Expr.h revision 773f3973cf5e2b6b8788e895967dcb3c1e6ffe79
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44protected:
45  /// TypeDependent - Whether this expression is type-dependent
46  /// (C++ [temp.dep.expr]).
47  bool TypeDependent : 1;
48
49  /// ValueDependent - Whether this expression is value-dependent
50  /// (C++ [temp.dep.constexpr]).
51  bool ValueDependent : 1;
52
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66  /// \brief Construct an empty expression.
67  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
68
69public:
70  /// \brief Increases the reference count for this expression.
71  ///
72  /// Invoke the Retain() operation when this expression
73  /// is being shared by another owner.
74  Expr *Retain() {
75    Stmt::Retain();
76    return this;
77  }
78
79  QualType getType() const { return TR; }
80  void setType(QualType t) {
81    // In C++, the type of an expression is always adjusted so that it
82    // will not have reference type an expression will never have
83    // reference type (C++ [expr]p6). Use
84    // QualType::getNonReferenceType() to retrieve the non-reference
85    // type. Additionally, inspect Expr::isLvalue to determine whether
86    // an expression that is adjusted in this manner should be
87    // considered an lvalue.
88    assert((TR.isNull() || !TR->isReferenceType()) &&
89           "Expressions can't have reference type");
90
91    TR = t;
92  }
93
94  /// isValueDependent - Determines whether this expression is
95  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
96  /// array bound of "Chars" in the following example is
97  /// value-dependent.
98  /// @code
99  /// template<int Size, char (&Chars)[Size]> struct meta_string;
100  /// @endcode
101  bool isValueDependent() const { return ValueDependent; }
102
103  /// \brief Set whether this expression is value-dependent or not.
104  void setValueDependent(bool VD) { ValueDependent = VD; }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) { TypeDependent = TD; }
121
122  /// SourceLocation tokens are not useful in isolation - they are low level
123  /// value objects created/interpreted by SourceManager. We assume AST
124  /// clients will have a pointer to the respective SourceManager.
125  virtual SourceRange getSourceRange() const = 0;
126
127  /// getExprLoc - Return the preferred location for the arrow when diagnosing
128  /// a problem with a generic expression.
129  virtual SourceLocation getExprLoc() const { return getLocStart(); }
130
131  /// isUnusedResultAWarning - Return true if this immediate expression should
132  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
133  /// with location to warn on and the source range[s] to report with the
134  /// warning.
135  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
136                              SourceRange &R2) const;
137
138  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
139  /// incomplete type other than void. Nonarray expressions that can be lvalues:
140  ///  - name, where name must be a variable
141  ///  - e[i]
142  ///  - (e), where e must be an lvalue
143  ///  - e.name, where e must be an lvalue
144  ///  - e->name
145  ///  - *e, the type of e cannot be a function type
146  ///  - string-constant
147  ///  - reference type [C++ [expr]]
148  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
149  ///
150  enum isLvalueResult {
151    LV_Valid,
152    LV_NotObjectType,
153    LV_IncompleteVoidType,
154    LV_DuplicateVectorComponents,
155    LV_InvalidExpression,
156    LV_MemberFunction
157  };
158  isLvalueResult isLvalue(ASTContext &Ctx) const;
159
160  // Same as above, but excluding checks for non-object and void types in C
161  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
162
163  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
164  /// does not have an incomplete type, does not have a const-qualified type,
165  /// and if it is a structure or union, does not have any member (including,
166  /// recursively, any member or element of all contained aggregates or unions)
167  /// with a const-qualified type.
168  ///
169  /// \param Loc [in] [out] - A source location which *may* be filled
170  /// in with the location of the expression making this a
171  /// non-modifiable lvalue, if specified.
172  enum isModifiableLvalueResult {
173    MLV_Valid,
174    MLV_NotObjectType,
175    MLV_IncompleteVoidType,
176    MLV_DuplicateVectorComponents,
177    MLV_InvalidExpression,
178    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
179    MLV_IncompleteType,
180    MLV_ConstQualified,
181    MLV_ArrayType,
182    MLV_NotBlockQualified,
183    MLV_ReadonlyProperty,
184    MLV_NoSetterProperty,
185    MLV_MemberFunction
186  };
187  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
188                                              SourceLocation *Loc = 0) const;
189
190  /// \brief If this expression refers to a bit-field, retrieve the
191  /// declaration of that bit-field.
192  FieldDecl *getBitField();
193
194  const FieldDecl *getBitField() const {
195    return const_cast<Expr*>(this)->getBitField();
196  }
197
198  /// isIntegerConstantExpr - Return true if this expression is a valid integer
199  /// constant expression, and, if so, return its value in Result.  If not a
200  /// valid i-c-e, return false and fill in Loc (if specified) with the location
201  /// of the invalid expression.
202  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
203                             SourceLocation *Loc = 0,
204                             bool isEvaluated = true) const;
205  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
206    llvm::APSInt X;
207    return isIntegerConstantExpr(X, Ctx, Loc);
208  }
209  /// isConstantInitializer - Returns true if this expression is a constant
210  /// initializer, which can be emitted at compile-time.
211  bool isConstantInitializer(ASTContext &Ctx) const;
212
213  /// EvalResult is a struct with detailed info about an evaluated expression.
214  struct EvalResult {
215    /// Val - This is the value the expression can be folded to.
216    APValue Val;
217
218    /// HasSideEffects - Whether the evaluated expression has side effects.
219    /// For example, (f() && 0) can be folded, but it still has side effects.
220    bool HasSideEffects;
221
222    /// Diag - If the expression is unfoldable, then Diag contains a note
223    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
224    /// position for the error, and DiagExpr is the expression that caused
225    /// the error.
226    /// If the expression is foldable, but not an integer constant expression,
227    /// Diag contains a note diagnostic that describes why it isn't an integer
228    /// constant expression. If the expression *is* an integer constant
229    /// expression, then Diag will be zero.
230    unsigned Diag;
231    const Expr *DiagExpr;
232    SourceLocation DiagLoc;
233
234    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
235  };
236
237  /// Evaluate - Return true if this is a constant which we can fold using
238  /// any crazy technique (that has nothing to do with language standards) that
239  /// we want to.  If this function returns true, it returns the folded constant
240  /// in Result.
241  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
242
243  /// isEvaluatable - Call Evaluate to see if this expression can be constant
244  /// folded, but discard the result.
245  bool isEvaluatable(ASTContext &Ctx) const;
246
247  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
248  /// must be called on an expression that constant folds to an integer.
249  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
250
251  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
252  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
253
254  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
255  /// integer constant expression with the value zero, or if this is one that is
256  /// cast to void*.
257  bool isNullPointerConstant(ASTContext &Ctx) const;
258
259  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
260  /// write barrier.
261  bool isOBJCGCCandidate(ASTContext &Ctx) const;
262
263  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
264  ///  its subexpression.  If that subexpression is also a ParenExpr,
265  ///  then this method recursively returns its subexpression, and so forth.
266  ///  Otherwise, the method returns the current Expr.
267  Expr* IgnoreParens();
268
269  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
270  /// or CastExprs, returning their operand.
271  Expr *IgnoreParenCasts();
272
273  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
274  /// value (including ptr->int casts of the same size).  Strip off any
275  /// ParenExpr or CastExprs, returning their operand.
276  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
277
278  const Expr* IgnoreParens() const {
279    return const_cast<Expr*>(this)->IgnoreParens();
280  }
281  const Expr *IgnoreParenCasts() const {
282    return const_cast<Expr*>(this)->IgnoreParenCasts();
283  }
284  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
285    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
286  }
287
288  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
289  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
290
291  static bool classof(const Stmt *T) {
292    return T->getStmtClass() >= firstExprConstant &&
293           T->getStmtClass() <= lastExprConstant;
294  }
295  static bool classof(const Expr *) { return true; }
296};
297
298
299//===----------------------------------------------------------------------===//
300// Primary Expressions.
301//===----------------------------------------------------------------------===//
302
303/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
304/// enum, etc.
305class DeclRefExpr : public Expr {
306  NamedDecl *D;
307  SourceLocation Loc;
308
309protected:
310  // FIXME: Eventually, this constructor will go away and all subclasses
311  // will have to provide the type- and value-dependent flags.
312  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
313    Expr(SC, t), D(d), Loc(l) {}
314
315  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
316              bool VD) :
317    Expr(SC, t, TD, VD), D(d), Loc(l) {}
318
319public:
320  // FIXME: Eventually, this constructor will go away and all clients
321  // will have to provide the type- and value-dependent flags.
322  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
323    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
324
325  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
326    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
327
328  /// \brief Construct an empty declaration reference expression.
329  explicit DeclRefExpr(EmptyShell Empty)
330    : Expr(DeclRefExprClass, Empty) { }
331
332  NamedDecl *getDecl() { return D; }
333  const NamedDecl *getDecl() const { return D; }
334  void setDecl(NamedDecl *NewD) { D = NewD; }
335
336  SourceLocation getLocation() const { return Loc; }
337  void setLocation(SourceLocation L) { Loc = L; }
338  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
339
340  static bool classof(const Stmt *T) {
341    return T->getStmtClass() == DeclRefExprClass ||
342           T->getStmtClass() == CXXConditionDeclExprClass ||
343           T->getStmtClass() == QualifiedDeclRefExprClass;
344  }
345  static bool classof(const DeclRefExpr *) { return true; }
346
347  // Iterators
348  virtual child_iterator child_begin();
349  virtual child_iterator child_end();
350};
351
352/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
353class PredefinedExpr : public Expr {
354public:
355  enum IdentType {
356    Func,
357    Function,
358    PrettyFunction
359  };
360
361private:
362  SourceLocation Loc;
363  IdentType Type;
364public:
365  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
366    : Expr(PredefinedExprClass, type, type->isDependentType(),
367           type->isDependentType()), Loc(l), Type(IT) {}
368
369  /// \brief Construct an empty predefined expression.
370  explicit PredefinedExpr(EmptyShell Empty)
371    : Expr(PredefinedExprClass, Empty) { }
372
373  IdentType getIdentType() const { return Type; }
374  void setIdentType(IdentType IT) { Type = IT; }
375
376  SourceLocation getLocation() const { return Loc; }
377  void setLocation(SourceLocation L) { Loc = L; }
378
379  static std::string ComputeName(ASTContext &Context, IdentType IT,
380                                 const Decl *CurrentDecl);
381
382  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
383
384  static bool classof(const Stmt *T) {
385    return T->getStmtClass() == PredefinedExprClass;
386  }
387  static bool classof(const PredefinedExpr *) { return true; }
388
389  // Iterators
390  virtual child_iterator child_begin();
391  virtual child_iterator child_end();
392};
393
394class IntegerLiteral : public Expr {
395  llvm::APInt Value;
396  SourceLocation Loc;
397public:
398  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
399  // or UnsignedLongLongTy
400  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
401    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
402    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
403  }
404
405  /// \brief Construct an empty integer literal.
406  explicit IntegerLiteral(EmptyShell Empty)
407    : Expr(IntegerLiteralClass, Empty) { }
408
409  const llvm::APInt &getValue() const { return Value; }
410  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
411
412  /// \brief Retrieve the location of the literal.
413  SourceLocation getLocation() const { return Loc; }
414
415  void setValue(const llvm::APInt &Val) { Value = Val; }
416  void setLocation(SourceLocation Location) { Loc = Location; }
417
418  static bool classof(const Stmt *T) {
419    return T->getStmtClass() == IntegerLiteralClass;
420  }
421  static bool classof(const IntegerLiteral *) { return true; }
422
423  // Iterators
424  virtual child_iterator child_begin();
425  virtual child_iterator child_end();
426};
427
428class CharacterLiteral : public Expr {
429  unsigned Value;
430  SourceLocation Loc;
431  bool IsWide;
432public:
433  // type should be IntTy
434  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
435    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
436  }
437
438  /// \brief Construct an empty character literal.
439  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
440
441  SourceLocation getLocation() const { return Loc; }
442  bool isWide() const { return IsWide; }
443
444  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
445
446  unsigned getValue() const { return Value; }
447
448  void setLocation(SourceLocation Location) { Loc = Location; }
449  void setWide(bool W) { IsWide = W; }
450  void setValue(unsigned Val) { Value = Val; }
451
452  static bool classof(const Stmt *T) {
453    return T->getStmtClass() == CharacterLiteralClass;
454  }
455  static bool classof(const CharacterLiteral *) { return true; }
456
457  // Iterators
458  virtual child_iterator child_begin();
459  virtual child_iterator child_end();
460};
461
462class FloatingLiteral : public Expr {
463  llvm::APFloat Value;
464  bool IsExact : 1;
465  SourceLocation Loc;
466public:
467  FloatingLiteral(const llvm::APFloat &V, bool isexact,
468                  QualType Type, SourceLocation L)
469    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(isexact), Loc(L) {}
470
471  /// \brief Construct an empty floating-point literal.
472  explicit FloatingLiteral(EmptyShell Empty)
473    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
474
475  const llvm::APFloat &getValue() const { return Value; }
476  void setValue(const llvm::APFloat &Val) { Value = Val; }
477
478  bool isExact() const { return IsExact; }
479  void setExact(bool E) { IsExact = E; }
480
481  /// getValueAsApproximateDouble - This returns the value as an inaccurate
482  /// double.  Note that this may cause loss of precision, but is useful for
483  /// debugging dumps, etc.
484  double getValueAsApproximateDouble() const;
485
486  SourceLocation getLocation() const { return Loc; }
487  void setLocation(SourceLocation L) { Loc = L; }
488
489  // FIXME: The logic for computing the value of a predefined expr should go
490  // into a method here that takes the inner-most code decl (a block, function
491  // or objc method) that the expr lives in.  This would allow sema and codegen
492  // to be consistent for things like sizeof(__func__) etc.
493
494  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
495
496  static bool classof(const Stmt *T) {
497    return T->getStmtClass() == FloatingLiteralClass;
498  }
499  static bool classof(const FloatingLiteral *) { return true; }
500
501  // Iterators
502  virtual child_iterator child_begin();
503  virtual child_iterator child_end();
504};
505
506/// ImaginaryLiteral - We support imaginary integer and floating point literals,
507/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
508/// IntegerLiteral classes.  Instances of this class always have a Complex type
509/// whose element type matches the subexpression.
510///
511class ImaginaryLiteral : public Expr {
512  Stmt *Val;
513public:
514  ImaginaryLiteral(Expr *val, QualType Ty)
515    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
516
517  /// \brief Build an empty imaginary literal.
518  explicit ImaginaryLiteral(EmptyShell Empty)
519    : Expr(ImaginaryLiteralClass, Empty) { }
520
521  const Expr *getSubExpr() const { return cast<Expr>(Val); }
522  Expr *getSubExpr() { return cast<Expr>(Val); }
523  void setSubExpr(Expr *E) { Val = E; }
524
525  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
526  static bool classof(const Stmt *T) {
527    return T->getStmtClass() == ImaginaryLiteralClass;
528  }
529  static bool classof(const ImaginaryLiteral *) { return true; }
530
531  // Iterators
532  virtual child_iterator child_begin();
533  virtual child_iterator child_end();
534};
535
536/// StringLiteral - This represents a string literal expression, e.g. "foo"
537/// or L"bar" (wide strings).  The actual string is returned by getStrData()
538/// is NOT null-terminated, and the length of the string is determined by
539/// calling getByteLength().  The C type for a string is always a
540/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
541/// not.
542///
543/// Note that strings in C can be formed by concatenation of multiple string
544/// literal pptokens in translation phase #6.  This keeps track of the locations
545/// of each of these pieces.
546///
547/// Strings in C can also be truncated and extended by assigning into arrays,
548/// e.g. with constructs like:
549///   char X[2] = "foobar";
550/// In this case, getByteLength() will return 6, but the string literal will
551/// have type "char[2]".
552class StringLiteral : public Expr {
553  const char *StrData;
554  unsigned ByteLength;
555  bool IsWide;
556  unsigned NumConcatenated;
557  SourceLocation TokLocs[1];
558
559  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
560
561protected:
562  virtual void DoDestroy(ASTContext &C);
563
564public:
565  /// This is the "fully general" constructor that allows representation of
566  /// strings formed from multiple concatenated tokens.
567  static StringLiteral *Create(ASTContext &C, const char *StrData,
568                               unsigned ByteLength, bool Wide, QualType Ty,
569                               const SourceLocation *Loc, unsigned NumStrs);
570
571  /// Simple constructor for string literals made from one token.
572  static StringLiteral *Create(ASTContext &C, const char *StrData,
573                               unsigned ByteLength,
574                               bool Wide, QualType Ty, SourceLocation Loc) {
575    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
576  }
577
578  /// \brief Construct an empty string literal.
579  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
580
581  const char *getStrData() const { return StrData; }
582  unsigned getByteLength() const { return ByteLength; }
583
584  /// \brief Sets the string data to the given string data.
585  void setStrData(ASTContext &C, const char *Str, unsigned Len);
586
587  bool isWide() const { return IsWide; }
588  void setWide(bool W) { IsWide = W; }
589
590  bool containsNonAsciiOrNull() const {
591    for (unsigned i = 0; i < getByteLength(); ++i)
592      if (!isascii(getStrData()[i]) || !getStrData()[i])
593        return true;
594    return false;
595  }
596  /// getNumConcatenated - Get the number of string literal tokens that were
597  /// concatenated in translation phase #6 to form this string literal.
598  unsigned getNumConcatenated() const { return NumConcatenated; }
599
600  SourceLocation getStrTokenLoc(unsigned TokNum) const {
601    assert(TokNum < NumConcatenated && "Invalid tok number");
602    return TokLocs[TokNum];
603  }
604  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
605    assert(TokNum < NumConcatenated && "Invalid tok number");
606    TokLocs[TokNum] = L;
607  }
608
609  typedef const SourceLocation *tokloc_iterator;
610  tokloc_iterator tokloc_begin() const { return TokLocs; }
611  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
612
613  virtual SourceRange getSourceRange() const {
614    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
615  }
616  static bool classof(const Stmt *T) {
617    return T->getStmtClass() == StringLiteralClass;
618  }
619  static bool classof(const StringLiteral *) { return true; }
620
621  // Iterators
622  virtual child_iterator child_begin();
623  virtual child_iterator child_end();
624};
625
626/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
627/// AST node is only formed if full location information is requested.
628class ParenExpr : public Expr {
629  SourceLocation L, R;
630  Stmt *Val;
631public:
632  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
633    : Expr(ParenExprClass, val->getType(),
634           val->isTypeDependent(), val->isValueDependent()),
635      L(l), R(r), Val(val) {}
636
637  /// \brief Construct an empty parenthesized expression.
638  explicit ParenExpr(EmptyShell Empty)
639    : Expr(ParenExprClass, Empty) { }
640
641  const Expr *getSubExpr() const { return cast<Expr>(Val); }
642  Expr *getSubExpr() { return cast<Expr>(Val); }
643  void setSubExpr(Expr *E) { Val = E; }
644
645  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
646
647  /// \brief Get the location of the left parentheses '('.
648  SourceLocation getLParen() const { return L; }
649  void setLParen(SourceLocation Loc) { L = Loc; }
650
651  /// \brief Get the location of the right parentheses ')'.
652  SourceLocation getRParen() const { return R; }
653  void setRParen(SourceLocation Loc) { R = Loc; }
654
655  static bool classof(const Stmt *T) {
656    return T->getStmtClass() == ParenExprClass;
657  }
658  static bool classof(const ParenExpr *) { return true; }
659
660  // Iterators
661  virtual child_iterator child_begin();
662  virtual child_iterator child_end();
663};
664
665
666/// UnaryOperator - This represents the unary-expression's (except sizeof and
667/// alignof), the postinc/postdec operators from postfix-expression, and various
668/// extensions.
669///
670/// Notes on various nodes:
671///
672/// Real/Imag - These return the real/imag part of a complex operand.  If
673///   applied to a non-complex value, the former returns its operand and the
674///   later returns zero in the type of the operand.
675///
676/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
677///   subexpression is a compound literal with the various MemberExpr and
678///   ArraySubscriptExpr's applied to it.
679///
680class UnaryOperator : public Expr {
681public:
682  // Note that additions to this should also update the StmtVisitor class.
683  enum Opcode {
684    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
685    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
686    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
687    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
688    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
689    Real, Imag,       // "__real expr"/"__imag expr" Extension.
690    Extension,        // __extension__ marker.
691    OffsetOf          // __builtin_offsetof
692  };
693private:
694  Stmt *Val;
695  Opcode Opc;
696  SourceLocation Loc;
697public:
698
699  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
700    : Expr(UnaryOperatorClass, type,
701           input->isTypeDependent() && opc != OffsetOf,
702           input->isValueDependent()),
703      Val(input), Opc(opc), Loc(l) {}
704
705  /// \brief Build an empty unary operator.
706  explicit UnaryOperator(EmptyShell Empty)
707    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
708
709  Opcode getOpcode() const { return Opc; }
710  void setOpcode(Opcode O) { Opc = O; }
711
712  Expr *getSubExpr() const { return cast<Expr>(Val); }
713  void setSubExpr(Expr *E) { Val = E; }
714
715  /// getOperatorLoc - Return the location of the operator.
716  SourceLocation getOperatorLoc() const { return Loc; }
717  void setOperatorLoc(SourceLocation L) { Loc = L; }
718
719  /// isPostfix - Return true if this is a postfix operation, like x++.
720  static bool isPostfix(Opcode Op) {
721    return Op == PostInc || Op == PostDec;
722  }
723
724  /// isPostfix - Return true if this is a prefix operation, like --x.
725  static bool isPrefix(Opcode Op) {
726    return Op == PreInc || Op == PreDec;
727  }
728
729  bool isPrefix() const { return isPrefix(Opc); }
730  bool isPostfix() const { return isPostfix(Opc); }
731  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
732  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
733  bool isOffsetOfOp() const { return Opc == OffsetOf; }
734  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
735  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
736
737  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
738  /// corresponds to, e.g. "sizeof" or "[pre]++"
739  static const char *getOpcodeStr(Opcode Op);
740
741  /// \brief Retrieve the unary opcode that corresponds to the given
742  /// overloaded operator.
743  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
744
745  /// \brief Retrieve the overloaded operator kind that corresponds to
746  /// the given unary opcode.
747  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
748
749  virtual SourceRange getSourceRange() const {
750    if (isPostfix())
751      return SourceRange(Val->getLocStart(), Loc);
752    else
753      return SourceRange(Loc, Val->getLocEnd());
754  }
755  virtual SourceLocation getExprLoc() const { return Loc; }
756
757  static bool classof(const Stmt *T) {
758    return T->getStmtClass() == UnaryOperatorClass;
759  }
760  static bool classof(const UnaryOperator *) { return true; }
761
762  // Iterators
763  virtual child_iterator child_begin();
764  virtual child_iterator child_end();
765};
766
767/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
768/// types and expressions.
769class SizeOfAlignOfExpr : public Expr {
770  bool isSizeof : 1;  // true if sizeof, false if alignof.
771  bool isType : 1;    // true if operand is a type, false if an expression
772  union {
773    void *Ty;
774    Stmt *Ex;
775  } Argument;
776  SourceLocation OpLoc, RParenLoc;
777
778protected:
779  virtual void DoDestroy(ASTContext& C);
780
781public:
782  SizeOfAlignOfExpr(bool issizeof, QualType T,
783                    QualType resultType, SourceLocation op,
784                    SourceLocation rp) :
785      Expr(SizeOfAlignOfExprClass, resultType,
786           false, // Never type-dependent (C++ [temp.dep.expr]p3).
787           // Value-dependent if the argument is type-dependent.
788           T->isDependentType()),
789      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
790    Argument.Ty = T.getAsOpaquePtr();
791  }
792
793  SizeOfAlignOfExpr(bool issizeof, Expr *E,
794                    QualType resultType, SourceLocation op,
795                    SourceLocation rp) :
796      Expr(SizeOfAlignOfExprClass, resultType,
797           false, // Never type-dependent (C++ [temp.dep.expr]p3).
798           // Value-dependent if the argument is type-dependent.
799           E->isTypeDependent()),
800      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
801    Argument.Ex = E;
802  }
803
804  /// \brief Construct an empty sizeof/alignof expression.
805  explicit SizeOfAlignOfExpr(EmptyShell Empty)
806    : Expr(SizeOfAlignOfExprClass, Empty) { }
807
808  bool isSizeOf() const { return isSizeof; }
809  void setSizeof(bool S) { isSizeof = S; }
810
811  bool isArgumentType() const { return isType; }
812  QualType getArgumentType() const {
813    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
814    return QualType::getFromOpaquePtr(Argument.Ty);
815  }
816  Expr *getArgumentExpr() {
817    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
818    return static_cast<Expr*>(Argument.Ex);
819  }
820  const Expr *getArgumentExpr() const {
821    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
822  }
823
824  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
825  void setArgument(QualType T) {
826    Argument.Ty = T.getAsOpaquePtr();
827    isType = true;
828  }
829
830  /// Gets the argument type, or the type of the argument expression, whichever
831  /// is appropriate.
832  QualType getTypeOfArgument() const {
833    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
834  }
835
836  SourceLocation getOperatorLoc() const { return OpLoc; }
837  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
838
839  SourceLocation getRParenLoc() const { return RParenLoc; }
840  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
841
842  virtual SourceRange getSourceRange() const {
843    return SourceRange(OpLoc, RParenLoc);
844  }
845
846  static bool classof(const Stmt *T) {
847    return T->getStmtClass() == SizeOfAlignOfExprClass;
848  }
849  static bool classof(const SizeOfAlignOfExpr *) { return true; }
850
851  // Iterators
852  virtual child_iterator child_begin();
853  virtual child_iterator child_end();
854};
855
856//===----------------------------------------------------------------------===//
857// Postfix Operators.
858//===----------------------------------------------------------------------===//
859
860/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
861class ArraySubscriptExpr : public Expr {
862  enum { LHS, RHS, END_EXPR=2 };
863  Stmt* SubExprs[END_EXPR];
864  SourceLocation RBracketLoc;
865public:
866  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
867                     SourceLocation rbracketloc)
868  : Expr(ArraySubscriptExprClass, t,
869         lhs->isTypeDependent() || rhs->isTypeDependent(),
870         lhs->isValueDependent() || rhs->isValueDependent()),
871    RBracketLoc(rbracketloc) {
872    SubExprs[LHS] = lhs;
873    SubExprs[RHS] = rhs;
874  }
875
876  /// \brief Create an empty array subscript expression.
877  explicit ArraySubscriptExpr(EmptyShell Shell)
878    : Expr(ArraySubscriptExprClass, Shell) { }
879
880  /// An array access can be written A[4] or 4[A] (both are equivalent).
881  /// - getBase() and getIdx() always present the normalized view: A[4].
882  ///    In this case getBase() returns "A" and getIdx() returns "4".
883  /// - getLHS() and getRHS() present the syntactic view. e.g. for
884  ///    4[A] getLHS() returns "4".
885  /// Note: Because vector element access is also written A[4] we must
886  /// predicate the format conversion in getBase and getIdx only on the
887  /// the type of the RHS, as it is possible for the LHS to be a vector of
888  /// integer type
889  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
890  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
891  void setLHS(Expr *E) { SubExprs[LHS] = E; }
892
893  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
894  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
895  void setRHS(Expr *E) { SubExprs[RHS] = E; }
896
897  Expr *getBase() {
898    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
899  }
900
901  const Expr *getBase() const {
902    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
903  }
904
905  Expr *getIdx() {
906    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
907  }
908
909  const Expr *getIdx() const {
910    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
911  }
912
913  virtual SourceRange getSourceRange() const {
914    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
915  }
916
917  SourceLocation getRBracketLoc() const { return RBracketLoc; }
918  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
919
920  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
921
922  static bool classof(const Stmt *T) {
923    return T->getStmtClass() == ArraySubscriptExprClass;
924  }
925  static bool classof(const ArraySubscriptExpr *) { return true; }
926
927  // Iterators
928  virtual child_iterator child_begin();
929  virtual child_iterator child_end();
930};
931
932
933/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
934/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
935/// while its subclasses may represent alternative syntax that (semantically)
936/// results in a function call. For example, CXXOperatorCallExpr is
937/// a subclass for overloaded operator calls that use operator syntax, e.g.,
938/// "str1 + str2" to resolve to a function call.
939class CallExpr : public Expr {
940  enum { FN=0, ARGS_START=1 };
941  Stmt **SubExprs;
942  unsigned NumArgs;
943  SourceLocation RParenLoc;
944
945protected:
946  // This version of the constructor is for derived classes.
947  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
948           QualType t, SourceLocation rparenloc);
949
950  virtual void DoDestroy(ASTContext& C);
951
952public:
953  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
954           SourceLocation rparenloc);
955
956  /// \brief Build an empty call expression.
957  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
958
959  ~CallExpr() {}
960
961  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
962  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
963  void setCallee(Expr *F) { SubExprs[FN] = F; }
964
965  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
966  FunctionDecl *getDirectCallee();
967
968  /// getNumArgs - Return the number of actual arguments to this call.
969  ///
970  unsigned getNumArgs() const { return NumArgs; }
971
972  /// getArg - Return the specified argument.
973  Expr *getArg(unsigned Arg) {
974    assert(Arg < NumArgs && "Arg access out of range!");
975    return cast<Expr>(SubExprs[Arg+ARGS_START]);
976  }
977  const Expr *getArg(unsigned Arg) const {
978    assert(Arg < NumArgs && "Arg access out of range!");
979    return cast<Expr>(SubExprs[Arg+ARGS_START]);
980  }
981
982  /// setArg - Set the specified argument.
983  void setArg(unsigned Arg, Expr *ArgExpr) {
984    assert(Arg < NumArgs && "Arg access out of range!");
985    SubExprs[Arg+ARGS_START] = ArgExpr;
986  }
987
988  /// setNumArgs - This changes the number of arguments present in this call.
989  /// Any orphaned expressions are deleted by this, and any new operands are set
990  /// to null.
991  void setNumArgs(ASTContext& C, unsigned NumArgs);
992
993  typedef ExprIterator arg_iterator;
994  typedef ConstExprIterator const_arg_iterator;
995
996  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
997  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
998  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
999  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1000
1001  /// getNumCommas - Return the number of commas that must have been present in
1002  /// this function call.
1003  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1004
1005  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1006  /// not, return 0.
1007  unsigned isBuiltinCall(ASTContext &Context) const;
1008
1009  /// getCallReturnType - Get the return type of the call expr. This is not
1010  /// always the type of the expr itself, if the return type is a reference
1011  /// type.
1012  QualType getCallReturnType() const;
1013
1014  SourceLocation getRParenLoc() const { return RParenLoc; }
1015  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1016
1017  virtual SourceRange getSourceRange() const {
1018    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1019  }
1020
1021  static bool classof(const Stmt *T) {
1022    return T->getStmtClass() == CallExprClass ||
1023           T->getStmtClass() == CXXOperatorCallExprClass ||
1024           T->getStmtClass() == CXXMemberCallExprClass;
1025  }
1026  static bool classof(const CallExpr *) { return true; }
1027  static bool classof(const CXXOperatorCallExpr *) { return true; }
1028  static bool classof(const CXXMemberCallExpr *) { return true; }
1029
1030  // Iterators
1031  virtual child_iterator child_begin();
1032  virtual child_iterator child_end();
1033};
1034
1035/// \brief Represents the qualifier that may precede a C++ name, e.g., the
1036/// "std::" in "std::sort".
1037struct NameQualifier {
1038  /// \brief The nested name specifier.
1039  NestedNameSpecifier *NNS;
1040
1041  /// \brief The source range covered by the nested name specifier.
1042  SourceRange Range;
1043};
1044
1045/// \brief Represents an explicit template argument list in C++, e.g.,
1046/// the "<int>" in "sort<int>".
1047struct ExplicitTemplateArgumentList {
1048  /// \brief The source location of the left angle bracket ('<');
1049  SourceLocation LAngleLoc;
1050
1051  /// \brief The source location of the right angle bracket ('>');
1052  SourceLocation RAngleLoc;
1053
1054  /// \brief The number of template arguments in TemplateArgs.
1055  /// The actual template arguments (if any) are stored after the
1056  /// ExplicitTemplateArgumentList structure.
1057  unsigned NumTemplateArgs;
1058
1059  /// \brief Retrieve the template arguments
1060  TemplateArgument *getTemplateArgs() {
1061    return reinterpret_cast<TemplateArgument *> (this + 1);
1062  }
1063
1064  /// \brief Retrieve the template arguments
1065  const TemplateArgument *getTemplateArgs() const {
1066    return reinterpret_cast<const TemplateArgument *> (this + 1);
1067  }
1068};
1069
1070/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1071///
1072class MemberExpr : public Expr {
1073  /// Base - the expression for the base pointer or structure references.  In
1074  /// X.F, this is "X".
1075  Stmt *Base;
1076
1077  /// MemberDecl - This is the decl being referenced by the field/member name.
1078  /// In X.F, this is the decl referenced by F.
1079  NamedDecl *MemberDecl;
1080
1081  /// MemberLoc - This is the location of the member name.
1082  SourceLocation MemberLoc;
1083
1084  /// IsArrow - True if this is "X->F", false if this is "X.F".
1085  bool IsArrow : 1;
1086
1087  /// \brief True if this member expression used a nested-name-specifier to
1088  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1089  /// structure is allocated immediately after the MemberExpr.
1090  bool HasQualifier : 1;
1091
1092  /// \brief True if this member expression specified a template argument list
1093  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1094  /// structure (and its TemplateArguments) are allocated immediately after
1095  /// the MemberExpr or, if the member expression also has a qualifier, after
1096  /// the NameQualifier structure.
1097  bool HasExplicitTemplateArgumentList : 1;
1098
1099  /// \brief Retrieve the qualifier that preceded the member name, if any.
1100  NameQualifier *getMemberQualifier() {
1101    if (!HasQualifier)
1102      return 0;
1103
1104    return reinterpret_cast<NameQualifier *> (this + 1);
1105  }
1106
1107  /// \brief Retrieve the qualifier that preceded the member name, if any.
1108  const NameQualifier *getMemberQualifier() const {
1109    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1110  }
1111
1112  /// \brief Retrieve the explicit template argument list that followed the
1113  /// member template name, if any.
1114  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1115    if (!HasExplicitTemplateArgumentList)
1116      return 0;
1117
1118    if (!HasQualifier)
1119      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1120
1121    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1122                                                      getMemberQualifier() + 1);
1123  }
1124
1125  /// \brief Retrieve the explicit template argument list that followed the
1126  /// member template name, if any.
1127  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1128    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1129  }
1130
1131  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1132             SourceRange qualrange, NamedDecl *memberdecl, SourceLocation l,
1133             bool has_explicit, SourceLocation langle,
1134             const TemplateArgument *targs, unsigned numtargs,
1135             SourceLocation rangle, QualType ty);
1136
1137public:
1138  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1139             QualType ty)
1140    : Expr(MemberExprClass, ty,
1141           base->isTypeDependent(), base->isValueDependent()),
1142      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1143      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1144
1145  /// \brief Build an empty member reference expression.
1146  explicit MemberExpr(EmptyShell Empty)
1147    : Expr(MemberExprClass, Empty), HasQualifier(false),
1148      HasExplicitTemplateArgumentList(false) { }
1149
1150  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1151                            NestedNameSpecifier *qual, SourceRange qualrange,
1152                            NamedDecl *memberdecl,
1153                            SourceLocation l,
1154                            bool has_explicit,
1155                            SourceLocation langle,
1156                            const TemplateArgument *targs,
1157                            unsigned numtargs,
1158                            SourceLocation rangle,
1159                            QualType ty);
1160
1161  void setBase(Expr *E) { Base = E; }
1162  Expr *getBase() const { return cast<Expr>(Base); }
1163
1164  /// \brief Retrieve the member declaration to which this expression refers.
1165  ///
1166  /// The returned declaration will either be a FieldDecl or (in C++)
1167  /// a CXXMethodDecl.
1168  NamedDecl *getMemberDecl() const { return MemberDecl; }
1169  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1170
1171  /// \brief Determines whether this member expression actually had
1172  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1173  /// x->Base::foo.
1174  bool hasQualifier() const { return HasQualifier; }
1175
1176  /// \brief If the member name was qualified, retrieves the source range of
1177  /// the nested-name-specifier that precedes the member name. Otherwise,
1178  /// returns an empty source range.
1179  SourceRange getQualifierRange() const {
1180    if (!HasQualifier)
1181      return SourceRange();
1182
1183    return getMemberQualifier()->Range;
1184  }
1185
1186  /// \brief If the member name was qualified, retrieves the
1187  /// nested-name-specifier that precedes the member name. Otherwise, returns
1188  /// NULL.
1189  NestedNameSpecifier *getQualifier() const {
1190    if (!HasQualifier)
1191      return 0;
1192
1193    return getMemberQualifier()->NNS;
1194  }
1195
1196  /// \brief Determines whether this member expression actually had a C++
1197  /// template argument list explicitly specified, e.g., x.f<int>.
1198  bool hasExplicitTemplateArgumentList() {
1199    return HasExplicitTemplateArgumentList;
1200  }
1201
1202  /// \brief Retrieve the location of the left angle bracket following the
1203  /// member name ('<'), if any.
1204  SourceLocation getLAngleLoc() const {
1205    if (!HasExplicitTemplateArgumentList)
1206      return SourceLocation();
1207
1208    return getExplicitTemplateArgumentList()->LAngleLoc;
1209  }
1210
1211  /// \brief Retrieve the template arguments provided as part of this
1212  /// template-id.
1213  const TemplateArgument *getTemplateArgs() const {
1214    if (!HasExplicitTemplateArgumentList)
1215      return 0;
1216
1217    return getExplicitTemplateArgumentList()->getTemplateArgs();
1218  }
1219
1220  /// \brief Retrieve the number of template arguments provided as part of this
1221  /// template-id.
1222  unsigned getNumTemplateArgs() const {
1223    if (!HasExplicitTemplateArgumentList)
1224      return 0;
1225
1226    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1227  }
1228
1229  /// \brief Retrieve the location of the right angle bracket following the
1230  /// template arguments ('>').
1231  SourceLocation getRAngleLoc() const {
1232    if (!HasExplicitTemplateArgumentList)
1233      return SourceLocation();
1234
1235    return getExplicitTemplateArgumentList()->RAngleLoc;
1236  }
1237
1238  bool isArrow() const { return IsArrow; }
1239  void setArrow(bool A) { IsArrow = A; }
1240
1241  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1242  /// location of 'F'.
1243  SourceLocation getMemberLoc() const { return MemberLoc; }
1244  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1245
1246  virtual SourceRange getSourceRange() const {
1247    // If we have an implicit base (like a C++ implicit this),
1248    // make sure not to return its location
1249    SourceLocation EndLoc = MemberLoc;
1250    if (HasExplicitTemplateArgumentList)
1251      EndLoc = getRAngleLoc();
1252
1253    SourceLocation BaseLoc = getBase()->getLocStart();
1254    if (BaseLoc.isInvalid())
1255      return SourceRange(MemberLoc, EndLoc);
1256    return SourceRange(BaseLoc, EndLoc);
1257  }
1258
1259  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1260
1261  static bool classof(const Stmt *T) {
1262    return T->getStmtClass() == MemberExprClass;
1263  }
1264  static bool classof(const MemberExpr *) { return true; }
1265
1266  // Iterators
1267  virtual child_iterator child_begin();
1268  virtual child_iterator child_end();
1269};
1270
1271/// CompoundLiteralExpr - [C99 6.5.2.5]
1272///
1273class CompoundLiteralExpr : public Expr {
1274  /// LParenLoc - If non-null, this is the location of the left paren in a
1275  /// compound literal like "(int){4}".  This can be null if this is a
1276  /// synthesized compound expression.
1277  SourceLocation LParenLoc;
1278  Stmt *Init;
1279  bool FileScope;
1280public:
1281  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1282                      bool fileScope)
1283    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1284      FileScope(fileScope) {}
1285
1286  /// \brief Construct an empty compound literal.
1287  explicit CompoundLiteralExpr(EmptyShell Empty)
1288    : Expr(CompoundLiteralExprClass, Empty) { }
1289
1290  const Expr *getInitializer() const { return cast<Expr>(Init); }
1291  Expr *getInitializer() { return cast<Expr>(Init); }
1292  void setInitializer(Expr *E) { Init = E; }
1293
1294  bool isFileScope() const { return FileScope; }
1295  void setFileScope(bool FS) { FileScope = FS; }
1296
1297  SourceLocation getLParenLoc() const { return LParenLoc; }
1298  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1299
1300  virtual SourceRange getSourceRange() const {
1301    // FIXME: Init should never be null.
1302    if (!Init)
1303      return SourceRange();
1304    if (LParenLoc.isInvalid())
1305      return Init->getSourceRange();
1306    return SourceRange(LParenLoc, Init->getLocEnd());
1307  }
1308
1309  static bool classof(const Stmt *T) {
1310    return T->getStmtClass() == CompoundLiteralExprClass;
1311  }
1312  static bool classof(const CompoundLiteralExpr *) { return true; }
1313
1314  // Iterators
1315  virtual child_iterator child_begin();
1316  virtual child_iterator child_end();
1317};
1318
1319/// CastExpr - Base class for type casts, including both implicit
1320/// casts (ImplicitCastExpr) and explicit casts that have some
1321/// representation in the source code (ExplicitCastExpr's derived
1322/// classes).
1323class CastExpr : public Expr {
1324public:
1325  /// CastKind - the kind of cast this represents.
1326  enum CastKind {
1327    /// CK_Unknown - Unknown cast kind.
1328    /// FIXME: The goal is to get rid of this and make all casts have a
1329    /// kind so that the AST client doesn't have to try to figure out what's
1330    /// going on.
1331    CK_Unknown,
1332
1333    /// CK_BitCast - Used for reinterpret_cast.
1334    CK_BitCast,
1335
1336    /// CK_NoOp - Used for const_cast.
1337    CK_NoOp,
1338
1339    /// CK_DerivedToBase - Derived to base class casts.
1340    CK_DerivedToBase,
1341
1342    /// CK_Dynamic - Dynamic cast.
1343    CK_Dynamic,
1344
1345    /// CK_ToUnion - Cast to union (GCC extension).
1346    CK_ToUnion,
1347
1348    /// CK_ArrayToPointerDecay - Array to pointer decay.
1349    CK_ArrayToPointerDecay,
1350
1351    // CK_FunctionToPointerDecay - Function to pointer decay.
1352    CK_FunctionToPointerDecay,
1353
1354    /// CK_NullToMemberPointer - Null pointer to member pointer.
1355    CK_NullToMemberPointer,
1356
1357    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1358    /// member pointer in derived class.
1359    CK_BaseToDerivedMemberPointer,
1360
1361    /// CK_UserDefinedConversion - Conversion using a user defined type
1362    /// conversion function.
1363    CK_UserDefinedConversion,
1364
1365    /// CK_ConstructorConversion - Conversion by constructor
1366    CK_ConstructorConversion
1367  };
1368
1369  struct CastInfo {
1370    const CastKind Kind;
1371
1372    // FIXME: This should assert that the CastKind does not require extra
1373    // information.
1374    CastInfo(CastKind Kind)
1375      : Kind(Kind) { }
1376  };
1377
1378private:
1379  CastKind Kind;
1380  Stmt *Op;
1381protected:
1382  CastExpr(StmtClass SC, QualType ty, const CastInfo &info, Expr *op) :
1383    Expr(SC, ty,
1384         // Cast expressions are type-dependent if the type is
1385         // dependent (C++ [temp.dep.expr]p3).
1386         ty->isDependentType(),
1387         // Cast expressions are value-dependent if the type is
1388         // dependent or if the subexpression is value-dependent.
1389         ty->isDependentType() || (op && op->isValueDependent())),
1390    Kind(info.Kind), Op(op) {}
1391
1392  /// \brief Construct an empty cast.
1393  CastExpr(StmtClass SC, EmptyShell Empty)
1394    : Expr(SC, Empty) { }
1395
1396public:
1397  CastKind getCastKind() const { return Kind; }
1398  void setCastKind(CastKind K) { Kind = K; }
1399  const char *getCastKindName() const;
1400
1401  Expr *getSubExpr() { return cast<Expr>(Op); }
1402  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1403  void setSubExpr(Expr *E) { Op = E; }
1404
1405  static bool classof(const Stmt *T) {
1406    StmtClass SC = T->getStmtClass();
1407    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1408      return true;
1409
1410    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1411      return true;
1412
1413    return false;
1414  }
1415  static bool classof(const CastExpr *) { return true; }
1416
1417  // Iterators
1418  virtual child_iterator child_begin();
1419  virtual child_iterator child_end();
1420};
1421
1422/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1423/// conversions, which have no direct representation in the original
1424/// source code. For example: converting T[]->T*, void f()->void
1425/// (*f)(), float->double, short->int, etc.
1426///
1427/// In C, implicit casts always produce rvalues. However, in C++, an
1428/// implicit cast whose result is being bound to a reference will be
1429/// an lvalue. For example:
1430///
1431/// @code
1432/// class Base { };
1433/// class Derived : public Base { };
1434/// void f(Derived d) {
1435///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1436/// }
1437/// @endcode
1438class ImplicitCastExpr : public CastExpr {
1439  /// LvalueCast - Whether this cast produces an lvalue.
1440  bool LvalueCast;
1441
1442public:
1443  ImplicitCastExpr(QualType ty, const CastInfo &info, Expr *op, bool Lvalue) :
1444    CastExpr(ImplicitCastExprClass, ty, info, op), LvalueCast(Lvalue) { }
1445
1446  /// \brief Construct an empty implicit cast.
1447  explicit ImplicitCastExpr(EmptyShell Shell)
1448    : CastExpr(ImplicitCastExprClass, Shell) { }
1449
1450
1451  virtual SourceRange getSourceRange() const {
1452    return getSubExpr()->getSourceRange();
1453  }
1454
1455  /// isLvalueCast - Whether this cast produces an lvalue.
1456  bool isLvalueCast() const { return LvalueCast; }
1457
1458  /// setLvalueCast - Set whether this cast produces an lvalue.
1459  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1460
1461  static bool classof(const Stmt *T) {
1462    return T->getStmtClass() == ImplicitCastExprClass;
1463  }
1464  static bool classof(const ImplicitCastExpr *) { return true; }
1465};
1466
1467/// ExplicitCastExpr - An explicit cast written in the source
1468/// code.
1469///
1470/// This class is effectively an abstract class, because it provides
1471/// the basic representation of an explicitly-written cast without
1472/// specifying which kind of cast (C cast, functional cast, static
1473/// cast, etc.) was written; specific derived classes represent the
1474/// particular style of cast and its location information.
1475///
1476/// Unlike implicit casts, explicit cast nodes have two different
1477/// types: the type that was written into the source code, and the
1478/// actual type of the expression as determined by semantic
1479/// analysis. These types may differ slightly. For example, in C++ one
1480/// can cast to a reference type, which indicates that the resulting
1481/// expression will be an lvalue. The reference type, however, will
1482/// not be used as the type of the expression.
1483class ExplicitCastExpr : public CastExpr {
1484  /// TypeAsWritten - The type that this expression is casting to, as
1485  /// written in the source code.
1486  QualType TypeAsWritten;
1487
1488protected:
1489  ExplicitCastExpr(StmtClass SC, QualType exprTy, const CastInfo &info,
1490                   Expr *op, QualType writtenTy)
1491    : CastExpr(SC, exprTy, info, op), TypeAsWritten(writtenTy) {}
1492
1493  /// \brief Construct an empty explicit cast.
1494  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1495    : CastExpr(SC, Shell) { }
1496
1497public:
1498  /// getTypeAsWritten - Returns the type that this expression is
1499  /// casting to, as written in the source code.
1500  QualType getTypeAsWritten() const { return TypeAsWritten; }
1501  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1502
1503  static bool classof(const Stmt *T) {
1504    StmtClass SC = T->getStmtClass();
1505    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1506      return true;
1507    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1508      return true;
1509
1510    return false;
1511  }
1512  static bool classof(const ExplicitCastExpr *) { return true; }
1513};
1514
1515/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1516/// cast in C++ (C++ [expr.cast]), which uses the syntax
1517/// (Type)expr. For example: @c (int)f.
1518class CStyleCastExpr : public ExplicitCastExpr {
1519  SourceLocation LPLoc; // the location of the left paren
1520  SourceLocation RPLoc; // the location of the right paren
1521public:
1522  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, QualType writtenTy,
1523                    SourceLocation l, SourceLocation r) :
1524    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1525    LPLoc(l), RPLoc(r) {}
1526
1527  /// \brief Construct an empty C-style explicit cast.
1528  explicit CStyleCastExpr(EmptyShell Shell)
1529    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1530
1531  SourceLocation getLParenLoc() const { return LPLoc; }
1532  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1533
1534  SourceLocation getRParenLoc() const { return RPLoc; }
1535  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1536
1537  virtual SourceRange getSourceRange() const {
1538    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1539  }
1540  static bool classof(const Stmt *T) {
1541    return T->getStmtClass() == CStyleCastExprClass;
1542  }
1543  static bool classof(const CStyleCastExpr *) { return true; }
1544};
1545
1546/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1547///
1548/// This expression node kind describes a builtin binary operation,
1549/// such as "x + y" for integer values "x" and "y". The operands will
1550/// already have been converted to appropriate types (e.g., by
1551/// performing promotions or conversions).
1552///
1553/// In C++, where operators may be overloaded, a different kind of
1554/// expression node (CXXOperatorCallExpr) is used to express the
1555/// invocation of an overloaded operator with operator syntax. Within
1556/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1557/// used to store an expression "x + y" depends on the subexpressions
1558/// for x and y. If neither x or y is type-dependent, and the "+"
1559/// operator resolves to a built-in operation, BinaryOperator will be
1560/// used to express the computation (x and y may still be
1561/// value-dependent). If either x or y is type-dependent, or if the
1562/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1563/// be used to express the computation.
1564class BinaryOperator : public Expr {
1565public:
1566  enum Opcode {
1567    // Operators listed in order of precedence.
1568    // Note that additions to this should also update the StmtVisitor class.
1569    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1570    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1571    Add, Sub,         // [C99 6.5.6] Additive operators.
1572    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1573    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1574    EQ, NE,           // [C99 6.5.9] Equality operators.
1575    And,              // [C99 6.5.10] Bitwise AND operator.
1576    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1577    Or,               // [C99 6.5.12] Bitwise OR operator.
1578    LAnd,             // [C99 6.5.13] Logical AND operator.
1579    LOr,              // [C99 6.5.14] Logical OR operator.
1580    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1581    DivAssign, RemAssign,
1582    AddAssign, SubAssign,
1583    ShlAssign, ShrAssign,
1584    AndAssign, XorAssign,
1585    OrAssign,
1586    Comma             // [C99 6.5.17] Comma operator.
1587  };
1588private:
1589  enum { LHS, RHS, END_EXPR };
1590  Stmt* SubExprs[END_EXPR];
1591  Opcode Opc;
1592  SourceLocation OpLoc;
1593public:
1594
1595  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1596                 SourceLocation opLoc)
1597    : Expr(BinaryOperatorClass, ResTy,
1598           lhs->isTypeDependent() || rhs->isTypeDependent(),
1599           lhs->isValueDependent() || rhs->isValueDependent()),
1600      Opc(opc), OpLoc(opLoc) {
1601    SubExprs[LHS] = lhs;
1602    SubExprs[RHS] = rhs;
1603    assert(!isCompoundAssignmentOp() &&
1604           "Use ArithAssignBinaryOperator for compound assignments");
1605  }
1606
1607  /// \brief Construct an empty binary operator.
1608  explicit BinaryOperator(EmptyShell Empty)
1609    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1610
1611  SourceLocation getOperatorLoc() const { return OpLoc; }
1612  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1613
1614  Opcode getOpcode() const { return Opc; }
1615  void setOpcode(Opcode O) { Opc = O; }
1616
1617  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1618  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1619  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1620  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1621
1622  virtual SourceRange getSourceRange() const {
1623    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1624  }
1625
1626  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1627  /// corresponds to, e.g. "<<=".
1628  static const char *getOpcodeStr(Opcode Op);
1629
1630  /// \brief Retrieve the binary opcode that corresponds to the given
1631  /// overloaded operator.
1632  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1633
1634  /// \brief Retrieve the overloaded operator kind that corresponds to
1635  /// the given binary opcode.
1636  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1637
1638  /// predicates to categorize the respective opcodes.
1639  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1640  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1641  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1642  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1643
1644  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1645  bool isRelationalOp() const { return isRelationalOp(Opc); }
1646
1647  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1648  bool isEqualityOp() const { return isEqualityOp(Opc); }
1649
1650  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1651  bool isLogicalOp() const { return isLogicalOp(Opc); }
1652
1653  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1654  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1655  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1656
1657  static bool classof(const Stmt *S) {
1658    return S->getStmtClass() == BinaryOperatorClass ||
1659           S->getStmtClass() == CompoundAssignOperatorClass;
1660  }
1661  static bool classof(const BinaryOperator *) { return true; }
1662
1663  // Iterators
1664  virtual child_iterator child_begin();
1665  virtual child_iterator child_end();
1666
1667protected:
1668  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1669                 SourceLocation oploc, bool dead)
1670    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1671    SubExprs[LHS] = lhs;
1672    SubExprs[RHS] = rhs;
1673  }
1674
1675  BinaryOperator(StmtClass SC, EmptyShell Empty)
1676    : Expr(SC, Empty), Opc(MulAssign) { }
1677};
1678
1679/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1680/// track of the type the operation is performed in.  Due to the semantics of
1681/// these operators, the operands are promoted, the aritmetic performed, an
1682/// implicit conversion back to the result type done, then the assignment takes
1683/// place.  This captures the intermediate type which the computation is done
1684/// in.
1685class CompoundAssignOperator : public BinaryOperator {
1686  QualType ComputationLHSType;
1687  QualType ComputationResultType;
1688public:
1689  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1690                         QualType ResType, QualType CompLHSType,
1691                         QualType CompResultType,
1692                         SourceLocation OpLoc)
1693    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1694      ComputationLHSType(CompLHSType),
1695      ComputationResultType(CompResultType) {
1696    assert(isCompoundAssignmentOp() &&
1697           "Only should be used for compound assignments");
1698  }
1699
1700  /// \brief Build an empty compound assignment operator expression.
1701  explicit CompoundAssignOperator(EmptyShell Empty)
1702    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1703
1704  // The two computation types are the type the LHS is converted
1705  // to for the computation and the type of the result; the two are
1706  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1707  QualType getComputationLHSType() const { return ComputationLHSType; }
1708  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1709
1710  QualType getComputationResultType() const { return ComputationResultType; }
1711  void setComputationResultType(QualType T) { ComputationResultType = T; }
1712
1713  static bool classof(const CompoundAssignOperator *) { return true; }
1714  static bool classof(const Stmt *S) {
1715    return S->getStmtClass() == CompoundAssignOperatorClass;
1716  }
1717};
1718
1719/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1720/// GNU "missing LHS" extension is in use.
1721///
1722class ConditionalOperator : public Expr {
1723  enum { COND, LHS, RHS, END_EXPR };
1724  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1725  SourceLocation QuestionLoc, ColonLoc;
1726public:
1727  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1728                      SourceLocation CLoc, Expr *rhs, QualType t)
1729    : Expr(ConditionalOperatorClass, t,
1730           // FIXME: the type of the conditional operator doesn't
1731           // depend on the type of the conditional, but the standard
1732           // seems to imply that it could. File a bug!
1733           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1734           (cond->isValueDependent() ||
1735            (lhs && lhs->isValueDependent()) ||
1736            (rhs && rhs->isValueDependent()))),
1737      QuestionLoc(QLoc),
1738      ColonLoc(CLoc) {
1739    SubExprs[COND] = cond;
1740    SubExprs[LHS] = lhs;
1741    SubExprs[RHS] = rhs;
1742  }
1743
1744  /// \brief Build an empty conditional operator.
1745  explicit ConditionalOperator(EmptyShell Empty)
1746    : Expr(ConditionalOperatorClass, Empty) { }
1747
1748  // getCond - Return the expression representing the condition for
1749  //  the ?: operator.
1750  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1751  void setCond(Expr *E) { SubExprs[COND] = E; }
1752
1753  // getTrueExpr - Return the subexpression representing the value of the ?:
1754  //  expression if the condition evaluates to true.  In most cases this value
1755  //  will be the same as getLHS() except a GCC extension allows the left
1756  //  subexpression to be omitted, and instead of the condition be returned.
1757  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1758  //  is only evaluated once.
1759  Expr *getTrueExpr() const {
1760    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1761  }
1762
1763  // getTrueExpr - Return the subexpression representing the value of the ?:
1764  // expression if the condition evaluates to false. This is the same as getRHS.
1765  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1766
1767  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1768  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1769
1770  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1771  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1772
1773  SourceLocation getQuestionLoc() const { return QuestionLoc; }
1774  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
1775
1776  SourceLocation getColonLoc() const { return ColonLoc; }
1777  void setColonLoc(SourceLocation L) { ColonLoc = L; }
1778
1779  virtual SourceRange getSourceRange() const {
1780    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1781  }
1782  static bool classof(const Stmt *T) {
1783    return T->getStmtClass() == ConditionalOperatorClass;
1784  }
1785  static bool classof(const ConditionalOperator *) { return true; }
1786
1787  // Iterators
1788  virtual child_iterator child_begin();
1789  virtual child_iterator child_end();
1790};
1791
1792/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1793class AddrLabelExpr : public Expr {
1794  SourceLocation AmpAmpLoc, LabelLoc;
1795  LabelStmt *Label;
1796public:
1797  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1798                QualType t)
1799    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1800
1801  /// \brief Build an empty address of a label expression.
1802  explicit AddrLabelExpr(EmptyShell Empty)
1803    : Expr(AddrLabelExprClass, Empty) { }
1804
1805  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
1806  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
1807  SourceLocation getLabelLoc() const { return LabelLoc; }
1808  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1809
1810  virtual SourceRange getSourceRange() const {
1811    return SourceRange(AmpAmpLoc, LabelLoc);
1812  }
1813
1814  LabelStmt *getLabel() const { return Label; }
1815  void setLabel(LabelStmt *S) { Label = S; }
1816
1817  static bool classof(const Stmt *T) {
1818    return T->getStmtClass() == AddrLabelExprClass;
1819  }
1820  static bool classof(const AddrLabelExpr *) { return true; }
1821
1822  // Iterators
1823  virtual child_iterator child_begin();
1824  virtual child_iterator child_end();
1825};
1826
1827/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1828/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1829/// takes the value of the last subexpression.
1830class StmtExpr : public Expr {
1831  Stmt *SubStmt;
1832  SourceLocation LParenLoc, RParenLoc;
1833public:
1834  StmtExpr(CompoundStmt *substmt, QualType T,
1835           SourceLocation lp, SourceLocation rp) :
1836    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1837
1838  /// \brief Build an empty statement expression.
1839  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
1840
1841  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1842  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1843  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
1844
1845  virtual SourceRange getSourceRange() const {
1846    return SourceRange(LParenLoc, RParenLoc);
1847  }
1848
1849  SourceLocation getLParenLoc() const { return LParenLoc; }
1850  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1851  SourceLocation getRParenLoc() const { return RParenLoc; }
1852  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1853
1854  static bool classof(const Stmt *T) {
1855    return T->getStmtClass() == StmtExprClass;
1856  }
1857  static bool classof(const StmtExpr *) { return true; }
1858
1859  // Iterators
1860  virtual child_iterator child_begin();
1861  virtual child_iterator child_end();
1862};
1863
1864/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
1865/// This AST node represents a function that returns 1 if two *types* (not
1866/// expressions) are compatible. The result of this built-in function can be
1867/// used in integer constant expressions.
1868class TypesCompatibleExpr : public Expr {
1869  QualType Type1;
1870  QualType Type2;
1871  SourceLocation BuiltinLoc, RParenLoc;
1872public:
1873  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1874                      QualType t1, QualType t2, SourceLocation RP) :
1875    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1876    BuiltinLoc(BLoc), RParenLoc(RP) {}
1877
1878  /// \brief Build an empty __builtin_type_compatible_p expression.
1879  explicit TypesCompatibleExpr(EmptyShell Empty)
1880    : Expr(TypesCompatibleExprClass, Empty) { }
1881
1882  QualType getArgType1() const { return Type1; }
1883  void setArgType1(QualType T) { Type1 = T; }
1884  QualType getArgType2() const { return Type2; }
1885  void setArgType2(QualType T) { Type2 = T; }
1886
1887  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1888  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1889
1890  SourceLocation getRParenLoc() const { return RParenLoc; }
1891  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1892
1893  virtual SourceRange getSourceRange() const {
1894    return SourceRange(BuiltinLoc, RParenLoc);
1895  }
1896  static bool classof(const Stmt *T) {
1897    return T->getStmtClass() == TypesCompatibleExprClass;
1898  }
1899  static bool classof(const TypesCompatibleExpr *) { return true; }
1900
1901  // Iterators
1902  virtual child_iterator child_begin();
1903  virtual child_iterator child_end();
1904};
1905
1906/// ShuffleVectorExpr - clang-specific builtin-in function
1907/// __builtin_shufflevector.
1908/// This AST node represents a operator that does a constant
1909/// shuffle, similar to LLVM's shufflevector instruction. It takes
1910/// two vectors and a variable number of constant indices,
1911/// and returns the appropriately shuffled vector.
1912class ShuffleVectorExpr : public Expr {
1913  SourceLocation BuiltinLoc, RParenLoc;
1914
1915  // SubExprs - the list of values passed to the __builtin_shufflevector
1916  // function. The first two are vectors, and the rest are constant
1917  // indices.  The number of values in this list is always
1918  // 2+the number of indices in the vector type.
1919  Stmt **SubExprs;
1920  unsigned NumExprs;
1921
1922protected:
1923  virtual void DoDestroy(ASTContext &C);
1924
1925public:
1926  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
1927                    QualType Type, SourceLocation BLoc,
1928                    SourceLocation RP) :
1929    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1930    RParenLoc(RP), NumExprs(nexpr) {
1931
1932    SubExprs = new (C) Stmt*[nexpr];
1933    for (unsigned i = 0; i < nexpr; i++)
1934      SubExprs[i] = args[i];
1935  }
1936
1937  /// \brief Build an empty vector-shuffle expression.
1938  explicit ShuffleVectorExpr(EmptyShell Empty)
1939    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1940
1941  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1942  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1943
1944  SourceLocation getRParenLoc() const { return RParenLoc; }
1945  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1946
1947  virtual SourceRange getSourceRange() const {
1948    return SourceRange(BuiltinLoc, RParenLoc);
1949  }
1950  static bool classof(const Stmt *T) {
1951    return T->getStmtClass() == ShuffleVectorExprClass;
1952  }
1953  static bool classof(const ShuffleVectorExpr *) { return true; }
1954
1955  ~ShuffleVectorExpr() {}
1956
1957  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1958  /// constant expression, the actual arguments passed in, and the function
1959  /// pointers.
1960  unsigned getNumSubExprs() const { return NumExprs; }
1961
1962  /// getExpr - Return the Expr at the specified index.
1963  Expr *getExpr(unsigned Index) {
1964    assert((Index < NumExprs) && "Arg access out of range!");
1965    return cast<Expr>(SubExprs[Index]);
1966  }
1967  const Expr *getExpr(unsigned Index) const {
1968    assert((Index < NumExprs) && "Arg access out of range!");
1969    return cast<Expr>(SubExprs[Index]);
1970  }
1971
1972  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
1973
1974  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1975    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1976    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
1977  }
1978
1979  // Iterators
1980  virtual child_iterator child_begin();
1981  virtual child_iterator child_end();
1982};
1983
1984/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1985/// This AST node is similar to the conditional operator (?:) in C, with
1986/// the following exceptions:
1987/// - the test expression must be a integer constant expression.
1988/// - the expression returned acts like the chosen subexpression in every
1989///   visible way: the type is the same as that of the chosen subexpression,
1990///   and all predicates (whether it's an l-value, whether it's an integer
1991///   constant expression, etc.) return the same result as for the chosen
1992///   sub-expression.
1993class ChooseExpr : public Expr {
1994  enum { COND, LHS, RHS, END_EXPR };
1995  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1996  SourceLocation BuiltinLoc, RParenLoc;
1997public:
1998  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1999             SourceLocation RP)
2000    : Expr(ChooseExprClass, t),
2001      BuiltinLoc(BLoc), RParenLoc(RP) {
2002      SubExprs[COND] = cond;
2003      SubExprs[LHS] = lhs;
2004      SubExprs[RHS] = rhs;
2005    }
2006
2007  /// \brief Build an empty __builtin_choose_expr.
2008  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2009
2010  /// isConditionTrue - Return whether the condition is true (i.e. not
2011  /// equal to zero).
2012  bool isConditionTrue(ASTContext &C) const;
2013
2014  /// getChosenSubExpr - Return the subexpression chosen according to the
2015  /// condition.
2016  Expr *getChosenSubExpr(ASTContext &C) const {
2017    return isConditionTrue(C) ? getLHS() : getRHS();
2018  }
2019
2020  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2021  void setCond(Expr *E) { SubExprs[COND] = E; }
2022  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2023  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2024  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2025  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2026
2027  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2028  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2029
2030  SourceLocation getRParenLoc() const { return RParenLoc; }
2031  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2032
2033  virtual SourceRange getSourceRange() const {
2034    return SourceRange(BuiltinLoc, RParenLoc);
2035  }
2036  static bool classof(const Stmt *T) {
2037    return T->getStmtClass() == ChooseExprClass;
2038  }
2039  static bool classof(const ChooseExpr *) { return true; }
2040
2041  // Iterators
2042  virtual child_iterator child_begin();
2043  virtual child_iterator child_end();
2044};
2045
2046/// GNUNullExpr - Implements the GNU __null extension, which is a name
2047/// for a null pointer constant that has integral type (e.g., int or
2048/// long) and is the same size and alignment as a pointer. The __null
2049/// extension is typically only used by system headers, which define
2050/// NULL as __null in C++ rather than using 0 (which is an integer
2051/// that may not match the size of a pointer).
2052class GNUNullExpr : public Expr {
2053  /// TokenLoc - The location of the __null keyword.
2054  SourceLocation TokenLoc;
2055
2056public:
2057  GNUNullExpr(QualType Ty, SourceLocation Loc)
2058    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
2059
2060  /// \brief Build an empty GNU __null expression.
2061  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2062
2063  /// getTokenLocation - The location of the __null token.
2064  SourceLocation getTokenLocation() const { return TokenLoc; }
2065  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2066
2067  virtual SourceRange getSourceRange() const {
2068    return SourceRange(TokenLoc);
2069  }
2070  static bool classof(const Stmt *T) {
2071    return T->getStmtClass() == GNUNullExprClass;
2072  }
2073  static bool classof(const GNUNullExpr *) { return true; }
2074
2075  // Iterators
2076  virtual child_iterator child_begin();
2077  virtual child_iterator child_end();
2078};
2079
2080/// VAArgExpr, used for the builtin function __builtin_va_start.
2081class VAArgExpr : public Expr {
2082  Stmt *Val;
2083  SourceLocation BuiltinLoc, RParenLoc;
2084public:
2085  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2086    : Expr(VAArgExprClass, t),
2087      Val(e),
2088      BuiltinLoc(BLoc),
2089      RParenLoc(RPLoc) { }
2090
2091  /// \brief Create an empty __builtin_va_start expression.
2092  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2093
2094  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2095  Expr *getSubExpr() { return cast<Expr>(Val); }
2096  void setSubExpr(Expr *E) { Val = E; }
2097
2098  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2099  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2100
2101  SourceLocation getRParenLoc() const { return RParenLoc; }
2102  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2103
2104  virtual SourceRange getSourceRange() const {
2105    return SourceRange(BuiltinLoc, RParenLoc);
2106  }
2107  static bool classof(const Stmt *T) {
2108    return T->getStmtClass() == VAArgExprClass;
2109  }
2110  static bool classof(const VAArgExpr *) { return true; }
2111
2112  // Iterators
2113  virtual child_iterator child_begin();
2114  virtual child_iterator child_end();
2115};
2116
2117/// @brief Describes an C or C++ initializer list.
2118///
2119/// InitListExpr describes an initializer list, which can be used to
2120/// initialize objects of different types, including
2121/// struct/class/union types, arrays, and vectors. For example:
2122///
2123/// @code
2124/// struct foo x = { 1, { 2, 3 } };
2125/// @endcode
2126///
2127/// Prior to semantic analysis, an initializer list will represent the
2128/// initializer list as written by the user, but will have the
2129/// placeholder type "void". This initializer list is called the
2130/// syntactic form of the initializer, and may contain C99 designated
2131/// initializers (represented as DesignatedInitExprs), initializations
2132/// of subobject members without explicit braces, and so on. Clients
2133/// interested in the original syntax of the initializer list should
2134/// use the syntactic form of the initializer list.
2135///
2136/// After semantic analysis, the initializer list will represent the
2137/// semantic form of the initializer, where the initializations of all
2138/// subobjects are made explicit with nested InitListExpr nodes and
2139/// C99 designators have been eliminated by placing the designated
2140/// initializations into the subobject they initialize. Additionally,
2141/// any "holes" in the initialization, where no initializer has been
2142/// specified for a particular subobject, will be replaced with
2143/// implicitly-generated ImplicitValueInitExpr expressions that
2144/// value-initialize the subobjects. Note, however, that the
2145/// initializer lists may still have fewer initializers than there are
2146/// elements to initialize within the object.
2147///
2148/// Given the semantic form of the initializer list, one can retrieve
2149/// the original syntactic form of that initializer list (if it
2150/// exists) using getSyntacticForm(). Since many initializer lists
2151/// have the same syntactic and semantic forms, getSyntacticForm() may
2152/// return NULL, indicating that the current initializer list also
2153/// serves as its syntactic form.
2154class InitListExpr : public Expr {
2155  // FIXME: Eliminate this vector in favor of ASTContext allocation
2156  std::vector<Stmt *> InitExprs;
2157  SourceLocation LBraceLoc, RBraceLoc;
2158
2159  /// Contains the initializer list that describes the syntactic form
2160  /// written in the source code.
2161  InitListExpr *SyntacticForm;
2162
2163  /// If this initializer list initializes a union, specifies which
2164  /// field within the union will be initialized.
2165  FieldDecl *UnionFieldInit;
2166
2167  /// Whether this initializer list originally had a GNU array-range
2168  /// designator in it. This is a temporary marker used by CodeGen.
2169  bool HadArrayRangeDesignator;
2170
2171public:
2172  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2173               SourceLocation rbraceloc);
2174
2175  /// \brief Build an empty initializer list.
2176  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2177
2178  unsigned getNumInits() const { return InitExprs.size(); }
2179
2180  const Expr* getInit(unsigned Init) const {
2181    assert(Init < getNumInits() && "Initializer access out of range!");
2182    return cast_or_null<Expr>(InitExprs[Init]);
2183  }
2184
2185  Expr* getInit(unsigned Init) {
2186    assert(Init < getNumInits() && "Initializer access out of range!");
2187    return cast_or_null<Expr>(InitExprs[Init]);
2188  }
2189
2190  void setInit(unsigned Init, Expr *expr) {
2191    assert(Init < getNumInits() && "Initializer access out of range!");
2192    InitExprs[Init] = expr;
2193  }
2194
2195  /// \brief Reserve space for some number of initializers.
2196  void reserveInits(unsigned NumInits);
2197
2198  /// @brief Specify the number of initializers
2199  ///
2200  /// If there are more than @p NumInits initializers, the remaining
2201  /// initializers will be destroyed. If there are fewer than @p
2202  /// NumInits initializers, NULL expressions will be added for the
2203  /// unknown initializers.
2204  void resizeInits(ASTContext &Context, unsigned NumInits);
2205
2206  /// @brief Updates the initializer at index @p Init with the new
2207  /// expression @p expr, and returns the old expression at that
2208  /// location.
2209  ///
2210  /// When @p Init is out of range for this initializer list, the
2211  /// initializer list will be extended with NULL expressions to
2212  /// accomodate the new entry.
2213  Expr *updateInit(unsigned Init, Expr *expr);
2214
2215  /// \brief If this initializes a union, specifies which field in the
2216  /// union to initialize.
2217  ///
2218  /// Typically, this field is the first named field within the
2219  /// union. However, a designated initializer can specify the
2220  /// initialization of a different field within the union.
2221  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2222  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2223
2224  // Explicit InitListExpr's originate from source code (and have valid source
2225  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2226  bool isExplicit() {
2227    return LBraceLoc.isValid() && RBraceLoc.isValid();
2228  }
2229
2230  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2231  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2232  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2233  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2234
2235  /// @brief Retrieve the initializer list that describes the
2236  /// syntactic form of the initializer.
2237  ///
2238  ///
2239  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2240  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2241
2242  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2243  void sawArrayRangeDesignator(bool ARD = true) {
2244    HadArrayRangeDesignator = ARD;
2245  }
2246
2247  virtual SourceRange getSourceRange() const {
2248    return SourceRange(LBraceLoc, RBraceLoc);
2249  }
2250  static bool classof(const Stmt *T) {
2251    return T->getStmtClass() == InitListExprClass;
2252  }
2253  static bool classof(const InitListExpr *) { return true; }
2254
2255  // Iterators
2256  virtual child_iterator child_begin();
2257  virtual child_iterator child_end();
2258
2259  typedef std::vector<Stmt *>::iterator iterator;
2260  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2261
2262  iterator begin() { return InitExprs.begin(); }
2263  iterator end() { return InitExprs.end(); }
2264  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2265  reverse_iterator rend() { return InitExprs.rend(); }
2266};
2267
2268/// @brief Represents a C99 designated initializer expression.
2269///
2270/// A designated initializer expression (C99 6.7.8) contains one or
2271/// more designators (which can be field designators, array
2272/// designators, or GNU array-range designators) followed by an
2273/// expression that initializes the field or element(s) that the
2274/// designators refer to. For example, given:
2275///
2276/// @code
2277/// struct point {
2278///   double x;
2279///   double y;
2280/// };
2281/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2282/// @endcode
2283///
2284/// The InitListExpr contains three DesignatedInitExprs, the first of
2285/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2286/// designators, one array designator for @c [2] followed by one field
2287/// designator for @c .y. The initalization expression will be 1.0.
2288class DesignatedInitExpr : public Expr {
2289public:
2290  /// \brief Forward declaration of the Designator class.
2291  class Designator;
2292
2293private:
2294  /// The location of the '=' or ':' prior to the actual initializer
2295  /// expression.
2296  SourceLocation EqualOrColonLoc;
2297
2298  /// Whether this designated initializer used the GNU deprecated
2299  /// syntax rather than the C99 '=' syntax.
2300  bool GNUSyntax : 1;
2301
2302  /// The number of designators in this initializer expression.
2303  unsigned NumDesignators : 15;
2304
2305  /// \brief The designators in this designated initialization
2306  /// expression.
2307  Designator *Designators;
2308
2309  /// The number of subexpressions of this initializer expression,
2310  /// which contains both the initializer and any additional
2311  /// expressions used by array and array-range designators.
2312  unsigned NumSubExprs : 16;
2313
2314
2315  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2316                     const Designator *Designators,
2317                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2318                     Expr **IndexExprs, unsigned NumIndexExprs,
2319                     Expr *Init);
2320
2321  explicit DesignatedInitExpr(unsigned NumSubExprs)
2322    : Expr(DesignatedInitExprClass, EmptyShell()),
2323      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2324
2325protected:
2326  virtual void DoDestroy(ASTContext &C);
2327
2328public:
2329  /// A field designator, e.g., ".x".
2330  struct FieldDesignator {
2331    /// Refers to the field that is being initialized. The low bit
2332    /// of this field determines whether this is actually a pointer
2333    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2334    /// initially constructed, a field designator will store an
2335    /// IdentifierInfo*. After semantic analysis has resolved that
2336    /// name, the field designator will instead store a FieldDecl*.
2337    uintptr_t NameOrField;
2338
2339    /// The location of the '.' in the designated initializer.
2340    unsigned DotLoc;
2341
2342    /// The location of the field name in the designated initializer.
2343    unsigned FieldLoc;
2344  };
2345
2346  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2347  struct ArrayOrRangeDesignator {
2348    /// Location of the first index expression within the designated
2349    /// initializer expression's list of subexpressions.
2350    unsigned Index;
2351    /// The location of the '[' starting the array range designator.
2352    unsigned LBracketLoc;
2353    /// The location of the ellipsis separating the start and end
2354    /// indices. Only valid for GNU array-range designators.
2355    unsigned EllipsisLoc;
2356    /// The location of the ']' terminating the array range designator.
2357    unsigned RBracketLoc;
2358  };
2359
2360  /// @brief Represents a single C99 designator.
2361  ///
2362  /// @todo This class is infuriatingly similar to clang::Designator,
2363  /// but minor differences (storing indices vs. storing pointers)
2364  /// keep us from reusing it. Try harder, later, to rectify these
2365  /// differences.
2366  class Designator {
2367    /// @brief The kind of designator this describes.
2368    enum {
2369      FieldDesignator,
2370      ArrayDesignator,
2371      ArrayRangeDesignator
2372    } Kind;
2373
2374    union {
2375      /// A field designator, e.g., ".x".
2376      struct FieldDesignator Field;
2377      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2378      struct ArrayOrRangeDesignator ArrayOrRange;
2379    };
2380    friend class DesignatedInitExpr;
2381
2382  public:
2383    Designator() {}
2384
2385    /// @brief Initializes a field designator.
2386    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2387               SourceLocation FieldLoc)
2388      : Kind(FieldDesignator) {
2389      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2390      Field.DotLoc = DotLoc.getRawEncoding();
2391      Field.FieldLoc = FieldLoc.getRawEncoding();
2392    }
2393
2394    /// @brief Initializes an array designator.
2395    Designator(unsigned Index, SourceLocation LBracketLoc,
2396               SourceLocation RBracketLoc)
2397      : Kind(ArrayDesignator) {
2398      ArrayOrRange.Index = Index;
2399      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2400      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2401      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2402    }
2403
2404    /// @brief Initializes a GNU array-range designator.
2405    Designator(unsigned Index, SourceLocation LBracketLoc,
2406               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2407      : Kind(ArrayRangeDesignator) {
2408      ArrayOrRange.Index = Index;
2409      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2410      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2411      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2412    }
2413
2414    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2415    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2416    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2417
2418    IdentifierInfo * getFieldName();
2419
2420    FieldDecl *getField() {
2421      assert(Kind == FieldDesignator && "Only valid on a field designator");
2422      if (Field.NameOrField & 0x01)
2423        return 0;
2424      else
2425        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2426    }
2427
2428    void setField(FieldDecl *FD) {
2429      assert(Kind == FieldDesignator && "Only valid on a field designator");
2430      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2431    }
2432
2433    SourceLocation getDotLoc() const {
2434      assert(Kind == FieldDesignator && "Only valid on a field designator");
2435      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2436    }
2437
2438    SourceLocation getFieldLoc() const {
2439      assert(Kind == FieldDesignator && "Only valid on a field designator");
2440      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2441    }
2442
2443    SourceLocation getLBracketLoc() const {
2444      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2445             "Only valid on an array or array-range designator");
2446      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2447    }
2448
2449    SourceLocation getRBracketLoc() const {
2450      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2451             "Only valid on an array or array-range designator");
2452      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2453    }
2454
2455    SourceLocation getEllipsisLoc() const {
2456      assert(Kind == ArrayRangeDesignator &&
2457             "Only valid on an array-range designator");
2458      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2459    }
2460
2461    unsigned getFirstExprIndex() const {
2462      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2463             "Only valid on an array or array-range designator");
2464      return ArrayOrRange.Index;
2465    }
2466
2467    SourceLocation getStartLocation() const {
2468      if (Kind == FieldDesignator)
2469        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2470      else
2471        return getLBracketLoc();
2472    }
2473  };
2474
2475  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2476                                    unsigned NumDesignators,
2477                                    Expr **IndexExprs, unsigned NumIndexExprs,
2478                                    SourceLocation EqualOrColonLoc,
2479                                    bool GNUSyntax, Expr *Init);
2480
2481  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2482
2483  /// @brief Returns the number of designators in this initializer.
2484  unsigned size() const { return NumDesignators; }
2485
2486  // Iterator access to the designators.
2487  typedef Designator* designators_iterator;
2488  designators_iterator designators_begin() { return Designators; }
2489  designators_iterator designators_end() {
2490    return Designators + NumDesignators;
2491  }
2492
2493  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2494
2495  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2496
2497  Expr *getArrayIndex(const Designator& D);
2498  Expr *getArrayRangeStart(const Designator& D);
2499  Expr *getArrayRangeEnd(const Designator& D);
2500
2501  /// @brief Retrieve the location of the '=' that precedes the
2502  /// initializer value itself, if present.
2503  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2504  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2505
2506  /// @brief Determines whether this designated initializer used the
2507  /// deprecated GNU syntax for designated initializers.
2508  bool usesGNUSyntax() const { return GNUSyntax; }
2509  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2510
2511  /// @brief Retrieve the initializer value.
2512  Expr *getInit() const {
2513    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2514  }
2515
2516  void setInit(Expr *init) {
2517    *child_begin() = init;
2518  }
2519
2520  /// \brief Retrieve the total number of subexpressions in this
2521  /// designated initializer expression, including the actual
2522  /// initialized value and any expressions that occur within array
2523  /// and array-range designators.
2524  unsigned getNumSubExprs() const { return NumSubExprs; }
2525
2526  Expr *getSubExpr(unsigned Idx) {
2527    assert(Idx < NumSubExprs && "Subscript out of range");
2528    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2529    Ptr += sizeof(DesignatedInitExpr);
2530    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2531  }
2532
2533  void setSubExpr(unsigned Idx, Expr *E) {
2534    assert(Idx < NumSubExprs && "Subscript out of range");
2535    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2536    Ptr += sizeof(DesignatedInitExpr);
2537    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2538  }
2539
2540  /// \brief Replaces the designator at index @p Idx with the series
2541  /// of designators in [First, Last).
2542  void ExpandDesignator(unsigned Idx, const Designator *First,
2543                        const Designator *Last);
2544
2545  virtual SourceRange getSourceRange() const;
2546
2547  static bool classof(const Stmt *T) {
2548    return T->getStmtClass() == DesignatedInitExprClass;
2549  }
2550  static bool classof(const DesignatedInitExpr *) { return true; }
2551
2552  // Iterators
2553  virtual child_iterator child_begin();
2554  virtual child_iterator child_end();
2555};
2556
2557/// \brief Represents an implicitly-generated value initialization of
2558/// an object of a given type.
2559///
2560/// Implicit value initializations occur within semantic initializer
2561/// list expressions (InitListExpr) as placeholders for subobject
2562/// initializations not explicitly specified by the user.
2563///
2564/// \see InitListExpr
2565class ImplicitValueInitExpr : public Expr {
2566public:
2567  explicit ImplicitValueInitExpr(QualType ty)
2568    : Expr(ImplicitValueInitExprClass, ty) { }
2569
2570  /// \brief Construct an empty implicit value initialization.
2571  explicit ImplicitValueInitExpr(EmptyShell Empty)
2572    : Expr(ImplicitValueInitExprClass, Empty) { }
2573
2574  static bool classof(const Stmt *T) {
2575    return T->getStmtClass() == ImplicitValueInitExprClass;
2576  }
2577  static bool classof(const ImplicitValueInitExpr *) { return true; }
2578
2579  virtual SourceRange getSourceRange() const {
2580    return SourceRange();
2581  }
2582
2583  // Iterators
2584  virtual child_iterator child_begin();
2585  virtual child_iterator child_end();
2586};
2587
2588
2589class ParenListExpr : public Expr {
2590  Stmt **Exprs;
2591  unsigned NumExprs;
2592  SourceLocation LParenLoc, RParenLoc;
2593
2594protected:
2595  virtual void DoDestroy(ASTContext& C);
2596
2597public:
2598  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2599                unsigned numexprs, SourceLocation rparenloc);
2600
2601  ~ParenListExpr() {}
2602
2603  /// \brief Build an empty paren list.
2604  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2605
2606  unsigned getNumExprs() const { return NumExprs; }
2607
2608  const Expr* getExpr(unsigned Init) const {
2609    assert(Init < getNumExprs() && "Initializer access out of range!");
2610    return cast_or_null<Expr>(Exprs[Init]);
2611  }
2612
2613  Expr* getExpr(unsigned Init) {
2614    assert(Init < getNumExprs() && "Initializer access out of range!");
2615    return cast_or_null<Expr>(Exprs[Init]);
2616  }
2617
2618  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2619
2620  SourceLocation getLParenLoc() const { return LParenLoc; }
2621  SourceLocation getRParenLoc() const { return RParenLoc; }
2622
2623  virtual SourceRange getSourceRange() const {
2624    return SourceRange(LParenLoc, RParenLoc);
2625  }
2626  static bool classof(const Stmt *T) {
2627    return T->getStmtClass() == ParenListExprClass;
2628  }
2629  static bool classof(const ParenListExpr *) { return true; }
2630
2631  // Iterators
2632  virtual child_iterator child_begin();
2633  virtual child_iterator child_end();
2634};
2635
2636
2637//===----------------------------------------------------------------------===//
2638// Clang Extensions
2639//===----------------------------------------------------------------------===//
2640
2641
2642/// ExtVectorElementExpr - This represents access to specific elements of a
2643/// vector, and may occur on the left hand side or right hand side.  For example
2644/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2645///
2646/// Note that the base may have either vector or pointer to vector type, just
2647/// like a struct field reference.
2648///
2649class ExtVectorElementExpr : public Expr {
2650  Stmt *Base;
2651  IdentifierInfo *Accessor;
2652  SourceLocation AccessorLoc;
2653public:
2654  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2655                       SourceLocation loc)
2656    : Expr(ExtVectorElementExprClass, ty),
2657      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2658
2659  /// \brief Build an empty vector element expression.
2660  explicit ExtVectorElementExpr(EmptyShell Empty)
2661    : Expr(ExtVectorElementExprClass, Empty) { }
2662
2663  const Expr *getBase() const { return cast<Expr>(Base); }
2664  Expr *getBase() { return cast<Expr>(Base); }
2665  void setBase(Expr *E) { Base = E; }
2666
2667  IdentifierInfo &getAccessor() const { return *Accessor; }
2668  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2669
2670  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2671  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2672
2673  /// getNumElements - Get the number of components being selected.
2674  unsigned getNumElements() const;
2675
2676  /// containsDuplicateElements - Return true if any element access is
2677  /// repeated.
2678  bool containsDuplicateElements() const;
2679
2680  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2681  /// aggregate Constant of ConstantInt(s).
2682  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2683
2684  virtual SourceRange getSourceRange() const {
2685    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2686  }
2687
2688  /// isArrow - Return true if the base expression is a pointer to vector,
2689  /// return false if the base expression is a vector.
2690  bool isArrow() const;
2691
2692  static bool classof(const Stmt *T) {
2693    return T->getStmtClass() == ExtVectorElementExprClass;
2694  }
2695  static bool classof(const ExtVectorElementExpr *) { return true; }
2696
2697  // Iterators
2698  virtual child_iterator child_begin();
2699  virtual child_iterator child_end();
2700};
2701
2702
2703/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2704/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2705class BlockExpr : public Expr {
2706protected:
2707  BlockDecl *TheBlock;
2708  bool HasBlockDeclRefExprs;
2709public:
2710  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2711    : Expr(BlockExprClass, ty),
2712      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2713
2714  /// \brief Build an empty block expression.
2715  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2716
2717  const BlockDecl *getBlockDecl() const { return TheBlock; }
2718  BlockDecl *getBlockDecl() { return TheBlock; }
2719  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2720
2721  // Convenience functions for probing the underlying BlockDecl.
2722  SourceLocation getCaretLocation() const;
2723  const Stmt *getBody() const;
2724  Stmt *getBody();
2725
2726  virtual SourceRange getSourceRange() const {
2727    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2728  }
2729
2730  /// getFunctionType - Return the underlying function type for this block.
2731  const FunctionType *getFunctionType() const;
2732
2733  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2734  /// inside of the block that reference values outside the block.
2735  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2736  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2737
2738  static bool classof(const Stmt *T) {
2739    return T->getStmtClass() == BlockExprClass;
2740  }
2741  static bool classof(const BlockExpr *) { return true; }
2742
2743  // Iterators
2744  virtual child_iterator child_begin();
2745  virtual child_iterator child_end();
2746};
2747
2748/// BlockDeclRefExpr - A reference to a declared variable, function,
2749/// enum, etc.
2750class BlockDeclRefExpr : public Expr {
2751  ValueDecl *D;
2752  SourceLocation Loc;
2753  bool IsByRef : 1;
2754  bool ConstQualAdded : 1;
2755public:
2756  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
2757                   bool constAdded = false) :
2758       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
2759                                       ConstQualAdded(constAdded) {}
2760
2761  // \brief Build an empty reference to a declared variable in a
2762  // block.
2763  explicit BlockDeclRefExpr(EmptyShell Empty)
2764    : Expr(BlockDeclRefExprClass, Empty) { }
2765
2766  ValueDecl *getDecl() { return D; }
2767  const ValueDecl *getDecl() const { return D; }
2768  void setDecl(ValueDecl *VD) { D = VD; }
2769
2770  SourceLocation getLocation() const { return Loc; }
2771  void setLocation(SourceLocation L) { Loc = L; }
2772
2773  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2774
2775  bool isByRef() const { return IsByRef; }
2776  void setByRef(bool BR) { IsByRef = BR; }
2777
2778  bool isConstQualAdded() const { return ConstQualAdded; }
2779  void setConstQualAdded(bool C) { ConstQualAdded = C; }
2780
2781  static bool classof(const Stmt *T) {
2782    return T->getStmtClass() == BlockDeclRefExprClass;
2783  }
2784  static bool classof(const BlockDeclRefExpr *) { return true; }
2785
2786  // Iterators
2787  virtual child_iterator child_begin();
2788  virtual child_iterator child_end();
2789};
2790
2791}  // end namespace clang
2792
2793#endif
2794