Expr.h revision 83f6faf37d9bf58986bedc9bc0ea897a56b4dbad
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44protected:
45  /// TypeDependent - Whether this expression is type-dependent
46  /// (C++ [temp.dep.expr]).
47  bool TypeDependent : 1;
48
49  /// ValueDependent - Whether this expression is value-dependent
50  /// (C++ [temp.dep.constexpr]).
51  bool ValueDependent : 1;
52
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66  /// \brief Construct an empty expression.
67  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
68
69public:
70  /// \brief Increases the reference count for this expression.
71  ///
72  /// Invoke the Retain() operation when this expression
73  /// is being shared by another owner.
74  Expr *Retain() {
75    Stmt::Retain();
76    return this;
77  }
78
79  QualType getType() const { return TR; }
80  void setType(QualType t) {
81    // In C++, the type of an expression is always adjusted so that it
82    // will not have reference type an expression will never have
83    // reference type (C++ [expr]p6). Use
84    // QualType::getNonReferenceType() to retrieve the non-reference
85    // type. Additionally, inspect Expr::isLvalue to determine whether
86    // an expression that is adjusted in this manner should be
87    // considered an lvalue.
88    assert((TR.isNull() || !TR->isReferenceType()) &&
89           "Expressions can't have reference type");
90
91    TR = t;
92  }
93
94  /// isValueDependent - Determines whether this expression is
95  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
96  /// array bound of "Chars" in the following example is
97  /// value-dependent.
98  /// @code
99  /// template<int Size, char (&Chars)[Size]> struct meta_string;
100  /// @endcode
101  bool isValueDependent() const { return ValueDependent; }
102
103  /// \brief Set whether this expression is value-dependent or not.
104  void setValueDependent(bool VD) { ValueDependent = VD; }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) { TypeDependent = TD; }
121
122  /// SourceLocation tokens are not useful in isolation - they are low level
123  /// value objects created/interpreted by SourceManager. We assume AST
124  /// clients will have a pointer to the respective SourceManager.
125  virtual SourceRange getSourceRange() const = 0;
126
127  /// getExprLoc - Return the preferred location for the arrow when diagnosing
128  /// a problem with a generic expression.
129  virtual SourceLocation getExprLoc() const { return getLocStart(); }
130
131  /// isUnusedResultAWarning - Return true if this immediate expression should
132  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
133  /// with location to warn on and the source range[s] to report with the
134  /// warning.
135  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
136                              SourceRange &R2) const;
137
138  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
139  /// incomplete type other than void. Nonarray expressions that can be lvalues:
140  ///  - name, where name must be a variable
141  ///  - e[i]
142  ///  - (e), where e must be an lvalue
143  ///  - e.name, where e must be an lvalue
144  ///  - e->name
145  ///  - *e, the type of e cannot be a function type
146  ///  - string-constant
147  ///  - reference type [C++ [expr]]
148  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
149  ///
150  enum isLvalueResult {
151    LV_Valid,
152    LV_NotObjectType,
153    LV_IncompleteVoidType,
154    LV_DuplicateVectorComponents,
155    LV_InvalidExpression,
156    LV_MemberFunction
157  };
158  isLvalueResult isLvalue(ASTContext &Ctx) const;
159
160  // Same as above, but excluding checks for non-object and void types in C
161  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
162
163  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
164  /// does not have an incomplete type, does not have a const-qualified type,
165  /// and if it is a structure or union, does not have any member (including,
166  /// recursively, any member or element of all contained aggregates or unions)
167  /// with a const-qualified type.
168  ///
169  /// \param Loc [in] [out] - A source location which *may* be filled
170  /// in with the location of the expression making this a
171  /// non-modifiable lvalue, if specified.
172  enum isModifiableLvalueResult {
173    MLV_Valid,
174    MLV_NotObjectType,
175    MLV_IncompleteVoidType,
176    MLV_DuplicateVectorComponents,
177    MLV_InvalidExpression,
178    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
179    MLV_IncompleteType,
180    MLV_ConstQualified,
181    MLV_ArrayType,
182    MLV_NotBlockQualified,
183    MLV_ReadonlyProperty,
184    MLV_NoSetterProperty,
185    MLV_MemberFunction
186  };
187  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
188                                              SourceLocation *Loc = 0) const;
189
190  /// \brief If this expression refers to a bit-field, retrieve the
191  /// declaration of that bit-field.
192  FieldDecl *getBitField();
193
194  const FieldDecl *getBitField() const {
195    return const_cast<Expr*>(this)->getBitField();
196  }
197
198  /// isIntegerConstantExpr - Return true if this expression is a valid integer
199  /// constant expression, and, if so, return its value in Result.  If not a
200  /// valid i-c-e, return false and fill in Loc (if specified) with the location
201  /// of the invalid expression.
202  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
203                             SourceLocation *Loc = 0,
204                             bool isEvaluated = true) const;
205  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
206    llvm::APSInt X;
207    return isIntegerConstantExpr(X, Ctx, Loc);
208  }
209  /// isConstantInitializer - Returns true if this expression is a constant
210  /// initializer, which can be emitted at compile-time.
211  bool isConstantInitializer(ASTContext &Ctx) const;
212
213  /// EvalResult is a struct with detailed info about an evaluated expression.
214  struct EvalResult {
215    /// Val - This is the value the expression can be folded to.
216    APValue Val;
217
218    /// HasSideEffects - Whether the evaluated expression has side effects.
219    /// For example, (f() && 0) can be folded, but it still has side effects.
220    bool HasSideEffects;
221
222    /// Diag - If the expression is unfoldable, then Diag contains a note
223    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
224    /// position for the error, and DiagExpr is the expression that caused
225    /// the error.
226    /// If the expression is foldable, but not an integer constant expression,
227    /// Diag contains a note diagnostic that describes why it isn't an integer
228    /// constant expression. If the expression *is* an integer constant
229    /// expression, then Diag will be zero.
230    unsigned Diag;
231    const Expr *DiagExpr;
232    SourceLocation DiagLoc;
233
234    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
235  };
236
237  /// Evaluate - Return true if this is a constant which we can fold using
238  /// any crazy technique (that has nothing to do with language standards) that
239  /// we want to.  If this function returns true, it returns the folded constant
240  /// in Result.
241  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
242
243  /// isEvaluatable - Call Evaluate to see if this expression can be constant
244  /// folded, but discard the result.
245  bool isEvaluatable(ASTContext &Ctx) const;
246
247  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
248  /// must be called on an expression that constant folds to an integer.
249  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
250
251  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
252  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
253
254  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
255  /// integer constant expression with the value zero, or if this is one that is
256  /// cast to void*.
257  bool isNullPointerConstant(ASTContext &Ctx) const;
258
259  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
260  /// write barrier.
261  bool isOBJCGCCandidate(ASTContext &Ctx) const;
262
263  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
264  ///  its subexpression.  If that subexpression is also a ParenExpr,
265  ///  then this method recursively returns its subexpression, and so forth.
266  ///  Otherwise, the method returns the current Expr.
267  Expr* IgnoreParens();
268
269  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
270  /// or CastExprs, returning their operand.
271  Expr *IgnoreParenCasts();
272
273  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
274  /// value (including ptr->int casts of the same size).  Strip off any
275  /// ParenExpr or CastExprs, returning their operand.
276  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
277
278  const Expr* IgnoreParens() const {
279    return const_cast<Expr*>(this)->IgnoreParens();
280  }
281  const Expr *IgnoreParenCasts() const {
282    return const_cast<Expr*>(this)->IgnoreParenCasts();
283  }
284  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
285    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
286  }
287
288  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
289  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
290
291  static bool classof(const Stmt *T) {
292    return T->getStmtClass() >= firstExprConstant &&
293           T->getStmtClass() <= lastExprConstant;
294  }
295  static bool classof(const Expr *) { return true; }
296};
297
298
299//===----------------------------------------------------------------------===//
300// Primary Expressions.
301//===----------------------------------------------------------------------===//
302
303/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
304/// enum, etc.
305class DeclRefExpr : public Expr {
306  NamedDecl *D;
307  SourceLocation Loc;
308
309protected:
310  // FIXME: Eventually, this constructor will go away and all subclasses
311  // will have to provide the type- and value-dependent flags.
312  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
313    Expr(SC, t), D(d), Loc(l) {}
314
315  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
316              bool VD) :
317    Expr(SC, t, TD, VD), D(d), Loc(l) {}
318
319public:
320  // FIXME: Eventually, this constructor will go away and all clients
321  // will have to provide the type- and value-dependent flags.
322  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
323    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
324
325  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
326    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
327
328  /// \brief Construct an empty declaration reference expression.
329  explicit DeclRefExpr(EmptyShell Empty)
330    : Expr(DeclRefExprClass, Empty) { }
331
332  NamedDecl *getDecl() { return D; }
333  const NamedDecl *getDecl() const { return D; }
334  void setDecl(NamedDecl *NewD) { D = NewD; }
335
336  SourceLocation getLocation() const { return Loc; }
337  void setLocation(SourceLocation L) { Loc = L; }
338  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
339
340  static bool classof(const Stmt *T) {
341    return T->getStmtClass() == DeclRefExprClass ||
342           T->getStmtClass() == CXXConditionDeclExprClass ||
343           T->getStmtClass() == QualifiedDeclRefExprClass;
344  }
345  static bool classof(const DeclRefExpr *) { return true; }
346
347  // Iterators
348  virtual child_iterator child_begin();
349  virtual child_iterator child_end();
350};
351
352/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
353class PredefinedExpr : public Expr {
354public:
355  enum IdentType {
356    Func,
357    Function,
358    PrettyFunction
359  };
360
361private:
362  SourceLocation Loc;
363  IdentType Type;
364public:
365  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
366    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
367
368  /// \brief Construct an empty predefined expression.
369  explicit PredefinedExpr(EmptyShell Empty)
370    : Expr(PredefinedExprClass, Empty) { }
371
372  IdentType getIdentType() const { return Type; }
373  void setIdentType(IdentType IT) { Type = IT; }
374
375  SourceLocation getLocation() const { return Loc; }
376  void setLocation(SourceLocation L) { Loc = L; }
377
378  // FIXME: The logic for computing the value of a predefined expr should go
379  // into a method here that takes the inner-most code decl (a block, function
380  // or objc method) that the expr lives in.  This would allow sema and codegen
381  // to be consistent for things like sizeof(__func__) etc.
382
383  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
384
385  static bool classof(const Stmt *T) {
386    return T->getStmtClass() == PredefinedExprClass;
387  }
388  static bool classof(const PredefinedExpr *) { return true; }
389
390  // Iterators
391  virtual child_iterator child_begin();
392  virtual child_iterator child_end();
393};
394
395class IntegerLiteral : public Expr {
396  llvm::APInt Value;
397  SourceLocation Loc;
398public:
399  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
400  // or UnsignedLongLongTy
401  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
402    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
403    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
404  }
405
406  /// \brief Construct an empty integer literal.
407  explicit IntegerLiteral(EmptyShell Empty)
408    : Expr(IntegerLiteralClass, Empty) { }
409
410  const llvm::APInt &getValue() const { return Value; }
411  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
412
413  /// \brief Retrieve the location of the literal.
414  SourceLocation getLocation() const { return Loc; }
415
416  void setValue(const llvm::APInt &Val) { Value = Val; }
417  void setLocation(SourceLocation Location) { Loc = Location; }
418
419  static bool classof(const Stmt *T) {
420    return T->getStmtClass() == IntegerLiteralClass;
421  }
422  static bool classof(const IntegerLiteral *) { return true; }
423
424  // Iterators
425  virtual child_iterator child_begin();
426  virtual child_iterator child_end();
427};
428
429class CharacterLiteral : public Expr {
430  unsigned Value;
431  SourceLocation Loc;
432  bool IsWide;
433public:
434  // type should be IntTy
435  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
436    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
437  }
438
439  /// \brief Construct an empty character literal.
440  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
441
442  SourceLocation getLocation() const { return Loc; }
443  bool isWide() const { return IsWide; }
444
445  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
446
447  unsigned getValue() const { return Value; }
448
449  void setLocation(SourceLocation Location) { Loc = Location; }
450  void setWide(bool W) { IsWide = W; }
451  void setValue(unsigned Val) { Value = Val; }
452
453  static bool classof(const Stmt *T) {
454    return T->getStmtClass() == CharacterLiteralClass;
455  }
456  static bool classof(const CharacterLiteral *) { return true; }
457
458  // Iterators
459  virtual child_iterator child_begin();
460  virtual child_iterator child_end();
461};
462
463class FloatingLiteral : public Expr {
464  llvm::APFloat Value;
465  bool IsExact : 1;
466  SourceLocation Loc;
467public:
468  FloatingLiteral(const llvm::APFloat &V, bool isexact,
469                  QualType Type, SourceLocation L)
470    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(isexact), Loc(L) {}
471
472  /// \brief Construct an empty floating-point literal.
473  explicit FloatingLiteral(EmptyShell Empty)
474    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
475
476  const llvm::APFloat &getValue() const { return Value; }
477  void setValue(const llvm::APFloat &Val) { Value = Val; }
478
479  bool isExact() const { return IsExact; }
480  void setExact(bool E) { IsExact = E; }
481
482  /// getValueAsApproximateDouble - This returns the value as an inaccurate
483  /// double.  Note that this may cause loss of precision, but is useful for
484  /// debugging dumps, etc.
485  double getValueAsApproximateDouble() const;
486
487  SourceLocation getLocation() const { return Loc; }
488  void setLocation(SourceLocation L) { Loc = L; }
489
490  // FIXME: The logic for computing the value of a predefined expr should go
491  // into a method here that takes the inner-most code decl (a block, function
492  // or objc method) that the expr lives in.  This would allow sema and codegen
493  // to be consistent for things like sizeof(__func__) etc.
494
495  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
496
497  static bool classof(const Stmt *T) {
498    return T->getStmtClass() == FloatingLiteralClass;
499  }
500  static bool classof(const FloatingLiteral *) { return true; }
501
502  // Iterators
503  virtual child_iterator child_begin();
504  virtual child_iterator child_end();
505};
506
507/// ImaginaryLiteral - We support imaginary integer and floating point literals,
508/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
509/// IntegerLiteral classes.  Instances of this class always have a Complex type
510/// whose element type matches the subexpression.
511///
512class ImaginaryLiteral : public Expr {
513  Stmt *Val;
514public:
515  ImaginaryLiteral(Expr *val, QualType Ty)
516    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
517
518  /// \brief Build an empty imaginary literal.
519  explicit ImaginaryLiteral(EmptyShell Empty)
520    : Expr(ImaginaryLiteralClass, Empty) { }
521
522  const Expr *getSubExpr() const { return cast<Expr>(Val); }
523  Expr *getSubExpr() { return cast<Expr>(Val); }
524  void setSubExpr(Expr *E) { Val = E; }
525
526  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == ImaginaryLiteralClass;
529  }
530  static bool classof(const ImaginaryLiteral *) { return true; }
531
532  // Iterators
533  virtual child_iterator child_begin();
534  virtual child_iterator child_end();
535};
536
537/// StringLiteral - This represents a string literal expression, e.g. "foo"
538/// or L"bar" (wide strings).  The actual string is returned by getStrData()
539/// is NOT null-terminated, and the length of the string is determined by
540/// calling getByteLength().  The C type for a string is always a
541/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
542/// not.
543///
544/// Note that strings in C can be formed by concatenation of multiple string
545/// literal pptokens in translation phase #6.  This keeps track of the locations
546/// of each of these pieces.
547///
548/// Strings in C can also be truncated and extended by assigning into arrays,
549/// e.g. with constructs like:
550///   char X[2] = "foobar";
551/// In this case, getByteLength() will return 6, but the string literal will
552/// have type "char[2]".
553class StringLiteral : public Expr {
554  const char *StrData;
555  unsigned ByteLength;
556  bool IsWide;
557  unsigned NumConcatenated;
558  SourceLocation TokLocs[1];
559
560  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
561
562protected:
563  virtual void DoDestroy(ASTContext &C);
564
565public:
566  /// This is the "fully general" constructor that allows representation of
567  /// strings formed from multiple concatenated tokens.
568  static StringLiteral *Create(ASTContext &C, const char *StrData,
569                               unsigned ByteLength, bool Wide, QualType Ty,
570                               const SourceLocation *Loc, unsigned NumStrs);
571
572  /// Simple constructor for string literals made from one token.
573  static StringLiteral *Create(ASTContext &C, const char *StrData,
574                               unsigned ByteLength,
575                               bool Wide, QualType Ty, SourceLocation Loc) {
576    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
577  }
578
579  /// \brief Construct an empty string literal.
580  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
581
582  const char *getStrData() const { return StrData; }
583  unsigned getByteLength() const { return ByteLength; }
584
585  /// \brief Sets the string data to the given string data.
586  void setStrData(ASTContext &C, const char *Str, unsigned Len);
587
588  bool isWide() const { return IsWide; }
589  void setWide(bool W) { IsWide = W; }
590
591  bool containsNonAsciiOrNull() const {
592    for (unsigned i = 0; i < getByteLength(); ++i)
593      if (!isascii(getStrData()[i]) || !getStrData()[i])
594        return true;
595    return false;
596  }
597  /// getNumConcatenated - Get the number of string literal tokens that were
598  /// concatenated in translation phase #6 to form this string literal.
599  unsigned getNumConcatenated() const { return NumConcatenated; }
600
601  SourceLocation getStrTokenLoc(unsigned TokNum) const {
602    assert(TokNum < NumConcatenated && "Invalid tok number");
603    return TokLocs[TokNum];
604  }
605  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
606    assert(TokNum < NumConcatenated && "Invalid tok number");
607    TokLocs[TokNum] = L;
608  }
609
610  typedef const SourceLocation *tokloc_iterator;
611  tokloc_iterator tokloc_begin() const { return TokLocs; }
612  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
613
614  virtual SourceRange getSourceRange() const {
615    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
616  }
617  static bool classof(const Stmt *T) {
618    return T->getStmtClass() == StringLiteralClass;
619  }
620  static bool classof(const StringLiteral *) { return true; }
621
622  // Iterators
623  virtual child_iterator child_begin();
624  virtual child_iterator child_end();
625};
626
627/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
628/// AST node is only formed if full location information is requested.
629class ParenExpr : public Expr {
630  SourceLocation L, R;
631  Stmt *Val;
632public:
633  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
634    : Expr(ParenExprClass, val->getType(),
635           val->isTypeDependent(), val->isValueDependent()),
636      L(l), R(r), Val(val) {}
637
638  /// \brief Construct an empty parenthesized expression.
639  explicit ParenExpr(EmptyShell Empty)
640    : Expr(ParenExprClass, Empty) { }
641
642  const Expr *getSubExpr() const { return cast<Expr>(Val); }
643  Expr *getSubExpr() { return cast<Expr>(Val); }
644  void setSubExpr(Expr *E) { Val = E; }
645
646  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
647
648  /// \brief Get the location of the left parentheses '('.
649  SourceLocation getLParen() const { return L; }
650  void setLParen(SourceLocation Loc) { L = Loc; }
651
652  /// \brief Get the location of the right parentheses ')'.
653  SourceLocation getRParen() const { return R; }
654  void setRParen(SourceLocation Loc) { R = Loc; }
655
656  static bool classof(const Stmt *T) {
657    return T->getStmtClass() == ParenExprClass;
658  }
659  static bool classof(const ParenExpr *) { return true; }
660
661  // Iterators
662  virtual child_iterator child_begin();
663  virtual child_iterator child_end();
664};
665
666
667/// UnaryOperator - This represents the unary-expression's (except sizeof and
668/// alignof), the postinc/postdec operators from postfix-expression, and various
669/// extensions.
670///
671/// Notes on various nodes:
672///
673/// Real/Imag - These return the real/imag part of a complex operand.  If
674///   applied to a non-complex value, the former returns its operand and the
675///   later returns zero in the type of the operand.
676///
677/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
678///   subexpression is a compound literal with the various MemberExpr and
679///   ArraySubscriptExpr's applied to it.
680///
681class UnaryOperator : public Expr {
682public:
683  // Note that additions to this should also update the StmtVisitor class.
684  enum Opcode {
685    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
686    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
687    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
688    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
689    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
690    Real, Imag,       // "__real expr"/"__imag expr" Extension.
691    Extension,        // __extension__ marker.
692    OffsetOf          // __builtin_offsetof
693  };
694private:
695  Stmt *Val;
696  Opcode Opc;
697  SourceLocation Loc;
698public:
699
700  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
701    : Expr(UnaryOperatorClass, type,
702           input->isTypeDependent() && opc != OffsetOf,
703           input->isValueDependent()),
704      Val(input), Opc(opc), Loc(l) {}
705
706  /// \brief Build an empty unary operator.
707  explicit UnaryOperator(EmptyShell Empty)
708    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
709
710  Opcode getOpcode() const { return Opc; }
711  void setOpcode(Opcode O) { Opc = O; }
712
713  Expr *getSubExpr() const { return cast<Expr>(Val); }
714  void setSubExpr(Expr *E) { Val = E; }
715
716  /// getOperatorLoc - Return the location of the operator.
717  SourceLocation getOperatorLoc() const { return Loc; }
718  void setOperatorLoc(SourceLocation L) { Loc = L; }
719
720  /// isPostfix - Return true if this is a postfix operation, like x++.
721  static bool isPostfix(Opcode Op) {
722    return Op == PostInc || Op == PostDec;
723  }
724
725  /// isPostfix - Return true if this is a prefix operation, like --x.
726  static bool isPrefix(Opcode Op) {
727    return Op == PreInc || Op == PreDec;
728  }
729
730  bool isPrefix() const { return isPrefix(Opc); }
731  bool isPostfix() const { return isPostfix(Opc); }
732  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
733  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
734  bool isOffsetOfOp() const { return Opc == OffsetOf; }
735  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
736  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
737
738  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
739  /// corresponds to, e.g. "sizeof" or "[pre]++"
740  static const char *getOpcodeStr(Opcode Op);
741
742  /// \brief Retrieve the unary opcode that corresponds to the given
743  /// overloaded operator.
744  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
745
746  /// \brief Retrieve the overloaded operator kind that corresponds to
747  /// the given unary opcode.
748  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
749
750  virtual SourceRange getSourceRange() const {
751    if (isPostfix())
752      return SourceRange(Val->getLocStart(), Loc);
753    else
754      return SourceRange(Loc, Val->getLocEnd());
755  }
756  virtual SourceLocation getExprLoc() const { return Loc; }
757
758  static bool classof(const Stmt *T) {
759    return T->getStmtClass() == UnaryOperatorClass;
760  }
761  static bool classof(const UnaryOperator *) { return true; }
762
763  // Iterators
764  virtual child_iterator child_begin();
765  virtual child_iterator child_end();
766};
767
768/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
769/// types and expressions.
770class SizeOfAlignOfExpr : public Expr {
771  bool isSizeof : 1;  // true if sizeof, false if alignof.
772  bool isType : 1;    // true if operand is a type, false if an expression
773  union {
774    void *Ty;
775    Stmt *Ex;
776  } Argument;
777  SourceLocation OpLoc, RParenLoc;
778
779protected:
780  virtual void DoDestroy(ASTContext& C);
781
782public:
783  SizeOfAlignOfExpr(bool issizeof, QualType T,
784                    QualType resultType, SourceLocation op,
785                    SourceLocation rp) :
786      Expr(SizeOfAlignOfExprClass, resultType,
787           false, // Never type-dependent (C++ [temp.dep.expr]p3).
788           // Value-dependent if the argument is type-dependent.
789           T->isDependentType()),
790      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
791    Argument.Ty = T.getAsOpaquePtr();
792  }
793
794  SizeOfAlignOfExpr(bool issizeof, Expr *E,
795                    QualType resultType, SourceLocation op,
796                    SourceLocation rp) :
797      Expr(SizeOfAlignOfExprClass, resultType,
798           false, // Never type-dependent (C++ [temp.dep.expr]p3).
799           // Value-dependent if the argument is type-dependent.
800           E->isTypeDependent()),
801      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
802    Argument.Ex = E;
803  }
804
805  /// \brief Construct an empty sizeof/alignof expression.
806  explicit SizeOfAlignOfExpr(EmptyShell Empty)
807    : Expr(SizeOfAlignOfExprClass, Empty) { }
808
809  bool isSizeOf() const { return isSizeof; }
810  void setSizeof(bool S) { isSizeof = S; }
811
812  bool isArgumentType() const { return isType; }
813  QualType getArgumentType() const {
814    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
815    return QualType::getFromOpaquePtr(Argument.Ty);
816  }
817  Expr *getArgumentExpr() {
818    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
819    return static_cast<Expr*>(Argument.Ex);
820  }
821  const Expr *getArgumentExpr() const {
822    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
823  }
824
825  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
826  void setArgument(QualType T) {
827    Argument.Ty = T.getAsOpaquePtr();
828    isType = true;
829  }
830
831  /// Gets the argument type, or the type of the argument expression, whichever
832  /// is appropriate.
833  QualType getTypeOfArgument() const {
834    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
835  }
836
837  SourceLocation getOperatorLoc() const { return OpLoc; }
838  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
839
840  SourceLocation getRParenLoc() const { return RParenLoc; }
841  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
842
843  virtual SourceRange getSourceRange() const {
844    return SourceRange(OpLoc, RParenLoc);
845  }
846
847  static bool classof(const Stmt *T) {
848    return T->getStmtClass() == SizeOfAlignOfExprClass;
849  }
850  static bool classof(const SizeOfAlignOfExpr *) { return true; }
851
852  // Iterators
853  virtual child_iterator child_begin();
854  virtual child_iterator child_end();
855};
856
857//===----------------------------------------------------------------------===//
858// Postfix Operators.
859//===----------------------------------------------------------------------===//
860
861/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
862class ArraySubscriptExpr : public Expr {
863  enum { LHS, RHS, END_EXPR=2 };
864  Stmt* SubExprs[END_EXPR];
865  SourceLocation RBracketLoc;
866public:
867  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
868                     SourceLocation rbracketloc)
869  : Expr(ArraySubscriptExprClass, t,
870         lhs->isTypeDependent() || rhs->isTypeDependent(),
871         lhs->isValueDependent() || rhs->isValueDependent()),
872    RBracketLoc(rbracketloc) {
873    SubExprs[LHS] = lhs;
874    SubExprs[RHS] = rhs;
875  }
876
877  /// \brief Create an empty array subscript expression.
878  explicit ArraySubscriptExpr(EmptyShell Shell)
879    : Expr(ArraySubscriptExprClass, Shell) { }
880
881  /// An array access can be written A[4] or 4[A] (both are equivalent).
882  /// - getBase() and getIdx() always present the normalized view: A[4].
883  ///    In this case getBase() returns "A" and getIdx() returns "4".
884  /// - getLHS() and getRHS() present the syntactic view. e.g. for
885  ///    4[A] getLHS() returns "4".
886  /// Note: Because vector element access is also written A[4] we must
887  /// predicate the format conversion in getBase and getIdx only on the
888  /// the type of the RHS, as it is possible for the LHS to be a vector of
889  /// integer type
890  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
891  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
892  void setLHS(Expr *E) { SubExprs[LHS] = E; }
893
894  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
895  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
896  void setRHS(Expr *E) { SubExprs[RHS] = E; }
897
898  Expr *getBase() {
899    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
900  }
901
902  const Expr *getBase() const {
903    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
904  }
905
906  Expr *getIdx() {
907    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
908  }
909
910  const Expr *getIdx() const {
911    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
912  }
913
914  virtual SourceRange getSourceRange() const {
915    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
916  }
917
918  SourceLocation getRBracketLoc() const { return RBracketLoc; }
919  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
920
921  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
922
923  static bool classof(const Stmt *T) {
924    return T->getStmtClass() == ArraySubscriptExprClass;
925  }
926  static bool classof(const ArraySubscriptExpr *) { return true; }
927
928  // Iterators
929  virtual child_iterator child_begin();
930  virtual child_iterator child_end();
931};
932
933
934/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
935/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
936/// while its subclasses may represent alternative syntax that (semantically)
937/// results in a function call. For example, CXXOperatorCallExpr is
938/// a subclass for overloaded operator calls that use operator syntax, e.g.,
939/// "str1 + str2" to resolve to a function call.
940class CallExpr : public Expr {
941  enum { FN=0, ARGS_START=1 };
942  Stmt **SubExprs;
943  unsigned NumArgs;
944  SourceLocation RParenLoc;
945
946protected:
947  // This version of the constructor is for derived classes.
948  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
949           QualType t, SourceLocation rparenloc);
950
951  virtual void DoDestroy(ASTContext& C);
952
953public:
954  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
955           SourceLocation rparenloc);
956
957  /// \brief Build an empty call expression.
958  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
959
960  ~CallExpr() {}
961
962  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
963  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
964  void setCallee(Expr *F) { SubExprs[FN] = F; }
965
966  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
967  FunctionDecl *getDirectCallee();
968
969  /// getNumArgs - Return the number of actual arguments to this call.
970  ///
971  unsigned getNumArgs() const { return NumArgs; }
972
973  /// getArg - Return the specified argument.
974  Expr *getArg(unsigned Arg) {
975    assert(Arg < NumArgs && "Arg access out of range!");
976    return cast<Expr>(SubExprs[Arg+ARGS_START]);
977  }
978  const Expr *getArg(unsigned Arg) const {
979    assert(Arg < NumArgs && "Arg access out of range!");
980    return cast<Expr>(SubExprs[Arg+ARGS_START]);
981  }
982
983  /// setArg - Set the specified argument.
984  void setArg(unsigned Arg, Expr *ArgExpr) {
985    assert(Arg < NumArgs && "Arg access out of range!");
986    SubExprs[Arg+ARGS_START] = ArgExpr;
987  }
988
989  /// setNumArgs - This changes the number of arguments present in this call.
990  /// Any orphaned expressions are deleted by this, and any new operands are set
991  /// to null.
992  void setNumArgs(ASTContext& C, unsigned NumArgs);
993
994  typedef ExprIterator arg_iterator;
995  typedef ConstExprIterator const_arg_iterator;
996
997  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
998  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
999  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1000  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1001
1002  /// getNumCommas - Return the number of commas that must have been present in
1003  /// this function call.
1004  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1005
1006  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1007  /// not, return 0.
1008  unsigned isBuiltinCall(ASTContext &Context) const;
1009
1010  /// getCallReturnType - Get the return type of the call expr. This is not
1011  /// always the type of the expr itself, if the return type is a reference
1012  /// type.
1013  QualType getCallReturnType() const;
1014
1015  SourceLocation getRParenLoc() const { return RParenLoc; }
1016  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1017
1018  virtual SourceRange getSourceRange() const {
1019    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1020  }
1021
1022  static bool classof(const Stmt *T) {
1023    return T->getStmtClass() == CallExprClass ||
1024           T->getStmtClass() == CXXOperatorCallExprClass ||
1025           T->getStmtClass() == CXXMemberCallExprClass;
1026  }
1027  static bool classof(const CallExpr *) { return true; }
1028  static bool classof(const CXXOperatorCallExpr *) { return true; }
1029  static bool classof(const CXXMemberCallExpr *) { return true; }
1030
1031  // Iterators
1032  virtual child_iterator child_begin();
1033  virtual child_iterator child_end();
1034};
1035
1036/// \brief Represents the qualifier that may precede a C++ name, e.g., the
1037/// "std::" in "std::sort".
1038struct NameQualifier {
1039  /// \brief The nested name specifier.
1040  NestedNameSpecifier *NNS;
1041
1042  /// \brief The source range covered by the nested name specifier.
1043  SourceRange Range;
1044};
1045
1046/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1047///
1048class MemberExpr : public Expr {
1049  /// Base - the expression for the base pointer or structure references.  In
1050  /// X.F, this is "X".
1051  Stmt *Base;
1052
1053  /// MemberDecl - This is the decl being referenced by the field/member name.
1054  /// In X.F, this is the decl referenced by F.
1055  NamedDecl *MemberDecl;
1056
1057  /// MemberLoc - This is the location of the member name.
1058  SourceLocation MemberLoc;
1059
1060  /// IsArrow - True if this is "X->F", false if this is "X.F".
1061  bool IsArrow : 1;
1062
1063  /// \brief True if this member expression used a nested-name-specifier to
1064  /// refer to the member, e.g., "x->Base::f".
1065  bool HasQualifier : 1;
1066
1067  /// \brief Retrieve the qualifier that preceded the member name, if any.
1068  NameQualifier *getMemberQualifier() {
1069    if (!HasQualifier)
1070      return 0;
1071
1072    return reinterpret_cast<NameQualifier *> (this + 1);
1073  }
1074
1075  /// \brief Retrieve the qualifier that preceded the member name, if any.
1076  const NameQualifier *getMemberQualifier() const {
1077    if (!HasQualifier)
1078      return 0;
1079
1080    return reinterpret_cast<const NameQualifier *> (this + 1);
1081  }
1082
1083  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1084             SourceRange qualrange, NamedDecl *memberdecl, SourceLocation l,
1085             QualType ty);
1086
1087public:
1088  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1089             QualType ty)
1090    : Expr(MemberExprClass, ty,
1091           base->isTypeDependent(), base->isValueDependent()),
1092      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1093      HasQualifier(false) {}
1094
1095  /// \brief Build an empty member reference expression.
1096  explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }
1097
1098  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1099                            NestedNameSpecifier *qual, SourceRange qualrange,
1100                            NamedDecl *memberdecl,
1101                            SourceLocation l, QualType ty);
1102
1103  void setBase(Expr *E) { Base = E; }
1104  Expr *getBase() const { return cast<Expr>(Base); }
1105
1106  /// \brief Retrieve the member declaration to which this expression refers.
1107  ///
1108  /// The returned declaration will either be a FieldDecl or (in C++)
1109  /// a CXXMethodDecl.
1110  NamedDecl *getMemberDecl() const { return MemberDecl; }
1111  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1112
1113  /// \brief Determines whether this adorned member expression actually had
1114  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1115  /// x->Base::foo.
1116  bool hasQualifier() const { return HasQualifier; }
1117
1118  /// \brief If the member name was qualified, retrieves the source range of
1119  /// the nested-name-specifier that precedes the member name. Otherwise,
1120  /// returns an empty source range.
1121  SourceRange getQualifierRange() const {
1122    if (!HasQualifier)
1123      return SourceRange();
1124
1125    return getMemberQualifier()->Range;
1126  }
1127
1128  /// \brief If the member name was qualified, retrieves the
1129  /// nested-name-specifier that precedes the member name. Otherwise, returns
1130  /// NULL.
1131  NestedNameSpecifier *getQualifier() const {
1132    if (!HasQualifier)
1133      return 0;
1134
1135    return getMemberQualifier()->NNS;
1136  }
1137
1138  bool isArrow() const { return IsArrow; }
1139  void setArrow(bool A) { IsArrow = A; }
1140
1141  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1142  /// location of 'F'.
1143  SourceLocation getMemberLoc() const { return MemberLoc; }
1144  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1145
1146  virtual SourceRange getSourceRange() const {
1147    // If we have an implicit base (like a C++ implicit this),
1148    // make sure not to return its location
1149    SourceLocation BaseLoc = getBase()->getLocStart();
1150    if (BaseLoc.isInvalid())
1151      return SourceRange(MemberLoc, MemberLoc);
1152    return SourceRange(BaseLoc, MemberLoc);
1153  }
1154
1155  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1156
1157  static bool classof(const Stmt *T) {
1158    return T->getStmtClass() == MemberExprClass;
1159  }
1160  static bool classof(const MemberExpr *) { return true; }
1161
1162  // Iterators
1163  virtual child_iterator child_begin();
1164  virtual child_iterator child_end();
1165};
1166
1167/// CompoundLiteralExpr - [C99 6.5.2.5]
1168///
1169class CompoundLiteralExpr : public Expr {
1170  /// LParenLoc - If non-null, this is the location of the left paren in a
1171  /// compound literal like "(int){4}".  This can be null if this is a
1172  /// synthesized compound expression.
1173  SourceLocation LParenLoc;
1174  Stmt *Init;
1175  bool FileScope;
1176public:
1177  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1178                      bool fileScope)
1179    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1180      FileScope(fileScope) {}
1181
1182  /// \brief Construct an empty compound literal.
1183  explicit CompoundLiteralExpr(EmptyShell Empty)
1184    : Expr(CompoundLiteralExprClass, Empty) { }
1185
1186  const Expr *getInitializer() const { return cast<Expr>(Init); }
1187  Expr *getInitializer() { return cast<Expr>(Init); }
1188  void setInitializer(Expr *E) { Init = E; }
1189
1190  bool isFileScope() const { return FileScope; }
1191  void setFileScope(bool FS) { FileScope = FS; }
1192
1193  SourceLocation getLParenLoc() const { return LParenLoc; }
1194  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1195
1196  virtual SourceRange getSourceRange() const {
1197    // FIXME: Init should never be null.
1198    if (!Init)
1199      return SourceRange();
1200    if (LParenLoc.isInvalid())
1201      return Init->getSourceRange();
1202    return SourceRange(LParenLoc, Init->getLocEnd());
1203  }
1204
1205  static bool classof(const Stmt *T) {
1206    return T->getStmtClass() == CompoundLiteralExprClass;
1207  }
1208  static bool classof(const CompoundLiteralExpr *) { return true; }
1209
1210  // Iterators
1211  virtual child_iterator child_begin();
1212  virtual child_iterator child_end();
1213};
1214
1215/// CastExpr - Base class for type casts, including both implicit
1216/// casts (ImplicitCastExpr) and explicit casts that have some
1217/// representation in the source code (ExplicitCastExpr's derived
1218/// classes).
1219class CastExpr : public Expr {
1220public:
1221  /// CastKind - the kind of cast this represents.
1222  enum CastKind {
1223    /// CK_Unknown - Unknown cast kind.
1224    /// FIXME: The goal is to get rid of this and make all casts have a
1225    /// kind so that the AST client doesn't have to try to figure out what's
1226    /// going on.
1227    CK_Unknown,
1228
1229    /// CK_BitCast - Used for reinterpret_cast.
1230    CK_BitCast,
1231
1232    /// CK_NoOp - Used for const_cast.
1233    CK_NoOp,
1234
1235    /// CK_DerivedToBase - Derived to base class casts.
1236    CK_DerivedToBase,
1237
1238    /// CK_Dynamic - Dynamic cast.
1239    CK_Dynamic,
1240
1241    /// CK_ToUnion - Cast to union (GCC extension).
1242    CK_ToUnion,
1243
1244    /// CK_ArrayToPointerDecay - Array to pointer decay.
1245    CK_ArrayToPointerDecay,
1246
1247    /// CK_NullToMemberPointer - Null pointer to member pointer.
1248    CK_NullToMemberPointer,
1249
1250    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1251    /// member pointer in derived class.
1252    CK_BaseToDerivedMemberPointer,
1253
1254    /// CK_UserDefinedConversion - Conversion using a user defined type
1255    /// conversion function.
1256    CK_UserDefinedConversion,
1257
1258    /// CK_ConstructorConversion - Conversion by constructor
1259    CK_ConstructorConversion
1260  };
1261
1262  struct CastInfo {
1263    const CastKind Kind;
1264
1265    // FIXME: This should assert that the CastKind does not require extra
1266    // information.
1267    CastInfo(CastKind Kind)
1268      : Kind(Kind) { }
1269  };
1270
1271private:
1272  CastKind Kind;
1273  Stmt *Op;
1274protected:
1275  CastExpr(StmtClass SC, QualType ty, const CastInfo &info, Expr *op) :
1276    Expr(SC, ty,
1277         // Cast expressions are type-dependent if the type is
1278         // dependent (C++ [temp.dep.expr]p3).
1279         ty->isDependentType(),
1280         // Cast expressions are value-dependent if the type is
1281         // dependent or if the subexpression is value-dependent.
1282         ty->isDependentType() || (op && op->isValueDependent())),
1283    Kind(info.Kind), Op(op) {}
1284
1285  /// \brief Construct an empty cast.
1286  CastExpr(StmtClass SC, EmptyShell Empty)
1287    : Expr(SC, Empty) { }
1288
1289public:
1290  CastKind getCastKind() const { return Kind; }
1291  void setCastKind(CastKind K) { Kind = K; }
1292
1293  Expr *getSubExpr() { return cast<Expr>(Op); }
1294  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1295  void setSubExpr(Expr *E) { Op = E; }
1296
1297  static bool classof(const Stmt *T) {
1298    StmtClass SC = T->getStmtClass();
1299    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1300      return true;
1301
1302    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1303      return true;
1304
1305    return false;
1306  }
1307  static bool classof(const CastExpr *) { return true; }
1308
1309  // Iterators
1310  virtual child_iterator child_begin();
1311  virtual child_iterator child_end();
1312};
1313
1314/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1315/// conversions, which have no direct representation in the original
1316/// source code. For example: converting T[]->T*, void f()->void
1317/// (*f)(), float->double, short->int, etc.
1318///
1319/// In C, implicit casts always produce rvalues. However, in C++, an
1320/// implicit cast whose result is being bound to a reference will be
1321/// an lvalue. For example:
1322///
1323/// @code
1324/// class Base { };
1325/// class Derived : public Base { };
1326/// void f(Derived d) {
1327///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1328/// }
1329/// @endcode
1330class ImplicitCastExpr : public CastExpr {
1331  /// LvalueCast - Whether this cast produces an lvalue.
1332  bool LvalueCast;
1333
1334public:
1335  ImplicitCastExpr(QualType ty, const CastInfo &info, Expr *op, bool Lvalue) :
1336    CastExpr(ImplicitCastExprClass, ty, info, op), LvalueCast(Lvalue) { }
1337
1338  /// \brief Construct an empty implicit cast.
1339  explicit ImplicitCastExpr(EmptyShell Shell)
1340    : CastExpr(ImplicitCastExprClass, Shell) { }
1341
1342
1343  virtual SourceRange getSourceRange() const {
1344    return getSubExpr()->getSourceRange();
1345  }
1346
1347  /// isLvalueCast - Whether this cast produces an lvalue.
1348  bool isLvalueCast() const { return LvalueCast; }
1349
1350  /// setLvalueCast - Set whether this cast produces an lvalue.
1351  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1352
1353  static bool classof(const Stmt *T) {
1354    return T->getStmtClass() == ImplicitCastExprClass;
1355  }
1356  static bool classof(const ImplicitCastExpr *) { return true; }
1357};
1358
1359/// ExplicitCastExpr - An explicit cast written in the source
1360/// code.
1361///
1362/// This class is effectively an abstract class, because it provides
1363/// the basic representation of an explicitly-written cast without
1364/// specifying which kind of cast (C cast, functional cast, static
1365/// cast, etc.) was written; specific derived classes represent the
1366/// particular style of cast and its location information.
1367///
1368/// Unlike implicit casts, explicit cast nodes have two different
1369/// types: the type that was written into the source code, and the
1370/// actual type of the expression as determined by semantic
1371/// analysis. These types may differ slightly. For example, in C++ one
1372/// can cast to a reference type, which indicates that the resulting
1373/// expression will be an lvalue. The reference type, however, will
1374/// not be used as the type of the expression.
1375class ExplicitCastExpr : public CastExpr {
1376  /// TypeAsWritten - The type that this expression is casting to, as
1377  /// written in the source code.
1378  QualType TypeAsWritten;
1379
1380protected:
1381  ExplicitCastExpr(StmtClass SC, QualType exprTy, const CastInfo &info,
1382                   Expr *op, QualType writtenTy)
1383    : CastExpr(SC, exprTy, info, op), TypeAsWritten(writtenTy) {}
1384
1385  /// \brief Construct an empty explicit cast.
1386  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1387    : CastExpr(SC, Shell) { }
1388
1389public:
1390  /// getTypeAsWritten - Returns the type that this expression is
1391  /// casting to, as written in the source code.
1392  QualType getTypeAsWritten() const { return TypeAsWritten; }
1393  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1394
1395  static bool classof(const Stmt *T) {
1396    StmtClass SC = T->getStmtClass();
1397    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1398      return true;
1399    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1400      return true;
1401
1402    return false;
1403  }
1404  static bool classof(const ExplicitCastExpr *) { return true; }
1405};
1406
1407/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1408/// cast in C++ (C++ [expr.cast]), which uses the syntax
1409/// (Type)expr. For example: @c (int)f.
1410class CStyleCastExpr : public ExplicitCastExpr {
1411  SourceLocation LPLoc; // the location of the left paren
1412  SourceLocation RPLoc; // the location of the right paren
1413public:
1414  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, QualType writtenTy,
1415                    SourceLocation l, SourceLocation r) :
1416    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1417    LPLoc(l), RPLoc(r) {}
1418
1419  /// \brief Construct an empty C-style explicit cast.
1420  explicit CStyleCastExpr(EmptyShell Shell)
1421    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1422
1423  SourceLocation getLParenLoc() const { return LPLoc; }
1424  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1425
1426  SourceLocation getRParenLoc() const { return RPLoc; }
1427  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1428
1429  virtual SourceRange getSourceRange() const {
1430    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1431  }
1432  static bool classof(const Stmt *T) {
1433    return T->getStmtClass() == CStyleCastExprClass;
1434  }
1435  static bool classof(const CStyleCastExpr *) { return true; }
1436};
1437
1438/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1439///
1440/// This expression node kind describes a builtin binary operation,
1441/// such as "x + y" for integer values "x" and "y". The operands will
1442/// already have been converted to appropriate types (e.g., by
1443/// performing promotions or conversions).
1444///
1445/// In C++, where operators may be overloaded, a different kind of
1446/// expression node (CXXOperatorCallExpr) is used to express the
1447/// invocation of an overloaded operator with operator syntax. Within
1448/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1449/// used to store an expression "x + y" depends on the subexpressions
1450/// for x and y. If neither x or y is type-dependent, and the "+"
1451/// operator resolves to a built-in operation, BinaryOperator will be
1452/// used to express the computation (x and y may still be
1453/// value-dependent). If either x or y is type-dependent, or if the
1454/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1455/// be used to express the computation.
1456class BinaryOperator : public Expr {
1457public:
1458  enum Opcode {
1459    // Operators listed in order of precedence.
1460    // Note that additions to this should also update the StmtVisitor class.
1461    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1462    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1463    Add, Sub,         // [C99 6.5.6] Additive operators.
1464    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1465    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1466    EQ, NE,           // [C99 6.5.9] Equality operators.
1467    And,              // [C99 6.5.10] Bitwise AND operator.
1468    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1469    Or,               // [C99 6.5.12] Bitwise OR operator.
1470    LAnd,             // [C99 6.5.13] Logical AND operator.
1471    LOr,              // [C99 6.5.14] Logical OR operator.
1472    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1473    DivAssign, RemAssign,
1474    AddAssign, SubAssign,
1475    ShlAssign, ShrAssign,
1476    AndAssign, XorAssign,
1477    OrAssign,
1478    Comma             // [C99 6.5.17] Comma operator.
1479  };
1480private:
1481  enum { LHS, RHS, END_EXPR };
1482  Stmt* SubExprs[END_EXPR];
1483  Opcode Opc;
1484  SourceLocation OpLoc;
1485public:
1486
1487  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1488                 SourceLocation opLoc)
1489    : Expr(BinaryOperatorClass, ResTy,
1490           lhs->isTypeDependent() || rhs->isTypeDependent(),
1491           lhs->isValueDependent() || rhs->isValueDependent()),
1492      Opc(opc), OpLoc(opLoc) {
1493    SubExprs[LHS] = lhs;
1494    SubExprs[RHS] = rhs;
1495    assert(!isCompoundAssignmentOp() &&
1496           "Use ArithAssignBinaryOperator for compound assignments");
1497  }
1498
1499  /// \brief Construct an empty binary operator.
1500  explicit BinaryOperator(EmptyShell Empty)
1501    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1502
1503  SourceLocation getOperatorLoc() const { return OpLoc; }
1504  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1505
1506  Opcode getOpcode() const { return Opc; }
1507  void setOpcode(Opcode O) { Opc = O; }
1508
1509  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1510  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1511  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1512  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1513
1514  virtual SourceRange getSourceRange() const {
1515    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1516  }
1517
1518  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1519  /// corresponds to, e.g. "<<=".
1520  static const char *getOpcodeStr(Opcode Op);
1521
1522  /// \brief Retrieve the binary opcode that corresponds to the given
1523  /// overloaded operator.
1524  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1525
1526  /// \brief Retrieve the overloaded operator kind that corresponds to
1527  /// the given binary opcode.
1528  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1529
1530  /// predicates to categorize the respective opcodes.
1531  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1532  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1533  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1534  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1535
1536  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1537  bool isRelationalOp() const { return isRelationalOp(Opc); }
1538
1539  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1540  bool isEqualityOp() const { return isEqualityOp(Opc); }
1541
1542  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1543  bool isLogicalOp() const { return isLogicalOp(Opc); }
1544
1545  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1546  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1547  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1548
1549  static bool classof(const Stmt *S) {
1550    return S->getStmtClass() == BinaryOperatorClass ||
1551           S->getStmtClass() == CompoundAssignOperatorClass;
1552  }
1553  static bool classof(const BinaryOperator *) { return true; }
1554
1555  // Iterators
1556  virtual child_iterator child_begin();
1557  virtual child_iterator child_end();
1558
1559protected:
1560  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1561                 SourceLocation oploc, bool dead)
1562    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1563    SubExprs[LHS] = lhs;
1564    SubExprs[RHS] = rhs;
1565  }
1566
1567  BinaryOperator(StmtClass SC, EmptyShell Empty)
1568    : Expr(SC, Empty), Opc(MulAssign) { }
1569};
1570
1571/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1572/// track of the type the operation is performed in.  Due to the semantics of
1573/// these operators, the operands are promoted, the aritmetic performed, an
1574/// implicit conversion back to the result type done, then the assignment takes
1575/// place.  This captures the intermediate type which the computation is done
1576/// in.
1577class CompoundAssignOperator : public BinaryOperator {
1578  QualType ComputationLHSType;
1579  QualType ComputationResultType;
1580public:
1581  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1582                         QualType ResType, QualType CompLHSType,
1583                         QualType CompResultType,
1584                         SourceLocation OpLoc)
1585    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1586      ComputationLHSType(CompLHSType),
1587      ComputationResultType(CompResultType) {
1588    assert(isCompoundAssignmentOp() &&
1589           "Only should be used for compound assignments");
1590  }
1591
1592  /// \brief Build an empty compound assignment operator expression.
1593  explicit CompoundAssignOperator(EmptyShell Empty)
1594    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1595
1596  // The two computation types are the type the LHS is converted
1597  // to for the computation and the type of the result; the two are
1598  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1599  QualType getComputationLHSType() const { return ComputationLHSType; }
1600  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1601
1602  QualType getComputationResultType() const { return ComputationResultType; }
1603  void setComputationResultType(QualType T) { ComputationResultType = T; }
1604
1605  static bool classof(const CompoundAssignOperator *) { return true; }
1606  static bool classof(const Stmt *S) {
1607    return S->getStmtClass() == CompoundAssignOperatorClass;
1608  }
1609};
1610
1611/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1612/// GNU "missing LHS" extension is in use.
1613///
1614class ConditionalOperator : public Expr {
1615  enum { COND, LHS, RHS, END_EXPR };
1616  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1617  SourceLocation QuestionLoc, ColonLoc;
1618public:
1619  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1620                      SourceLocation CLoc, Expr *rhs, QualType t)
1621    : Expr(ConditionalOperatorClass, t,
1622           // FIXME: the type of the conditional operator doesn't
1623           // depend on the type of the conditional, but the standard
1624           // seems to imply that it could. File a bug!
1625           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1626           (cond->isValueDependent() ||
1627            (lhs && lhs->isValueDependent()) ||
1628            (rhs && rhs->isValueDependent()))),
1629      QuestionLoc(QLoc),
1630      ColonLoc(CLoc) {
1631    SubExprs[COND] = cond;
1632    SubExprs[LHS] = lhs;
1633    SubExprs[RHS] = rhs;
1634  }
1635
1636  /// \brief Build an empty conditional operator.
1637  explicit ConditionalOperator(EmptyShell Empty)
1638    : Expr(ConditionalOperatorClass, Empty) { }
1639
1640  // getCond - Return the expression representing the condition for
1641  //  the ?: operator.
1642  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1643  void setCond(Expr *E) { SubExprs[COND] = E; }
1644
1645  // getTrueExpr - Return the subexpression representing the value of the ?:
1646  //  expression if the condition evaluates to true.  In most cases this value
1647  //  will be the same as getLHS() except a GCC extension allows the left
1648  //  subexpression to be omitted, and instead of the condition be returned.
1649  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1650  //  is only evaluated once.
1651  Expr *getTrueExpr() const {
1652    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1653  }
1654
1655  // getTrueExpr - Return the subexpression representing the value of the ?:
1656  // expression if the condition evaluates to false. This is the same as getRHS.
1657  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1658
1659  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1660  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1661
1662  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1663  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1664
1665  SourceLocation getQuestionLoc() const { return QuestionLoc; }
1666  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
1667
1668  SourceLocation getColonLoc() const { return ColonLoc; }
1669  void setColonLoc(SourceLocation L) { ColonLoc = L; }
1670
1671  virtual SourceRange getSourceRange() const {
1672    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1673  }
1674  static bool classof(const Stmt *T) {
1675    return T->getStmtClass() == ConditionalOperatorClass;
1676  }
1677  static bool classof(const ConditionalOperator *) { return true; }
1678
1679  // Iterators
1680  virtual child_iterator child_begin();
1681  virtual child_iterator child_end();
1682};
1683
1684/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1685class AddrLabelExpr : public Expr {
1686  SourceLocation AmpAmpLoc, LabelLoc;
1687  LabelStmt *Label;
1688public:
1689  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1690                QualType t)
1691    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1692
1693  /// \brief Build an empty address of a label expression.
1694  explicit AddrLabelExpr(EmptyShell Empty)
1695    : Expr(AddrLabelExprClass, Empty) { }
1696
1697  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
1698  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
1699  SourceLocation getLabelLoc() const { return LabelLoc; }
1700  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1701
1702  virtual SourceRange getSourceRange() const {
1703    return SourceRange(AmpAmpLoc, LabelLoc);
1704  }
1705
1706  LabelStmt *getLabel() const { return Label; }
1707  void setLabel(LabelStmt *S) { Label = S; }
1708
1709  static bool classof(const Stmt *T) {
1710    return T->getStmtClass() == AddrLabelExprClass;
1711  }
1712  static bool classof(const AddrLabelExpr *) { return true; }
1713
1714  // Iterators
1715  virtual child_iterator child_begin();
1716  virtual child_iterator child_end();
1717};
1718
1719/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1720/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1721/// takes the value of the last subexpression.
1722class StmtExpr : public Expr {
1723  Stmt *SubStmt;
1724  SourceLocation LParenLoc, RParenLoc;
1725public:
1726  StmtExpr(CompoundStmt *substmt, QualType T,
1727           SourceLocation lp, SourceLocation rp) :
1728    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1729
1730  /// \brief Build an empty statement expression.
1731  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
1732
1733  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1734  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1735  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
1736
1737  virtual SourceRange getSourceRange() const {
1738    return SourceRange(LParenLoc, RParenLoc);
1739  }
1740
1741  SourceLocation getLParenLoc() const { return LParenLoc; }
1742  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1743  SourceLocation getRParenLoc() const { return RParenLoc; }
1744  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1745
1746  static bool classof(const Stmt *T) {
1747    return T->getStmtClass() == StmtExprClass;
1748  }
1749  static bool classof(const StmtExpr *) { return true; }
1750
1751  // Iterators
1752  virtual child_iterator child_begin();
1753  virtual child_iterator child_end();
1754};
1755
1756/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
1757/// This AST node represents a function that returns 1 if two *types* (not
1758/// expressions) are compatible. The result of this built-in function can be
1759/// used in integer constant expressions.
1760class TypesCompatibleExpr : public Expr {
1761  QualType Type1;
1762  QualType Type2;
1763  SourceLocation BuiltinLoc, RParenLoc;
1764public:
1765  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1766                      QualType t1, QualType t2, SourceLocation RP) :
1767    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1768    BuiltinLoc(BLoc), RParenLoc(RP) {}
1769
1770  /// \brief Build an empty __builtin_type_compatible_p expression.
1771  explicit TypesCompatibleExpr(EmptyShell Empty)
1772    : Expr(TypesCompatibleExprClass, Empty) { }
1773
1774  QualType getArgType1() const { return Type1; }
1775  void setArgType1(QualType T) { Type1 = T; }
1776  QualType getArgType2() const { return Type2; }
1777  void setArgType2(QualType T) { Type2 = T; }
1778
1779  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1780  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1781
1782  SourceLocation getRParenLoc() const { return RParenLoc; }
1783  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1784
1785  virtual SourceRange getSourceRange() const {
1786    return SourceRange(BuiltinLoc, RParenLoc);
1787  }
1788  static bool classof(const Stmt *T) {
1789    return T->getStmtClass() == TypesCompatibleExprClass;
1790  }
1791  static bool classof(const TypesCompatibleExpr *) { return true; }
1792
1793  // Iterators
1794  virtual child_iterator child_begin();
1795  virtual child_iterator child_end();
1796};
1797
1798/// ShuffleVectorExpr - clang-specific builtin-in function
1799/// __builtin_shufflevector.
1800/// This AST node represents a operator that does a constant
1801/// shuffle, similar to LLVM's shufflevector instruction. It takes
1802/// two vectors and a variable number of constant indices,
1803/// and returns the appropriately shuffled vector.
1804class ShuffleVectorExpr : public Expr {
1805  SourceLocation BuiltinLoc, RParenLoc;
1806
1807  // SubExprs - the list of values passed to the __builtin_shufflevector
1808  // function. The first two are vectors, and the rest are constant
1809  // indices.  The number of values in this list is always
1810  // 2+the number of indices in the vector type.
1811  Stmt **SubExprs;
1812  unsigned NumExprs;
1813
1814protected:
1815  virtual void DoDestroy(ASTContext &C);
1816
1817public:
1818  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
1819                    QualType Type, SourceLocation BLoc,
1820                    SourceLocation RP) :
1821    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1822    RParenLoc(RP), NumExprs(nexpr) {
1823
1824    SubExprs = new (C) Stmt*[nexpr];
1825    for (unsigned i = 0; i < nexpr; i++)
1826      SubExprs[i] = args[i];
1827  }
1828
1829  /// \brief Build an empty vector-shuffle expression.
1830  explicit ShuffleVectorExpr(EmptyShell Empty)
1831    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1832
1833  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1834  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1835
1836  SourceLocation getRParenLoc() const { return RParenLoc; }
1837  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1838
1839  virtual SourceRange getSourceRange() const {
1840    return SourceRange(BuiltinLoc, RParenLoc);
1841  }
1842  static bool classof(const Stmt *T) {
1843    return T->getStmtClass() == ShuffleVectorExprClass;
1844  }
1845  static bool classof(const ShuffleVectorExpr *) { return true; }
1846
1847  ~ShuffleVectorExpr() {}
1848
1849  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1850  /// constant expression, the actual arguments passed in, and the function
1851  /// pointers.
1852  unsigned getNumSubExprs() const { return NumExprs; }
1853
1854  /// getExpr - Return the Expr at the specified index.
1855  Expr *getExpr(unsigned Index) {
1856    assert((Index < NumExprs) && "Arg access out of range!");
1857    return cast<Expr>(SubExprs[Index]);
1858  }
1859  const Expr *getExpr(unsigned Index) const {
1860    assert((Index < NumExprs) && "Arg access out of range!");
1861    return cast<Expr>(SubExprs[Index]);
1862  }
1863
1864  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
1865
1866  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1867    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1868    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
1869  }
1870
1871  // Iterators
1872  virtual child_iterator child_begin();
1873  virtual child_iterator child_end();
1874};
1875
1876/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1877/// This AST node is similar to the conditional operator (?:) in C, with
1878/// the following exceptions:
1879/// - the test expression must be a integer constant expression.
1880/// - the expression returned acts like the chosen subexpression in every
1881///   visible way: the type is the same as that of the chosen subexpression,
1882///   and all predicates (whether it's an l-value, whether it's an integer
1883///   constant expression, etc.) return the same result as for the chosen
1884///   sub-expression.
1885class ChooseExpr : public Expr {
1886  enum { COND, LHS, RHS, END_EXPR };
1887  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1888  SourceLocation BuiltinLoc, RParenLoc;
1889public:
1890  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1891             SourceLocation RP)
1892    : Expr(ChooseExprClass, t),
1893      BuiltinLoc(BLoc), RParenLoc(RP) {
1894      SubExprs[COND] = cond;
1895      SubExprs[LHS] = lhs;
1896      SubExprs[RHS] = rhs;
1897    }
1898
1899  /// \brief Build an empty __builtin_choose_expr.
1900  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
1901
1902  /// isConditionTrue - Return whether the condition is true (i.e. not
1903  /// equal to zero).
1904  bool isConditionTrue(ASTContext &C) const;
1905
1906  /// getChosenSubExpr - Return the subexpression chosen according to the
1907  /// condition.
1908  Expr *getChosenSubExpr(ASTContext &C) const {
1909    return isConditionTrue(C) ? getLHS() : getRHS();
1910  }
1911
1912  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1913  void setCond(Expr *E) { SubExprs[COND] = E; }
1914  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1915  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1916  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1917  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1918
1919  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1920  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1921
1922  SourceLocation getRParenLoc() const { return RParenLoc; }
1923  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1924
1925  virtual SourceRange getSourceRange() const {
1926    return SourceRange(BuiltinLoc, RParenLoc);
1927  }
1928  static bool classof(const Stmt *T) {
1929    return T->getStmtClass() == ChooseExprClass;
1930  }
1931  static bool classof(const ChooseExpr *) { return true; }
1932
1933  // Iterators
1934  virtual child_iterator child_begin();
1935  virtual child_iterator child_end();
1936};
1937
1938/// GNUNullExpr - Implements the GNU __null extension, which is a name
1939/// for a null pointer constant that has integral type (e.g., int or
1940/// long) and is the same size and alignment as a pointer. The __null
1941/// extension is typically only used by system headers, which define
1942/// NULL as __null in C++ rather than using 0 (which is an integer
1943/// that may not match the size of a pointer).
1944class GNUNullExpr : public Expr {
1945  /// TokenLoc - The location of the __null keyword.
1946  SourceLocation TokenLoc;
1947
1948public:
1949  GNUNullExpr(QualType Ty, SourceLocation Loc)
1950    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1951
1952  /// \brief Build an empty GNU __null expression.
1953  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
1954
1955  /// getTokenLocation - The location of the __null token.
1956  SourceLocation getTokenLocation() const { return TokenLoc; }
1957  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
1958
1959  virtual SourceRange getSourceRange() const {
1960    return SourceRange(TokenLoc);
1961  }
1962  static bool classof(const Stmt *T) {
1963    return T->getStmtClass() == GNUNullExprClass;
1964  }
1965  static bool classof(const GNUNullExpr *) { return true; }
1966
1967  // Iterators
1968  virtual child_iterator child_begin();
1969  virtual child_iterator child_end();
1970};
1971
1972/// VAArgExpr, used for the builtin function __builtin_va_start.
1973class VAArgExpr : public Expr {
1974  Stmt *Val;
1975  SourceLocation BuiltinLoc, RParenLoc;
1976public:
1977  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1978    : Expr(VAArgExprClass, t),
1979      Val(e),
1980      BuiltinLoc(BLoc),
1981      RParenLoc(RPLoc) { }
1982
1983  /// \brief Create an empty __builtin_va_start expression.
1984  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
1985
1986  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1987  Expr *getSubExpr() { return cast<Expr>(Val); }
1988  void setSubExpr(Expr *E) { Val = E; }
1989
1990  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1991  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1992
1993  SourceLocation getRParenLoc() const { return RParenLoc; }
1994  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1995
1996  virtual SourceRange getSourceRange() const {
1997    return SourceRange(BuiltinLoc, RParenLoc);
1998  }
1999  static bool classof(const Stmt *T) {
2000    return T->getStmtClass() == VAArgExprClass;
2001  }
2002  static bool classof(const VAArgExpr *) { return true; }
2003
2004  // Iterators
2005  virtual child_iterator child_begin();
2006  virtual child_iterator child_end();
2007};
2008
2009/// @brief Describes an C or C++ initializer list.
2010///
2011/// InitListExpr describes an initializer list, which can be used to
2012/// initialize objects of different types, including
2013/// struct/class/union types, arrays, and vectors. For example:
2014///
2015/// @code
2016/// struct foo x = { 1, { 2, 3 } };
2017/// @endcode
2018///
2019/// Prior to semantic analysis, an initializer list will represent the
2020/// initializer list as written by the user, but will have the
2021/// placeholder type "void". This initializer list is called the
2022/// syntactic form of the initializer, and may contain C99 designated
2023/// initializers (represented as DesignatedInitExprs), initializations
2024/// of subobject members without explicit braces, and so on. Clients
2025/// interested in the original syntax of the initializer list should
2026/// use the syntactic form of the initializer list.
2027///
2028/// After semantic analysis, the initializer list will represent the
2029/// semantic form of the initializer, where the initializations of all
2030/// subobjects are made explicit with nested InitListExpr nodes and
2031/// C99 designators have been eliminated by placing the designated
2032/// initializations into the subobject they initialize. Additionally,
2033/// any "holes" in the initialization, where no initializer has been
2034/// specified for a particular subobject, will be replaced with
2035/// implicitly-generated ImplicitValueInitExpr expressions that
2036/// value-initialize the subobjects. Note, however, that the
2037/// initializer lists may still have fewer initializers than there are
2038/// elements to initialize within the object.
2039///
2040/// Given the semantic form of the initializer list, one can retrieve
2041/// the original syntactic form of that initializer list (if it
2042/// exists) using getSyntacticForm(). Since many initializer lists
2043/// have the same syntactic and semantic forms, getSyntacticForm() may
2044/// return NULL, indicating that the current initializer list also
2045/// serves as its syntactic form.
2046class InitListExpr : public Expr {
2047  // FIXME: Eliminate this vector in favor of ASTContext allocation
2048  std::vector<Stmt *> InitExprs;
2049  SourceLocation LBraceLoc, RBraceLoc;
2050
2051  /// Contains the initializer list that describes the syntactic form
2052  /// written in the source code.
2053  InitListExpr *SyntacticForm;
2054
2055  /// If this initializer list initializes a union, specifies which
2056  /// field within the union will be initialized.
2057  FieldDecl *UnionFieldInit;
2058
2059  /// Whether this initializer list originally had a GNU array-range
2060  /// designator in it. This is a temporary marker used by CodeGen.
2061  bool HadArrayRangeDesignator;
2062
2063public:
2064  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2065               SourceLocation rbraceloc);
2066
2067  /// \brief Build an empty initializer list.
2068  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2069
2070  unsigned getNumInits() const { return InitExprs.size(); }
2071
2072  const Expr* getInit(unsigned Init) const {
2073    assert(Init < getNumInits() && "Initializer access out of range!");
2074    return cast_or_null<Expr>(InitExprs[Init]);
2075  }
2076
2077  Expr* getInit(unsigned Init) {
2078    assert(Init < getNumInits() && "Initializer access out of range!");
2079    return cast_or_null<Expr>(InitExprs[Init]);
2080  }
2081
2082  void setInit(unsigned Init, Expr *expr) {
2083    assert(Init < getNumInits() && "Initializer access out of range!");
2084    InitExprs[Init] = expr;
2085  }
2086
2087  /// \brief Reserve space for some number of initializers.
2088  void reserveInits(unsigned NumInits);
2089
2090  /// @brief Specify the number of initializers
2091  ///
2092  /// If there are more than @p NumInits initializers, the remaining
2093  /// initializers will be destroyed. If there are fewer than @p
2094  /// NumInits initializers, NULL expressions will be added for the
2095  /// unknown initializers.
2096  void resizeInits(ASTContext &Context, unsigned NumInits);
2097
2098  /// @brief Updates the initializer at index @p Init with the new
2099  /// expression @p expr, and returns the old expression at that
2100  /// location.
2101  ///
2102  /// When @p Init is out of range for this initializer list, the
2103  /// initializer list will be extended with NULL expressions to
2104  /// accomodate the new entry.
2105  Expr *updateInit(unsigned Init, Expr *expr);
2106
2107  /// \brief If this initializes a union, specifies which field in the
2108  /// union to initialize.
2109  ///
2110  /// Typically, this field is the first named field within the
2111  /// union. However, a designated initializer can specify the
2112  /// initialization of a different field within the union.
2113  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2114  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2115
2116  // Explicit InitListExpr's originate from source code (and have valid source
2117  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2118  bool isExplicit() {
2119    return LBraceLoc.isValid() && RBraceLoc.isValid();
2120  }
2121
2122  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2123  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2124  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2125  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2126
2127  /// @brief Retrieve the initializer list that describes the
2128  /// syntactic form of the initializer.
2129  ///
2130  ///
2131  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2132  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2133
2134  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2135  void sawArrayRangeDesignator(bool ARD = true) {
2136    HadArrayRangeDesignator = ARD;
2137  }
2138
2139  virtual SourceRange getSourceRange() const {
2140    return SourceRange(LBraceLoc, RBraceLoc);
2141  }
2142  static bool classof(const Stmt *T) {
2143    return T->getStmtClass() == InitListExprClass;
2144  }
2145  static bool classof(const InitListExpr *) { return true; }
2146
2147  // Iterators
2148  virtual child_iterator child_begin();
2149  virtual child_iterator child_end();
2150
2151  typedef std::vector<Stmt *>::iterator iterator;
2152  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2153
2154  iterator begin() { return InitExprs.begin(); }
2155  iterator end() { return InitExprs.end(); }
2156  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2157  reverse_iterator rend() { return InitExprs.rend(); }
2158};
2159
2160/// @brief Represents a C99 designated initializer expression.
2161///
2162/// A designated initializer expression (C99 6.7.8) contains one or
2163/// more designators (which can be field designators, array
2164/// designators, or GNU array-range designators) followed by an
2165/// expression that initializes the field or element(s) that the
2166/// designators refer to. For example, given:
2167///
2168/// @code
2169/// struct point {
2170///   double x;
2171///   double y;
2172/// };
2173/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2174/// @endcode
2175///
2176/// The InitListExpr contains three DesignatedInitExprs, the first of
2177/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2178/// designators, one array designator for @c [2] followed by one field
2179/// designator for @c .y. The initalization expression will be 1.0.
2180class DesignatedInitExpr : public Expr {
2181public:
2182  /// \brief Forward declaration of the Designator class.
2183  class Designator;
2184
2185private:
2186  /// The location of the '=' or ':' prior to the actual initializer
2187  /// expression.
2188  SourceLocation EqualOrColonLoc;
2189
2190  /// Whether this designated initializer used the GNU deprecated
2191  /// syntax rather than the C99 '=' syntax.
2192  bool GNUSyntax : 1;
2193
2194  /// The number of designators in this initializer expression.
2195  unsigned NumDesignators : 15;
2196
2197  /// \brief The designators in this designated initialization
2198  /// expression.
2199  Designator *Designators;
2200
2201  /// The number of subexpressions of this initializer expression,
2202  /// which contains both the initializer and any additional
2203  /// expressions used by array and array-range designators.
2204  unsigned NumSubExprs : 16;
2205
2206
2207  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2208                     const Designator *Designators,
2209                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2210                     Expr **IndexExprs, unsigned NumIndexExprs,
2211                     Expr *Init);
2212
2213  explicit DesignatedInitExpr(unsigned NumSubExprs)
2214    : Expr(DesignatedInitExprClass, EmptyShell()),
2215      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2216
2217protected:
2218  virtual void DoDestroy(ASTContext &C);
2219
2220public:
2221  /// A field designator, e.g., ".x".
2222  struct FieldDesignator {
2223    /// Refers to the field that is being initialized. The low bit
2224    /// of this field determines whether this is actually a pointer
2225    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2226    /// initially constructed, a field designator will store an
2227    /// IdentifierInfo*. After semantic analysis has resolved that
2228    /// name, the field designator will instead store a FieldDecl*.
2229    uintptr_t NameOrField;
2230
2231    /// The location of the '.' in the designated initializer.
2232    unsigned DotLoc;
2233
2234    /// The location of the field name in the designated initializer.
2235    unsigned FieldLoc;
2236  };
2237
2238  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2239  struct ArrayOrRangeDesignator {
2240    /// Location of the first index expression within the designated
2241    /// initializer expression's list of subexpressions.
2242    unsigned Index;
2243    /// The location of the '[' starting the array range designator.
2244    unsigned LBracketLoc;
2245    /// The location of the ellipsis separating the start and end
2246    /// indices. Only valid for GNU array-range designators.
2247    unsigned EllipsisLoc;
2248    /// The location of the ']' terminating the array range designator.
2249    unsigned RBracketLoc;
2250  };
2251
2252  /// @brief Represents a single C99 designator.
2253  ///
2254  /// @todo This class is infuriatingly similar to clang::Designator,
2255  /// but minor differences (storing indices vs. storing pointers)
2256  /// keep us from reusing it. Try harder, later, to rectify these
2257  /// differences.
2258  class Designator {
2259    /// @brief The kind of designator this describes.
2260    enum {
2261      FieldDesignator,
2262      ArrayDesignator,
2263      ArrayRangeDesignator
2264    } Kind;
2265
2266    union {
2267      /// A field designator, e.g., ".x".
2268      struct FieldDesignator Field;
2269      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2270      struct ArrayOrRangeDesignator ArrayOrRange;
2271    };
2272    friend class DesignatedInitExpr;
2273
2274  public:
2275    Designator() {}
2276
2277    /// @brief Initializes a field designator.
2278    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2279               SourceLocation FieldLoc)
2280      : Kind(FieldDesignator) {
2281      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2282      Field.DotLoc = DotLoc.getRawEncoding();
2283      Field.FieldLoc = FieldLoc.getRawEncoding();
2284    }
2285
2286    /// @brief Initializes an array designator.
2287    Designator(unsigned Index, SourceLocation LBracketLoc,
2288               SourceLocation RBracketLoc)
2289      : Kind(ArrayDesignator) {
2290      ArrayOrRange.Index = Index;
2291      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2292      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2293      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2294    }
2295
2296    /// @brief Initializes a GNU array-range designator.
2297    Designator(unsigned Index, SourceLocation LBracketLoc,
2298               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2299      : Kind(ArrayRangeDesignator) {
2300      ArrayOrRange.Index = Index;
2301      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2302      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2303      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2304    }
2305
2306    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2307    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2308    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2309
2310    IdentifierInfo * getFieldName();
2311
2312    FieldDecl *getField() {
2313      assert(Kind == FieldDesignator && "Only valid on a field designator");
2314      if (Field.NameOrField & 0x01)
2315        return 0;
2316      else
2317        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2318    }
2319
2320    void setField(FieldDecl *FD) {
2321      assert(Kind == FieldDesignator && "Only valid on a field designator");
2322      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2323    }
2324
2325    SourceLocation getDotLoc() const {
2326      assert(Kind == FieldDesignator && "Only valid on a field designator");
2327      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2328    }
2329
2330    SourceLocation getFieldLoc() const {
2331      assert(Kind == FieldDesignator && "Only valid on a field designator");
2332      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2333    }
2334
2335    SourceLocation getLBracketLoc() const {
2336      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2337             "Only valid on an array or array-range designator");
2338      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2339    }
2340
2341    SourceLocation getRBracketLoc() const {
2342      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2343             "Only valid on an array or array-range designator");
2344      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2345    }
2346
2347    SourceLocation getEllipsisLoc() const {
2348      assert(Kind == ArrayRangeDesignator &&
2349             "Only valid on an array-range designator");
2350      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2351    }
2352
2353    unsigned getFirstExprIndex() const {
2354      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2355             "Only valid on an array or array-range designator");
2356      return ArrayOrRange.Index;
2357    }
2358
2359    SourceLocation getStartLocation() const {
2360      if (Kind == FieldDesignator)
2361        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2362      else
2363        return getLBracketLoc();
2364    }
2365  };
2366
2367  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2368                                    unsigned NumDesignators,
2369                                    Expr **IndexExprs, unsigned NumIndexExprs,
2370                                    SourceLocation EqualOrColonLoc,
2371                                    bool GNUSyntax, Expr *Init);
2372
2373  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2374
2375  /// @brief Returns the number of designators in this initializer.
2376  unsigned size() const { return NumDesignators; }
2377
2378  // Iterator access to the designators.
2379  typedef Designator* designators_iterator;
2380  designators_iterator designators_begin() { return Designators; }
2381  designators_iterator designators_end() {
2382    return Designators + NumDesignators;
2383  }
2384
2385  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2386
2387  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2388
2389  Expr *getArrayIndex(const Designator& D);
2390  Expr *getArrayRangeStart(const Designator& D);
2391  Expr *getArrayRangeEnd(const Designator& D);
2392
2393  /// @brief Retrieve the location of the '=' that precedes the
2394  /// initializer value itself, if present.
2395  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2396  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2397
2398  /// @brief Determines whether this designated initializer used the
2399  /// deprecated GNU syntax for designated initializers.
2400  bool usesGNUSyntax() const { return GNUSyntax; }
2401  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2402
2403  /// @brief Retrieve the initializer value.
2404  Expr *getInit() const {
2405    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2406  }
2407
2408  void setInit(Expr *init) {
2409    *child_begin() = init;
2410  }
2411
2412  /// \brief Retrieve the total number of subexpressions in this
2413  /// designated initializer expression, including the actual
2414  /// initialized value and any expressions that occur within array
2415  /// and array-range designators.
2416  unsigned getNumSubExprs() const { return NumSubExprs; }
2417
2418  Expr *getSubExpr(unsigned Idx) {
2419    assert(Idx < NumSubExprs && "Subscript out of range");
2420    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2421    Ptr += sizeof(DesignatedInitExpr);
2422    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2423  }
2424
2425  void setSubExpr(unsigned Idx, Expr *E) {
2426    assert(Idx < NumSubExprs && "Subscript out of range");
2427    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2428    Ptr += sizeof(DesignatedInitExpr);
2429    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2430  }
2431
2432  /// \brief Replaces the designator at index @p Idx with the series
2433  /// of designators in [First, Last).
2434  void ExpandDesignator(unsigned Idx, const Designator *First,
2435                        const Designator *Last);
2436
2437  virtual SourceRange getSourceRange() const;
2438
2439  static bool classof(const Stmt *T) {
2440    return T->getStmtClass() == DesignatedInitExprClass;
2441  }
2442  static bool classof(const DesignatedInitExpr *) { return true; }
2443
2444  // Iterators
2445  virtual child_iterator child_begin();
2446  virtual child_iterator child_end();
2447};
2448
2449/// \brief Represents an implicitly-generated value initialization of
2450/// an object of a given type.
2451///
2452/// Implicit value initializations occur within semantic initializer
2453/// list expressions (InitListExpr) as placeholders for subobject
2454/// initializations not explicitly specified by the user.
2455///
2456/// \see InitListExpr
2457class ImplicitValueInitExpr : public Expr {
2458public:
2459  explicit ImplicitValueInitExpr(QualType ty)
2460    : Expr(ImplicitValueInitExprClass, ty) { }
2461
2462  /// \brief Construct an empty implicit value initialization.
2463  explicit ImplicitValueInitExpr(EmptyShell Empty)
2464    : Expr(ImplicitValueInitExprClass, Empty) { }
2465
2466  static bool classof(const Stmt *T) {
2467    return T->getStmtClass() == ImplicitValueInitExprClass;
2468  }
2469  static bool classof(const ImplicitValueInitExpr *) { return true; }
2470
2471  virtual SourceRange getSourceRange() const {
2472    return SourceRange();
2473  }
2474
2475  // Iterators
2476  virtual child_iterator child_begin();
2477  virtual child_iterator child_end();
2478};
2479
2480
2481class ParenListExpr : public Expr {
2482  Stmt **Exprs;
2483  unsigned NumExprs;
2484  SourceLocation LParenLoc, RParenLoc;
2485
2486protected:
2487  virtual void DoDestroy(ASTContext& C);
2488
2489public:
2490  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2491                unsigned numexprs, SourceLocation rparenloc);
2492
2493  ~ParenListExpr() {}
2494
2495  /// \brief Build an empty paren list.
2496  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2497
2498  unsigned getNumExprs() const { return NumExprs; }
2499
2500  const Expr* getExpr(unsigned Init) const {
2501    assert(Init < getNumExprs() && "Initializer access out of range!");
2502    return cast_or_null<Expr>(Exprs[Init]);
2503  }
2504
2505  Expr* getExpr(unsigned Init) {
2506    assert(Init < getNumExprs() && "Initializer access out of range!");
2507    return cast_or_null<Expr>(Exprs[Init]);
2508  }
2509
2510  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2511
2512  SourceLocation getLParenLoc() const { return LParenLoc; }
2513  SourceLocation getRParenLoc() const { return RParenLoc; }
2514
2515  virtual SourceRange getSourceRange() const {
2516    return SourceRange(LParenLoc, RParenLoc);
2517  }
2518  static bool classof(const Stmt *T) {
2519    return T->getStmtClass() == ParenListExprClass;
2520  }
2521  static bool classof(const ParenListExpr *) { return true; }
2522
2523  // Iterators
2524  virtual child_iterator child_begin();
2525  virtual child_iterator child_end();
2526};
2527
2528
2529//===----------------------------------------------------------------------===//
2530// Clang Extensions
2531//===----------------------------------------------------------------------===//
2532
2533
2534/// ExtVectorElementExpr - This represents access to specific elements of a
2535/// vector, and may occur on the left hand side or right hand side.  For example
2536/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2537///
2538/// Note that the base may have either vector or pointer to vector type, just
2539/// like a struct field reference.
2540///
2541class ExtVectorElementExpr : public Expr {
2542  Stmt *Base;
2543  IdentifierInfo *Accessor;
2544  SourceLocation AccessorLoc;
2545public:
2546  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2547                       SourceLocation loc)
2548    : Expr(ExtVectorElementExprClass, ty),
2549      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2550
2551  /// \brief Build an empty vector element expression.
2552  explicit ExtVectorElementExpr(EmptyShell Empty)
2553    : Expr(ExtVectorElementExprClass, Empty) { }
2554
2555  const Expr *getBase() const { return cast<Expr>(Base); }
2556  Expr *getBase() { return cast<Expr>(Base); }
2557  void setBase(Expr *E) { Base = E; }
2558
2559  IdentifierInfo &getAccessor() const { return *Accessor; }
2560  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2561
2562  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2563  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2564
2565  /// getNumElements - Get the number of components being selected.
2566  unsigned getNumElements() const;
2567
2568  /// containsDuplicateElements - Return true if any element access is
2569  /// repeated.
2570  bool containsDuplicateElements() const;
2571
2572  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2573  /// aggregate Constant of ConstantInt(s).
2574  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2575
2576  virtual SourceRange getSourceRange() const {
2577    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2578  }
2579
2580  /// isArrow - Return true if the base expression is a pointer to vector,
2581  /// return false if the base expression is a vector.
2582  bool isArrow() const;
2583
2584  static bool classof(const Stmt *T) {
2585    return T->getStmtClass() == ExtVectorElementExprClass;
2586  }
2587  static bool classof(const ExtVectorElementExpr *) { return true; }
2588
2589  // Iterators
2590  virtual child_iterator child_begin();
2591  virtual child_iterator child_end();
2592};
2593
2594
2595/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2596/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2597class BlockExpr : public Expr {
2598protected:
2599  BlockDecl *TheBlock;
2600  bool HasBlockDeclRefExprs;
2601public:
2602  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2603    : Expr(BlockExprClass, ty),
2604      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2605
2606  /// \brief Build an empty block expression.
2607  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2608
2609  const BlockDecl *getBlockDecl() const { return TheBlock; }
2610  BlockDecl *getBlockDecl() { return TheBlock; }
2611  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2612
2613  // Convenience functions for probing the underlying BlockDecl.
2614  SourceLocation getCaretLocation() const;
2615  const Stmt *getBody() const;
2616  Stmt *getBody();
2617
2618  virtual SourceRange getSourceRange() const {
2619    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2620  }
2621
2622  /// getFunctionType - Return the underlying function type for this block.
2623  const FunctionType *getFunctionType() const;
2624
2625  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2626  /// inside of the block that reference values outside the block.
2627  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2628  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2629
2630  static bool classof(const Stmt *T) {
2631    return T->getStmtClass() == BlockExprClass;
2632  }
2633  static bool classof(const BlockExpr *) { return true; }
2634
2635  // Iterators
2636  virtual child_iterator child_begin();
2637  virtual child_iterator child_end();
2638};
2639
2640/// BlockDeclRefExpr - A reference to a declared variable, function,
2641/// enum, etc.
2642class BlockDeclRefExpr : public Expr {
2643  ValueDecl *D;
2644  SourceLocation Loc;
2645  bool IsByRef : 1;
2646  bool ConstQualAdded : 1;
2647public:
2648  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
2649                   bool constAdded = false) :
2650       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
2651                                       ConstQualAdded(constAdded) {}
2652
2653  // \brief Build an empty reference to a declared variable in a
2654  // block.
2655  explicit BlockDeclRefExpr(EmptyShell Empty)
2656    : Expr(BlockDeclRefExprClass, Empty) { }
2657
2658  ValueDecl *getDecl() { return D; }
2659  const ValueDecl *getDecl() const { return D; }
2660  void setDecl(ValueDecl *VD) { D = VD; }
2661
2662  SourceLocation getLocation() const { return Loc; }
2663  void setLocation(SourceLocation L) { Loc = L; }
2664
2665  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2666
2667  bool isByRef() const { return IsByRef; }
2668  void setByRef(bool BR) { IsByRef = BR; }
2669
2670  bool isConstQualAdded() const { return ConstQualAdded; }
2671  void setConstQualAdded(bool C) { ConstQualAdded = C; }
2672
2673  static bool classof(const Stmt *T) {
2674    return T->getStmtClass() == BlockDeclRefExprClass;
2675  }
2676  static bool classof(const BlockDeclRefExpr *) { return true; }
2677
2678  // Iterators
2679  virtual child_iterator child_begin();
2680  virtual child_iterator child_end();
2681};
2682
2683}  // end namespace clang
2684
2685#endif
2686