Expr.h revision 85def357129b6cdfd69a66ad0e6994506418a2a9
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include <cctype>
31
32namespace clang {
33  class ASTContext;
34  class APValue;
35  class Decl;
36  class IdentifierInfo;
37  class ParmVarDecl;
38  class NamedDecl;
39  class ValueDecl;
40  class BlockDecl;
41  class CXXBaseSpecifier;
42  class CXXOperatorCallExpr;
43  class CXXMemberCallExpr;
44  class ObjCPropertyRefExpr;
45  class OpaqueValueExpr;
46
47/// \brief A simple array of base specifiers.
48typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
49
50/// Expr - This represents one expression.  Note that Expr's are subclasses of
51/// Stmt.  This allows an expression to be transparently used any place a Stmt
52/// is required.
53///
54class Expr : public Stmt {
55  QualType TR;
56
57protected:
58  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
59       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
60    : Stmt(SC)
61  {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.InstantiationDependent = ID;
65    ExprBits.ValueKind = VK;
66    ExprBits.ObjectKind = OK;
67    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
68    setType(T);
69  }
70
71  /// \brief Construct an empty expression.
72  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
73
74public:
75  QualType getType() const { return TR; }
76  void setType(QualType t) {
77    // In C++, the type of an expression is always adjusted so that it
78    // will not have reference type an expression will never have
79    // reference type (C++ [expr]p6). Use
80    // QualType::getNonReferenceType() to retrieve the non-reference
81    // type. Additionally, inspect Expr::isLvalue to determine whether
82    // an expression that is adjusted in this manner should be
83    // considered an lvalue.
84    assert((t.isNull() || !t->isReferenceType()) &&
85           "Expressions can't have reference type");
86
87    TR = t;
88  }
89
90  /// isValueDependent - Determines whether this expression is
91  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
92  /// array bound of "Chars" in the following example is
93  /// value-dependent.
94  /// @code
95  /// template<int Size, char (&Chars)[Size]> struct meta_string;
96  /// @endcode
97  bool isValueDependent() const { return ExprBits.ValueDependent; }
98
99  /// \brief Set whether this expression is value-dependent or not.
100  void setValueDependent(bool VD) {
101    ExprBits.ValueDependent = VD;
102    if (VD)
103      ExprBits.InstantiationDependent = true;
104  }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return ExprBits.TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) {
121    ExprBits.TypeDependent = TD;
122    if (TD)
123      ExprBits.InstantiationDependent = true;
124  }
125
126  /// \brief Whether this expression is instantiation-dependent, meaning that
127  /// it depends in some way on a template parameter, even if neither its type
128  /// nor (constant) value can change due to the template instantiation.
129  ///
130  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
131  /// instantiation-dependent (since it involves a template parameter \c T), but
132  /// is neither type- nor value-dependent, since the type of the inner
133  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
134  /// \c sizeof is known.
135  ///
136  /// \code
137  /// template<typename T>
138  /// void f(T x, T y) {
139  ///   sizeof(sizeof(T() + T());
140  /// }
141  /// \endcode
142  ///
143  bool isInstantiationDependent() const {
144    return ExprBits.InstantiationDependent;
145  }
146
147  /// \brief Set whether this expression is instantiation-dependent or not.
148  void setInstantiationDependent(bool ID) {
149    ExprBits.InstantiationDependent = ID;
150  }
151
152  /// \brief Whether this expression contains an unexpanded parameter
153  /// pack (for C++0x variadic templates).
154  ///
155  /// Given the following function template:
156  ///
157  /// \code
158  /// template<typename F, typename ...Types>
159  /// void forward(const F &f, Types &&...args) {
160  ///   f(static_cast<Types&&>(args)...);
161  /// }
162  /// \endcode
163  ///
164  /// The expressions \c args and \c static_cast<Types&&>(args) both
165  /// contain parameter packs.
166  bool containsUnexpandedParameterPack() const {
167    return ExprBits.ContainsUnexpandedParameterPack;
168  }
169
170  /// \brief Set the bit that describes whether this expression
171  /// contains an unexpanded parameter pack.
172  void setContainsUnexpandedParameterPack(bool PP = true) {
173    ExprBits.ContainsUnexpandedParameterPack = PP;
174  }
175
176  /// getExprLoc - Return the preferred location for the arrow when diagnosing
177  /// a problem with a generic expression.
178  SourceLocation getExprLoc() const;
179
180  /// isUnusedResultAWarning - Return true if this immediate expression should
181  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
182  /// with location to warn on and the source range[s] to report with the
183  /// warning.
184  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
185                              SourceRange &R2, ASTContext &Ctx) const;
186
187  /// isLValue - True if this expression is an "l-value" according to
188  /// the rules of the current language.  C and C++ give somewhat
189  /// different rules for this concept, but in general, the result of
190  /// an l-value expression identifies a specific object whereas the
191  /// result of an r-value expression is a value detached from any
192  /// specific storage.
193  ///
194  /// C++0x divides the concept of "r-value" into pure r-values
195  /// ("pr-values") and so-called expiring values ("x-values"), which
196  /// identify specific objects that can be safely cannibalized for
197  /// their resources.  This is an unfortunate abuse of terminology on
198  /// the part of the C++ committee.  In Clang, when we say "r-value",
199  /// we generally mean a pr-value.
200  bool isLValue() const { return getValueKind() == VK_LValue; }
201  bool isRValue() const { return getValueKind() == VK_RValue; }
202  bool isXValue() const { return getValueKind() == VK_XValue; }
203  bool isGLValue() const { return getValueKind() != VK_RValue; }
204
205  enum LValueClassification {
206    LV_Valid,
207    LV_NotObjectType,
208    LV_IncompleteVoidType,
209    LV_DuplicateVectorComponents,
210    LV_InvalidExpression,
211    LV_InvalidMessageExpression,
212    LV_MemberFunction,
213    LV_SubObjCPropertySetting,
214    LV_ClassTemporary
215  };
216  /// Reasons why an expression might not be an l-value.
217  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
218
219  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
220  /// does not have an incomplete type, does not have a const-qualified type,
221  /// and if it is a structure or union, does not have any member (including,
222  /// recursively, any member or element of all contained aggregates or unions)
223  /// with a const-qualified type.
224  ///
225  /// \param Loc [in] [out] - A source location which *may* be filled
226  /// in with the location of the expression making this a
227  /// non-modifiable lvalue, if specified.
228  enum isModifiableLvalueResult {
229    MLV_Valid,
230    MLV_NotObjectType,
231    MLV_IncompleteVoidType,
232    MLV_DuplicateVectorComponents,
233    MLV_InvalidExpression,
234    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
235    MLV_IncompleteType,
236    MLV_ConstQualified,
237    MLV_ArrayType,
238    MLV_NotBlockQualified,
239    MLV_ReadonlyProperty,
240    MLV_NoSetterProperty,
241    MLV_MemberFunction,
242    MLV_SubObjCPropertySetting,
243    MLV_InvalidMessageExpression,
244    MLV_ClassTemporary
245  };
246  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
247                                              SourceLocation *Loc = 0) const;
248
249  /// \brief The return type of classify(). Represents the C++0x expression
250  ///        taxonomy.
251  class Classification {
252  public:
253    /// \brief The various classification results. Most of these mean prvalue.
254    enum Kinds {
255      CL_LValue,
256      CL_XValue,
257      CL_Function, // Functions cannot be lvalues in C.
258      CL_Void, // Void cannot be an lvalue in C.
259      CL_AddressableVoid, // Void expression whose address can be taken in C.
260      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
261      CL_MemberFunction, // An expression referring to a member function
262      CL_SubObjCPropertySetting,
263      CL_ClassTemporary, // A prvalue of class type
264      CL_ObjCMessageRValue, // ObjC message is an rvalue
265      CL_PRValue // A prvalue for any other reason, of any other type
266    };
267    /// \brief The results of modification testing.
268    enum ModifiableType {
269      CM_Untested, // testModifiable was false.
270      CM_Modifiable,
271      CM_RValue, // Not modifiable because it's an rvalue
272      CM_Function, // Not modifiable because it's a function; C++ only
273      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
274      CM_NotBlockQualified, // Not captured in the closure
275      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
276      CM_ConstQualified,
277      CM_ArrayType,
278      CM_IncompleteType
279    };
280
281  private:
282    friend class Expr;
283
284    unsigned short Kind;
285    unsigned short Modifiable;
286
287    explicit Classification(Kinds k, ModifiableType m)
288      : Kind(k), Modifiable(m)
289    {}
290
291  public:
292    Classification() {}
293
294    Kinds getKind() const { return static_cast<Kinds>(Kind); }
295    ModifiableType getModifiable() const {
296      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
297      return static_cast<ModifiableType>(Modifiable);
298    }
299    bool isLValue() const { return Kind == CL_LValue; }
300    bool isXValue() const { return Kind == CL_XValue; }
301    bool isGLValue() const { return Kind <= CL_XValue; }
302    bool isPRValue() const { return Kind >= CL_Function; }
303    bool isRValue() const { return Kind >= CL_XValue; }
304    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
305
306    /// \brief Create a simple, modifiably lvalue
307    static Classification makeSimpleLValue() {
308      return Classification(CL_LValue, CM_Modifiable);
309    }
310
311  };
312  /// \brief Classify - Classify this expression according to the C++0x
313  ///        expression taxonomy.
314  ///
315  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
316  /// old lvalue vs rvalue. This function determines the type of expression this
317  /// is. There are three expression types:
318  /// - lvalues are classical lvalues as in C++03.
319  /// - prvalues are equivalent to rvalues in C++03.
320  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
321  ///   function returning an rvalue reference.
322  /// lvalues and xvalues are collectively referred to as glvalues, while
323  /// prvalues and xvalues together form rvalues.
324  Classification Classify(ASTContext &Ctx) const {
325    return ClassifyImpl(Ctx, 0);
326  }
327
328  /// \brief ClassifyModifiable - Classify this expression according to the
329  ///        C++0x expression taxonomy, and see if it is valid on the left side
330  ///        of an assignment.
331  ///
332  /// This function extends classify in that it also tests whether the
333  /// expression is modifiable (C99 6.3.2.1p1).
334  /// \param Loc A source location that might be filled with a relevant location
335  ///            if the expression is not modifiable.
336  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
337    return ClassifyImpl(Ctx, &Loc);
338  }
339
340  /// getValueKindForType - Given a formal return or parameter type,
341  /// give its value kind.
342  static ExprValueKind getValueKindForType(QualType T) {
343    if (const ReferenceType *RT = T->getAs<ReferenceType>())
344      return (isa<LValueReferenceType>(RT)
345                ? VK_LValue
346                : (RT->getPointeeType()->isFunctionType()
347                     ? VK_LValue : VK_XValue));
348    return VK_RValue;
349  }
350
351  /// getValueKind - The value kind that this expression produces.
352  ExprValueKind getValueKind() const {
353    return static_cast<ExprValueKind>(ExprBits.ValueKind);
354  }
355
356  /// getObjectKind - The object kind that this expression produces.
357  /// Object kinds are meaningful only for expressions that yield an
358  /// l-value or x-value.
359  ExprObjectKind getObjectKind() const {
360    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
361  }
362
363  bool isOrdinaryOrBitFieldObject() const {
364    ExprObjectKind OK = getObjectKind();
365    return (OK == OK_Ordinary || OK == OK_BitField);
366  }
367
368  /// setValueKind - Set the value kind produced by this expression.
369  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
370
371  /// setObjectKind - Set the object kind produced by this expression.
372  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
373
374private:
375  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
376
377public:
378
379  /// \brief If this expression refers to a bit-field, retrieve the
380  /// declaration of that bit-field.
381  FieldDecl *getBitField();
382
383  const FieldDecl *getBitField() const {
384    return const_cast<Expr*>(this)->getBitField();
385  }
386
387  /// \brief If this expression is an l-value for an Objective C
388  /// property, find the underlying property reference expression.
389  const ObjCPropertyRefExpr *getObjCProperty() const;
390
391  /// \brief Returns whether this expression refers to a vector element.
392  bool refersToVectorElement() const;
393
394  /// \brief Returns whether this expression has a placeholder type.
395  bool hasPlaceholderType() const {
396    return getType()->isPlaceholderType();
397  }
398
399  /// \brief Returns whether this expression has a specific placeholder type.
400  bool hasPlaceholderType(BuiltinType::Kind K) const {
401    assert(BuiltinType::isPlaceholderTypeKind(K));
402    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
403      return BT->getKind() == K;
404    return false;
405  }
406
407  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
408  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
409  /// but also int expressions which are produced by things like comparisons in
410  /// C.
411  bool isKnownToHaveBooleanValue() const;
412
413  /// isIntegerConstantExpr - Return true if this expression is a valid integer
414  /// constant expression, and, if so, return its value in Result.  If not a
415  /// valid i-c-e, return false and fill in Loc (if specified) with the location
416  /// of the invalid expression.
417  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
418                             SourceLocation *Loc = 0,
419                             bool isEvaluated = true) const;
420  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
421    llvm::APSInt X;
422    return isIntegerConstantExpr(X, Ctx, Loc);
423  }
424  /// isConstantInitializer - Returns true if this expression is a constant
425  /// initializer, which can be emitted at compile-time.
426  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
427
428  /// EvalStatus is a struct with detailed info about an evaluation in progress.
429  struct EvalStatus {
430    /// HasSideEffects - Whether the evaluated expression has side effects.
431    /// For example, (f() && 0) can be folded, but it still has side effects.
432    bool HasSideEffects;
433
434    /// Diag - If the expression is unfoldable, then Diag contains a note
435    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
436    /// position for the error, and DiagExpr is the expression that caused
437    /// the error.
438    /// If the expression is foldable, but not an integer constant expression,
439    /// Diag contains a note diagnostic that describes why it isn't an integer
440    /// constant expression. If the expression *is* an integer constant
441    /// expression, then Diag will be zero.
442    unsigned Diag;
443    const Expr *DiagExpr;
444    SourceLocation DiagLoc;
445
446    EvalStatus() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
447
448    // hasSideEffects - Return true if the evaluated expression has
449    // side effects.
450    bool hasSideEffects() const {
451      return HasSideEffects;
452    }
453  };
454
455  /// EvalResult is a struct with detailed info about an evaluated expression.
456  struct EvalResult : EvalStatus {
457    /// Val - This is the value the expression can be folded to.
458    APValue Val;
459
460    // isGlobalLValue - Return true if the evaluated lvalue expression
461    // is global.
462    bool isGlobalLValue() const;
463  };
464
465  /// Evaluate - Return true if this is a constant which we can fold using
466  /// any crazy technique (that has nothing to do with language standards) that
467  /// we want to.  If this function returns true, it returns the folded constant
468  /// in Result.
469  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
470
471  /// EvaluateAsBooleanCondition - Return true if this is a constant
472  /// which we we can fold and convert to a boolean condition using
473  /// any crazy technique that we want to, even if the expression has
474  /// side-effects.
475  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
476
477  /// EvaluateAsInt - Return true if this is a constant which we can fold and
478  /// convert to an integer using any crazy technique that we want to.
479  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx) const;
480
481  /// isEvaluatable - Call Evaluate to see if this expression can be constant
482  /// folded, but discard the result.
483  bool isEvaluatable(const ASTContext &Ctx) const;
484
485  /// HasSideEffects - This routine returns true for all those expressions
486  /// which must be evaluated each time and must not be optimized away
487  /// or evaluated at compile time. Example is a function call, volatile
488  /// variable read.
489  bool HasSideEffects(const ASTContext &Ctx) const;
490
491  /// EvaluateKnownConstInt - Call Evaluate and return the folded integer. This
492  /// must be called on an expression that constant folds to an integer.
493  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
494
495  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
496  /// with link time known address.
497  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
498
499  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
500  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
501
502  /// \brief Enumeration used to describe the kind of Null pointer constant
503  /// returned from \c isNullPointerConstant().
504  enum NullPointerConstantKind {
505    /// \brief Expression is not a Null pointer constant.
506    NPCK_NotNull = 0,
507
508    /// \brief Expression is a Null pointer constant built from a zero integer.
509    NPCK_ZeroInteger,
510
511    /// \brief Expression is a C++0X nullptr.
512    NPCK_CXX0X_nullptr,
513
514    /// \brief Expression is a GNU-style __null constant.
515    NPCK_GNUNull
516  };
517
518  /// \brief Enumeration used to describe how \c isNullPointerConstant()
519  /// should cope with value-dependent expressions.
520  enum NullPointerConstantValueDependence {
521    /// \brief Specifies that the expression should never be value-dependent.
522    NPC_NeverValueDependent = 0,
523
524    /// \brief Specifies that a value-dependent expression of integral or
525    /// dependent type should be considered a null pointer constant.
526    NPC_ValueDependentIsNull,
527
528    /// \brief Specifies that a value-dependent expression should be considered
529    /// to never be a null pointer constant.
530    NPC_ValueDependentIsNotNull
531  };
532
533  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
534  /// a Null pointer constant. The return value can further distinguish the
535  /// kind of NULL pointer constant that was detected.
536  NullPointerConstantKind isNullPointerConstant(
537      ASTContext &Ctx,
538      NullPointerConstantValueDependence NPC) const;
539
540  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
541  /// write barrier.
542  bool isOBJCGCCandidate(ASTContext &Ctx) const;
543
544  /// \brief Returns true if this expression is a bound member function.
545  bool isBoundMemberFunction(ASTContext &Ctx) const;
546
547  /// \brief Given an expression of bound-member type, find the type
548  /// of the member.  Returns null if this is an *overloaded* bound
549  /// member expression.
550  static QualType findBoundMemberType(const Expr *expr);
551
552  /// \brief Result type of CanThrow().
553  enum CanThrowResult {
554    CT_Cannot,
555    CT_Dependent,
556    CT_Can
557  };
558  /// \brief Test if this expression, if evaluated, might throw, according to
559  ///        the rules of C++ [expr.unary.noexcept].
560  CanThrowResult CanThrow(ASTContext &C) const;
561
562  /// IgnoreImpCasts - Skip past any implicit casts which might
563  /// surround this expression.  Only skips ImplicitCastExprs.
564  Expr *IgnoreImpCasts();
565
566  /// IgnoreImplicit - Skip past any implicit AST nodes which might
567  /// surround this expression.
568  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
569
570  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
571  ///  its subexpression.  If that subexpression is also a ParenExpr,
572  ///  then this method recursively returns its subexpression, and so forth.
573  ///  Otherwise, the method returns the current Expr.
574  Expr *IgnoreParens();
575
576  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
577  /// or CastExprs, returning their operand.
578  Expr *IgnoreParenCasts();
579
580  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
581  /// ParenExpr or ImplicitCastExprs, returning their operand.
582  Expr *IgnoreParenImpCasts();
583
584  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
585  /// call to a conversion operator, return the argument.
586  Expr *IgnoreConversionOperator();
587
588  const Expr *IgnoreConversionOperator() const {
589    return const_cast<Expr*>(this)->IgnoreConversionOperator();
590  }
591
592  const Expr *IgnoreParenImpCasts() const {
593    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
594  }
595
596  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
597  /// CastExprs that represent lvalue casts, returning their operand.
598  Expr *IgnoreParenLValueCasts();
599
600  const Expr *IgnoreParenLValueCasts() const {
601    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
602  }
603
604  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
605  /// value (including ptr->int casts of the same size).  Strip off any
606  /// ParenExpr or CastExprs, returning their operand.
607  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
608
609  /// \brief Determine whether this expression is a default function argument.
610  ///
611  /// Default arguments are implicitly generated in the abstract syntax tree
612  /// by semantic analysis for function calls, object constructions, etc. in
613  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
614  /// this routine also looks through any implicit casts to determine whether
615  /// the expression is a default argument.
616  bool isDefaultArgument() const;
617
618  /// \brief Determine whether the result of this expression is a
619  /// temporary object of the given class type.
620  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
621
622  /// \brief Whether this expression is an implicit reference to 'this' in C++.
623  bool isImplicitCXXThis() const;
624
625  const Expr *IgnoreImpCasts() const {
626    return const_cast<Expr*>(this)->IgnoreImpCasts();
627  }
628  const Expr *IgnoreParens() const {
629    return const_cast<Expr*>(this)->IgnoreParens();
630  }
631  const Expr *IgnoreParenCasts() const {
632    return const_cast<Expr*>(this)->IgnoreParenCasts();
633  }
634  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
635    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
636  }
637
638  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
639  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
640
641  static bool classof(const Stmt *T) {
642    return T->getStmtClass() >= firstExprConstant &&
643           T->getStmtClass() <= lastExprConstant;
644  }
645  static bool classof(const Expr *) { return true; }
646};
647
648
649//===----------------------------------------------------------------------===//
650// Primary Expressions.
651//===----------------------------------------------------------------------===//
652
653/// OpaqueValueExpr - An expression referring to an opaque object of a
654/// fixed type and value class.  These don't correspond to concrete
655/// syntax; instead they're used to express operations (usually copy
656/// operations) on values whose source is generally obvious from
657/// context.
658class OpaqueValueExpr : public Expr {
659  friend class ASTStmtReader;
660  Expr *SourceExpr;
661  SourceLocation Loc;
662
663public:
664  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
665                  ExprObjectKind OK = OK_Ordinary)
666    : Expr(OpaqueValueExprClass, T, VK, OK,
667           T->isDependentType(), T->isDependentType(),
668           T->isInstantiationDependentType(),
669           false),
670      SourceExpr(0), Loc(Loc) {
671  }
672
673  /// Given an expression which invokes a copy constructor --- i.e.  a
674  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
675  /// find the OpaqueValueExpr that's the source of the construction.
676  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
677
678  explicit OpaqueValueExpr(EmptyShell Empty)
679    : Expr(OpaqueValueExprClass, Empty) { }
680
681  /// \brief Retrieve the location of this expression.
682  SourceLocation getLocation() const { return Loc; }
683
684  SourceRange getSourceRange() const {
685    if (SourceExpr) return SourceExpr->getSourceRange();
686    return Loc;
687  }
688  SourceLocation getExprLoc() const {
689    if (SourceExpr) return SourceExpr->getExprLoc();
690    return Loc;
691  }
692
693  child_range children() { return child_range(); }
694
695  /// The source expression of an opaque value expression is the
696  /// expression which originally generated the value.  This is
697  /// provided as a convenience for analyses that don't wish to
698  /// precisely model the execution behavior of the program.
699  ///
700  /// The source expression is typically set when building the
701  /// expression which binds the opaque value expression in the first
702  /// place.
703  Expr *getSourceExpr() const { return SourceExpr; }
704  void setSourceExpr(Expr *e) { SourceExpr = e; }
705
706  static bool classof(const Stmt *T) {
707    return T->getStmtClass() == OpaqueValueExprClass;
708  }
709  static bool classof(const OpaqueValueExpr *) { return true; }
710};
711
712/// \brief A reference to a declared variable, function, enum, etc.
713/// [C99 6.5.1p2]
714///
715/// This encodes all the information about how a declaration is referenced
716/// within an expression.
717///
718/// There are several optional constructs attached to DeclRefExprs only when
719/// they apply in order to conserve memory. These are laid out past the end of
720/// the object, and flags in the DeclRefExprBitfield track whether they exist:
721///
722///   DeclRefExprBits.HasQualifier:
723///       Specifies when this declaration reference expression has a C++
724///       nested-name-specifier.
725///   DeclRefExprBits.HasFoundDecl:
726///       Specifies when this declaration reference expression has a record of
727///       a NamedDecl (different from the referenced ValueDecl) which was found
728///       during name lookup and/or overload resolution.
729///   DeclRefExprBits.HasExplicitTemplateArgs:
730///       Specifies when this declaration reference expression has an explicit
731///       C++ template argument list.
732class DeclRefExpr : public Expr {
733  /// \brief The declaration that we are referencing.
734  ValueDecl *D;
735
736  /// \brief The location of the declaration name itself.
737  SourceLocation Loc;
738
739  /// \brief Provides source/type location info for the declaration name
740  /// embedded in D.
741  DeclarationNameLoc DNLoc;
742
743  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
744  NestedNameSpecifierLoc &getInternalQualifierLoc() {
745    assert(hasQualifier());
746    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
747  }
748
749  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
750  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
751    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
752  }
753
754  /// \brief Test whether there is a distinct FoundDecl attached to the end of
755  /// this DRE.
756  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
757
758  /// \brief Helper to retrieve the optional NamedDecl through which this
759  /// reference occured.
760  NamedDecl *&getInternalFoundDecl() {
761    assert(hasFoundDecl());
762    if (hasQualifier())
763      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
764    return *reinterpret_cast<NamedDecl **>(this + 1);
765  }
766
767  /// \brief Helper to retrieve the optional NamedDecl through which this
768  /// reference occured.
769  NamedDecl *getInternalFoundDecl() const {
770    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
771  }
772
773  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
774              ValueDecl *D, const DeclarationNameInfo &NameInfo,
775              NamedDecl *FoundD,
776              const TemplateArgumentListInfo *TemplateArgs,
777              QualType T, ExprValueKind VK);
778
779  /// \brief Construct an empty declaration reference expression.
780  explicit DeclRefExpr(EmptyShell Empty)
781    : Expr(DeclRefExprClass, Empty) { }
782
783  /// \brief Computes the type- and value-dependence flags for this
784  /// declaration reference expression.
785  void computeDependence();
786
787public:
788  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
789              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
790    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
791      D(D), Loc(L), DNLoc(LocInfo) {
792    DeclRefExprBits.HasQualifier = 0;
793    DeclRefExprBits.HasExplicitTemplateArgs = 0;
794    DeclRefExprBits.HasFoundDecl = 0;
795    DeclRefExprBits.HadMultipleCandidates = 0;
796    computeDependence();
797  }
798
799  static DeclRefExpr *Create(ASTContext &Context,
800                             NestedNameSpecifierLoc QualifierLoc,
801                             ValueDecl *D,
802                             SourceLocation NameLoc,
803                             QualType T, ExprValueKind VK,
804                             NamedDecl *FoundD = 0,
805                             const TemplateArgumentListInfo *TemplateArgs = 0);
806
807  static DeclRefExpr *Create(ASTContext &Context,
808                             NestedNameSpecifierLoc QualifierLoc,
809                             ValueDecl *D,
810                             const DeclarationNameInfo &NameInfo,
811                             QualType T, ExprValueKind VK,
812                             NamedDecl *FoundD = 0,
813                             const TemplateArgumentListInfo *TemplateArgs = 0);
814
815  /// \brief Construct an empty declaration reference expression.
816  static DeclRefExpr *CreateEmpty(ASTContext &Context,
817                                  bool HasQualifier,
818                                  bool HasFoundDecl,
819                                  bool HasExplicitTemplateArgs,
820                                  unsigned NumTemplateArgs);
821
822  ValueDecl *getDecl() { return D; }
823  const ValueDecl *getDecl() const { return D; }
824  void setDecl(ValueDecl *NewD) { D = NewD; }
825
826  DeclarationNameInfo getNameInfo() const {
827    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
828  }
829
830  SourceLocation getLocation() const { return Loc; }
831  void setLocation(SourceLocation L) { Loc = L; }
832  SourceRange getSourceRange() const;
833
834  /// \brief Determine whether this declaration reference was preceded by a
835  /// C++ nested-name-specifier, e.g., \c N::foo.
836  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
837
838  /// \brief If the name was qualified, retrieves the nested-name-specifier
839  /// that precedes the name. Otherwise, returns NULL.
840  NestedNameSpecifier *getQualifier() const {
841    if (!hasQualifier())
842      return 0;
843
844    return getInternalQualifierLoc().getNestedNameSpecifier();
845  }
846
847  /// \brief If the name was qualified, retrieves the nested-name-specifier
848  /// that precedes the name, with source-location information.
849  NestedNameSpecifierLoc getQualifierLoc() const {
850    if (!hasQualifier())
851      return NestedNameSpecifierLoc();
852
853    return getInternalQualifierLoc();
854  }
855
856  /// \brief Get the NamedDecl through which this reference occured.
857  ///
858  /// This Decl may be different from the ValueDecl actually referred to in the
859  /// presence of using declarations, etc. It always returns non-NULL, and may
860  /// simple return the ValueDecl when appropriate.
861  NamedDecl *getFoundDecl() {
862    return hasFoundDecl() ? getInternalFoundDecl() : D;
863  }
864
865  /// \brief Get the NamedDecl through which this reference occurred.
866  /// See non-const variant.
867  const NamedDecl *getFoundDecl() const {
868    return hasFoundDecl() ? getInternalFoundDecl() : D;
869  }
870
871  /// \brief Determines whether this declaration reference was followed by an
872  /// explict template argument list.
873  bool hasExplicitTemplateArgs() const {
874    return DeclRefExprBits.HasExplicitTemplateArgs;
875  }
876
877  /// \brief Retrieve the explicit template argument list that followed the
878  /// member template name.
879  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
880    assert(hasExplicitTemplateArgs());
881    if (hasFoundDecl())
882      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
883        &getInternalFoundDecl() + 1);
884
885    if (hasQualifier())
886      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
887        &getInternalQualifierLoc() + 1);
888
889    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
890  }
891
892  /// \brief Retrieve the explicit template argument list that followed the
893  /// member template name.
894  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
895    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
896  }
897
898  /// \brief Retrieves the optional explicit template arguments.
899  /// This points to the same data as getExplicitTemplateArgs(), but
900  /// returns null if there are no explicit template arguments.
901  const ASTTemplateArgumentListInfo *getExplicitTemplateArgsOpt() const {
902    if (!hasExplicitTemplateArgs()) return 0;
903    return &getExplicitTemplateArgs();
904  }
905
906  /// \brief Copies the template arguments (if present) into the given
907  /// structure.
908  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
909    if (hasExplicitTemplateArgs())
910      getExplicitTemplateArgs().copyInto(List);
911  }
912
913  /// \brief Retrieve the location of the left angle bracket following the
914  /// member name ('<'), if any.
915  SourceLocation getLAngleLoc() const {
916    if (!hasExplicitTemplateArgs())
917      return SourceLocation();
918
919    return getExplicitTemplateArgs().LAngleLoc;
920  }
921
922  /// \brief Retrieve the template arguments provided as part of this
923  /// template-id.
924  const TemplateArgumentLoc *getTemplateArgs() const {
925    if (!hasExplicitTemplateArgs())
926      return 0;
927
928    return getExplicitTemplateArgs().getTemplateArgs();
929  }
930
931  /// \brief Retrieve the number of template arguments provided as part of this
932  /// template-id.
933  unsigned getNumTemplateArgs() const {
934    if (!hasExplicitTemplateArgs())
935      return 0;
936
937    return getExplicitTemplateArgs().NumTemplateArgs;
938  }
939
940  /// \brief Retrieve the location of the right angle bracket following the
941  /// template arguments ('>').
942  SourceLocation getRAngleLoc() const {
943    if (!hasExplicitTemplateArgs())
944      return SourceLocation();
945
946    return getExplicitTemplateArgs().RAngleLoc;
947  }
948
949  /// \brief Returns true if this expression refers to a function that
950  /// was resolved from an overloaded set having size greater than 1.
951  bool hadMultipleCandidates() const {
952    return DeclRefExprBits.HadMultipleCandidates;
953  }
954  /// \brief Sets the flag telling whether this expression refers to
955  /// a function that was resolved from an overloaded set having size
956  /// greater than 1.
957  void setHadMultipleCandidates(bool V = true) {
958    DeclRefExprBits.HadMultipleCandidates = V;
959  }
960
961  static bool classof(const Stmt *T) {
962    return T->getStmtClass() == DeclRefExprClass;
963  }
964  static bool classof(const DeclRefExpr *) { return true; }
965
966  // Iterators
967  child_range children() { return child_range(); }
968
969  friend class ASTStmtReader;
970  friend class ASTStmtWriter;
971};
972
973/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
974class PredefinedExpr : public Expr {
975public:
976  enum IdentType {
977    Func,
978    Function,
979    PrettyFunction,
980    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
981    /// 'virtual' keyword is omitted for virtual member functions.
982    PrettyFunctionNoVirtual
983  };
984
985private:
986  SourceLocation Loc;
987  IdentType Type;
988public:
989  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
990    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
991           type->isDependentType(), type->isDependentType(),
992           type->isInstantiationDependentType(),
993           /*ContainsUnexpandedParameterPack=*/false),
994      Loc(l), Type(IT) {}
995
996  /// \brief Construct an empty predefined expression.
997  explicit PredefinedExpr(EmptyShell Empty)
998    : Expr(PredefinedExprClass, Empty) { }
999
1000  IdentType getIdentType() const { return Type; }
1001  void setIdentType(IdentType IT) { Type = IT; }
1002
1003  SourceLocation getLocation() const { return Loc; }
1004  void setLocation(SourceLocation L) { Loc = L; }
1005
1006  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1007
1008  SourceRange getSourceRange() const { return SourceRange(Loc); }
1009
1010  static bool classof(const Stmt *T) {
1011    return T->getStmtClass() == PredefinedExprClass;
1012  }
1013  static bool classof(const PredefinedExpr *) { return true; }
1014
1015  // Iterators
1016  child_range children() { return child_range(); }
1017};
1018
1019/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1020/// leaking memory.
1021///
1022/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1023/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1024/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1025/// the APFloat/APInt values will never get freed. APNumericStorage uses
1026/// ASTContext's allocator for memory allocation.
1027class APNumericStorage {
1028  unsigned BitWidth;
1029  union {
1030    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1031    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1032  };
1033
1034  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1035
1036  APNumericStorage(const APNumericStorage&); // do not implement
1037  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1038
1039protected:
1040  APNumericStorage() : BitWidth(0), VAL(0) { }
1041
1042  llvm::APInt getIntValue() const {
1043    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1044    if (NumWords > 1)
1045      return llvm::APInt(BitWidth, NumWords, pVal);
1046    else
1047      return llvm::APInt(BitWidth, VAL);
1048  }
1049  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1050};
1051
1052class APIntStorage : public APNumericStorage {
1053public:
1054  llvm::APInt getValue() const { return getIntValue(); }
1055  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1056};
1057
1058class APFloatStorage : public APNumericStorage {
1059public:
1060  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
1061  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1062    setIntValue(C, Val.bitcastToAPInt());
1063  }
1064};
1065
1066class IntegerLiteral : public Expr {
1067  APIntStorage Num;
1068  SourceLocation Loc;
1069
1070  /// \brief Construct an empty integer literal.
1071  explicit IntegerLiteral(EmptyShell Empty)
1072    : Expr(IntegerLiteralClass, Empty) { }
1073
1074public:
1075  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1076  // or UnsignedLongLongTy
1077  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1078                 QualType type, SourceLocation l)
1079    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1080           false, false),
1081      Loc(l) {
1082    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1083    assert(V.getBitWidth() == C.getIntWidth(type) &&
1084           "Integer type is not the correct size for constant.");
1085    setValue(C, V);
1086  }
1087
1088  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1089  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1090  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1091  /// \param V - the value that the returned integer literal contains.
1092  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1093                                QualType type, SourceLocation l);
1094  /// \brief Returns a new empty integer literal.
1095  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1096
1097  llvm::APInt getValue() const { return Num.getValue(); }
1098  SourceRange getSourceRange() const { return SourceRange(Loc); }
1099
1100  /// \brief Retrieve the location of the literal.
1101  SourceLocation getLocation() const { return Loc; }
1102
1103  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1104  void setLocation(SourceLocation Location) { Loc = Location; }
1105
1106  static bool classof(const Stmt *T) {
1107    return T->getStmtClass() == IntegerLiteralClass;
1108  }
1109  static bool classof(const IntegerLiteral *) { return true; }
1110
1111  // Iterators
1112  child_range children() { return child_range(); }
1113};
1114
1115class CharacterLiteral : public Expr {
1116public:
1117  enum CharacterKind {
1118    Ascii,
1119    Wide,
1120    UTF16,
1121    UTF32
1122  };
1123
1124private:
1125  unsigned Value;
1126  SourceLocation Loc;
1127  unsigned Kind : 2;
1128public:
1129  // type should be IntTy
1130  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1131                   SourceLocation l)
1132    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1133           false, false),
1134      Value(value), Loc(l), Kind(kind) {
1135  }
1136
1137  /// \brief Construct an empty character literal.
1138  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1139
1140  SourceLocation getLocation() const { return Loc; }
1141  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1142
1143  SourceRange getSourceRange() const { return SourceRange(Loc); }
1144
1145  unsigned getValue() const { return Value; }
1146
1147  void setLocation(SourceLocation Location) { Loc = Location; }
1148  void setKind(CharacterKind kind) { Kind = kind; }
1149  void setValue(unsigned Val) { Value = Val; }
1150
1151  static bool classof(const Stmt *T) {
1152    return T->getStmtClass() == CharacterLiteralClass;
1153  }
1154  static bool classof(const CharacterLiteral *) { return true; }
1155
1156  // Iterators
1157  child_range children() { return child_range(); }
1158};
1159
1160class FloatingLiteral : public Expr {
1161  APFloatStorage Num;
1162  bool IsExact : 1;
1163  SourceLocation Loc;
1164
1165  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1166                  QualType Type, SourceLocation L)
1167    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1168           false, false),
1169      IsExact(isexact), Loc(L) {
1170    setValue(C, V);
1171  }
1172
1173  /// \brief Construct an empty floating-point literal.
1174  explicit FloatingLiteral(EmptyShell Empty)
1175    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1176
1177public:
1178  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1179                                 bool isexact, QualType Type, SourceLocation L);
1180  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1181
1182  llvm::APFloat getValue() const { return Num.getValue(); }
1183  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1184    Num.setValue(C, Val);
1185  }
1186
1187  bool isExact() const { return IsExact; }
1188  void setExact(bool E) { IsExact = E; }
1189
1190  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1191  /// double.  Note that this may cause loss of precision, but is useful for
1192  /// debugging dumps, etc.
1193  double getValueAsApproximateDouble() const;
1194
1195  SourceLocation getLocation() const { return Loc; }
1196  void setLocation(SourceLocation L) { Loc = L; }
1197
1198  SourceRange getSourceRange() const { return SourceRange(Loc); }
1199
1200  static bool classof(const Stmt *T) {
1201    return T->getStmtClass() == FloatingLiteralClass;
1202  }
1203  static bool classof(const FloatingLiteral *) { return true; }
1204
1205  // Iterators
1206  child_range children() { return child_range(); }
1207};
1208
1209/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1210/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1211/// IntegerLiteral classes.  Instances of this class always have a Complex type
1212/// whose element type matches the subexpression.
1213///
1214class ImaginaryLiteral : public Expr {
1215  Stmt *Val;
1216public:
1217  ImaginaryLiteral(Expr *val, QualType Ty)
1218    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1219           false, false),
1220      Val(val) {}
1221
1222  /// \brief Build an empty imaginary literal.
1223  explicit ImaginaryLiteral(EmptyShell Empty)
1224    : Expr(ImaginaryLiteralClass, Empty) { }
1225
1226  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1227  Expr *getSubExpr() { return cast<Expr>(Val); }
1228  void setSubExpr(Expr *E) { Val = E; }
1229
1230  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1231  static bool classof(const Stmt *T) {
1232    return T->getStmtClass() == ImaginaryLiteralClass;
1233  }
1234  static bool classof(const ImaginaryLiteral *) { return true; }
1235
1236  // Iterators
1237  child_range children() { return child_range(&Val, &Val+1); }
1238};
1239
1240/// StringLiteral - This represents a string literal expression, e.g. "foo"
1241/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1242/// is NOT null-terminated, and the length of the string is determined by
1243/// calling getByteLength().  The C type for a string is always a
1244/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1245/// not.
1246///
1247/// Note that strings in C can be formed by concatenation of multiple string
1248/// literal pptokens in translation phase #6.  This keeps track of the locations
1249/// of each of these pieces.
1250///
1251/// Strings in C can also be truncated and extended by assigning into arrays,
1252/// e.g. with constructs like:
1253///   char X[2] = "foobar";
1254/// In this case, getByteLength() will return 6, but the string literal will
1255/// have type "char[2]".
1256class StringLiteral : public Expr {
1257public:
1258  enum StringKind {
1259    Ascii,
1260    Wide,
1261    UTF8,
1262    UTF16,
1263    UTF32
1264  };
1265
1266private:
1267  friend class ASTStmtReader;
1268
1269  const char *StrData;
1270  unsigned ByteLength;
1271  unsigned NumConcatenated;
1272  unsigned Kind : 3;
1273  bool IsPascal : 1;
1274  SourceLocation TokLocs[1];
1275
1276  StringLiteral(QualType Ty) :
1277    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1278         false) {}
1279
1280public:
1281  /// This is the "fully general" constructor that allows representation of
1282  /// strings formed from multiple concatenated tokens.
1283  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1284                               bool Pascal, QualType Ty,
1285                               const SourceLocation *Loc, unsigned NumStrs);
1286
1287  /// Simple constructor for string literals made from one token.
1288  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1289                               bool Pascal, QualType Ty,
1290                               SourceLocation Loc) {
1291    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1292  }
1293
1294  /// \brief Construct an empty string literal.
1295  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1296
1297  StringRef getString() const {
1298    return StringRef(StrData, ByteLength);
1299  }
1300
1301  unsigned getByteLength() const { return ByteLength; }
1302
1303  /// \brief Sets the string data to the given string data.
1304  void setString(ASTContext &C, StringRef Str);
1305
1306  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1307  bool isAscii() const { return Kind == Ascii; }
1308  bool isWide() const { return Kind == Wide; }
1309  bool isUTF8() const { return Kind == UTF8; }
1310  bool isUTF16() const { return Kind == UTF16; }
1311  bool isUTF32() const { return Kind == UTF32; }
1312  bool isPascal() const { return IsPascal; }
1313
1314  bool containsNonAsciiOrNull() const {
1315    StringRef Str = getString();
1316    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1317      if (!isascii(Str[i]) || !Str[i])
1318        return true;
1319    return false;
1320  }
1321  /// getNumConcatenated - Get the number of string literal tokens that were
1322  /// concatenated in translation phase #6 to form this string literal.
1323  unsigned getNumConcatenated() const { return NumConcatenated; }
1324
1325  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1326    assert(TokNum < NumConcatenated && "Invalid tok number");
1327    return TokLocs[TokNum];
1328  }
1329  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1330    assert(TokNum < NumConcatenated && "Invalid tok number");
1331    TokLocs[TokNum] = L;
1332  }
1333
1334  /// getLocationOfByte - Return a source location that points to the specified
1335  /// byte of this string literal.
1336  ///
1337  /// Strings are amazingly complex.  They can be formed from multiple tokens
1338  /// and can have escape sequences in them in addition to the usual trigraph
1339  /// and escaped newline business.  This routine handles this complexity.
1340  ///
1341  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1342                                   const LangOptions &Features,
1343                                   const TargetInfo &Target) const;
1344
1345  typedef const SourceLocation *tokloc_iterator;
1346  tokloc_iterator tokloc_begin() const { return TokLocs; }
1347  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1348
1349  SourceRange getSourceRange() const {
1350    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1351  }
1352  static bool classof(const Stmt *T) {
1353    return T->getStmtClass() == StringLiteralClass;
1354  }
1355  static bool classof(const StringLiteral *) { return true; }
1356
1357  // Iterators
1358  child_range children() { return child_range(); }
1359};
1360
1361/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1362/// AST node is only formed if full location information is requested.
1363class ParenExpr : public Expr {
1364  SourceLocation L, R;
1365  Stmt *Val;
1366public:
1367  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1368    : Expr(ParenExprClass, val->getType(),
1369           val->getValueKind(), val->getObjectKind(),
1370           val->isTypeDependent(), val->isValueDependent(),
1371           val->isInstantiationDependent(),
1372           val->containsUnexpandedParameterPack()),
1373      L(l), R(r), Val(val) {}
1374
1375  /// \brief Construct an empty parenthesized expression.
1376  explicit ParenExpr(EmptyShell Empty)
1377    : Expr(ParenExprClass, Empty) { }
1378
1379  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1380  Expr *getSubExpr() { return cast<Expr>(Val); }
1381  void setSubExpr(Expr *E) { Val = E; }
1382
1383  SourceRange getSourceRange() const { return SourceRange(L, R); }
1384
1385  /// \brief Get the location of the left parentheses '('.
1386  SourceLocation getLParen() const { return L; }
1387  void setLParen(SourceLocation Loc) { L = Loc; }
1388
1389  /// \brief Get the location of the right parentheses ')'.
1390  SourceLocation getRParen() const { return R; }
1391  void setRParen(SourceLocation Loc) { R = Loc; }
1392
1393  static bool classof(const Stmt *T) {
1394    return T->getStmtClass() == ParenExprClass;
1395  }
1396  static bool classof(const ParenExpr *) { return true; }
1397
1398  // Iterators
1399  child_range children() { return child_range(&Val, &Val+1); }
1400};
1401
1402
1403/// UnaryOperator - This represents the unary-expression's (except sizeof and
1404/// alignof), the postinc/postdec operators from postfix-expression, and various
1405/// extensions.
1406///
1407/// Notes on various nodes:
1408///
1409/// Real/Imag - These return the real/imag part of a complex operand.  If
1410///   applied to a non-complex value, the former returns its operand and the
1411///   later returns zero in the type of the operand.
1412///
1413class UnaryOperator : public Expr {
1414public:
1415  typedef UnaryOperatorKind Opcode;
1416
1417private:
1418  unsigned Opc : 5;
1419  SourceLocation Loc;
1420  Stmt *Val;
1421public:
1422
1423  UnaryOperator(Expr *input, Opcode opc, QualType type,
1424                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1425    : Expr(UnaryOperatorClass, type, VK, OK,
1426           input->isTypeDependent() || type->isDependentType(),
1427           input->isValueDependent(),
1428           (input->isInstantiationDependent() ||
1429            type->isInstantiationDependentType()),
1430           input->containsUnexpandedParameterPack()),
1431      Opc(opc), Loc(l), Val(input) {}
1432
1433  /// \brief Build an empty unary operator.
1434  explicit UnaryOperator(EmptyShell Empty)
1435    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1436
1437  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1438  void setOpcode(Opcode O) { Opc = O; }
1439
1440  Expr *getSubExpr() const { return cast<Expr>(Val); }
1441  void setSubExpr(Expr *E) { Val = E; }
1442
1443  /// getOperatorLoc - Return the location of the operator.
1444  SourceLocation getOperatorLoc() const { return Loc; }
1445  void setOperatorLoc(SourceLocation L) { Loc = L; }
1446
1447  /// isPostfix - Return true if this is a postfix operation, like x++.
1448  static bool isPostfix(Opcode Op) {
1449    return Op == UO_PostInc || Op == UO_PostDec;
1450  }
1451
1452  /// isPrefix - Return true if this is a prefix operation, like --x.
1453  static bool isPrefix(Opcode Op) {
1454    return Op == UO_PreInc || Op == UO_PreDec;
1455  }
1456
1457  bool isPrefix() const { return isPrefix(getOpcode()); }
1458  bool isPostfix() const { return isPostfix(getOpcode()); }
1459  bool isIncrementOp() const {
1460    return Opc == UO_PreInc || Opc == UO_PostInc;
1461  }
1462  bool isIncrementDecrementOp() const {
1463    return Opc <= UO_PreDec;
1464  }
1465  static bool isArithmeticOp(Opcode Op) {
1466    return Op >= UO_Plus && Op <= UO_LNot;
1467  }
1468  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1469
1470  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1471  /// corresponds to, e.g. "sizeof" or "[pre]++"
1472  static const char *getOpcodeStr(Opcode Op);
1473
1474  /// \brief Retrieve the unary opcode that corresponds to the given
1475  /// overloaded operator.
1476  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1477
1478  /// \brief Retrieve the overloaded operator kind that corresponds to
1479  /// the given unary opcode.
1480  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1481
1482  SourceRange getSourceRange() const {
1483    if (isPostfix())
1484      return SourceRange(Val->getLocStart(), Loc);
1485    else
1486      return SourceRange(Loc, Val->getLocEnd());
1487  }
1488  SourceLocation getExprLoc() const { return Loc; }
1489
1490  static bool classof(const Stmt *T) {
1491    return T->getStmtClass() == UnaryOperatorClass;
1492  }
1493  static bool classof(const UnaryOperator *) { return true; }
1494
1495  // Iterators
1496  child_range children() { return child_range(&Val, &Val+1); }
1497};
1498
1499/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1500/// offsetof(record-type, member-designator). For example, given:
1501/// @code
1502/// struct S {
1503///   float f;
1504///   double d;
1505/// };
1506/// struct T {
1507///   int i;
1508///   struct S s[10];
1509/// };
1510/// @endcode
1511/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1512
1513class OffsetOfExpr : public Expr {
1514public:
1515  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1516  class OffsetOfNode {
1517  public:
1518    /// \brief The kind of offsetof node we have.
1519    enum Kind {
1520      /// \brief An index into an array.
1521      Array = 0x00,
1522      /// \brief A field.
1523      Field = 0x01,
1524      /// \brief A field in a dependent type, known only by its name.
1525      Identifier = 0x02,
1526      /// \brief An implicit indirection through a C++ base class, when the
1527      /// field found is in a base class.
1528      Base = 0x03
1529    };
1530
1531  private:
1532    enum { MaskBits = 2, Mask = 0x03 };
1533
1534    /// \brief The source range that covers this part of the designator.
1535    SourceRange Range;
1536
1537    /// \brief The data describing the designator, which comes in three
1538    /// different forms, depending on the lower two bits.
1539    ///   - An unsigned index into the array of Expr*'s stored after this node
1540    ///     in memory, for [constant-expression] designators.
1541    ///   - A FieldDecl*, for references to a known field.
1542    ///   - An IdentifierInfo*, for references to a field with a given name
1543    ///     when the class type is dependent.
1544    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1545    ///     base class.
1546    uintptr_t Data;
1547
1548  public:
1549    /// \brief Create an offsetof node that refers to an array element.
1550    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1551                 SourceLocation RBracketLoc)
1552      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1553
1554    /// \brief Create an offsetof node that refers to a field.
1555    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1556                 SourceLocation NameLoc)
1557      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1558        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1559
1560    /// \brief Create an offsetof node that refers to an identifier.
1561    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1562                 SourceLocation NameLoc)
1563      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1564        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1565
1566    /// \brief Create an offsetof node that refers into a C++ base class.
1567    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1568      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1569
1570    /// \brief Determine what kind of offsetof node this is.
1571    Kind getKind() const {
1572      return static_cast<Kind>(Data & Mask);
1573    }
1574
1575    /// \brief For an array element node, returns the index into the array
1576    /// of expressions.
1577    unsigned getArrayExprIndex() const {
1578      assert(getKind() == Array);
1579      return Data >> 2;
1580    }
1581
1582    /// \brief For a field offsetof node, returns the field.
1583    FieldDecl *getField() const {
1584      assert(getKind() == Field);
1585      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1586    }
1587
1588    /// \brief For a field or identifier offsetof node, returns the name of
1589    /// the field.
1590    IdentifierInfo *getFieldName() const;
1591
1592    /// \brief For a base class node, returns the base specifier.
1593    CXXBaseSpecifier *getBase() const {
1594      assert(getKind() == Base);
1595      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1596    }
1597
1598    /// \brief Retrieve the source range that covers this offsetof node.
1599    ///
1600    /// For an array element node, the source range contains the locations of
1601    /// the square brackets. For a field or identifier node, the source range
1602    /// contains the location of the period (if there is one) and the
1603    /// identifier.
1604    SourceRange getSourceRange() const { return Range; }
1605  };
1606
1607private:
1608
1609  SourceLocation OperatorLoc, RParenLoc;
1610  // Base type;
1611  TypeSourceInfo *TSInfo;
1612  // Number of sub-components (i.e. instances of OffsetOfNode).
1613  unsigned NumComps;
1614  // Number of sub-expressions (i.e. array subscript expressions).
1615  unsigned NumExprs;
1616
1617  OffsetOfExpr(ASTContext &C, QualType type,
1618               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1619               OffsetOfNode* compsPtr, unsigned numComps,
1620               Expr** exprsPtr, unsigned numExprs,
1621               SourceLocation RParenLoc);
1622
1623  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1624    : Expr(OffsetOfExprClass, EmptyShell()),
1625      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1626
1627public:
1628
1629  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1630                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1631                              OffsetOfNode* compsPtr, unsigned numComps,
1632                              Expr** exprsPtr, unsigned numExprs,
1633                              SourceLocation RParenLoc);
1634
1635  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1636                                   unsigned NumComps, unsigned NumExprs);
1637
1638  /// getOperatorLoc - Return the location of the operator.
1639  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1640  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1641
1642  /// \brief Return the location of the right parentheses.
1643  SourceLocation getRParenLoc() const { return RParenLoc; }
1644  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1645
1646  TypeSourceInfo *getTypeSourceInfo() const {
1647    return TSInfo;
1648  }
1649  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1650    TSInfo = tsi;
1651  }
1652
1653  const OffsetOfNode &getComponent(unsigned Idx) const {
1654    assert(Idx < NumComps && "Subscript out of range");
1655    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1656  }
1657
1658  void setComponent(unsigned Idx, OffsetOfNode ON) {
1659    assert(Idx < NumComps && "Subscript out of range");
1660    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1661  }
1662
1663  unsigned getNumComponents() const {
1664    return NumComps;
1665  }
1666
1667  Expr* getIndexExpr(unsigned Idx) {
1668    assert(Idx < NumExprs && "Subscript out of range");
1669    return reinterpret_cast<Expr **>(
1670                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1671  }
1672  const Expr *getIndexExpr(unsigned Idx) const {
1673    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1674  }
1675
1676  void setIndexExpr(unsigned Idx, Expr* E) {
1677    assert(Idx < NumComps && "Subscript out of range");
1678    reinterpret_cast<Expr **>(
1679                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1680  }
1681
1682  unsigned getNumExpressions() const {
1683    return NumExprs;
1684  }
1685
1686  SourceRange getSourceRange() const {
1687    return SourceRange(OperatorLoc, RParenLoc);
1688  }
1689
1690  static bool classof(const Stmt *T) {
1691    return T->getStmtClass() == OffsetOfExprClass;
1692  }
1693
1694  static bool classof(const OffsetOfExpr *) { return true; }
1695
1696  // Iterators
1697  child_range children() {
1698    Stmt **begin =
1699      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1700                               + NumComps);
1701    return child_range(begin, begin + NumExprs);
1702  }
1703};
1704
1705/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1706/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1707/// vec_step (OpenCL 1.1 6.11.12).
1708class UnaryExprOrTypeTraitExpr : public Expr {
1709  unsigned Kind : 2;
1710  bool isType : 1;    // true if operand is a type, false if an expression
1711  union {
1712    TypeSourceInfo *Ty;
1713    Stmt *Ex;
1714  } Argument;
1715  SourceLocation OpLoc, RParenLoc;
1716
1717public:
1718  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1719                           QualType resultType, SourceLocation op,
1720                           SourceLocation rp) :
1721      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1722           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1723           // Value-dependent if the argument is type-dependent.
1724           TInfo->getType()->isDependentType(),
1725           TInfo->getType()->isInstantiationDependentType(),
1726           TInfo->getType()->containsUnexpandedParameterPack()),
1727      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1728    Argument.Ty = TInfo;
1729  }
1730
1731  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1732                           QualType resultType, SourceLocation op,
1733                           SourceLocation rp) :
1734      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1735           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1736           // Value-dependent if the argument is type-dependent.
1737           E->isTypeDependent(),
1738           E->isInstantiationDependent(),
1739           E->containsUnexpandedParameterPack()),
1740      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1741    Argument.Ex = E;
1742  }
1743
1744  /// \brief Construct an empty sizeof/alignof expression.
1745  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1746    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1747
1748  UnaryExprOrTypeTrait getKind() const {
1749    return static_cast<UnaryExprOrTypeTrait>(Kind);
1750  }
1751  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1752
1753  bool isArgumentType() const { return isType; }
1754  QualType getArgumentType() const {
1755    return getArgumentTypeInfo()->getType();
1756  }
1757  TypeSourceInfo *getArgumentTypeInfo() const {
1758    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1759    return Argument.Ty;
1760  }
1761  Expr *getArgumentExpr() {
1762    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1763    return static_cast<Expr*>(Argument.Ex);
1764  }
1765  const Expr *getArgumentExpr() const {
1766    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1767  }
1768
1769  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1770  void setArgument(TypeSourceInfo *TInfo) {
1771    Argument.Ty = TInfo;
1772    isType = true;
1773  }
1774
1775  /// Gets the argument type, or the type of the argument expression, whichever
1776  /// is appropriate.
1777  QualType getTypeOfArgument() const {
1778    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1779  }
1780
1781  SourceLocation getOperatorLoc() const { return OpLoc; }
1782  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1783
1784  SourceLocation getRParenLoc() const { return RParenLoc; }
1785  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1786
1787  SourceRange getSourceRange() const {
1788    return SourceRange(OpLoc, RParenLoc);
1789  }
1790
1791  static bool classof(const Stmt *T) {
1792    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1793  }
1794  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1795
1796  // Iterators
1797  child_range children();
1798};
1799
1800//===----------------------------------------------------------------------===//
1801// Postfix Operators.
1802//===----------------------------------------------------------------------===//
1803
1804/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1805class ArraySubscriptExpr : public Expr {
1806  enum { LHS, RHS, END_EXPR=2 };
1807  Stmt* SubExprs[END_EXPR];
1808  SourceLocation RBracketLoc;
1809public:
1810  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1811                     ExprValueKind VK, ExprObjectKind OK,
1812                     SourceLocation rbracketloc)
1813  : Expr(ArraySubscriptExprClass, t, VK, OK,
1814         lhs->isTypeDependent() || rhs->isTypeDependent(),
1815         lhs->isValueDependent() || rhs->isValueDependent(),
1816         (lhs->isInstantiationDependent() ||
1817          rhs->isInstantiationDependent()),
1818         (lhs->containsUnexpandedParameterPack() ||
1819          rhs->containsUnexpandedParameterPack())),
1820    RBracketLoc(rbracketloc) {
1821    SubExprs[LHS] = lhs;
1822    SubExprs[RHS] = rhs;
1823  }
1824
1825  /// \brief Create an empty array subscript expression.
1826  explicit ArraySubscriptExpr(EmptyShell Shell)
1827    : Expr(ArraySubscriptExprClass, Shell) { }
1828
1829  /// An array access can be written A[4] or 4[A] (both are equivalent).
1830  /// - getBase() and getIdx() always present the normalized view: A[4].
1831  ///    In this case getBase() returns "A" and getIdx() returns "4".
1832  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1833  ///    4[A] getLHS() returns "4".
1834  /// Note: Because vector element access is also written A[4] we must
1835  /// predicate the format conversion in getBase and getIdx only on the
1836  /// the type of the RHS, as it is possible for the LHS to be a vector of
1837  /// integer type
1838  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1839  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1840  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1841
1842  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1843  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1844  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1845
1846  Expr *getBase() {
1847    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1848  }
1849
1850  const Expr *getBase() const {
1851    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1852  }
1853
1854  Expr *getIdx() {
1855    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1856  }
1857
1858  const Expr *getIdx() const {
1859    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1860  }
1861
1862  SourceRange getSourceRange() const {
1863    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1864  }
1865
1866  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1867  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1868
1869  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1870
1871  static bool classof(const Stmt *T) {
1872    return T->getStmtClass() == ArraySubscriptExprClass;
1873  }
1874  static bool classof(const ArraySubscriptExpr *) { return true; }
1875
1876  // Iterators
1877  child_range children() {
1878    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1879  }
1880};
1881
1882
1883/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1884/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1885/// while its subclasses may represent alternative syntax that (semantically)
1886/// results in a function call. For example, CXXOperatorCallExpr is
1887/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1888/// "str1 + str2" to resolve to a function call.
1889class CallExpr : public Expr {
1890  enum { FN=0, PREARGS_START=1 };
1891  Stmt **SubExprs;
1892  unsigned NumArgs;
1893  SourceLocation RParenLoc;
1894
1895protected:
1896  // These versions of the constructor are for derived classes.
1897  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1898           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1899           SourceLocation rparenloc);
1900  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1901
1902  Stmt *getPreArg(unsigned i) {
1903    assert(i < getNumPreArgs() && "Prearg access out of range!");
1904    return SubExprs[PREARGS_START+i];
1905  }
1906  const Stmt *getPreArg(unsigned i) const {
1907    assert(i < getNumPreArgs() && "Prearg access out of range!");
1908    return SubExprs[PREARGS_START+i];
1909  }
1910  void setPreArg(unsigned i, Stmt *PreArg) {
1911    assert(i < getNumPreArgs() && "Prearg access out of range!");
1912    SubExprs[PREARGS_START+i] = PreArg;
1913  }
1914
1915  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1916
1917public:
1918  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1919           ExprValueKind VK, SourceLocation rparenloc);
1920
1921  /// \brief Build an empty call expression.
1922  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1923
1924  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1925  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1926  void setCallee(Expr *F) { SubExprs[FN] = F; }
1927
1928  Decl *getCalleeDecl();
1929  const Decl *getCalleeDecl() const {
1930    return const_cast<CallExpr*>(this)->getCalleeDecl();
1931  }
1932
1933  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1934  FunctionDecl *getDirectCallee();
1935  const FunctionDecl *getDirectCallee() const {
1936    return const_cast<CallExpr*>(this)->getDirectCallee();
1937  }
1938
1939  /// getNumArgs - Return the number of actual arguments to this call.
1940  ///
1941  unsigned getNumArgs() const { return NumArgs; }
1942
1943  /// \brief Retrieve the call arguments.
1944  Expr **getArgs() {
1945    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1946  }
1947
1948  /// getArg - Return the specified argument.
1949  Expr *getArg(unsigned Arg) {
1950    assert(Arg < NumArgs && "Arg access out of range!");
1951    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1952  }
1953  const Expr *getArg(unsigned Arg) const {
1954    assert(Arg < NumArgs && "Arg access out of range!");
1955    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1956  }
1957
1958  /// setArg - Set the specified argument.
1959  void setArg(unsigned Arg, Expr *ArgExpr) {
1960    assert(Arg < NumArgs && "Arg access out of range!");
1961    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1962  }
1963
1964  /// setNumArgs - This changes the number of arguments present in this call.
1965  /// Any orphaned expressions are deleted by this, and any new operands are set
1966  /// to null.
1967  void setNumArgs(ASTContext& C, unsigned NumArgs);
1968
1969  typedef ExprIterator arg_iterator;
1970  typedef ConstExprIterator const_arg_iterator;
1971
1972  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1973  arg_iterator arg_end() {
1974    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1975  }
1976  const_arg_iterator arg_begin() const {
1977    return SubExprs+PREARGS_START+getNumPreArgs();
1978  }
1979  const_arg_iterator arg_end() const {
1980    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1981  }
1982
1983  /// getNumCommas - Return the number of commas that must have been present in
1984  /// this function call.
1985  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1986
1987  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1988  /// not, return 0.
1989  unsigned isBuiltinCall(const ASTContext &Context) const;
1990
1991  /// getCallReturnType - Get the return type of the call expr. This is not
1992  /// always the type of the expr itself, if the return type is a reference
1993  /// type.
1994  QualType getCallReturnType() const;
1995
1996  SourceLocation getRParenLoc() const { return RParenLoc; }
1997  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1998
1999  SourceRange getSourceRange() const;
2000
2001  static bool classof(const Stmt *T) {
2002    return T->getStmtClass() >= firstCallExprConstant &&
2003           T->getStmtClass() <= lastCallExprConstant;
2004  }
2005  static bool classof(const CallExpr *) { return true; }
2006
2007  // Iterators
2008  child_range children() {
2009    return child_range(&SubExprs[0],
2010                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2011  }
2012};
2013
2014/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2015///
2016class MemberExpr : public Expr {
2017  /// Extra data stored in some member expressions.
2018  struct MemberNameQualifier {
2019    /// \brief The nested-name-specifier that qualifies the name, including
2020    /// source-location information.
2021    NestedNameSpecifierLoc QualifierLoc;
2022
2023    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2024    /// name qualifiers.
2025    DeclAccessPair FoundDecl;
2026  };
2027
2028  /// Base - the expression for the base pointer or structure references.  In
2029  /// X.F, this is "X".
2030  Stmt *Base;
2031
2032  /// MemberDecl - This is the decl being referenced by the field/member name.
2033  /// In X.F, this is the decl referenced by F.
2034  ValueDecl *MemberDecl;
2035
2036  /// MemberLoc - This is the location of the member name.
2037  SourceLocation MemberLoc;
2038
2039  /// MemberDNLoc - Provides source/type location info for the
2040  /// declaration name embedded in MemberDecl.
2041  DeclarationNameLoc MemberDNLoc;
2042
2043  /// IsArrow - True if this is "X->F", false if this is "X.F".
2044  bool IsArrow : 1;
2045
2046  /// \brief True if this member expression used a nested-name-specifier to
2047  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2048  /// declaration.  When true, a MemberNameQualifier
2049  /// structure is allocated immediately after the MemberExpr.
2050  bool HasQualifierOrFoundDecl : 1;
2051
2052  /// \brief True if this member expression specified a template argument list
2053  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
2054  /// structure (and its TemplateArguments) are allocated immediately after
2055  /// the MemberExpr or, if the member expression also has a qualifier, after
2056  /// the MemberNameQualifier structure.
2057  bool HasExplicitTemplateArgumentList : 1;
2058
2059  /// \brief True if this member expression refers to a method that
2060  /// was resolved from an overloaded set having size greater than 1.
2061  bool HadMultipleCandidates : 1;
2062
2063  /// \brief Retrieve the qualifier that preceded the member name, if any.
2064  MemberNameQualifier *getMemberQualifier() {
2065    assert(HasQualifierOrFoundDecl);
2066    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2067  }
2068
2069  /// \brief Retrieve the qualifier that preceded the member name, if any.
2070  const MemberNameQualifier *getMemberQualifier() const {
2071    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2072  }
2073
2074public:
2075  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2076             const DeclarationNameInfo &NameInfo, QualType ty,
2077             ExprValueKind VK, ExprObjectKind OK)
2078    : Expr(MemberExprClass, ty, VK, OK,
2079           base->isTypeDependent(),
2080           base->isValueDependent(),
2081           base->isInstantiationDependent(),
2082           base->containsUnexpandedParameterPack()),
2083      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2084      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2085      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2086      HadMultipleCandidates(false) {
2087    assert(memberdecl->getDeclName() == NameInfo.getName());
2088  }
2089
2090  // NOTE: this constructor should be used only when it is known that
2091  // the member name can not provide additional syntactic info
2092  // (i.e., source locations for C++ operator names or type source info
2093  // for constructors, destructors and conversion oeprators).
2094  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2095             SourceLocation l, QualType ty,
2096             ExprValueKind VK, ExprObjectKind OK)
2097    : Expr(MemberExprClass, ty, VK, OK,
2098           base->isTypeDependent(), base->isValueDependent(),
2099           base->isInstantiationDependent(),
2100           base->containsUnexpandedParameterPack()),
2101      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2102      IsArrow(isarrow),
2103      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2104      HadMultipleCandidates(false) {}
2105
2106  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2107                            NestedNameSpecifierLoc QualifierLoc,
2108                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2109                            DeclarationNameInfo MemberNameInfo,
2110                            const TemplateArgumentListInfo *targs,
2111                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2112
2113  void setBase(Expr *E) { Base = E; }
2114  Expr *getBase() const { return cast<Expr>(Base); }
2115
2116  /// \brief Retrieve the member declaration to which this expression refers.
2117  ///
2118  /// The returned declaration will either be a FieldDecl or (in C++)
2119  /// a CXXMethodDecl.
2120  ValueDecl *getMemberDecl() const { return MemberDecl; }
2121  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2122
2123  /// \brief Retrieves the declaration found by lookup.
2124  DeclAccessPair getFoundDecl() const {
2125    if (!HasQualifierOrFoundDecl)
2126      return DeclAccessPair::make(getMemberDecl(),
2127                                  getMemberDecl()->getAccess());
2128    return getMemberQualifier()->FoundDecl;
2129  }
2130
2131  /// \brief Determines whether this member expression actually had
2132  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2133  /// x->Base::foo.
2134  bool hasQualifier() const { return getQualifier() != 0; }
2135
2136  /// \brief If the member name was qualified, retrieves the
2137  /// nested-name-specifier that precedes the member name. Otherwise, returns
2138  /// NULL.
2139  NestedNameSpecifier *getQualifier() const {
2140    if (!HasQualifierOrFoundDecl)
2141      return 0;
2142
2143    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2144  }
2145
2146  /// \brief If the member name was qualified, retrieves the
2147  /// nested-name-specifier that precedes the member name, with source-location
2148  /// information.
2149  NestedNameSpecifierLoc getQualifierLoc() const {
2150    if (!hasQualifier())
2151      return NestedNameSpecifierLoc();
2152
2153    return getMemberQualifier()->QualifierLoc;
2154  }
2155
2156  /// \brief Determines whether this member expression actually had a C++
2157  /// template argument list explicitly specified, e.g., x.f<int>.
2158  bool hasExplicitTemplateArgs() const {
2159    return HasExplicitTemplateArgumentList;
2160  }
2161
2162  /// \brief Copies the template arguments (if present) into the given
2163  /// structure.
2164  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2165    if (hasExplicitTemplateArgs())
2166      getExplicitTemplateArgs().copyInto(List);
2167  }
2168
2169  /// \brief Retrieve the explicit template argument list that
2170  /// follow the member template name.  This must only be called on an
2171  /// expression with explicit template arguments.
2172  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2173    assert(HasExplicitTemplateArgumentList);
2174    if (!HasQualifierOrFoundDecl)
2175      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2176
2177    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
2178                                                      getMemberQualifier() + 1);
2179  }
2180
2181  /// \brief Retrieve the explicit template argument list that
2182  /// followed the member template name.  This must only be called on
2183  /// an expression with explicit template arguments.
2184  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2185    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2186  }
2187
2188  /// \brief Retrieves the optional explicit template arguments.
2189  /// This points to the same data as getExplicitTemplateArgs(), but
2190  /// returns null if there are no explicit template arguments.
2191  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2192    if (!hasExplicitTemplateArgs()) return 0;
2193    return &getExplicitTemplateArgs();
2194  }
2195
2196  /// \brief Retrieve the location of the left angle bracket following the
2197  /// member name ('<'), if any.
2198  SourceLocation getLAngleLoc() const {
2199    if (!HasExplicitTemplateArgumentList)
2200      return SourceLocation();
2201
2202    return getExplicitTemplateArgs().LAngleLoc;
2203  }
2204
2205  /// \brief Retrieve the template arguments provided as part of this
2206  /// template-id.
2207  const TemplateArgumentLoc *getTemplateArgs() const {
2208    if (!HasExplicitTemplateArgumentList)
2209      return 0;
2210
2211    return getExplicitTemplateArgs().getTemplateArgs();
2212  }
2213
2214  /// \brief Retrieve the number of template arguments provided as part of this
2215  /// template-id.
2216  unsigned getNumTemplateArgs() const {
2217    if (!HasExplicitTemplateArgumentList)
2218      return 0;
2219
2220    return getExplicitTemplateArgs().NumTemplateArgs;
2221  }
2222
2223  /// \brief Retrieve the location of the right angle bracket following the
2224  /// template arguments ('>').
2225  SourceLocation getRAngleLoc() const {
2226    if (!HasExplicitTemplateArgumentList)
2227      return SourceLocation();
2228
2229    return getExplicitTemplateArgs().RAngleLoc;
2230  }
2231
2232  /// \brief Retrieve the member declaration name info.
2233  DeclarationNameInfo getMemberNameInfo() const {
2234    return DeclarationNameInfo(MemberDecl->getDeclName(),
2235                               MemberLoc, MemberDNLoc);
2236  }
2237
2238  bool isArrow() const { return IsArrow; }
2239  void setArrow(bool A) { IsArrow = A; }
2240
2241  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2242  /// location of 'F'.
2243  SourceLocation getMemberLoc() const { return MemberLoc; }
2244  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2245
2246  SourceRange getSourceRange() const;
2247
2248  SourceLocation getExprLoc() const { return MemberLoc; }
2249
2250  /// \brief Determine whether the base of this explicit is implicit.
2251  bool isImplicitAccess() const {
2252    return getBase() && getBase()->isImplicitCXXThis();
2253  }
2254
2255  /// \brief Returns true if this member expression refers to a method that
2256  /// was resolved from an overloaded set having size greater than 1.
2257  bool hadMultipleCandidates() const {
2258    return HadMultipleCandidates;
2259  }
2260  /// \brief Sets the flag telling whether this expression refers to
2261  /// a method that was resolved from an overloaded set having size
2262  /// greater than 1.
2263  void setHadMultipleCandidates(bool V = true) {
2264    HadMultipleCandidates = V;
2265  }
2266
2267  static bool classof(const Stmt *T) {
2268    return T->getStmtClass() == MemberExprClass;
2269  }
2270  static bool classof(const MemberExpr *) { return true; }
2271
2272  // Iterators
2273  child_range children() { return child_range(&Base, &Base+1); }
2274
2275  friend class ASTReader;
2276  friend class ASTStmtWriter;
2277};
2278
2279/// CompoundLiteralExpr - [C99 6.5.2.5]
2280///
2281class CompoundLiteralExpr : public Expr {
2282  /// LParenLoc - If non-null, this is the location of the left paren in a
2283  /// compound literal like "(int){4}".  This can be null if this is a
2284  /// synthesized compound expression.
2285  SourceLocation LParenLoc;
2286
2287  /// The type as written.  This can be an incomplete array type, in
2288  /// which case the actual expression type will be different.
2289  TypeSourceInfo *TInfo;
2290  Stmt *Init;
2291  bool FileScope;
2292public:
2293  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2294                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2295    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2296           tinfo->getType()->isDependentType(),
2297           init->isValueDependent(),
2298           (init->isInstantiationDependent() ||
2299            tinfo->getType()->isInstantiationDependentType()),
2300           init->containsUnexpandedParameterPack()),
2301      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2302
2303  /// \brief Construct an empty compound literal.
2304  explicit CompoundLiteralExpr(EmptyShell Empty)
2305    : Expr(CompoundLiteralExprClass, Empty) { }
2306
2307  const Expr *getInitializer() const { return cast<Expr>(Init); }
2308  Expr *getInitializer() { return cast<Expr>(Init); }
2309  void setInitializer(Expr *E) { Init = E; }
2310
2311  bool isFileScope() const { return FileScope; }
2312  void setFileScope(bool FS) { FileScope = FS; }
2313
2314  SourceLocation getLParenLoc() const { return LParenLoc; }
2315  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2316
2317  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2318  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2319
2320  SourceRange getSourceRange() const {
2321    // FIXME: Init should never be null.
2322    if (!Init)
2323      return SourceRange();
2324    if (LParenLoc.isInvalid())
2325      return Init->getSourceRange();
2326    return SourceRange(LParenLoc, Init->getLocEnd());
2327  }
2328
2329  static bool classof(const Stmt *T) {
2330    return T->getStmtClass() == CompoundLiteralExprClass;
2331  }
2332  static bool classof(const CompoundLiteralExpr *) { return true; }
2333
2334  // Iterators
2335  child_range children() { return child_range(&Init, &Init+1); }
2336};
2337
2338/// CastExpr - Base class for type casts, including both implicit
2339/// casts (ImplicitCastExpr) and explicit casts that have some
2340/// representation in the source code (ExplicitCastExpr's derived
2341/// classes).
2342class CastExpr : public Expr {
2343public:
2344  typedef clang::CastKind CastKind;
2345
2346private:
2347  Stmt *Op;
2348
2349  void CheckCastConsistency() const;
2350
2351  const CXXBaseSpecifier * const *path_buffer() const {
2352    return const_cast<CastExpr*>(this)->path_buffer();
2353  }
2354  CXXBaseSpecifier **path_buffer();
2355
2356  void setBasePathSize(unsigned basePathSize) {
2357    CastExprBits.BasePathSize = basePathSize;
2358    assert(CastExprBits.BasePathSize == basePathSize &&
2359           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2360  }
2361
2362protected:
2363  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2364           const CastKind kind, Expr *op, unsigned BasePathSize) :
2365    Expr(SC, ty, VK, OK_Ordinary,
2366         // Cast expressions are type-dependent if the type is
2367         // dependent (C++ [temp.dep.expr]p3).
2368         ty->isDependentType(),
2369         // Cast expressions are value-dependent if the type is
2370         // dependent or if the subexpression is value-dependent.
2371         ty->isDependentType() || (op && op->isValueDependent()),
2372         (ty->isInstantiationDependentType() ||
2373          (op && op->isInstantiationDependent())),
2374         (ty->containsUnexpandedParameterPack() ||
2375          op->containsUnexpandedParameterPack())),
2376    Op(op) {
2377    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2378    CastExprBits.Kind = kind;
2379    setBasePathSize(BasePathSize);
2380#ifndef NDEBUG
2381    CheckCastConsistency();
2382#endif
2383  }
2384
2385  /// \brief Construct an empty cast.
2386  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2387    : Expr(SC, Empty) {
2388    setBasePathSize(BasePathSize);
2389  }
2390
2391public:
2392  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2393  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2394  const char *getCastKindName() const;
2395
2396  Expr *getSubExpr() { return cast<Expr>(Op); }
2397  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2398  void setSubExpr(Expr *E) { Op = E; }
2399
2400  /// \brief Retrieve the cast subexpression as it was written in the source
2401  /// code, looking through any implicit casts or other intermediate nodes
2402  /// introduced by semantic analysis.
2403  Expr *getSubExprAsWritten();
2404  const Expr *getSubExprAsWritten() const {
2405    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2406  }
2407
2408  typedef CXXBaseSpecifier **path_iterator;
2409  typedef const CXXBaseSpecifier * const *path_const_iterator;
2410  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2411  unsigned path_size() const { return CastExprBits.BasePathSize; }
2412  path_iterator path_begin() { return path_buffer(); }
2413  path_iterator path_end() { return path_buffer() + path_size(); }
2414  path_const_iterator path_begin() const { return path_buffer(); }
2415  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2416
2417  void setCastPath(const CXXCastPath &Path);
2418
2419  static bool classof(const Stmt *T) {
2420    return T->getStmtClass() >= firstCastExprConstant &&
2421           T->getStmtClass() <= lastCastExprConstant;
2422  }
2423  static bool classof(const CastExpr *) { return true; }
2424
2425  // Iterators
2426  child_range children() { return child_range(&Op, &Op+1); }
2427};
2428
2429/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2430/// conversions, which have no direct representation in the original
2431/// source code. For example: converting T[]->T*, void f()->void
2432/// (*f)(), float->double, short->int, etc.
2433///
2434/// In C, implicit casts always produce rvalues. However, in C++, an
2435/// implicit cast whose result is being bound to a reference will be
2436/// an lvalue or xvalue. For example:
2437///
2438/// @code
2439/// class Base { };
2440/// class Derived : public Base { };
2441/// Derived &&ref();
2442/// void f(Derived d) {
2443///   Base& b = d; // initializer is an ImplicitCastExpr
2444///                // to an lvalue of type Base
2445///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2446///                     // to an xvalue of type Base
2447/// }
2448/// @endcode
2449class ImplicitCastExpr : public CastExpr {
2450private:
2451  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2452                   unsigned BasePathLength, ExprValueKind VK)
2453    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2454  }
2455
2456  /// \brief Construct an empty implicit cast.
2457  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2458    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2459
2460public:
2461  enum OnStack_t { OnStack };
2462  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2463                   ExprValueKind VK)
2464    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2465  }
2466
2467  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2468                                  CastKind Kind, Expr *Operand,
2469                                  const CXXCastPath *BasePath,
2470                                  ExprValueKind Cat);
2471
2472  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2473
2474  SourceRange getSourceRange() const {
2475    return getSubExpr()->getSourceRange();
2476  }
2477
2478  static bool classof(const Stmt *T) {
2479    return T->getStmtClass() == ImplicitCastExprClass;
2480  }
2481  static bool classof(const ImplicitCastExpr *) { return true; }
2482};
2483
2484inline Expr *Expr::IgnoreImpCasts() {
2485  Expr *e = this;
2486  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2487    e = ice->getSubExpr();
2488  return e;
2489}
2490
2491/// ExplicitCastExpr - An explicit cast written in the source
2492/// code.
2493///
2494/// This class is effectively an abstract class, because it provides
2495/// the basic representation of an explicitly-written cast without
2496/// specifying which kind of cast (C cast, functional cast, static
2497/// cast, etc.) was written; specific derived classes represent the
2498/// particular style of cast and its location information.
2499///
2500/// Unlike implicit casts, explicit cast nodes have two different
2501/// types: the type that was written into the source code, and the
2502/// actual type of the expression as determined by semantic
2503/// analysis. These types may differ slightly. For example, in C++ one
2504/// can cast to a reference type, which indicates that the resulting
2505/// expression will be an lvalue or xvalue. The reference type, however,
2506/// will not be used as the type of the expression.
2507class ExplicitCastExpr : public CastExpr {
2508  /// TInfo - Source type info for the (written) type
2509  /// this expression is casting to.
2510  TypeSourceInfo *TInfo;
2511
2512protected:
2513  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2514                   CastKind kind, Expr *op, unsigned PathSize,
2515                   TypeSourceInfo *writtenTy)
2516    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2517
2518  /// \brief Construct an empty explicit cast.
2519  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2520    : CastExpr(SC, Shell, PathSize) { }
2521
2522public:
2523  /// getTypeInfoAsWritten - Returns the type source info for the type
2524  /// that this expression is casting to.
2525  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2526  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2527
2528  /// getTypeAsWritten - Returns the type that this expression is
2529  /// casting to, as written in the source code.
2530  QualType getTypeAsWritten() const { return TInfo->getType(); }
2531
2532  static bool classof(const Stmt *T) {
2533     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2534            T->getStmtClass() <= lastExplicitCastExprConstant;
2535  }
2536  static bool classof(const ExplicitCastExpr *) { return true; }
2537};
2538
2539/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2540/// cast in C++ (C++ [expr.cast]), which uses the syntax
2541/// (Type)expr. For example: @c (int)f.
2542class CStyleCastExpr : public ExplicitCastExpr {
2543  SourceLocation LPLoc; // the location of the left paren
2544  SourceLocation RPLoc; // the location of the right paren
2545
2546  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2547                 unsigned PathSize, TypeSourceInfo *writtenTy,
2548                 SourceLocation l, SourceLocation r)
2549    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2550                       writtenTy), LPLoc(l), RPLoc(r) {}
2551
2552  /// \brief Construct an empty C-style explicit cast.
2553  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2554    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2555
2556public:
2557  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2558                                ExprValueKind VK, CastKind K,
2559                                Expr *Op, const CXXCastPath *BasePath,
2560                                TypeSourceInfo *WrittenTy, SourceLocation L,
2561                                SourceLocation R);
2562
2563  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2564
2565  SourceLocation getLParenLoc() const { return LPLoc; }
2566  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2567
2568  SourceLocation getRParenLoc() const { return RPLoc; }
2569  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2570
2571  SourceRange getSourceRange() const {
2572    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2573  }
2574  static bool classof(const Stmt *T) {
2575    return T->getStmtClass() == CStyleCastExprClass;
2576  }
2577  static bool classof(const CStyleCastExpr *) { return true; }
2578};
2579
2580/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2581///
2582/// This expression node kind describes a builtin binary operation,
2583/// such as "x + y" for integer values "x" and "y". The operands will
2584/// already have been converted to appropriate types (e.g., by
2585/// performing promotions or conversions).
2586///
2587/// In C++, where operators may be overloaded, a different kind of
2588/// expression node (CXXOperatorCallExpr) is used to express the
2589/// invocation of an overloaded operator with operator syntax. Within
2590/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2591/// used to store an expression "x + y" depends on the subexpressions
2592/// for x and y. If neither x or y is type-dependent, and the "+"
2593/// operator resolves to a built-in operation, BinaryOperator will be
2594/// used to express the computation (x and y may still be
2595/// value-dependent). If either x or y is type-dependent, or if the
2596/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2597/// be used to express the computation.
2598class BinaryOperator : public Expr {
2599public:
2600  typedef BinaryOperatorKind Opcode;
2601
2602private:
2603  unsigned Opc : 6;
2604  SourceLocation OpLoc;
2605
2606  enum { LHS, RHS, END_EXPR };
2607  Stmt* SubExprs[END_EXPR];
2608public:
2609
2610  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2611                 ExprValueKind VK, ExprObjectKind OK,
2612                 SourceLocation opLoc)
2613    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2614           lhs->isTypeDependent() || rhs->isTypeDependent(),
2615           lhs->isValueDependent() || rhs->isValueDependent(),
2616           (lhs->isInstantiationDependent() ||
2617            rhs->isInstantiationDependent()),
2618           (lhs->containsUnexpandedParameterPack() ||
2619            rhs->containsUnexpandedParameterPack())),
2620      Opc(opc), OpLoc(opLoc) {
2621    SubExprs[LHS] = lhs;
2622    SubExprs[RHS] = rhs;
2623    assert(!isCompoundAssignmentOp() &&
2624           "Use ArithAssignBinaryOperator for compound assignments");
2625  }
2626
2627  /// \brief Construct an empty binary operator.
2628  explicit BinaryOperator(EmptyShell Empty)
2629    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2630
2631  SourceLocation getOperatorLoc() const { return OpLoc; }
2632  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2633
2634  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2635  void setOpcode(Opcode O) { Opc = O; }
2636
2637  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2638  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2639  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2640  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2641
2642  SourceRange getSourceRange() const {
2643    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2644  }
2645
2646  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2647  /// corresponds to, e.g. "<<=".
2648  static const char *getOpcodeStr(Opcode Op);
2649
2650  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2651
2652  /// \brief Retrieve the binary opcode that corresponds to the given
2653  /// overloaded operator.
2654  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2655
2656  /// \brief Retrieve the overloaded operator kind that corresponds to
2657  /// the given binary opcode.
2658  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2659
2660  /// predicates to categorize the respective opcodes.
2661  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2662  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2663  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2664  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2665  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2666  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2667
2668  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2669  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2670
2671  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2672  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2673
2674  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2675  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2676
2677  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2678  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2679
2680  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2681  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2682
2683  static bool isAssignmentOp(Opcode Opc) {
2684    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2685  }
2686  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2687
2688  static bool isCompoundAssignmentOp(Opcode Opc) {
2689    return Opc > BO_Assign && Opc <= BO_OrAssign;
2690  }
2691  bool isCompoundAssignmentOp() const {
2692    return isCompoundAssignmentOp(getOpcode());
2693  }
2694
2695  static bool isShiftAssignOp(Opcode Opc) {
2696    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2697  }
2698  bool isShiftAssignOp() const {
2699    return isShiftAssignOp(getOpcode());
2700  }
2701
2702  static bool classof(const Stmt *S) {
2703    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2704           S->getStmtClass() <= lastBinaryOperatorConstant;
2705  }
2706  static bool classof(const BinaryOperator *) { return true; }
2707
2708  // Iterators
2709  child_range children() {
2710    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2711  }
2712
2713protected:
2714  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2715                 ExprValueKind VK, ExprObjectKind OK,
2716                 SourceLocation opLoc, bool dead)
2717    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2718           lhs->isTypeDependent() || rhs->isTypeDependent(),
2719           lhs->isValueDependent() || rhs->isValueDependent(),
2720           (lhs->isInstantiationDependent() ||
2721            rhs->isInstantiationDependent()),
2722           (lhs->containsUnexpandedParameterPack() ||
2723            rhs->containsUnexpandedParameterPack())),
2724      Opc(opc), OpLoc(opLoc) {
2725    SubExprs[LHS] = lhs;
2726    SubExprs[RHS] = rhs;
2727  }
2728
2729  BinaryOperator(StmtClass SC, EmptyShell Empty)
2730    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2731};
2732
2733/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2734/// track of the type the operation is performed in.  Due to the semantics of
2735/// these operators, the operands are promoted, the arithmetic performed, an
2736/// implicit conversion back to the result type done, then the assignment takes
2737/// place.  This captures the intermediate type which the computation is done
2738/// in.
2739class CompoundAssignOperator : public BinaryOperator {
2740  QualType ComputationLHSType;
2741  QualType ComputationResultType;
2742public:
2743  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2744                         ExprValueKind VK, ExprObjectKind OK,
2745                         QualType CompLHSType, QualType CompResultType,
2746                         SourceLocation OpLoc)
2747    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2748      ComputationLHSType(CompLHSType),
2749      ComputationResultType(CompResultType) {
2750    assert(isCompoundAssignmentOp() &&
2751           "Only should be used for compound assignments");
2752  }
2753
2754  /// \brief Build an empty compound assignment operator expression.
2755  explicit CompoundAssignOperator(EmptyShell Empty)
2756    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2757
2758  // The two computation types are the type the LHS is converted
2759  // to for the computation and the type of the result; the two are
2760  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2761  QualType getComputationLHSType() const { return ComputationLHSType; }
2762  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2763
2764  QualType getComputationResultType() const { return ComputationResultType; }
2765  void setComputationResultType(QualType T) { ComputationResultType = T; }
2766
2767  static bool classof(const CompoundAssignOperator *) { return true; }
2768  static bool classof(const Stmt *S) {
2769    return S->getStmtClass() == CompoundAssignOperatorClass;
2770  }
2771};
2772
2773/// AbstractConditionalOperator - An abstract base class for
2774/// ConditionalOperator and BinaryConditionalOperator.
2775class AbstractConditionalOperator : public Expr {
2776  SourceLocation QuestionLoc, ColonLoc;
2777  friend class ASTStmtReader;
2778
2779protected:
2780  AbstractConditionalOperator(StmtClass SC, QualType T,
2781                              ExprValueKind VK, ExprObjectKind OK,
2782                              bool TD, bool VD, bool ID,
2783                              bool ContainsUnexpandedParameterPack,
2784                              SourceLocation qloc,
2785                              SourceLocation cloc)
2786    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2787      QuestionLoc(qloc), ColonLoc(cloc) {}
2788
2789  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2790    : Expr(SC, Empty) { }
2791
2792public:
2793  // getCond - Return the expression representing the condition for
2794  //   the ?: operator.
2795  Expr *getCond() const;
2796
2797  // getTrueExpr - Return the subexpression representing the value of
2798  //   the expression if the condition evaluates to true.
2799  Expr *getTrueExpr() const;
2800
2801  // getFalseExpr - Return the subexpression representing the value of
2802  //   the expression if the condition evaluates to false.  This is
2803  //   the same as getRHS.
2804  Expr *getFalseExpr() const;
2805
2806  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2807  SourceLocation getColonLoc() const { return ColonLoc; }
2808
2809  static bool classof(const Stmt *T) {
2810    return T->getStmtClass() == ConditionalOperatorClass ||
2811           T->getStmtClass() == BinaryConditionalOperatorClass;
2812  }
2813  static bool classof(const AbstractConditionalOperator *) { return true; }
2814};
2815
2816/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2817/// middle" extension is a BinaryConditionalOperator.
2818class ConditionalOperator : public AbstractConditionalOperator {
2819  enum { COND, LHS, RHS, END_EXPR };
2820  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2821
2822  friend class ASTStmtReader;
2823public:
2824  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2825                      SourceLocation CLoc, Expr *rhs,
2826                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2827    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2828           // FIXME: the type of the conditional operator doesn't
2829           // depend on the type of the conditional, but the standard
2830           // seems to imply that it could. File a bug!
2831           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2832           (cond->isValueDependent() || lhs->isValueDependent() ||
2833            rhs->isValueDependent()),
2834           (cond->isInstantiationDependent() ||
2835            lhs->isInstantiationDependent() ||
2836            rhs->isInstantiationDependent()),
2837           (cond->containsUnexpandedParameterPack() ||
2838            lhs->containsUnexpandedParameterPack() ||
2839            rhs->containsUnexpandedParameterPack()),
2840                                  QLoc, CLoc) {
2841    SubExprs[COND] = cond;
2842    SubExprs[LHS] = lhs;
2843    SubExprs[RHS] = rhs;
2844  }
2845
2846  /// \brief Build an empty conditional operator.
2847  explicit ConditionalOperator(EmptyShell Empty)
2848    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2849
2850  // getCond - Return the expression representing the condition for
2851  //   the ?: operator.
2852  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2853
2854  // getTrueExpr - Return the subexpression representing the value of
2855  //   the expression if the condition evaluates to true.
2856  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2857
2858  // getFalseExpr - Return the subexpression representing the value of
2859  //   the expression if the condition evaluates to false.  This is
2860  //   the same as getRHS.
2861  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2862
2863  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2864  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2865
2866  SourceRange getSourceRange() const {
2867    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2868  }
2869  static bool classof(const Stmt *T) {
2870    return T->getStmtClass() == ConditionalOperatorClass;
2871  }
2872  static bool classof(const ConditionalOperator *) { return true; }
2873
2874  // Iterators
2875  child_range children() {
2876    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2877  }
2878};
2879
2880/// BinaryConditionalOperator - The GNU extension to the conditional
2881/// operator which allows the middle operand to be omitted.
2882///
2883/// This is a different expression kind on the assumption that almost
2884/// every client ends up needing to know that these are different.
2885class BinaryConditionalOperator : public AbstractConditionalOperator {
2886  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2887
2888  /// - the common condition/left-hand-side expression, which will be
2889  ///   evaluated as the opaque value
2890  /// - the condition, expressed in terms of the opaque value
2891  /// - the left-hand-side, expressed in terms of the opaque value
2892  /// - the right-hand-side
2893  Stmt *SubExprs[NUM_SUBEXPRS];
2894  OpaqueValueExpr *OpaqueValue;
2895
2896  friend class ASTStmtReader;
2897public:
2898  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2899                            Expr *cond, Expr *lhs, Expr *rhs,
2900                            SourceLocation qloc, SourceLocation cloc,
2901                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2902    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2903           (common->isTypeDependent() || rhs->isTypeDependent()),
2904           (common->isValueDependent() || rhs->isValueDependent()),
2905           (common->isInstantiationDependent() ||
2906            rhs->isInstantiationDependent()),
2907           (common->containsUnexpandedParameterPack() ||
2908            rhs->containsUnexpandedParameterPack()),
2909                                  qloc, cloc),
2910      OpaqueValue(opaqueValue) {
2911    SubExprs[COMMON] = common;
2912    SubExprs[COND] = cond;
2913    SubExprs[LHS] = lhs;
2914    SubExprs[RHS] = rhs;
2915
2916    OpaqueValue->setSourceExpr(common);
2917  }
2918
2919  /// \brief Build an empty conditional operator.
2920  explicit BinaryConditionalOperator(EmptyShell Empty)
2921    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2922
2923  /// \brief getCommon - Return the common expression, written to the
2924  ///   left of the condition.  The opaque value will be bound to the
2925  ///   result of this expression.
2926  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2927
2928  /// \brief getOpaqueValue - Return the opaque value placeholder.
2929  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2930
2931  /// \brief getCond - Return the condition expression; this is defined
2932  ///   in terms of the opaque value.
2933  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2934
2935  /// \brief getTrueExpr - Return the subexpression which will be
2936  ///   evaluated if the condition evaluates to true;  this is defined
2937  ///   in terms of the opaque value.
2938  Expr *getTrueExpr() const {
2939    return cast<Expr>(SubExprs[LHS]);
2940  }
2941
2942  /// \brief getFalseExpr - Return the subexpression which will be
2943  ///   evaluated if the condnition evaluates to false; this is
2944  ///   defined in terms of the opaque value.
2945  Expr *getFalseExpr() const {
2946    return cast<Expr>(SubExprs[RHS]);
2947  }
2948
2949  SourceRange getSourceRange() const {
2950    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2951  }
2952  static bool classof(const Stmt *T) {
2953    return T->getStmtClass() == BinaryConditionalOperatorClass;
2954  }
2955  static bool classof(const BinaryConditionalOperator *) { return true; }
2956
2957  // Iterators
2958  child_range children() {
2959    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2960  }
2961};
2962
2963inline Expr *AbstractConditionalOperator::getCond() const {
2964  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2965    return co->getCond();
2966  return cast<BinaryConditionalOperator>(this)->getCond();
2967}
2968
2969inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2970  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2971    return co->getTrueExpr();
2972  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2973}
2974
2975inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2976  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2977    return co->getFalseExpr();
2978  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2979}
2980
2981/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2982class AddrLabelExpr : public Expr {
2983  SourceLocation AmpAmpLoc, LabelLoc;
2984  LabelDecl *Label;
2985public:
2986  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2987                QualType t)
2988    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
2989           false),
2990      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2991
2992  /// \brief Build an empty address of a label expression.
2993  explicit AddrLabelExpr(EmptyShell Empty)
2994    : Expr(AddrLabelExprClass, Empty) { }
2995
2996  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2997  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2998  SourceLocation getLabelLoc() const { return LabelLoc; }
2999  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3000
3001  SourceRange getSourceRange() const {
3002    return SourceRange(AmpAmpLoc, LabelLoc);
3003  }
3004
3005  LabelDecl *getLabel() const { return Label; }
3006  void setLabel(LabelDecl *L) { Label = L; }
3007
3008  static bool classof(const Stmt *T) {
3009    return T->getStmtClass() == AddrLabelExprClass;
3010  }
3011  static bool classof(const AddrLabelExpr *) { return true; }
3012
3013  // Iterators
3014  child_range children() { return child_range(); }
3015};
3016
3017/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3018/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3019/// takes the value of the last subexpression.
3020///
3021/// A StmtExpr is always an r-value; values "returned" out of a
3022/// StmtExpr will be copied.
3023class StmtExpr : public Expr {
3024  Stmt *SubStmt;
3025  SourceLocation LParenLoc, RParenLoc;
3026public:
3027  // FIXME: Does type-dependence need to be computed differently?
3028  // FIXME: Do we need to compute instantiation instantiation-dependence for
3029  // statements? (ugh!)
3030  StmtExpr(CompoundStmt *substmt, QualType T,
3031           SourceLocation lp, SourceLocation rp) :
3032    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3033         T->isDependentType(), false, false, false),
3034    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3035
3036  /// \brief Build an empty statement expression.
3037  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3038
3039  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3040  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3041  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3042
3043  SourceRange getSourceRange() const {
3044    return SourceRange(LParenLoc, RParenLoc);
3045  }
3046
3047  SourceLocation getLParenLoc() const { return LParenLoc; }
3048  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3049  SourceLocation getRParenLoc() const { return RParenLoc; }
3050  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3051
3052  static bool classof(const Stmt *T) {
3053    return T->getStmtClass() == StmtExprClass;
3054  }
3055  static bool classof(const StmtExpr *) { return true; }
3056
3057  // Iterators
3058  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3059};
3060
3061
3062/// ShuffleVectorExpr - clang-specific builtin-in function
3063/// __builtin_shufflevector.
3064/// This AST node represents a operator that does a constant
3065/// shuffle, similar to LLVM's shufflevector instruction. It takes
3066/// two vectors and a variable number of constant indices,
3067/// and returns the appropriately shuffled vector.
3068class ShuffleVectorExpr : public Expr {
3069  SourceLocation BuiltinLoc, RParenLoc;
3070
3071  // SubExprs - the list of values passed to the __builtin_shufflevector
3072  // function. The first two are vectors, and the rest are constant
3073  // indices.  The number of values in this list is always
3074  // 2+the number of indices in the vector type.
3075  Stmt **SubExprs;
3076  unsigned NumExprs;
3077
3078public:
3079  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3080                    QualType Type, SourceLocation BLoc,
3081                    SourceLocation RP);
3082
3083  /// \brief Build an empty vector-shuffle expression.
3084  explicit ShuffleVectorExpr(EmptyShell Empty)
3085    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3086
3087  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3088  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3089
3090  SourceLocation getRParenLoc() const { return RParenLoc; }
3091  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3092
3093  SourceRange getSourceRange() const {
3094    return SourceRange(BuiltinLoc, RParenLoc);
3095  }
3096  static bool classof(const Stmt *T) {
3097    return T->getStmtClass() == ShuffleVectorExprClass;
3098  }
3099  static bool classof(const ShuffleVectorExpr *) { return true; }
3100
3101  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3102  /// constant expression, the actual arguments passed in, and the function
3103  /// pointers.
3104  unsigned getNumSubExprs() const { return NumExprs; }
3105
3106  /// \brief Retrieve the array of expressions.
3107  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3108
3109  /// getExpr - Return the Expr at the specified index.
3110  Expr *getExpr(unsigned Index) {
3111    assert((Index < NumExprs) && "Arg access out of range!");
3112    return cast<Expr>(SubExprs[Index]);
3113  }
3114  const Expr *getExpr(unsigned Index) const {
3115    assert((Index < NumExprs) && "Arg access out of range!");
3116    return cast<Expr>(SubExprs[Index]);
3117  }
3118
3119  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3120
3121  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3122    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3123    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3124  }
3125
3126  // Iterators
3127  child_range children() {
3128    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3129  }
3130};
3131
3132/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3133/// This AST node is similar to the conditional operator (?:) in C, with
3134/// the following exceptions:
3135/// - the test expression must be a integer constant expression.
3136/// - the expression returned acts like the chosen subexpression in every
3137///   visible way: the type is the same as that of the chosen subexpression,
3138///   and all predicates (whether it's an l-value, whether it's an integer
3139///   constant expression, etc.) return the same result as for the chosen
3140///   sub-expression.
3141class ChooseExpr : public Expr {
3142  enum { COND, LHS, RHS, END_EXPR };
3143  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3144  SourceLocation BuiltinLoc, RParenLoc;
3145public:
3146  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3147             QualType t, ExprValueKind VK, ExprObjectKind OK,
3148             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3149    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3150           (cond->isInstantiationDependent() ||
3151            lhs->isInstantiationDependent() ||
3152            rhs->isInstantiationDependent()),
3153           (cond->containsUnexpandedParameterPack() ||
3154            lhs->containsUnexpandedParameterPack() ||
3155            rhs->containsUnexpandedParameterPack())),
3156      BuiltinLoc(BLoc), RParenLoc(RP) {
3157      SubExprs[COND] = cond;
3158      SubExprs[LHS] = lhs;
3159      SubExprs[RHS] = rhs;
3160    }
3161
3162  /// \brief Build an empty __builtin_choose_expr.
3163  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3164
3165  /// isConditionTrue - Return whether the condition is true (i.e. not
3166  /// equal to zero).
3167  bool isConditionTrue(const ASTContext &C) const;
3168
3169  /// getChosenSubExpr - Return the subexpression chosen according to the
3170  /// condition.
3171  Expr *getChosenSubExpr(const ASTContext &C) const {
3172    return isConditionTrue(C) ? getLHS() : getRHS();
3173  }
3174
3175  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3176  void setCond(Expr *E) { SubExprs[COND] = E; }
3177  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3178  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3179  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3180  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3181
3182  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3183  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3184
3185  SourceLocation getRParenLoc() const { return RParenLoc; }
3186  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3187
3188  SourceRange getSourceRange() const {
3189    return SourceRange(BuiltinLoc, RParenLoc);
3190  }
3191  static bool classof(const Stmt *T) {
3192    return T->getStmtClass() == ChooseExprClass;
3193  }
3194  static bool classof(const ChooseExpr *) { return true; }
3195
3196  // Iterators
3197  child_range children() {
3198    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3199  }
3200};
3201
3202/// GNUNullExpr - Implements the GNU __null extension, which is a name
3203/// for a null pointer constant that has integral type (e.g., int or
3204/// long) and is the same size and alignment as a pointer. The __null
3205/// extension is typically only used by system headers, which define
3206/// NULL as __null in C++ rather than using 0 (which is an integer
3207/// that may not match the size of a pointer).
3208class GNUNullExpr : public Expr {
3209  /// TokenLoc - The location of the __null keyword.
3210  SourceLocation TokenLoc;
3211
3212public:
3213  GNUNullExpr(QualType Ty, SourceLocation Loc)
3214    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3215           false),
3216      TokenLoc(Loc) { }
3217
3218  /// \brief Build an empty GNU __null expression.
3219  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3220
3221  /// getTokenLocation - The location of the __null token.
3222  SourceLocation getTokenLocation() const { return TokenLoc; }
3223  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3224
3225  SourceRange getSourceRange() const {
3226    return SourceRange(TokenLoc);
3227  }
3228  static bool classof(const Stmt *T) {
3229    return T->getStmtClass() == GNUNullExprClass;
3230  }
3231  static bool classof(const GNUNullExpr *) { return true; }
3232
3233  // Iterators
3234  child_range children() { return child_range(); }
3235};
3236
3237/// VAArgExpr, used for the builtin function __builtin_va_arg.
3238class VAArgExpr : public Expr {
3239  Stmt *Val;
3240  TypeSourceInfo *TInfo;
3241  SourceLocation BuiltinLoc, RParenLoc;
3242public:
3243  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3244            SourceLocation RPLoc, QualType t)
3245    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3246           t->isDependentType(), false,
3247           (TInfo->getType()->isInstantiationDependentType() ||
3248            e->isInstantiationDependent()),
3249           (TInfo->getType()->containsUnexpandedParameterPack() ||
3250            e->containsUnexpandedParameterPack())),
3251      Val(e), TInfo(TInfo),
3252      BuiltinLoc(BLoc),
3253      RParenLoc(RPLoc) { }
3254
3255  /// \brief Create an empty __builtin_va_arg expression.
3256  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3257
3258  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3259  Expr *getSubExpr() { return cast<Expr>(Val); }
3260  void setSubExpr(Expr *E) { Val = E; }
3261
3262  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3263  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3264
3265  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3266  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3267
3268  SourceLocation getRParenLoc() const { return RParenLoc; }
3269  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3270
3271  SourceRange getSourceRange() const {
3272    return SourceRange(BuiltinLoc, RParenLoc);
3273  }
3274  static bool classof(const Stmt *T) {
3275    return T->getStmtClass() == VAArgExprClass;
3276  }
3277  static bool classof(const VAArgExpr *) { return true; }
3278
3279  // Iterators
3280  child_range children() { return child_range(&Val, &Val+1); }
3281};
3282
3283/// @brief Describes an C or C++ initializer list.
3284///
3285/// InitListExpr describes an initializer list, which can be used to
3286/// initialize objects of different types, including
3287/// struct/class/union types, arrays, and vectors. For example:
3288///
3289/// @code
3290/// struct foo x = { 1, { 2, 3 } };
3291/// @endcode
3292///
3293/// Prior to semantic analysis, an initializer list will represent the
3294/// initializer list as written by the user, but will have the
3295/// placeholder type "void". This initializer list is called the
3296/// syntactic form of the initializer, and may contain C99 designated
3297/// initializers (represented as DesignatedInitExprs), initializations
3298/// of subobject members without explicit braces, and so on. Clients
3299/// interested in the original syntax of the initializer list should
3300/// use the syntactic form of the initializer list.
3301///
3302/// After semantic analysis, the initializer list will represent the
3303/// semantic form of the initializer, where the initializations of all
3304/// subobjects are made explicit with nested InitListExpr nodes and
3305/// C99 designators have been eliminated by placing the designated
3306/// initializations into the subobject they initialize. Additionally,
3307/// any "holes" in the initialization, where no initializer has been
3308/// specified for a particular subobject, will be replaced with
3309/// implicitly-generated ImplicitValueInitExpr expressions that
3310/// value-initialize the subobjects. Note, however, that the
3311/// initializer lists may still have fewer initializers than there are
3312/// elements to initialize within the object.
3313///
3314/// Given the semantic form of the initializer list, one can retrieve
3315/// the original syntactic form of that initializer list (if it
3316/// exists) using getSyntacticForm(). Since many initializer lists
3317/// have the same syntactic and semantic forms, getSyntacticForm() may
3318/// return NULL, indicating that the current initializer list also
3319/// serves as its syntactic form.
3320class InitListExpr : public Expr {
3321  // FIXME: Eliminate this vector in favor of ASTContext allocation
3322  typedef ASTVector<Stmt *> InitExprsTy;
3323  InitExprsTy InitExprs;
3324  SourceLocation LBraceLoc, RBraceLoc;
3325
3326  /// Contains the initializer list that describes the syntactic form
3327  /// written in the source code.
3328  InitListExpr *SyntacticForm;
3329
3330  /// \brief Either:
3331  ///  If this initializer list initializes an array with more elements than
3332  ///  there are initializers in the list, specifies an expression to be used
3333  ///  for value initialization of the rest of the elements.
3334  /// Or
3335  ///  If this initializer list initializes a union, specifies which
3336  ///  field within the union will be initialized.
3337  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3338
3339  /// Whether this initializer list originally had a GNU array-range
3340  /// designator in it. This is a temporary marker used by CodeGen.
3341  bool HadArrayRangeDesignator;
3342
3343public:
3344  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3345               Expr **initexprs, unsigned numinits,
3346               SourceLocation rbraceloc);
3347
3348  /// \brief Build an empty initializer list.
3349  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3350    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3351
3352  unsigned getNumInits() const { return InitExprs.size(); }
3353
3354  /// \brief Retrieve the set of initializers.
3355  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3356
3357  const Expr *getInit(unsigned Init) const {
3358    assert(Init < getNumInits() && "Initializer access out of range!");
3359    return cast_or_null<Expr>(InitExprs[Init]);
3360  }
3361
3362  Expr *getInit(unsigned Init) {
3363    assert(Init < getNumInits() && "Initializer access out of range!");
3364    return cast_or_null<Expr>(InitExprs[Init]);
3365  }
3366
3367  void setInit(unsigned Init, Expr *expr) {
3368    assert(Init < getNumInits() && "Initializer access out of range!");
3369    InitExprs[Init] = expr;
3370  }
3371
3372  /// \brief Reserve space for some number of initializers.
3373  void reserveInits(ASTContext &C, unsigned NumInits);
3374
3375  /// @brief Specify the number of initializers
3376  ///
3377  /// If there are more than @p NumInits initializers, the remaining
3378  /// initializers will be destroyed. If there are fewer than @p
3379  /// NumInits initializers, NULL expressions will be added for the
3380  /// unknown initializers.
3381  void resizeInits(ASTContext &Context, unsigned NumInits);
3382
3383  /// @brief Updates the initializer at index @p Init with the new
3384  /// expression @p expr, and returns the old expression at that
3385  /// location.
3386  ///
3387  /// When @p Init is out of range for this initializer list, the
3388  /// initializer list will be extended with NULL expressions to
3389  /// accommodate the new entry.
3390  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3391
3392  /// \brief If this initializer list initializes an array with more elements
3393  /// than there are initializers in the list, specifies an expression to be
3394  /// used for value initialization of the rest of the elements.
3395  Expr *getArrayFiller() {
3396    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3397  }
3398  const Expr *getArrayFiller() const {
3399    return const_cast<InitListExpr *>(this)->getArrayFiller();
3400  }
3401  void setArrayFiller(Expr *filler);
3402
3403  /// \brief If this initializes a union, specifies which field in the
3404  /// union to initialize.
3405  ///
3406  /// Typically, this field is the first named field within the
3407  /// union. However, a designated initializer can specify the
3408  /// initialization of a different field within the union.
3409  FieldDecl *getInitializedFieldInUnion() {
3410    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3411  }
3412  const FieldDecl *getInitializedFieldInUnion() const {
3413    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3414  }
3415  void setInitializedFieldInUnion(FieldDecl *FD) {
3416    ArrayFillerOrUnionFieldInit = FD;
3417  }
3418
3419  // Explicit InitListExpr's originate from source code (and have valid source
3420  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3421  bool isExplicit() {
3422    return LBraceLoc.isValid() && RBraceLoc.isValid();
3423  }
3424
3425  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3426  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3427  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3428  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3429
3430  /// @brief Retrieve the initializer list that describes the
3431  /// syntactic form of the initializer.
3432  ///
3433  ///
3434  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3435  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3436
3437  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3438  void sawArrayRangeDesignator(bool ARD = true) {
3439    HadArrayRangeDesignator = ARD;
3440  }
3441
3442  SourceRange getSourceRange() const;
3443
3444  static bool classof(const Stmt *T) {
3445    return T->getStmtClass() == InitListExprClass;
3446  }
3447  static bool classof(const InitListExpr *) { return true; }
3448
3449  // Iterators
3450  child_range children() {
3451    if (InitExprs.empty()) return child_range();
3452    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3453  }
3454
3455  typedef InitExprsTy::iterator iterator;
3456  typedef InitExprsTy::const_iterator const_iterator;
3457  typedef InitExprsTy::reverse_iterator reverse_iterator;
3458  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3459
3460  iterator begin() { return InitExprs.begin(); }
3461  const_iterator begin() const { return InitExprs.begin(); }
3462  iterator end() { return InitExprs.end(); }
3463  const_iterator end() const { return InitExprs.end(); }
3464  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3465  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3466  reverse_iterator rend() { return InitExprs.rend(); }
3467  const_reverse_iterator rend() const { return InitExprs.rend(); }
3468
3469  friend class ASTStmtReader;
3470  friend class ASTStmtWriter;
3471};
3472
3473/// @brief Represents a C99 designated initializer expression.
3474///
3475/// A designated initializer expression (C99 6.7.8) contains one or
3476/// more designators (which can be field designators, array
3477/// designators, or GNU array-range designators) followed by an
3478/// expression that initializes the field or element(s) that the
3479/// designators refer to. For example, given:
3480///
3481/// @code
3482/// struct point {
3483///   double x;
3484///   double y;
3485/// };
3486/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3487/// @endcode
3488///
3489/// The InitListExpr contains three DesignatedInitExprs, the first of
3490/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3491/// designators, one array designator for @c [2] followed by one field
3492/// designator for @c .y. The initalization expression will be 1.0.
3493class DesignatedInitExpr : public Expr {
3494public:
3495  /// \brief Forward declaration of the Designator class.
3496  class Designator;
3497
3498private:
3499  /// The location of the '=' or ':' prior to the actual initializer
3500  /// expression.
3501  SourceLocation EqualOrColonLoc;
3502
3503  /// Whether this designated initializer used the GNU deprecated
3504  /// syntax rather than the C99 '=' syntax.
3505  bool GNUSyntax : 1;
3506
3507  /// The number of designators in this initializer expression.
3508  unsigned NumDesignators : 15;
3509
3510  /// \brief The designators in this designated initialization
3511  /// expression.
3512  Designator *Designators;
3513
3514  /// The number of subexpressions of this initializer expression,
3515  /// which contains both the initializer and any additional
3516  /// expressions used by array and array-range designators.
3517  unsigned NumSubExprs : 16;
3518
3519
3520  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3521                     const Designator *Designators,
3522                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3523                     Expr **IndexExprs, unsigned NumIndexExprs,
3524                     Expr *Init);
3525
3526  explicit DesignatedInitExpr(unsigned NumSubExprs)
3527    : Expr(DesignatedInitExprClass, EmptyShell()),
3528      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3529
3530public:
3531  /// A field designator, e.g., ".x".
3532  struct FieldDesignator {
3533    /// Refers to the field that is being initialized. The low bit
3534    /// of this field determines whether this is actually a pointer
3535    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3536    /// initially constructed, a field designator will store an
3537    /// IdentifierInfo*. After semantic analysis has resolved that
3538    /// name, the field designator will instead store a FieldDecl*.
3539    uintptr_t NameOrField;
3540
3541    /// The location of the '.' in the designated initializer.
3542    unsigned DotLoc;
3543
3544    /// The location of the field name in the designated initializer.
3545    unsigned FieldLoc;
3546  };
3547
3548  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3549  struct ArrayOrRangeDesignator {
3550    /// Location of the first index expression within the designated
3551    /// initializer expression's list of subexpressions.
3552    unsigned Index;
3553    /// The location of the '[' starting the array range designator.
3554    unsigned LBracketLoc;
3555    /// The location of the ellipsis separating the start and end
3556    /// indices. Only valid for GNU array-range designators.
3557    unsigned EllipsisLoc;
3558    /// The location of the ']' terminating the array range designator.
3559    unsigned RBracketLoc;
3560  };
3561
3562  /// @brief Represents a single C99 designator.
3563  ///
3564  /// @todo This class is infuriatingly similar to clang::Designator,
3565  /// but minor differences (storing indices vs. storing pointers)
3566  /// keep us from reusing it. Try harder, later, to rectify these
3567  /// differences.
3568  class Designator {
3569    /// @brief The kind of designator this describes.
3570    enum {
3571      FieldDesignator,
3572      ArrayDesignator,
3573      ArrayRangeDesignator
3574    } Kind;
3575
3576    union {
3577      /// A field designator, e.g., ".x".
3578      struct FieldDesignator Field;
3579      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3580      struct ArrayOrRangeDesignator ArrayOrRange;
3581    };
3582    friend class DesignatedInitExpr;
3583
3584  public:
3585    Designator() {}
3586
3587    /// @brief Initializes a field designator.
3588    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3589               SourceLocation FieldLoc)
3590      : Kind(FieldDesignator) {
3591      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3592      Field.DotLoc = DotLoc.getRawEncoding();
3593      Field.FieldLoc = FieldLoc.getRawEncoding();
3594    }
3595
3596    /// @brief Initializes an array designator.
3597    Designator(unsigned Index, SourceLocation LBracketLoc,
3598               SourceLocation RBracketLoc)
3599      : Kind(ArrayDesignator) {
3600      ArrayOrRange.Index = Index;
3601      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3602      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3603      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3604    }
3605
3606    /// @brief Initializes a GNU array-range designator.
3607    Designator(unsigned Index, SourceLocation LBracketLoc,
3608               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3609      : Kind(ArrayRangeDesignator) {
3610      ArrayOrRange.Index = Index;
3611      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3612      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3613      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3614    }
3615
3616    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3617    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3618    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3619
3620    IdentifierInfo *getFieldName() const;
3621
3622    FieldDecl *getField() const {
3623      assert(Kind == FieldDesignator && "Only valid on a field designator");
3624      if (Field.NameOrField & 0x01)
3625        return 0;
3626      else
3627        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3628    }
3629
3630    void setField(FieldDecl *FD) {
3631      assert(Kind == FieldDesignator && "Only valid on a field designator");
3632      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3633    }
3634
3635    SourceLocation getDotLoc() const {
3636      assert(Kind == FieldDesignator && "Only valid on a field designator");
3637      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3638    }
3639
3640    SourceLocation getFieldLoc() const {
3641      assert(Kind == FieldDesignator && "Only valid on a field designator");
3642      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3643    }
3644
3645    SourceLocation getLBracketLoc() const {
3646      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3647             "Only valid on an array or array-range designator");
3648      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3649    }
3650
3651    SourceLocation getRBracketLoc() const {
3652      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3653             "Only valid on an array or array-range designator");
3654      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3655    }
3656
3657    SourceLocation getEllipsisLoc() const {
3658      assert(Kind == ArrayRangeDesignator &&
3659             "Only valid on an array-range designator");
3660      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3661    }
3662
3663    unsigned getFirstExprIndex() const {
3664      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3665             "Only valid on an array or array-range designator");
3666      return ArrayOrRange.Index;
3667    }
3668
3669    SourceLocation getStartLocation() const {
3670      if (Kind == FieldDesignator)
3671        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3672      else
3673        return getLBracketLoc();
3674    }
3675    SourceLocation getEndLocation() const {
3676      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3677    }
3678    SourceRange getSourceRange() const {
3679      return SourceRange(getStartLocation(), getEndLocation());
3680    }
3681  };
3682
3683  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3684                                    unsigned NumDesignators,
3685                                    Expr **IndexExprs, unsigned NumIndexExprs,
3686                                    SourceLocation EqualOrColonLoc,
3687                                    bool GNUSyntax, Expr *Init);
3688
3689  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3690
3691  /// @brief Returns the number of designators in this initializer.
3692  unsigned size() const { return NumDesignators; }
3693
3694  // Iterator access to the designators.
3695  typedef Designator *designators_iterator;
3696  designators_iterator designators_begin() { return Designators; }
3697  designators_iterator designators_end() {
3698    return Designators + NumDesignators;
3699  }
3700
3701  typedef const Designator *const_designators_iterator;
3702  const_designators_iterator designators_begin() const { return Designators; }
3703  const_designators_iterator designators_end() const {
3704    return Designators + NumDesignators;
3705  }
3706
3707  typedef std::reverse_iterator<designators_iterator>
3708          reverse_designators_iterator;
3709  reverse_designators_iterator designators_rbegin() {
3710    return reverse_designators_iterator(designators_end());
3711  }
3712  reverse_designators_iterator designators_rend() {
3713    return reverse_designators_iterator(designators_begin());
3714  }
3715
3716  typedef std::reverse_iterator<const_designators_iterator>
3717          const_reverse_designators_iterator;
3718  const_reverse_designators_iterator designators_rbegin() const {
3719    return const_reverse_designators_iterator(designators_end());
3720  }
3721  const_reverse_designators_iterator designators_rend() const {
3722    return const_reverse_designators_iterator(designators_begin());
3723  }
3724
3725  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3726
3727  void setDesignators(ASTContext &C, const Designator *Desigs,
3728                      unsigned NumDesigs);
3729
3730  Expr *getArrayIndex(const Designator& D);
3731  Expr *getArrayRangeStart(const Designator& D);
3732  Expr *getArrayRangeEnd(const Designator& D);
3733
3734  /// @brief Retrieve the location of the '=' that precedes the
3735  /// initializer value itself, if present.
3736  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3737  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3738
3739  /// @brief Determines whether this designated initializer used the
3740  /// deprecated GNU syntax for designated initializers.
3741  bool usesGNUSyntax() const { return GNUSyntax; }
3742  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3743
3744  /// @brief Retrieve the initializer value.
3745  Expr *getInit() const {
3746    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3747  }
3748
3749  void setInit(Expr *init) {
3750    *child_begin() = init;
3751  }
3752
3753  /// \brief Retrieve the total number of subexpressions in this
3754  /// designated initializer expression, including the actual
3755  /// initialized value and any expressions that occur within array
3756  /// and array-range designators.
3757  unsigned getNumSubExprs() const { return NumSubExprs; }
3758
3759  Expr *getSubExpr(unsigned Idx) {
3760    assert(Idx < NumSubExprs && "Subscript out of range");
3761    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3762    Ptr += sizeof(DesignatedInitExpr);
3763    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3764  }
3765
3766  void setSubExpr(unsigned Idx, Expr *E) {
3767    assert(Idx < NumSubExprs && "Subscript out of range");
3768    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3769    Ptr += sizeof(DesignatedInitExpr);
3770    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3771  }
3772
3773  /// \brief Replaces the designator at index @p Idx with the series
3774  /// of designators in [First, Last).
3775  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3776                        const Designator *Last);
3777
3778  SourceRange getDesignatorsSourceRange() const;
3779
3780  SourceRange getSourceRange() const;
3781
3782  static bool classof(const Stmt *T) {
3783    return T->getStmtClass() == DesignatedInitExprClass;
3784  }
3785  static bool classof(const DesignatedInitExpr *) { return true; }
3786
3787  // Iterators
3788  child_range children() {
3789    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3790    return child_range(begin, begin + NumSubExprs);
3791  }
3792};
3793
3794/// \brief Represents an implicitly-generated value initialization of
3795/// an object of a given type.
3796///
3797/// Implicit value initializations occur within semantic initializer
3798/// list expressions (InitListExpr) as placeholders for subobject
3799/// initializations not explicitly specified by the user.
3800///
3801/// \see InitListExpr
3802class ImplicitValueInitExpr : public Expr {
3803public:
3804  explicit ImplicitValueInitExpr(QualType ty)
3805    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3806           false, false, ty->isInstantiationDependentType(), false) { }
3807
3808  /// \brief Construct an empty implicit value initialization.
3809  explicit ImplicitValueInitExpr(EmptyShell Empty)
3810    : Expr(ImplicitValueInitExprClass, Empty) { }
3811
3812  static bool classof(const Stmt *T) {
3813    return T->getStmtClass() == ImplicitValueInitExprClass;
3814  }
3815  static bool classof(const ImplicitValueInitExpr *) { return true; }
3816
3817  SourceRange getSourceRange() const {
3818    return SourceRange();
3819  }
3820
3821  // Iterators
3822  child_range children() { return child_range(); }
3823};
3824
3825
3826class ParenListExpr : public Expr {
3827  Stmt **Exprs;
3828  unsigned NumExprs;
3829  SourceLocation LParenLoc, RParenLoc;
3830
3831public:
3832  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3833                unsigned numexprs, SourceLocation rparenloc, QualType T);
3834
3835  /// \brief Build an empty paren list.
3836  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3837
3838  unsigned getNumExprs() const { return NumExprs; }
3839
3840  const Expr* getExpr(unsigned Init) const {
3841    assert(Init < getNumExprs() && "Initializer access out of range!");
3842    return cast_or_null<Expr>(Exprs[Init]);
3843  }
3844
3845  Expr* getExpr(unsigned Init) {
3846    assert(Init < getNumExprs() && "Initializer access out of range!");
3847    return cast_or_null<Expr>(Exprs[Init]);
3848  }
3849
3850  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3851
3852  SourceLocation getLParenLoc() const { return LParenLoc; }
3853  SourceLocation getRParenLoc() const { return RParenLoc; }
3854
3855  SourceRange getSourceRange() const {
3856    return SourceRange(LParenLoc, RParenLoc);
3857  }
3858  static bool classof(const Stmt *T) {
3859    return T->getStmtClass() == ParenListExprClass;
3860  }
3861  static bool classof(const ParenListExpr *) { return true; }
3862
3863  // Iterators
3864  child_range children() {
3865    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3866  }
3867
3868  friend class ASTStmtReader;
3869  friend class ASTStmtWriter;
3870};
3871
3872
3873/// \brief Represents a C1X generic selection.
3874///
3875/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3876/// expression, followed by one or more generic associations.  Each generic
3877/// association specifies a type name and an expression, or "default" and an
3878/// expression (in which case it is known as a default generic association).
3879/// The type and value of the generic selection are identical to those of its
3880/// result expression, which is defined as the expression in the generic
3881/// association with a type name that is compatible with the type of the
3882/// controlling expression, or the expression in the default generic association
3883/// if no types are compatible.  For example:
3884///
3885/// @code
3886/// _Generic(X, double: 1, float: 2, default: 3)
3887/// @endcode
3888///
3889/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3890/// or 3 if "hello".
3891///
3892/// As an extension, generic selections are allowed in C++, where the following
3893/// additional semantics apply:
3894///
3895/// Any generic selection whose controlling expression is type-dependent or
3896/// which names a dependent type in its association list is result-dependent,
3897/// which means that the choice of result expression is dependent.
3898/// Result-dependent generic associations are both type- and value-dependent.
3899class GenericSelectionExpr : public Expr {
3900  enum { CONTROLLING, END_EXPR };
3901  TypeSourceInfo **AssocTypes;
3902  Stmt **SubExprs;
3903  unsigned NumAssocs, ResultIndex;
3904  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3905
3906public:
3907  GenericSelectionExpr(ASTContext &Context,
3908                       SourceLocation GenericLoc, Expr *ControllingExpr,
3909                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3910                       unsigned NumAssocs, SourceLocation DefaultLoc,
3911                       SourceLocation RParenLoc,
3912                       bool ContainsUnexpandedParameterPack,
3913                       unsigned ResultIndex);
3914
3915  /// This constructor is used in the result-dependent case.
3916  GenericSelectionExpr(ASTContext &Context,
3917                       SourceLocation GenericLoc, Expr *ControllingExpr,
3918                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3919                       unsigned NumAssocs, SourceLocation DefaultLoc,
3920                       SourceLocation RParenLoc,
3921                       bool ContainsUnexpandedParameterPack);
3922
3923  explicit GenericSelectionExpr(EmptyShell Empty)
3924    : Expr(GenericSelectionExprClass, Empty) { }
3925
3926  unsigned getNumAssocs() const { return NumAssocs; }
3927
3928  SourceLocation getGenericLoc() const { return GenericLoc; }
3929  SourceLocation getDefaultLoc() const { return DefaultLoc; }
3930  SourceLocation getRParenLoc() const { return RParenLoc; }
3931
3932  const Expr *getAssocExpr(unsigned i) const {
3933    return cast<Expr>(SubExprs[END_EXPR+i]);
3934  }
3935  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
3936
3937  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
3938    return AssocTypes[i];
3939  }
3940  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
3941
3942  QualType getAssocType(unsigned i) const {
3943    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
3944      return TS->getType();
3945    else
3946      return QualType();
3947  }
3948
3949  const Expr *getControllingExpr() const {
3950    return cast<Expr>(SubExprs[CONTROLLING]);
3951  }
3952  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
3953
3954  /// Whether this generic selection is result-dependent.
3955  bool isResultDependent() const { return ResultIndex == -1U; }
3956
3957  /// The zero-based index of the result expression's generic association in
3958  /// the generic selection's association list.  Defined only if the
3959  /// generic selection is not result-dependent.
3960  unsigned getResultIndex() const {
3961    assert(!isResultDependent() && "Generic selection is result-dependent");
3962    return ResultIndex;
3963  }
3964
3965  /// The generic selection's result expression.  Defined only if the
3966  /// generic selection is not result-dependent.
3967  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
3968  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
3969
3970  SourceRange getSourceRange() const {
3971    return SourceRange(GenericLoc, RParenLoc);
3972  }
3973  static bool classof(const Stmt *T) {
3974    return T->getStmtClass() == GenericSelectionExprClass;
3975  }
3976  static bool classof(const GenericSelectionExpr *) { return true; }
3977
3978  child_range children() {
3979    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
3980  }
3981
3982  friend class ASTStmtReader;
3983};
3984
3985//===----------------------------------------------------------------------===//
3986// Clang Extensions
3987//===----------------------------------------------------------------------===//
3988
3989
3990/// ExtVectorElementExpr - This represents access to specific elements of a
3991/// vector, and may occur on the left hand side or right hand side.  For example
3992/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3993///
3994/// Note that the base may have either vector or pointer to vector type, just
3995/// like a struct field reference.
3996///
3997class ExtVectorElementExpr : public Expr {
3998  Stmt *Base;
3999  IdentifierInfo *Accessor;
4000  SourceLocation AccessorLoc;
4001public:
4002  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4003                       IdentifierInfo &accessor, SourceLocation loc)
4004    : Expr(ExtVectorElementExprClass, ty, VK,
4005           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4006           base->isTypeDependent(), base->isValueDependent(),
4007           base->isInstantiationDependent(),
4008           base->containsUnexpandedParameterPack()),
4009      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4010
4011  /// \brief Build an empty vector element expression.
4012  explicit ExtVectorElementExpr(EmptyShell Empty)
4013    : Expr(ExtVectorElementExprClass, Empty) { }
4014
4015  const Expr *getBase() const { return cast<Expr>(Base); }
4016  Expr *getBase() { return cast<Expr>(Base); }
4017  void setBase(Expr *E) { Base = E; }
4018
4019  IdentifierInfo &getAccessor() const { return *Accessor; }
4020  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4021
4022  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4023  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4024
4025  /// getNumElements - Get the number of components being selected.
4026  unsigned getNumElements() const;
4027
4028  /// containsDuplicateElements - Return true if any element access is
4029  /// repeated.
4030  bool containsDuplicateElements() const;
4031
4032  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4033  /// aggregate Constant of ConstantInt(s).
4034  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4035
4036  SourceRange getSourceRange() const {
4037    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4038  }
4039
4040  /// isArrow - Return true if the base expression is a pointer to vector,
4041  /// return false if the base expression is a vector.
4042  bool isArrow() const;
4043
4044  static bool classof(const Stmt *T) {
4045    return T->getStmtClass() == ExtVectorElementExprClass;
4046  }
4047  static bool classof(const ExtVectorElementExpr *) { return true; }
4048
4049  // Iterators
4050  child_range children() { return child_range(&Base, &Base+1); }
4051};
4052
4053
4054/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4055/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4056class BlockExpr : public Expr {
4057protected:
4058  BlockDecl *TheBlock;
4059public:
4060  BlockExpr(BlockDecl *BD, QualType ty)
4061    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4062           ty->isDependentType(), false,
4063           // FIXME: Check for instantiate-dependence in the statement?
4064           ty->isInstantiationDependentType(),
4065           false),
4066      TheBlock(BD) {}
4067
4068  /// \brief Build an empty block expression.
4069  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4070
4071  const BlockDecl *getBlockDecl() const { return TheBlock; }
4072  BlockDecl *getBlockDecl() { return TheBlock; }
4073  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4074
4075  // Convenience functions for probing the underlying BlockDecl.
4076  SourceLocation getCaretLocation() const;
4077  const Stmt *getBody() const;
4078  Stmt *getBody();
4079
4080  SourceRange getSourceRange() const {
4081    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4082  }
4083
4084  /// getFunctionType - Return the underlying function type for this block.
4085  const FunctionType *getFunctionType() const;
4086
4087  static bool classof(const Stmt *T) {
4088    return T->getStmtClass() == BlockExprClass;
4089  }
4090  static bool classof(const BlockExpr *) { return true; }
4091
4092  // Iterators
4093  child_range children() { return child_range(); }
4094};
4095
4096/// BlockDeclRefExpr - A reference to a local variable declared in an
4097/// enclosing scope.
4098class BlockDeclRefExpr : public Expr {
4099  VarDecl *D;
4100  SourceLocation Loc;
4101  bool IsByRef : 1;
4102  bool ConstQualAdded : 1;
4103public:
4104  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4105                   SourceLocation l, bool ByRef, bool constAdded = false);
4106
4107  // \brief Build an empty reference to a declared variable in a
4108  // block.
4109  explicit BlockDeclRefExpr(EmptyShell Empty)
4110    : Expr(BlockDeclRefExprClass, Empty) { }
4111
4112  VarDecl *getDecl() { return D; }
4113  const VarDecl *getDecl() const { return D; }
4114  void setDecl(VarDecl *VD) { D = VD; }
4115
4116  SourceLocation getLocation() const { return Loc; }
4117  void setLocation(SourceLocation L) { Loc = L; }
4118
4119  SourceRange getSourceRange() const { return SourceRange(Loc); }
4120
4121  bool isByRef() const { return IsByRef; }
4122  void setByRef(bool BR) { IsByRef = BR; }
4123
4124  bool isConstQualAdded() const { return ConstQualAdded; }
4125  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4126
4127  static bool classof(const Stmt *T) {
4128    return T->getStmtClass() == BlockDeclRefExprClass;
4129  }
4130  static bool classof(const BlockDeclRefExpr *) { return true; }
4131
4132  // Iterators
4133  child_range children() { return child_range(); }
4134};
4135
4136/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4137/// This AST node provides support for reinterpreting a type to another
4138/// type of the same size.
4139class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4140private:
4141  Stmt *SrcExpr;
4142  SourceLocation BuiltinLoc, RParenLoc;
4143
4144  friend class ASTReader;
4145  friend class ASTStmtReader;
4146  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4147
4148public:
4149  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4150             ExprValueKind VK, ExprObjectKind OK,
4151             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4152    : Expr(AsTypeExprClass, DstType, VK, OK,
4153           DstType->isDependentType(),
4154           DstType->isDependentType() || SrcExpr->isValueDependent(),
4155           (DstType->isInstantiationDependentType() ||
4156            SrcExpr->isInstantiationDependent()),
4157           (DstType->containsUnexpandedParameterPack() ||
4158            SrcExpr->containsUnexpandedParameterPack())),
4159  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4160
4161  /// getSrcExpr - Return the Expr to be converted.
4162  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4163
4164  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4165  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4166
4167  /// getRParenLoc - Return the location of final right parenthesis.
4168  SourceLocation getRParenLoc() const { return RParenLoc; }
4169
4170  SourceRange getSourceRange() const {
4171    return SourceRange(BuiltinLoc, RParenLoc);
4172  }
4173
4174  static bool classof(const Stmt *T) {
4175    return T->getStmtClass() == AsTypeExprClass;
4176  }
4177  static bool classof(const AsTypeExpr *) { return true; }
4178
4179  // Iterators
4180  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4181};
4182
4183/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4184/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4185/// similarly-named C++0x instructions.  All of these instructions take one
4186/// primary pointer and at least one memory order.
4187class AtomicExpr : public Expr {
4188public:
4189  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4190                  Add, Sub, And, Or, Xor };
4191private:
4192  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4193  Stmt* SubExprs[END_EXPR];
4194  unsigned NumSubExprs;
4195  SourceLocation BuiltinLoc, RParenLoc;
4196  AtomicOp Op;
4197
4198public:
4199  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4200             AtomicOp op, SourceLocation RP);
4201
4202  /// \brief Build an empty AtomicExpr.
4203  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4204
4205  Expr *getPtr() const {
4206    return cast<Expr>(SubExprs[PTR]);
4207  }
4208  void setPtr(Expr *E) {
4209    SubExprs[PTR] = E;
4210  }
4211  Expr *getOrder() const {
4212    return cast<Expr>(SubExprs[ORDER]);
4213  }
4214  void setOrder(Expr *E) {
4215    SubExprs[ORDER] = E;
4216  }
4217  Expr *getVal1() const {
4218    assert(NumSubExprs >= 3);
4219    return cast<Expr>(SubExprs[VAL1]);
4220  }
4221  void setVal1(Expr *E) {
4222    assert(NumSubExprs >= 3);
4223    SubExprs[VAL1] = E;
4224  }
4225  Expr *getOrderFail() const {
4226    assert(NumSubExprs == 5);
4227    return cast<Expr>(SubExprs[ORDER_FAIL]);
4228  }
4229  void setOrderFail(Expr *E) {
4230    assert(NumSubExprs == 5);
4231    SubExprs[ORDER_FAIL] = E;
4232  }
4233  Expr *getVal2() const {
4234    assert(NumSubExprs == 5);
4235    return cast<Expr>(SubExprs[VAL2]);
4236  }
4237  void setVal2(Expr *E) {
4238    assert(NumSubExprs == 5);
4239    SubExprs[VAL2] = E;
4240  }
4241
4242  AtomicOp getOp() const { return Op; }
4243  void setOp(AtomicOp op) { Op = op; }
4244  unsigned getNumSubExprs() { return NumSubExprs; }
4245  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4246
4247  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4248
4249  bool isVolatile() const {
4250    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4251  }
4252
4253  bool isCmpXChg() const {
4254    return getOp() == AtomicExpr::CmpXchgStrong ||
4255           getOp() == AtomicExpr::CmpXchgWeak;
4256  }
4257
4258  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4259  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4260
4261  SourceLocation getRParenLoc() const { return RParenLoc; }
4262  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4263
4264  SourceRange getSourceRange() const {
4265    return SourceRange(BuiltinLoc, RParenLoc);
4266  }
4267  static bool classof(const Stmt *T) {
4268    return T->getStmtClass() == AtomicExprClass;
4269  }
4270  static bool classof(const AtomicExpr *) { return true; }
4271
4272  // Iterators
4273  child_range children() {
4274    return child_range(SubExprs, SubExprs+NumSubExprs);
4275  }
4276};
4277}  // end namespace clang
4278
4279#endif
4280