i-c-e, return false and fill in Loc (if specified) with the location
204  /// of the invalid expression.
205  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
206                             SourceLocation *Loc = 0,
207                             bool isEvaluated = true) const;
208  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
209    llvm::APSInt X;
210    return isIntegerConstantExpr(X, Ctx, Loc);
211  }
212  /// isConstantInitializer - Returns true if this expression is a constant
213  /// initializer, which can be emitted at compile-time.
214  bool isConstantInitializer(ASTContext &Ctx) const;
215
216  /// EvalResult is a struct with detailed info about an evaluated expression.
217  struct EvalResult {
218    /// Val - This is the value the expression can be folded to.
219    APValue Val;
220
221    /// HasSideEffects - Whether the evaluated expression has side effects.
222    /// For example, (f() && 0) can be folded, but it still has side effects.
223    bool HasSideEffects;
224
225    /// Diag - If the expression is unfoldable, then Diag contains a note
226    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
227    /// position for the error, and DiagExpr is the expression that caused
228    /// the error.
229    /// If the expression is foldable, but not an integer constant expression,
230    /// Diag contains a note diagnostic that describes why it isn't an integer
231    /// constant expression. If the expression *is* an integer constant
232    /// expression, then Diag will be zero.
233    unsigned Diag;
234    const Expr *DiagExpr;
235    SourceLocation DiagLoc;
236
237    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
238  };
239
240  /// Evaluate - Return true if this is a constant which we can fold using
241  /// any crazy technique (that has nothing to do with language standards) that
242  /// we want to.  If this function returns true, it returns the folded constant
243  /// in Result.
244  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
245
246  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
247  /// stack based objects.
248  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
249
250  /// EvaluateAsBooleanCondition - Return true if this is a constant
251  /// which we we can fold and convert to a boolean condition using
252  /// any crazy technique that we want to.
253  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
254
255  /// isEvaluatable - Call Evaluate to see if this expression can be constant
256  /// folded, but discard the result.
257  bool isEvaluatable(ASTContext &Ctx) const;
258
259  /// HasSideEffects - This routine returns true for all those expressions
260  /// which must be evaluated each time and must not be optimization away
261  /// or evaluated at compile time. Example is a function call, volatile
262  /// variable read.
263  bool HasSideEffects(ASTContext &Ctx) const;
264
265  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
266  /// must be called on an expression that constant folds to an integer.
267  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
268
269  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
270  /// with link time known address.
271  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
272
273  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
274  /// also succeeds on stack based, immutable address lvalues.
275  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
276
277  /// \brief Enumeration used to describe how \c isNullPointerConstant()
278  /// should cope with value-dependent expressions.
279  enum NullPointerConstantValueDependence {
280    /// \brief Specifies that the expression should never be value-dependent.
281    NPC_NeverValueDependent = 0,
282
283    /// \brief Specifies that a value-dependent expression of integral or
284    /// dependent type should be considered a null pointer constant.
285    NPC_ValueDependentIsNull,
286
287    /// \brief Specifies that a value-dependent expression should be considered
288    /// to never be a null pointer constant.
289    NPC_ValueDependentIsNotNull
290  };
291
292  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
293  /// integer constant expression with the value zero, or if this is one that is
294  /// cast to void*.
295  bool isNullPointerConstant(ASTContext &Ctx,
296                             NullPointerConstantValueDependence NPC) const;
297
298  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
299  /// write barrier.
300  bool isOBJCGCCandidate(ASTContext &Ctx) const;
301
302  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
303  ///  its subexpression.  If that subexpression is also a ParenExpr,
304  ///  then this method recursively returns its subexpression, and so forth.
305  ///  Otherwise, the method returns the current Expr.
306  Expr* IgnoreParens();
307
308  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
309  /// or CastExprs, returning their operand.
310  Expr *IgnoreParenCasts();
311
312  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
313  /// value (including ptr->int casts of the same size).  Strip off any
314  /// ParenExpr or CastExprs, returning their operand.
315  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
316
317  /// \brief Determine whether this expression is a default function argument.
318  ///
319  /// Default arguments are implicitly generated in the abstract syntax tree
320  /// by semantic analysis for function calls, object constructions, etc. in
321  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
322  /// this routine also looks through any implicit casts to determine whether
323  /// the expression is a default argument.
324  bool isDefaultArgument() const;
325
326  /// \brief Determine whether this expression directly creates a
327  /// temporary object (of class type).
328  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
329
330  /// \brief If this expression directly creates a temporary object of
331  /// class type, return the expression that actually constructs that
332  /// temporary object.
333  const Expr *getTemporaryObject() const;
334
335  const Expr* IgnoreParens() const {
336    return const_cast<Expr*>(this)->IgnoreParens();
337  }
338  const Expr *IgnoreParenCasts() const {
339    return const_cast<Expr*>(this)->IgnoreParenCasts();
340  }
341  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
342    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
343  }
344
345  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
346  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
347
348  static bool classof(const Stmt *T) {
349    return T->getStmtClass() >= firstExprConstant &&
350           T->getStmtClass() <= lastExprConstant;
351  }
352  static bool classof(const Expr *) { return true; }
353};
354
355
356//===----------------------------------------------------------------------===//
357// Primary Expressions.
358//===----------------------------------------------------------------------===//
359
360/// \brief Represents the qualifier that may precede a C++ name, e.g., the
361/// "std::" in "std::sort".
362struct NameQualifier {
363  /// \brief The nested name specifier.
364  NestedNameSpecifier *NNS;
365
366  /// \brief The source range covered by the nested name specifier.
367  SourceRange Range;
368};
369
370/// \brief Represents an explicit template argument list in C++, e.g.,
371/// the "<int>" in "sort<int>".
372struct ExplicitTemplateArgumentList {
373  /// \brief The source location of the left angle bracket ('<');
374  SourceLocation LAngleLoc;
375
376  /// \brief The source location of the right angle bracket ('>');
377  SourceLocation RAngleLoc;
378
379  /// \brief The number of template arguments in TemplateArgs.
380  /// The actual template arguments (if any) are stored after the
381  /// ExplicitTemplateArgumentList structure.
382  unsigned NumTemplateArgs;
383
384  /// \brief Retrieve the template arguments
385  TemplateArgumentLoc *getTemplateArgs() {
386    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
387  }
388
389  /// \brief Retrieve the template arguments
390  const TemplateArgumentLoc *getTemplateArgs() const {
391    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
392  }
393
394  void initializeFrom(const TemplateArgumentListInfo &List);
395  void copyInto(TemplateArgumentListInfo &List) const;
396  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
397};
398
399/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
400/// enum, etc.
401class DeclRefExpr : public Expr {
402  enum {
403    // Flag on DecoratedD that specifies when this declaration reference
404    // expression has a C++ nested-name-specifier.
405    HasQualifierFlag = 0x01,
406    // Flag on DecoratedD that specifies when this declaration reference
407    // expression has an explicit C++ template argument list.
408    HasExplicitTemplateArgumentListFlag = 0x02
409  };
410
411  // DecoratedD - The declaration that we are referencing, plus two bits to
412  // indicate whether (1) the declaration's name was explicitly qualified and
413  // (2) the declaration's name was followed by an explicit template
414  // argument list.
415  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
416
417  // Loc - The location of the declaration name itself.
418  SourceLocation Loc;
419
420  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
421  NameQualifier *getNameQualifier() {
422    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
423      return 0;
424
425    return reinterpret_cast<NameQualifier *> (this + 1);
426  }
427
428  /// \brief Retrieve the qualifier that preceded the member name, if any.
429  const NameQualifier *getNameQualifier() const {
430    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
431  }
432
433  /// \brief Retrieve the explicit template argument list that followed the
434  /// member template name, if any.
435  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
436    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
437      return 0;
438
439    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
440      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
441
442    return reinterpret_cast<ExplicitTemplateArgumentList *>(
443                                                      getNameQualifier() + 1);
444  }
445
446  /// \brief Retrieve the explicit template argument list that followed the
447  /// member template name, if any.
448  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
449    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
450  }
451
452  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
453              ValueDecl *D, SourceLocation NameLoc,
454              const TemplateArgumentListInfo *TemplateArgs,
455              QualType T);
456
457protected:
458  /// \brief Computes the type- and value-dependence flags for this
459  /// declaration reference expression.
460  void computeDependence();
461
462  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
463    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
464    computeDependence();
465  }
466
467public:
468  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
469    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
470    computeDependence();
471  }
472
473  /// \brief Construct an empty declaration reference expression.
474  explicit DeclRefExpr(EmptyShell Empty)
475    : Expr(DeclRefExprClass, Empty) { }
476
477  static DeclRefExpr *Create(ASTContext &Context,
478                             NestedNameSpecifier *Qualifier,
479                             SourceRange QualifierRange,
480                             ValueDecl *D,
481                             SourceLocation NameLoc,
482                             QualType T,
483                             const TemplateArgumentListInfo *TemplateArgs = 0);
484
485  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
486  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
487  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
488
489  SourceLocation getLocation() const { return Loc; }
490  void setLocation(SourceLocation L) { Loc = L; }
491  virtual SourceRange getSourceRange() const;
492
493  /// \brief Determine whether this declaration reference was preceded by a
494  /// C++ nested-name-specifier, e.g., \c N::foo.
495  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
496
497  /// \brief If the name was qualified, retrieves the source range of
498  /// the nested-name-specifier that precedes the name. Otherwise,
499  /// returns an empty source range.
500  SourceRange getQualifierRange() const {
501    if (!hasQualifier())
502      return SourceRange();
503
504    return getNameQualifier()->Range;
505  }
506
507  /// \brief If the name was qualified, retrieves the nested-name-specifier
508  /// that precedes the name. Otherwise, returns NULL.
509  NestedNameSpecifier *getQualifier() const {
510    if (!hasQualifier())
511      return 0;
512
513    return getNameQualifier()->NNS;
514  }
515
516  /// \brief Determines whether this member expression actually had a C++
517  /// template argument list explicitly specified, e.g., x.f<int>.
518  bool hasExplicitTemplateArgumentList() const {
519    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
520  }
521
522  /// \brief Copies the template arguments (if present) into the given
523  /// structure.
524  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
525    if (hasExplicitTemplateArgumentList())
526      getExplicitTemplateArgumentList()->copyInto(List);
527  }
528
529  /// \brief Retrieve the location of the left angle bracket following the
530  /// member name ('<'), if any.
531  SourceLocation getLAngleLoc() const {
532    if (!hasExplicitTemplateArgumentList())
533      return SourceLocation();
534
535    return getExplicitTemplateArgumentList()->LAngleLoc;
536  }
537
538  /// \brief Retrieve the template arguments provided as part of this
539  /// template-id.
540  const TemplateArgumentLoc *getTemplateArgs() const {
541    if (!hasExplicitTemplateArgumentList())
542      return 0;
543
544    return getExplicitTemplateArgumentList()->getTemplateArgs();
545  }
546
547  /// \brief Retrieve the number of template arguments provided as part of this
548  /// template-id.
549  unsigned getNumTemplateArgs() const {
550    if (!hasExplicitTemplateArgumentList())
551      return 0;
552
553    return getExplicitTemplateArgumentList()->NumTemplateArgs;
554  }
555
556  /// \brief Retrieve the location of the right angle bracket following the
557  /// template arguments ('>').
558  SourceLocation getRAngleLoc() const {
559    if (!hasExplicitTemplateArgumentList())
560      return SourceLocation();
561
562    return getExplicitTemplateArgumentList()->RAngleLoc;
563  }
564
565  static bool classof(const Stmt *T) {
566    return T->getStmtClass() == DeclRefExprClass;
567  }
568  static bool classof(const DeclRefExpr *) { return true; }
569
570  // Iterators
571  virtual child_iterator child_begin();
572  virtual child_iterator child_end();
573};
574
575/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
576class PredefinedExpr : public Expr {
577public:
578  enum IdentType {
579    Func,
580    Function,
581    PrettyFunction,
582    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
583    /// 'virtual' keyword is omitted for virtual member functions.
584    PrettyFunctionNoVirtual
585  };
586
587private:
588  SourceLocation Loc;
589  IdentType Type;
590public:
591  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
592    : Expr(PredefinedExprClass, type, type->isDependentType(),
593           type->isDependentType()), Loc(l), Type(IT) {}
594
595  /// \brief Construct an empty predefined expression.
596  explicit PredefinedExpr(EmptyShell Empty)
597    : Expr(PredefinedExprClass, Empty) { }
598
599  IdentType getIdentType() const { return Type; }
600  void setIdentType(IdentType IT) { Type = IT; }
601
602  SourceLocation getLocation() const { return Loc; }
603  void setLocation(SourceLocation L) { Loc = L; }
604
605  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
606
607  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
608
609  static bool classof(const Stmt *T) {
610    return T->getStmtClass() == PredefinedExprClass;
611  }
612  static bool classof(const PredefinedExpr *) { return true; }
613
614  // Iterators
615  virtual child_iterator child_begin();
616  virtual child_iterator child_end();
617};
618
619class IntegerLiteral : public Expr {
620  llvm::APInt Value;
621  SourceLocation Loc;
622public:
623  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
624  // or UnsignedLongLongTy
625  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
626    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
627    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
628  }
629
630  /// \brief Construct an empty integer literal.
631  explicit IntegerLiteral(EmptyShell Empty)
632    : Expr(IntegerLiteralClass, Empty) { }
633
634  const llvm::APInt &getValue() const { return Value; }
635  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
636
637  /// \brief Retrieve the location of the literal.
638  SourceLocation getLocation() const { return Loc; }
639
640  void setValue(const llvm::APInt &Val) { Value = Val; }
641  void setLocation(SourceLocation Location) { Loc = Location; }
642
643  static bool classof(const Stmt *T) {
644    return T->getStmtClass() == IntegerLiteralClass;
645  }
646  static bool classof(const IntegerLiteral *) { return true; }
647
648  // Iterators
649  virtual child_iterator child_begin();
650  virtual child_iterator child_end();
651};
652
653class CharacterLiteral : public Expr {
654  unsigned Value;
655  SourceLocation Loc;
656  bool IsWide;
657public:
658  // type should be IntTy
659  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
660    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
661      IsWide(iswide) {
662  }
663
664  /// \brief Construct an empty character literal.
665  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
666
667  SourceLocation getLocation() const { return Loc; }
668  bool isWide() const { return IsWide; }
669
670  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
671
672  unsigned getValue() const { return Value; }
673
674  void setLocation(SourceLocation Location) { Loc = Location; }
675  void setWide(bool W) { IsWide = W; }
676  void setValue(unsigned Val) { Value = Val; }
677
678  static bool classof(const Stmt *T) {
679    return T->getStmtClass() == CharacterLiteralClass;
680  }
681  static bool classof(const CharacterLiteral *) { return true; }
682
683  // Iterators
684  virtual child_iterator child_begin();
685  virtual child_iterator child_end();
686};
687
688class FloatingLiteral : public Expr {
689  llvm::APFloat Value;
690  bool IsExact : 1;
691  SourceLocation Loc;
692public:
693  FloatingLiteral(const llvm::APFloat &V, bool isexact,
694                  QualType Type, SourceLocation L)
695    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
696      IsExact(isexact), Loc(L) {}
697
698  /// \brief Construct an empty floating-point literal.
699  explicit FloatingLiteral(EmptyShell Empty)
700    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
701
702  const llvm::APFloat &getValue() const { return Value; }
703  void setValue(const llvm::APFloat &Val) { Value = Val; }
704
705  bool isExact() const { return IsExact; }
706  void setExact(bool E) { IsExact = E; }
707
708  /// getValueAsApproximateDouble - This returns the value as an inaccurate
709  /// double.  Note that this may cause loss of precision, but is useful for
710  /// debugging dumps, etc.
711  double getValueAsApproximateDouble() const;
712
713  SourceLocation getLocation() const { return Loc; }
714  void setLocation(SourceLocation L) { Loc = L; }
715
716  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
717
718  static bool classof(const Stmt *T) {
719    return T->getStmtClass() == FloatingLiteralClass;
720  }
721  static bool classof(const FloatingLiteral *) { return true; }
722
723  // Iterators
724  virtual child_iterator child_begin();
725  virtual child_iterator child_end();
726};
727
728/// ImaginaryLiteral - We support imaginary integer and floating point literals,
729/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
730/// IntegerLiteral classes.  Instances of this class always have a Complex type
731/// whose element type matches the subexpression.
732///
733class ImaginaryLiteral : public Expr {
734  Stmt *Val;
735public:
736  ImaginaryLiteral(Expr *val, QualType Ty)
737    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
738
739  /// \brief Build an empty imaginary literal.
740  explicit ImaginaryLiteral(EmptyShell Empty)
741    : Expr(ImaginaryLiteralClass, Empty) { }
742
743  const Expr *getSubExpr() const { return cast<Expr>(Val); }
744  Expr *getSubExpr() { return cast<Expr>(Val); }
745  void setSubExpr(Expr *E) { Val = E; }
746
747  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
748  static bool classof(const Stmt *T) {
749    return T->getStmtClass() == ImaginaryLiteralClass;
750  }
751  static bool classof(const ImaginaryLiteral *) { return true; }
752
753  // Iterators
754  virtual child_iterator child_begin();
755  virtual child_iterator child_end();
756};
757
758/// StringLiteral - This represents a string literal expression, e.g. "foo"
759/// or L"bar" (wide strings).  The actual string is returned by getStrData()
760/// is NOT null-terminated, and the length of the string is determined by
761/// calling getByteLength().  The C type for a string is always a
762/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
763/// not.
764///
765/// Note that strings in C can be formed by concatenation of multiple string
766/// literal pptokens in translation phase #6.  This keeps track of the locations
767/// of each of these pieces.
768///
769/// Strings in C can also be truncated and extended by assigning into arrays,
770/// e.g. with constructs like:
771///   char X[2] = "foobar";
772/// In this case, getByteLength() will return 6, but the string literal will
773/// have type "char[2]".
774class StringLiteral : public Expr {
775  const char *StrData;
776  unsigned ByteLength;
777  bool IsWide;
778  unsigned NumConcatenated;
779  SourceLocation TokLocs[1];
780
781  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
782
783protected:
784  virtual void DoDestroy(ASTContext &C);
785
786public:
787  /// This is the "fully general" constructor that allows representation of
788  /// strings formed from multiple concatenated tokens.
789  static StringLiteral *Create(ASTContext &C, const char *StrData,
790                               unsigned ByteLength, bool Wide, QualType Ty,
791                               const SourceLocation *Loc, unsigned NumStrs);
792
793  /// Simple constructor for string literals made from one token.
794  static StringLiteral *Create(ASTContext &C, const char *StrData,
795                               unsigned ByteLength,
796                               bool Wide, QualType Ty, SourceLocation Loc) {
797    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
798  }
799
800  /// \brief Construct an empty string literal.
801  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
802
803  llvm::StringRef getString() const {
804    return llvm::StringRef(StrData, ByteLength);
805  }
806  // FIXME: These are deprecated, replace with StringRef.
807  const char *getStrData() const { return StrData; }
808  unsigned getByteLength() const { return ByteLength; }
809
810  /// \brief Sets the string data to the given string data.
811  void setString(ASTContext &C, llvm::StringRef Str);
812
813  bool isWide() const { return IsWide; }
814  void setWide(bool W) { IsWide = W; }
815
816  bool containsNonAsciiOrNull() const {
817    llvm::StringRef Str = getString();
818    for (unsigned i = 0, e = Str.size(); i != e; ++i)
819      if (!isascii(Str[i]) || !Str[i])
820        return true;
821    return false;
822  }
823  /// getNumConcatenated - Get the number of string literal tokens that were
824  /// concatenated in translation phase #6 to form this string literal.
825  unsigned getNumConcatenated() const { return NumConcatenated; }
826
827  SourceLocation getStrTokenLoc(unsigned TokNum) const {
828    assert(TokNum < NumConcatenated && "Invalid tok number");
829    return TokLocs[TokNum];
830  }
831  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
832    assert(TokNum < NumConcatenated && "Invalid tok number");
833    TokLocs[TokNum] = L;
834  }
835
836  typedef const SourceLocation *tokloc_iterator;
837  tokloc_iterator tokloc_begin() const { return TokLocs; }
838  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
839
840  virtual SourceRange getSourceRange() const {
841    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
842  }
843  static bool classof(const Stmt *T) {
844    return T->getStmtClass() == StringLiteralClass;
845  }
846  static bool classof(const StringLiteral *) { return true; }
847
848  // Iterators
849  virtual child_iterator child_begin();
850  virtual child_iterator child_end();
851};
852
853/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
854/// AST node is only formed if full location information is requested.
855class ParenExpr : public Expr {
856  SourceLocation L, R;
857  Stmt *Val;
858public:
859  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
860    : Expr(ParenExprClass, val->getType(),
861           val->isTypeDependent(), val->isValueDependent()),
862      L(l), R(r), Val(val) {}
863
864  /// \brief Construct an empty parenthesized expression.
865  explicit ParenExpr(EmptyShell Empty)
866    : Expr(ParenExprClass, Empty) { }
867
868  const Expr *getSubExpr() const { return cast<Expr>(Val); }
869  Expr *getSubExpr() { return cast<Expr>(Val); }
870  void setSubExpr(Expr *E) { Val = E; }
871
872  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
873
874  /// \brief Get the location of the left parentheses '('.
875  SourceLocation getLParen() const { return L; }
876  void setLParen(SourceLocation Loc) { L = Loc; }
877
878  /// \brief Get the location of the right parentheses ')'.
879  SourceLocation getRParen() const { return R; }
880  void setRParen(SourceLocation Loc) { R = Loc; }
881
882  static bool classof(const Stmt *T) {
883    return T->getStmtClass() == ParenExprClass;
884  }
885  static bool classof(const ParenExpr *) { return true; }
886
887  // Iterators
888  virtual child_iterator child_begin();
889  virtual child_iterator child_end();
890};
891
892
893/// UnaryOperator - This represents the unary-expression's (except sizeof and
894/// alignof), the postinc/postdec operators from postfix-expression, and various
895/// extensions.
896///
897/// Notes on various nodes:
898///
899/// Real/Imag - These return the real/imag part of a complex operand.  If
900///   applied to a non-complex value, the former returns its operand and the
901///   later returns zero in the type of the operand.
902///
903/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
904///   subexpression is a compound literal with the various MemberExpr and
905///   ArraySubscriptExpr's applied to it.
906///
907class UnaryOperator : public Expr {
908public:
909  // Note that additions to this should also update the StmtVisitor class.
910  enum Opcode {
911    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
912    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
913    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
914    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
915    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
916    Real, Imag,       // "__real expr"/"__imag expr" Extension.
917    Extension,        // __extension__ marker.
918    OffsetOf          // __builtin_offsetof
919  };
920private:
921  Stmt *Val;
922  Opcode Opc;
923  SourceLocation Loc;
924public:
925
926  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
927    : Expr(UnaryOperatorClass, type,
928           input->isTypeDependent() && opc != OffsetOf,
929           input->isValueDependent()),
930      Val(input), Opc(opc), Loc(l) {}
931
932  /// \brief Build an empty unary operator.
933  explicit UnaryOperator(EmptyShell Empty)
934    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
935
936  Opcode getOpcode() const { return Opc; }
937  void setOpcode(Opcode O) { Opc = O; }
938
939  Expr *getSubExpr() const { return cast<Expr>(Val); }
940  void setSubExpr(Expr *E) { Val = E; }
941
942  /// getOperatorLoc - Return the location of the operator.
943  SourceLocation getOperatorLoc() const { return Loc; }
944  void setOperatorLoc(SourceLocation L) { Loc = L; }
945
946  /// isPostfix - Return true if this is a postfix operation, like x++.
947  static bool isPostfix(Opcode Op) {
948    return Op == PostInc || Op == PostDec;
949  }
950
951  /// isPostfix - Return true if this is a prefix operation, like --x.
952  static bool isPrefix(Opcode Op) {
953    return Op == PreInc || Op == PreDec;
954  }
955
956  bool isPrefix() const { return isPrefix(Opc); }
957  bool isPostfix() const { return isPostfix(Opc); }
958  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
959  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
960  bool isOffsetOfOp() const { return Opc == OffsetOf; }
961  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
962  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
963
964  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
965  /// corresponds to, e.g. "sizeof" or "[pre]++"
966  static const char *getOpcodeStr(Opcode Op);
967
968  /// \brief Retrieve the unary opcode that corresponds to the given
969  /// overloaded operator.
970  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
971
972  /// \brief Retrieve the overloaded operator kind that corresponds to
973  /// the given unary opcode.
974  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
975
976  virtual SourceRange getSourceRange() const {
977    if (isPostfix())
978      return SourceRange(Val->getLocStart(), Loc);
979    else
980      return SourceRange(Loc, Val->getLocEnd());
981  }
982  virtual SourceLocation getExprLoc() const { return Loc; }
983
984  static bool classof(const Stmt *T) {
985    return T->getStmtClass() == UnaryOperatorClass;
986  }
987  static bool classof(const UnaryOperator *) { return true; }
988
989  // Iterators
990  virtual child_iterator child_begin();
991  virtual child_iterator child_end();
992};
993
994/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
995/// types and expressions.
996class SizeOfAlignOfExpr : public Expr {
997  bool isSizeof : 1;  // true if sizeof, false if alignof.
998  bool isType : 1;    // true if operand is a type, false if an expression
999  union {
1000    TypeSourceInfo *Ty;
1001    Stmt *Ex;
1002  } Argument;
1003  SourceLocation OpLoc, RParenLoc;
1004
1005protected:
1006  virtual void DoDestroy(ASTContext& C);
1007
1008public:
1009  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1010                    QualType resultType, SourceLocation op,
1011                    SourceLocation rp) :
1012      Expr(SizeOfAlignOfExprClass, resultType,
1013           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1014           // Value-dependent if the argument is type-dependent.
1015           TInfo->getType()->isDependentType()),
1016      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1017    Argument.Ty = TInfo;
1018  }
1019
1020  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1021                    QualType resultType, SourceLocation op,
1022                    SourceLocation rp) :
1023      Expr(SizeOfAlignOfExprClass, resultType,
1024           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1025           // Value-dependent if the argument is type-dependent.
1026           E->isTypeDependent()),
1027      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1028    Argument.Ex = E;
1029  }
1030
1031  /// \brief Construct an empty sizeof/alignof expression.
1032  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1033    : Expr(SizeOfAlignOfExprClass, Empty) { }
1034
1035  bool isSizeOf() const { return isSizeof; }
1036  void setSizeof(bool S) { isSizeof = S; }
1037
1038  bool isArgumentType() const { return isType; }
1039  QualType getArgumentType() const {
1040    return getArgumentTypeInfo()->getType();
1041  }
1042  TypeSourceInfo *getArgumentTypeInfo() const {
1043    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1044    return Argument.Ty;
1045  }
1046  Expr *getArgumentExpr() {
1047    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1048    return static_cast<Expr*>(Argument.Ex);
1049  }
1050  const Expr *getArgumentExpr() const {
1051    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1052  }
1053
1054  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1055  void setArgument(TypeSourceInfo *TInfo) {
1056    Argument.Ty = TInfo;
1057    isType = true;
1058  }
1059
1060  /// Gets the argument type, or the type of the argument expression, whichever
1061  /// is appropriate.
1062  QualType getTypeOfArgument() const {
1063    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1064  }
1065
1066  SourceLocation getOperatorLoc() const { return OpLoc; }
1067  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1068
1069  SourceLocation getRParenLoc() const { return RParenLoc; }
1070  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1071
1072  virtual SourceRange getSourceRange() const {
1073    return SourceRange(OpLoc, RParenLoc);
1074  }
1075
1076  static bool classof(const Stmt *T) {
1077    return T->getStmtClass() == SizeOfAlignOfExprClass;
1078  }
1079  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1080
1081  // Iterators
1082  virtual child_iterator child_begin();
1083  virtual child_iterator child_end();
1084};
1085
1086//===----------------------------------------------------------------------===//
1087// Postfix Operators.
1088//===----------------------------------------------------------------------===//
1089
1090/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1091class ArraySubscriptExpr : public Expr {
1092  enum { LHS, RHS, END_EXPR=2 };
1093  Stmt* SubExprs[END_EXPR];
1094  SourceLocation RBracketLoc;
1095public:
1096  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1097                     SourceLocation rbracketloc)
1098  : Expr(ArraySubscriptExprClass, t,
1099         lhs->isTypeDependent() || rhs->isTypeDependent(),
1100         lhs->isValueDependent() || rhs->isValueDependent()),
1101    RBracketLoc(rbracketloc) {
1102    SubExprs[LHS] = lhs;
1103    SubExprs[RHS] = rhs;
1104  }
1105
1106  /// \brief Create an empty array subscript expression.
1107  explicit ArraySubscriptExpr(EmptyShell Shell)
1108    : Expr(ArraySubscriptExprClass, Shell) { }
1109
1110  /// An array access can be written A[4] or 4[A] (both are equivalent).
1111  /// - getBase() and getIdx() always present the normalized view: A[4].
1112  ///    In this case getBase() returns "A" and getIdx() returns "4".
1113  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1114  ///    4[A] getLHS() returns "4".
1115  /// Note: Because vector element access is also written A[4] we must
1116  /// predicate the format conversion in getBase and getIdx only on the
1117  /// the type of the RHS, as it is possible for the LHS to be a vector of
1118  /// integer type
1119  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1120  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1121  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1122
1123  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1124  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1125  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1126
1127  Expr *getBase() {
1128    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1129  }
1130
1131  const Expr *getBase() const {
1132    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1133  }
1134
1135  Expr *getIdx() {
1136    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1137  }
1138
1139  const Expr *getIdx() const {
1140    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1141  }
1142
1143  virtual SourceRange getSourceRange() const {
1144    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1145  }
1146
1147  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1148  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1149
1150  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1151
1152  static bool classof(const Stmt *T) {
1153    return T->getStmtClass() == ArraySubscriptExprClass;
1154  }
1155  static bool classof(const ArraySubscriptExpr *) { return true; }
1156
1157  // Iterators
1158  virtual child_iterator child_begin();
1159  virtual child_iterator child_end();
1160};
1161
1162
1163/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1164/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1165/// while its subclasses may represent alternative syntax that (semantically)
1166/// results in a function call. For example, CXXOperatorCallExpr is
1167/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1168/// "str1 + str2" to resolve to a function call.
1169class CallExpr : public Expr {
1170  enum { FN=0, ARGS_START=1 };
1171  Stmt **SubExprs;
1172  unsigned NumArgs;
1173  SourceLocation RParenLoc;
1174
1175protected:
1176  // This version of the constructor is for derived classes.
1177  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1178           QualType t, SourceLocation rparenloc);
1179
1180  virtual void DoDestroy(ASTContext& C);
1181
1182public:
1183  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1184           SourceLocation rparenloc);
1185
1186  /// \brief Build an empty call expression.
1187  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1188
1189  ~CallExpr() {}
1190
1191  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1192  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1193  void setCallee(Expr *F) { SubExprs[FN] = F; }
1194
1195  Decl *getCalleeDecl();
1196  const Decl *getCalleeDecl() const {
1197    return const_cast<CallExpr*>(this)->getCalleeDecl();
1198  }
1199
1200  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1201  FunctionDecl *getDirectCallee();
1202  const FunctionDecl *getDirectCallee() const {
1203    return const_cast<CallExpr*>(this)->getDirectCallee();
1204  }
1205
1206  /// getNumArgs - Return the number of actual arguments to this call.
1207  ///
1208  unsigned getNumArgs() const { return NumArgs; }
1209
1210  /// getArg - Return the specified argument.
1211  Expr *getArg(unsigned Arg) {
1212    assert(Arg < NumArgs && "Arg access out of range!");
1213    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1214  }
1215  const Expr *getArg(unsigned Arg) const {
1216    assert(Arg < NumArgs && "Arg access out of range!");
1217    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1218  }
1219
1220  /// setArg - Set the specified argument.
1221  void setArg(unsigned Arg, Expr *ArgExpr) {
1222    assert(Arg < NumArgs && "Arg access out of range!");
1223    SubExprs[Arg+ARGS_START] = ArgExpr;
1224  }
1225
1226  /// setNumArgs - This changes the number of arguments present in this call.
1227  /// Any orphaned expressions are deleted by this, and any new operands are set
1228  /// to null.
1229  void setNumArgs(ASTContext& C, unsigned NumArgs);
1230
1231  typedef ExprIterator arg_iterator;
1232  typedef ConstExprIterator const_arg_iterator;
1233
1234  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1235  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1236  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1237  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1238
1239  /// getNumCommas - Return the number of commas that must have been present in
1240  /// this function call.
1241  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1242
1243  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1244  /// not, return 0.
1245  unsigned isBuiltinCall(ASTContext &Context) const;
1246
1247  /// getCallReturnType - Get the return type of the call expr. This is not
1248  /// always the type of the expr itself, if the return type is a reference
1249  /// type.
1250  QualType getCallReturnType() const;
1251
1252  SourceLocation getRParenLoc() const { return RParenLoc; }
1253  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1254
1255  virtual SourceRange getSourceRange() const {
1256    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1257  }
1258
1259  static bool classof(const Stmt *T) {
1260    return T->getStmtClass() == CallExprClass ||
1261           T->getStmtClass() == CXXOperatorCallExprClass ||
1262           T->getStmtClass() == CXXMemberCallExprClass;
1263  }
1264  static bool classof(const CallExpr *) { return true; }
1265  static bool classof(const CXXOperatorCallExpr *) { return true; }
1266  static bool classof(const CXXMemberCallExpr *) { return true; }
1267
1268  // Iterators
1269  virtual child_iterator child_begin();
1270  virtual child_iterator child_end();
1271};
1272
1273/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1274///
1275class MemberExpr : public Expr {
1276  /// Extra data stored in some member expressions.
1277  struct MemberNameQualifier : public NameQualifier {
1278    DeclAccessPair FoundDecl;
1279  };
1280
1281  /// Base - the expression for the base pointer or structure references.  In
1282  /// X.F, this is "X".
1283  Stmt *Base;
1284
1285  /// MemberDecl - This is the decl being referenced by the field/member name.
1286  /// In X.F, this is the decl referenced by F.
1287  ValueDecl *MemberDecl;
1288
1289  /// MemberLoc - This is the location of the member name.
1290  SourceLocation MemberLoc;
1291
1292  /// IsArrow - True if this is "X->F", false if this is "X.F".
1293  bool IsArrow : 1;
1294
1295  /// \brief True if this member expression used a nested-name-specifier to
1296  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1297  /// declaration.  When true, a MemberNameQualifier
1298  /// structure is allocated immediately after the MemberExpr.
1299  bool HasQualifierOrFoundDecl : 1;
1300
1301  /// \brief True if this member expression specified a template argument list
1302  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1303  /// structure (and its TemplateArguments) are allocated immediately after
1304  /// the MemberExpr or, if the member expression also has a qualifier, after
1305  /// the MemberNameQualifier structure.
1306  bool HasExplicitTemplateArgumentList : 1;
1307
1308  /// \brief Retrieve the qualifier that preceded the member name, if any.
1309  MemberNameQualifier *getMemberQualifier() {
1310    assert(HasQualifierOrFoundDecl);
1311    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1312  }
1313
1314  /// \brief Retrieve the qualifier that preceded the member name, if any.
1315  const MemberNameQualifier *getMemberQualifier() const {
1316    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1317  }
1318
1319  /// \brief Retrieve the explicit template argument list that followed the
1320  /// member template name, if any.
1321  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1322    if (!HasExplicitTemplateArgumentList)
1323      return 0;
1324
1325    if (!HasQualifierOrFoundDecl)
1326      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1327
1328    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1329                                                      getMemberQualifier() + 1);
1330  }
1331
1332  /// \brief Retrieve the explicit template argument list that followed the
1333  /// member template name, if any.
1334  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1335    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1336  }
1337
1338public:
1339  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1340             SourceLocation l, QualType ty)
1341    : Expr(MemberExprClass, ty,
1342           base->isTypeDependent(), base->isValueDependent()),
1343      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1344      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1345
1346  /// \brief Build an empty member reference expression.
1347  explicit MemberExpr(EmptyShell Empty)
1348    : Expr(MemberExprClass, Empty), HasQualifierOrFoundDecl(false),
1349      HasExplicitTemplateArgumentList(false) { }
1350
1351  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1352                            NestedNameSpecifier *qual, SourceRange qualrange,
1353                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1354                            SourceLocation l,
1355                            const TemplateArgumentListInfo *targs,
1356                            QualType ty);
1357
1358  void setBase(Expr *E) { Base = E; }
1359  Expr *getBase() const { return cast<Expr>(Base); }
1360
1361  /// \brief Retrieve the member declaration to which this expression refers.
1362  ///
1363  /// The returned declaration will either be a FieldDecl or (in C++)
1364  /// a CXXMethodDecl.
1365  ValueDecl *getMemberDecl() const { return MemberDecl; }
1366  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1367
1368  /// \brief Retrieves the declaration found by lookup.
1369  DeclAccessPair getFoundDecl() const {
1370    if (!HasQualifierOrFoundDecl)
1371      return DeclAccessPair::make(getMemberDecl(),
1372                                  getMemberDecl()->getAccess());
1373    return getMemberQualifier()->FoundDecl;
1374  }
1375
1376  /// \brief Determines whether this member expression actually had
1377  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1378  /// x->Base::foo.
1379  bool hasQualifier() const { return getQualifier() != 0; }
1380
1381  /// \brief If the member name was qualified, retrieves the source range of
1382  /// the nested-name-specifier that precedes the member name. Otherwise,
1383  /// returns an empty source range.
1384  SourceRange getQualifierRange() const {
1385    if (!HasQualifierOrFoundDecl)
1386      return SourceRange();
1387
1388    return getMemberQualifier()->Range;
1389  }
1390
1391  /// \brief If the member name was qualified, retrieves the
1392  /// nested-name-specifier that precedes the member name. Otherwise, returns
1393  /// NULL.
1394  NestedNameSpecifier *getQualifier() const {
1395    if (!HasQualifierOrFoundDecl)
1396      return 0;
1397
1398    return getMemberQualifier()->NNS;
1399  }
1400
1401  /// \brief Determines whether this member expression actually had a C++
1402  /// template argument list explicitly specified, e.g., x.f<int>.
1403  bool hasExplicitTemplateArgumentList() const {
1404    return HasExplicitTemplateArgumentList;
1405  }
1406
1407  /// \brief Copies the template arguments (if present) into the given
1408  /// structure.
1409  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1410    if (hasExplicitTemplateArgumentList())
1411      getExplicitTemplateArgumentList()->copyInto(List);
1412  }
1413
1414  /// \brief Retrieve the location of the left angle bracket following the
1415  /// member name ('<'), if any.
1416  SourceLocation getLAngleLoc() const {
1417    if (!HasExplicitTemplateArgumentList)
1418      return SourceLocation();
1419
1420    return getExplicitTemplateArgumentList()->LAngleLoc;
1421  }
1422
1423  /// \brief Retrieve the template arguments provided as part of this
1424  /// template-id.
1425  const TemplateArgumentLoc *getTemplateArgs() const {
1426    if (!HasExplicitTemplateArgumentList)
1427      return 0;
1428
1429    return getExplicitTemplateArgumentList()->getTemplateArgs();
1430  }
1431
1432  /// \brief Retrieve the number of template arguments provided as part of this
1433  /// template-id.
1434  unsigned getNumTemplateArgs() const {
1435    if (!HasExplicitTemplateArgumentList)
1436      return 0;
1437
1438    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1439  }
1440
1441  /// \brief Retrieve the location of the right angle bracket following the
1442  /// template arguments ('>').
1443  SourceLocation getRAngleLoc() const {
1444    if (!HasExplicitTemplateArgumentList)
1445      return SourceLocation();
1446
1447    return getExplicitTemplateArgumentList()->RAngleLoc;
1448  }
1449
1450  bool isArrow() const { return IsArrow; }
1451  void setArrow(bool A) { IsArrow = A; }
1452
1453  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1454  /// location of 'F'.
1455  SourceLocation getMemberLoc() const { return MemberLoc; }
1456  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1457
1458  virtual SourceRange getSourceRange() const {
1459    // If we have an implicit base (like a C++ implicit this),
1460    // make sure not to return its location
1461    SourceLocation EndLoc = MemberLoc;
1462    if (HasExplicitTemplateArgumentList)
1463      EndLoc = getRAngleLoc();
1464
1465    SourceLocation BaseLoc = getBase()->getLocStart();
1466    if (BaseLoc.isInvalid())
1467      return SourceRange(MemberLoc, EndLoc);
1468    return SourceRange(BaseLoc, EndLoc);
1469  }
1470
1471  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1472
1473  static bool classof(const Stmt *T) {
1474    return T->getStmtClass() == MemberExprClass;
1475  }
1476  static bool classof(const MemberExpr *) { return true; }
1477
1478  // Iterators
1479  virtual child_iterator child_begin();
1480  virtual child_iterator child_end();
1481};
1482
1483/// CompoundLiteralExpr - [C99 6.5.2.5]
1484///
1485class CompoundLiteralExpr : public Expr {
1486  /// LParenLoc - If non-null, this is the location of the left paren in a
1487  /// compound literal like "(int){4}".  This can be null if this is a
1488  /// synthesized compound expression.
1489  SourceLocation LParenLoc;
1490
1491  /// The type as written.  This can be an incomplete array type, in
1492  /// which case the actual expression type will be different.
1493  TypeSourceInfo *TInfo;
1494  Stmt *Init;
1495  bool FileScope;
1496public:
1497  // FIXME: Can compound literals be value-dependent?
1498  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1499                      QualType T, Expr *init, bool fileScope)
1500    : Expr(CompoundLiteralExprClass, T,
1501           tinfo->getType()->isDependentType(), false),
1502      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1503
1504  /// \brief Construct an empty compound literal.
1505  explicit CompoundLiteralExpr(EmptyShell Empty)
1506    : Expr(CompoundLiteralExprClass, Empty) { }
1507
1508  const Expr *getInitializer() const { return cast<Expr>(Init); }
1509  Expr *getInitializer() { return cast<Expr>(Init); }
1510  void setInitializer(Expr *E) { Init = E; }
1511
1512  bool isFileScope() const { return FileScope; }
1513  void setFileScope(bool FS) { FileScope = FS; }
1514
1515  SourceLocation getLParenLoc() const { return LParenLoc; }
1516  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1517
1518  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1519  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1520
1521  virtual SourceRange getSourceRange() const {
1522    // FIXME: Init should never be null.
1523    if (!Init)
1524      return SourceRange();
1525    if (LParenLoc.isInvalid())
1526      return Init->getSourceRange();
1527    return SourceRange(LParenLoc, Init->getLocEnd());
1528  }
1529
1530  static bool classof(const Stmt *T) {
1531    return T->getStmtClass() == CompoundLiteralExprClass;
1532  }
1533  static bool classof(const CompoundLiteralExpr *) { return true; }
1534
1535  // Iterators
1536  virtual child_iterator child_begin();
1537  virtual child_iterator child_end();
1538};
1539
1540/// CastExpr - Base class for type casts, including both implicit
1541/// casts (ImplicitCastExpr) and explicit casts that have some
1542/// representation in the source code (ExplicitCastExpr's derived
1543/// classes).
1544class CastExpr : public Expr {
1545public:
1546  /// CastKind - the kind of cast this represents.
1547  enum CastKind {
1548    /// CK_Unknown - Unknown cast kind.
1549    /// FIXME: The goal is to get rid of this and make all casts have a
1550    /// kind so that the AST client doesn't have to try to figure out what's
1551    /// going on.
1552    CK_Unknown,
1553
1554    /// CK_BitCast - Used for reinterpret_cast.
1555    CK_BitCast,
1556
1557    /// CK_NoOp - Used for const_cast.
1558    CK_NoOp,
1559
1560    /// CK_BaseToDerived - Base to derived class casts.
1561    CK_BaseToDerived,
1562
1563    /// CK_DerivedToBase - Derived to base class casts.
1564    CK_DerivedToBase,
1565
1566    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1567    /// assume that the derived pointer is not null.
1568    CK_UncheckedDerivedToBase,
1569
1570    /// CK_Dynamic - Dynamic cast.
1571    CK_Dynamic,
1572
1573    /// CK_ToUnion - Cast to union (GCC extension).
1574    CK_ToUnion,
1575
1576    /// CK_ArrayToPointerDecay - Array to pointer decay.
1577    CK_ArrayToPointerDecay,
1578
1579    // CK_FunctionToPointerDecay - Function to pointer decay.
1580    CK_FunctionToPointerDecay,
1581
1582    /// CK_NullToMemberPointer - Null pointer to member pointer.
1583    CK_NullToMemberPointer,
1584
1585    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1586    /// member pointer in derived class.
1587    CK_BaseToDerivedMemberPointer,
1588
1589    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1590    /// member pointer in base class.
1591    CK_DerivedToBaseMemberPointer,
1592
1593    /// CK_UserDefinedConversion - Conversion using a user defined type
1594    /// conversion function.
1595    CK_UserDefinedConversion,
1596
1597    /// CK_ConstructorConversion - Conversion by constructor
1598    CK_ConstructorConversion,
1599
1600    /// CK_IntegralToPointer - Integral to pointer
1601    CK_IntegralToPointer,
1602
1603    /// CK_PointerToIntegral - Pointer to integral
1604    CK_PointerToIntegral,
1605
1606    /// CK_ToVoid - Cast to void.
1607    CK_ToVoid,
1608
1609    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1610    /// vector type with the same element type as the src type. Splats the
1611    /// src expression into the destination expression.
1612    CK_VectorSplat,
1613
1614    /// CK_IntegralCast - Casting between integral types of different size.
1615    CK_IntegralCast,
1616
1617    /// CK_IntegralToFloating - Integral to floating point.
1618    CK_IntegralToFloating,
1619
1620    /// CK_FloatingToIntegral - Floating point to integral.
1621    CK_FloatingToIntegral,
1622
1623    /// CK_FloatingCast - Casting between floating types of different size.
1624    CK_FloatingCast,
1625
1626    /// CK_MemberPointerToBoolean - Member pointer to boolean
1627    CK_MemberPointerToBoolean,
1628
1629    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1630    /// pointer
1631    CK_AnyPointerToObjCPointerCast,
1632    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1633    /// pointer
1634    CK_AnyPointerToBlockPointerCast
1635
1636  };
1637
1638private:
1639  CastKind Kind;
1640  Stmt *Op;
1641protected:
1642  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op) :
1643    Expr(SC, ty,
1644         // Cast expressions are type-dependent if the type is
1645         // dependent (C++ [temp.dep.expr]p3).
1646         ty->isDependentType(),
1647         // Cast expressions are value-dependent if the type is
1648         // dependent or if the subexpression is value-dependent.
1649         ty->isDependentType() || (op && op->isValueDependent())),
1650    Kind(kind), Op(op) {}
1651
1652  /// \brief Construct an empty cast.
1653  CastExpr(StmtClass SC, EmptyShell Empty)
1654    : Expr(SC, Empty) { }
1655
1656public:
1657  CastKind getCastKind() const { return Kind; }
1658  void setCastKind(CastKind K) { Kind = K; }
1659  const char *getCastKindName() const;
1660
1661  Expr *getSubExpr() { return cast<Expr>(Op); }
1662  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1663  void setSubExpr(Expr *E) { Op = E; }
1664
1665  /// \brief Retrieve the cast subexpression as it was written in the source
1666  /// code, looking through any implicit casts or other intermediate nodes
1667  /// introduced by semantic analysis.
1668  Expr *getSubExprAsWritten();
1669  const Expr *getSubExprAsWritten() const {
1670    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
1671  }
1672
1673  static bool classof(const Stmt *T) {
1674    StmtClass SC = T->getStmtClass();
1675    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1676      return true;
1677
1678    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1679      return true;
1680
1681    return false;
1682  }
1683  static bool classof(const CastExpr *) { return true; }
1684
1685  // Iterators
1686  virtual child_iterator child_begin();
1687  virtual child_iterator child_end();
1688};
1689
1690/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1691/// conversions, which have no direct representation in the original
1692/// source code. For example: converting T[]->T*, void f()->void
1693/// (*f)(), float->double, short->int, etc.
1694///
1695/// In C, implicit casts always produce rvalues. However, in C++, an
1696/// implicit cast whose result is being bound to a reference will be
1697/// an lvalue. For example:
1698///
1699/// @code
1700/// class Base { };
1701/// class Derived : public Base { };
1702/// void f(Derived d) {
1703///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1704/// }
1705/// @endcode
1706class ImplicitCastExpr : public CastExpr {
1707  /// LvalueCast - Whether this cast produces an lvalue.
1708  bool LvalueCast;
1709
1710public:
1711  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, bool Lvalue) :
1712    CastExpr(ImplicitCastExprClass, ty, kind, op), LvalueCast(Lvalue) { }
1713
1714  /// \brief Construct an empty implicit cast.
1715  explicit ImplicitCastExpr(EmptyShell Shell)
1716    : CastExpr(ImplicitCastExprClass, Shell) { }
1717
1718
1719  virtual SourceRange getSourceRange() const {
1720    return getSubExpr()->getSourceRange();
1721  }
1722
1723  /// isLvalueCast - Whether this cast produces an lvalue.
1724  bool isLvalueCast() const { return LvalueCast; }
1725
1726  /// setLvalueCast - Set whether this cast produces an lvalue.
1727  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1728
1729  static bool classof(const Stmt *T) {
1730    return T->getStmtClass() == ImplicitCastExprClass;
1731  }
1732  static bool classof(const ImplicitCastExpr *) { return true; }
1733};
1734
1735/// ExplicitCastExpr - An explicit cast written in the source
1736/// code.
1737///
1738/// This class is effectively an abstract class, because it provides
1739/// the basic representation of an explicitly-written cast without
1740/// specifying which kind of cast (C cast, functional cast, static
1741/// cast, etc.) was written; specific derived classes represent the
1742/// particular style of cast and its location information.
1743///
1744/// Unlike implicit casts, explicit cast nodes have two different
1745/// types: the type that was written into the source code, and the
1746/// actual type of the expression as determined by semantic
1747/// analysis. These types may differ slightly. For example, in C++ one
1748/// can cast to a reference type, which indicates that the resulting
1749/// expression will be an lvalue. The reference type, however, will
1750/// not be used as the type of the expression.
1751class ExplicitCastExpr : public CastExpr {
1752  /// TInfo - Source type info for the (written) type
1753  /// this expression is casting to.
1754  TypeSourceInfo *TInfo;
1755
1756protected:
1757  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
1758                   Expr *op, TypeSourceInfo *writtenTy)
1759    : CastExpr(SC, exprTy, kind, op), TInfo(writtenTy) {}
1760
1761  /// \brief Construct an empty explicit cast.
1762  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1763    : CastExpr(SC, Shell) { }
1764
1765public:
1766  /// getTypeInfoAsWritten - Returns the type source info for the type
1767  /// that this expression is casting to.
1768  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
1769  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
1770
1771  /// getTypeAsWritten - Returns the type that this expression is
1772  /// casting to, as written in the source code.
1773  QualType getTypeAsWritten() const { return TInfo->getType(); }
1774
1775  static bool classof(const Stmt *T) {
1776    StmtClass SC = T->getStmtClass();
1777    if (SC >= CStyleCastExprClass && SC <= CStyleCastExprClass)
1778      return true;
1779    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1780      return true;
1781
1782    return false;
1783  }
1784  static bool classof(const ExplicitCastExpr *) { return true; }
1785};
1786
1787/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1788/// cast in C++ (C++ [expr.cast]), which uses the syntax
1789/// (Type)expr. For example: @c (int)f.
1790class CStyleCastExpr : public ExplicitCastExpr {
1791  SourceLocation LPLoc; // the location of the left paren
1792  SourceLocation RPLoc; // the location of the right paren
1793public:
1794  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
1795                 TypeSourceInfo *writtenTy,
1796                 SourceLocation l, SourceLocation r) :
1797    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1798    LPLoc(l), RPLoc(r) {}
1799
1800  /// \brief Construct an empty C-style explicit cast.
1801  explicit CStyleCastExpr(EmptyShell Shell)
1802    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1803
1804  SourceLocation getLParenLoc() const { return LPLoc; }
1805  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1806
1807  SourceLocation getRParenLoc() const { return RPLoc; }
1808  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1809
1810  virtual SourceRange getSourceRange() const {
1811    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1812  }
1813  static bool classof(const Stmt *T) {
1814    return T->getStmtClass() == CStyleCastExprClass;
1815  }
1816  static bool classof(const CStyleCastExpr *) { return true; }
1817};
1818
1819/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1820///
1821/// This expression node kind describes a builtin binary operation,
1822/// such as "x + y" for integer values "x" and "y". The operands will
1823/// already have been converted to appropriate types (e.g., by
1824/// performing promotions or conversions).
1825///
1826/// In C++, where operators may be overloaded, a different kind of
1827/// expression node (CXXOperatorCallExpr) is used to express the
1828/// invocation of an overloaded operator with operator syntax. Within
1829/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1830/// used to store an expression "x + y" depends on the subexpressions
1831/// for x and y. If neither x or y is type-dependent, and the "+"
1832/// operator resolves to a built-in operation, BinaryOperator will be
1833/// used to express the computation (x and y may still be
1834/// value-dependent). If either x or y is type-dependent, or if the
1835/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1836/// be used to express the computation.
1837class BinaryOperator : public Expr {
1838public:
1839  enum Opcode {
1840    // Operators listed in order of precedence.
1841    // Note that additions to this should also update the StmtVisitor class.
1842    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1843    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1844    Add, Sub,         // [C99 6.5.6] Additive operators.
1845    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1846    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1847    EQ, NE,           // [C99 6.5.9] Equality operators.
1848    And,              // [C99 6.5.10] Bitwise AND operator.
1849    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1850    Or,               // [C99 6.5.12] Bitwise OR operator.
1851    LAnd,             // [C99 6.5.13] Logical AND operator.
1852    LOr,              // [C99 6.5.14] Logical OR operator.
1853    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1854    DivAssign, RemAssign,
1855    AddAssign, SubAssign,
1856    ShlAssign, ShrAssign,
1857    AndAssign, XorAssign,
1858    OrAssign,
1859    Comma             // [C99 6.5.17] Comma operator.
1860  };
1861private:
1862  enum { LHS, RHS, END_EXPR };
1863  Stmt* SubExprs[END_EXPR];
1864  Opcode Opc;
1865  SourceLocation OpLoc;
1866public:
1867
1868  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1869                 SourceLocation opLoc)
1870    : Expr(BinaryOperatorClass, ResTy,
1871           lhs->isTypeDependent() || rhs->isTypeDependent(),
1872           lhs->isValueDependent() || rhs->isValueDependent()),
1873      Opc(opc), OpLoc(opLoc) {
1874    SubExprs[LHS] = lhs;
1875    SubExprs[RHS] = rhs;
1876    assert(!isCompoundAssignmentOp() &&
1877           "Use ArithAssignBinaryOperator for compound assignments");
1878  }
1879
1880  /// \brief Construct an empty binary operator.
1881  explicit BinaryOperator(EmptyShell Empty)
1882    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1883
1884  SourceLocation getOperatorLoc() const { return OpLoc; }
1885  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1886
1887  Opcode getOpcode() const { return Opc; }
1888  void setOpcode(Opcode O) { Opc = O; }
1889
1890  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1891  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1892  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1893  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1894
1895  virtual SourceRange getSourceRange() const {
1896    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1897  }
1898
1899  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1900  /// corresponds to, e.g. "<<=".
1901  static const char *getOpcodeStr(Opcode Op);
1902
1903  /// \brief Retrieve the binary opcode that corresponds to the given
1904  /// overloaded operator.
1905  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1906
1907  /// \brief Retrieve the overloaded operator kind that corresponds to
1908  /// the given binary opcode.
1909  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1910
1911  /// predicates to categorize the respective opcodes.
1912  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1913  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1914  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
1915  bool isShiftOp() const { return isShiftOp(Opc); }
1916
1917  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
1918  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
1919
1920  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1921  bool isRelationalOp() const { return isRelationalOp(Opc); }
1922
1923  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1924  bool isEqualityOp() const { return isEqualityOp(Opc); }
1925
1926  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
1927  bool isComparisonOp() const { return isComparisonOp(Opc); }
1928
1929  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1930  bool isLogicalOp() const { return isLogicalOp(Opc); }
1931
1932  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1933  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1934  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1935
1936  static bool classof(const Stmt *S) {
1937    return S->getStmtClass() == BinaryOperatorClass ||
1938           S->getStmtClass() == CompoundAssignOperatorClass;
1939  }
1940  static bool classof(const BinaryOperator *) { return true; }
1941
1942  // Iterators
1943  virtual child_iterator child_begin();
1944  virtual child_iterator child_end();
1945
1946protected:
1947  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1948                 SourceLocation opLoc, bool dead)
1949    : Expr(CompoundAssignOperatorClass, ResTy,
1950           lhs->isTypeDependent() || rhs->isTypeDependent(),
1951           lhs->isValueDependent() || rhs->isValueDependent()),
1952      Opc(opc), OpLoc(opLoc) {
1953    SubExprs[LHS] = lhs;
1954    SubExprs[RHS] = rhs;
1955  }
1956
1957  BinaryOperator(StmtClass SC, EmptyShell Empty)
1958    : Expr(SC, Empty), Opc(MulAssign) { }
1959};
1960
1961/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1962/// track of the type the operation is performed in.  Due to the semantics of
1963/// these operators, the operands are promoted, the aritmetic performed, an
1964/// implicit conversion back to the result type done, then the assignment takes
1965/// place.  This captures the intermediate type which the computation is done
1966/// in.
1967class CompoundAssignOperator : public BinaryOperator {
1968  QualType ComputationLHSType;
1969  QualType ComputationResultType;
1970public:
1971  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1972                         QualType ResType, QualType CompLHSType,
1973                         QualType CompResultType,
1974                         SourceLocation OpLoc)
1975    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1976      ComputationLHSType(CompLHSType),
1977      ComputationResultType(CompResultType) {
1978    assert(isCompoundAssignmentOp() &&
1979           "Only should be used for compound assignments");
1980  }
1981
1982  /// \brief Build an empty compound assignment operator expression.
1983  explicit CompoundAssignOperator(EmptyShell Empty)
1984    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1985
1986  // The two computation types are the type the LHS is converted
1987  // to for the computation and the type of the result; the two are
1988  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1989  QualType getComputationLHSType() const { return ComputationLHSType; }
1990  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1991
1992  QualType getComputationResultType() const { return ComputationResultType; }
1993  void setComputationResultType(QualType T) { ComputationResultType = T; }
1994
1995  static bool classof(const CompoundAssignOperator *) { return true; }
1996  static bool classof(const Stmt *S) {
1997    return S->getStmtClass() == CompoundAssignOperatorClass;
1998  }
1999};
2000
2001/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2002/// GNU "missing LHS" extension is in use.
2003///
2004class ConditionalOperator : public Expr {
2005  enum { COND, LHS, RHS, END_EXPR };
2006  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2007  SourceLocation QuestionLoc, ColonLoc;
2008public:
2009  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2010                      SourceLocation CLoc, Expr *rhs, QualType t)
2011    : Expr(ConditionalOperatorClass, t,
2012           // FIXME: the type of the conditional operator doesn't
2013           // depend on the type of the conditional, but the standard
2014           // seems to imply that it could. File a bug!
2015           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2016           (cond->isValueDependent() ||
2017            (lhs && lhs->isValueDependent()) ||
2018            (rhs && rhs->isValueDependent()))),
2019      QuestionLoc(QLoc),
2020      ColonLoc(CLoc) {
2021    SubExprs[COND] = cond;
2022    SubExprs[LHS] = lhs;
2023    SubExprs[RHS] = rhs;
2024  }
2025
2026  /// \brief Build an empty conditional operator.
2027  explicit ConditionalOperator(EmptyShell Empty)
2028    : Expr(ConditionalOperatorClass, Empty) { }
2029
2030  // getCond - Return the expression representing the condition for
2031  //  the ?: operator.
2032  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2033  void setCond(Expr *E) { SubExprs[COND] = E; }
2034
2035  // getTrueExpr - Return the subexpression representing the value of the ?:
2036  //  expression if the condition evaluates to true.  In most cases this value
2037  //  will be the same as getLHS() except a GCC extension allows the left
2038  //  subexpression to be omitted, and instead of the condition be returned.
2039  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2040  //  is only evaluated once.
2041  Expr *getTrueExpr() const {
2042    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2043  }
2044
2045  // getTrueExpr - Return the subexpression representing the value of the ?:
2046  // expression if the condition evaluates to false. This is the same as getRHS.
2047  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2048
2049  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2050  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2051
2052  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2053  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2054
2055  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2056  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2057
2058  SourceLocation getColonLoc() const { return ColonLoc; }
2059  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2060
2061  virtual SourceRange getSourceRange() const {
2062    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2063  }
2064  static bool classof(const Stmt *T) {
2065    return T->getStmtClass() == ConditionalOperatorClass;
2066  }
2067  static bool classof(const ConditionalOperator *) { return true; }
2068
2069  // Iterators
2070  virtual child_iterator child_begin();
2071  virtual child_iterator child_end();
2072};
2073
2074/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2075class AddrLabelExpr : public Expr {
2076  SourceLocation AmpAmpLoc, LabelLoc;
2077  LabelStmt *Label;
2078public:
2079  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2080                QualType t)
2081    : Expr(AddrLabelExprClass, t, false, false),
2082      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2083
2084  /// \brief Build an empty address of a label expression.
2085  explicit AddrLabelExpr(EmptyShell Empty)
2086    : Expr(AddrLabelExprClass, Empty) { }
2087
2088  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2089  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2090  SourceLocation getLabelLoc() const { return LabelLoc; }
2091  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2092
2093  virtual SourceRange getSourceRange() const {
2094    return SourceRange(AmpAmpLoc, LabelLoc);
2095  }
2096
2097  LabelStmt *getLabel() const { return Label; }
2098  void setLabel(LabelStmt *S) { Label = S; }
2099
2100  static bool classof(const Stmt *T) {
2101    return T->getStmtClass() == AddrLabelExprClass;
2102  }
2103  static bool classof(const AddrLabelExpr *) { return true; }
2104
2105  // Iterators
2106  virtual child_iterator child_begin();
2107  virtual child_iterator child_end();
2108};
2109
2110/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2111/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2112/// takes the value of the last subexpression.
2113class StmtExpr : public Expr {
2114  Stmt *SubStmt;
2115  SourceLocation LParenLoc, RParenLoc;
2116public:
2117  // FIXME: Does type-dependence need to be computed differently?
2118  StmtExpr(CompoundStmt *substmt, QualType T,
2119           SourceLocation lp, SourceLocation rp) :
2120    Expr(StmtExprClass, T, T->isDependentType(), false),
2121    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2122
2123  /// \brief Build an empty statement expression.
2124  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2125
2126  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2127  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2128  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2129
2130  virtual SourceRange getSourceRange() const {
2131    return SourceRange(LParenLoc, RParenLoc);
2132  }
2133
2134  SourceLocation getLParenLoc() const { return LParenLoc; }
2135  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2136  SourceLocation getRParenLoc() const { return RParenLoc; }
2137  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2138
2139  static bool classof(const Stmt *T) {
2140    return T->getStmtClass() == StmtExprClass;
2141  }
2142  static bool classof(const StmtExpr *) { return true; }
2143
2144  // Iterators
2145  virtual child_iterator child_begin();
2146  virtual child_iterator child_end();
2147};
2148
2149/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2150/// This AST node represents a function that returns 1 if two *types* (not
2151/// expressions) are compatible. The result of this built-in function can be
2152/// used in integer constant expressions.
2153class TypesCompatibleExpr : public Expr {
2154  QualType Type1;
2155  QualType Type2;
2156  SourceLocation BuiltinLoc, RParenLoc;
2157public:
2158  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2159                      QualType t1, QualType t2, SourceLocation RP) :
2160    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2161    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2162
2163  /// \brief Build an empty __builtin_type_compatible_p expression.
2164  explicit TypesCompatibleExpr(EmptyShell Empty)
2165    : Expr(TypesCompatibleExprClass, Empty) { }
2166
2167  QualType getArgType1() const { return Type1; }
2168  void setArgType1(QualType T) { Type1 = T; }
2169  QualType getArgType2() const { return Type2; }
2170  void setArgType2(QualType T) { Type2 = T; }
2171
2172  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2173  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2174
2175  SourceLocation getRParenLoc() const { return RParenLoc; }
2176  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2177
2178  virtual SourceRange getSourceRange() const {
2179    return SourceRange(BuiltinLoc, RParenLoc);
2180  }
2181  static bool classof(const Stmt *T) {
2182    return T->getStmtClass() == TypesCompatibleExprClass;
2183  }
2184  static bool classof(const TypesCompatibleExpr *) { return true; }
2185
2186  // Iterators
2187  virtual child_iterator child_begin();
2188  virtual child_iterator child_end();
2189};
2190
2191/// ShuffleVectorExpr - clang-specific builtin-in function
2192/// __builtin_shufflevector.
2193/// This AST node represents a operator that does a constant
2194/// shuffle, similar to LLVM's shufflevector instruction. It takes
2195/// two vectors and a variable number of constant indices,
2196/// and returns the appropriately shuffled vector.
2197class ShuffleVectorExpr : public Expr {
2198  SourceLocation BuiltinLoc, RParenLoc;
2199
2200  // SubExprs - the list of values passed to the __builtin_shufflevector
2201  // function. The first two are vectors, and the rest are constant
2202  // indices.  The number of values in this list is always
2203  // 2+the number of indices in the vector type.
2204  Stmt **SubExprs;
2205  unsigned NumExprs;
2206
2207protected:
2208  virtual void DoDestroy(ASTContext &C);
2209
2210public:
2211  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2212  // to be computed differently?
2213  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2214                    QualType Type, SourceLocation BLoc,
2215                    SourceLocation RP) :
2216    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2217    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2218
2219    SubExprs = new (C) Stmt*[nexpr];
2220    for (unsigned i = 0; i < nexpr; i++)
2221      SubExprs[i] = args[i];
2222  }
2223
2224  /// \brief Build an empty vector-shuffle expression.
2225  explicit ShuffleVectorExpr(EmptyShell Empty)
2226    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2227
2228  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2229  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2230
2231  SourceLocation getRParenLoc() const { return RParenLoc; }
2232  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2233
2234  virtual SourceRange getSourceRange() const {
2235    return SourceRange(BuiltinLoc, RParenLoc);
2236  }
2237  static bool classof(const Stmt *T) {
2238    return T->getStmtClass() == ShuffleVectorExprClass;
2239  }
2240  static bool classof(const ShuffleVectorExpr *) { return true; }
2241
2242  ~ShuffleVectorExpr() {}
2243
2244  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2245  /// constant expression, the actual arguments passed in, and the function
2246  /// pointers.
2247  unsigned getNumSubExprs() const { return NumExprs; }
2248
2249  /// getExpr - Return the Expr at the specified index.
2250  Expr *getExpr(unsigned Index) {
2251    assert((Index < NumExprs) && "Arg access out of range!");
2252    return cast<Expr>(SubExprs[Index]);
2253  }
2254  const Expr *getExpr(unsigned Index) const {
2255    assert((Index < NumExprs) && "Arg access out of range!");
2256    return cast<Expr>(SubExprs[Index]);
2257  }
2258
2259  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2260
2261  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2262    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2263    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2264  }
2265
2266  // Iterators
2267  virtual child_iterator child_begin();
2268  virtual child_iterator child_end();
2269};
2270
2271/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2272/// This AST node is similar to the conditional operator (?:) in C, with
2273/// the following exceptions:
2274/// - the test expression must be a integer constant expression.
2275/// - the expression returned acts like the chosen subexpression in every
2276///   visible way: the type is the same as that of the chosen subexpression,
2277///   and all predicates (whether it's an l-value, whether it's an integer
2278///   constant expression, etc.) return the same result as for the chosen
2279///   sub-expression.
2280class ChooseExpr : public Expr {
2281  enum { COND, LHS, RHS, END_EXPR };
2282  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2283  SourceLocation BuiltinLoc, RParenLoc;
2284public:
2285  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2286             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2287    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2288      BuiltinLoc(BLoc), RParenLoc(RP) {
2289      SubExprs[COND] = cond;
2290      SubExprs[LHS] = lhs;
2291      SubExprs[RHS] = rhs;
2292    }
2293
2294  /// \brief Build an empty __builtin_choose_expr.
2295  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2296
2297  /// isConditionTrue - Return whether the condition is true (i.e. not
2298  /// equal to zero).
2299  bool isConditionTrue(ASTContext &C) const;
2300
2301  /// getChosenSubExpr - Return the subexpression chosen according to the
2302  /// condition.
2303  Expr *getChosenSubExpr(ASTContext &C) const {
2304    return isConditionTrue(C) ? getLHS() : getRHS();
2305  }
2306
2307  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2308  void setCond(Expr *E) { SubExprs[COND] = E; }
2309  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2310  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2311  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2312  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2313
2314  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2315  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2316
2317  SourceLocation getRParenLoc() const { return RParenLoc; }
2318  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2319
2320  virtual SourceRange getSourceRange() const {
2321    return SourceRange(BuiltinLoc, RParenLoc);
2322  }
2323  static bool classof(const Stmt *T) {
2324    return T->getStmtClass() == ChooseExprClass;
2325  }
2326  static bool classof(const ChooseExpr *) { return true; }
2327
2328  // Iterators
2329  virtual child_iterator child_begin();
2330  virtual child_iterator child_end();
2331};
2332
2333/// GNUNullExpr - Implements the GNU __null extension, which is a name
2334/// for a null pointer constant that has integral type (e.g., int or
2335/// long) and is the same size and alignment as a pointer. The __null
2336/// extension is typically only used by system headers, which define
2337/// NULL as __null in C++ rather than using 0 (which is an integer
2338/// that may not match the size of a pointer).
2339class GNUNullExpr : public Expr {
2340  /// TokenLoc - The location of the __null keyword.
2341  SourceLocation TokenLoc;
2342
2343public:
2344  GNUNullExpr(QualType Ty, SourceLocation Loc)
2345    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2346
2347  /// \brief Build an empty GNU __null expression.
2348  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2349
2350  /// getTokenLocation - The location of the __null token.
2351  SourceLocation getTokenLocation() const { return TokenLoc; }
2352  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2353
2354  virtual SourceRange getSourceRange() const {
2355    return SourceRange(TokenLoc);
2356  }
2357  static bool classof(const Stmt *T) {
2358    return T->getStmtClass() == GNUNullExprClass;
2359  }
2360  static bool classof(const GNUNullExpr *) { return true; }
2361
2362  // Iterators
2363  virtual child_iterator child_begin();
2364  virtual child_iterator child_end();
2365};
2366
2367/// VAArgExpr, used for the builtin function __builtin_va_arg.
2368class VAArgExpr : public Expr {
2369  Stmt *Val;
2370  SourceLocation BuiltinLoc, RParenLoc;
2371public:
2372  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2373    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2374      Val(e),
2375      BuiltinLoc(BLoc),
2376      RParenLoc(RPLoc) { }
2377
2378  /// \brief Create an empty __builtin_va_arg expression.
2379  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2380
2381  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2382  Expr *getSubExpr() { return cast<Expr>(Val); }
2383  void setSubExpr(Expr *E) { Val = E; }
2384
2385  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2386  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2387
2388  SourceLocation getRParenLoc() const { return RParenLoc; }
2389  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2390
2391  virtual SourceRange getSourceRange() const {
2392    return SourceRange(BuiltinLoc, RParenLoc);
2393  }
2394  static bool classof(const Stmt *T) {
2395    return T->getStmtClass() == VAArgExprClass;
2396  }
2397  static bool classof(const VAArgExpr *) { return true; }
2398
2399  // Iterators
2400  virtual child_iterator child_begin();
2401  virtual child_iterator child_end();
2402};
2403
2404/// @brief Describes an C or C++ initializer list.
2405///
2406/// InitListExpr describes an initializer list, which can be used to
2407/// initialize objects of different types, including
2408/// struct/class/union types, arrays, and vectors. For example:
2409///
2410/// @code
2411/// struct foo x = { 1, { 2, 3 } };
2412/// @endcode
2413///
2414/// Prior to semantic analysis, an initializer list will represent the
2415/// initializer list as written by the user, but will have the
2416/// placeholder type "void". This initializer list is called the
2417/// syntactic form of the initializer, and may contain C99 designated
2418/// initializers (represented as DesignatedInitExprs), initializations
2419/// of subobject members without explicit braces, and so on. Clients
2420/// interested in the original syntax of the initializer list should
2421/// use the syntactic form of the initializer list.
2422///
2423/// After semantic analysis, the initializer list will represent the
2424/// semantic form of the initializer, where the initializations of all
2425/// subobjects are made explicit with nested InitListExpr nodes and
2426/// C99 designators have been eliminated by placing the designated
2427/// initializations into the subobject they initialize. Additionally,
2428/// any "holes" in the initialization, where no initializer has been
2429/// specified for a particular subobject, will be replaced with
2430/// implicitly-generated ImplicitValueInitExpr expressions that
2431/// value-initialize the subobjects. Note, however, that the
2432/// initializer lists may still have fewer initializers than there are
2433/// elements to initialize within the object.
2434///
2435/// Given the semantic form of the initializer list, one can retrieve
2436/// the original syntactic form of that initializer list (if it
2437/// exists) using getSyntacticForm(). Since many initializer lists
2438/// have the same syntactic and semantic forms, getSyntacticForm() may
2439/// return NULL, indicating that the current initializer list also
2440/// serves as its syntactic form.
2441class InitListExpr : public Expr {
2442  // FIXME: Eliminate this vector in favor of ASTContext allocation
2443  std::vector<Stmt *> InitExprs;
2444  SourceLocation LBraceLoc, RBraceLoc;
2445
2446  /// Contains the initializer list that describes the syntactic form
2447  /// written in the source code.
2448  InitListExpr *SyntacticForm;
2449
2450  /// If this initializer list initializes a union, specifies which
2451  /// field within the union will be initialized.
2452  FieldDecl *UnionFieldInit;
2453
2454  /// Whether this initializer list originally had a GNU array-range
2455  /// designator in it. This is a temporary marker used by CodeGen.
2456  bool HadArrayRangeDesignator;
2457
2458public:
2459  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2460               SourceLocation rbraceloc);
2461
2462  /// \brief Build an empty initializer list.
2463  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2464
2465  unsigned getNumInits() const { return InitExprs.size(); }
2466
2467  const Expr* getInit(unsigned Init) const {
2468    assert(Init < getNumInits() && "Initializer access out of range!");
2469    return cast_or_null<Expr>(InitExprs[Init]);
2470  }
2471
2472  Expr* getInit(unsigned Init) {
2473    assert(Init < getNumInits() && "Initializer access out of range!");
2474    return cast_or_null<Expr>(InitExprs[Init]);
2475  }
2476
2477  void setInit(unsigned Init, Expr *expr) {
2478    assert(Init < getNumInits() && "Initializer access out of range!");
2479    InitExprs[Init] = expr;
2480  }
2481
2482  /// \brief Reserve space for some number of initializers.
2483  void reserveInits(unsigned NumInits);
2484
2485  /// @brief Specify the number of initializers
2486  ///
2487  /// If there are more than @p NumInits initializers, the remaining
2488  /// initializers will be destroyed. If there are fewer than @p
2489  /// NumInits initializers, NULL expressions will be added for the
2490  /// unknown initializers.
2491  void resizeInits(ASTContext &Context, unsigned NumInits);
2492
2493  /// @brief Updates the initializer at index @p Init with the new
2494  /// expression @p expr, and returns the old expression at that
2495  /// location.
2496  ///
2497  /// When @p Init is out of range for this initializer list, the
2498  /// initializer list will be extended with NULL expressions to
2499  /// accomodate the new entry.
2500  Expr *updateInit(unsigned Init, Expr *expr);
2501
2502  /// \brief If this initializes a union, specifies which field in the
2503  /// union to initialize.
2504  ///
2505  /// Typically, this field is the first named field within the
2506  /// union. However, a designated initializer can specify the
2507  /// initialization of a different field within the union.
2508  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2509  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2510
2511  // Explicit InitListExpr's originate from source code (and have valid source
2512  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2513  bool isExplicit() {
2514    return LBraceLoc.isValid() && RBraceLoc.isValid();
2515  }
2516
2517  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2518  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2519  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2520  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2521
2522  /// @brief Retrieve the initializer list that describes the
2523  /// syntactic form of the initializer.
2524  ///
2525  ///
2526  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2527  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2528
2529  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2530  void sawArrayRangeDesignator(bool ARD = true) {
2531    HadArrayRangeDesignator = ARD;
2532  }
2533
2534  virtual SourceRange getSourceRange() const {
2535    return SourceRange(LBraceLoc, RBraceLoc);
2536  }
2537  static bool classof(const Stmt *T) {
2538    return T->getStmtClass() == InitListExprClass;
2539  }
2540  static bool classof(const InitListExpr *) { return true; }
2541
2542  // Iterators
2543  virtual child_iterator child_begin();
2544  virtual child_iterator child_end();
2545
2546  typedef std::vector<Stmt *>::iterator iterator;
2547  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2548
2549  iterator begin() { return InitExprs.begin(); }
2550  iterator end() { return InitExprs.end(); }
2551  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2552  reverse_iterator rend() { return InitExprs.rend(); }
2553};
2554
2555/// @brief Represents a C99 designated initializer expression.
2556///
2557/// A designated initializer expression (C99 6.7.8) contains one or
2558/// more designators (which can be field designators, array
2559/// designators, or GNU array-range designators) followed by an
2560/// expression that initializes the field or element(s) that the
2561/// designators refer to. For example, given:
2562///
2563/// @code
2564/// struct point {
2565///   double x;
2566///   double y;
2567/// };
2568/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2569/// @endcode
2570///
2571/// The InitListExpr contains three DesignatedInitExprs, the first of
2572/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2573/// designators, one array designator for @c [2] followed by one field
2574/// designator for @c .y. The initalization expression will be 1.0.
2575class DesignatedInitExpr : public Expr {
2576public:
2577  /// \brief Forward declaration of the Designator class.
2578  class Designator;
2579
2580private:
2581  /// The location of the '=' or ':' prior to the actual initializer
2582  /// expression.
2583  SourceLocation EqualOrColonLoc;
2584
2585  /// Whether this designated initializer used the GNU deprecated
2586  /// syntax rather than the C99 '=' syntax.
2587  bool GNUSyntax : 1;
2588
2589  /// The number of designators in this initializer expression.
2590  unsigned NumDesignators : 15;
2591
2592  /// \brief The designators in this designated initialization
2593  /// expression.
2594  Designator *Designators;
2595
2596  /// The number of subexpressions of this initializer expression,
2597  /// which contains both the initializer and any additional
2598  /// expressions used by array and array-range designators.
2599  unsigned NumSubExprs : 16;
2600
2601
2602  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2603                     const Designator *Designators,
2604                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2605                     Expr **IndexExprs, unsigned NumIndexExprs,
2606                     Expr *Init);
2607
2608  explicit DesignatedInitExpr(unsigned NumSubExprs)
2609    : Expr(DesignatedInitExprClass, EmptyShell()),
2610      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2611
2612protected:
2613  virtual void DoDestroy(ASTContext &C);
2614
2615  void DestroyDesignators(ASTContext &C);
2616
2617public:
2618  /// A field designator, e.g., ".x".
2619  struct FieldDesignator {
2620    /// Refers to the field that is being initialized. The low bit
2621    /// of this field determines whether this is actually a pointer
2622    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2623    /// initially constructed, a field designator will store an
2624    /// IdentifierInfo*. After semantic analysis has resolved that
2625    /// name, the field designator will instead store a FieldDecl*.
2626    uintptr_t NameOrField;
2627
2628    /// The location of the '.' in the designated initializer.
2629    unsigned DotLoc;
2630
2631    /// The location of the field name in the designated initializer.
2632    unsigned FieldLoc;
2633  };
2634
2635  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2636  struct ArrayOrRangeDesignator {
2637    /// Location of the first index expression within the designated
2638    /// initializer expression's list of subexpressions.
2639    unsigned Index;
2640    /// The location of the '[' starting the array range designator.
2641    unsigned LBracketLoc;
2642    /// The location of the ellipsis separating the start and end
2643    /// indices. Only valid for GNU array-range designators.
2644    unsigned EllipsisLoc;
2645    /// The location of the ']' terminating the array range designator.
2646    unsigned RBracketLoc;
2647  };
2648
2649  /// @brief Represents a single C99 designator.
2650  ///
2651  /// @todo This class is infuriatingly similar to clang::Designator,
2652  /// but minor differences (storing indices vs. storing pointers)
2653  /// keep us from reusing it. Try harder, later, to rectify these
2654  /// differences.
2655  class Designator {
2656    /// @brief The kind of designator this describes.
2657    enum {
2658      FieldDesignator,
2659      ArrayDesignator,
2660      ArrayRangeDesignator
2661    } Kind;
2662
2663    union {
2664      /// A field designator, e.g., ".x".
2665      struct FieldDesignator Field;
2666      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2667      struct ArrayOrRangeDesignator ArrayOrRange;
2668    };
2669    friend class DesignatedInitExpr;
2670
2671  public:
2672    Designator() {}
2673
2674    /// @brief Initializes a field designator.
2675    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2676               SourceLocation FieldLoc)
2677      : Kind(FieldDesignator) {
2678      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2679      Field.DotLoc = DotLoc.getRawEncoding();
2680      Field.FieldLoc = FieldLoc.getRawEncoding();
2681    }
2682
2683    /// @brief Initializes an array designator.
2684    Designator(unsigned Index, SourceLocation LBracketLoc,
2685               SourceLocation RBracketLoc)
2686      : Kind(ArrayDesignator) {
2687      ArrayOrRange.Index = Index;
2688      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2689      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2690      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2691    }
2692
2693    /// @brief Initializes a GNU array-range designator.
2694    Designator(unsigned Index, SourceLocation LBracketLoc,
2695               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2696      : Kind(ArrayRangeDesignator) {
2697      ArrayOrRange.Index = Index;
2698      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2699      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2700      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2701    }
2702
2703    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2704    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2705    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2706
2707    IdentifierInfo * getFieldName();
2708
2709    FieldDecl *getField() {
2710      assert(Kind == FieldDesignator && "Only valid on a field designator");
2711      if (Field.NameOrField & 0x01)
2712        return 0;
2713      else
2714        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2715    }
2716
2717    void setField(FieldDecl *FD) {
2718      assert(Kind == FieldDesignator && "Only valid on a field designator");
2719      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2720    }
2721
2722    SourceLocation getDotLoc() const {
2723      assert(Kind == FieldDesignator && "Only valid on a field designator");
2724      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2725    }
2726
2727    SourceLocation getFieldLoc() const {
2728      assert(Kind == FieldDesignator && "Only valid on a field designator");
2729      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2730    }
2731
2732    SourceLocation getLBracketLoc() const {
2733      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2734             "Only valid on an array or array-range designator");
2735      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2736    }
2737
2738    SourceLocation getRBracketLoc() const {
2739      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2740             "Only valid on an array or array-range designator");
2741      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2742    }
2743
2744    SourceLocation getEllipsisLoc() const {
2745      assert(Kind == ArrayRangeDesignator &&
2746             "Only valid on an array-range designator");
2747      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2748    }
2749
2750    unsigned getFirstExprIndex() const {
2751      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2752             "Only valid on an array or array-range designator");
2753      return ArrayOrRange.Index;
2754    }
2755
2756    SourceLocation getStartLocation() const {
2757      if (Kind == FieldDesignator)
2758        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2759      else
2760        return getLBracketLoc();
2761    }
2762  };
2763
2764  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2765                                    unsigned NumDesignators,
2766                                    Expr **IndexExprs, unsigned NumIndexExprs,
2767                                    SourceLocation EqualOrColonLoc,
2768                                    bool GNUSyntax, Expr *Init);
2769
2770  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2771
2772  /// @brief Returns the number of designators in this initializer.
2773  unsigned size() const { return NumDesignators; }
2774
2775  // Iterator access to the designators.
2776  typedef Designator* designators_iterator;
2777  designators_iterator designators_begin() { return Designators; }
2778  designators_iterator designators_end() {
2779    return Designators + NumDesignators;
2780  }
2781
2782  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2783
2784  void setDesignators(ASTContext &C, const Designator *Desigs,
2785                      unsigned NumDesigs);
2786
2787  Expr *getArrayIndex(const Designator& D);
2788  Expr *getArrayRangeStart(const Designator& D);
2789  Expr *getArrayRangeEnd(const Designator& D);
2790
2791  /// @brief Retrieve the location of the '=' that precedes the
2792  /// initializer value itself, if present.
2793  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2794  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2795
2796  /// @brief Determines whether this designated initializer used the
2797  /// deprecated GNU syntax for designated initializers.
2798  bool usesGNUSyntax() const { return GNUSyntax; }
2799  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2800
2801  /// @brief Retrieve the initializer value.
2802  Expr *getInit() const {
2803    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2804  }
2805
2806  void setInit(Expr *init) {
2807    *child_begin() = init;
2808  }
2809
2810  /// \brief Retrieve the total number of subexpressions in this
2811  /// designated initializer expression, including the actual
2812  /// initialized value and any expressions that occur within array
2813  /// and array-range designators.
2814  unsigned getNumSubExprs() const { return NumSubExprs; }
2815
2816  Expr *getSubExpr(unsigned Idx) {
2817    assert(Idx < NumSubExprs && "Subscript out of range");
2818    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2819    Ptr += sizeof(DesignatedInitExpr);
2820    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2821  }
2822
2823  void setSubExpr(unsigned Idx, Expr *E) {
2824    assert(Idx < NumSubExprs && "Subscript out of range");
2825    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2826    Ptr += sizeof(DesignatedInitExpr);
2827    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2828  }
2829
2830  /// \brief Replaces the designator at index @p Idx with the series
2831  /// of designators in [First, Last).
2832  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
2833                        const Designator *Last);
2834
2835  virtual SourceRange getSourceRange() const;
2836
2837  static bool classof(const Stmt *T) {
2838    return T->getStmtClass() == DesignatedInitExprClass;
2839  }
2840  static bool classof(const DesignatedInitExpr *) { return true; }
2841
2842  // Iterators
2843  virtual child_iterator child_begin();
2844  virtual child_iterator child_end();
2845};
2846
2847/// \brief Represents an implicitly-generated value initialization of
2848/// an object of a given type.
2849///
2850/// Implicit value initializations occur within semantic initializer
2851/// list expressions (InitListExpr) as placeholders for subobject
2852/// initializations not explicitly specified by the user.
2853///
2854/// \see InitListExpr
2855class ImplicitValueInitExpr : public Expr {
2856public:
2857  explicit ImplicitValueInitExpr(QualType ty)
2858    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
2859
2860  /// \brief Construct an empty implicit value initialization.
2861  explicit ImplicitValueInitExpr(EmptyShell Empty)
2862    : Expr(ImplicitValueInitExprClass, Empty) { }
2863
2864  static bool classof(const Stmt *T) {
2865    return T->getStmtClass() == ImplicitValueInitExprClass;
2866  }
2867  static bool classof(const ImplicitValueInitExpr *) { return true; }
2868
2869  virtual SourceRange getSourceRange() const {
2870    return SourceRange();
2871  }
2872
2873  // Iterators
2874  virtual child_iterator child_begin();
2875  virtual child_iterator child_end();
2876};
2877
2878
2879class ParenListExpr : public Expr {
2880  Stmt **Exprs;
2881  unsigned NumExprs;
2882  SourceLocation LParenLoc, RParenLoc;
2883
2884protected:
2885  virtual void DoDestroy(ASTContext& C);
2886
2887public:
2888  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2889                unsigned numexprs, SourceLocation rparenloc);
2890
2891  ~ParenListExpr() {}
2892
2893  /// \brief Build an empty paren list.
2894  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2895
2896  unsigned getNumExprs() const { return NumExprs; }
2897
2898  const Expr* getExpr(unsigned Init) const {
2899    assert(Init < getNumExprs() && "Initializer access out of range!");
2900    return cast_or_null<Expr>(Exprs[Init]);
2901  }
2902
2903  Expr* getExpr(unsigned Init) {
2904    assert(Init < getNumExprs() && "Initializer access out of range!");
2905    return cast_or_null<Expr>(Exprs[Init]);
2906  }
2907
2908  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2909
2910  SourceLocation getLParenLoc() const { return LParenLoc; }
2911  SourceLocation getRParenLoc() const { return RParenLoc; }
2912
2913  virtual SourceRange getSourceRange() const {
2914    return SourceRange(LParenLoc, RParenLoc);
2915  }
2916  static bool classof(const Stmt *T) {
2917    return T->getStmtClass() == ParenListExprClass;
2918  }
2919  static bool classof(const ParenListExpr *) { return true; }
2920
2921  // Iterators
2922  virtual child_iterator child_begin();
2923  virtual child_iterator child_end();
2924};
2925
2926
2927//===----------------------------------------------------------------------===//
2928// Clang Extensions
2929//===----------------------------------------------------------------------===//
2930
2931
2932/// ExtVectorElementExpr - This represents access to specific elements of a
2933/// vector, and may occur on the left hand side or right hand side.  For example
2934/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2935///
2936/// Note that the base may have either vector or pointer to vector type, just
2937/// like a struct field reference.
2938///
2939class ExtVectorElementExpr : public Expr {
2940  Stmt *Base;
2941  IdentifierInfo *Accessor;
2942  SourceLocation AccessorLoc;
2943public:
2944  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2945                       SourceLocation loc)
2946    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
2947           base->isValueDependent()),
2948      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2949
2950  /// \brief Build an empty vector element expression.
2951  explicit ExtVectorElementExpr(EmptyShell Empty)
2952    : Expr(ExtVectorElementExprClass, Empty) { }
2953
2954  const Expr *getBase() const { return cast<Expr>(Base); }
2955  Expr *getBase() { return cast<Expr>(Base); }
2956  void setBase(Expr *E) { Base = E; }
2957
2958  IdentifierInfo &getAccessor() const { return *Accessor; }
2959  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2960
2961  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2962  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2963
2964  /// getNumElements - Get the number of components being selected.
2965  unsigned getNumElements() const;
2966
2967  /// containsDuplicateElements - Return true if any element access is
2968  /// repeated.
2969  bool containsDuplicateElements() const;
2970
2971  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2972  /// aggregate Constant of ConstantInt(s).
2973  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2974
2975  virtual SourceRange getSourceRange() const {
2976    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2977  }
2978
2979  /// isArrow - Return true if the base expression is a pointer to vector,
2980  /// return false if the base expression is a vector.
2981  bool isArrow() const;
2982
2983  static bool classof(const Stmt *T) {
2984    return T->getStmtClass() == ExtVectorElementExprClass;
2985  }
2986  static bool classof(const ExtVectorElementExpr *) { return true; }
2987
2988  // Iterators
2989  virtual child_iterator child_begin();
2990  virtual child_iterator child_end();
2991};
2992
2993
2994/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2995/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2996class BlockExpr : public Expr {
2997protected:
2998  BlockDecl *TheBlock;
2999  bool HasBlockDeclRefExprs;
3000public:
3001  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3002    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3003      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3004
3005  /// \brief Build an empty block expression.
3006  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3007
3008  const BlockDecl *getBlockDecl() const { return TheBlock; }
3009  BlockDecl *getBlockDecl() { return TheBlock; }
3010  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3011
3012  // Convenience functions for probing the underlying BlockDecl.
3013  SourceLocation getCaretLocation() const;
3014  const Stmt *getBody() const;
3015  Stmt *getBody();
3016
3017  virtual SourceRange getSourceRange() const {
3018    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3019  }
3020
3021  /// getFunctionType - Return the underlying function type for this block.
3022  const FunctionType *getFunctionType() const;
3023
3024  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3025  /// inside of the block that reference values outside the block.
3026  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3027  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3028
3029  static bool classof(const Stmt *T) {
3030    return T->getStmtClass() == BlockExprClass;
3031  }
3032  static bool classof(const BlockExpr *) { return true; }
3033
3034  // Iterators
3035  virtual child_iterator child_begin();
3036  virtual child_iterator child_end();
3037};
3038
3039/// BlockDeclRefExpr - A reference to a declared variable, function,
3040/// enum, etc.
3041class BlockDeclRefExpr : public Expr {
3042  ValueDecl *D;
3043  SourceLocation Loc;
3044  bool IsByRef : 1;
3045  bool ConstQualAdded : 1;
3046public:
3047  // FIXME: Fix type/value dependence!
3048  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3049                   bool constAdded = false)
3050  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3051    ConstQualAdded(constAdded) {}
3052
3053  // \brief Build an empty reference to a declared variable in a
3054  // block.
3055  explicit BlockDeclRefExpr(EmptyShell Empty)
3056    : Expr(BlockDeclRefExprClass, Empty) { }
3057
3058  ValueDecl *getDecl() { return D; }
3059  const ValueDecl *getDecl() const { return D; }
3060  void setDecl(ValueDecl *VD) { D = VD; }
3061
3062  SourceLocation getLocation() const { return Loc; }
3063  void setLocation(SourceLocation L) { Loc = L; }
3064
3065  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3066
3067  bool isByRef() const { return IsByRef; }
3068  void setByRef(bool BR) { IsByRef = BR; }
3069
3070  bool isConstQualAdded() const { return ConstQualAdded; }
3071  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3072
3073  static bool classof(const Stmt *T) {
3074    return T->getStmtClass() == BlockDeclRefExprClass;
3075  }
3076  static bool classof(const BlockDeclRefExpr *) { return true; }
3077
3078  // Iterators
3079  virtual child_iterator child_begin();
3080  virtual child_iterator child_end();
3081};
3082
3083}  // end namespace clang
3084
3085#endif
3086