Expr.h revision 82214a80c0163e01e4d8dec1426023c89277dbb4
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <cctype>
29#include <vector>
30
31namespace clang {
32  class ASTContext;
33  class APValue;
34  class Decl;
35  class IdentifierInfo;
36  class ParmVarDecl;
37  class NamedDecl;
38  class ValueDecl;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXOperatorCallExpr;
42  class CXXMemberCallExpr;
43  class ObjCPropertyRefExpr;
44  class TemplateArgumentLoc;
45  class TemplateArgumentListInfo;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ContainsUnexpandedParameterPack) : Stmt(SC) {
61    ExprBits.TypeDependent = TD;
62    ExprBits.ValueDependent = VD;
63    ExprBits.ValueKind = VK;
64    ExprBits.ObjectKind = OK;
65    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
66    setType(T);
67  }
68
69  /// \brief Construct an empty expression.
70  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71
72public:
73  QualType getType() const { return TR; }
74  void setType(QualType t) {
75    // In C++, the type of an expression is always adjusted so that it
76    // will not have reference type an expression will never have
77    // reference type (C++ [expr]p6). Use
78    // QualType::getNonReferenceType() to retrieve the non-reference
79    // type. Additionally, inspect Expr::isLvalue to determine whether
80    // an expression that is adjusted in this manner should be
81    // considered an lvalue.
82    assert((t.isNull() || !t->isReferenceType()) &&
83           "Expressions can't have reference type");
84
85    TR = t;
86  }
87
88  /// isValueDependent - Determines whether this expression is
89  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
90  /// array bound of "Chars" in the following example is
91  /// value-dependent.
92  /// @code
93  /// template<int Size, char (&Chars)[Size]> struct meta_string;
94  /// @endcode
95  bool isValueDependent() const { return ExprBits.ValueDependent; }
96
97  /// \brief Set whether this expression is value-dependent or not.
98  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
99
100  /// isTypeDependent - Determines whether this expression is
101  /// type-dependent (C++ [temp.dep.expr]), which means that its type
102  /// could change from one template instantiation to the next. For
103  /// example, the expressions "x" and "x + y" are type-dependent in
104  /// the following code, but "y" is not type-dependent:
105  /// @code
106  /// template<typename T>
107  /// void add(T x, int y) {
108  ///   x + y;
109  /// }
110  /// @endcode
111  bool isTypeDependent() const { return ExprBits.TypeDependent; }
112
113  /// \brief Set whether this expression is type-dependent or not.
114  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
115
116  /// \brief Whether this expression contains an unexpanded parameter
117  /// pack (for C++0x variadic templates).
118  ///
119  /// Given the following function template:
120  ///
121  /// \code
122  /// template<typename F, typename ...Types>
123  /// void forward(const F &f, Types &&...args) {
124  ///   f(static_cast<Types&&>(args)...);
125  /// }
126  /// \endcode
127  ///
128  /// The expressions \c args and \c static_cast<Types&&>(args) both
129  /// contain parameter packs.
130  bool containsUnexpandedParameterPack() const {
131    return ExprBits.ContainsUnexpandedParameterPack;
132  }
133
134  /// \brief Set the bit that describes whether this expression
135  /// contains an unexpanded parameter pack.
136  void setContainsUnexpandedParameterPack(bool PP = true) {
137    ExprBits.ContainsUnexpandedParameterPack = PP;
138  }
139
140  /// getExprLoc - Return the preferred location for the arrow when diagnosing
141  /// a problem with a generic expression.
142  SourceLocation getExprLoc() const;
143
144  /// isUnusedResultAWarning - Return true if this immediate expression should
145  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
146  /// with location to warn on and the source range[s] to report with the
147  /// warning.
148  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
149                              SourceRange &R2, ASTContext &Ctx) const;
150
151  /// isLValue - True if this expression is an "l-value" according to
152  /// the rules of the current language.  C and C++ give somewhat
153  /// different rules for this concept, but in general, the result of
154  /// an l-value expression identifies a specific object whereas the
155  /// result of an r-value expression is a value detached from any
156  /// specific storage.
157  ///
158  /// C++0x divides the concept of "r-value" into pure r-values
159  /// ("pr-values") and so-called expiring values ("x-values"), which
160  /// identify specific objects that can be safely cannibalized for
161  /// their resources.  This is an unfortunate abuse of terminology on
162  /// the part of the C++ committee.  In Clang, when we say "r-value",
163  /// we generally mean a pr-value.
164  bool isLValue() const { return getValueKind() == VK_LValue; }
165  bool isRValue() const { return getValueKind() == VK_RValue; }
166  bool isXValue() const { return getValueKind() == VK_XValue; }
167  bool isGLValue() const { return getValueKind() != VK_RValue; }
168
169  enum LValueClassification {
170    LV_Valid,
171    LV_NotObjectType,
172    LV_IncompleteVoidType,
173    LV_DuplicateVectorComponents,
174    LV_InvalidExpression,
175    LV_MemberFunction,
176    LV_SubObjCPropertySetting,
177    LV_ClassTemporary
178  };
179  /// Reasons why an expression might not be an l-value.
180  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
181
182  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
183  /// does not have an incomplete type, does not have a const-qualified type,
184  /// and if it is a structure or union, does not have any member (including,
185  /// recursively, any member or element of all contained aggregates or unions)
186  /// with a const-qualified type.
187  ///
188  /// \param Loc [in] [out] - A source location which *may* be filled
189  /// in with the location of the expression making this a
190  /// non-modifiable lvalue, if specified.
191  enum isModifiableLvalueResult {
192    MLV_Valid,
193    MLV_NotObjectType,
194    MLV_IncompleteVoidType,
195    MLV_DuplicateVectorComponents,
196    MLV_InvalidExpression,
197    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
198    MLV_IncompleteType,
199    MLV_ConstQualified,
200    MLV_ArrayType,
201    MLV_NotBlockQualified,
202    MLV_ReadonlyProperty,
203    MLV_NoSetterProperty,
204    MLV_MemberFunction,
205    MLV_SubObjCPropertySetting,
206    MLV_ClassTemporary
207  };
208  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
209                                              SourceLocation *Loc = 0) const;
210
211  /// \brief The return type of classify(). Represents the C++0x expression
212  ///        taxonomy.
213  class Classification {
214  public:
215    /// \brief The various classification results. Most of these mean prvalue.
216    enum Kinds {
217      CL_LValue,
218      CL_XValue,
219      CL_Function, // Functions cannot be lvalues in C.
220      CL_Void, // Void cannot be an lvalue in C.
221      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
222      CL_MemberFunction, // An expression referring to a member function
223      CL_SubObjCPropertySetting,
224      CL_ClassTemporary, // A prvalue of class type
225      CL_PRValue // A prvalue for any other reason, of any other type
226    };
227    /// \brief The results of modification testing.
228    enum ModifiableType {
229      CM_Untested, // testModifiable was false.
230      CM_Modifiable,
231      CM_RValue, // Not modifiable because it's an rvalue
232      CM_Function, // Not modifiable because it's a function; C++ only
233      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
234      CM_NotBlockQualified, // Not captured in the closure
235      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
236      CM_ConstQualified,
237      CM_ArrayType,
238      CM_IncompleteType
239    };
240
241  private:
242    friend class Expr;
243
244    unsigned short Kind;
245    unsigned short Modifiable;
246
247    explicit Classification(Kinds k, ModifiableType m)
248      : Kind(k), Modifiable(m)
249    {}
250
251  public:
252    Classification() {}
253
254    Kinds getKind() const { return static_cast<Kinds>(Kind); }
255    ModifiableType getModifiable() const {
256      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
257      return static_cast<ModifiableType>(Modifiable);
258    }
259    bool isLValue() const { return Kind == CL_LValue; }
260    bool isXValue() const { return Kind == CL_XValue; }
261    bool isGLValue() const { return Kind <= CL_XValue; }
262    bool isPRValue() const { return Kind >= CL_Function; }
263    bool isRValue() const { return Kind >= CL_XValue; }
264    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
265
266    /// \brief Create a simple, modifiably lvalue
267    static Classification makeSimpleLValue() {
268      return Classification(CL_LValue, CM_Modifiable);
269    }
270
271  };
272  /// \brief Classify - Classify this expression according to the C++0x
273  ///        expression taxonomy.
274  ///
275  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
276  /// old lvalue vs rvalue. This function determines the type of expression this
277  /// is. There are three expression types:
278  /// - lvalues are classical lvalues as in C++03.
279  /// - prvalues are equivalent to rvalues in C++03.
280  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
281  ///   function returning an rvalue reference.
282  /// lvalues and xvalues are collectively referred to as glvalues, while
283  /// prvalues and xvalues together form rvalues.
284  Classification Classify(ASTContext &Ctx) const {
285    return ClassifyImpl(Ctx, 0);
286  }
287
288  /// \brief ClassifyModifiable - Classify this expression according to the
289  ///        C++0x expression taxonomy, and see if it is valid on the left side
290  ///        of an assignment.
291  ///
292  /// This function extends classify in that it also tests whether the
293  /// expression is modifiable (C99 6.3.2.1p1).
294  /// \param Loc A source location that might be filled with a relevant location
295  ///            if the expression is not modifiable.
296  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
297    return ClassifyImpl(Ctx, &Loc);
298  }
299
300  /// getValueKindForType - Given a formal return or parameter type,
301  /// give its value kind.
302  static ExprValueKind getValueKindForType(QualType T) {
303    if (const ReferenceType *RT = T->getAs<ReferenceType>())
304      return (isa<LValueReferenceType>(RT)
305                ? VK_LValue
306                : (RT->getPointeeType()->isFunctionType()
307                     ? VK_LValue : VK_XValue));
308    return VK_RValue;
309  }
310
311  /// getValueKind - The value kind that this expression produces.
312  ExprValueKind getValueKind() const {
313    return static_cast<ExprValueKind>(ExprBits.ValueKind);
314  }
315
316  /// getObjectKind - The object kind that this expression produces.
317  /// Object kinds are meaningful only for expressions that yield an
318  /// l-value or x-value.
319  ExprObjectKind getObjectKind() const {
320    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
321  }
322
323  bool isOrdinaryOrBitFieldObject() const {
324    ExprObjectKind OK = getObjectKind();
325    return (OK == OK_Ordinary || OK == OK_BitField);
326  }
327
328  /// setValueKind - Set the value kind produced by this expression.
329  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
330
331  /// setObjectKind - Set the object kind produced by this expression.
332  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
333
334private:
335  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
336
337public:
338
339  /// \brief If this expression refers to a bit-field, retrieve the
340  /// declaration of that bit-field.
341  FieldDecl *getBitField();
342
343  const FieldDecl *getBitField() const {
344    return const_cast<Expr*>(this)->getBitField();
345  }
346
347  /// \brief If this expression is an l-value for an Objective C
348  /// property, find the underlying property reference expression.
349  const ObjCPropertyRefExpr *getObjCProperty() const;
350
351  /// \brief Returns whether this expression refers to a vector element.
352  bool refersToVectorElement() const;
353
354  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
355  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
356  /// but also int expressions which are produced by things like comparisons in
357  /// C.
358  bool isKnownToHaveBooleanValue() const;
359
360  /// isIntegerConstantExpr - Return true if this expression is a valid integer
361  /// constant expression, and, if so, return its value in Result.  If not a
362  /// valid i-c-e, return false and fill in Loc (if specified) with the location
363  /// of the invalid expression.
364  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
365                             SourceLocation *Loc = 0,
366                             bool isEvaluated = true) const;
367  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
368    llvm::APSInt X;
369    return isIntegerConstantExpr(X, Ctx, Loc);
370  }
371  /// isConstantInitializer - Returns true if this expression is a constant
372  /// initializer, which can be emitted at compile-time.
373  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
374
375  /// EvalResult is a struct with detailed info about an evaluated expression.
376  struct EvalResult {
377    /// Val - This is the value the expression can be folded to.
378    APValue Val;
379
380    /// HasSideEffects - Whether the evaluated expression has side effects.
381    /// For example, (f() && 0) can be folded, but it still has side effects.
382    bool HasSideEffects;
383
384    /// Diag - If the expression is unfoldable, then Diag contains a note
385    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
386    /// position for the error, and DiagExpr is the expression that caused
387    /// the error.
388    /// If the expression is foldable, but not an integer constant expression,
389    /// Diag contains a note diagnostic that describes why it isn't an integer
390    /// constant expression. If the expression *is* an integer constant
391    /// expression, then Diag will be zero.
392    unsigned Diag;
393    const Expr *DiagExpr;
394    SourceLocation DiagLoc;
395
396    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
397
398    // isGlobalLValue - Return true if the evaluated lvalue expression
399    // is global.
400    bool isGlobalLValue() const;
401    // hasSideEffects - Return true if the evaluated expression has
402    // side effects.
403    bool hasSideEffects() const {
404      return HasSideEffects;
405    }
406  };
407
408  /// Evaluate - Return true if this is a constant which we can fold using
409  /// any crazy technique (that has nothing to do with language standards) that
410  /// we want to.  If this function returns true, it returns the folded constant
411  /// in Result.
412  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
413
414  /// EvaluateAsBooleanCondition - Return true if this is a constant
415  /// which we we can fold and convert to a boolean condition using
416  /// any crazy technique that we want to.
417  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
418
419  /// isEvaluatable - Call Evaluate to see if this expression can be constant
420  /// folded, but discard the result.
421  bool isEvaluatable(const ASTContext &Ctx) const;
422
423  /// HasSideEffects - This routine returns true for all those expressions
424  /// which must be evaluated each time and must not be optimized away
425  /// or evaluated at compile time. Example is a function call, volatile
426  /// variable read.
427  bool HasSideEffects(const ASTContext &Ctx) const;
428
429  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
430  /// must be called on an expression that constant folds to an integer.
431  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
432
433  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
434  /// with link time known address.
435  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
436
437  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
438  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
439
440  /// \brief Enumeration used to describe the kind of Null pointer constant
441  /// returned from \c isNullPointerConstant().
442  enum NullPointerConstantKind {
443    /// \brief Expression is not a Null pointer constant.
444    NPCK_NotNull = 0,
445
446    /// \brief Expression is a Null pointer constant built from a zero integer.
447    NPCK_ZeroInteger,
448
449    /// \brief Expression is a C++0X nullptr.
450    NPCK_CXX0X_nullptr,
451
452    /// \brief Expression is a GNU-style __null constant.
453    NPCK_GNUNull
454  };
455
456  /// \brief Enumeration used to describe how \c isNullPointerConstant()
457  /// should cope with value-dependent expressions.
458  enum NullPointerConstantValueDependence {
459    /// \brief Specifies that the expression should never be value-dependent.
460    NPC_NeverValueDependent = 0,
461
462    /// \brief Specifies that a value-dependent expression of integral or
463    /// dependent type should be considered a null pointer constant.
464    NPC_ValueDependentIsNull,
465
466    /// \brief Specifies that a value-dependent expression should be considered
467    /// to never be a null pointer constant.
468    NPC_ValueDependentIsNotNull
469  };
470
471  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
472  /// a Null pointer constant. The return value can further distinguish the
473  /// kind of NULL pointer constant that was detected.
474  NullPointerConstantKind isNullPointerConstant(
475      ASTContext &Ctx,
476      NullPointerConstantValueDependence NPC) const;
477
478  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
479  /// write barrier.
480  bool isOBJCGCCandidate(ASTContext &Ctx) const;
481
482  /// \brief Returns true if this expression is a bound member function.
483  bool isBoundMemberFunction(ASTContext &Ctx) const;
484
485  /// \brief Result type of CanThrow().
486  enum CanThrowResult {
487    CT_Cannot,
488    CT_Dependent,
489    CT_Can
490  };
491  /// \brief Test if this expression, if evaluated, might throw, according to
492  ///        the rules of C++ [expr.unary.noexcept].
493  CanThrowResult CanThrow(ASTContext &C) const;
494
495  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
496  ///  its subexpression.  If that subexpression is also a ParenExpr,
497  ///  then this method recursively returns its subexpression, and so forth.
498  ///  Otherwise, the method returns the current Expr.
499  Expr *IgnoreParens();
500
501  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
502  /// or CastExprs, returning their operand.
503  Expr *IgnoreParenCasts();
504
505  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
506  /// ParenExpr or ImplicitCastExprs, returning their operand.
507  Expr *IgnoreParenImpCasts();
508
509  const Expr *IgnoreParenImpCasts() const {
510    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
511  }
512
513  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
514  /// CastExprs that represent lvalue casts, returning their operand.
515  Expr *IgnoreParenLValueCasts();
516
517  const Expr *IgnoreParenLValueCasts() const {
518    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
519  }
520
521  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
522  /// value (including ptr->int casts of the same size).  Strip off any
523  /// ParenExpr or CastExprs, returning their operand.
524  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
525
526  /// \brief Determine whether this expression is a default function argument.
527  ///
528  /// Default arguments are implicitly generated in the abstract syntax tree
529  /// by semantic analysis for function calls, object constructions, etc. in
530  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
531  /// this routine also looks through any implicit casts to determine whether
532  /// the expression is a default argument.
533  bool isDefaultArgument() const;
534
535  /// \brief Determine whether the result of this expression is a
536  /// temporary object of the given class type.
537  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
538
539  const Expr *IgnoreParens() const {
540    return const_cast<Expr*>(this)->IgnoreParens();
541  }
542  const Expr *IgnoreParenCasts() const {
543    return const_cast<Expr*>(this)->IgnoreParenCasts();
544  }
545  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
546    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
547  }
548
549  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
550  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
551
552  static bool classof(const Stmt *T) {
553    return T->getStmtClass() >= firstExprConstant &&
554           T->getStmtClass() <= lastExprConstant;
555  }
556  static bool classof(const Expr *) { return true; }
557};
558
559
560//===----------------------------------------------------------------------===//
561// Primary Expressions.
562//===----------------------------------------------------------------------===//
563
564/// OpaqueValueExpr - An expression referring to an opaque object of a
565/// fixed type and value class.  These don't correspond to concrete
566/// syntax; instead they're used to express operations (usually copy
567/// operations) on values whose source is generally obvious from
568/// context.
569class OpaqueValueExpr : public Expr {
570  friend class ASTStmtReader;
571  Expr *SourceExpr;
572  SourceLocation Loc;
573
574public:
575  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
576                  ExprObjectKind OK = OK_Ordinary)
577    : Expr(OpaqueValueExprClass, T, VK, OK,
578           T->isDependentType(), T->isDependentType(), false),
579      SourceExpr(0), Loc(Loc) {
580  }
581
582  /// Given an expression which invokes a copy constructor --- i.e.  a
583  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
584  /// find the OpaqueValueExpr that's the source of the construction.
585  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
586
587  explicit OpaqueValueExpr(EmptyShell Empty)
588    : Expr(OpaqueValueExprClass, Empty) { }
589
590  /// \brief Retrieve the location of this expression.
591  SourceLocation getLocation() const { return Loc; }
592
593  SourceRange getSourceRange() const {
594    if (SourceExpr) return SourceExpr->getSourceRange();
595    return Loc;
596  }
597  SourceLocation getExprLoc() const {
598    if (SourceExpr) return SourceExpr->getExprLoc();
599    return Loc;
600  }
601
602  child_range children() { return child_range(); }
603
604  /// The source expression of an opaque value expression is the
605  /// expression which originally generated the value.  This is
606  /// provided as a convenience for analyses that don't wish to
607  /// precisely model the execution behavior of the program.
608  ///
609  /// The source expression is typically set when building the
610  /// expression which binds the opaque value expression in the first
611  /// place.
612  Expr *getSourceExpr() const { return SourceExpr; }
613  void setSourceExpr(Expr *e) { SourceExpr = e; }
614
615  static bool classof(const Stmt *T) {
616    return T->getStmtClass() == OpaqueValueExprClass;
617  }
618  static bool classof(const OpaqueValueExpr *) { return true; }
619};
620
621/// \brief Represents the qualifier that may precede a C++ name, e.g., the
622/// "std::" in "std::sort".
623struct NameQualifier {
624  /// \brief The nested name specifier.
625  NestedNameSpecifier *NNS;
626
627  /// \brief The source range covered by the nested name specifier.
628  SourceRange Range;
629};
630
631/// \brief Represents an explicit template argument list in C++, e.g.,
632/// the "<int>" in "sort<int>".
633struct ExplicitTemplateArgumentList {
634  /// \brief The source location of the left angle bracket ('<');
635  SourceLocation LAngleLoc;
636
637  /// \brief The source location of the right angle bracket ('>');
638  SourceLocation RAngleLoc;
639
640  /// \brief The number of template arguments in TemplateArgs.
641  /// The actual template arguments (if any) are stored after the
642  /// ExplicitTemplateArgumentList structure.
643  unsigned NumTemplateArgs;
644
645  /// \brief Retrieve the template arguments
646  TemplateArgumentLoc *getTemplateArgs() {
647    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
648  }
649
650  /// \brief Retrieve the template arguments
651  const TemplateArgumentLoc *getTemplateArgs() const {
652    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
653  }
654
655  void initializeFrom(const TemplateArgumentListInfo &List);
656  void initializeFrom(const TemplateArgumentListInfo &List,
657                      bool &Dependent, bool &ContainsUnexpandedParameterPack);
658  void copyInto(TemplateArgumentListInfo &List) const;
659  static std::size_t sizeFor(unsigned NumTemplateArgs);
660  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
661};
662
663/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
664/// enum, etc.
665class DeclRefExpr : public Expr {
666  enum {
667    // Flag on DecoratedD that specifies when this declaration reference
668    // expression has a C++ nested-name-specifier.
669    HasQualifierFlag = 0x01,
670    // Flag on DecoratedD that specifies when this declaration reference
671    // expression has an explicit C++ template argument list.
672    HasExplicitTemplateArgumentListFlag = 0x02
673  };
674
675  // DecoratedD - The declaration that we are referencing, plus two bits to
676  // indicate whether (1) the declaration's name was explicitly qualified and
677  // (2) the declaration's name was followed by an explicit template
678  // argument list.
679  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
680
681  // Loc - The location of the declaration name itself.
682  SourceLocation Loc;
683
684  /// DNLoc - Provides source/type location info for the
685  /// declaration name embedded in DecoratedD.
686  DeclarationNameLoc DNLoc;
687
688  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
689  NameQualifier *getNameQualifier() {
690    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
691      return 0;
692
693    return reinterpret_cast<NameQualifier *> (this + 1);
694  }
695
696  /// \brief Retrieve the qualifier that preceded the member name, if any.
697  const NameQualifier *getNameQualifier() const {
698    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
699  }
700
701  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
702              ValueDecl *D, SourceLocation NameLoc,
703              const TemplateArgumentListInfo *TemplateArgs,
704              QualType T, ExprValueKind VK);
705
706  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
707              ValueDecl *D, const DeclarationNameInfo &NameInfo,
708              const TemplateArgumentListInfo *TemplateArgs,
709              QualType T, ExprValueKind VK);
710
711  /// \brief Construct an empty declaration reference expression.
712  explicit DeclRefExpr(EmptyShell Empty)
713    : Expr(DeclRefExprClass, Empty) { }
714
715  /// \brief Computes the type- and value-dependence flags for this
716  /// declaration reference expression.
717  void computeDependence();
718
719public:
720  DeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK, SourceLocation l) :
721    Expr(DeclRefExprClass, t, VK, OK_Ordinary, false, false, false),
722    DecoratedD(d, 0), Loc(l) {
723    computeDependence();
724  }
725
726  static DeclRefExpr *Create(ASTContext &Context,
727                             NestedNameSpecifier *Qualifier,
728                             SourceRange QualifierRange,
729                             ValueDecl *D,
730                             SourceLocation NameLoc,
731                             QualType T, ExprValueKind VK,
732                             const TemplateArgumentListInfo *TemplateArgs = 0);
733
734  static DeclRefExpr *Create(ASTContext &Context,
735                             NestedNameSpecifier *Qualifier,
736                             SourceRange QualifierRange,
737                             ValueDecl *D,
738                             const DeclarationNameInfo &NameInfo,
739                             QualType T, ExprValueKind VK,
740                             const TemplateArgumentListInfo *TemplateArgs = 0);
741
742  /// \brief Construct an empty declaration reference expression.
743  static DeclRefExpr *CreateEmpty(ASTContext &Context,
744                                  bool HasQualifier,
745                                  bool HasExplicitTemplateArgs,
746                                  unsigned NumTemplateArgs);
747
748  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
749  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
750  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
751
752  DeclarationNameInfo getNameInfo() const {
753    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
754  }
755
756  SourceLocation getLocation() const { return Loc; }
757  void setLocation(SourceLocation L) { Loc = L; }
758  SourceRange getSourceRange() const;
759
760  /// \brief Determine whether this declaration reference was preceded by a
761  /// C++ nested-name-specifier, e.g., \c N::foo.
762  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
763
764  /// \brief If the name was qualified, retrieves the source range of
765  /// the nested-name-specifier that precedes the name. Otherwise,
766  /// returns an empty source range.
767  SourceRange getQualifierRange() const {
768    if (!hasQualifier())
769      return SourceRange();
770
771    return getNameQualifier()->Range;
772  }
773
774  /// \brief If the name was qualified, retrieves the nested-name-specifier
775  /// that precedes the name. Otherwise, returns NULL.
776  NestedNameSpecifier *getQualifier() const {
777    if (!hasQualifier())
778      return 0;
779
780    return getNameQualifier()->NNS;
781  }
782
783  bool hasExplicitTemplateArgs() const {
784    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
785  }
786
787  /// \brief Retrieve the explicit template argument list that followed the
788  /// member template name.
789  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
790    assert(hasExplicitTemplateArgs());
791
792    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
793      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
794
795    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
796                                                      getNameQualifier() + 1);
797  }
798
799  /// \brief Retrieve the explicit template argument list that followed the
800  /// member template name.
801  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
802    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
803  }
804
805  /// \brief Retrieves the optional explicit template arguments.
806  /// This points to the same data as getExplicitTemplateArgs(), but
807  /// returns null if there are no explicit template arguments.
808  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
809    if (!hasExplicitTemplateArgs()) return 0;
810    return &getExplicitTemplateArgs();
811  }
812
813  /// \brief Copies the template arguments (if present) into the given
814  /// structure.
815  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
816    if (hasExplicitTemplateArgs())
817      getExplicitTemplateArgs().copyInto(List);
818  }
819
820  /// \brief Retrieve the location of the left angle bracket following the
821  /// member name ('<'), if any.
822  SourceLocation getLAngleLoc() const {
823    if (!hasExplicitTemplateArgs())
824      return SourceLocation();
825
826    return getExplicitTemplateArgs().LAngleLoc;
827  }
828
829  /// \brief Retrieve the template arguments provided as part of this
830  /// template-id.
831  const TemplateArgumentLoc *getTemplateArgs() const {
832    if (!hasExplicitTemplateArgs())
833      return 0;
834
835    return getExplicitTemplateArgs().getTemplateArgs();
836  }
837
838  /// \brief Retrieve the number of template arguments provided as part of this
839  /// template-id.
840  unsigned getNumTemplateArgs() const {
841    if (!hasExplicitTemplateArgs())
842      return 0;
843
844    return getExplicitTemplateArgs().NumTemplateArgs;
845  }
846
847  /// \brief Retrieve the location of the right angle bracket following the
848  /// template arguments ('>').
849  SourceLocation getRAngleLoc() const {
850    if (!hasExplicitTemplateArgs())
851      return SourceLocation();
852
853    return getExplicitTemplateArgs().RAngleLoc;
854  }
855
856  static bool classof(const Stmt *T) {
857    return T->getStmtClass() == DeclRefExprClass;
858  }
859  static bool classof(const DeclRefExpr *) { return true; }
860
861  // Iterators
862  child_range children() { return child_range(); }
863
864  friend class ASTStmtReader;
865  friend class ASTStmtWriter;
866};
867
868/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
869class PredefinedExpr : public Expr {
870public:
871  enum IdentType {
872    Func,
873    Function,
874    PrettyFunction,
875    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
876    /// 'virtual' keyword is omitted for virtual member functions.
877    PrettyFunctionNoVirtual
878  };
879
880private:
881  SourceLocation Loc;
882  IdentType Type;
883public:
884  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
885    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
886           type->isDependentType(), type->isDependentType(),
887           /*ContainsUnexpandedParameterPack=*/false),
888      Loc(l), Type(IT) {}
889
890  /// \brief Construct an empty predefined expression.
891  explicit PredefinedExpr(EmptyShell Empty)
892    : Expr(PredefinedExprClass, Empty) { }
893
894  IdentType getIdentType() const { return Type; }
895  void setIdentType(IdentType IT) { Type = IT; }
896
897  SourceLocation getLocation() const { return Loc; }
898  void setLocation(SourceLocation L) { Loc = L; }
899
900  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
901
902  SourceRange getSourceRange() const { return SourceRange(Loc); }
903
904  static bool classof(const Stmt *T) {
905    return T->getStmtClass() == PredefinedExprClass;
906  }
907  static bool classof(const PredefinedExpr *) { return true; }
908
909  // Iterators
910  child_range children() { return child_range(); }
911};
912
913/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
914/// leaking memory.
915///
916/// For large floats/integers, APFloat/APInt will allocate memory from the heap
917/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
918/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
919/// the APFloat/APInt values will never get freed. APNumericStorage uses
920/// ASTContext's allocator for memory allocation.
921class APNumericStorage {
922  unsigned BitWidth;
923  union {
924    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
925    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
926  };
927
928  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
929
930  APNumericStorage(const APNumericStorage&); // do not implement
931  APNumericStorage& operator=(const APNumericStorage&); // do not implement
932
933protected:
934  APNumericStorage() : BitWidth(0), VAL(0) { }
935
936  llvm::APInt getIntValue() const {
937    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
938    if (NumWords > 1)
939      return llvm::APInt(BitWidth, NumWords, pVal);
940    else
941      return llvm::APInt(BitWidth, VAL);
942  }
943  void setIntValue(ASTContext &C, const llvm::APInt &Val);
944};
945
946class APIntStorage : public APNumericStorage {
947public:
948  llvm::APInt getValue() const { return getIntValue(); }
949  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
950};
951
952class APFloatStorage : public APNumericStorage {
953public:
954  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
955  void setValue(ASTContext &C, const llvm::APFloat &Val) {
956    setIntValue(C, Val.bitcastToAPInt());
957  }
958};
959
960class IntegerLiteral : public Expr {
961  APIntStorage Num;
962  SourceLocation Loc;
963
964  /// \brief Construct an empty integer literal.
965  explicit IntegerLiteral(EmptyShell Empty)
966    : Expr(IntegerLiteralClass, Empty) { }
967
968public:
969  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
970  // or UnsignedLongLongTy
971  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
972                 QualType type, SourceLocation l)
973    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
974           false),
975      Loc(l) {
976    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
977    setValue(C, V);
978  }
979
980  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
981  // or UnsignedLongLongTy
982  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
983                                QualType type, SourceLocation l);
984  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
985
986  llvm::APInt getValue() const { return Num.getValue(); }
987  SourceRange getSourceRange() const { return SourceRange(Loc); }
988
989  /// \brief Retrieve the location of the literal.
990  SourceLocation getLocation() const { return Loc; }
991
992  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
993  void setLocation(SourceLocation Location) { Loc = Location; }
994
995  static bool classof(const Stmt *T) {
996    return T->getStmtClass() == IntegerLiteralClass;
997  }
998  static bool classof(const IntegerLiteral *) { return true; }
999
1000  // Iterators
1001  child_range children() { return child_range(); }
1002};
1003
1004class CharacterLiteral : public Expr {
1005  unsigned Value;
1006  SourceLocation Loc;
1007  bool IsWide;
1008public:
1009  // type should be IntTy
1010  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
1011    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1012           false),
1013      Value(value), Loc(l), IsWide(iswide) {
1014  }
1015
1016  /// \brief Construct an empty character literal.
1017  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1018
1019  SourceLocation getLocation() const { return Loc; }
1020  bool isWide() const { return IsWide; }
1021
1022  SourceRange getSourceRange() const { return SourceRange(Loc); }
1023
1024  unsigned getValue() const { return Value; }
1025
1026  void setLocation(SourceLocation Location) { Loc = Location; }
1027  void setWide(bool W) { IsWide = W; }
1028  void setValue(unsigned Val) { Value = Val; }
1029
1030  static bool classof(const Stmt *T) {
1031    return T->getStmtClass() == CharacterLiteralClass;
1032  }
1033  static bool classof(const CharacterLiteral *) { return true; }
1034
1035  // Iterators
1036  child_range children() { return child_range(); }
1037};
1038
1039class FloatingLiteral : public Expr {
1040  APFloatStorage Num;
1041  bool IsExact : 1;
1042  SourceLocation Loc;
1043
1044  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1045                  QualType Type, SourceLocation L)
1046    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1047           false),
1048      IsExact(isexact), Loc(L) {
1049    setValue(C, V);
1050  }
1051
1052  /// \brief Construct an empty floating-point literal.
1053  explicit FloatingLiteral(EmptyShell Empty)
1054    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1055
1056public:
1057  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1058                                 bool isexact, QualType Type, SourceLocation L);
1059  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1060
1061  llvm::APFloat getValue() const { return Num.getValue(); }
1062  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1063    Num.setValue(C, Val);
1064  }
1065
1066  bool isExact() const { return IsExact; }
1067  void setExact(bool E) { IsExact = E; }
1068
1069  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1070  /// double.  Note that this may cause loss of precision, but is useful for
1071  /// debugging dumps, etc.
1072  double getValueAsApproximateDouble() const;
1073
1074  SourceLocation getLocation() const { return Loc; }
1075  void setLocation(SourceLocation L) { Loc = L; }
1076
1077  SourceRange getSourceRange() const { return SourceRange(Loc); }
1078
1079  static bool classof(const Stmt *T) {
1080    return T->getStmtClass() == FloatingLiteralClass;
1081  }
1082  static bool classof(const FloatingLiteral *) { return true; }
1083
1084  // Iterators
1085  child_range children() { return child_range(); }
1086};
1087
1088/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1089/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1090/// IntegerLiteral classes.  Instances of this class always have a Complex type
1091/// whose element type matches the subexpression.
1092///
1093class ImaginaryLiteral : public Expr {
1094  Stmt *Val;
1095public:
1096  ImaginaryLiteral(Expr *val, QualType Ty)
1097    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1098           false),
1099      Val(val) {}
1100
1101  /// \brief Build an empty imaginary literal.
1102  explicit ImaginaryLiteral(EmptyShell Empty)
1103    : Expr(ImaginaryLiteralClass, Empty) { }
1104
1105  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1106  Expr *getSubExpr() { return cast<Expr>(Val); }
1107  void setSubExpr(Expr *E) { Val = E; }
1108
1109  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1110  static bool classof(const Stmt *T) {
1111    return T->getStmtClass() == ImaginaryLiteralClass;
1112  }
1113  static bool classof(const ImaginaryLiteral *) { return true; }
1114
1115  // Iterators
1116  child_range children() { return child_range(&Val, &Val+1); }
1117};
1118
1119/// StringLiteral - This represents a string literal expression, e.g. "foo"
1120/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1121/// is NOT null-terminated, and the length of the string is determined by
1122/// calling getByteLength().  The C type for a string is always a
1123/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1124/// not.
1125///
1126/// Note that strings in C can be formed by concatenation of multiple string
1127/// literal pptokens in translation phase #6.  This keeps track of the locations
1128/// of each of these pieces.
1129///
1130/// Strings in C can also be truncated and extended by assigning into arrays,
1131/// e.g. with constructs like:
1132///   char X[2] = "foobar";
1133/// In this case, getByteLength() will return 6, but the string literal will
1134/// have type "char[2]".
1135class StringLiteral : public Expr {
1136  const char *StrData;
1137  unsigned ByteLength;
1138  bool IsWide;
1139  unsigned NumConcatenated;
1140  SourceLocation TokLocs[1];
1141
1142  StringLiteral(QualType Ty) :
1143    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false) {}
1144
1145public:
1146  /// This is the "fully general" constructor that allows representation of
1147  /// strings formed from multiple concatenated tokens.
1148  static StringLiteral *Create(ASTContext &C, const char *StrData,
1149                               unsigned ByteLength, bool Wide, QualType Ty,
1150                               const SourceLocation *Loc, unsigned NumStrs);
1151
1152  /// Simple constructor for string literals made from one token.
1153  static StringLiteral *Create(ASTContext &C, const char *StrData,
1154                               unsigned ByteLength,
1155                               bool Wide, QualType Ty, SourceLocation Loc) {
1156    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1157  }
1158
1159  /// \brief Construct an empty string literal.
1160  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1161
1162  llvm::StringRef getString() const {
1163    return llvm::StringRef(StrData, ByteLength);
1164  }
1165
1166  unsigned getByteLength() const { return ByteLength; }
1167
1168  /// \brief Sets the string data to the given string data.
1169  void setString(ASTContext &C, llvm::StringRef Str);
1170
1171  bool isWide() const { return IsWide; }
1172  void setWide(bool W) { IsWide = W; }
1173
1174  bool containsNonAsciiOrNull() const {
1175    llvm::StringRef Str = getString();
1176    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1177      if (!isascii(Str[i]) || !Str[i])
1178        return true;
1179    return false;
1180  }
1181  /// getNumConcatenated - Get the number of string literal tokens that were
1182  /// concatenated in translation phase #6 to form this string literal.
1183  unsigned getNumConcatenated() const { return NumConcatenated; }
1184
1185  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1186    assert(TokNum < NumConcatenated && "Invalid tok number");
1187    return TokLocs[TokNum];
1188  }
1189  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1190    assert(TokNum < NumConcatenated && "Invalid tok number");
1191    TokLocs[TokNum] = L;
1192  }
1193
1194  /// getLocationOfByte - Return a source location that points to the specified
1195  /// byte of this string literal.
1196  ///
1197  /// Strings are amazingly complex.  They can be formed from multiple tokens
1198  /// and can have escape sequences in them in addition to the usual trigraph
1199  /// and escaped newline business.  This routine handles this complexity.
1200  ///
1201  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1202                                   const LangOptions &Features,
1203                                   const TargetInfo &Target) const;
1204
1205  typedef const SourceLocation *tokloc_iterator;
1206  tokloc_iterator tokloc_begin() const { return TokLocs; }
1207  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1208
1209  SourceRange getSourceRange() const {
1210    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1211  }
1212  static bool classof(const Stmt *T) {
1213    return T->getStmtClass() == StringLiteralClass;
1214  }
1215  static bool classof(const StringLiteral *) { return true; }
1216
1217  // Iterators
1218  child_range children() { return child_range(); }
1219};
1220
1221/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1222/// AST node is only formed if full location information is requested.
1223class ParenExpr : public Expr {
1224  SourceLocation L, R;
1225  Stmt *Val;
1226public:
1227  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1228    : Expr(ParenExprClass, val->getType(),
1229           val->getValueKind(), val->getObjectKind(),
1230           val->isTypeDependent(), val->isValueDependent(),
1231           val->containsUnexpandedParameterPack()),
1232      L(l), R(r), Val(val) {}
1233
1234  /// \brief Construct an empty parenthesized expression.
1235  explicit ParenExpr(EmptyShell Empty)
1236    : Expr(ParenExprClass, Empty) { }
1237
1238  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1239  Expr *getSubExpr() { return cast<Expr>(Val); }
1240  void setSubExpr(Expr *E) { Val = E; }
1241
1242  SourceRange getSourceRange() const { return SourceRange(L, R); }
1243
1244  /// \brief Get the location of the left parentheses '('.
1245  SourceLocation getLParen() const { return L; }
1246  void setLParen(SourceLocation Loc) { L = Loc; }
1247
1248  /// \brief Get the location of the right parentheses ')'.
1249  SourceLocation getRParen() const { return R; }
1250  void setRParen(SourceLocation Loc) { R = Loc; }
1251
1252  static bool classof(const Stmt *T) {
1253    return T->getStmtClass() == ParenExprClass;
1254  }
1255  static bool classof(const ParenExpr *) { return true; }
1256
1257  // Iterators
1258  child_range children() { return child_range(&Val, &Val+1); }
1259};
1260
1261
1262/// UnaryOperator - This represents the unary-expression's (except sizeof and
1263/// alignof), the postinc/postdec operators from postfix-expression, and various
1264/// extensions.
1265///
1266/// Notes on various nodes:
1267///
1268/// Real/Imag - These return the real/imag part of a complex operand.  If
1269///   applied to a non-complex value, the former returns its operand and the
1270///   later returns zero in the type of the operand.
1271///
1272class UnaryOperator : public Expr {
1273public:
1274  typedef UnaryOperatorKind Opcode;
1275
1276private:
1277  unsigned Opc : 5;
1278  SourceLocation Loc;
1279  Stmt *Val;
1280public:
1281
1282  UnaryOperator(Expr *input, Opcode opc, QualType type,
1283                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1284    : Expr(UnaryOperatorClass, type, VK, OK,
1285           input->isTypeDependent() || type->isDependentType(),
1286           input->isValueDependent(),
1287           input->containsUnexpandedParameterPack()),
1288      Opc(opc), Loc(l), Val(input) {}
1289
1290  /// \brief Build an empty unary operator.
1291  explicit UnaryOperator(EmptyShell Empty)
1292    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1293
1294  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1295  void setOpcode(Opcode O) { Opc = O; }
1296
1297  Expr *getSubExpr() const { return cast<Expr>(Val); }
1298  void setSubExpr(Expr *E) { Val = E; }
1299
1300  /// getOperatorLoc - Return the location of the operator.
1301  SourceLocation getOperatorLoc() const { return Loc; }
1302  void setOperatorLoc(SourceLocation L) { Loc = L; }
1303
1304  /// isPostfix - Return true if this is a postfix operation, like x++.
1305  static bool isPostfix(Opcode Op) {
1306    return Op == UO_PostInc || Op == UO_PostDec;
1307  }
1308
1309  /// isPrefix - Return true if this is a prefix operation, like --x.
1310  static bool isPrefix(Opcode Op) {
1311    return Op == UO_PreInc || Op == UO_PreDec;
1312  }
1313
1314  bool isPrefix() const { return isPrefix(getOpcode()); }
1315  bool isPostfix() const { return isPostfix(getOpcode()); }
1316  bool isIncrementOp() const {
1317    return Opc == UO_PreInc || Opc == UO_PostInc;
1318  }
1319  bool isIncrementDecrementOp() const {
1320    return Opc <= UO_PreDec;
1321  }
1322  static bool isArithmeticOp(Opcode Op) {
1323    return Op >= UO_Plus && Op <= UO_LNot;
1324  }
1325  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1326
1327  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1328  /// corresponds to, e.g. "sizeof" or "[pre]++"
1329  static const char *getOpcodeStr(Opcode Op);
1330
1331  /// \brief Retrieve the unary opcode that corresponds to the given
1332  /// overloaded operator.
1333  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1334
1335  /// \brief Retrieve the overloaded operator kind that corresponds to
1336  /// the given unary opcode.
1337  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1338
1339  SourceRange getSourceRange() const {
1340    if (isPostfix())
1341      return SourceRange(Val->getLocStart(), Loc);
1342    else
1343      return SourceRange(Loc, Val->getLocEnd());
1344  }
1345  SourceLocation getExprLoc() const { return Loc; }
1346
1347  static bool classof(const Stmt *T) {
1348    return T->getStmtClass() == UnaryOperatorClass;
1349  }
1350  static bool classof(const UnaryOperator *) { return true; }
1351
1352  // Iterators
1353  child_range children() { return child_range(&Val, &Val+1); }
1354};
1355
1356/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1357/// offsetof(record-type, member-designator). For example, given:
1358/// @code
1359/// struct S {
1360///   float f;
1361///   double d;
1362/// };
1363/// struct T {
1364///   int i;
1365///   struct S s[10];
1366/// };
1367/// @endcode
1368/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1369
1370class OffsetOfExpr : public Expr {
1371public:
1372  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1373  class OffsetOfNode {
1374  public:
1375    /// \brief The kind of offsetof node we have.
1376    enum Kind {
1377      /// \brief An index into an array.
1378      Array = 0x00,
1379      /// \brief A field.
1380      Field = 0x01,
1381      /// \brief A field in a dependent type, known only by its name.
1382      Identifier = 0x02,
1383      /// \brief An implicit indirection through a C++ base class, when the
1384      /// field found is in a base class.
1385      Base = 0x03
1386    };
1387
1388  private:
1389    enum { MaskBits = 2, Mask = 0x03 };
1390
1391    /// \brief The source range that covers this part of the designator.
1392    SourceRange Range;
1393
1394    /// \brief The data describing the designator, which comes in three
1395    /// different forms, depending on the lower two bits.
1396    ///   - An unsigned index into the array of Expr*'s stored after this node
1397    ///     in memory, for [constant-expression] designators.
1398    ///   - A FieldDecl*, for references to a known field.
1399    ///   - An IdentifierInfo*, for references to a field with a given name
1400    ///     when the class type is dependent.
1401    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1402    ///     base class.
1403    uintptr_t Data;
1404
1405  public:
1406    /// \brief Create an offsetof node that refers to an array element.
1407    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1408                 SourceLocation RBracketLoc)
1409      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1410
1411    /// \brief Create an offsetof node that refers to a field.
1412    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1413                 SourceLocation NameLoc)
1414      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1415        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1416
1417    /// \brief Create an offsetof node that refers to an identifier.
1418    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1419                 SourceLocation NameLoc)
1420      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1421        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1422
1423    /// \brief Create an offsetof node that refers into a C++ base class.
1424    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1425      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1426
1427    /// \brief Determine what kind of offsetof node this is.
1428    Kind getKind() const {
1429      return static_cast<Kind>(Data & Mask);
1430    }
1431
1432    /// \brief For an array element node, returns the index into the array
1433    /// of expressions.
1434    unsigned getArrayExprIndex() const {
1435      assert(getKind() == Array);
1436      return Data >> 2;
1437    }
1438
1439    /// \brief For a field offsetof node, returns the field.
1440    FieldDecl *getField() const {
1441      assert(getKind() == Field);
1442      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1443    }
1444
1445    /// \brief For a field or identifier offsetof node, returns the name of
1446    /// the field.
1447    IdentifierInfo *getFieldName() const;
1448
1449    /// \brief For a base class node, returns the base specifier.
1450    CXXBaseSpecifier *getBase() const {
1451      assert(getKind() == Base);
1452      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1453    }
1454
1455    /// \brief Retrieve the source range that covers this offsetof node.
1456    ///
1457    /// For an array element node, the source range contains the locations of
1458    /// the square brackets. For a field or identifier node, the source range
1459    /// contains the location of the period (if there is one) and the
1460    /// identifier.
1461    SourceRange getRange() const { return Range; }
1462  };
1463
1464private:
1465
1466  SourceLocation OperatorLoc, RParenLoc;
1467  // Base type;
1468  TypeSourceInfo *TSInfo;
1469  // Number of sub-components (i.e. instances of OffsetOfNode).
1470  unsigned NumComps;
1471  // Number of sub-expressions (i.e. array subscript expressions).
1472  unsigned NumExprs;
1473
1474  OffsetOfExpr(ASTContext &C, QualType type,
1475               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1476               OffsetOfNode* compsPtr, unsigned numComps,
1477               Expr** exprsPtr, unsigned numExprs,
1478               SourceLocation RParenLoc);
1479
1480  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1481    : Expr(OffsetOfExprClass, EmptyShell()),
1482      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1483
1484public:
1485
1486  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1487                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1488                              OffsetOfNode* compsPtr, unsigned numComps,
1489                              Expr** exprsPtr, unsigned numExprs,
1490                              SourceLocation RParenLoc);
1491
1492  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1493                                   unsigned NumComps, unsigned NumExprs);
1494
1495  /// getOperatorLoc - Return the location of the operator.
1496  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1497  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1498
1499  /// \brief Return the location of the right parentheses.
1500  SourceLocation getRParenLoc() const { return RParenLoc; }
1501  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1502
1503  TypeSourceInfo *getTypeSourceInfo() const {
1504    return TSInfo;
1505  }
1506  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1507    TSInfo = tsi;
1508  }
1509
1510  const OffsetOfNode &getComponent(unsigned Idx) {
1511    assert(Idx < NumComps && "Subscript out of range");
1512    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1513  }
1514
1515  void setComponent(unsigned Idx, OffsetOfNode ON) {
1516    assert(Idx < NumComps && "Subscript out of range");
1517    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1518  }
1519
1520  unsigned getNumComponents() const {
1521    return NumComps;
1522  }
1523
1524  Expr* getIndexExpr(unsigned Idx) {
1525    assert(Idx < NumExprs && "Subscript out of range");
1526    return reinterpret_cast<Expr **>(
1527                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1528  }
1529
1530  void setIndexExpr(unsigned Idx, Expr* E) {
1531    assert(Idx < NumComps && "Subscript out of range");
1532    reinterpret_cast<Expr **>(
1533                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1534  }
1535
1536  unsigned getNumExpressions() const {
1537    return NumExprs;
1538  }
1539
1540  SourceRange getSourceRange() const {
1541    return SourceRange(OperatorLoc, RParenLoc);
1542  }
1543
1544  static bool classof(const Stmt *T) {
1545    return T->getStmtClass() == OffsetOfExprClass;
1546  }
1547
1548  static bool classof(const OffsetOfExpr *) { return true; }
1549
1550  // Iterators
1551  child_range children() {
1552    Stmt **begin =
1553      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1554                               + NumComps);
1555    return child_range(begin, begin + NumExprs);
1556  }
1557};
1558
1559/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1560/// types and expressions.
1561class SizeOfAlignOfExpr : public Expr {
1562  bool isSizeof : 1;  // true if sizeof, false if alignof.
1563  bool isType : 1;    // true if operand is a type, false if an expression
1564  union {
1565    TypeSourceInfo *Ty;
1566    Stmt *Ex;
1567  } Argument;
1568  SourceLocation OpLoc, RParenLoc;
1569
1570public:
1571  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1572                    QualType resultType, SourceLocation op,
1573                    SourceLocation rp) :
1574      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1575           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1576           // Value-dependent if the argument is type-dependent.
1577           TInfo->getType()->isDependentType(),
1578           TInfo->getType()->containsUnexpandedParameterPack()),
1579      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1580    Argument.Ty = TInfo;
1581  }
1582
1583  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1584                    QualType resultType, SourceLocation op,
1585                    SourceLocation rp) :
1586      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1587           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1588           // Value-dependent if the argument is type-dependent.
1589           E->isTypeDependent(),
1590           E->containsUnexpandedParameterPack()),
1591      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1592    Argument.Ex = E;
1593  }
1594
1595  /// \brief Construct an empty sizeof/alignof expression.
1596  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1597    : Expr(SizeOfAlignOfExprClass, Empty) { }
1598
1599  bool isSizeOf() const { return isSizeof; }
1600  void setSizeof(bool S) { isSizeof = S; }
1601
1602  bool isArgumentType() const { return isType; }
1603  QualType getArgumentType() const {
1604    return getArgumentTypeInfo()->getType();
1605  }
1606  TypeSourceInfo *getArgumentTypeInfo() const {
1607    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1608    return Argument.Ty;
1609  }
1610  Expr *getArgumentExpr() {
1611    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1612    return static_cast<Expr*>(Argument.Ex);
1613  }
1614  const Expr *getArgumentExpr() const {
1615    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1616  }
1617
1618  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1619  void setArgument(TypeSourceInfo *TInfo) {
1620    Argument.Ty = TInfo;
1621    isType = true;
1622  }
1623
1624  /// Gets the argument type, or the type of the argument expression, whichever
1625  /// is appropriate.
1626  QualType getTypeOfArgument() const {
1627    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1628  }
1629
1630  SourceLocation getOperatorLoc() const { return OpLoc; }
1631  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1632
1633  SourceLocation getRParenLoc() const { return RParenLoc; }
1634  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1635
1636  SourceRange getSourceRange() const {
1637    return SourceRange(OpLoc, RParenLoc);
1638  }
1639
1640  static bool classof(const Stmt *T) {
1641    return T->getStmtClass() == SizeOfAlignOfExprClass;
1642  }
1643  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1644
1645  // Iterators
1646  child_range children();
1647};
1648
1649//===----------------------------------------------------------------------===//
1650// Postfix Operators.
1651//===----------------------------------------------------------------------===//
1652
1653/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1654class ArraySubscriptExpr : public Expr {
1655  enum { LHS, RHS, END_EXPR=2 };
1656  Stmt* SubExprs[END_EXPR];
1657  SourceLocation RBracketLoc;
1658public:
1659  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1660                     ExprValueKind VK, ExprObjectKind OK,
1661                     SourceLocation rbracketloc)
1662  : Expr(ArraySubscriptExprClass, t, VK, OK,
1663         lhs->isTypeDependent() || rhs->isTypeDependent(),
1664         lhs->isValueDependent() || rhs->isValueDependent(),
1665         (lhs->containsUnexpandedParameterPack() ||
1666          rhs->containsUnexpandedParameterPack())),
1667    RBracketLoc(rbracketloc) {
1668    SubExprs[LHS] = lhs;
1669    SubExprs[RHS] = rhs;
1670  }
1671
1672  /// \brief Create an empty array subscript expression.
1673  explicit ArraySubscriptExpr(EmptyShell Shell)
1674    : Expr(ArraySubscriptExprClass, Shell) { }
1675
1676  /// An array access can be written A[4] or 4[A] (both are equivalent).
1677  /// - getBase() and getIdx() always present the normalized view: A[4].
1678  ///    In this case getBase() returns "A" and getIdx() returns "4".
1679  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1680  ///    4[A] getLHS() returns "4".
1681  /// Note: Because vector element access is also written A[4] we must
1682  /// predicate the format conversion in getBase and getIdx only on the
1683  /// the type of the RHS, as it is possible for the LHS to be a vector of
1684  /// integer type
1685  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1686  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1687  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1688
1689  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1690  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1691  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1692
1693  Expr *getBase() {
1694    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1695  }
1696
1697  const Expr *getBase() const {
1698    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1699  }
1700
1701  Expr *getIdx() {
1702    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1703  }
1704
1705  const Expr *getIdx() const {
1706    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1707  }
1708
1709  SourceRange getSourceRange() const {
1710    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1711  }
1712
1713  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1714  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1715
1716  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1717
1718  static bool classof(const Stmt *T) {
1719    return T->getStmtClass() == ArraySubscriptExprClass;
1720  }
1721  static bool classof(const ArraySubscriptExpr *) { return true; }
1722
1723  // Iterators
1724  child_range children() {
1725    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1726  }
1727};
1728
1729
1730/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1731/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1732/// while its subclasses may represent alternative syntax that (semantically)
1733/// results in a function call. For example, CXXOperatorCallExpr is
1734/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1735/// "str1 + str2" to resolve to a function call.
1736class CallExpr : public Expr {
1737  enum { FN=0, PREARGS_START=1 };
1738  Stmt **SubExprs;
1739  unsigned NumArgs;
1740  SourceLocation RParenLoc;
1741
1742protected:
1743  // These versions of the constructor are for derived classes.
1744  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1745           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1746           SourceLocation rparenloc);
1747  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1748
1749  Stmt *getPreArg(unsigned i) {
1750    assert(i < getNumPreArgs() && "Prearg access out of range!");
1751    return SubExprs[PREARGS_START+i];
1752  }
1753  const Stmt *getPreArg(unsigned i) const {
1754    assert(i < getNumPreArgs() && "Prearg access out of range!");
1755    return SubExprs[PREARGS_START+i];
1756  }
1757  void setPreArg(unsigned i, Stmt *PreArg) {
1758    assert(i < getNumPreArgs() && "Prearg access out of range!");
1759    SubExprs[PREARGS_START+i] = PreArg;
1760  }
1761
1762  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1763
1764public:
1765  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1766           ExprValueKind VK, SourceLocation rparenloc);
1767
1768  /// \brief Build an empty call expression.
1769  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1770
1771  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1772  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1773  void setCallee(Expr *F) { SubExprs[FN] = F; }
1774
1775  Decl *getCalleeDecl();
1776  const Decl *getCalleeDecl() const {
1777    return const_cast<CallExpr*>(this)->getCalleeDecl();
1778  }
1779
1780  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1781  FunctionDecl *getDirectCallee();
1782  const FunctionDecl *getDirectCallee() const {
1783    return const_cast<CallExpr*>(this)->getDirectCallee();
1784  }
1785
1786  /// getNumArgs - Return the number of actual arguments to this call.
1787  ///
1788  unsigned getNumArgs() const { return NumArgs; }
1789
1790  /// \brief Retrieve the call arguments.
1791  Expr **getArgs() {
1792    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1793  }
1794
1795  /// getArg - Return the specified argument.
1796  Expr *getArg(unsigned Arg) {
1797    assert(Arg < NumArgs && "Arg access out of range!");
1798    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1799  }
1800  const Expr *getArg(unsigned Arg) const {
1801    assert(Arg < NumArgs && "Arg access out of range!");
1802    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1803  }
1804
1805  /// setArg - Set the specified argument.
1806  void setArg(unsigned Arg, Expr *ArgExpr) {
1807    assert(Arg < NumArgs && "Arg access out of range!");
1808    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1809  }
1810
1811  /// setNumArgs - This changes the number of arguments present in this call.
1812  /// Any orphaned expressions are deleted by this, and any new operands are set
1813  /// to null.
1814  void setNumArgs(ASTContext& C, unsigned NumArgs);
1815
1816  typedef ExprIterator arg_iterator;
1817  typedef ConstExprIterator const_arg_iterator;
1818
1819  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1820  arg_iterator arg_end() {
1821    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1822  }
1823  const_arg_iterator arg_begin() const {
1824    return SubExprs+PREARGS_START+getNumPreArgs();
1825  }
1826  const_arg_iterator arg_end() const {
1827    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1828  }
1829
1830  /// getNumCommas - Return the number of commas that must have been present in
1831  /// this function call.
1832  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1833
1834  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1835  /// not, return 0.
1836  unsigned isBuiltinCall(const ASTContext &Context) const;
1837
1838  /// getCallReturnType - Get the return type of the call expr. This is not
1839  /// always the type of the expr itself, if the return type is a reference
1840  /// type.
1841  QualType getCallReturnType() const;
1842
1843  SourceLocation getRParenLoc() const { return RParenLoc; }
1844  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1845
1846  SourceRange getSourceRange() const {
1847    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1848  }
1849
1850  static bool classof(const Stmt *T) {
1851    return T->getStmtClass() >= firstCallExprConstant &&
1852           T->getStmtClass() <= lastCallExprConstant;
1853  }
1854  static bool classof(const CallExpr *) { return true; }
1855
1856  // Iterators
1857  child_range children() {
1858    return child_range(&SubExprs[0],
1859                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
1860  }
1861};
1862
1863/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1864///
1865class MemberExpr : public Expr {
1866  /// Extra data stored in some member expressions.
1867  struct MemberNameQualifier : public NameQualifier {
1868    DeclAccessPair FoundDecl;
1869  };
1870
1871  /// Base - the expression for the base pointer or structure references.  In
1872  /// X.F, this is "X".
1873  Stmt *Base;
1874
1875  /// MemberDecl - This is the decl being referenced by the field/member name.
1876  /// In X.F, this is the decl referenced by F.
1877  ValueDecl *MemberDecl;
1878
1879  /// MemberLoc - This is the location of the member name.
1880  SourceLocation MemberLoc;
1881
1882  /// MemberDNLoc - Provides source/type location info for the
1883  /// declaration name embedded in MemberDecl.
1884  DeclarationNameLoc MemberDNLoc;
1885
1886  /// IsArrow - True if this is "X->F", false if this is "X.F".
1887  bool IsArrow : 1;
1888
1889  /// \brief True if this member expression used a nested-name-specifier to
1890  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1891  /// declaration.  When true, a MemberNameQualifier
1892  /// structure is allocated immediately after the MemberExpr.
1893  bool HasQualifierOrFoundDecl : 1;
1894
1895  /// \brief True if this member expression specified a template argument list
1896  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1897  /// structure (and its TemplateArguments) are allocated immediately after
1898  /// the MemberExpr or, if the member expression also has a qualifier, after
1899  /// the MemberNameQualifier structure.
1900  bool HasExplicitTemplateArgumentList : 1;
1901
1902  /// \brief Retrieve the qualifier that preceded the member name, if any.
1903  MemberNameQualifier *getMemberQualifier() {
1904    assert(HasQualifierOrFoundDecl);
1905    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1906  }
1907
1908  /// \brief Retrieve the qualifier that preceded the member name, if any.
1909  const MemberNameQualifier *getMemberQualifier() const {
1910    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1911  }
1912
1913public:
1914  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1915             const DeclarationNameInfo &NameInfo, QualType ty,
1916             ExprValueKind VK, ExprObjectKind OK)
1917    : Expr(MemberExprClass, ty, VK, OK,
1918           base->isTypeDependent(), base->isValueDependent(),
1919           base->containsUnexpandedParameterPack()),
1920      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1921      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1922      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1923    assert(memberdecl->getDeclName() == NameInfo.getName());
1924  }
1925
1926  // NOTE: this constructor should be used only when it is known that
1927  // the member name can not provide additional syntactic info
1928  // (i.e., source locations for C++ operator names or type source info
1929  // for constructors, destructors and conversion oeprators).
1930  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1931             SourceLocation l, QualType ty,
1932             ExprValueKind VK, ExprObjectKind OK)
1933    : Expr(MemberExprClass, ty, VK, OK,
1934           base->isTypeDependent(), base->isValueDependent(),
1935           base->containsUnexpandedParameterPack()),
1936      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1937      IsArrow(isarrow),
1938      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1939
1940  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1941                            NestedNameSpecifier *qual, SourceRange qualrange,
1942                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1943                            DeclarationNameInfo MemberNameInfo,
1944                            const TemplateArgumentListInfo *targs,
1945                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1946
1947  void setBase(Expr *E) { Base = E; }
1948  Expr *getBase() const { return cast<Expr>(Base); }
1949
1950  /// \brief Retrieve the member declaration to which this expression refers.
1951  ///
1952  /// The returned declaration will either be a FieldDecl or (in C++)
1953  /// a CXXMethodDecl.
1954  ValueDecl *getMemberDecl() const { return MemberDecl; }
1955  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1956
1957  /// \brief Retrieves the declaration found by lookup.
1958  DeclAccessPair getFoundDecl() const {
1959    if (!HasQualifierOrFoundDecl)
1960      return DeclAccessPair::make(getMemberDecl(),
1961                                  getMemberDecl()->getAccess());
1962    return getMemberQualifier()->FoundDecl;
1963  }
1964
1965  /// \brief Determines whether this member expression actually had
1966  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1967  /// x->Base::foo.
1968  bool hasQualifier() const { return getQualifier() != 0; }
1969
1970  /// \brief If the member name was qualified, retrieves the source range of
1971  /// the nested-name-specifier that precedes the member name. Otherwise,
1972  /// returns an empty source range.
1973  SourceRange getQualifierRange() const {
1974    if (!HasQualifierOrFoundDecl)
1975      return SourceRange();
1976
1977    return getMemberQualifier()->Range;
1978  }
1979
1980  /// \brief If the member name was qualified, retrieves the
1981  /// nested-name-specifier that precedes the member name. Otherwise, returns
1982  /// NULL.
1983  NestedNameSpecifier *getQualifier() const {
1984    if (!HasQualifierOrFoundDecl)
1985      return 0;
1986
1987    return getMemberQualifier()->NNS;
1988  }
1989
1990  /// \brief Determines whether this member expression actually had a C++
1991  /// template argument list explicitly specified, e.g., x.f<int>.
1992  bool hasExplicitTemplateArgs() const {
1993    return HasExplicitTemplateArgumentList;
1994  }
1995
1996  /// \brief Copies the template arguments (if present) into the given
1997  /// structure.
1998  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1999    if (hasExplicitTemplateArgs())
2000      getExplicitTemplateArgs().copyInto(List);
2001  }
2002
2003  /// \brief Retrieve the explicit template argument list that
2004  /// follow the member template name.  This must only be called on an
2005  /// expression with explicit template arguments.
2006  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2007    assert(HasExplicitTemplateArgumentList);
2008    if (!HasQualifierOrFoundDecl)
2009      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2010
2011    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
2012                                                      getMemberQualifier() + 1);
2013  }
2014
2015  /// \brief Retrieve the explicit template argument list that
2016  /// followed the member template name.  This must only be called on
2017  /// an expression with explicit template arguments.
2018  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2019    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2020  }
2021
2022  /// \brief Retrieves the optional explicit template arguments.
2023  /// This points to the same data as getExplicitTemplateArgs(), but
2024  /// returns null if there are no explicit template arguments.
2025  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
2026    if (!hasExplicitTemplateArgs()) return 0;
2027    return &getExplicitTemplateArgs();
2028  }
2029
2030  /// \brief Retrieve the location of the left angle bracket following the
2031  /// member name ('<'), if any.
2032  SourceLocation getLAngleLoc() const {
2033    if (!HasExplicitTemplateArgumentList)
2034      return SourceLocation();
2035
2036    return getExplicitTemplateArgs().LAngleLoc;
2037  }
2038
2039  /// \brief Retrieve the template arguments provided as part of this
2040  /// template-id.
2041  const TemplateArgumentLoc *getTemplateArgs() const {
2042    if (!HasExplicitTemplateArgumentList)
2043      return 0;
2044
2045    return getExplicitTemplateArgs().getTemplateArgs();
2046  }
2047
2048  /// \brief Retrieve the number of template arguments provided as part of this
2049  /// template-id.
2050  unsigned getNumTemplateArgs() const {
2051    if (!HasExplicitTemplateArgumentList)
2052      return 0;
2053
2054    return getExplicitTemplateArgs().NumTemplateArgs;
2055  }
2056
2057  /// \brief Retrieve the location of the right angle bracket following the
2058  /// template arguments ('>').
2059  SourceLocation getRAngleLoc() const {
2060    if (!HasExplicitTemplateArgumentList)
2061      return SourceLocation();
2062
2063    return getExplicitTemplateArgs().RAngleLoc;
2064  }
2065
2066  /// \brief Retrieve the member declaration name info.
2067  DeclarationNameInfo getMemberNameInfo() const {
2068    return DeclarationNameInfo(MemberDecl->getDeclName(),
2069                               MemberLoc, MemberDNLoc);
2070  }
2071
2072  bool isArrow() const { return IsArrow; }
2073  void setArrow(bool A) { IsArrow = A; }
2074
2075  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2076  /// location of 'F'.
2077  SourceLocation getMemberLoc() const { return MemberLoc; }
2078  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2079
2080  SourceRange getSourceRange() const {
2081    // If we have an implicit base (like a C++ implicit this),
2082    // make sure not to return its location
2083    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
2084      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
2085
2086    SourceLocation BaseLoc = getBase()->getLocStart();
2087    if (BaseLoc.isInvalid())
2088      return SourceRange(MemberLoc, EndLoc);
2089    return SourceRange(BaseLoc, EndLoc);
2090  }
2091
2092  SourceLocation getExprLoc() const { return MemberLoc; }
2093
2094  static bool classof(const Stmt *T) {
2095    return T->getStmtClass() == MemberExprClass;
2096  }
2097  static bool classof(const MemberExpr *) { return true; }
2098
2099  // Iterators
2100  child_range children() { return child_range(&Base, &Base+1); }
2101
2102  friend class ASTReader;
2103  friend class ASTStmtWriter;
2104};
2105
2106/// CompoundLiteralExpr - [C99 6.5.2.5]
2107///
2108class CompoundLiteralExpr : public Expr {
2109  /// LParenLoc - If non-null, this is the location of the left paren in a
2110  /// compound literal like "(int){4}".  This can be null if this is a
2111  /// synthesized compound expression.
2112  SourceLocation LParenLoc;
2113
2114  /// The type as written.  This can be an incomplete array type, in
2115  /// which case the actual expression type will be different.
2116  TypeSourceInfo *TInfo;
2117  Stmt *Init;
2118  bool FileScope;
2119public:
2120  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2121                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2122    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2123           tinfo->getType()->isDependentType(),
2124           init->isValueDependent(),
2125           init->containsUnexpandedParameterPack()),
2126      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2127
2128  /// \brief Construct an empty compound literal.
2129  explicit CompoundLiteralExpr(EmptyShell Empty)
2130    : Expr(CompoundLiteralExprClass, Empty) { }
2131
2132  const Expr *getInitializer() const { return cast<Expr>(Init); }
2133  Expr *getInitializer() { return cast<Expr>(Init); }
2134  void setInitializer(Expr *E) { Init = E; }
2135
2136  bool isFileScope() const { return FileScope; }
2137  void setFileScope(bool FS) { FileScope = FS; }
2138
2139  SourceLocation getLParenLoc() const { return LParenLoc; }
2140  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2141
2142  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2143  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2144
2145  SourceRange getSourceRange() const {
2146    // FIXME: Init should never be null.
2147    if (!Init)
2148      return SourceRange();
2149    if (LParenLoc.isInvalid())
2150      return Init->getSourceRange();
2151    return SourceRange(LParenLoc, Init->getLocEnd());
2152  }
2153
2154  static bool classof(const Stmt *T) {
2155    return T->getStmtClass() == CompoundLiteralExprClass;
2156  }
2157  static bool classof(const CompoundLiteralExpr *) { return true; }
2158
2159  // Iterators
2160  child_range children() { return child_range(&Init, &Init+1); }
2161};
2162
2163/// CastExpr - Base class for type casts, including both implicit
2164/// casts (ImplicitCastExpr) and explicit casts that have some
2165/// representation in the source code (ExplicitCastExpr's derived
2166/// classes).
2167class CastExpr : public Expr {
2168public:
2169  typedef clang::CastKind CastKind;
2170
2171private:
2172  Stmt *Op;
2173
2174  void CheckCastConsistency() const {
2175#ifndef NDEBUG
2176    switch (getCastKind()) {
2177    case CK_DerivedToBase:
2178    case CK_UncheckedDerivedToBase:
2179    case CK_DerivedToBaseMemberPointer:
2180    case CK_BaseToDerived:
2181    case CK_BaseToDerivedMemberPointer:
2182      assert(!path_empty() && "Cast kind should have a base path!");
2183      break;
2184
2185    // These should not have an inheritance path.
2186    case CK_BitCast:
2187    case CK_Dynamic:
2188    case CK_ToUnion:
2189    case CK_ArrayToPointerDecay:
2190    case CK_FunctionToPointerDecay:
2191    case CK_NullToMemberPointer:
2192    case CK_NullToPointer:
2193    case CK_ConstructorConversion:
2194    case CK_IntegralToPointer:
2195    case CK_PointerToIntegral:
2196    case CK_ToVoid:
2197    case CK_VectorSplat:
2198    case CK_IntegralCast:
2199    case CK_IntegralToFloating:
2200    case CK_FloatingToIntegral:
2201    case CK_FloatingCast:
2202    case CK_AnyPointerToObjCPointerCast:
2203    case CK_AnyPointerToBlockPointerCast:
2204    case CK_ObjCObjectLValueCast:
2205    case CK_FloatingRealToComplex:
2206    case CK_FloatingComplexToReal:
2207    case CK_FloatingComplexCast:
2208    case CK_FloatingComplexToIntegralComplex:
2209    case CK_IntegralRealToComplex:
2210    case CK_IntegralComplexToReal:
2211    case CK_IntegralComplexCast:
2212    case CK_IntegralComplexToFloatingComplex:
2213      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2214      // fallthrough to check for null base path
2215
2216    case CK_Dependent:
2217    case CK_LValueToRValue:
2218    case CK_GetObjCProperty:
2219    case CK_NoOp:
2220    case CK_PointerToBoolean:
2221    case CK_IntegralToBoolean:
2222    case CK_FloatingToBoolean:
2223    case CK_MemberPointerToBoolean:
2224    case CK_FloatingComplexToBoolean:
2225    case CK_IntegralComplexToBoolean:
2226    case CK_LValueBitCast:            // -> bool&
2227    case CK_UserDefinedConversion:    // operator bool()
2228      assert(path_empty() && "Cast kind should not have a base path!");
2229      break;
2230    }
2231#endif
2232  }
2233
2234  const CXXBaseSpecifier * const *path_buffer() const {
2235    return const_cast<CastExpr*>(this)->path_buffer();
2236  }
2237  CXXBaseSpecifier **path_buffer();
2238
2239protected:
2240  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2241           const CastKind kind, Expr *op, unsigned BasePathSize) :
2242    Expr(SC, ty, VK, OK_Ordinary,
2243         // Cast expressions are type-dependent if the type is
2244         // dependent (C++ [temp.dep.expr]p3).
2245         ty->isDependentType(),
2246         // Cast expressions are value-dependent if the type is
2247         // dependent or if the subexpression is value-dependent.
2248         ty->isDependentType() || (op && op->isValueDependent()),
2249         (ty->containsUnexpandedParameterPack() ||
2250          op->containsUnexpandedParameterPack())),
2251    Op(op) {
2252    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2253    CastExprBits.Kind = kind;
2254    CastExprBits.BasePathSize = BasePathSize;
2255    CheckCastConsistency();
2256  }
2257
2258  /// \brief Construct an empty cast.
2259  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2260    : Expr(SC, Empty) {
2261    CastExprBits.BasePathSize = BasePathSize;
2262  }
2263
2264public:
2265  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2266  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2267  const char *getCastKindName() const;
2268
2269  Expr *getSubExpr() { return cast<Expr>(Op); }
2270  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2271  void setSubExpr(Expr *E) { Op = E; }
2272
2273  /// \brief Retrieve the cast subexpression as it was written in the source
2274  /// code, looking through any implicit casts or other intermediate nodes
2275  /// introduced by semantic analysis.
2276  Expr *getSubExprAsWritten();
2277  const Expr *getSubExprAsWritten() const {
2278    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2279  }
2280
2281  typedef CXXBaseSpecifier **path_iterator;
2282  typedef const CXXBaseSpecifier * const *path_const_iterator;
2283  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2284  unsigned path_size() const { return CastExprBits.BasePathSize; }
2285  path_iterator path_begin() { return path_buffer(); }
2286  path_iterator path_end() { return path_buffer() + path_size(); }
2287  path_const_iterator path_begin() const { return path_buffer(); }
2288  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2289
2290  void setCastPath(const CXXCastPath &Path);
2291
2292  static bool classof(const Stmt *T) {
2293    return T->getStmtClass() >= firstCastExprConstant &&
2294           T->getStmtClass() <= lastCastExprConstant;
2295  }
2296  static bool classof(const CastExpr *) { return true; }
2297
2298  // Iterators
2299  child_range children() { return child_range(&Op, &Op+1); }
2300};
2301
2302/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2303/// conversions, which have no direct representation in the original
2304/// source code. For example: converting T[]->T*, void f()->void
2305/// (*f)(), float->double, short->int, etc.
2306///
2307/// In C, implicit casts always produce rvalues. However, in C++, an
2308/// implicit cast whose result is being bound to a reference will be
2309/// an lvalue or xvalue. For example:
2310///
2311/// @code
2312/// class Base { };
2313/// class Derived : public Base { };
2314/// Derived &&ref();
2315/// void f(Derived d) {
2316///   Base& b = d; // initializer is an ImplicitCastExpr
2317///                // to an lvalue of type Base
2318///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2319///                     // to an xvalue of type Base
2320/// }
2321/// @endcode
2322class ImplicitCastExpr : public CastExpr {
2323private:
2324  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2325                   unsigned BasePathLength, ExprValueKind VK)
2326    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2327  }
2328
2329  /// \brief Construct an empty implicit cast.
2330  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2331    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2332
2333public:
2334  enum OnStack_t { OnStack };
2335  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2336                   ExprValueKind VK)
2337    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2338  }
2339
2340  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2341                                  CastKind Kind, Expr *Operand,
2342                                  const CXXCastPath *BasePath,
2343                                  ExprValueKind Cat);
2344
2345  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2346
2347  SourceRange getSourceRange() const {
2348    return getSubExpr()->getSourceRange();
2349  }
2350
2351  static bool classof(const Stmt *T) {
2352    return T->getStmtClass() == ImplicitCastExprClass;
2353  }
2354  static bool classof(const ImplicitCastExpr *) { return true; }
2355};
2356
2357/// ExplicitCastExpr - An explicit cast written in the source
2358/// code.
2359///
2360/// This class is effectively an abstract class, because it provides
2361/// the basic representation of an explicitly-written cast without
2362/// specifying which kind of cast (C cast, functional cast, static
2363/// cast, etc.) was written; specific derived classes represent the
2364/// particular style of cast and its location information.
2365///
2366/// Unlike implicit casts, explicit cast nodes have two different
2367/// types: the type that was written into the source code, and the
2368/// actual type of the expression as determined by semantic
2369/// analysis. These types may differ slightly. For example, in C++ one
2370/// can cast to a reference type, which indicates that the resulting
2371/// expression will be an lvalue or xvalue. The reference type, however,
2372/// will not be used as the type of the expression.
2373class ExplicitCastExpr : public CastExpr {
2374  /// TInfo - Source type info for the (written) type
2375  /// this expression is casting to.
2376  TypeSourceInfo *TInfo;
2377
2378protected:
2379  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2380                   CastKind kind, Expr *op, unsigned PathSize,
2381                   TypeSourceInfo *writtenTy)
2382    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2383
2384  /// \brief Construct an empty explicit cast.
2385  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2386    : CastExpr(SC, Shell, PathSize) { }
2387
2388public:
2389  /// getTypeInfoAsWritten - Returns the type source info for the type
2390  /// that this expression is casting to.
2391  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2392  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2393
2394  /// getTypeAsWritten - Returns the type that this expression is
2395  /// casting to, as written in the source code.
2396  QualType getTypeAsWritten() const { return TInfo->getType(); }
2397
2398  static bool classof(const Stmt *T) {
2399     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2400            T->getStmtClass() <= lastExplicitCastExprConstant;
2401  }
2402  static bool classof(const ExplicitCastExpr *) { return true; }
2403};
2404
2405/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2406/// cast in C++ (C++ [expr.cast]), which uses the syntax
2407/// (Type)expr. For example: @c (int)f.
2408class CStyleCastExpr : public ExplicitCastExpr {
2409  SourceLocation LPLoc; // the location of the left paren
2410  SourceLocation RPLoc; // the location of the right paren
2411
2412  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2413                 unsigned PathSize, TypeSourceInfo *writtenTy,
2414                 SourceLocation l, SourceLocation r)
2415    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2416                       writtenTy), LPLoc(l), RPLoc(r) {}
2417
2418  /// \brief Construct an empty C-style explicit cast.
2419  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2420    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2421
2422public:
2423  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2424                                ExprValueKind VK, CastKind K,
2425                                Expr *Op, const CXXCastPath *BasePath,
2426                                TypeSourceInfo *WrittenTy, SourceLocation L,
2427                                SourceLocation R);
2428
2429  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2430
2431  SourceLocation getLParenLoc() const { return LPLoc; }
2432  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2433
2434  SourceLocation getRParenLoc() const { return RPLoc; }
2435  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2436
2437  SourceRange getSourceRange() const {
2438    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2439  }
2440  static bool classof(const Stmt *T) {
2441    return T->getStmtClass() == CStyleCastExprClass;
2442  }
2443  static bool classof(const CStyleCastExpr *) { return true; }
2444};
2445
2446/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2447///
2448/// This expression node kind describes a builtin binary operation,
2449/// such as "x + y" for integer values "x" and "y". The operands will
2450/// already have been converted to appropriate types (e.g., by
2451/// performing promotions or conversions).
2452///
2453/// In C++, where operators may be overloaded, a different kind of
2454/// expression node (CXXOperatorCallExpr) is used to express the
2455/// invocation of an overloaded operator with operator syntax. Within
2456/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2457/// used to store an expression "x + y" depends on the subexpressions
2458/// for x and y. If neither x or y is type-dependent, and the "+"
2459/// operator resolves to a built-in operation, BinaryOperator will be
2460/// used to express the computation (x and y may still be
2461/// value-dependent). If either x or y is type-dependent, or if the
2462/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2463/// be used to express the computation.
2464class BinaryOperator : public Expr {
2465public:
2466  typedef BinaryOperatorKind Opcode;
2467
2468private:
2469  unsigned Opc : 6;
2470  SourceLocation OpLoc;
2471
2472  enum { LHS, RHS, END_EXPR };
2473  Stmt* SubExprs[END_EXPR];
2474public:
2475
2476  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2477                 ExprValueKind VK, ExprObjectKind OK,
2478                 SourceLocation opLoc)
2479    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2480           lhs->isTypeDependent() || rhs->isTypeDependent(),
2481           lhs->isValueDependent() || rhs->isValueDependent(),
2482           (lhs->containsUnexpandedParameterPack() ||
2483            rhs->containsUnexpandedParameterPack())),
2484      Opc(opc), OpLoc(opLoc) {
2485    SubExprs[LHS] = lhs;
2486    SubExprs[RHS] = rhs;
2487    assert(!isCompoundAssignmentOp() &&
2488           "Use ArithAssignBinaryOperator for compound assignments");
2489  }
2490
2491  /// \brief Construct an empty binary operator.
2492  explicit BinaryOperator(EmptyShell Empty)
2493    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2494
2495  SourceLocation getOperatorLoc() const { return OpLoc; }
2496  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2497
2498  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2499  void setOpcode(Opcode O) { Opc = O; }
2500
2501  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2502  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2503  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2504  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2505
2506  SourceRange getSourceRange() const {
2507    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2508  }
2509
2510  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2511  /// corresponds to, e.g. "<<=".
2512  static const char *getOpcodeStr(Opcode Op);
2513
2514  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2515
2516  /// \brief Retrieve the binary opcode that corresponds to the given
2517  /// overloaded operator.
2518  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2519
2520  /// \brief Retrieve the overloaded operator kind that corresponds to
2521  /// the given binary opcode.
2522  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2523
2524  /// predicates to categorize the respective opcodes.
2525  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2526  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2527  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2528  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2529  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2530  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2531
2532  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2533  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2534
2535  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2536  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2537
2538  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2539  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2540
2541  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2542  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2543
2544  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2545  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2546
2547  static bool isAssignmentOp(Opcode Opc) {
2548    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2549  }
2550  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2551
2552  static bool isCompoundAssignmentOp(Opcode Opc) {
2553    return Opc > BO_Assign && Opc <= BO_OrAssign;
2554  }
2555  bool isCompoundAssignmentOp() const {
2556    return isCompoundAssignmentOp(getOpcode());
2557  }
2558
2559  static bool isShiftAssignOp(Opcode Opc) {
2560    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2561  }
2562  bool isShiftAssignOp() const {
2563    return isShiftAssignOp(getOpcode());
2564  }
2565
2566  static bool classof(const Stmt *S) {
2567    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2568           S->getStmtClass() <= lastBinaryOperatorConstant;
2569  }
2570  static bool classof(const BinaryOperator *) { return true; }
2571
2572  // Iterators
2573  child_range children() {
2574    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2575  }
2576
2577protected:
2578  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2579                 ExprValueKind VK, ExprObjectKind OK,
2580                 SourceLocation opLoc, bool dead)
2581    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2582           lhs->isTypeDependent() || rhs->isTypeDependent(),
2583           lhs->isValueDependent() || rhs->isValueDependent(),
2584           (lhs->containsUnexpandedParameterPack() ||
2585            rhs->containsUnexpandedParameterPack())),
2586      Opc(opc), OpLoc(opLoc) {
2587    SubExprs[LHS] = lhs;
2588    SubExprs[RHS] = rhs;
2589  }
2590
2591  BinaryOperator(StmtClass SC, EmptyShell Empty)
2592    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2593};
2594
2595/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2596/// track of the type the operation is performed in.  Due to the semantics of
2597/// these operators, the operands are promoted, the aritmetic performed, an
2598/// implicit conversion back to the result type done, then the assignment takes
2599/// place.  This captures the intermediate type which the computation is done
2600/// in.
2601class CompoundAssignOperator : public BinaryOperator {
2602  QualType ComputationLHSType;
2603  QualType ComputationResultType;
2604public:
2605  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2606                         ExprValueKind VK, ExprObjectKind OK,
2607                         QualType CompLHSType, QualType CompResultType,
2608                         SourceLocation OpLoc)
2609    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2610      ComputationLHSType(CompLHSType),
2611      ComputationResultType(CompResultType) {
2612    assert(isCompoundAssignmentOp() &&
2613           "Only should be used for compound assignments");
2614  }
2615
2616  /// \brief Build an empty compound assignment operator expression.
2617  explicit CompoundAssignOperator(EmptyShell Empty)
2618    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2619
2620  // The two computation types are the type the LHS is converted
2621  // to for the computation and the type of the result; the two are
2622  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2623  QualType getComputationLHSType() const { return ComputationLHSType; }
2624  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2625
2626  QualType getComputationResultType() const { return ComputationResultType; }
2627  void setComputationResultType(QualType T) { ComputationResultType = T; }
2628
2629  static bool classof(const CompoundAssignOperator *) { return true; }
2630  static bool classof(const Stmt *S) {
2631    return S->getStmtClass() == CompoundAssignOperatorClass;
2632  }
2633};
2634
2635/// AbstractConditionalOperator - An abstract base class for
2636/// ConditionalOperator and BinaryConditionalOperator.
2637class AbstractConditionalOperator : public Expr {
2638  SourceLocation QuestionLoc, ColonLoc;
2639  friend class ASTStmtReader;
2640
2641protected:
2642  AbstractConditionalOperator(StmtClass SC, QualType T,
2643                              ExprValueKind VK, ExprObjectKind OK,
2644                              bool TD, bool VD,
2645                              bool ContainsUnexpandedParameterPack,
2646                              SourceLocation qloc,
2647                              SourceLocation cloc)
2648    : Expr(SC, T, VK, OK, TD, VD, ContainsUnexpandedParameterPack),
2649      QuestionLoc(qloc), ColonLoc(cloc) {}
2650
2651  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2652    : Expr(SC, Empty) { }
2653
2654public:
2655  // getCond - Return the expression representing the condition for
2656  //   the ?: operator.
2657  Expr *getCond() const;
2658
2659  // getTrueExpr - Return the subexpression representing the value of
2660  //   the expression if the condition evaluates to true.
2661  Expr *getTrueExpr() const;
2662
2663  // getFalseExpr - Return the subexpression representing the value of
2664  //   the expression if the condition evaluates to false.  This is
2665  //   the same as getRHS.
2666  Expr *getFalseExpr() const;
2667
2668  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2669  SourceLocation getColonLoc() const { return ColonLoc; }
2670
2671  static bool classof(const Stmt *T) {
2672    return T->getStmtClass() == ConditionalOperatorClass ||
2673           T->getStmtClass() == BinaryConditionalOperatorClass;
2674  }
2675  static bool classof(const AbstractConditionalOperator *) { return true; }
2676};
2677
2678/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2679/// middle" extension is a BinaryConditionalOperator.
2680class ConditionalOperator : public AbstractConditionalOperator {
2681  enum { COND, LHS, RHS, END_EXPR };
2682  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2683
2684  friend class ASTStmtReader;
2685public:
2686  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2687                      SourceLocation CLoc, Expr *rhs,
2688                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2689    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2690           // FIXME: the type of the conditional operator doesn't
2691           // depend on the type of the conditional, but the standard
2692           // seems to imply that it could. File a bug!
2693           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2694           (cond->isValueDependent() || lhs->isValueDependent() ||
2695            rhs->isValueDependent()),
2696           (cond->containsUnexpandedParameterPack() ||
2697            lhs->containsUnexpandedParameterPack() ||
2698            rhs->containsUnexpandedParameterPack()),
2699                                  QLoc, CLoc) {
2700    SubExprs[COND] = cond;
2701    SubExprs[LHS] = lhs;
2702    SubExprs[RHS] = rhs;
2703  }
2704
2705  /// \brief Build an empty conditional operator.
2706  explicit ConditionalOperator(EmptyShell Empty)
2707    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2708
2709  // getCond - Return the expression representing the condition for
2710  //   the ?: operator.
2711  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2712
2713  // getTrueExpr - Return the subexpression representing the value of
2714  //   the expression if the condition evaluates to true.
2715  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2716
2717  // getFalseExpr - Return the subexpression representing the value of
2718  //   the expression if the condition evaluates to false.  This is
2719  //   the same as getRHS.
2720  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2721
2722  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2723  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2724
2725  SourceRange getSourceRange() const {
2726    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2727  }
2728  static bool classof(const Stmt *T) {
2729    return T->getStmtClass() == ConditionalOperatorClass;
2730  }
2731  static bool classof(const ConditionalOperator *) { return true; }
2732
2733  // Iterators
2734  child_range children() {
2735    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2736  }
2737};
2738
2739/// BinaryConditionalOperator - The GNU extension to the conditional
2740/// operator which allows the middle operand to be omitted.
2741///
2742/// This is a different expression kind on the assumption that almost
2743/// every client ends up needing to know that these are different.
2744class BinaryConditionalOperator : public AbstractConditionalOperator {
2745  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2746
2747  /// - the common condition/left-hand-side expression, which will be
2748  ///   evaluated as the opaque value
2749  /// - the condition, expressed in terms of the opaque value
2750  /// - the left-hand-side, expressed in terms of the opaque value
2751  /// - the right-hand-side
2752  Stmt *SubExprs[NUM_SUBEXPRS];
2753  OpaqueValueExpr *OpaqueValue;
2754
2755  friend class ASTStmtReader;
2756public:
2757  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2758                            Expr *cond, Expr *lhs, Expr *rhs,
2759                            SourceLocation qloc, SourceLocation cloc,
2760                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2761    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2762           (common->isTypeDependent() || rhs->isTypeDependent()),
2763           (common->isValueDependent() || rhs->isValueDependent()),
2764           (common->containsUnexpandedParameterPack() ||
2765            rhs->containsUnexpandedParameterPack()),
2766                                  qloc, cloc),
2767      OpaqueValue(opaqueValue) {
2768    SubExprs[COMMON] = common;
2769    SubExprs[COND] = cond;
2770    SubExprs[LHS] = lhs;
2771    SubExprs[RHS] = rhs;
2772
2773    OpaqueValue->setSourceExpr(common);
2774  }
2775
2776  /// \brief Build an empty conditional operator.
2777  explicit BinaryConditionalOperator(EmptyShell Empty)
2778    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2779
2780  /// \brief getCommon - Return the common expression, written to the
2781  ///   left of the condition.  The opaque value will be bound to the
2782  ///   result of this expression.
2783  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2784
2785  /// \brief getOpaqueValue - Return the opaque value placeholder.
2786  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2787
2788  /// \brief getCond - Return the condition expression; this is defined
2789  ///   in terms of the opaque value.
2790  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2791
2792  /// \brief getTrueExpr - Return the subexpression which will be
2793  ///   evaluated if the condition evaluates to true;  this is defined
2794  ///   in terms of the opaque value.
2795  Expr *getTrueExpr() const {
2796    return cast<Expr>(SubExprs[LHS]);
2797  }
2798
2799  /// \brief getFalseExpr - Return the subexpression which will be
2800  ///   evaluated if the condnition evaluates to false; this is
2801  ///   defined in terms of the opaque value.
2802  Expr *getFalseExpr() const {
2803    return cast<Expr>(SubExprs[RHS]);
2804  }
2805
2806  SourceRange getSourceRange() const {
2807    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2808  }
2809  static bool classof(const Stmt *T) {
2810    return T->getStmtClass() == BinaryConditionalOperatorClass;
2811  }
2812  static bool classof(const BinaryConditionalOperator *) { return true; }
2813
2814  // Iterators
2815  child_range children() {
2816    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2817  }
2818};
2819
2820inline Expr *AbstractConditionalOperator::getCond() const {
2821  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2822    return co->getCond();
2823  return cast<BinaryConditionalOperator>(this)->getCond();
2824}
2825
2826inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2827  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2828    return co->getTrueExpr();
2829  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2830}
2831
2832inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2833  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2834    return co->getFalseExpr();
2835  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2836}
2837
2838/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2839class AddrLabelExpr : public Expr {
2840  SourceLocation AmpAmpLoc, LabelLoc;
2841  LabelDecl *Label;
2842public:
2843  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2844                QualType t)
2845    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false),
2846      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2847
2848  /// \brief Build an empty address of a label expression.
2849  explicit AddrLabelExpr(EmptyShell Empty)
2850    : Expr(AddrLabelExprClass, Empty) { }
2851
2852  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2853  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2854  SourceLocation getLabelLoc() const { return LabelLoc; }
2855  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2856
2857  SourceRange getSourceRange() const {
2858    return SourceRange(AmpAmpLoc, LabelLoc);
2859  }
2860
2861  LabelDecl *getLabel() const { return Label; }
2862  void setLabel(LabelDecl *L) { Label = L; }
2863
2864  static bool classof(const Stmt *T) {
2865    return T->getStmtClass() == AddrLabelExprClass;
2866  }
2867  static bool classof(const AddrLabelExpr *) { return true; }
2868
2869  // Iterators
2870  child_range children() { return child_range(); }
2871};
2872
2873/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2874/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2875/// takes the value of the last subexpression.
2876///
2877/// A StmtExpr is always an r-value; values "returned" out of a
2878/// StmtExpr will be copied.
2879class StmtExpr : public Expr {
2880  Stmt *SubStmt;
2881  SourceLocation LParenLoc, RParenLoc;
2882public:
2883  // FIXME: Does type-dependence need to be computed differently?
2884  StmtExpr(CompoundStmt *substmt, QualType T,
2885           SourceLocation lp, SourceLocation rp) :
2886    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2887         T->isDependentType(), false, false),
2888    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2889
2890  /// \brief Build an empty statement expression.
2891  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2892
2893  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2894  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2895  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2896
2897  SourceRange getSourceRange() const {
2898    return SourceRange(LParenLoc, RParenLoc);
2899  }
2900
2901  SourceLocation getLParenLoc() const { return LParenLoc; }
2902  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2903  SourceLocation getRParenLoc() const { return RParenLoc; }
2904  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2905
2906  static bool classof(const Stmt *T) {
2907    return T->getStmtClass() == StmtExprClass;
2908  }
2909  static bool classof(const StmtExpr *) { return true; }
2910
2911  // Iterators
2912  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
2913};
2914
2915
2916/// ShuffleVectorExpr - clang-specific builtin-in function
2917/// __builtin_shufflevector.
2918/// This AST node represents a operator that does a constant
2919/// shuffle, similar to LLVM's shufflevector instruction. It takes
2920/// two vectors and a variable number of constant indices,
2921/// and returns the appropriately shuffled vector.
2922class ShuffleVectorExpr : public Expr {
2923  SourceLocation BuiltinLoc, RParenLoc;
2924
2925  // SubExprs - the list of values passed to the __builtin_shufflevector
2926  // function. The first two are vectors, and the rest are constant
2927  // indices.  The number of values in this list is always
2928  // 2+the number of indices in the vector type.
2929  Stmt **SubExprs;
2930  unsigned NumExprs;
2931
2932public:
2933  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2934                    QualType Type, SourceLocation BLoc,
2935                    SourceLocation RP);
2936
2937  /// \brief Build an empty vector-shuffle expression.
2938  explicit ShuffleVectorExpr(EmptyShell Empty)
2939    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2940
2941  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2942  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2943
2944  SourceLocation getRParenLoc() const { return RParenLoc; }
2945  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2946
2947  SourceRange getSourceRange() const {
2948    return SourceRange(BuiltinLoc, RParenLoc);
2949  }
2950  static bool classof(const Stmt *T) {
2951    return T->getStmtClass() == ShuffleVectorExprClass;
2952  }
2953  static bool classof(const ShuffleVectorExpr *) { return true; }
2954
2955  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2956  /// constant expression, the actual arguments passed in, and the function
2957  /// pointers.
2958  unsigned getNumSubExprs() const { return NumExprs; }
2959
2960  /// \brief Retrieve the array of expressions.
2961  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
2962
2963  /// getExpr - Return the Expr at the specified index.
2964  Expr *getExpr(unsigned Index) {
2965    assert((Index < NumExprs) && "Arg access out of range!");
2966    return cast<Expr>(SubExprs[Index]);
2967  }
2968  const Expr *getExpr(unsigned Index) const {
2969    assert((Index < NumExprs) && "Arg access out of range!");
2970    return cast<Expr>(SubExprs[Index]);
2971  }
2972
2973  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2974
2975  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2976    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2977    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2978  }
2979
2980  // Iterators
2981  child_range children() {
2982    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
2983  }
2984};
2985
2986/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2987/// This AST node is similar to the conditional operator (?:) in C, with
2988/// the following exceptions:
2989/// - the test expression must be a integer constant expression.
2990/// - the expression returned acts like the chosen subexpression in every
2991///   visible way: the type is the same as that of the chosen subexpression,
2992///   and all predicates (whether it's an l-value, whether it's an integer
2993///   constant expression, etc.) return the same result as for the chosen
2994///   sub-expression.
2995class ChooseExpr : public Expr {
2996  enum { COND, LHS, RHS, END_EXPR };
2997  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2998  SourceLocation BuiltinLoc, RParenLoc;
2999public:
3000  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3001             QualType t, ExprValueKind VK, ExprObjectKind OK,
3002             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3003    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3004           (cond->containsUnexpandedParameterPack() ||
3005            lhs->containsUnexpandedParameterPack() ||
3006            rhs->containsUnexpandedParameterPack())),
3007      BuiltinLoc(BLoc), RParenLoc(RP) {
3008      SubExprs[COND] = cond;
3009      SubExprs[LHS] = lhs;
3010      SubExprs[RHS] = rhs;
3011    }
3012
3013  /// \brief Build an empty __builtin_choose_expr.
3014  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3015
3016  /// isConditionTrue - Return whether the condition is true (i.e. not
3017  /// equal to zero).
3018  bool isConditionTrue(const ASTContext &C) const;
3019
3020  /// getChosenSubExpr - Return the subexpression chosen according to the
3021  /// condition.
3022  Expr *getChosenSubExpr(const ASTContext &C) const {
3023    return isConditionTrue(C) ? getLHS() : getRHS();
3024  }
3025
3026  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3027  void setCond(Expr *E) { SubExprs[COND] = E; }
3028  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3029  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3030  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3031  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3032
3033  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3034  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3035
3036  SourceLocation getRParenLoc() const { return RParenLoc; }
3037  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3038
3039  SourceRange getSourceRange() const {
3040    return SourceRange(BuiltinLoc, RParenLoc);
3041  }
3042  static bool classof(const Stmt *T) {
3043    return T->getStmtClass() == ChooseExprClass;
3044  }
3045  static bool classof(const ChooseExpr *) { return true; }
3046
3047  // Iterators
3048  child_range children() {
3049    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3050  }
3051};
3052
3053/// GNUNullExpr - Implements the GNU __null extension, which is a name
3054/// for a null pointer constant that has integral type (e.g., int or
3055/// long) and is the same size and alignment as a pointer. The __null
3056/// extension is typically only used by system headers, which define
3057/// NULL as __null in C++ rather than using 0 (which is an integer
3058/// that may not match the size of a pointer).
3059class GNUNullExpr : public Expr {
3060  /// TokenLoc - The location of the __null keyword.
3061  SourceLocation TokenLoc;
3062
3063public:
3064  GNUNullExpr(QualType Ty, SourceLocation Loc)
3065    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false),
3066      TokenLoc(Loc) { }
3067
3068  /// \brief Build an empty GNU __null expression.
3069  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3070
3071  /// getTokenLocation - The location of the __null token.
3072  SourceLocation getTokenLocation() const { return TokenLoc; }
3073  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3074
3075  SourceRange getSourceRange() const {
3076    return SourceRange(TokenLoc);
3077  }
3078  static bool classof(const Stmt *T) {
3079    return T->getStmtClass() == GNUNullExprClass;
3080  }
3081  static bool classof(const GNUNullExpr *) { return true; }
3082
3083  // Iterators
3084  child_range children() { return child_range(); }
3085};
3086
3087/// VAArgExpr, used for the builtin function __builtin_va_arg.
3088class VAArgExpr : public Expr {
3089  Stmt *Val;
3090  TypeSourceInfo *TInfo;
3091  SourceLocation BuiltinLoc, RParenLoc;
3092public:
3093  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3094            SourceLocation RPLoc, QualType t)
3095    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3096           t->isDependentType(), false,
3097           (TInfo->getType()->containsUnexpandedParameterPack() ||
3098            e->containsUnexpandedParameterPack())),
3099      Val(e), TInfo(TInfo),
3100      BuiltinLoc(BLoc),
3101      RParenLoc(RPLoc) { }
3102
3103  /// \brief Create an empty __builtin_va_arg expression.
3104  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3105
3106  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3107  Expr *getSubExpr() { return cast<Expr>(Val); }
3108  void setSubExpr(Expr *E) { Val = E; }
3109
3110  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3111  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3112
3113  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3114  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3115
3116  SourceLocation getRParenLoc() const { return RParenLoc; }
3117  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3118
3119  SourceRange getSourceRange() const {
3120    return SourceRange(BuiltinLoc, RParenLoc);
3121  }
3122  static bool classof(const Stmt *T) {
3123    return T->getStmtClass() == VAArgExprClass;
3124  }
3125  static bool classof(const VAArgExpr *) { return true; }
3126
3127  // Iterators
3128  child_range children() { return child_range(&Val, &Val+1); }
3129};
3130
3131/// @brief Describes an C or C++ initializer list.
3132///
3133/// InitListExpr describes an initializer list, which can be used to
3134/// initialize objects of different types, including
3135/// struct/class/union types, arrays, and vectors. For example:
3136///
3137/// @code
3138/// struct foo x = { 1, { 2, 3 } };
3139/// @endcode
3140///
3141/// Prior to semantic analysis, an initializer list will represent the
3142/// initializer list as written by the user, but will have the
3143/// placeholder type "void". This initializer list is called the
3144/// syntactic form of the initializer, and may contain C99 designated
3145/// initializers (represented as DesignatedInitExprs), initializations
3146/// of subobject members without explicit braces, and so on. Clients
3147/// interested in the original syntax of the initializer list should
3148/// use the syntactic form of the initializer list.
3149///
3150/// After semantic analysis, the initializer list will represent the
3151/// semantic form of the initializer, where the initializations of all
3152/// subobjects are made explicit with nested InitListExpr nodes and
3153/// C99 designators have been eliminated by placing the designated
3154/// initializations into the subobject they initialize. Additionally,
3155/// any "holes" in the initialization, where no initializer has been
3156/// specified for a particular subobject, will be replaced with
3157/// implicitly-generated ImplicitValueInitExpr expressions that
3158/// value-initialize the subobjects. Note, however, that the
3159/// initializer lists may still have fewer initializers than there are
3160/// elements to initialize within the object.
3161///
3162/// Given the semantic form of the initializer list, one can retrieve
3163/// the original syntactic form of that initializer list (if it
3164/// exists) using getSyntacticForm(). Since many initializer lists
3165/// have the same syntactic and semantic forms, getSyntacticForm() may
3166/// return NULL, indicating that the current initializer list also
3167/// serves as its syntactic form.
3168class InitListExpr : public Expr {
3169  // FIXME: Eliminate this vector in favor of ASTContext allocation
3170  typedef ASTVector<Stmt *> InitExprsTy;
3171  InitExprsTy InitExprs;
3172  SourceLocation LBraceLoc, RBraceLoc;
3173
3174  /// Contains the initializer list that describes the syntactic form
3175  /// written in the source code.
3176  InitListExpr *SyntacticForm;
3177
3178  /// If this initializer list initializes a union, specifies which
3179  /// field within the union will be initialized.
3180  FieldDecl *UnionFieldInit;
3181
3182  /// Whether this initializer list originally had a GNU array-range
3183  /// designator in it. This is a temporary marker used by CodeGen.
3184  bool HadArrayRangeDesignator;
3185
3186public:
3187  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3188               Expr **initexprs, unsigned numinits,
3189               SourceLocation rbraceloc);
3190
3191  /// \brief Build an empty initializer list.
3192  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3193    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3194
3195  unsigned getNumInits() const { return InitExprs.size(); }
3196
3197  /// \brief Retrieve the set of initializers.
3198  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3199
3200  const Expr *getInit(unsigned Init) const {
3201    assert(Init < getNumInits() && "Initializer access out of range!");
3202    return cast_or_null<Expr>(InitExprs[Init]);
3203  }
3204
3205  Expr *getInit(unsigned Init) {
3206    assert(Init < getNumInits() && "Initializer access out of range!");
3207    return cast_or_null<Expr>(InitExprs[Init]);
3208  }
3209
3210  void setInit(unsigned Init, Expr *expr) {
3211    assert(Init < getNumInits() && "Initializer access out of range!");
3212    InitExprs[Init] = expr;
3213  }
3214
3215  /// \brief Reserve space for some number of initializers.
3216  void reserveInits(ASTContext &C, unsigned NumInits);
3217
3218  /// @brief Specify the number of initializers
3219  ///
3220  /// If there are more than @p NumInits initializers, the remaining
3221  /// initializers will be destroyed. If there are fewer than @p
3222  /// NumInits initializers, NULL expressions will be added for the
3223  /// unknown initializers.
3224  void resizeInits(ASTContext &Context, unsigned NumInits);
3225
3226  /// @brief Updates the initializer at index @p Init with the new
3227  /// expression @p expr, and returns the old expression at that
3228  /// location.
3229  ///
3230  /// When @p Init is out of range for this initializer list, the
3231  /// initializer list will be extended with NULL expressions to
3232  /// accomodate the new entry.
3233  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3234
3235  /// \brief If this initializes a union, specifies which field in the
3236  /// union to initialize.
3237  ///
3238  /// Typically, this field is the first named field within the
3239  /// union. However, a designated initializer can specify the
3240  /// initialization of a different field within the union.
3241  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
3242  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
3243
3244  // Explicit InitListExpr's originate from source code (and have valid source
3245  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3246  bool isExplicit() {
3247    return LBraceLoc.isValid() && RBraceLoc.isValid();
3248  }
3249
3250  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3251  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3252  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3253  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3254
3255  /// @brief Retrieve the initializer list that describes the
3256  /// syntactic form of the initializer.
3257  ///
3258  ///
3259  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3260  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3261
3262  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3263  void sawArrayRangeDesignator(bool ARD = true) {
3264    HadArrayRangeDesignator = ARD;
3265  }
3266
3267  SourceRange getSourceRange() const;
3268
3269  static bool classof(const Stmt *T) {
3270    return T->getStmtClass() == InitListExprClass;
3271  }
3272  static bool classof(const InitListExpr *) { return true; }
3273
3274  // Iterators
3275  child_range children() {
3276    if (InitExprs.empty()) return child_range();
3277    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3278  }
3279
3280  typedef InitExprsTy::iterator iterator;
3281  typedef InitExprsTy::const_iterator const_iterator;
3282  typedef InitExprsTy::reverse_iterator reverse_iterator;
3283  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3284
3285  iterator begin() { return InitExprs.begin(); }
3286  const_iterator begin() const { return InitExprs.begin(); }
3287  iterator end() { return InitExprs.end(); }
3288  const_iterator end() const { return InitExprs.end(); }
3289  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3290  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3291  reverse_iterator rend() { return InitExprs.rend(); }
3292  const_reverse_iterator rend() const { return InitExprs.rend(); }
3293};
3294
3295/// @brief Represents a C99 designated initializer expression.
3296///
3297/// A designated initializer expression (C99 6.7.8) contains one or
3298/// more designators (which can be field designators, array
3299/// designators, or GNU array-range designators) followed by an
3300/// expression that initializes the field or element(s) that the
3301/// designators refer to. For example, given:
3302///
3303/// @code
3304/// struct point {
3305///   double x;
3306///   double y;
3307/// };
3308/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3309/// @endcode
3310///
3311/// The InitListExpr contains three DesignatedInitExprs, the first of
3312/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3313/// designators, one array designator for @c [2] followed by one field
3314/// designator for @c .y. The initalization expression will be 1.0.
3315class DesignatedInitExpr : public Expr {
3316public:
3317  /// \brief Forward declaration of the Designator class.
3318  class Designator;
3319
3320private:
3321  /// The location of the '=' or ':' prior to the actual initializer
3322  /// expression.
3323  SourceLocation EqualOrColonLoc;
3324
3325  /// Whether this designated initializer used the GNU deprecated
3326  /// syntax rather than the C99 '=' syntax.
3327  bool GNUSyntax : 1;
3328
3329  /// The number of designators in this initializer expression.
3330  unsigned NumDesignators : 15;
3331
3332  /// \brief The designators in this designated initialization
3333  /// expression.
3334  Designator *Designators;
3335
3336  /// The number of subexpressions of this initializer expression,
3337  /// which contains both the initializer and any additional
3338  /// expressions used by array and array-range designators.
3339  unsigned NumSubExprs : 16;
3340
3341
3342  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3343                     const Designator *Designators,
3344                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3345                     Expr **IndexExprs, unsigned NumIndexExprs,
3346                     Expr *Init);
3347
3348  explicit DesignatedInitExpr(unsigned NumSubExprs)
3349    : Expr(DesignatedInitExprClass, EmptyShell()),
3350      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3351
3352public:
3353  /// A field designator, e.g., ".x".
3354  struct FieldDesignator {
3355    /// Refers to the field that is being initialized. The low bit
3356    /// of this field determines whether this is actually a pointer
3357    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3358    /// initially constructed, a field designator will store an
3359    /// IdentifierInfo*. After semantic analysis has resolved that
3360    /// name, the field designator will instead store a FieldDecl*.
3361    uintptr_t NameOrField;
3362
3363    /// The location of the '.' in the designated initializer.
3364    unsigned DotLoc;
3365
3366    /// The location of the field name in the designated initializer.
3367    unsigned FieldLoc;
3368  };
3369
3370  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3371  struct ArrayOrRangeDesignator {
3372    /// Location of the first index expression within the designated
3373    /// initializer expression's list of subexpressions.
3374    unsigned Index;
3375    /// The location of the '[' starting the array range designator.
3376    unsigned LBracketLoc;
3377    /// The location of the ellipsis separating the start and end
3378    /// indices. Only valid for GNU array-range designators.
3379    unsigned EllipsisLoc;
3380    /// The location of the ']' terminating the array range designator.
3381    unsigned RBracketLoc;
3382  };
3383
3384  /// @brief Represents a single C99 designator.
3385  ///
3386  /// @todo This class is infuriatingly similar to clang::Designator,
3387  /// but minor differences (storing indices vs. storing pointers)
3388  /// keep us from reusing it. Try harder, later, to rectify these
3389  /// differences.
3390  class Designator {
3391    /// @brief The kind of designator this describes.
3392    enum {
3393      FieldDesignator,
3394      ArrayDesignator,
3395      ArrayRangeDesignator
3396    } Kind;
3397
3398    union {
3399      /// A field designator, e.g., ".x".
3400      struct FieldDesignator Field;
3401      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3402      struct ArrayOrRangeDesignator ArrayOrRange;
3403    };
3404    friend class DesignatedInitExpr;
3405
3406  public:
3407    Designator() {}
3408
3409    /// @brief Initializes a field designator.
3410    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3411               SourceLocation FieldLoc)
3412      : Kind(FieldDesignator) {
3413      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3414      Field.DotLoc = DotLoc.getRawEncoding();
3415      Field.FieldLoc = FieldLoc.getRawEncoding();
3416    }
3417
3418    /// @brief Initializes an array designator.
3419    Designator(unsigned Index, SourceLocation LBracketLoc,
3420               SourceLocation RBracketLoc)
3421      : Kind(ArrayDesignator) {
3422      ArrayOrRange.Index = Index;
3423      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3424      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3425      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3426    }
3427
3428    /// @brief Initializes a GNU array-range designator.
3429    Designator(unsigned Index, SourceLocation LBracketLoc,
3430               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3431      : Kind(ArrayRangeDesignator) {
3432      ArrayOrRange.Index = Index;
3433      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3434      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3435      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3436    }
3437
3438    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3439    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3440    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3441
3442    IdentifierInfo * getFieldName();
3443
3444    FieldDecl *getField() {
3445      assert(Kind == FieldDesignator && "Only valid on a field designator");
3446      if (Field.NameOrField & 0x01)
3447        return 0;
3448      else
3449        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3450    }
3451
3452    void setField(FieldDecl *FD) {
3453      assert(Kind == FieldDesignator && "Only valid on a field designator");
3454      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3455    }
3456
3457    SourceLocation getDotLoc() const {
3458      assert(Kind == FieldDesignator && "Only valid on a field designator");
3459      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3460    }
3461
3462    SourceLocation getFieldLoc() const {
3463      assert(Kind == FieldDesignator && "Only valid on a field designator");
3464      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3465    }
3466
3467    SourceLocation getLBracketLoc() const {
3468      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3469             "Only valid on an array or array-range designator");
3470      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3471    }
3472
3473    SourceLocation getRBracketLoc() const {
3474      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3475             "Only valid on an array or array-range designator");
3476      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3477    }
3478
3479    SourceLocation getEllipsisLoc() const {
3480      assert(Kind == ArrayRangeDesignator &&
3481             "Only valid on an array-range designator");
3482      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3483    }
3484
3485    unsigned getFirstExprIndex() const {
3486      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3487             "Only valid on an array or array-range designator");
3488      return ArrayOrRange.Index;
3489    }
3490
3491    SourceLocation getStartLocation() const {
3492      if (Kind == FieldDesignator)
3493        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3494      else
3495        return getLBracketLoc();
3496    }
3497  };
3498
3499  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3500                                    unsigned NumDesignators,
3501                                    Expr **IndexExprs, unsigned NumIndexExprs,
3502                                    SourceLocation EqualOrColonLoc,
3503                                    bool GNUSyntax, Expr *Init);
3504
3505  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3506
3507  /// @brief Returns the number of designators in this initializer.
3508  unsigned size() const { return NumDesignators; }
3509
3510  // Iterator access to the designators.
3511  typedef Designator* designators_iterator;
3512  designators_iterator designators_begin() { return Designators; }
3513  designators_iterator designators_end() {
3514    return Designators + NumDesignators;
3515  }
3516
3517  typedef std::reverse_iterator<designators_iterator>
3518          reverse_designators_iterator;
3519  reverse_designators_iterator designators_rbegin() {
3520    return reverse_designators_iterator(designators_end());
3521  }
3522  reverse_designators_iterator designators_rend() {
3523    return reverse_designators_iterator(designators_begin());
3524  }
3525
3526  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3527
3528  void setDesignators(ASTContext &C, const Designator *Desigs,
3529                      unsigned NumDesigs);
3530
3531  Expr *getArrayIndex(const Designator& D);
3532  Expr *getArrayRangeStart(const Designator& D);
3533  Expr *getArrayRangeEnd(const Designator& D);
3534
3535  /// @brief Retrieve the location of the '=' that precedes the
3536  /// initializer value itself, if present.
3537  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3538  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3539
3540  /// @brief Determines whether this designated initializer used the
3541  /// deprecated GNU syntax for designated initializers.
3542  bool usesGNUSyntax() const { return GNUSyntax; }
3543  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3544
3545  /// @brief Retrieve the initializer value.
3546  Expr *getInit() const {
3547    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3548  }
3549
3550  void setInit(Expr *init) {
3551    *child_begin() = init;
3552  }
3553
3554  /// \brief Retrieve the total number of subexpressions in this
3555  /// designated initializer expression, including the actual
3556  /// initialized value and any expressions that occur within array
3557  /// and array-range designators.
3558  unsigned getNumSubExprs() const { return NumSubExprs; }
3559
3560  Expr *getSubExpr(unsigned Idx) {
3561    assert(Idx < NumSubExprs && "Subscript out of range");
3562    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3563    Ptr += sizeof(DesignatedInitExpr);
3564    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3565  }
3566
3567  void setSubExpr(unsigned Idx, Expr *E) {
3568    assert(Idx < NumSubExprs && "Subscript out of range");
3569    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3570    Ptr += sizeof(DesignatedInitExpr);
3571    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3572  }
3573
3574  /// \brief Replaces the designator at index @p Idx with the series
3575  /// of designators in [First, Last).
3576  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3577                        const Designator *Last);
3578
3579  SourceRange getSourceRange() const;
3580
3581  static bool classof(const Stmt *T) {
3582    return T->getStmtClass() == DesignatedInitExprClass;
3583  }
3584  static bool classof(const DesignatedInitExpr *) { return true; }
3585
3586  // Iterators
3587  child_range children() {
3588    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3589    return child_range(begin, begin + NumSubExprs);
3590  }
3591};
3592
3593/// \brief Represents an implicitly-generated value initialization of
3594/// an object of a given type.
3595///
3596/// Implicit value initializations occur within semantic initializer
3597/// list expressions (InitListExpr) as placeholders for subobject
3598/// initializations not explicitly specified by the user.
3599///
3600/// \see InitListExpr
3601class ImplicitValueInitExpr : public Expr {
3602public:
3603  explicit ImplicitValueInitExpr(QualType ty)
3604    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3605           false, false, false) { }
3606
3607  /// \brief Construct an empty implicit value initialization.
3608  explicit ImplicitValueInitExpr(EmptyShell Empty)
3609    : Expr(ImplicitValueInitExprClass, Empty) { }
3610
3611  static bool classof(const Stmt *T) {
3612    return T->getStmtClass() == ImplicitValueInitExprClass;
3613  }
3614  static bool classof(const ImplicitValueInitExpr *) { return true; }
3615
3616  SourceRange getSourceRange() const {
3617    return SourceRange();
3618  }
3619
3620  // Iterators
3621  child_range children() { return child_range(); }
3622};
3623
3624
3625class ParenListExpr : public Expr {
3626  Stmt **Exprs;
3627  unsigned NumExprs;
3628  SourceLocation LParenLoc, RParenLoc;
3629
3630public:
3631  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3632                unsigned numexprs, SourceLocation rparenloc);
3633
3634  /// \brief Build an empty paren list.
3635  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3636
3637  unsigned getNumExprs() const { return NumExprs; }
3638
3639  const Expr* getExpr(unsigned Init) const {
3640    assert(Init < getNumExprs() && "Initializer access out of range!");
3641    return cast_or_null<Expr>(Exprs[Init]);
3642  }
3643
3644  Expr* getExpr(unsigned Init) {
3645    assert(Init < getNumExprs() && "Initializer access out of range!");
3646    return cast_or_null<Expr>(Exprs[Init]);
3647  }
3648
3649  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3650
3651  SourceLocation getLParenLoc() const { return LParenLoc; }
3652  SourceLocation getRParenLoc() const { return RParenLoc; }
3653
3654  SourceRange getSourceRange() const {
3655    return SourceRange(LParenLoc, RParenLoc);
3656  }
3657  static bool classof(const Stmt *T) {
3658    return T->getStmtClass() == ParenListExprClass;
3659  }
3660  static bool classof(const ParenListExpr *) { return true; }
3661
3662  // Iterators
3663  child_range children() {
3664    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3665  }
3666
3667  friend class ASTStmtReader;
3668  friend class ASTStmtWriter;
3669};
3670
3671
3672//===----------------------------------------------------------------------===//
3673// Clang Extensions
3674//===----------------------------------------------------------------------===//
3675
3676
3677/// ExtVectorElementExpr - This represents access to specific elements of a
3678/// vector, and may occur on the left hand side or right hand side.  For example
3679/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3680///
3681/// Note that the base may have either vector or pointer to vector type, just
3682/// like a struct field reference.
3683///
3684class ExtVectorElementExpr : public Expr {
3685  Stmt *Base;
3686  IdentifierInfo *Accessor;
3687  SourceLocation AccessorLoc;
3688public:
3689  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3690                       IdentifierInfo &accessor, SourceLocation loc)
3691    : Expr(ExtVectorElementExprClass, ty, VK,
3692           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3693           base->isTypeDependent(), base->isValueDependent(),
3694           base->containsUnexpandedParameterPack()),
3695      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3696
3697  /// \brief Build an empty vector element expression.
3698  explicit ExtVectorElementExpr(EmptyShell Empty)
3699    : Expr(ExtVectorElementExprClass, Empty) { }
3700
3701  const Expr *getBase() const { return cast<Expr>(Base); }
3702  Expr *getBase() { return cast<Expr>(Base); }
3703  void setBase(Expr *E) { Base = E; }
3704
3705  IdentifierInfo &getAccessor() const { return *Accessor; }
3706  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3707
3708  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3709  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3710
3711  /// getNumElements - Get the number of components being selected.
3712  unsigned getNumElements() const;
3713
3714  /// containsDuplicateElements - Return true if any element access is
3715  /// repeated.
3716  bool containsDuplicateElements() const;
3717
3718  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3719  /// aggregate Constant of ConstantInt(s).
3720  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3721
3722  SourceRange getSourceRange() const {
3723    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3724  }
3725
3726  /// isArrow - Return true if the base expression is a pointer to vector,
3727  /// return false if the base expression is a vector.
3728  bool isArrow() const;
3729
3730  static bool classof(const Stmt *T) {
3731    return T->getStmtClass() == ExtVectorElementExprClass;
3732  }
3733  static bool classof(const ExtVectorElementExpr *) { return true; }
3734
3735  // Iterators
3736  child_range children() { return child_range(&Base, &Base+1); }
3737};
3738
3739
3740/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3741/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3742class BlockExpr : public Expr {
3743protected:
3744  BlockDecl *TheBlock;
3745public:
3746  BlockExpr(BlockDecl *BD, QualType ty)
3747    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3748           ty->isDependentType(), false, false),
3749      TheBlock(BD) {}
3750
3751  /// \brief Build an empty block expression.
3752  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3753
3754  const BlockDecl *getBlockDecl() const { return TheBlock; }
3755  BlockDecl *getBlockDecl() { return TheBlock; }
3756  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3757
3758  // Convenience functions for probing the underlying BlockDecl.
3759  SourceLocation getCaretLocation() const;
3760  const Stmt *getBody() const;
3761  Stmt *getBody();
3762
3763  SourceRange getSourceRange() const {
3764    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3765  }
3766
3767  /// getFunctionType - Return the underlying function type for this block.
3768  const FunctionType *getFunctionType() const;
3769
3770  static bool classof(const Stmt *T) {
3771    return T->getStmtClass() == BlockExprClass;
3772  }
3773  static bool classof(const BlockExpr *) { return true; }
3774
3775  // Iterators
3776  child_range children() { return child_range(); }
3777};
3778
3779/// BlockDeclRefExpr - A reference to a local variable declared in an
3780/// enclosing scope.
3781class BlockDeclRefExpr : public Expr {
3782  VarDecl *D;
3783  SourceLocation Loc;
3784  bool IsByRef : 1;
3785  bool ConstQualAdded : 1;
3786public:
3787  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3788                   SourceLocation l, bool ByRef, bool constAdded = false);
3789
3790  // \brief Build an empty reference to a declared variable in a
3791  // block.
3792  explicit BlockDeclRefExpr(EmptyShell Empty)
3793    : Expr(BlockDeclRefExprClass, Empty) { }
3794
3795  VarDecl *getDecl() { return D; }
3796  const VarDecl *getDecl() const { return D; }
3797  void setDecl(VarDecl *VD) { D = VD; }
3798
3799  SourceLocation getLocation() const { return Loc; }
3800  void setLocation(SourceLocation L) { Loc = L; }
3801
3802  SourceRange getSourceRange() const { return SourceRange(Loc); }
3803
3804  bool isByRef() const { return IsByRef; }
3805  void setByRef(bool BR) { IsByRef = BR; }
3806
3807  bool isConstQualAdded() const { return ConstQualAdded; }
3808  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3809
3810  static bool classof(const Stmt *T) {
3811    return T->getStmtClass() == BlockDeclRefExprClass;
3812  }
3813  static bool classof(const BlockDeclRefExpr *) { return true; }
3814
3815  // Iterators
3816  child_range children() { return child_range(); }
3817};
3818
3819}  // end namespace clang
3820
3821#endif
3822