Expr.h revision 8ab09da1faaa33b9fa78de59cc4e191bfe9907b5
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Support/Compiler.h"
31#include <cctype>
32
33namespace clang {
34  class ASTContext;
35  class APValue;
36  class Decl;
37  class IdentifierInfo;
38  class ParmVarDecl;
39  class NamedDecl;
40  class ValueDecl;
41  class BlockDecl;
42  class CXXBaseSpecifier;
43  class CXXOperatorCallExpr;
44  class CXXMemberCallExpr;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const LLVM_READONLY;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in expr, location,
183  /// and ranges with expr to warn on and source locations/ranges appropriate
184  /// for a warning.
185  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
186                              SourceRange &R1, SourceRange &R2,
187                              ASTContext &Ctx) const;
188
189  /// isLValue - True if this expression is an "l-value" according to
190  /// the rules of the current language.  C and C++ give somewhat
191  /// different rules for this concept, but in general, the result of
192  /// an l-value expression identifies a specific object whereas the
193  /// result of an r-value expression is a value detached from any
194  /// specific storage.
195  ///
196  /// C++0x divides the concept of "r-value" into pure r-values
197  /// ("pr-values") and so-called expiring values ("x-values"), which
198  /// identify specific objects that can be safely cannibalized for
199  /// their resources.  This is an unfortunate abuse of terminology on
200  /// the part of the C++ committee.  In Clang, when we say "r-value",
201  /// we generally mean a pr-value.
202  bool isLValue() const { return getValueKind() == VK_LValue; }
203  bool isRValue() const { return getValueKind() == VK_RValue; }
204  bool isXValue() const { return getValueKind() == VK_XValue; }
205  bool isGLValue() const { return getValueKind() != VK_RValue; }
206
207  enum LValueClassification {
208    LV_Valid,
209    LV_NotObjectType,
210    LV_IncompleteVoidType,
211    LV_DuplicateVectorComponents,
212    LV_InvalidExpression,
213    LV_InvalidMessageExpression,
214    LV_MemberFunction,
215    LV_SubObjCPropertySetting,
216    LV_ClassTemporary,
217    LV_ArrayTemporary
218  };
219  /// Reasons why an expression might not be an l-value.
220  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
221
222  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
223  /// does not have an incomplete type, does not have a const-qualified type,
224  /// and if it is a structure or union, does not have any member (including,
225  /// recursively, any member or element of all contained aggregates or unions)
226  /// with a const-qualified type.
227  ///
228  /// \param Loc [in] [out] - A source location which *may* be filled
229  /// in with the location of the expression making this a
230  /// non-modifiable lvalue, if specified.
231  enum isModifiableLvalueResult {
232    MLV_Valid,
233    MLV_NotObjectType,
234    MLV_IncompleteVoidType,
235    MLV_DuplicateVectorComponents,
236    MLV_InvalidExpression,
237    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
238    MLV_IncompleteType,
239    MLV_ConstQualified,
240    MLV_ArrayType,
241    MLV_ReadonlyProperty,
242    MLV_NoSetterProperty,
243    MLV_MemberFunction,
244    MLV_SubObjCPropertySetting,
245    MLV_InvalidMessageExpression,
246    MLV_ClassTemporary,
247    MLV_ArrayTemporary
248  };
249  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
250                                              SourceLocation *Loc = 0) const;
251
252  /// \brief The return type of classify(). Represents the C++0x expression
253  ///        taxonomy.
254  class Classification {
255  public:
256    /// \brief The various classification results. Most of these mean prvalue.
257    enum Kinds {
258      CL_LValue,
259      CL_XValue,
260      CL_Function, // Functions cannot be lvalues in C.
261      CL_Void, // Void cannot be an lvalue in C.
262      CL_AddressableVoid, // Void expression whose address can be taken in C.
263      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
264      CL_MemberFunction, // An expression referring to a member function
265      CL_SubObjCPropertySetting,
266      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
267      CL_ArrayTemporary, // A temporary of array type.
268      CL_ObjCMessageRValue, // ObjC message is an rvalue
269      CL_PRValue // A prvalue for any other reason, of any other type
270    };
271    /// \brief The results of modification testing.
272    enum ModifiableType {
273      CM_Untested, // testModifiable was false.
274      CM_Modifiable,
275      CM_RValue, // Not modifiable because it's an rvalue
276      CM_Function, // Not modifiable because it's a function; C++ only
277      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
278      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
279      CM_ConstQualified,
280      CM_ArrayType,
281      CM_IncompleteType
282    };
283
284  private:
285    friend class Expr;
286
287    unsigned short Kind;
288    unsigned short Modifiable;
289
290    explicit Classification(Kinds k, ModifiableType m)
291      : Kind(k), Modifiable(m)
292    {}
293
294  public:
295    Classification() {}
296
297    Kinds getKind() const { return static_cast<Kinds>(Kind); }
298    ModifiableType getModifiable() const {
299      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
300      return static_cast<ModifiableType>(Modifiable);
301    }
302    bool isLValue() const { return Kind == CL_LValue; }
303    bool isXValue() const { return Kind == CL_XValue; }
304    bool isGLValue() const { return Kind <= CL_XValue; }
305    bool isPRValue() const { return Kind >= CL_Function; }
306    bool isRValue() const { return Kind >= CL_XValue; }
307    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
308
309    /// \brief Create a simple, modifiably lvalue
310    static Classification makeSimpleLValue() {
311      return Classification(CL_LValue, CM_Modifiable);
312    }
313
314  };
315  /// \brief Classify - Classify this expression according to the C++0x
316  ///        expression taxonomy.
317  ///
318  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
319  /// old lvalue vs rvalue. This function determines the type of expression this
320  /// is. There are three expression types:
321  /// - lvalues are classical lvalues as in C++03.
322  /// - prvalues are equivalent to rvalues in C++03.
323  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
324  ///   function returning an rvalue reference.
325  /// lvalues and xvalues are collectively referred to as glvalues, while
326  /// prvalues and xvalues together form rvalues.
327  Classification Classify(ASTContext &Ctx) const {
328    return ClassifyImpl(Ctx, 0);
329  }
330
331  /// \brief ClassifyModifiable - Classify this expression according to the
332  ///        C++0x expression taxonomy, and see if it is valid on the left side
333  ///        of an assignment.
334  ///
335  /// This function extends classify in that it also tests whether the
336  /// expression is modifiable (C99 6.3.2.1p1).
337  /// \param Loc A source location that might be filled with a relevant location
338  ///            if the expression is not modifiable.
339  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
340    return ClassifyImpl(Ctx, &Loc);
341  }
342
343  /// getValueKindForType - Given a formal return or parameter type,
344  /// give its value kind.
345  static ExprValueKind getValueKindForType(QualType T) {
346    if (const ReferenceType *RT = T->getAs<ReferenceType>())
347      return (isa<LValueReferenceType>(RT)
348                ? VK_LValue
349                : (RT->getPointeeType()->isFunctionType()
350                     ? VK_LValue : VK_XValue));
351    return VK_RValue;
352  }
353
354  /// getValueKind - The value kind that this expression produces.
355  ExprValueKind getValueKind() const {
356    return static_cast<ExprValueKind>(ExprBits.ValueKind);
357  }
358
359  /// getObjectKind - The object kind that this expression produces.
360  /// Object kinds are meaningful only for expressions that yield an
361  /// l-value or x-value.
362  ExprObjectKind getObjectKind() const {
363    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
364  }
365
366  bool isOrdinaryOrBitFieldObject() const {
367    ExprObjectKind OK = getObjectKind();
368    return (OK == OK_Ordinary || OK == OK_BitField);
369  }
370
371  /// setValueKind - Set the value kind produced by this expression.
372  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
373
374  /// setObjectKind - Set the object kind produced by this expression.
375  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
376
377private:
378  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
379
380public:
381
382  /// \brief If this expression refers to a bit-field, retrieve the
383  /// declaration of that bit-field.
384  FieldDecl *getBitField();
385
386  const FieldDecl *getBitField() const {
387    return const_cast<Expr*>(this)->getBitField();
388  }
389
390  /// \brief If this expression is an l-value for an Objective C
391  /// property, find the underlying property reference expression.
392  const ObjCPropertyRefExpr *getObjCProperty() const;
393
394  /// \brief Returns whether this expression refers to a vector element.
395  bool refersToVectorElement() const;
396
397  /// \brief Returns whether this expression has a placeholder type.
398  bool hasPlaceholderType() const {
399    return getType()->isPlaceholderType();
400  }
401
402  /// \brief Returns whether this expression has a specific placeholder type.
403  bool hasPlaceholderType(BuiltinType::Kind K) const {
404    assert(BuiltinType::isPlaceholderTypeKind(K));
405    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
406      return BT->getKind() == K;
407    return false;
408  }
409
410  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
411  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
412  /// but also int expressions which are produced by things like comparisons in
413  /// C.
414  bool isKnownToHaveBooleanValue() const;
415
416  /// isIntegerConstantExpr - Return true if this expression is a valid integer
417  /// constant expression, and, if so, return its value in Result.  If not a
418  /// valid i-c-e, return false and fill in Loc (if specified) with the location
419  /// of the invalid expression.
420  ///
421  /// Note: This does not perform the implicit conversions required by C++11
422  /// [expr.const]p5.
423  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
424                             SourceLocation *Loc = 0,
425                             bool isEvaluated = true) const;
426  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
427
428  /// isCXX98IntegralConstantExpr - Return true if this expression is an
429  /// integral constant expression in C++98. Can only be used in C++.
430  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
431
432  /// isCXX11ConstantExpr - Return true if this expression is a constant
433  /// expression in C++11. Can only be used in C++.
434  ///
435  /// Note: This does not perform the implicit conversions required by C++11
436  /// [expr.const]p5.
437  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
438                           SourceLocation *Loc = 0) const;
439
440  /// isPotentialConstantExpr - Return true if this function's definition
441  /// might be usable in a constant expression in C++11, if it were marked
442  /// constexpr. Return false if the function can never produce a constant
443  /// expression, along with diagnostics describing why not.
444  static bool isPotentialConstantExpr(const FunctionDecl *FD,
445                                      llvm::SmallVectorImpl<
446                                        PartialDiagnosticAt> &Diags);
447
448  /// isConstantInitializer - Returns true if this expression can be emitted to
449  /// IR as a constant, and thus can be used as a constant initializer in C.
450  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
451
452  /// EvalStatus is a struct with detailed info about an evaluation in progress.
453  struct EvalStatus {
454    /// HasSideEffects - Whether the evaluated expression has side effects.
455    /// For example, (f() && 0) can be folded, but it still has side effects.
456    bool HasSideEffects;
457
458    /// Diag - If this is non-null, it will be filled in with a stack of notes
459    /// indicating why evaluation failed (or why it failed to produce a constant
460    /// expression).
461    /// If the expression is unfoldable, the notes will indicate why it's not
462    /// foldable. If the expression is foldable, but not a constant expression,
463    /// the notes will describes why it isn't a constant expression. If the
464    /// expression *is* a constant expression, no notes will be produced.
465    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
466
467    EvalStatus() : HasSideEffects(false), Diag(0) {}
468
469    // hasSideEffects - Return true if the evaluated expression has
470    // side effects.
471    bool hasSideEffects() const {
472      return HasSideEffects;
473    }
474  };
475
476  /// EvalResult is a struct with detailed info about an evaluated expression.
477  struct EvalResult : EvalStatus {
478    /// Val - This is the value the expression can be folded to.
479    APValue Val;
480
481    // isGlobalLValue - Return true if the evaluated lvalue expression
482    // is global.
483    bool isGlobalLValue() const;
484  };
485
486  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
487  /// an rvalue using any crazy technique (that has nothing to do with language
488  /// standards) that we want to, even if the expression has side-effects. If
489  /// this function returns true, it returns the folded constant in Result. If
490  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
491  /// applied.
492  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
493
494  /// EvaluateAsBooleanCondition - Return true if this is a constant
495  /// which we we can fold and convert to a boolean condition using
496  /// any crazy technique that we want to, even if the expression has
497  /// side-effects.
498  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
499
500  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
501
502  /// EvaluateAsInt - Return true if this is a constant which we can fold and
503  /// convert to an integer, using any crazy technique that we want to.
504  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
505                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
506
507  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
508  /// constant folded without side-effects, but discard the result.
509  bool isEvaluatable(const ASTContext &Ctx) const;
510
511  /// HasSideEffects - This routine returns true for all those expressions
512  /// which must be evaluated each time and must not be optimized away
513  /// or evaluated at compile time. Example is a function call, volatile
514  /// variable read.
515  bool HasSideEffects(const ASTContext &Ctx) const;
516
517  /// \brief Determine whether this expression involves a call to any function
518  /// that is not trivial.
519  bool hasNonTrivialCall(ASTContext &Ctx);
520
521  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
522  /// integer. This must be called on an expression that constant folds to an
523  /// integer.
524  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
525
526  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
527  /// lvalue with link time known address, with no side-effects.
528  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
529
530  /// EvaluateAsInitializer - Evaluate an expression as if it were the
531  /// initializer of the given declaration. Returns true if the initializer
532  /// can be folded to a constant, and produces any relevant notes. In C++11,
533  /// notes will be produced if the expression is not a constant expression.
534  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
535                             const VarDecl *VD,
536                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
537
538  /// \brief Enumeration used to describe the kind of Null pointer constant
539  /// returned from \c isNullPointerConstant().
540  enum NullPointerConstantKind {
541    /// \brief Expression is not a Null pointer constant.
542    NPCK_NotNull = 0,
543
544    /// \brief Expression is a Null pointer constant built from a zero integer.
545    NPCK_ZeroInteger,
546
547    /// \brief Expression is a C++0X nullptr.
548    NPCK_CXX0X_nullptr,
549
550    /// \brief Expression is a GNU-style __null constant.
551    NPCK_GNUNull
552  };
553
554  /// \brief Enumeration used to describe how \c isNullPointerConstant()
555  /// should cope with value-dependent expressions.
556  enum NullPointerConstantValueDependence {
557    /// \brief Specifies that the expression should never be value-dependent.
558    NPC_NeverValueDependent = 0,
559
560    /// \brief Specifies that a value-dependent expression of integral or
561    /// dependent type should be considered a null pointer constant.
562    NPC_ValueDependentIsNull,
563
564    /// \brief Specifies that a value-dependent expression should be considered
565    /// to never be a null pointer constant.
566    NPC_ValueDependentIsNotNull
567  };
568
569  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
570  /// a Null pointer constant. The return value can further distinguish the
571  /// kind of NULL pointer constant that was detected.
572  NullPointerConstantKind isNullPointerConstant(
573      ASTContext &Ctx,
574      NullPointerConstantValueDependence NPC) const;
575
576  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
577  /// write barrier.
578  bool isOBJCGCCandidate(ASTContext &Ctx) const;
579
580  /// \brief Returns true if this expression is a bound member function.
581  bool isBoundMemberFunction(ASTContext &Ctx) const;
582
583  /// \brief Given an expression of bound-member type, find the type
584  /// of the member.  Returns null if this is an *overloaded* bound
585  /// member expression.
586  static QualType findBoundMemberType(const Expr *expr);
587
588  /// IgnoreImpCasts - Skip past any implicit casts which might
589  /// surround this expression.  Only skips ImplicitCastExprs.
590  Expr *IgnoreImpCasts() LLVM_READONLY;
591
592  /// IgnoreImplicit - Skip past any implicit AST nodes which might
593  /// surround this expression.
594  Expr *IgnoreImplicit() LLVM_READONLY {
595    return cast<Expr>(Stmt::IgnoreImplicit());
596  }
597
598  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
599  ///  its subexpression.  If that subexpression is also a ParenExpr,
600  ///  then this method recursively returns its subexpression, and so forth.
601  ///  Otherwise, the method returns the current Expr.
602  Expr *IgnoreParens() LLVM_READONLY;
603
604  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
605  /// or CastExprs, returning their operand.
606  Expr *IgnoreParenCasts() LLVM_READONLY;
607
608  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
609  /// any ParenExpr or ImplicitCastExprs, returning their operand.
610  Expr *IgnoreParenImpCasts() LLVM_READONLY;
611
612  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
613  /// call to a conversion operator, return the argument.
614  Expr *IgnoreConversionOperator() LLVM_READONLY;
615
616  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
617    return const_cast<Expr*>(this)->IgnoreConversionOperator();
618  }
619
620  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
621    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
622  }
623
624  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
625  /// CastExprs that represent lvalue casts, returning their operand.
626  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
627
628  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
629    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
630  }
631
632  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
633  /// value (including ptr->int casts of the same size).  Strip off any
634  /// ParenExpr or CastExprs, returning their operand.
635  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
636
637  /// \brief Determine whether this expression is a default function argument.
638  ///
639  /// Default arguments are implicitly generated in the abstract syntax tree
640  /// by semantic analysis for function calls, object constructions, etc. in
641  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
642  /// this routine also looks through any implicit casts to determine whether
643  /// the expression is a default argument.
644  bool isDefaultArgument() const;
645
646  /// \brief Determine whether the result of this expression is a
647  /// temporary object of the given class type.
648  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
649
650  /// \brief Whether this expression is an implicit reference to 'this' in C++.
651  bool isImplicitCXXThis() const;
652
653  const Expr *IgnoreImpCasts() const LLVM_READONLY {
654    return const_cast<Expr*>(this)->IgnoreImpCasts();
655  }
656  const Expr *IgnoreParens() const LLVM_READONLY {
657    return const_cast<Expr*>(this)->IgnoreParens();
658  }
659  const Expr *IgnoreParenCasts() const LLVM_READONLY {
660    return const_cast<Expr*>(this)->IgnoreParenCasts();
661  }
662  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
663    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
664  }
665
666  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
667
668  static bool classof(const Stmt *T) {
669    return T->getStmtClass() >= firstExprConstant &&
670           T->getStmtClass() <= lastExprConstant;
671  }
672  static bool classof(const Expr *) { return true; }
673};
674
675
676//===----------------------------------------------------------------------===//
677// Primary Expressions.
678//===----------------------------------------------------------------------===//
679
680/// OpaqueValueExpr - An expression referring to an opaque object of a
681/// fixed type and value class.  These don't correspond to concrete
682/// syntax; instead they're used to express operations (usually copy
683/// operations) on values whose source is generally obvious from
684/// context.
685class OpaqueValueExpr : public Expr {
686  friend class ASTStmtReader;
687  Expr *SourceExpr;
688  SourceLocation Loc;
689
690public:
691  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
692                  ExprObjectKind OK = OK_Ordinary,
693                  Expr *SourceExpr = 0)
694    : Expr(OpaqueValueExprClass, T, VK, OK,
695           T->isDependentType(),
696           T->isDependentType() ||
697           (SourceExpr && SourceExpr->isValueDependent()),
698           T->isInstantiationDependentType(),
699           false),
700      SourceExpr(SourceExpr), Loc(Loc) {
701  }
702
703  /// Given an expression which invokes a copy constructor --- i.e.  a
704  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
705  /// find the OpaqueValueExpr that's the source of the construction.
706  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
707
708  explicit OpaqueValueExpr(EmptyShell Empty)
709    : Expr(OpaqueValueExprClass, Empty) { }
710
711  /// \brief Retrieve the location of this expression.
712  SourceLocation getLocation() const { return Loc; }
713
714  SourceRange getSourceRange() const LLVM_READONLY {
715    if (SourceExpr) return SourceExpr->getSourceRange();
716    return Loc;
717  }
718  SourceLocation getExprLoc() const LLVM_READONLY {
719    if (SourceExpr) return SourceExpr->getExprLoc();
720    return Loc;
721  }
722
723  child_range children() { return child_range(); }
724
725  /// The source expression of an opaque value expression is the
726  /// expression which originally generated the value.  This is
727  /// provided as a convenience for analyses that don't wish to
728  /// precisely model the execution behavior of the program.
729  ///
730  /// The source expression is typically set when building the
731  /// expression which binds the opaque value expression in the first
732  /// place.
733  Expr *getSourceExpr() const { return SourceExpr; }
734
735  static bool classof(const Stmt *T) {
736    return T->getStmtClass() == OpaqueValueExprClass;
737  }
738  static bool classof(const OpaqueValueExpr *) { return true; }
739};
740
741/// \brief A reference to a declared variable, function, enum, etc.
742/// [C99 6.5.1p2]
743///
744/// This encodes all the information about how a declaration is referenced
745/// within an expression.
746///
747/// There are several optional constructs attached to DeclRefExprs only when
748/// they apply in order to conserve memory. These are laid out past the end of
749/// the object, and flags in the DeclRefExprBitfield track whether they exist:
750///
751///   DeclRefExprBits.HasQualifier:
752///       Specifies when this declaration reference expression has a C++
753///       nested-name-specifier.
754///   DeclRefExprBits.HasFoundDecl:
755///       Specifies when this declaration reference expression has a record of
756///       a NamedDecl (different from the referenced ValueDecl) which was found
757///       during name lookup and/or overload resolution.
758///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
759///       Specifies when this declaration reference expression has an explicit
760///       C++ template keyword and/or template argument list.
761///   DeclRefExprBits.RefersToEnclosingLocal
762///       Specifies when this declaration reference expression (validly)
763///       refers to a local variable from a different function.
764class DeclRefExpr : public Expr {
765  /// \brief The declaration that we are referencing.
766  ValueDecl *D;
767
768  /// \brief The location of the declaration name itself.
769  SourceLocation Loc;
770
771  /// \brief Provides source/type location info for the declaration name
772  /// embedded in D.
773  DeclarationNameLoc DNLoc;
774
775  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
776  NestedNameSpecifierLoc &getInternalQualifierLoc() {
777    assert(hasQualifier());
778    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
779  }
780
781  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
782  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
783    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
784  }
785
786  /// \brief Test whether there is a distinct FoundDecl attached to the end of
787  /// this DRE.
788  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
789
790  /// \brief Helper to retrieve the optional NamedDecl through which this
791  /// reference occured.
792  NamedDecl *&getInternalFoundDecl() {
793    assert(hasFoundDecl());
794    if (hasQualifier())
795      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
796    return *reinterpret_cast<NamedDecl **>(this + 1);
797  }
798
799  /// \brief Helper to retrieve the optional NamedDecl through which this
800  /// reference occured.
801  NamedDecl *getInternalFoundDecl() const {
802    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
803  }
804
805  DeclRefExpr(ASTContext &Ctx,
806              NestedNameSpecifierLoc QualifierLoc,
807              SourceLocation TemplateKWLoc,
808              ValueDecl *D, bool refersToEnclosingLocal,
809              const DeclarationNameInfo &NameInfo,
810              NamedDecl *FoundD,
811              const TemplateArgumentListInfo *TemplateArgs,
812              QualType T, ExprValueKind VK);
813
814  /// \brief Construct an empty declaration reference expression.
815  explicit DeclRefExpr(EmptyShell Empty)
816    : Expr(DeclRefExprClass, Empty) { }
817
818  /// \brief Computes the type- and value-dependence flags for this
819  /// declaration reference expression.
820  void computeDependence(ASTContext &C);
821
822public:
823  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
824              ExprValueKind VK, SourceLocation L,
825              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
826    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
827      D(D), Loc(L), DNLoc(LocInfo) {
828    DeclRefExprBits.HasQualifier = 0;
829    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
830    DeclRefExprBits.HasFoundDecl = 0;
831    DeclRefExprBits.HadMultipleCandidates = 0;
832    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
833    computeDependence(D->getASTContext());
834  }
835
836  static DeclRefExpr *Create(ASTContext &Context,
837                             NestedNameSpecifierLoc QualifierLoc,
838                             SourceLocation TemplateKWLoc,
839                             ValueDecl *D,
840                             bool isEnclosingLocal,
841                             SourceLocation NameLoc,
842                             QualType T, ExprValueKind VK,
843                             NamedDecl *FoundD = 0,
844                             const TemplateArgumentListInfo *TemplateArgs = 0);
845
846  static DeclRefExpr *Create(ASTContext &Context,
847                             NestedNameSpecifierLoc QualifierLoc,
848                             SourceLocation TemplateKWLoc,
849                             ValueDecl *D,
850                             bool isEnclosingLocal,
851                             const DeclarationNameInfo &NameInfo,
852                             QualType T, ExprValueKind VK,
853                             NamedDecl *FoundD = 0,
854                             const TemplateArgumentListInfo *TemplateArgs = 0);
855
856  /// \brief Construct an empty declaration reference expression.
857  static DeclRefExpr *CreateEmpty(ASTContext &Context,
858                                  bool HasQualifier,
859                                  bool HasFoundDecl,
860                                  bool HasTemplateKWAndArgsInfo,
861                                  unsigned NumTemplateArgs);
862
863  ValueDecl *getDecl() { return D; }
864  const ValueDecl *getDecl() const { return D; }
865  void setDecl(ValueDecl *NewD) { D = NewD; }
866
867  DeclarationNameInfo getNameInfo() const {
868    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
869  }
870
871  SourceLocation getLocation() const { return Loc; }
872  void setLocation(SourceLocation L) { Loc = L; }
873  SourceRange getSourceRange() const LLVM_READONLY;
874  SourceLocation getLocStart() const LLVM_READONLY;
875  SourceLocation getLocEnd() const LLVM_READONLY;
876
877  /// \brief Determine whether this declaration reference was preceded by a
878  /// C++ nested-name-specifier, e.g., \c N::foo.
879  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
880
881  /// \brief If the name was qualified, retrieves the nested-name-specifier
882  /// that precedes the name. Otherwise, returns NULL.
883  NestedNameSpecifier *getQualifier() const {
884    if (!hasQualifier())
885      return 0;
886
887    return getInternalQualifierLoc().getNestedNameSpecifier();
888  }
889
890  /// \brief If the name was qualified, retrieves the nested-name-specifier
891  /// that precedes the name, with source-location information.
892  NestedNameSpecifierLoc getQualifierLoc() const {
893    if (!hasQualifier())
894      return NestedNameSpecifierLoc();
895
896    return getInternalQualifierLoc();
897  }
898
899  /// \brief Get the NamedDecl through which this reference occured.
900  ///
901  /// This Decl may be different from the ValueDecl actually referred to in the
902  /// presence of using declarations, etc. It always returns non-NULL, and may
903  /// simple return the ValueDecl when appropriate.
904  NamedDecl *getFoundDecl() {
905    return hasFoundDecl() ? getInternalFoundDecl() : D;
906  }
907
908  /// \brief Get the NamedDecl through which this reference occurred.
909  /// See non-const variant.
910  const NamedDecl *getFoundDecl() const {
911    return hasFoundDecl() ? getInternalFoundDecl() : D;
912  }
913
914  bool hasTemplateKWAndArgsInfo() const {
915    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
916  }
917
918  /// \brief Return the optional template keyword and arguments info.
919  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
920    if (!hasTemplateKWAndArgsInfo())
921      return 0;
922
923    if (hasFoundDecl())
924      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
925        &getInternalFoundDecl() + 1);
926
927    if (hasQualifier())
928      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
929        &getInternalQualifierLoc() + 1);
930
931    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
932  }
933
934  /// \brief Return the optional template keyword and arguments info.
935  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
936    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
937  }
938
939  /// \brief Retrieve the location of the template keyword preceding
940  /// this name, if any.
941  SourceLocation getTemplateKeywordLoc() const {
942    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
943    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
944  }
945
946  /// \brief Retrieve the location of the left angle bracket starting the
947  /// explicit template argument list following the name, if any.
948  SourceLocation getLAngleLoc() const {
949    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
950    return getTemplateKWAndArgsInfo()->LAngleLoc;
951  }
952
953  /// \brief Retrieve the location of the right angle bracket ending the
954  /// explicit template argument list following the name, if any.
955  SourceLocation getRAngleLoc() const {
956    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
957    return getTemplateKWAndArgsInfo()->RAngleLoc;
958  }
959
960  /// \brief Determines whether the name in this declaration reference
961  /// was preceded by the template keyword.
962  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
963
964  /// \brief Determines whether this declaration reference was followed by an
965  /// explicit template argument list.
966  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
967
968  /// \brief Retrieve the explicit template argument list that followed the
969  /// member template name.
970  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
971    assert(hasExplicitTemplateArgs());
972    return *getTemplateKWAndArgsInfo();
973  }
974
975  /// \brief Retrieve the explicit template argument list that followed the
976  /// member template name.
977  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
978    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
979  }
980
981  /// \brief Retrieves the optional explicit template arguments.
982  /// This points to the same data as getExplicitTemplateArgs(), but
983  /// returns null if there are no explicit template arguments.
984  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
985    if (!hasExplicitTemplateArgs()) return 0;
986    return &getExplicitTemplateArgs();
987  }
988
989  /// \brief Copies the template arguments (if present) into the given
990  /// structure.
991  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
992    if (hasExplicitTemplateArgs())
993      getExplicitTemplateArgs().copyInto(List);
994  }
995
996  /// \brief Retrieve the template arguments provided as part of this
997  /// template-id.
998  const TemplateArgumentLoc *getTemplateArgs() const {
999    if (!hasExplicitTemplateArgs())
1000      return 0;
1001
1002    return getExplicitTemplateArgs().getTemplateArgs();
1003  }
1004
1005  /// \brief Retrieve the number of template arguments provided as part of this
1006  /// template-id.
1007  unsigned getNumTemplateArgs() const {
1008    if (!hasExplicitTemplateArgs())
1009      return 0;
1010
1011    return getExplicitTemplateArgs().NumTemplateArgs;
1012  }
1013
1014  /// \brief Returns true if this expression refers to a function that
1015  /// was resolved from an overloaded set having size greater than 1.
1016  bool hadMultipleCandidates() const {
1017    return DeclRefExprBits.HadMultipleCandidates;
1018  }
1019  /// \brief Sets the flag telling whether this expression refers to
1020  /// a function that was resolved from an overloaded set having size
1021  /// greater than 1.
1022  void setHadMultipleCandidates(bool V = true) {
1023    DeclRefExprBits.HadMultipleCandidates = V;
1024  }
1025
1026  /// Does this DeclRefExpr refer to a local declaration from an
1027  /// enclosing function scope?
1028  bool refersToEnclosingLocal() const {
1029    return DeclRefExprBits.RefersToEnclosingLocal;
1030  }
1031
1032  static bool classof(const Stmt *T) {
1033    return T->getStmtClass() == DeclRefExprClass;
1034  }
1035  static bool classof(const DeclRefExpr *) { return true; }
1036
1037  // Iterators
1038  child_range children() { return child_range(); }
1039
1040  friend class ASTStmtReader;
1041  friend class ASTStmtWriter;
1042};
1043
1044/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1045class PredefinedExpr : public Expr {
1046public:
1047  enum IdentType {
1048    Func,
1049    Function,
1050    PrettyFunction,
1051    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1052    /// 'virtual' keyword is omitted for virtual member functions.
1053    PrettyFunctionNoVirtual
1054  };
1055
1056private:
1057  SourceLocation Loc;
1058  IdentType Type;
1059public:
1060  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1061    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1062           type->isDependentType(), type->isDependentType(),
1063           type->isInstantiationDependentType(),
1064           /*ContainsUnexpandedParameterPack=*/false),
1065      Loc(l), Type(IT) {}
1066
1067  /// \brief Construct an empty predefined expression.
1068  explicit PredefinedExpr(EmptyShell Empty)
1069    : Expr(PredefinedExprClass, Empty) { }
1070
1071  IdentType getIdentType() const { return Type; }
1072  void setIdentType(IdentType IT) { Type = IT; }
1073
1074  SourceLocation getLocation() const { return Loc; }
1075  void setLocation(SourceLocation L) { Loc = L; }
1076
1077  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1078
1079  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1080
1081  static bool classof(const Stmt *T) {
1082    return T->getStmtClass() == PredefinedExprClass;
1083  }
1084  static bool classof(const PredefinedExpr *) { return true; }
1085
1086  // Iterators
1087  child_range children() { return child_range(); }
1088};
1089
1090/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1091/// leaking memory.
1092///
1093/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1094/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1095/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1096/// the APFloat/APInt values will never get freed. APNumericStorage uses
1097/// ASTContext's allocator for memory allocation.
1098class APNumericStorage {
1099  union {
1100    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1101    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1102  };
1103  unsigned BitWidth;
1104
1105  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1106
1107  APNumericStorage(const APNumericStorage&); // do not implement
1108  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1109
1110protected:
1111  APNumericStorage() : VAL(0), BitWidth(0) { }
1112
1113  llvm::APInt getIntValue() const {
1114    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1115    if (NumWords > 1)
1116      return llvm::APInt(BitWidth, NumWords, pVal);
1117    else
1118      return llvm::APInt(BitWidth, VAL);
1119  }
1120  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1121};
1122
1123class APIntStorage : private APNumericStorage {
1124public:
1125  llvm::APInt getValue() const { return getIntValue(); }
1126  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1127};
1128
1129class APFloatStorage : private APNumericStorage {
1130public:
1131  llvm::APFloat getValue(bool IsIEEE) const {
1132    return llvm::APFloat(getIntValue(), IsIEEE);
1133  }
1134  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1135    setIntValue(C, Val.bitcastToAPInt());
1136  }
1137};
1138
1139class IntegerLiteral : public Expr, public APIntStorage {
1140  SourceLocation Loc;
1141
1142  /// \brief Construct an empty integer literal.
1143  explicit IntegerLiteral(EmptyShell Empty)
1144    : Expr(IntegerLiteralClass, Empty) { }
1145
1146public:
1147  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1148  // or UnsignedLongLongTy
1149  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1150                 QualType type, SourceLocation l)
1151    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1152           false, false),
1153      Loc(l) {
1154    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1155    assert(V.getBitWidth() == C.getIntWidth(type) &&
1156           "Integer type is not the correct size for constant.");
1157    setValue(C, V);
1158  }
1159
1160  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1161  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1162  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1163  /// \param V - the value that the returned integer literal contains.
1164  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1165                                QualType type, SourceLocation l);
1166  /// \brief Returns a new empty integer literal.
1167  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1168
1169  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1170
1171  /// \brief Retrieve the location of the literal.
1172  SourceLocation getLocation() const { return Loc; }
1173
1174  void setLocation(SourceLocation Location) { Loc = Location; }
1175
1176  static bool classof(const Stmt *T) {
1177    return T->getStmtClass() == IntegerLiteralClass;
1178  }
1179  static bool classof(const IntegerLiteral *) { return true; }
1180
1181  // Iterators
1182  child_range children() { return child_range(); }
1183};
1184
1185class CharacterLiteral : public Expr {
1186public:
1187  enum CharacterKind {
1188    Ascii,
1189    Wide,
1190    UTF16,
1191    UTF32
1192  };
1193
1194private:
1195  unsigned Value;
1196  SourceLocation Loc;
1197public:
1198  // type should be IntTy
1199  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1200                   SourceLocation l)
1201    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1202           false, false),
1203      Value(value), Loc(l) {
1204    CharacterLiteralBits.Kind = kind;
1205  }
1206
1207  /// \brief Construct an empty character literal.
1208  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1209
1210  SourceLocation getLocation() const { return Loc; }
1211  CharacterKind getKind() const {
1212    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1213  }
1214
1215  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1216
1217  unsigned getValue() const { return Value; }
1218
1219  void setLocation(SourceLocation Location) { Loc = Location; }
1220  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1221  void setValue(unsigned Val) { Value = Val; }
1222
1223  static bool classof(const Stmt *T) {
1224    return T->getStmtClass() == CharacterLiteralClass;
1225  }
1226  static bool classof(const CharacterLiteral *) { return true; }
1227
1228  // Iterators
1229  child_range children() { return child_range(); }
1230};
1231
1232class FloatingLiteral : public Expr, private APFloatStorage {
1233  SourceLocation Loc;
1234
1235  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1236                  QualType Type, SourceLocation L)
1237    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1238           false, false), Loc(L) {
1239    FloatingLiteralBits.IsIEEE =
1240      &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
1241    FloatingLiteralBits.IsExact = isexact;
1242    setValue(C, V);
1243  }
1244
1245  /// \brief Construct an empty floating-point literal.
1246  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
1247    : Expr(FloatingLiteralClass, Empty) {
1248    FloatingLiteralBits.IsIEEE =
1249      &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
1250    FloatingLiteralBits.IsExact = false;
1251  }
1252
1253public:
1254  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1255                                 bool isexact, QualType Type, SourceLocation L);
1256  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1257
1258  llvm::APFloat getValue() const {
1259    return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE);
1260  }
1261  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1262    APFloatStorage::setValue(C, Val);
1263  }
1264
1265  bool isExact() const { return FloatingLiteralBits.IsExact; }
1266  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1267
1268  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1269  /// double.  Note that this may cause loss of precision, but is useful for
1270  /// debugging dumps, etc.
1271  double getValueAsApproximateDouble() const;
1272
1273  SourceLocation getLocation() const { return Loc; }
1274  void setLocation(SourceLocation L) { Loc = L; }
1275
1276  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1277
1278  static bool classof(const Stmt *T) {
1279    return T->getStmtClass() == FloatingLiteralClass;
1280  }
1281  static bool classof(const FloatingLiteral *) { return true; }
1282
1283  // Iterators
1284  child_range children() { return child_range(); }
1285};
1286
1287/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1288/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1289/// IntegerLiteral classes.  Instances of this class always have a Complex type
1290/// whose element type matches the subexpression.
1291///
1292class ImaginaryLiteral : public Expr {
1293  Stmt *Val;
1294public:
1295  ImaginaryLiteral(Expr *val, QualType Ty)
1296    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1297           false, false),
1298      Val(val) {}
1299
1300  /// \brief Build an empty imaginary literal.
1301  explicit ImaginaryLiteral(EmptyShell Empty)
1302    : Expr(ImaginaryLiteralClass, Empty) { }
1303
1304  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1305  Expr *getSubExpr() { return cast<Expr>(Val); }
1306  void setSubExpr(Expr *E) { Val = E; }
1307
1308  SourceRange getSourceRange() const LLVM_READONLY { return Val->getSourceRange(); }
1309  static bool classof(const Stmt *T) {
1310    return T->getStmtClass() == ImaginaryLiteralClass;
1311  }
1312  static bool classof(const ImaginaryLiteral *) { return true; }
1313
1314  // Iterators
1315  child_range children() { return child_range(&Val, &Val+1); }
1316};
1317
1318/// StringLiteral - This represents a string literal expression, e.g. "foo"
1319/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1320/// is NOT null-terminated, and the length of the string is determined by
1321/// calling getByteLength().  The C type for a string is always a
1322/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1323/// not.
1324///
1325/// Note that strings in C can be formed by concatenation of multiple string
1326/// literal pptokens in translation phase #6.  This keeps track of the locations
1327/// of each of these pieces.
1328///
1329/// Strings in C can also be truncated and extended by assigning into arrays,
1330/// e.g. with constructs like:
1331///   char X[2] = "foobar";
1332/// In this case, getByteLength() will return 6, but the string literal will
1333/// have type "char[2]".
1334class StringLiteral : public Expr {
1335public:
1336  enum StringKind {
1337    Ascii,
1338    Wide,
1339    UTF8,
1340    UTF16,
1341    UTF32
1342  };
1343
1344private:
1345  friend class ASTStmtReader;
1346
1347  union {
1348    const char *asChar;
1349    const uint16_t *asUInt16;
1350    const uint32_t *asUInt32;
1351  } StrData;
1352  unsigned Length;
1353  unsigned CharByteWidth : 4;
1354  unsigned Kind : 3;
1355  unsigned IsPascal : 1;
1356  unsigned NumConcatenated;
1357  SourceLocation TokLocs[1];
1358
1359  StringLiteral(QualType Ty) :
1360    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1361         false) {}
1362
1363  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1364
1365public:
1366  /// This is the "fully general" constructor that allows representation of
1367  /// strings formed from multiple concatenated tokens.
1368  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1369                               bool Pascal, QualType Ty,
1370                               const SourceLocation *Loc, unsigned NumStrs);
1371
1372  /// Simple constructor for string literals made from one token.
1373  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1374                               bool Pascal, QualType Ty,
1375                               SourceLocation Loc) {
1376    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1377  }
1378
1379  /// \brief Construct an empty string literal.
1380  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1381
1382  StringRef getString() const {
1383    assert(CharByteWidth==1
1384           && "This function is used in places that assume strings use char");
1385    return StringRef(StrData.asChar, getByteLength());
1386  }
1387
1388  /// Allow clients that need the byte representation, such as ASTWriterStmt
1389  /// ::VisitStringLiteral(), access.
1390  StringRef getBytes() const {
1391    // FIXME: StringRef may not be the right type to use as a result for this.
1392    if (CharByteWidth == 1)
1393      return StringRef(StrData.asChar, getByteLength());
1394    if (CharByteWidth == 4)
1395      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1396                       getByteLength());
1397    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1398    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1399                     getByteLength());
1400  }
1401
1402  void outputString(raw_ostream &OS);
1403
1404  uint32_t getCodeUnit(size_t i) const {
1405    assert(i < Length && "out of bounds access");
1406    if (CharByteWidth == 1)
1407      return static_cast<unsigned char>(StrData.asChar[i]);
1408    if (CharByteWidth == 4)
1409      return StrData.asUInt32[i];
1410    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1411    return StrData.asUInt16[i];
1412  }
1413
1414  unsigned getByteLength() const { return CharByteWidth*Length; }
1415  unsigned getLength() const { return Length; }
1416  unsigned getCharByteWidth() const { return CharByteWidth; }
1417
1418  /// \brief Sets the string data to the given string data.
1419  void setString(ASTContext &C, StringRef Str,
1420                 StringKind Kind, bool IsPascal);
1421
1422  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1423
1424
1425  bool isAscii() const { return Kind == Ascii; }
1426  bool isWide() const { return Kind == Wide; }
1427  bool isUTF8() const { return Kind == UTF8; }
1428  bool isUTF16() const { return Kind == UTF16; }
1429  bool isUTF32() const { return Kind == UTF32; }
1430  bool isPascal() const { return IsPascal; }
1431
1432  bool containsNonAsciiOrNull() const {
1433    StringRef Str = getString();
1434    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1435      if (!isascii(Str[i]) || !Str[i])
1436        return true;
1437    return false;
1438  }
1439
1440  /// getNumConcatenated - Get the number of string literal tokens that were
1441  /// concatenated in translation phase #6 to form this string literal.
1442  unsigned getNumConcatenated() const { return NumConcatenated; }
1443
1444  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1445    assert(TokNum < NumConcatenated && "Invalid tok number");
1446    return TokLocs[TokNum];
1447  }
1448  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1449    assert(TokNum < NumConcatenated && "Invalid tok number");
1450    TokLocs[TokNum] = L;
1451  }
1452
1453  /// getLocationOfByte - Return a source location that points to the specified
1454  /// byte of this string literal.
1455  ///
1456  /// Strings are amazingly complex.  They can be formed from multiple tokens
1457  /// and can have escape sequences in them in addition to the usual trigraph
1458  /// and escaped newline business.  This routine handles this complexity.
1459  ///
1460  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1461                                   const LangOptions &Features,
1462                                   const TargetInfo &Target) const;
1463
1464  typedef const SourceLocation *tokloc_iterator;
1465  tokloc_iterator tokloc_begin() const { return TokLocs; }
1466  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1467
1468  SourceRange getSourceRange() const LLVM_READONLY {
1469    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1470  }
1471  static bool classof(const Stmt *T) {
1472    return T->getStmtClass() == StringLiteralClass;
1473  }
1474  static bool classof(const StringLiteral *) { return true; }
1475
1476  // Iterators
1477  child_range children() { return child_range(); }
1478};
1479
1480/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1481/// AST node is only formed if full location information is requested.
1482class ParenExpr : public Expr {
1483  SourceLocation L, R;
1484  Stmt *Val;
1485public:
1486  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1487    : Expr(ParenExprClass, val->getType(),
1488           val->getValueKind(), val->getObjectKind(),
1489           val->isTypeDependent(), val->isValueDependent(),
1490           val->isInstantiationDependent(),
1491           val->containsUnexpandedParameterPack()),
1492      L(l), R(r), Val(val) {}
1493
1494  /// \brief Construct an empty parenthesized expression.
1495  explicit ParenExpr(EmptyShell Empty)
1496    : Expr(ParenExprClass, Empty) { }
1497
1498  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1499  Expr *getSubExpr() { return cast<Expr>(Val); }
1500  void setSubExpr(Expr *E) { Val = E; }
1501
1502  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(L, R); }
1503
1504  /// \brief Get the location of the left parentheses '('.
1505  SourceLocation getLParen() const { return L; }
1506  void setLParen(SourceLocation Loc) { L = Loc; }
1507
1508  /// \brief Get the location of the right parentheses ')'.
1509  SourceLocation getRParen() const { return R; }
1510  void setRParen(SourceLocation Loc) { R = Loc; }
1511
1512  static bool classof(const Stmt *T) {
1513    return T->getStmtClass() == ParenExprClass;
1514  }
1515  static bool classof(const ParenExpr *) { return true; }
1516
1517  // Iterators
1518  child_range children() { return child_range(&Val, &Val+1); }
1519};
1520
1521
1522/// UnaryOperator - This represents the unary-expression's (except sizeof and
1523/// alignof), the postinc/postdec operators from postfix-expression, and various
1524/// extensions.
1525///
1526/// Notes on various nodes:
1527///
1528/// Real/Imag - These return the real/imag part of a complex operand.  If
1529///   applied to a non-complex value, the former returns its operand and the
1530///   later returns zero in the type of the operand.
1531///
1532class UnaryOperator : public Expr {
1533public:
1534  typedef UnaryOperatorKind Opcode;
1535
1536private:
1537  unsigned Opc : 5;
1538  SourceLocation Loc;
1539  Stmt *Val;
1540public:
1541
1542  UnaryOperator(Expr *input, Opcode opc, QualType type,
1543                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1544    : Expr(UnaryOperatorClass, type, VK, OK,
1545           input->isTypeDependent() || type->isDependentType(),
1546           input->isValueDependent(),
1547           (input->isInstantiationDependent() ||
1548            type->isInstantiationDependentType()),
1549           input->containsUnexpandedParameterPack()),
1550      Opc(opc), Loc(l), Val(input) {}
1551
1552  /// \brief Build an empty unary operator.
1553  explicit UnaryOperator(EmptyShell Empty)
1554    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1555
1556  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1557  void setOpcode(Opcode O) { Opc = O; }
1558
1559  Expr *getSubExpr() const { return cast<Expr>(Val); }
1560  void setSubExpr(Expr *E) { Val = E; }
1561
1562  /// getOperatorLoc - Return the location of the operator.
1563  SourceLocation getOperatorLoc() const { return Loc; }
1564  void setOperatorLoc(SourceLocation L) { Loc = L; }
1565
1566  /// isPostfix - Return true if this is a postfix operation, like x++.
1567  static bool isPostfix(Opcode Op) {
1568    return Op == UO_PostInc || Op == UO_PostDec;
1569  }
1570
1571  /// isPrefix - Return true if this is a prefix operation, like --x.
1572  static bool isPrefix(Opcode Op) {
1573    return Op == UO_PreInc || Op == UO_PreDec;
1574  }
1575
1576  bool isPrefix() const { return isPrefix(getOpcode()); }
1577  bool isPostfix() const { return isPostfix(getOpcode()); }
1578
1579  static bool isIncrementOp(Opcode Op) {
1580    return Op == UO_PreInc || Op == UO_PostInc;
1581  }
1582  bool isIncrementOp() const {
1583    return isIncrementOp(getOpcode());
1584  }
1585
1586  static bool isDecrementOp(Opcode Op) {
1587    return Op == UO_PreDec || Op == UO_PostDec;
1588  }
1589  bool isDecrementOp() const {
1590    return isDecrementOp(getOpcode());
1591  }
1592
1593  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1594  bool isIncrementDecrementOp() const {
1595    return isIncrementDecrementOp(getOpcode());
1596  }
1597
1598  static bool isArithmeticOp(Opcode Op) {
1599    return Op >= UO_Plus && Op <= UO_LNot;
1600  }
1601  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1602
1603  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1604  /// corresponds to, e.g. "sizeof" or "[pre]++"
1605  static const char *getOpcodeStr(Opcode Op);
1606
1607  /// \brief Retrieve the unary opcode that corresponds to the given
1608  /// overloaded operator.
1609  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1610
1611  /// \brief Retrieve the overloaded operator kind that corresponds to
1612  /// the given unary opcode.
1613  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1614
1615  SourceRange getSourceRange() const LLVM_READONLY {
1616    if (isPostfix())
1617      return SourceRange(Val->getLocStart(), Loc);
1618    else
1619      return SourceRange(Loc, Val->getLocEnd());
1620  }
1621  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1622
1623  static bool classof(const Stmt *T) {
1624    return T->getStmtClass() == UnaryOperatorClass;
1625  }
1626  static bool classof(const UnaryOperator *) { return true; }
1627
1628  // Iterators
1629  child_range children() { return child_range(&Val, &Val+1); }
1630};
1631
1632/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1633/// offsetof(record-type, member-designator). For example, given:
1634/// @code
1635/// struct S {
1636///   float f;
1637///   double d;
1638/// };
1639/// struct T {
1640///   int i;
1641///   struct S s[10];
1642/// };
1643/// @endcode
1644/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1645
1646class OffsetOfExpr : public Expr {
1647public:
1648  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1649  class OffsetOfNode {
1650  public:
1651    /// \brief The kind of offsetof node we have.
1652    enum Kind {
1653      /// \brief An index into an array.
1654      Array = 0x00,
1655      /// \brief A field.
1656      Field = 0x01,
1657      /// \brief A field in a dependent type, known only by its name.
1658      Identifier = 0x02,
1659      /// \brief An implicit indirection through a C++ base class, when the
1660      /// field found is in a base class.
1661      Base = 0x03
1662    };
1663
1664  private:
1665    enum { MaskBits = 2, Mask = 0x03 };
1666
1667    /// \brief The source range that covers this part of the designator.
1668    SourceRange Range;
1669
1670    /// \brief The data describing the designator, which comes in three
1671    /// different forms, depending on the lower two bits.
1672    ///   - An unsigned index into the array of Expr*'s stored after this node
1673    ///     in memory, for [constant-expression] designators.
1674    ///   - A FieldDecl*, for references to a known field.
1675    ///   - An IdentifierInfo*, for references to a field with a given name
1676    ///     when the class type is dependent.
1677    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1678    ///     base class.
1679    uintptr_t Data;
1680
1681  public:
1682    /// \brief Create an offsetof node that refers to an array element.
1683    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1684                 SourceLocation RBracketLoc)
1685      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1686
1687    /// \brief Create an offsetof node that refers to a field.
1688    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1689                 SourceLocation NameLoc)
1690      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1691        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1692
1693    /// \brief Create an offsetof node that refers to an identifier.
1694    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1695                 SourceLocation NameLoc)
1696      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1697        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1698
1699    /// \brief Create an offsetof node that refers into a C++ base class.
1700    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1701      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1702
1703    /// \brief Determine what kind of offsetof node this is.
1704    Kind getKind() const {
1705      return static_cast<Kind>(Data & Mask);
1706    }
1707
1708    /// \brief For an array element node, returns the index into the array
1709    /// of expressions.
1710    unsigned getArrayExprIndex() const {
1711      assert(getKind() == Array);
1712      return Data >> 2;
1713    }
1714
1715    /// \brief For a field offsetof node, returns the field.
1716    FieldDecl *getField() const {
1717      assert(getKind() == Field);
1718      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1719    }
1720
1721    /// \brief For a field or identifier offsetof node, returns the name of
1722    /// the field.
1723    IdentifierInfo *getFieldName() const;
1724
1725    /// \brief For a base class node, returns the base specifier.
1726    CXXBaseSpecifier *getBase() const {
1727      assert(getKind() == Base);
1728      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1729    }
1730
1731    /// \brief Retrieve the source range that covers this offsetof node.
1732    ///
1733    /// For an array element node, the source range contains the locations of
1734    /// the square brackets. For a field or identifier node, the source range
1735    /// contains the location of the period (if there is one) and the
1736    /// identifier.
1737    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1738  };
1739
1740private:
1741
1742  SourceLocation OperatorLoc, RParenLoc;
1743  // Base type;
1744  TypeSourceInfo *TSInfo;
1745  // Number of sub-components (i.e. instances of OffsetOfNode).
1746  unsigned NumComps;
1747  // Number of sub-expressions (i.e. array subscript expressions).
1748  unsigned NumExprs;
1749
1750  OffsetOfExpr(ASTContext &C, QualType type,
1751               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1752               OffsetOfNode* compsPtr, unsigned numComps,
1753               Expr** exprsPtr, unsigned numExprs,
1754               SourceLocation RParenLoc);
1755
1756  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1757    : Expr(OffsetOfExprClass, EmptyShell()),
1758      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1759
1760public:
1761
1762  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1763                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1764                              OffsetOfNode* compsPtr, unsigned numComps,
1765                              Expr** exprsPtr, unsigned numExprs,
1766                              SourceLocation RParenLoc);
1767
1768  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1769                                   unsigned NumComps, unsigned NumExprs);
1770
1771  /// getOperatorLoc - Return the location of the operator.
1772  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1773  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1774
1775  /// \brief Return the location of the right parentheses.
1776  SourceLocation getRParenLoc() const { return RParenLoc; }
1777  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1778
1779  TypeSourceInfo *getTypeSourceInfo() const {
1780    return TSInfo;
1781  }
1782  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1783    TSInfo = tsi;
1784  }
1785
1786  const OffsetOfNode &getComponent(unsigned Idx) const {
1787    assert(Idx < NumComps && "Subscript out of range");
1788    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1789  }
1790
1791  void setComponent(unsigned Idx, OffsetOfNode ON) {
1792    assert(Idx < NumComps && "Subscript out of range");
1793    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1794  }
1795
1796  unsigned getNumComponents() const {
1797    return NumComps;
1798  }
1799
1800  Expr* getIndexExpr(unsigned Idx) {
1801    assert(Idx < NumExprs && "Subscript out of range");
1802    return reinterpret_cast<Expr **>(
1803                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1804  }
1805  const Expr *getIndexExpr(unsigned Idx) const {
1806    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1807  }
1808
1809  void setIndexExpr(unsigned Idx, Expr* E) {
1810    assert(Idx < NumComps && "Subscript out of range");
1811    reinterpret_cast<Expr **>(
1812                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1813  }
1814
1815  unsigned getNumExpressions() const {
1816    return NumExprs;
1817  }
1818
1819  SourceRange getSourceRange() const LLVM_READONLY {
1820    return SourceRange(OperatorLoc, RParenLoc);
1821  }
1822
1823  static bool classof(const Stmt *T) {
1824    return T->getStmtClass() == OffsetOfExprClass;
1825  }
1826
1827  static bool classof(const OffsetOfExpr *) { return true; }
1828
1829  // Iterators
1830  child_range children() {
1831    Stmt **begin =
1832      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1833                               + NumComps);
1834    return child_range(begin, begin + NumExprs);
1835  }
1836};
1837
1838/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1839/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1840/// vec_step (OpenCL 1.1 6.11.12).
1841class UnaryExprOrTypeTraitExpr : public Expr {
1842  union {
1843    TypeSourceInfo *Ty;
1844    Stmt *Ex;
1845  } Argument;
1846  SourceLocation OpLoc, RParenLoc;
1847
1848public:
1849  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1850                           QualType resultType, SourceLocation op,
1851                           SourceLocation rp) :
1852      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1853           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1854           // Value-dependent if the argument is type-dependent.
1855           TInfo->getType()->isDependentType(),
1856           TInfo->getType()->isInstantiationDependentType(),
1857           TInfo->getType()->containsUnexpandedParameterPack()),
1858      OpLoc(op), RParenLoc(rp) {
1859    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1860    UnaryExprOrTypeTraitExprBits.IsType = true;
1861    Argument.Ty = TInfo;
1862  }
1863
1864  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1865                           QualType resultType, SourceLocation op,
1866                           SourceLocation rp) :
1867      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1868           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1869           // Value-dependent if the argument is type-dependent.
1870           E->isTypeDependent(),
1871           E->isInstantiationDependent(),
1872           E->containsUnexpandedParameterPack()),
1873      OpLoc(op), RParenLoc(rp) {
1874    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1875    UnaryExprOrTypeTraitExprBits.IsType = false;
1876    Argument.Ex = E;
1877  }
1878
1879  /// \brief Construct an empty sizeof/alignof expression.
1880  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1881    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1882
1883  UnaryExprOrTypeTrait getKind() const {
1884    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1885  }
1886  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1887
1888  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1889  QualType getArgumentType() const {
1890    return getArgumentTypeInfo()->getType();
1891  }
1892  TypeSourceInfo *getArgumentTypeInfo() const {
1893    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1894    return Argument.Ty;
1895  }
1896  Expr *getArgumentExpr() {
1897    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1898    return static_cast<Expr*>(Argument.Ex);
1899  }
1900  const Expr *getArgumentExpr() const {
1901    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1902  }
1903
1904  void setArgument(Expr *E) {
1905    Argument.Ex = E;
1906    UnaryExprOrTypeTraitExprBits.IsType = false;
1907  }
1908  void setArgument(TypeSourceInfo *TInfo) {
1909    Argument.Ty = TInfo;
1910    UnaryExprOrTypeTraitExprBits.IsType = true;
1911  }
1912
1913  /// Gets the argument type, or the type of the argument expression, whichever
1914  /// is appropriate.
1915  QualType getTypeOfArgument() const {
1916    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1917  }
1918
1919  SourceLocation getOperatorLoc() const { return OpLoc; }
1920  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1921
1922  SourceLocation getRParenLoc() const { return RParenLoc; }
1923  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1924
1925  SourceRange getSourceRange() const LLVM_READONLY {
1926    return SourceRange(OpLoc, RParenLoc);
1927  }
1928
1929  static bool classof(const Stmt *T) {
1930    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1931  }
1932  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1933
1934  // Iterators
1935  child_range children();
1936};
1937
1938//===----------------------------------------------------------------------===//
1939// Postfix Operators.
1940//===----------------------------------------------------------------------===//
1941
1942/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1943class ArraySubscriptExpr : public Expr {
1944  enum { LHS, RHS, END_EXPR=2 };
1945  Stmt* SubExprs[END_EXPR];
1946  SourceLocation RBracketLoc;
1947public:
1948  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1949                     ExprValueKind VK, ExprObjectKind OK,
1950                     SourceLocation rbracketloc)
1951  : Expr(ArraySubscriptExprClass, t, VK, OK,
1952         lhs->isTypeDependent() || rhs->isTypeDependent(),
1953         lhs->isValueDependent() || rhs->isValueDependent(),
1954         (lhs->isInstantiationDependent() ||
1955          rhs->isInstantiationDependent()),
1956         (lhs->containsUnexpandedParameterPack() ||
1957          rhs->containsUnexpandedParameterPack())),
1958    RBracketLoc(rbracketloc) {
1959    SubExprs[LHS] = lhs;
1960    SubExprs[RHS] = rhs;
1961  }
1962
1963  /// \brief Create an empty array subscript expression.
1964  explicit ArraySubscriptExpr(EmptyShell Shell)
1965    : Expr(ArraySubscriptExprClass, Shell) { }
1966
1967  /// An array access can be written A[4] or 4[A] (both are equivalent).
1968  /// - getBase() and getIdx() always present the normalized view: A[4].
1969  ///    In this case getBase() returns "A" and getIdx() returns "4".
1970  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1971  ///    4[A] getLHS() returns "4".
1972  /// Note: Because vector element access is also written A[4] we must
1973  /// predicate the format conversion in getBase and getIdx only on the
1974  /// the type of the RHS, as it is possible for the LHS to be a vector of
1975  /// integer type
1976  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1977  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1978  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1979
1980  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1981  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1982  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1983
1984  Expr *getBase() {
1985    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1986  }
1987
1988  const Expr *getBase() const {
1989    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1990  }
1991
1992  Expr *getIdx() {
1993    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1994  }
1995
1996  const Expr *getIdx() const {
1997    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1998  }
1999
2000  SourceRange getSourceRange() const LLVM_READONLY {
2001    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
2002  }
2003
2004  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2005  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2006
2007  SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); }
2008
2009  static bool classof(const Stmt *T) {
2010    return T->getStmtClass() == ArraySubscriptExprClass;
2011  }
2012  static bool classof(const ArraySubscriptExpr *) { return true; }
2013
2014  // Iterators
2015  child_range children() {
2016    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2017  }
2018};
2019
2020
2021/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2022/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2023/// while its subclasses may represent alternative syntax that (semantically)
2024/// results in a function call. For example, CXXOperatorCallExpr is
2025/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2026/// "str1 + str2" to resolve to a function call.
2027class CallExpr : public Expr {
2028  enum { FN=0, PREARGS_START=1 };
2029  Stmt **SubExprs;
2030  unsigned NumArgs;
2031  SourceLocation RParenLoc;
2032
2033protected:
2034  // These versions of the constructor are for derived classes.
2035  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2036           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2037           SourceLocation rparenloc);
2038  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2039
2040  Stmt *getPreArg(unsigned i) {
2041    assert(i < getNumPreArgs() && "Prearg access out of range!");
2042    return SubExprs[PREARGS_START+i];
2043  }
2044  const Stmt *getPreArg(unsigned i) const {
2045    assert(i < getNumPreArgs() && "Prearg access out of range!");
2046    return SubExprs[PREARGS_START+i];
2047  }
2048  void setPreArg(unsigned i, Stmt *PreArg) {
2049    assert(i < getNumPreArgs() && "Prearg access out of range!");
2050    SubExprs[PREARGS_START+i] = PreArg;
2051  }
2052
2053  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2054
2055public:
2056  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2057           ExprValueKind VK, SourceLocation rparenloc);
2058
2059  /// \brief Build an empty call expression.
2060  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2061
2062  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2063  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2064  void setCallee(Expr *F) { SubExprs[FN] = F; }
2065
2066  Decl *getCalleeDecl();
2067  const Decl *getCalleeDecl() const {
2068    return const_cast<CallExpr*>(this)->getCalleeDecl();
2069  }
2070
2071  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2072  FunctionDecl *getDirectCallee();
2073  const FunctionDecl *getDirectCallee() const {
2074    return const_cast<CallExpr*>(this)->getDirectCallee();
2075  }
2076
2077  /// getNumArgs - Return the number of actual arguments to this call.
2078  ///
2079  unsigned getNumArgs() const { return NumArgs; }
2080
2081  /// \brief Retrieve the call arguments.
2082  Expr **getArgs() {
2083    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2084  }
2085  const Expr *const *getArgs() const {
2086    return const_cast<CallExpr*>(this)->getArgs();
2087  }
2088
2089  /// getArg - Return the specified argument.
2090  Expr *getArg(unsigned Arg) {
2091    assert(Arg < NumArgs && "Arg access out of range!");
2092    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2093  }
2094  const Expr *getArg(unsigned Arg) const {
2095    assert(Arg < NumArgs && "Arg access out of range!");
2096    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2097  }
2098
2099  /// setArg - Set the specified argument.
2100  void setArg(unsigned Arg, Expr *ArgExpr) {
2101    assert(Arg < NumArgs && "Arg access out of range!");
2102    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2103  }
2104
2105  /// setNumArgs - This changes the number of arguments present in this call.
2106  /// Any orphaned expressions are deleted by this, and any new operands are set
2107  /// to null.
2108  void setNumArgs(ASTContext& C, unsigned NumArgs);
2109
2110  typedef ExprIterator arg_iterator;
2111  typedef ConstExprIterator const_arg_iterator;
2112
2113  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2114  arg_iterator arg_end() {
2115    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2116  }
2117  const_arg_iterator arg_begin() const {
2118    return SubExprs+PREARGS_START+getNumPreArgs();
2119  }
2120  const_arg_iterator arg_end() const {
2121    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2122  }
2123
2124  /// getNumCommas - Return the number of commas that must have been present in
2125  /// this function call.
2126  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2127
2128  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2129  /// not, return 0.
2130  unsigned isBuiltinCall() const;
2131
2132  /// getCallReturnType - Get the return type of the call expr. This is not
2133  /// always the type of the expr itself, if the return type is a reference
2134  /// type.
2135  QualType getCallReturnType() const;
2136
2137  SourceLocation getRParenLoc() const { return RParenLoc; }
2138  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2139
2140  SourceRange getSourceRange() const LLVM_READONLY;
2141  SourceLocation getLocStart() const LLVM_READONLY;
2142  SourceLocation getLocEnd() const LLVM_READONLY;
2143
2144  static bool classof(const Stmt *T) {
2145    return T->getStmtClass() >= firstCallExprConstant &&
2146           T->getStmtClass() <= lastCallExprConstant;
2147  }
2148  static bool classof(const CallExpr *) { return true; }
2149
2150  // Iterators
2151  child_range children() {
2152    return child_range(&SubExprs[0],
2153                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2154  }
2155};
2156
2157/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2158///
2159class MemberExpr : public Expr {
2160  /// Extra data stored in some member expressions.
2161  struct MemberNameQualifier {
2162    /// \brief The nested-name-specifier that qualifies the name, including
2163    /// source-location information.
2164    NestedNameSpecifierLoc QualifierLoc;
2165
2166    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2167    /// name qualifiers.
2168    DeclAccessPair FoundDecl;
2169  };
2170
2171  /// Base - the expression for the base pointer or structure references.  In
2172  /// X.F, this is "X".
2173  Stmt *Base;
2174
2175  /// MemberDecl - This is the decl being referenced by the field/member name.
2176  /// In X.F, this is the decl referenced by F.
2177  ValueDecl *MemberDecl;
2178
2179  /// MemberDNLoc - Provides source/type location info for the
2180  /// declaration name embedded in MemberDecl.
2181  DeclarationNameLoc MemberDNLoc;
2182
2183  /// MemberLoc - This is the location of the member name.
2184  SourceLocation MemberLoc;
2185
2186  /// IsArrow - True if this is "X->F", false if this is "X.F".
2187  bool IsArrow : 1;
2188
2189  /// \brief True if this member expression used a nested-name-specifier to
2190  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2191  /// declaration.  When true, a MemberNameQualifier
2192  /// structure is allocated immediately after the MemberExpr.
2193  bool HasQualifierOrFoundDecl : 1;
2194
2195  /// \brief True if this member expression specified a template keyword
2196  /// and/or a template argument list explicitly, e.g., x->f<int>,
2197  /// x->template f, x->template f<int>.
2198  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2199  /// TemplateArguments (if any) are allocated immediately after
2200  /// the MemberExpr or, if the member expression also has a qualifier,
2201  /// after the MemberNameQualifier structure.
2202  bool HasTemplateKWAndArgsInfo : 1;
2203
2204  /// \brief True if this member expression refers to a method that
2205  /// was resolved from an overloaded set having size greater than 1.
2206  bool HadMultipleCandidates : 1;
2207
2208  /// \brief Retrieve the qualifier that preceded the member name, if any.
2209  MemberNameQualifier *getMemberQualifier() {
2210    assert(HasQualifierOrFoundDecl);
2211    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2212  }
2213
2214  /// \brief Retrieve the qualifier that preceded the member name, if any.
2215  const MemberNameQualifier *getMemberQualifier() const {
2216    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2217  }
2218
2219public:
2220  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2221             const DeclarationNameInfo &NameInfo, QualType ty,
2222             ExprValueKind VK, ExprObjectKind OK)
2223    : Expr(MemberExprClass, ty, VK, OK,
2224           base->isTypeDependent(),
2225           base->isValueDependent(),
2226           base->isInstantiationDependent(),
2227           base->containsUnexpandedParameterPack()),
2228      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2229      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2230      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2231      HadMultipleCandidates(false) {
2232    assert(memberdecl->getDeclName() == NameInfo.getName());
2233  }
2234
2235  // NOTE: this constructor should be used only when it is known that
2236  // the member name can not provide additional syntactic info
2237  // (i.e., source locations for C++ operator names or type source info
2238  // for constructors, destructors and conversion operators).
2239  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2240             SourceLocation l, QualType ty,
2241             ExprValueKind VK, ExprObjectKind OK)
2242    : Expr(MemberExprClass, ty, VK, OK,
2243           base->isTypeDependent(), base->isValueDependent(),
2244           base->isInstantiationDependent(),
2245           base->containsUnexpandedParameterPack()),
2246      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2247      IsArrow(isarrow),
2248      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2249      HadMultipleCandidates(false) {}
2250
2251  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2252                            NestedNameSpecifierLoc QualifierLoc,
2253                            SourceLocation TemplateKWLoc,
2254                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2255                            DeclarationNameInfo MemberNameInfo,
2256                            const TemplateArgumentListInfo *targs,
2257                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2258
2259  void setBase(Expr *E) { Base = E; }
2260  Expr *getBase() const { return cast<Expr>(Base); }
2261
2262  /// \brief Retrieve the member declaration to which this expression refers.
2263  ///
2264  /// The returned declaration will either be a FieldDecl or (in C++)
2265  /// a CXXMethodDecl.
2266  ValueDecl *getMemberDecl() const { return MemberDecl; }
2267  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2268
2269  /// \brief Retrieves the declaration found by lookup.
2270  DeclAccessPair getFoundDecl() const {
2271    if (!HasQualifierOrFoundDecl)
2272      return DeclAccessPair::make(getMemberDecl(),
2273                                  getMemberDecl()->getAccess());
2274    return getMemberQualifier()->FoundDecl;
2275  }
2276
2277  /// \brief Determines whether this member expression actually had
2278  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2279  /// x->Base::foo.
2280  bool hasQualifier() const { return getQualifier() != 0; }
2281
2282  /// \brief If the member name was qualified, retrieves the
2283  /// nested-name-specifier that precedes the member name. Otherwise, returns
2284  /// NULL.
2285  NestedNameSpecifier *getQualifier() const {
2286    if (!HasQualifierOrFoundDecl)
2287      return 0;
2288
2289    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2290  }
2291
2292  /// \brief If the member name was qualified, retrieves the
2293  /// nested-name-specifier that precedes the member name, with source-location
2294  /// information.
2295  NestedNameSpecifierLoc getQualifierLoc() const {
2296    if (!hasQualifier())
2297      return NestedNameSpecifierLoc();
2298
2299    return getMemberQualifier()->QualifierLoc;
2300  }
2301
2302  /// \brief Return the optional template keyword and arguments info.
2303  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2304    if (!HasTemplateKWAndArgsInfo)
2305      return 0;
2306
2307    if (!HasQualifierOrFoundDecl)
2308      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2309
2310    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2311                                                      getMemberQualifier() + 1);
2312  }
2313
2314  /// \brief Return the optional template keyword and arguments info.
2315  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2316    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2317  }
2318
2319  /// \brief Retrieve the location of the template keyword preceding
2320  /// the member name, if any.
2321  SourceLocation getTemplateKeywordLoc() const {
2322    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2323    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2324  }
2325
2326  /// \brief Retrieve the location of the left angle bracket starting the
2327  /// explicit template argument list following the member name, if any.
2328  SourceLocation getLAngleLoc() const {
2329    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2330    return getTemplateKWAndArgsInfo()->LAngleLoc;
2331  }
2332
2333  /// \brief Retrieve the location of the right angle bracket ending the
2334  /// explicit template argument list following the member name, if any.
2335  SourceLocation getRAngleLoc() const {
2336    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2337    return getTemplateKWAndArgsInfo()->RAngleLoc;
2338  }
2339
2340  /// Determines whether the member name was preceded by the template keyword.
2341  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2342
2343  /// \brief Determines whether the member name was followed by an
2344  /// explicit template argument list.
2345  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2346
2347  /// \brief Copies the template arguments (if present) into the given
2348  /// structure.
2349  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2350    if (hasExplicitTemplateArgs())
2351      getExplicitTemplateArgs().copyInto(List);
2352  }
2353
2354  /// \brief Retrieve the explicit template argument list that
2355  /// follow the member template name.  This must only be called on an
2356  /// expression with explicit template arguments.
2357  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2358    assert(hasExplicitTemplateArgs());
2359    return *getTemplateKWAndArgsInfo();
2360  }
2361
2362  /// \brief Retrieve the explicit template argument list that
2363  /// followed the member template name.  This must only be called on
2364  /// an expression with explicit template arguments.
2365  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2366    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2367  }
2368
2369  /// \brief Retrieves the optional explicit template arguments.
2370  /// This points to the same data as getExplicitTemplateArgs(), but
2371  /// returns null if there are no explicit template arguments.
2372  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2373    if (!hasExplicitTemplateArgs()) return 0;
2374    return &getExplicitTemplateArgs();
2375  }
2376
2377  /// \brief Retrieve the template arguments provided as part of this
2378  /// template-id.
2379  const TemplateArgumentLoc *getTemplateArgs() const {
2380    if (!hasExplicitTemplateArgs())
2381      return 0;
2382
2383    return getExplicitTemplateArgs().getTemplateArgs();
2384  }
2385
2386  /// \brief Retrieve the number of template arguments provided as part of this
2387  /// template-id.
2388  unsigned getNumTemplateArgs() const {
2389    if (!hasExplicitTemplateArgs())
2390      return 0;
2391
2392    return getExplicitTemplateArgs().NumTemplateArgs;
2393  }
2394
2395  /// \brief Retrieve the member declaration name info.
2396  DeclarationNameInfo getMemberNameInfo() const {
2397    return DeclarationNameInfo(MemberDecl->getDeclName(),
2398                               MemberLoc, MemberDNLoc);
2399  }
2400
2401  bool isArrow() const { return IsArrow; }
2402  void setArrow(bool A) { IsArrow = A; }
2403
2404  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2405  /// location of 'F'.
2406  SourceLocation getMemberLoc() const { return MemberLoc; }
2407  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2408
2409  SourceRange getSourceRange() const LLVM_READONLY;
2410  SourceLocation getLocStart() const LLVM_READONLY;
2411  SourceLocation getLocEnd() const LLVM_READONLY;
2412
2413  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2414
2415  /// \brief Determine whether the base of this explicit is implicit.
2416  bool isImplicitAccess() const {
2417    return getBase() && getBase()->isImplicitCXXThis();
2418  }
2419
2420  /// \brief Returns true if this member expression refers to a method that
2421  /// was resolved from an overloaded set having size greater than 1.
2422  bool hadMultipleCandidates() const {
2423    return HadMultipleCandidates;
2424  }
2425  /// \brief Sets the flag telling whether this expression refers to
2426  /// a method that was resolved from an overloaded set having size
2427  /// greater than 1.
2428  void setHadMultipleCandidates(bool V = true) {
2429    HadMultipleCandidates = V;
2430  }
2431
2432  static bool classof(const Stmt *T) {
2433    return T->getStmtClass() == MemberExprClass;
2434  }
2435  static bool classof(const MemberExpr *) { return true; }
2436
2437  // Iterators
2438  child_range children() { return child_range(&Base, &Base+1); }
2439
2440  friend class ASTReader;
2441  friend class ASTStmtWriter;
2442};
2443
2444/// CompoundLiteralExpr - [C99 6.5.2.5]
2445///
2446class CompoundLiteralExpr : public Expr {
2447  /// LParenLoc - If non-null, this is the location of the left paren in a
2448  /// compound literal like "(int){4}".  This can be null if this is a
2449  /// synthesized compound expression.
2450  SourceLocation LParenLoc;
2451
2452  /// The type as written.  This can be an incomplete array type, in
2453  /// which case the actual expression type will be different.
2454  /// The int part of the pair stores whether this expr is file scope.
2455  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2456  Stmt *Init;
2457public:
2458  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2459                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2460    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2461           tinfo->getType()->isDependentType(),
2462           init->isValueDependent(),
2463           (init->isInstantiationDependent() ||
2464            tinfo->getType()->isInstantiationDependentType()),
2465           init->containsUnexpandedParameterPack()),
2466      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2467
2468  /// \brief Construct an empty compound literal.
2469  explicit CompoundLiteralExpr(EmptyShell Empty)
2470    : Expr(CompoundLiteralExprClass, Empty) { }
2471
2472  const Expr *getInitializer() const { return cast<Expr>(Init); }
2473  Expr *getInitializer() { return cast<Expr>(Init); }
2474  void setInitializer(Expr *E) { Init = E; }
2475
2476  bool isFileScope() const { return TInfoAndScope.getInt(); }
2477  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2478
2479  SourceLocation getLParenLoc() const { return LParenLoc; }
2480  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2481
2482  TypeSourceInfo *getTypeSourceInfo() const {
2483    return TInfoAndScope.getPointer();
2484  }
2485  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2486    TInfoAndScope.setPointer(tinfo);
2487  }
2488
2489  SourceRange getSourceRange() const LLVM_READONLY {
2490    // FIXME: Init should never be null.
2491    if (!Init)
2492      return SourceRange();
2493    if (LParenLoc.isInvalid())
2494      return Init->getSourceRange();
2495    return SourceRange(LParenLoc, Init->getLocEnd());
2496  }
2497
2498  static bool classof(const Stmt *T) {
2499    return T->getStmtClass() == CompoundLiteralExprClass;
2500  }
2501  static bool classof(const CompoundLiteralExpr *) { return true; }
2502
2503  // Iterators
2504  child_range children() { return child_range(&Init, &Init+1); }
2505};
2506
2507/// CastExpr - Base class for type casts, including both implicit
2508/// casts (ImplicitCastExpr) and explicit casts that have some
2509/// representation in the source code (ExplicitCastExpr's derived
2510/// classes).
2511class CastExpr : public Expr {
2512public:
2513  typedef clang::CastKind CastKind;
2514
2515private:
2516  Stmt *Op;
2517
2518  void CheckCastConsistency() const;
2519
2520  const CXXBaseSpecifier * const *path_buffer() const {
2521    return const_cast<CastExpr*>(this)->path_buffer();
2522  }
2523  CXXBaseSpecifier **path_buffer();
2524
2525  void setBasePathSize(unsigned basePathSize) {
2526    CastExprBits.BasePathSize = basePathSize;
2527    assert(CastExprBits.BasePathSize == basePathSize &&
2528           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2529  }
2530
2531protected:
2532  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2533           const CastKind kind, Expr *op, unsigned BasePathSize) :
2534    Expr(SC, ty, VK, OK_Ordinary,
2535         // Cast expressions are type-dependent if the type is
2536         // dependent (C++ [temp.dep.expr]p3).
2537         ty->isDependentType(),
2538         // Cast expressions are value-dependent if the type is
2539         // dependent or if the subexpression is value-dependent.
2540         ty->isDependentType() || (op && op->isValueDependent()),
2541         (ty->isInstantiationDependentType() ||
2542          (op && op->isInstantiationDependent())),
2543         (ty->containsUnexpandedParameterPack() ||
2544          op->containsUnexpandedParameterPack())),
2545    Op(op) {
2546    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2547    CastExprBits.Kind = kind;
2548    setBasePathSize(BasePathSize);
2549#ifndef NDEBUG
2550    CheckCastConsistency();
2551#endif
2552  }
2553
2554  /// \brief Construct an empty cast.
2555  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2556    : Expr(SC, Empty) {
2557    setBasePathSize(BasePathSize);
2558  }
2559
2560public:
2561  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2562  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2563  const char *getCastKindName() const;
2564
2565  Expr *getSubExpr() { return cast<Expr>(Op); }
2566  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2567  void setSubExpr(Expr *E) { Op = E; }
2568
2569  /// \brief Retrieve the cast subexpression as it was written in the source
2570  /// code, looking through any implicit casts or other intermediate nodes
2571  /// introduced by semantic analysis.
2572  Expr *getSubExprAsWritten();
2573  const Expr *getSubExprAsWritten() const {
2574    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2575  }
2576
2577  typedef CXXBaseSpecifier **path_iterator;
2578  typedef const CXXBaseSpecifier * const *path_const_iterator;
2579  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2580  unsigned path_size() const { return CastExprBits.BasePathSize; }
2581  path_iterator path_begin() { return path_buffer(); }
2582  path_iterator path_end() { return path_buffer() + path_size(); }
2583  path_const_iterator path_begin() const { return path_buffer(); }
2584  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2585
2586  void setCastPath(const CXXCastPath &Path);
2587
2588  static bool classof(const Stmt *T) {
2589    return T->getStmtClass() >= firstCastExprConstant &&
2590           T->getStmtClass() <= lastCastExprConstant;
2591  }
2592  static bool classof(const CastExpr *) { return true; }
2593
2594  // Iterators
2595  child_range children() { return child_range(&Op, &Op+1); }
2596};
2597
2598/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2599/// conversions, which have no direct representation in the original
2600/// source code. For example: converting T[]->T*, void f()->void
2601/// (*f)(), float->double, short->int, etc.
2602///
2603/// In C, implicit casts always produce rvalues. However, in C++, an
2604/// implicit cast whose result is being bound to a reference will be
2605/// an lvalue or xvalue. For example:
2606///
2607/// @code
2608/// class Base { };
2609/// class Derived : public Base { };
2610/// Derived &&ref();
2611/// void f(Derived d) {
2612///   Base& b = d; // initializer is an ImplicitCastExpr
2613///                // to an lvalue of type Base
2614///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2615///                     // to an xvalue of type Base
2616/// }
2617/// @endcode
2618class ImplicitCastExpr : public CastExpr {
2619private:
2620  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2621                   unsigned BasePathLength, ExprValueKind VK)
2622    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2623  }
2624
2625  /// \brief Construct an empty implicit cast.
2626  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2627    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2628
2629public:
2630  enum OnStack_t { OnStack };
2631  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2632                   ExprValueKind VK)
2633    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2634  }
2635
2636  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2637                                  CastKind Kind, Expr *Operand,
2638                                  const CXXCastPath *BasePath,
2639                                  ExprValueKind Cat);
2640
2641  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2642
2643  SourceRange getSourceRange() const LLVM_READONLY {
2644    return getSubExpr()->getSourceRange();
2645  }
2646  SourceLocation getLocStart() const LLVM_READONLY {
2647    return getSubExpr()->getLocStart();
2648  }
2649  SourceLocation getLocEnd() const LLVM_READONLY {
2650    return getSubExpr()->getLocEnd();
2651  }
2652
2653  static bool classof(const Stmt *T) {
2654    return T->getStmtClass() == ImplicitCastExprClass;
2655  }
2656  static bool classof(const ImplicitCastExpr *) { return true; }
2657};
2658
2659inline Expr *Expr::IgnoreImpCasts() {
2660  Expr *e = this;
2661  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2662    e = ice->getSubExpr();
2663  return e;
2664}
2665
2666/// ExplicitCastExpr - An explicit cast written in the source
2667/// code.
2668///
2669/// This class is effectively an abstract class, because it provides
2670/// the basic representation of an explicitly-written cast without
2671/// specifying which kind of cast (C cast, functional cast, static
2672/// cast, etc.) was written; specific derived classes represent the
2673/// particular style of cast and its location information.
2674///
2675/// Unlike implicit casts, explicit cast nodes have two different
2676/// types: the type that was written into the source code, and the
2677/// actual type of the expression as determined by semantic
2678/// analysis. These types may differ slightly. For example, in C++ one
2679/// can cast to a reference type, which indicates that the resulting
2680/// expression will be an lvalue or xvalue. The reference type, however,
2681/// will not be used as the type of the expression.
2682class ExplicitCastExpr : public CastExpr {
2683  /// TInfo - Source type info for the (written) type
2684  /// this expression is casting to.
2685  TypeSourceInfo *TInfo;
2686
2687protected:
2688  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2689                   CastKind kind, Expr *op, unsigned PathSize,
2690                   TypeSourceInfo *writtenTy)
2691    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2692
2693  /// \brief Construct an empty explicit cast.
2694  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2695    : CastExpr(SC, Shell, PathSize) { }
2696
2697public:
2698  /// getTypeInfoAsWritten - Returns the type source info for the type
2699  /// that this expression is casting to.
2700  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2701  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2702
2703  /// getTypeAsWritten - Returns the type that this expression is
2704  /// casting to, as written in the source code.
2705  QualType getTypeAsWritten() const { return TInfo->getType(); }
2706
2707  static bool classof(const Stmt *T) {
2708     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2709            T->getStmtClass() <= lastExplicitCastExprConstant;
2710  }
2711  static bool classof(const ExplicitCastExpr *) { return true; }
2712};
2713
2714/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2715/// cast in C++ (C++ [expr.cast]), which uses the syntax
2716/// (Type)expr. For example: @c (int)f.
2717class CStyleCastExpr : public ExplicitCastExpr {
2718  SourceLocation LPLoc; // the location of the left paren
2719  SourceLocation RPLoc; // the location of the right paren
2720
2721  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2722                 unsigned PathSize, TypeSourceInfo *writtenTy,
2723                 SourceLocation l, SourceLocation r)
2724    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2725                       writtenTy), LPLoc(l), RPLoc(r) {}
2726
2727  /// \brief Construct an empty C-style explicit cast.
2728  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2729    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2730
2731public:
2732  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2733                                ExprValueKind VK, CastKind K,
2734                                Expr *Op, const CXXCastPath *BasePath,
2735                                TypeSourceInfo *WrittenTy, SourceLocation L,
2736                                SourceLocation R);
2737
2738  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2739
2740  SourceLocation getLParenLoc() const { return LPLoc; }
2741  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2742
2743  SourceLocation getRParenLoc() const { return RPLoc; }
2744  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2745
2746  SourceRange getSourceRange() const LLVM_READONLY {
2747    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2748  }
2749  static bool classof(const Stmt *T) {
2750    return T->getStmtClass() == CStyleCastExprClass;
2751  }
2752  static bool classof(const CStyleCastExpr *) { return true; }
2753};
2754
2755/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2756///
2757/// This expression node kind describes a builtin binary operation,
2758/// such as "x + y" for integer values "x" and "y". The operands will
2759/// already have been converted to appropriate types (e.g., by
2760/// performing promotions or conversions).
2761///
2762/// In C++, where operators may be overloaded, a different kind of
2763/// expression node (CXXOperatorCallExpr) is used to express the
2764/// invocation of an overloaded operator with operator syntax. Within
2765/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2766/// used to store an expression "x + y" depends on the subexpressions
2767/// for x and y. If neither x or y is type-dependent, and the "+"
2768/// operator resolves to a built-in operation, BinaryOperator will be
2769/// used to express the computation (x and y may still be
2770/// value-dependent). If either x or y is type-dependent, or if the
2771/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2772/// be used to express the computation.
2773class BinaryOperator : public Expr {
2774public:
2775  typedef BinaryOperatorKind Opcode;
2776
2777private:
2778  unsigned Opc : 6;
2779  SourceLocation OpLoc;
2780
2781  enum { LHS, RHS, END_EXPR };
2782  Stmt* SubExprs[END_EXPR];
2783public:
2784
2785  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2786                 ExprValueKind VK, ExprObjectKind OK,
2787                 SourceLocation opLoc)
2788    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2789           lhs->isTypeDependent() || rhs->isTypeDependent(),
2790           lhs->isValueDependent() || rhs->isValueDependent(),
2791           (lhs->isInstantiationDependent() ||
2792            rhs->isInstantiationDependent()),
2793           (lhs->containsUnexpandedParameterPack() ||
2794            rhs->containsUnexpandedParameterPack())),
2795      Opc(opc), OpLoc(opLoc) {
2796    SubExprs[LHS] = lhs;
2797    SubExprs[RHS] = rhs;
2798    assert(!isCompoundAssignmentOp() &&
2799           "Use ArithAssignBinaryOperator for compound assignments");
2800  }
2801
2802  /// \brief Construct an empty binary operator.
2803  explicit BinaryOperator(EmptyShell Empty)
2804    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2805
2806  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2807  SourceLocation getOperatorLoc() const { return OpLoc; }
2808  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2809
2810  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2811  void setOpcode(Opcode O) { Opc = O; }
2812
2813  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2814  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2815  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2816  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2817
2818  SourceRange getSourceRange() const LLVM_READONLY {
2819    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2820  }
2821
2822  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2823  /// corresponds to, e.g. "<<=".
2824  static const char *getOpcodeStr(Opcode Op);
2825
2826  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2827
2828  /// \brief Retrieve the binary opcode that corresponds to the given
2829  /// overloaded operator.
2830  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2831
2832  /// \brief Retrieve the overloaded operator kind that corresponds to
2833  /// the given binary opcode.
2834  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2835
2836  /// predicates to categorize the respective opcodes.
2837  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2838  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2839  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2840  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2841  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2842  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2843
2844  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2845  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2846
2847  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2848  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2849
2850  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2851  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2852
2853  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2854  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2855
2856  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2857  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2858
2859  static bool isAssignmentOp(Opcode Opc) {
2860    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2861  }
2862  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2863
2864  static bool isCompoundAssignmentOp(Opcode Opc) {
2865    return Opc > BO_Assign && Opc <= BO_OrAssign;
2866  }
2867  bool isCompoundAssignmentOp() const {
2868    return isCompoundAssignmentOp(getOpcode());
2869  }
2870  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2871    assert(isCompoundAssignmentOp(Opc));
2872    if (Opc >= BO_AndAssign)
2873      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2874    else
2875      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2876  }
2877
2878  static bool isShiftAssignOp(Opcode Opc) {
2879    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2880  }
2881  bool isShiftAssignOp() const {
2882    return isShiftAssignOp(getOpcode());
2883  }
2884
2885  static bool classof(const Stmt *S) {
2886    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2887           S->getStmtClass() <= lastBinaryOperatorConstant;
2888  }
2889  static bool classof(const BinaryOperator *) { return true; }
2890
2891  // Iterators
2892  child_range children() {
2893    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2894  }
2895
2896protected:
2897  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2898                 ExprValueKind VK, ExprObjectKind OK,
2899                 SourceLocation opLoc, bool dead)
2900    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2901           lhs->isTypeDependent() || rhs->isTypeDependent(),
2902           lhs->isValueDependent() || rhs->isValueDependent(),
2903           (lhs->isInstantiationDependent() ||
2904            rhs->isInstantiationDependent()),
2905           (lhs->containsUnexpandedParameterPack() ||
2906            rhs->containsUnexpandedParameterPack())),
2907      Opc(opc), OpLoc(opLoc) {
2908    SubExprs[LHS] = lhs;
2909    SubExprs[RHS] = rhs;
2910  }
2911
2912  BinaryOperator(StmtClass SC, EmptyShell Empty)
2913    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2914};
2915
2916/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2917/// track of the type the operation is performed in.  Due to the semantics of
2918/// these operators, the operands are promoted, the arithmetic performed, an
2919/// implicit conversion back to the result type done, then the assignment takes
2920/// place.  This captures the intermediate type which the computation is done
2921/// in.
2922class CompoundAssignOperator : public BinaryOperator {
2923  QualType ComputationLHSType;
2924  QualType ComputationResultType;
2925public:
2926  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2927                         ExprValueKind VK, ExprObjectKind OK,
2928                         QualType CompLHSType, QualType CompResultType,
2929                         SourceLocation OpLoc)
2930    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2931      ComputationLHSType(CompLHSType),
2932      ComputationResultType(CompResultType) {
2933    assert(isCompoundAssignmentOp() &&
2934           "Only should be used for compound assignments");
2935  }
2936
2937  /// \brief Build an empty compound assignment operator expression.
2938  explicit CompoundAssignOperator(EmptyShell Empty)
2939    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2940
2941  // The two computation types are the type the LHS is converted
2942  // to for the computation and the type of the result; the two are
2943  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2944  QualType getComputationLHSType() const { return ComputationLHSType; }
2945  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2946
2947  QualType getComputationResultType() const { return ComputationResultType; }
2948  void setComputationResultType(QualType T) { ComputationResultType = T; }
2949
2950  static bool classof(const CompoundAssignOperator *) { return true; }
2951  static bool classof(const Stmt *S) {
2952    return S->getStmtClass() == CompoundAssignOperatorClass;
2953  }
2954};
2955
2956/// AbstractConditionalOperator - An abstract base class for
2957/// ConditionalOperator and BinaryConditionalOperator.
2958class AbstractConditionalOperator : public Expr {
2959  SourceLocation QuestionLoc, ColonLoc;
2960  friend class ASTStmtReader;
2961
2962protected:
2963  AbstractConditionalOperator(StmtClass SC, QualType T,
2964                              ExprValueKind VK, ExprObjectKind OK,
2965                              bool TD, bool VD, bool ID,
2966                              bool ContainsUnexpandedParameterPack,
2967                              SourceLocation qloc,
2968                              SourceLocation cloc)
2969    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2970      QuestionLoc(qloc), ColonLoc(cloc) {}
2971
2972  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2973    : Expr(SC, Empty) { }
2974
2975public:
2976  // getCond - Return the expression representing the condition for
2977  //   the ?: operator.
2978  Expr *getCond() const;
2979
2980  // getTrueExpr - Return the subexpression representing the value of
2981  //   the expression if the condition evaluates to true.
2982  Expr *getTrueExpr() const;
2983
2984  // getFalseExpr - Return the subexpression representing the value of
2985  //   the expression if the condition evaluates to false.  This is
2986  //   the same as getRHS.
2987  Expr *getFalseExpr() const;
2988
2989  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2990  SourceLocation getColonLoc() const { return ColonLoc; }
2991
2992  static bool classof(const Stmt *T) {
2993    return T->getStmtClass() == ConditionalOperatorClass ||
2994           T->getStmtClass() == BinaryConditionalOperatorClass;
2995  }
2996  static bool classof(const AbstractConditionalOperator *) { return true; }
2997};
2998
2999/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3000/// middle" extension is a BinaryConditionalOperator.
3001class ConditionalOperator : public AbstractConditionalOperator {
3002  enum { COND, LHS, RHS, END_EXPR };
3003  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3004
3005  friend class ASTStmtReader;
3006public:
3007  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3008                      SourceLocation CLoc, Expr *rhs,
3009                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3010    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3011           // FIXME: the type of the conditional operator doesn't
3012           // depend on the type of the conditional, but the standard
3013           // seems to imply that it could. File a bug!
3014           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3015           (cond->isValueDependent() || lhs->isValueDependent() ||
3016            rhs->isValueDependent()),
3017           (cond->isInstantiationDependent() ||
3018            lhs->isInstantiationDependent() ||
3019            rhs->isInstantiationDependent()),
3020           (cond->containsUnexpandedParameterPack() ||
3021            lhs->containsUnexpandedParameterPack() ||
3022            rhs->containsUnexpandedParameterPack()),
3023                                  QLoc, CLoc) {
3024    SubExprs[COND] = cond;
3025    SubExprs[LHS] = lhs;
3026    SubExprs[RHS] = rhs;
3027  }
3028
3029  /// \brief Build an empty conditional operator.
3030  explicit ConditionalOperator(EmptyShell Empty)
3031    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3032
3033  // getCond - Return the expression representing the condition for
3034  //   the ?: operator.
3035  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3036
3037  // getTrueExpr - Return the subexpression representing the value of
3038  //   the expression if the condition evaluates to true.
3039  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3040
3041  // getFalseExpr - Return the subexpression representing the value of
3042  //   the expression if the condition evaluates to false.  This is
3043  //   the same as getRHS.
3044  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3045
3046  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3047  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3048
3049  SourceRange getSourceRange() const LLVM_READONLY {
3050    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3051  }
3052  static bool classof(const Stmt *T) {
3053    return T->getStmtClass() == ConditionalOperatorClass;
3054  }
3055  static bool classof(const ConditionalOperator *) { return true; }
3056
3057  // Iterators
3058  child_range children() {
3059    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3060  }
3061};
3062
3063/// BinaryConditionalOperator - The GNU extension to the conditional
3064/// operator which allows the middle operand to be omitted.
3065///
3066/// This is a different expression kind on the assumption that almost
3067/// every client ends up needing to know that these are different.
3068class BinaryConditionalOperator : public AbstractConditionalOperator {
3069  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3070
3071  /// - the common condition/left-hand-side expression, which will be
3072  ///   evaluated as the opaque value
3073  /// - the condition, expressed in terms of the opaque value
3074  /// - the left-hand-side, expressed in terms of the opaque value
3075  /// - the right-hand-side
3076  Stmt *SubExprs[NUM_SUBEXPRS];
3077  OpaqueValueExpr *OpaqueValue;
3078
3079  friend class ASTStmtReader;
3080public:
3081  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3082                            Expr *cond, Expr *lhs, Expr *rhs,
3083                            SourceLocation qloc, SourceLocation cloc,
3084                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3085    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3086           (common->isTypeDependent() || rhs->isTypeDependent()),
3087           (common->isValueDependent() || rhs->isValueDependent()),
3088           (common->isInstantiationDependent() ||
3089            rhs->isInstantiationDependent()),
3090           (common->containsUnexpandedParameterPack() ||
3091            rhs->containsUnexpandedParameterPack()),
3092                                  qloc, cloc),
3093      OpaqueValue(opaqueValue) {
3094    SubExprs[COMMON] = common;
3095    SubExprs[COND] = cond;
3096    SubExprs[LHS] = lhs;
3097    SubExprs[RHS] = rhs;
3098    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3099  }
3100
3101  /// \brief Build an empty conditional operator.
3102  explicit BinaryConditionalOperator(EmptyShell Empty)
3103    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3104
3105  /// \brief getCommon - Return the common expression, written to the
3106  ///   left of the condition.  The opaque value will be bound to the
3107  ///   result of this expression.
3108  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3109
3110  /// \brief getOpaqueValue - Return the opaque value placeholder.
3111  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3112
3113  /// \brief getCond - Return the condition expression; this is defined
3114  ///   in terms of the opaque value.
3115  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3116
3117  /// \brief getTrueExpr - Return the subexpression which will be
3118  ///   evaluated if the condition evaluates to true;  this is defined
3119  ///   in terms of the opaque value.
3120  Expr *getTrueExpr() const {
3121    return cast<Expr>(SubExprs[LHS]);
3122  }
3123
3124  /// \brief getFalseExpr - Return the subexpression which will be
3125  ///   evaluated if the condnition evaluates to false; this is
3126  ///   defined in terms of the opaque value.
3127  Expr *getFalseExpr() const {
3128    return cast<Expr>(SubExprs[RHS]);
3129  }
3130
3131  SourceRange getSourceRange() const LLVM_READONLY {
3132    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3133  }
3134  static bool classof(const Stmt *T) {
3135    return T->getStmtClass() == BinaryConditionalOperatorClass;
3136  }
3137  static bool classof(const BinaryConditionalOperator *) { return true; }
3138
3139  // Iterators
3140  child_range children() {
3141    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3142  }
3143};
3144
3145inline Expr *AbstractConditionalOperator::getCond() const {
3146  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3147    return co->getCond();
3148  return cast<BinaryConditionalOperator>(this)->getCond();
3149}
3150
3151inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3152  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3153    return co->getTrueExpr();
3154  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3155}
3156
3157inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3158  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3159    return co->getFalseExpr();
3160  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3161}
3162
3163/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3164class AddrLabelExpr : public Expr {
3165  SourceLocation AmpAmpLoc, LabelLoc;
3166  LabelDecl *Label;
3167public:
3168  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3169                QualType t)
3170    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3171           false),
3172      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3173
3174  /// \brief Build an empty address of a label expression.
3175  explicit AddrLabelExpr(EmptyShell Empty)
3176    : Expr(AddrLabelExprClass, Empty) { }
3177
3178  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3179  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3180  SourceLocation getLabelLoc() const { return LabelLoc; }
3181  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3182
3183  SourceRange getSourceRange() const LLVM_READONLY {
3184    return SourceRange(AmpAmpLoc, LabelLoc);
3185  }
3186
3187  LabelDecl *getLabel() const { return Label; }
3188  void setLabel(LabelDecl *L) { Label = L; }
3189
3190  static bool classof(const Stmt *T) {
3191    return T->getStmtClass() == AddrLabelExprClass;
3192  }
3193  static bool classof(const AddrLabelExpr *) { return true; }
3194
3195  // Iterators
3196  child_range children() { return child_range(); }
3197};
3198
3199/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3200/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3201/// takes the value of the last subexpression.
3202///
3203/// A StmtExpr is always an r-value; values "returned" out of a
3204/// StmtExpr will be copied.
3205class StmtExpr : public Expr {
3206  Stmt *SubStmt;
3207  SourceLocation LParenLoc, RParenLoc;
3208public:
3209  // FIXME: Does type-dependence need to be computed differently?
3210  // FIXME: Do we need to compute instantiation instantiation-dependence for
3211  // statements? (ugh!)
3212  StmtExpr(CompoundStmt *substmt, QualType T,
3213           SourceLocation lp, SourceLocation rp) :
3214    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3215         T->isDependentType(), false, false, false),
3216    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3217
3218  /// \brief Build an empty statement expression.
3219  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3220
3221  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3222  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3223  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3224
3225  SourceRange getSourceRange() const LLVM_READONLY {
3226    return SourceRange(LParenLoc, RParenLoc);
3227  }
3228
3229  SourceLocation getLParenLoc() const { return LParenLoc; }
3230  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3231  SourceLocation getRParenLoc() const { return RParenLoc; }
3232  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3233
3234  static bool classof(const Stmt *T) {
3235    return T->getStmtClass() == StmtExprClass;
3236  }
3237  static bool classof(const StmtExpr *) { return true; }
3238
3239  // Iterators
3240  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3241};
3242
3243
3244/// ShuffleVectorExpr - clang-specific builtin-in function
3245/// __builtin_shufflevector.
3246/// This AST node represents a operator that does a constant
3247/// shuffle, similar to LLVM's shufflevector instruction. It takes
3248/// two vectors and a variable number of constant indices,
3249/// and returns the appropriately shuffled vector.
3250class ShuffleVectorExpr : public Expr {
3251  SourceLocation BuiltinLoc, RParenLoc;
3252
3253  // SubExprs - the list of values passed to the __builtin_shufflevector
3254  // function. The first two are vectors, and the rest are constant
3255  // indices.  The number of values in this list is always
3256  // 2+the number of indices in the vector type.
3257  Stmt **SubExprs;
3258  unsigned NumExprs;
3259
3260public:
3261  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3262                    QualType Type, SourceLocation BLoc,
3263                    SourceLocation RP);
3264
3265  /// \brief Build an empty vector-shuffle expression.
3266  explicit ShuffleVectorExpr(EmptyShell Empty)
3267    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3268
3269  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3270  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3271
3272  SourceLocation getRParenLoc() const { return RParenLoc; }
3273  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3274
3275  SourceRange getSourceRange() const LLVM_READONLY {
3276    return SourceRange(BuiltinLoc, RParenLoc);
3277  }
3278  static bool classof(const Stmt *T) {
3279    return T->getStmtClass() == ShuffleVectorExprClass;
3280  }
3281  static bool classof(const ShuffleVectorExpr *) { return true; }
3282
3283  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3284  /// constant expression, the actual arguments passed in, and the function
3285  /// pointers.
3286  unsigned getNumSubExprs() const { return NumExprs; }
3287
3288  /// \brief Retrieve the array of expressions.
3289  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3290
3291  /// getExpr - Return the Expr at the specified index.
3292  Expr *getExpr(unsigned Index) {
3293    assert((Index < NumExprs) && "Arg access out of range!");
3294    return cast<Expr>(SubExprs[Index]);
3295  }
3296  const Expr *getExpr(unsigned Index) const {
3297    assert((Index < NumExprs) && "Arg access out of range!");
3298    return cast<Expr>(SubExprs[Index]);
3299  }
3300
3301  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3302
3303  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3304    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3305    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3306  }
3307
3308  // Iterators
3309  child_range children() {
3310    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3311  }
3312};
3313
3314/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3315/// This AST node is similar to the conditional operator (?:) in C, with
3316/// the following exceptions:
3317/// - the test expression must be a integer constant expression.
3318/// - the expression returned acts like the chosen subexpression in every
3319///   visible way: the type is the same as that of the chosen subexpression,
3320///   and all predicates (whether it's an l-value, whether it's an integer
3321///   constant expression, etc.) return the same result as for the chosen
3322///   sub-expression.
3323class ChooseExpr : public Expr {
3324  enum { COND, LHS, RHS, END_EXPR };
3325  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3326  SourceLocation BuiltinLoc, RParenLoc;
3327public:
3328  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3329             QualType t, ExprValueKind VK, ExprObjectKind OK,
3330             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3331    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3332           (cond->isInstantiationDependent() ||
3333            lhs->isInstantiationDependent() ||
3334            rhs->isInstantiationDependent()),
3335           (cond->containsUnexpandedParameterPack() ||
3336            lhs->containsUnexpandedParameterPack() ||
3337            rhs->containsUnexpandedParameterPack())),
3338      BuiltinLoc(BLoc), RParenLoc(RP) {
3339      SubExprs[COND] = cond;
3340      SubExprs[LHS] = lhs;
3341      SubExprs[RHS] = rhs;
3342    }
3343
3344  /// \brief Build an empty __builtin_choose_expr.
3345  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3346
3347  /// isConditionTrue - Return whether the condition is true (i.e. not
3348  /// equal to zero).
3349  bool isConditionTrue(const ASTContext &C) const;
3350
3351  /// getChosenSubExpr - Return the subexpression chosen according to the
3352  /// condition.
3353  Expr *getChosenSubExpr(const ASTContext &C) const {
3354    return isConditionTrue(C) ? getLHS() : getRHS();
3355  }
3356
3357  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3358  void setCond(Expr *E) { SubExprs[COND] = E; }
3359  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3360  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3361  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3362  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3363
3364  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3365  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3366
3367  SourceLocation getRParenLoc() const { return RParenLoc; }
3368  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3369
3370  SourceRange getSourceRange() const LLVM_READONLY {
3371    return SourceRange(BuiltinLoc, RParenLoc);
3372  }
3373  static bool classof(const Stmt *T) {
3374    return T->getStmtClass() == ChooseExprClass;
3375  }
3376  static bool classof(const ChooseExpr *) { return true; }
3377
3378  // Iterators
3379  child_range children() {
3380    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3381  }
3382};
3383
3384/// GNUNullExpr - Implements the GNU __null extension, which is a name
3385/// for a null pointer constant that has integral type (e.g., int or
3386/// long) and is the same size and alignment as a pointer. The __null
3387/// extension is typically only used by system headers, which define
3388/// NULL as __null in C++ rather than using 0 (which is an integer
3389/// that may not match the size of a pointer).
3390class GNUNullExpr : public Expr {
3391  /// TokenLoc - The location of the __null keyword.
3392  SourceLocation TokenLoc;
3393
3394public:
3395  GNUNullExpr(QualType Ty, SourceLocation Loc)
3396    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3397           false),
3398      TokenLoc(Loc) { }
3399
3400  /// \brief Build an empty GNU __null expression.
3401  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3402
3403  /// getTokenLocation - The location of the __null token.
3404  SourceLocation getTokenLocation() const { return TokenLoc; }
3405  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3406
3407  SourceRange getSourceRange() const LLVM_READONLY {
3408    return SourceRange(TokenLoc);
3409  }
3410  static bool classof(const Stmt *T) {
3411    return T->getStmtClass() == GNUNullExprClass;
3412  }
3413  static bool classof(const GNUNullExpr *) { return true; }
3414
3415  // Iterators
3416  child_range children() { return child_range(); }
3417};
3418
3419/// VAArgExpr, used for the builtin function __builtin_va_arg.
3420class VAArgExpr : public Expr {
3421  Stmt *Val;
3422  TypeSourceInfo *TInfo;
3423  SourceLocation BuiltinLoc, RParenLoc;
3424public:
3425  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3426            SourceLocation RPLoc, QualType t)
3427    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3428           t->isDependentType(), false,
3429           (TInfo->getType()->isInstantiationDependentType() ||
3430            e->isInstantiationDependent()),
3431           (TInfo->getType()->containsUnexpandedParameterPack() ||
3432            e->containsUnexpandedParameterPack())),
3433      Val(e), TInfo(TInfo),
3434      BuiltinLoc(BLoc),
3435      RParenLoc(RPLoc) { }
3436
3437  /// \brief Create an empty __builtin_va_arg expression.
3438  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3439
3440  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3441  Expr *getSubExpr() { return cast<Expr>(Val); }
3442  void setSubExpr(Expr *E) { Val = E; }
3443
3444  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3445  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3446
3447  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3448  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3449
3450  SourceLocation getRParenLoc() const { return RParenLoc; }
3451  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3452
3453  SourceRange getSourceRange() const LLVM_READONLY {
3454    return SourceRange(BuiltinLoc, RParenLoc);
3455  }
3456  static bool classof(const Stmt *T) {
3457    return T->getStmtClass() == VAArgExprClass;
3458  }
3459  static bool classof(const VAArgExpr *) { return true; }
3460
3461  // Iterators
3462  child_range children() { return child_range(&Val, &Val+1); }
3463};
3464
3465/// @brief Describes an C or C++ initializer list.
3466///
3467/// InitListExpr describes an initializer list, which can be used to
3468/// initialize objects of different types, including
3469/// struct/class/union types, arrays, and vectors. For example:
3470///
3471/// @code
3472/// struct foo x = { 1, { 2, 3 } };
3473/// @endcode
3474///
3475/// Prior to semantic analysis, an initializer list will represent the
3476/// initializer list as written by the user, but will have the
3477/// placeholder type "void". This initializer list is called the
3478/// syntactic form of the initializer, and may contain C99 designated
3479/// initializers (represented as DesignatedInitExprs), initializations
3480/// of subobject members without explicit braces, and so on. Clients
3481/// interested in the original syntax of the initializer list should
3482/// use the syntactic form of the initializer list.
3483///
3484/// After semantic analysis, the initializer list will represent the
3485/// semantic form of the initializer, where the initializations of all
3486/// subobjects are made explicit with nested InitListExpr nodes and
3487/// C99 designators have been eliminated by placing the designated
3488/// initializations into the subobject they initialize. Additionally,
3489/// any "holes" in the initialization, where no initializer has been
3490/// specified for a particular subobject, will be replaced with
3491/// implicitly-generated ImplicitValueInitExpr expressions that
3492/// value-initialize the subobjects. Note, however, that the
3493/// initializer lists may still have fewer initializers than there are
3494/// elements to initialize within the object.
3495///
3496/// Given the semantic form of the initializer list, one can retrieve
3497/// the original syntactic form of that initializer list (if it
3498/// exists) using getSyntacticForm(). Since many initializer lists
3499/// have the same syntactic and semantic forms, getSyntacticForm() may
3500/// return NULL, indicating that the current initializer list also
3501/// serves as its syntactic form.
3502class InitListExpr : public Expr {
3503  // FIXME: Eliminate this vector in favor of ASTContext allocation
3504  typedef ASTVector<Stmt *> InitExprsTy;
3505  InitExprsTy InitExprs;
3506  SourceLocation LBraceLoc, RBraceLoc;
3507
3508  /// Contains the initializer list that describes the syntactic form
3509  /// written in the source code.
3510  InitListExpr *SyntacticForm;
3511
3512  /// \brief Either:
3513  ///  If this initializer list initializes an array with more elements than
3514  ///  there are initializers in the list, specifies an expression to be used
3515  ///  for value initialization of the rest of the elements.
3516  /// Or
3517  ///  If this initializer list initializes a union, specifies which
3518  ///  field within the union will be initialized.
3519  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3520
3521public:
3522  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3523               Expr **initexprs, unsigned numinits,
3524               SourceLocation rbraceloc);
3525
3526  /// \brief Build an empty initializer list.
3527  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3528    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3529
3530  unsigned getNumInits() const { return InitExprs.size(); }
3531
3532  /// \brief Retrieve the set of initializers.
3533  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3534
3535  const Expr *getInit(unsigned Init) const {
3536    assert(Init < getNumInits() && "Initializer access out of range!");
3537    return cast_or_null<Expr>(InitExprs[Init]);
3538  }
3539
3540  Expr *getInit(unsigned Init) {
3541    assert(Init < getNumInits() && "Initializer access out of range!");
3542    return cast_or_null<Expr>(InitExprs[Init]);
3543  }
3544
3545  void setInit(unsigned Init, Expr *expr) {
3546    assert(Init < getNumInits() && "Initializer access out of range!");
3547    InitExprs[Init] = expr;
3548  }
3549
3550  /// \brief Reserve space for some number of initializers.
3551  void reserveInits(ASTContext &C, unsigned NumInits);
3552
3553  /// @brief Specify the number of initializers
3554  ///
3555  /// If there are more than @p NumInits initializers, the remaining
3556  /// initializers will be destroyed. If there are fewer than @p
3557  /// NumInits initializers, NULL expressions will be added for the
3558  /// unknown initializers.
3559  void resizeInits(ASTContext &Context, unsigned NumInits);
3560
3561  /// @brief Updates the initializer at index @p Init with the new
3562  /// expression @p expr, and returns the old expression at that
3563  /// location.
3564  ///
3565  /// When @p Init is out of range for this initializer list, the
3566  /// initializer list will be extended with NULL expressions to
3567  /// accommodate the new entry.
3568  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3569
3570  /// \brief If this initializer list initializes an array with more elements
3571  /// than there are initializers in the list, specifies an expression to be
3572  /// used for value initialization of the rest of the elements.
3573  Expr *getArrayFiller() {
3574    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3575  }
3576  const Expr *getArrayFiller() const {
3577    return const_cast<InitListExpr *>(this)->getArrayFiller();
3578  }
3579  void setArrayFiller(Expr *filler);
3580
3581  /// \brief Return true if this is an array initializer and its array "filler"
3582  /// has been set.
3583  bool hasArrayFiller() const { return getArrayFiller(); }
3584
3585  /// \brief If this initializes a union, specifies which field in the
3586  /// union to initialize.
3587  ///
3588  /// Typically, this field is the first named field within the
3589  /// union. However, a designated initializer can specify the
3590  /// initialization of a different field within the union.
3591  FieldDecl *getInitializedFieldInUnion() {
3592    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3593  }
3594  const FieldDecl *getInitializedFieldInUnion() const {
3595    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3596  }
3597  void setInitializedFieldInUnion(FieldDecl *FD) {
3598    ArrayFillerOrUnionFieldInit = FD;
3599  }
3600
3601  // Explicit InitListExpr's originate from source code (and have valid source
3602  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3603  bool isExplicit() {
3604    return LBraceLoc.isValid() && RBraceLoc.isValid();
3605  }
3606
3607  // Is this an initializer for an array of characters, initialized by a string
3608  // literal or an @encode?
3609  bool isStringLiteralInit() const;
3610
3611  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3612  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3613  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3614  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3615
3616  /// @brief Retrieve the initializer list that describes the
3617  /// syntactic form of the initializer.
3618  ///
3619  ///
3620  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3621  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3622
3623  bool hadArrayRangeDesignator() const {
3624    return InitListExprBits.HadArrayRangeDesignator != 0;
3625  }
3626  void sawArrayRangeDesignator(bool ARD = true) {
3627    InitListExprBits.HadArrayRangeDesignator = ARD;
3628  }
3629
3630  bool initializesStdInitializerList() const {
3631    return InitListExprBits.InitializesStdInitializerList != 0;
3632  }
3633  void setInitializesStdInitializerList(bool ISIL = true) {
3634    InitListExprBits.InitializesStdInitializerList = ISIL;
3635  }
3636
3637  SourceRange getSourceRange() const LLVM_READONLY;
3638
3639  static bool classof(const Stmt *T) {
3640    return T->getStmtClass() == InitListExprClass;
3641  }
3642  static bool classof(const InitListExpr *) { return true; }
3643
3644  // Iterators
3645  child_range children() {
3646    if (InitExprs.empty()) return child_range();
3647    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3648  }
3649
3650  typedef InitExprsTy::iterator iterator;
3651  typedef InitExprsTy::const_iterator const_iterator;
3652  typedef InitExprsTy::reverse_iterator reverse_iterator;
3653  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3654
3655  iterator begin() { return InitExprs.begin(); }
3656  const_iterator begin() const { return InitExprs.begin(); }
3657  iterator end() { return InitExprs.end(); }
3658  const_iterator end() const { return InitExprs.end(); }
3659  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3660  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3661  reverse_iterator rend() { return InitExprs.rend(); }
3662  const_reverse_iterator rend() const { return InitExprs.rend(); }
3663
3664  friend class ASTStmtReader;
3665  friend class ASTStmtWriter;
3666};
3667
3668/// @brief Represents a C99 designated initializer expression.
3669///
3670/// A designated initializer expression (C99 6.7.8) contains one or
3671/// more designators (which can be field designators, array
3672/// designators, or GNU array-range designators) followed by an
3673/// expression that initializes the field or element(s) that the
3674/// designators refer to. For example, given:
3675///
3676/// @code
3677/// struct point {
3678///   double x;
3679///   double y;
3680/// };
3681/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3682/// @endcode
3683///
3684/// The InitListExpr contains three DesignatedInitExprs, the first of
3685/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3686/// designators, one array designator for @c [2] followed by one field
3687/// designator for @c .y. The initalization expression will be 1.0.
3688class DesignatedInitExpr : public Expr {
3689public:
3690  /// \brief Forward declaration of the Designator class.
3691  class Designator;
3692
3693private:
3694  /// The location of the '=' or ':' prior to the actual initializer
3695  /// expression.
3696  SourceLocation EqualOrColonLoc;
3697
3698  /// Whether this designated initializer used the GNU deprecated
3699  /// syntax rather than the C99 '=' syntax.
3700  bool GNUSyntax : 1;
3701
3702  /// The number of designators in this initializer expression.
3703  unsigned NumDesignators : 15;
3704
3705  /// The number of subexpressions of this initializer expression,
3706  /// which contains both the initializer and any additional
3707  /// expressions used by array and array-range designators.
3708  unsigned NumSubExprs : 16;
3709
3710  /// \brief The designators in this designated initialization
3711  /// expression.
3712  Designator *Designators;
3713
3714
3715  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3716                     const Designator *Designators,
3717                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3718                     Expr **IndexExprs, unsigned NumIndexExprs,
3719                     Expr *Init);
3720
3721  explicit DesignatedInitExpr(unsigned NumSubExprs)
3722    : Expr(DesignatedInitExprClass, EmptyShell()),
3723      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3724
3725public:
3726  /// A field designator, e.g., ".x".
3727  struct FieldDesignator {
3728    /// Refers to the field that is being initialized. The low bit
3729    /// of this field determines whether this is actually a pointer
3730    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3731    /// initially constructed, a field designator will store an
3732    /// IdentifierInfo*. After semantic analysis has resolved that
3733    /// name, the field designator will instead store a FieldDecl*.
3734    uintptr_t NameOrField;
3735
3736    /// The location of the '.' in the designated initializer.
3737    unsigned DotLoc;
3738
3739    /// The location of the field name in the designated initializer.
3740    unsigned FieldLoc;
3741  };
3742
3743  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3744  struct ArrayOrRangeDesignator {
3745    /// Location of the first index expression within the designated
3746    /// initializer expression's list of subexpressions.
3747    unsigned Index;
3748    /// The location of the '[' starting the array range designator.
3749    unsigned LBracketLoc;
3750    /// The location of the ellipsis separating the start and end
3751    /// indices. Only valid for GNU array-range designators.
3752    unsigned EllipsisLoc;
3753    /// The location of the ']' terminating the array range designator.
3754    unsigned RBracketLoc;
3755  };
3756
3757  /// @brief Represents a single C99 designator.
3758  ///
3759  /// @todo This class is infuriatingly similar to clang::Designator,
3760  /// but minor differences (storing indices vs. storing pointers)
3761  /// keep us from reusing it. Try harder, later, to rectify these
3762  /// differences.
3763  class Designator {
3764    /// @brief The kind of designator this describes.
3765    enum {
3766      FieldDesignator,
3767      ArrayDesignator,
3768      ArrayRangeDesignator
3769    } Kind;
3770
3771    union {
3772      /// A field designator, e.g., ".x".
3773      struct FieldDesignator Field;
3774      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3775      struct ArrayOrRangeDesignator ArrayOrRange;
3776    };
3777    friend class DesignatedInitExpr;
3778
3779  public:
3780    Designator() {}
3781
3782    /// @brief Initializes a field designator.
3783    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3784               SourceLocation FieldLoc)
3785      : Kind(FieldDesignator) {
3786      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3787      Field.DotLoc = DotLoc.getRawEncoding();
3788      Field.FieldLoc = FieldLoc.getRawEncoding();
3789    }
3790
3791    /// @brief Initializes an array designator.
3792    Designator(unsigned Index, SourceLocation LBracketLoc,
3793               SourceLocation RBracketLoc)
3794      : Kind(ArrayDesignator) {
3795      ArrayOrRange.Index = Index;
3796      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3797      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3798      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3799    }
3800
3801    /// @brief Initializes a GNU array-range designator.
3802    Designator(unsigned Index, SourceLocation LBracketLoc,
3803               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3804      : Kind(ArrayRangeDesignator) {
3805      ArrayOrRange.Index = Index;
3806      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3807      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3808      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3809    }
3810
3811    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3812    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3813    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3814
3815    IdentifierInfo *getFieldName() const;
3816
3817    FieldDecl *getField() const {
3818      assert(Kind == FieldDesignator && "Only valid on a field designator");
3819      if (Field.NameOrField & 0x01)
3820        return 0;
3821      else
3822        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3823    }
3824
3825    void setField(FieldDecl *FD) {
3826      assert(Kind == FieldDesignator && "Only valid on a field designator");
3827      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3828    }
3829
3830    SourceLocation getDotLoc() const {
3831      assert(Kind == FieldDesignator && "Only valid on a field designator");
3832      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3833    }
3834
3835    SourceLocation getFieldLoc() const {
3836      assert(Kind == FieldDesignator && "Only valid on a field designator");
3837      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3838    }
3839
3840    SourceLocation getLBracketLoc() const {
3841      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3842             "Only valid on an array or array-range designator");
3843      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3844    }
3845
3846    SourceLocation getRBracketLoc() const {
3847      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3848             "Only valid on an array or array-range designator");
3849      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3850    }
3851
3852    SourceLocation getEllipsisLoc() const {
3853      assert(Kind == ArrayRangeDesignator &&
3854             "Only valid on an array-range designator");
3855      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3856    }
3857
3858    unsigned getFirstExprIndex() const {
3859      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3860             "Only valid on an array or array-range designator");
3861      return ArrayOrRange.Index;
3862    }
3863
3864    SourceLocation getStartLocation() const {
3865      if (Kind == FieldDesignator)
3866        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3867      else
3868        return getLBracketLoc();
3869    }
3870    SourceLocation getEndLocation() const {
3871      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3872    }
3873    SourceRange getSourceRange() const LLVM_READONLY {
3874      return SourceRange(getStartLocation(), getEndLocation());
3875    }
3876  };
3877
3878  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3879                                    unsigned NumDesignators,
3880                                    Expr **IndexExprs, unsigned NumIndexExprs,
3881                                    SourceLocation EqualOrColonLoc,
3882                                    bool GNUSyntax, Expr *Init);
3883
3884  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3885
3886  /// @brief Returns the number of designators in this initializer.
3887  unsigned size() const { return NumDesignators; }
3888
3889  // Iterator access to the designators.
3890  typedef Designator *designators_iterator;
3891  designators_iterator designators_begin() { return Designators; }
3892  designators_iterator designators_end() {
3893    return Designators + NumDesignators;
3894  }
3895
3896  typedef const Designator *const_designators_iterator;
3897  const_designators_iterator designators_begin() const { return Designators; }
3898  const_designators_iterator designators_end() const {
3899    return Designators + NumDesignators;
3900  }
3901
3902  typedef std::reverse_iterator<designators_iterator>
3903          reverse_designators_iterator;
3904  reverse_designators_iterator designators_rbegin() {
3905    return reverse_designators_iterator(designators_end());
3906  }
3907  reverse_designators_iterator designators_rend() {
3908    return reverse_designators_iterator(designators_begin());
3909  }
3910
3911  typedef std::reverse_iterator<const_designators_iterator>
3912          const_reverse_designators_iterator;
3913  const_reverse_designators_iterator designators_rbegin() const {
3914    return const_reverse_designators_iterator(designators_end());
3915  }
3916  const_reverse_designators_iterator designators_rend() const {
3917    return const_reverse_designators_iterator(designators_begin());
3918  }
3919
3920  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3921
3922  void setDesignators(ASTContext &C, const Designator *Desigs,
3923                      unsigned NumDesigs);
3924
3925  Expr *getArrayIndex(const Designator& D);
3926  Expr *getArrayRangeStart(const Designator& D);
3927  Expr *getArrayRangeEnd(const Designator& D);
3928
3929  /// @brief Retrieve the location of the '=' that precedes the
3930  /// initializer value itself, if present.
3931  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3932  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3933
3934  /// @brief Determines whether this designated initializer used the
3935  /// deprecated GNU syntax for designated initializers.
3936  bool usesGNUSyntax() const { return GNUSyntax; }
3937  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3938
3939  /// @brief Retrieve the initializer value.
3940  Expr *getInit() const {
3941    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3942  }
3943
3944  void setInit(Expr *init) {
3945    *child_begin() = init;
3946  }
3947
3948  /// \brief Retrieve the total number of subexpressions in this
3949  /// designated initializer expression, including the actual
3950  /// initialized value and any expressions that occur within array
3951  /// and array-range designators.
3952  unsigned getNumSubExprs() const { return NumSubExprs; }
3953
3954  Expr *getSubExpr(unsigned Idx) {
3955    assert(Idx < NumSubExprs && "Subscript out of range");
3956    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3957    Ptr += sizeof(DesignatedInitExpr);
3958    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3959  }
3960
3961  void setSubExpr(unsigned Idx, Expr *E) {
3962    assert(Idx < NumSubExprs && "Subscript out of range");
3963    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3964    Ptr += sizeof(DesignatedInitExpr);
3965    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3966  }
3967
3968  /// \brief Replaces the designator at index @p Idx with the series
3969  /// of designators in [First, Last).
3970  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3971                        const Designator *Last);
3972
3973  SourceRange getDesignatorsSourceRange() const;
3974
3975  SourceRange getSourceRange() const LLVM_READONLY;
3976
3977  static bool classof(const Stmt *T) {
3978    return T->getStmtClass() == DesignatedInitExprClass;
3979  }
3980  static bool classof(const DesignatedInitExpr *) { return true; }
3981
3982  // Iterators
3983  child_range children() {
3984    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3985    return child_range(begin, begin + NumSubExprs);
3986  }
3987};
3988
3989/// \brief Represents an implicitly-generated value initialization of
3990/// an object of a given type.
3991///
3992/// Implicit value initializations occur within semantic initializer
3993/// list expressions (InitListExpr) as placeholders for subobject
3994/// initializations not explicitly specified by the user.
3995///
3996/// \see InitListExpr
3997class ImplicitValueInitExpr : public Expr {
3998public:
3999  explicit ImplicitValueInitExpr(QualType ty)
4000    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4001           false, false, ty->isInstantiationDependentType(), false) { }
4002
4003  /// \brief Construct an empty implicit value initialization.
4004  explicit ImplicitValueInitExpr(EmptyShell Empty)
4005    : Expr(ImplicitValueInitExprClass, Empty) { }
4006
4007  static bool classof(const Stmt *T) {
4008    return T->getStmtClass() == ImplicitValueInitExprClass;
4009  }
4010  static bool classof(const ImplicitValueInitExpr *) { return true; }
4011
4012  SourceRange getSourceRange() const LLVM_READONLY {
4013    return SourceRange();
4014  }
4015
4016  // Iterators
4017  child_range children() { return child_range(); }
4018};
4019
4020
4021class ParenListExpr : public Expr {
4022  Stmt **Exprs;
4023  unsigned NumExprs;
4024  SourceLocation LParenLoc, RParenLoc;
4025
4026public:
4027  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
4028                unsigned numexprs, SourceLocation rparenloc);
4029
4030  /// \brief Build an empty paren list.
4031  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4032
4033  unsigned getNumExprs() const { return NumExprs; }
4034
4035  const Expr* getExpr(unsigned Init) const {
4036    assert(Init < getNumExprs() && "Initializer access out of range!");
4037    return cast_or_null<Expr>(Exprs[Init]);
4038  }
4039
4040  Expr* getExpr(unsigned Init) {
4041    assert(Init < getNumExprs() && "Initializer access out of range!");
4042    return cast_or_null<Expr>(Exprs[Init]);
4043  }
4044
4045  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4046
4047  SourceLocation getLParenLoc() const { return LParenLoc; }
4048  SourceLocation getRParenLoc() const { return RParenLoc; }
4049
4050  SourceRange getSourceRange() const LLVM_READONLY {
4051    return SourceRange(LParenLoc, RParenLoc);
4052  }
4053  static bool classof(const Stmt *T) {
4054    return T->getStmtClass() == ParenListExprClass;
4055  }
4056  static bool classof(const ParenListExpr *) { return true; }
4057
4058  // Iterators
4059  child_range children() {
4060    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4061  }
4062
4063  friend class ASTStmtReader;
4064  friend class ASTStmtWriter;
4065};
4066
4067
4068/// \brief Represents a C11 generic selection.
4069///
4070/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4071/// expression, followed by one or more generic associations.  Each generic
4072/// association specifies a type name and an expression, or "default" and an
4073/// expression (in which case it is known as a default generic association).
4074/// The type and value of the generic selection are identical to those of its
4075/// result expression, which is defined as the expression in the generic
4076/// association with a type name that is compatible with the type of the
4077/// controlling expression, or the expression in the default generic association
4078/// if no types are compatible.  For example:
4079///
4080/// @code
4081/// _Generic(X, double: 1, float: 2, default: 3)
4082/// @endcode
4083///
4084/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4085/// or 3 if "hello".
4086///
4087/// As an extension, generic selections are allowed in C++, where the following
4088/// additional semantics apply:
4089///
4090/// Any generic selection whose controlling expression is type-dependent or
4091/// which names a dependent type in its association list is result-dependent,
4092/// which means that the choice of result expression is dependent.
4093/// Result-dependent generic associations are both type- and value-dependent.
4094class GenericSelectionExpr : public Expr {
4095  enum { CONTROLLING, END_EXPR };
4096  TypeSourceInfo **AssocTypes;
4097  Stmt **SubExprs;
4098  unsigned NumAssocs, ResultIndex;
4099  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4100
4101public:
4102  GenericSelectionExpr(ASTContext &Context,
4103                       SourceLocation GenericLoc, Expr *ControllingExpr,
4104                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4105                       unsigned NumAssocs, SourceLocation DefaultLoc,
4106                       SourceLocation RParenLoc,
4107                       bool ContainsUnexpandedParameterPack,
4108                       unsigned ResultIndex);
4109
4110  /// This constructor is used in the result-dependent case.
4111  GenericSelectionExpr(ASTContext &Context,
4112                       SourceLocation GenericLoc, Expr *ControllingExpr,
4113                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4114                       unsigned NumAssocs, SourceLocation DefaultLoc,
4115                       SourceLocation RParenLoc,
4116                       bool ContainsUnexpandedParameterPack);
4117
4118  explicit GenericSelectionExpr(EmptyShell Empty)
4119    : Expr(GenericSelectionExprClass, Empty) { }
4120
4121  unsigned getNumAssocs() const { return NumAssocs; }
4122
4123  SourceLocation getGenericLoc() const { return GenericLoc; }
4124  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4125  SourceLocation getRParenLoc() const { return RParenLoc; }
4126
4127  const Expr *getAssocExpr(unsigned i) const {
4128    return cast<Expr>(SubExprs[END_EXPR+i]);
4129  }
4130  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4131
4132  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4133    return AssocTypes[i];
4134  }
4135  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4136
4137  QualType getAssocType(unsigned i) const {
4138    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4139      return TS->getType();
4140    else
4141      return QualType();
4142  }
4143
4144  const Expr *getControllingExpr() const {
4145    return cast<Expr>(SubExprs[CONTROLLING]);
4146  }
4147  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4148
4149  /// Whether this generic selection is result-dependent.
4150  bool isResultDependent() const { return ResultIndex == -1U; }
4151
4152  /// The zero-based index of the result expression's generic association in
4153  /// the generic selection's association list.  Defined only if the
4154  /// generic selection is not result-dependent.
4155  unsigned getResultIndex() const {
4156    assert(!isResultDependent() && "Generic selection is result-dependent");
4157    return ResultIndex;
4158  }
4159
4160  /// The generic selection's result expression.  Defined only if the
4161  /// generic selection is not result-dependent.
4162  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4163  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4164
4165  SourceRange getSourceRange() const LLVM_READONLY {
4166    return SourceRange(GenericLoc, RParenLoc);
4167  }
4168  static bool classof(const Stmt *T) {
4169    return T->getStmtClass() == GenericSelectionExprClass;
4170  }
4171  static bool classof(const GenericSelectionExpr *) { return true; }
4172
4173  child_range children() {
4174    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4175  }
4176
4177  friend class ASTStmtReader;
4178};
4179
4180//===----------------------------------------------------------------------===//
4181// Clang Extensions
4182//===----------------------------------------------------------------------===//
4183
4184
4185/// ExtVectorElementExpr - This represents access to specific elements of a
4186/// vector, and may occur on the left hand side or right hand side.  For example
4187/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4188///
4189/// Note that the base may have either vector or pointer to vector type, just
4190/// like a struct field reference.
4191///
4192class ExtVectorElementExpr : public Expr {
4193  Stmt *Base;
4194  IdentifierInfo *Accessor;
4195  SourceLocation AccessorLoc;
4196public:
4197  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4198                       IdentifierInfo &accessor, SourceLocation loc)
4199    : Expr(ExtVectorElementExprClass, ty, VK,
4200           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4201           base->isTypeDependent(), base->isValueDependent(),
4202           base->isInstantiationDependent(),
4203           base->containsUnexpandedParameterPack()),
4204      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4205
4206  /// \brief Build an empty vector element expression.
4207  explicit ExtVectorElementExpr(EmptyShell Empty)
4208    : Expr(ExtVectorElementExprClass, Empty) { }
4209
4210  const Expr *getBase() const { return cast<Expr>(Base); }
4211  Expr *getBase() { return cast<Expr>(Base); }
4212  void setBase(Expr *E) { Base = E; }
4213
4214  IdentifierInfo &getAccessor() const { return *Accessor; }
4215  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4216
4217  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4218  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4219
4220  /// getNumElements - Get the number of components being selected.
4221  unsigned getNumElements() const;
4222
4223  /// containsDuplicateElements - Return true if any element access is
4224  /// repeated.
4225  bool containsDuplicateElements() const;
4226
4227  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4228  /// aggregate Constant of ConstantInt(s).
4229  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4230
4231  SourceRange getSourceRange() const LLVM_READONLY {
4232    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4233  }
4234
4235  /// isArrow - Return true if the base expression is a pointer to vector,
4236  /// return false if the base expression is a vector.
4237  bool isArrow() const;
4238
4239  static bool classof(const Stmt *T) {
4240    return T->getStmtClass() == ExtVectorElementExprClass;
4241  }
4242  static bool classof(const ExtVectorElementExpr *) { return true; }
4243
4244  // Iterators
4245  child_range children() { return child_range(&Base, &Base+1); }
4246};
4247
4248
4249/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4250/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4251class BlockExpr : public Expr {
4252protected:
4253  BlockDecl *TheBlock;
4254public:
4255  BlockExpr(BlockDecl *BD, QualType ty)
4256    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4257           ty->isDependentType(), ty->isDependentType(),
4258           ty->isInstantiationDependentType() || BD->isDependentContext(),
4259           false),
4260      TheBlock(BD) {}
4261
4262  /// \brief Build an empty block expression.
4263  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4264
4265  const BlockDecl *getBlockDecl() const { return TheBlock; }
4266  BlockDecl *getBlockDecl() { return TheBlock; }
4267  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4268
4269  // Convenience functions for probing the underlying BlockDecl.
4270  SourceLocation getCaretLocation() const;
4271  const Stmt *getBody() const;
4272  Stmt *getBody();
4273
4274  SourceRange getSourceRange() const LLVM_READONLY {
4275    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4276  }
4277
4278  /// getFunctionType - Return the underlying function type for this block.
4279  const FunctionProtoType *getFunctionType() const;
4280
4281  static bool classof(const Stmt *T) {
4282    return T->getStmtClass() == BlockExprClass;
4283  }
4284  static bool classof(const BlockExpr *) { return true; }
4285
4286  // Iterators
4287  child_range children() { return child_range(); }
4288};
4289
4290/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4291/// This AST node provides support for reinterpreting a type to another
4292/// type of the same size.
4293class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4294private:
4295  Stmt *SrcExpr;
4296  SourceLocation BuiltinLoc, RParenLoc;
4297
4298  friend class ASTReader;
4299  friend class ASTStmtReader;
4300  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4301
4302public:
4303  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4304             ExprValueKind VK, ExprObjectKind OK,
4305             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4306    : Expr(AsTypeExprClass, DstType, VK, OK,
4307           DstType->isDependentType(),
4308           DstType->isDependentType() || SrcExpr->isValueDependent(),
4309           (DstType->isInstantiationDependentType() ||
4310            SrcExpr->isInstantiationDependent()),
4311           (DstType->containsUnexpandedParameterPack() ||
4312            SrcExpr->containsUnexpandedParameterPack())),
4313  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4314
4315  /// getSrcExpr - Return the Expr to be converted.
4316  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4317
4318  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4319  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4320
4321  /// getRParenLoc - Return the location of final right parenthesis.
4322  SourceLocation getRParenLoc() const { return RParenLoc; }
4323
4324  SourceRange getSourceRange() const LLVM_READONLY {
4325    return SourceRange(BuiltinLoc, RParenLoc);
4326  }
4327
4328  static bool classof(const Stmt *T) {
4329    return T->getStmtClass() == AsTypeExprClass;
4330  }
4331  static bool classof(const AsTypeExpr *) { return true; }
4332
4333  // Iterators
4334  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4335};
4336
4337/// PseudoObjectExpr - An expression which accesses a pseudo-object
4338/// l-value.  A pseudo-object is an abstract object, accesses to which
4339/// are translated to calls.  The pseudo-object expression has a
4340/// syntactic form, which shows how the expression was actually
4341/// written in the source code, and a semantic form, which is a series
4342/// of expressions to be executed in order which detail how the
4343/// operation is actually evaluated.  Optionally, one of the semantic
4344/// forms may also provide a result value for the expression.
4345///
4346/// If any of the semantic-form expressions is an OpaqueValueExpr,
4347/// that OVE is required to have a source expression, and it is bound
4348/// to the result of that source expression.  Such OVEs may appear
4349/// only in subsequent semantic-form expressions and as
4350/// sub-expressions of the syntactic form.
4351///
4352/// PseudoObjectExpr should be used only when an operation can be
4353/// usefully described in terms of fairly simple rewrite rules on
4354/// objects and functions that are meant to be used by end-developers.
4355/// For example, under the Itanium ABI, dynamic casts are implemented
4356/// as a call to a runtime function called __dynamic_cast; using this
4357/// class to describe that would be inappropriate because that call is
4358/// not really part of the user-visible semantics, and instead the
4359/// cast is properly reflected in the AST and IR-generation has been
4360/// taught to generate the call as necessary.  In contrast, an
4361/// Objective-C property access is semantically defined to be
4362/// equivalent to a particular message send, and this is very much
4363/// part of the user model.  The name of this class encourages this
4364/// modelling design.
4365class PseudoObjectExpr : public Expr {
4366  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4367  // Always at least two, because the first sub-expression is the
4368  // syntactic form.
4369
4370  // PseudoObjectExprBits.ResultIndex - The index of the
4371  // sub-expression holding the result.  0 means the result is void,
4372  // which is unambiguous because it's the index of the syntactic
4373  // form.  Note that this is therefore 1 higher than the value passed
4374  // in to Create, which is an index within the semantic forms.
4375  // Note also that ASTStmtWriter assumes this encoding.
4376
4377  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4378  const Expr * const *getSubExprsBuffer() const {
4379    return reinterpret_cast<const Expr * const *>(this + 1);
4380  }
4381
4382  friend class ASTStmtReader;
4383
4384  PseudoObjectExpr(QualType type, ExprValueKind VK,
4385                   Expr *syntactic, ArrayRef<Expr*> semantic,
4386                   unsigned resultIndex);
4387
4388  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4389
4390  unsigned getNumSubExprs() const {
4391    return PseudoObjectExprBits.NumSubExprs;
4392  }
4393
4394public:
4395  /// NoResult - A value for the result index indicating that there is
4396  /// no semantic result.
4397  enum { NoResult = ~0U };
4398
4399  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4400                                  ArrayRef<Expr*> semantic,
4401                                  unsigned resultIndex);
4402
4403  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4404                                  unsigned numSemanticExprs);
4405
4406  /// Return the syntactic form of this expression, i.e. the
4407  /// expression it actually looks like.  Likely to be expressed in
4408  /// terms of OpaqueValueExprs bound in the semantic form.
4409  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4410  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4411
4412  /// Return the index of the result-bearing expression into the semantics
4413  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4414  unsigned getResultExprIndex() const {
4415    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4416    return PseudoObjectExprBits.ResultIndex - 1;
4417  }
4418
4419  /// Return the result-bearing expression, or null if there is none.
4420  Expr *getResultExpr() {
4421    if (PseudoObjectExprBits.ResultIndex == 0)
4422      return 0;
4423    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4424  }
4425  const Expr *getResultExpr() const {
4426    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4427  }
4428
4429  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4430
4431  typedef Expr * const *semantics_iterator;
4432  typedef const Expr * const *const_semantics_iterator;
4433  semantics_iterator semantics_begin() {
4434    return getSubExprsBuffer() + 1;
4435  }
4436  const_semantics_iterator semantics_begin() const {
4437    return getSubExprsBuffer() + 1;
4438  }
4439  semantics_iterator semantics_end() {
4440    return getSubExprsBuffer() + getNumSubExprs();
4441  }
4442  const_semantics_iterator semantics_end() const {
4443    return getSubExprsBuffer() + getNumSubExprs();
4444  }
4445  Expr *getSemanticExpr(unsigned index) {
4446    assert(index + 1 < getNumSubExprs());
4447    return getSubExprsBuffer()[index + 1];
4448  }
4449  const Expr *getSemanticExpr(unsigned index) const {
4450    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4451  }
4452
4453  SourceLocation getExprLoc() const LLVM_READONLY {
4454    return getSyntacticForm()->getExprLoc();
4455  }
4456  SourceRange getSourceRange() const LLVM_READONLY {
4457    return getSyntacticForm()->getSourceRange();
4458  }
4459
4460  child_range children() {
4461    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4462    return child_range(cs, cs + getNumSubExprs());
4463  }
4464
4465  static bool classof(const Stmt *T) {
4466    return T->getStmtClass() == PseudoObjectExprClass;
4467  }
4468  static bool classof(const PseudoObjectExpr *) { return true; }
4469};
4470
4471/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4472/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4473/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4474/// All of these instructions take one primary pointer and at least one memory
4475/// order.
4476class AtomicExpr : public Expr {
4477public:
4478  enum AtomicOp {
4479#define BUILTIN(ID, TYPE, ATTRS)
4480#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4481#include "clang/Basic/Builtins.def"
4482    // Avoid trailing comma
4483    BI_First = 0
4484  };
4485
4486private:
4487  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4488  Stmt* SubExprs[END_EXPR];
4489  unsigned NumSubExprs;
4490  SourceLocation BuiltinLoc, RParenLoc;
4491  AtomicOp Op;
4492
4493  friend class ASTStmtReader;
4494
4495public:
4496  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4497             AtomicOp op, SourceLocation RP);
4498
4499  /// \brief Determine the number of arguments the specified atomic builtin
4500  /// should have.
4501  static unsigned getNumSubExprs(AtomicOp Op);
4502
4503  /// \brief Build an empty AtomicExpr.
4504  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4505
4506  Expr *getPtr() const {
4507    return cast<Expr>(SubExprs[PTR]);
4508  }
4509  Expr *getOrder() const {
4510    return cast<Expr>(SubExprs[ORDER]);
4511  }
4512  Expr *getVal1() const {
4513    if (Op == AO__c11_atomic_init)
4514      return cast<Expr>(SubExprs[ORDER]);
4515    assert(NumSubExprs > VAL1);
4516    return cast<Expr>(SubExprs[VAL1]);
4517  }
4518  Expr *getOrderFail() const {
4519    assert(NumSubExprs > ORDER_FAIL);
4520    return cast<Expr>(SubExprs[ORDER_FAIL]);
4521  }
4522  Expr *getVal2() const {
4523    if (Op == AO__atomic_exchange)
4524      return cast<Expr>(SubExprs[ORDER_FAIL]);
4525    assert(NumSubExprs > VAL2);
4526    return cast<Expr>(SubExprs[VAL2]);
4527  }
4528  Expr *getWeak() const {
4529    assert(NumSubExprs > WEAK);
4530    return cast<Expr>(SubExprs[WEAK]);
4531  }
4532
4533  AtomicOp getOp() const { return Op; }
4534  unsigned getNumSubExprs() { return NumSubExprs; }
4535
4536  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4537
4538  bool isVolatile() const {
4539    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4540  }
4541
4542  bool isCmpXChg() const {
4543    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4544           getOp() == AO__c11_atomic_compare_exchange_weak ||
4545           getOp() == AO__atomic_compare_exchange ||
4546           getOp() == AO__atomic_compare_exchange_n;
4547  }
4548
4549  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4550  SourceLocation getRParenLoc() const { return RParenLoc; }
4551
4552  SourceRange getSourceRange() const LLVM_READONLY {
4553    return SourceRange(BuiltinLoc, RParenLoc);
4554  }
4555  static bool classof(const Stmt *T) {
4556    return T->getStmtClass() == AtomicExprClass;
4557  }
4558  static bool classof(const AtomicExpr *) { return true; }
4559
4560  // Iterators
4561  child_range children() {
4562    return child_range(SubExprs, SubExprs+NumSubExprs);
4563  }
4564};
4565}  // end namespace clang
4566
4567#endif
4568