Expr.h revision 8cad3046be06ea73ff8892d947697a21d7a440d3
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include <cctype>
30
31namespace clang {
32  class ASTContext;
33  class APValue;
34  class Decl;
35  class IdentifierInfo;
36  class ParmVarDecl;
37  class NamedDecl;
38  class ValueDecl;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXOperatorCallExpr;
42  class CXXMemberCallExpr;
43  class ObjCPropertyRefExpr;
44  class TemplateArgumentLoc;
45  class TemplateArgumentListInfo;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ContainsUnexpandedParameterPack) : Stmt(SC) {
61    ExprBits.TypeDependent = TD;
62    ExprBits.ValueDependent = VD;
63    ExprBits.ValueKind = VK;
64    ExprBits.ObjectKind = OK;
65    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
66    setType(T);
67  }
68
69  /// \brief Construct an empty expression.
70  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71
72public:
73  QualType getType() const { return TR; }
74  void setType(QualType t) {
75    // In C++, the type of an expression is always adjusted so that it
76    // will not have reference type an expression will never have
77    // reference type (C++ [expr]p6). Use
78    // QualType::getNonReferenceType() to retrieve the non-reference
79    // type. Additionally, inspect Expr::isLvalue to determine whether
80    // an expression that is adjusted in this manner should be
81    // considered an lvalue.
82    assert((t.isNull() || !t->isReferenceType()) &&
83           "Expressions can't have reference type");
84
85    TR = t;
86  }
87
88  /// isValueDependent - Determines whether this expression is
89  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
90  /// array bound of "Chars" in the following example is
91  /// value-dependent.
92  /// @code
93  /// template<int Size, char (&Chars)[Size]> struct meta_string;
94  /// @endcode
95  bool isValueDependent() const { return ExprBits.ValueDependent; }
96
97  /// \brief Set whether this expression is value-dependent or not.
98  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
99
100  /// isTypeDependent - Determines whether this expression is
101  /// type-dependent (C++ [temp.dep.expr]), which means that its type
102  /// could change from one template instantiation to the next. For
103  /// example, the expressions "x" and "x + y" are type-dependent in
104  /// the following code, but "y" is not type-dependent:
105  /// @code
106  /// template<typename T>
107  /// void add(T x, int y) {
108  ///   x + y;
109  /// }
110  /// @endcode
111  bool isTypeDependent() const { return ExprBits.TypeDependent; }
112
113  /// \brief Set whether this expression is type-dependent or not.
114  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
115
116  /// \brief Whether this expression contains an unexpanded parameter
117  /// pack (for C++0x variadic templates).
118  ///
119  /// Given the following function template:
120  ///
121  /// \code
122  /// template<typename F, typename ...Types>
123  /// void forward(const F &f, Types &&...args) {
124  ///   f(static_cast<Types&&>(args)...);
125  /// }
126  /// \endcode
127  ///
128  /// The expressions \c args and \c static_cast<Types&&>(args) both
129  /// contain parameter packs.
130  bool containsUnexpandedParameterPack() const {
131    return ExprBits.ContainsUnexpandedParameterPack;
132  }
133
134  /// \brief Set the bit that describes whether this expression
135  /// contains an unexpanded parameter pack.
136  void setContainsUnexpandedParameterPack(bool PP = true) {
137    ExprBits.ContainsUnexpandedParameterPack = PP;
138  }
139
140  /// getExprLoc - Return the preferred location for the arrow when diagnosing
141  /// a problem with a generic expression.
142  SourceLocation getExprLoc() const;
143
144  /// isUnusedResultAWarning - Return true if this immediate expression should
145  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
146  /// with location to warn on and the source range[s] to report with the
147  /// warning.
148  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
149                              SourceRange &R2, ASTContext &Ctx) const;
150
151  /// isLValue - True if this expression is an "l-value" according to
152  /// the rules of the current language.  C and C++ give somewhat
153  /// different rules for this concept, but in general, the result of
154  /// an l-value expression identifies a specific object whereas the
155  /// result of an r-value expression is a value detached from any
156  /// specific storage.
157  ///
158  /// C++0x divides the concept of "r-value" into pure r-values
159  /// ("pr-values") and so-called expiring values ("x-values"), which
160  /// identify specific objects that can be safely cannibalized for
161  /// their resources.  This is an unfortunate abuse of terminology on
162  /// the part of the C++ committee.  In Clang, when we say "r-value",
163  /// we generally mean a pr-value.
164  bool isLValue() const { return getValueKind() == VK_LValue; }
165  bool isRValue() const { return getValueKind() == VK_RValue; }
166  bool isXValue() const { return getValueKind() == VK_XValue; }
167  bool isGLValue() const { return getValueKind() != VK_RValue; }
168
169  enum LValueClassification {
170    LV_Valid,
171    LV_NotObjectType,
172    LV_IncompleteVoidType,
173    LV_DuplicateVectorComponents,
174    LV_InvalidExpression,
175    LV_InvalidMessageExpression,
176    LV_MemberFunction,
177    LV_SubObjCPropertySetting,
178    LV_ClassTemporary
179  };
180  /// Reasons why an expression might not be an l-value.
181  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
182
183  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
184  /// does not have an incomplete type, does not have a const-qualified type,
185  /// and if it is a structure or union, does not have any member (including,
186  /// recursively, any member or element of all contained aggregates or unions)
187  /// with a const-qualified type.
188  ///
189  /// \param Loc [in] [out] - A source location which *may* be filled
190  /// in with the location of the expression making this a
191  /// non-modifiable lvalue, if specified.
192  enum isModifiableLvalueResult {
193    MLV_Valid,
194    MLV_NotObjectType,
195    MLV_IncompleteVoidType,
196    MLV_DuplicateVectorComponents,
197    MLV_InvalidExpression,
198    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
199    MLV_IncompleteType,
200    MLV_ConstQualified,
201    MLV_ArrayType,
202    MLV_NotBlockQualified,
203    MLV_ReadonlyProperty,
204    MLV_NoSetterProperty,
205    MLV_MemberFunction,
206    MLV_SubObjCPropertySetting,
207    MLV_InvalidMessageExpression,
208    MLV_ClassTemporary
209  };
210  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
211                                              SourceLocation *Loc = 0) const;
212
213  /// \brief The return type of classify(). Represents the C++0x expression
214  ///        taxonomy.
215  class Classification {
216  public:
217    /// \brief The various classification results. Most of these mean prvalue.
218    enum Kinds {
219      CL_LValue,
220      CL_XValue,
221      CL_Function, // Functions cannot be lvalues in C.
222      CL_Void, // Void cannot be an lvalue in C.
223      CL_AddressableVoid, // Void expression whose address can be taken in C.
224      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
225      CL_MemberFunction, // An expression referring to a member function
226      CL_SubObjCPropertySetting,
227      CL_ClassTemporary, // A prvalue of class type
228      CL_ObjCMessageRValue, // ObjC message is an rvalue
229      CL_PRValue // A prvalue for any other reason, of any other type
230    };
231    /// \brief The results of modification testing.
232    enum ModifiableType {
233      CM_Untested, // testModifiable was false.
234      CM_Modifiable,
235      CM_RValue, // Not modifiable because it's an rvalue
236      CM_Function, // Not modifiable because it's a function; C++ only
237      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
238      CM_NotBlockQualified, // Not captured in the closure
239      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
240      CM_ConstQualified,
241      CM_ArrayType,
242      CM_IncompleteType
243    };
244
245  private:
246    friend class Expr;
247
248    unsigned short Kind;
249    unsigned short Modifiable;
250
251    explicit Classification(Kinds k, ModifiableType m)
252      : Kind(k), Modifiable(m)
253    {}
254
255  public:
256    Classification() {}
257
258    Kinds getKind() const { return static_cast<Kinds>(Kind); }
259    ModifiableType getModifiable() const {
260      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
261      return static_cast<ModifiableType>(Modifiable);
262    }
263    bool isLValue() const { return Kind == CL_LValue; }
264    bool isXValue() const { return Kind == CL_XValue; }
265    bool isGLValue() const { return Kind <= CL_XValue; }
266    bool isPRValue() const { return Kind >= CL_Function; }
267    bool isRValue() const { return Kind >= CL_XValue; }
268    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
269
270    /// \brief Create a simple, modifiably lvalue
271    static Classification makeSimpleLValue() {
272      return Classification(CL_LValue, CM_Modifiable);
273    }
274
275  };
276  /// \brief Classify - Classify this expression according to the C++0x
277  ///        expression taxonomy.
278  ///
279  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
280  /// old lvalue vs rvalue. This function determines the type of expression this
281  /// is. There are three expression types:
282  /// - lvalues are classical lvalues as in C++03.
283  /// - prvalues are equivalent to rvalues in C++03.
284  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
285  ///   function returning an rvalue reference.
286  /// lvalues and xvalues are collectively referred to as glvalues, while
287  /// prvalues and xvalues together form rvalues.
288  Classification Classify(ASTContext &Ctx) const {
289    return ClassifyImpl(Ctx, 0);
290  }
291
292  /// \brief ClassifyModifiable - Classify this expression according to the
293  ///        C++0x expression taxonomy, and see if it is valid on the left side
294  ///        of an assignment.
295  ///
296  /// This function extends classify in that it also tests whether the
297  /// expression is modifiable (C99 6.3.2.1p1).
298  /// \param Loc A source location that might be filled with a relevant location
299  ///            if the expression is not modifiable.
300  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
301    return ClassifyImpl(Ctx, &Loc);
302  }
303
304  /// getValueKindForType - Given a formal return or parameter type,
305  /// give its value kind.
306  static ExprValueKind getValueKindForType(QualType T) {
307    if (const ReferenceType *RT = T->getAs<ReferenceType>())
308      return (isa<LValueReferenceType>(RT)
309                ? VK_LValue
310                : (RT->getPointeeType()->isFunctionType()
311                     ? VK_LValue : VK_XValue));
312    return VK_RValue;
313  }
314
315  /// getValueKind - The value kind that this expression produces.
316  ExprValueKind getValueKind() const {
317    return static_cast<ExprValueKind>(ExprBits.ValueKind);
318  }
319
320  /// getObjectKind - The object kind that this expression produces.
321  /// Object kinds are meaningful only for expressions that yield an
322  /// l-value or x-value.
323  ExprObjectKind getObjectKind() const {
324    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
325  }
326
327  bool isOrdinaryOrBitFieldObject() const {
328    ExprObjectKind OK = getObjectKind();
329    return (OK == OK_Ordinary || OK == OK_BitField);
330  }
331
332  /// setValueKind - Set the value kind produced by this expression.
333  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
334
335  /// setObjectKind - Set the object kind produced by this expression.
336  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
337
338private:
339  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
340
341public:
342
343  /// \brief If this expression refers to a bit-field, retrieve the
344  /// declaration of that bit-field.
345  FieldDecl *getBitField();
346
347  const FieldDecl *getBitField() const {
348    return const_cast<Expr*>(this)->getBitField();
349  }
350
351  /// \brief If this expression is an l-value for an Objective C
352  /// property, find the underlying property reference expression.
353  const ObjCPropertyRefExpr *getObjCProperty() const;
354
355  /// \brief Returns whether this expression refers to a vector element.
356  bool refersToVectorElement() const;
357
358  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
359  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
360  /// but also int expressions which are produced by things like comparisons in
361  /// C.
362  bool isKnownToHaveBooleanValue() const;
363
364  /// isIntegerConstantExpr - Return true if this expression is a valid integer
365  /// constant expression, and, if so, return its value in Result.  If not a
366  /// valid i-c-e, return false and fill in Loc (if specified) with the location
367  /// of the invalid expression.
368  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
369                             SourceLocation *Loc = 0,
370                             bool isEvaluated = true) const;
371  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
372    llvm::APSInt X;
373    return isIntegerConstantExpr(X, Ctx, Loc);
374  }
375  /// isConstantInitializer - Returns true if this expression is a constant
376  /// initializer, which can be emitted at compile-time.
377  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
378
379  /// EvalResult is a struct with detailed info about an evaluated expression.
380  struct EvalResult {
381    /// Val - This is the value the expression can be folded to.
382    APValue Val;
383
384    /// HasSideEffects - Whether the evaluated expression has side effects.
385    /// For example, (f() && 0) can be folded, but it still has side effects.
386    bool HasSideEffects;
387
388    /// Diag - If the expression is unfoldable, then Diag contains a note
389    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
390    /// position for the error, and DiagExpr is the expression that caused
391    /// the error.
392    /// If the expression is foldable, but not an integer constant expression,
393    /// Diag contains a note diagnostic that describes why it isn't an integer
394    /// constant expression. If the expression *is* an integer constant
395    /// expression, then Diag will be zero.
396    unsigned Diag;
397    const Expr *DiagExpr;
398    SourceLocation DiagLoc;
399
400    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
401
402    // isGlobalLValue - Return true if the evaluated lvalue expression
403    // is global.
404    bool isGlobalLValue() const;
405    // hasSideEffects - Return true if the evaluated expression has
406    // side effects.
407    bool hasSideEffects() const {
408      return HasSideEffects;
409    }
410  };
411
412  /// Evaluate - Return true if this is a constant which we can fold using
413  /// any crazy technique (that has nothing to do with language standards) that
414  /// we want to.  If this function returns true, it returns the folded constant
415  /// in Result.
416  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
417
418  /// EvaluateAsBooleanCondition - Return true if this is a constant
419  /// which we we can fold and convert to a boolean condition using
420  /// any crazy technique that we want to.
421  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
422
423  /// isEvaluatable - Call Evaluate to see if this expression can be constant
424  /// folded, but discard the result.
425  bool isEvaluatable(const ASTContext &Ctx) const;
426
427  /// HasSideEffects - This routine returns true for all those expressions
428  /// which must be evaluated each time and must not be optimized away
429  /// or evaluated at compile time. Example is a function call, volatile
430  /// variable read.
431  bool HasSideEffects(const ASTContext &Ctx) const;
432
433  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
434  /// must be called on an expression that constant folds to an integer.
435  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
436
437  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
438  /// with link time known address.
439  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
440
441  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
442  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
443
444  /// \brief Enumeration used to describe the kind of Null pointer constant
445  /// returned from \c isNullPointerConstant().
446  enum NullPointerConstantKind {
447    /// \brief Expression is not a Null pointer constant.
448    NPCK_NotNull = 0,
449
450    /// \brief Expression is a Null pointer constant built from a zero integer.
451    NPCK_ZeroInteger,
452
453    /// \brief Expression is a C++0X nullptr.
454    NPCK_CXX0X_nullptr,
455
456    /// \brief Expression is a GNU-style __null constant.
457    NPCK_GNUNull
458  };
459
460  /// \brief Enumeration used to describe how \c isNullPointerConstant()
461  /// should cope with value-dependent expressions.
462  enum NullPointerConstantValueDependence {
463    /// \brief Specifies that the expression should never be value-dependent.
464    NPC_NeverValueDependent = 0,
465
466    /// \brief Specifies that a value-dependent expression of integral or
467    /// dependent type should be considered a null pointer constant.
468    NPC_ValueDependentIsNull,
469
470    /// \brief Specifies that a value-dependent expression should be considered
471    /// to never be a null pointer constant.
472    NPC_ValueDependentIsNotNull
473  };
474
475  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
476  /// a Null pointer constant. The return value can further distinguish the
477  /// kind of NULL pointer constant that was detected.
478  NullPointerConstantKind isNullPointerConstant(
479      ASTContext &Ctx,
480      NullPointerConstantValueDependence NPC) const;
481
482  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
483  /// write barrier.
484  bool isOBJCGCCandidate(ASTContext &Ctx) const;
485
486  /// \brief Returns true if this expression is a bound member function.
487  bool isBoundMemberFunction(ASTContext &Ctx) const;
488
489  /// \brief Given an expression of bound-member type, find the type
490  /// of the member.  Returns null if this is an *overloaded* bound
491  /// member expression.
492  static QualType findBoundMemberType(const Expr *expr);
493
494  /// \brief Result type of CanThrow().
495  enum CanThrowResult {
496    CT_Cannot,
497    CT_Dependent,
498    CT_Can
499  };
500  /// \brief Test if this expression, if evaluated, might throw, according to
501  ///        the rules of C++ [expr.unary.noexcept].
502  CanThrowResult CanThrow(ASTContext &C) const;
503
504  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
505  ///  its subexpression.  If that subexpression is also a ParenExpr,
506  ///  then this method recursively returns its subexpression, and so forth.
507  ///  Otherwise, the method returns the current Expr.
508  Expr *IgnoreParens();
509
510  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
511  /// or CastExprs, returning their operand.
512  Expr *IgnoreParenCasts();
513
514  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
515  /// ParenExpr or ImplicitCastExprs, returning their operand.
516  Expr *IgnoreParenImpCasts();
517
518  const Expr *IgnoreParenImpCasts() const {
519    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
520  }
521
522  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
523  /// CastExprs that represent lvalue casts, returning their operand.
524  Expr *IgnoreParenLValueCasts();
525
526  const Expr *IgnoreParenLValueCasts() const {
527    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
528  }
529
530  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
531  /// value (including ptr->int casts of the same size).  Strip off any
532  /// ParenExpr or CastExprs, returning their operand.
533  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
534
535  /// \brief Determine whether this expression is a default function argument.
536  ///
537  /// Default arguments are implicitly generated in the abstract syntax tree
538  /// by semantic analysis for function calls, object constructions, etc. in
539  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
540  /// this routine also looks through any implicit casts to determine whether
541  /// the expression is a default argument.
542  bool isDefaultArgument() const;
543
544  /// \brief Determine whether the result of this expression is a
545  /// temporary object of the given class type.
546  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
547
548  /// \brief Whether this expression is an implicit reference to 'this' in C++.
549  bool isImplicitCXXThis() const;
550
551  const Expr *IgnoreParens() const {
552    return const_cast<Expr*>(this)->IgnoreParens();
553  }
554  const Expr *IgnoreParenCasts() const {
555    return const_cast<Expr*>(this)->IgnoreParenCasts();
556  }
557  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
558    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
559  }
560
561  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
562  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
563
564  static bool classof(const Stmt *T) {
565    return T->getStmtClass() >= firstExprConstant &&
566           T->getStmtClass() <= lastExprConstant;
567  }
568  static bool classof(const Expr *) { return true; }
569};
570
571
572//===----------------------------------------------------------------------===//
573// Primary Expressions.
574//===----------------------------------------------------------------------===//
575
576/// OpaqueValueExpr - An expression referring to an opaque object of a
577/// fixed type and value class.  These don't correspond to concrete
578/// syntax; instead they're used to express operations (usually copy
579/// operations) on values whose source is generally obvious from
580/// context.
581class OpaqueValueExpr : public Expr {
582  friend class ASTStmtReader;
583  Expr *SourceExpr;
584  SourceLocation Loc;
585
586public:
587  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
588                  ExprObjectKind OK = OK_Ordinary)
589    : Expr(OpaqueValueExprClass, T, VK, OK,
590           T->isDependentType(), T->isDependentType(), false),
591      SourceExpr(0), Loc(Loc) {
592  }
593
594  /// Given an expression which invokes a copy constructor --- i.e.  a
595  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
596  /// find the OpaqueValueExpr that's the source of the construction.
597  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
598
599  explicit OpaqueValueExpr(EmptyShell Empty)
600    : Expr(OpaqueValueExprClass, Empty) { }
601
602  /// \brief Retrieve the location of this expression.
603  SourceLocation getLocation() const { return Loc; }
604
605  SourceRange getSourceRange() const {
606    if (SourceExpr) return SourceExpr->getSourceRange();
607    return Loc;
608  }
609  SourceLocation getExprLoc() const {
610    if (SourceExpr) return SourceExpr->getExprLoc();
611    return Loc;
612  }
613
614  child_range children() { return child_range(); }
615
616  /// The source expression of an opaque value expression is the
617  /// expression which originally generated the value.  This is
618  /// provided as a convenience for analyses that don't wish to
619  /// precisely model the execution behavior of the program.
620  ///
621  /// The source expression is typically set when building the
622  /// expression which binds the opaque value expression in the first
623  /// place.
624  Expr *getSourceExpr() const { return SourceExpr; }
625  void setSourceExpr(Expr *e) { SourceExpr = e; }
626
627  static bool classof(const Stmt *T) {
628    return T->getStmtClass() == OpaqueValueExprClass;
629  }
630  static bool classof(const OpaqueValueExpr *) { return true; }
631};
632
633/// \brief Represents an explicit template argument list in C++, e.g.,
634/// the "<int>" in "sort<int>".
635struct ExplicitTemplateArgumentList {
636  /// \brief The source location of the left angle bracket ('<');
637  SourceLocation LAngleLoc;
638
639  /// \brief The source location of the right angle bracket ('>');
640  SourceLocation RAngleLoc;
641
642  /// \brief The number of template arguments in TemplateArgs.
643  /// The actual template arguments (if any) are stored after the
644  /// ExplicitTemplateArgumentList structure.
645  unsigned NumTemplateArgs;
646
647  /// \brief Retrieve the template arguments
648  TemplateArgumentLoc *getTemplateArgs() {
649    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
650  }
651
652  /// \brief Retrieve the template arguments
653  const TemplateArgumentLoc *getTemplateArgs() const {
654    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
655  }
656
657  void initializeFrom(const TemplateArgumentListInfo &List);
658  void initializeFrom(const TemplateArgumentListInfo &List,
659                      bool &Dependent, bool &ContainsUnexpandedParameterPack);
660  void copyInto(TemplateArgumentListInfo &List) const;
661  static std::size_t sizeFor(unsigned NumTemplateArgs);
662  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
663};
664
665/// \brief A reference to a declared variable, function, enum, etc.
666/// [C99 6.5.1p2]
667///
668/// This encodes all the information about how a declaration is referenced
669/// within an expression.
670///
671/// There are several optional constructs attached to DeclRefExprs only when
672/// they apply in order to conserve memory. These are laid out past the end of
673/// the object, and flags in the DeclRefExprBitfield track whether they exist:
674///
675///   DeclRefExprBits.HasQualifier:
676///       Specifies when this declaration reference expression has a C++
677///       nested-name-specifier.
678///   DeclRefExprBits.HasFoundDecl:
679///       Specifies when this declaration reference expression has a record of
680///       a NamedDecl (different from the referenced ValueDecl) which was found
681///       during name lookup and/or overload resolution.
682///   DeclRefExprBits.HasExplicitTemplateArgs:
683///       Specifies when this declaration reference expression has an explicit
684///       C++ template argument list.
685class DeclRefExpr : public Expr {
686  /// \brief The declaration that we are referencing.
687  ValueDecl *D;
688
689  /// \brief The location of the declaration name itself.
690  SourceLocation Loc;
691
692  /// \brief Provides source/type location info for the declaration name
693  /// embedded in D.
694  DeclarationNameLoc DNLoc;
695
696  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
697  NestedNameSpecifierLoc &getInternalQualifierLoc() {
698    assert(hasQualifier());
699    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
700  }
701
702  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
703  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
704    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
705  }
706
707  /// \brief Test whether there is a distinct FoundDecl attached to the end of
708  /// this DRE.
709  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
710
711  /// \brief Helper to retrieve the optional NamedDecl through which this
712  /// reference occured.
713  NamedDecl *&getInternalFoundDecl() {
714    assert(hasFoundDecl());
715    if (hasQualifier())
716      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
717    return *reinterpret_cast<NamedDecl **>(this + 1);
718  }
719
720  /// \brief Helper to retrieve the optional NamedDecl through which this
721  /// reference occured.
722  NamedDecl *getInternalFoundDecl() const {
723    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
724  }
725
726  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
727              ValueDecl *D, const DeclarationNameInfo &NameInfo,
728              NamedDecl *FoundD,
729              const TemplateArgumentListInfo *TemplateArgs,
730              QualType T, ExprValueKind VK);
731
732  /// \brief Construct an empty declaration reference expression.
733  explicit DeclRefExpr(EmptyShell Empty)
734    : Expr(DeclRefExprClass, Empty) { }
735
736  /// \brief Computes the type- and value-dependence flags for this
737  /// declaration reference expression.
738  void computeDependence();
739
740public:
741  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L)
742    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
743      D(D), Loc(L) {
744    DeclRefExprBits.HasQualifier = 0;
745    DeclRefExprBits.HasExplicitTemplateArgs = 0;
746    DeclRefExprBits.HasFoundDecl = 0;
747    computeDependence();
748  }
749
750  static DeclRefExpr *Create(ASTContext &Context,
751                             NestedNameSpecifierLoc QualifierLoc,
752                             ValueDecl *D,
753                             SourceLocation NameLoc,
754                             QualType T, ExprValueKind VK,
755                             NamedDecl *FoundD = 0,
756                             const TemplateArgumentListInfo *TemplateArgs = 0);
757
758  static DeclRefExpr *Create(ASTContext &Context,
759                             NestedNameSpecifierLoc QualifierLoc,
760                             ValueDecl *D,
761                             const DeclarationNameInfo &NameInfo,
762                             QualType T, ExprValueKind VK,
763                             NamedDecl *FoundD = 0,
764                             const TemplateArgumentListInfo *TemplateArgs = 0);
765
766  /// \brief Construct an empty declaration reference expression.
767  static DeclRefExpr *CreateEmpty(ASTContext &Context,
768                                  bool HasQualifier,
769                                  bool HasFoundDecl,
770                                  bool HasExplicitTemplateArgs,
771                                  unsigned NumTemplateArgs);
772
773  ValueDecl *getDecl() { return D; }
774  const ValueDecl *getDecl() const { return D; }
775  void setDecl(ValueDecl *NewD) { D = NewD; }
776
777  DeclarationNameInfo getNameInfo() const {
778    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
779  }
780
781  SourceLocation getLocation() const { return Loc; }
782  void setLocation(SourceLocation L) { Loc = L; }
783  SourceRange getSourceRange() const;
784
785  /// \brief Determine whether this declaration reference was preceded by a
786  /// C++ nested-name-specifier, e.g., \c N::foo.
787  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
788
789  /// \brief If the name was qualified, retrieves the nested-name-specifier
790  /// that precedes the name. Otherwise, returns NULL.
791  NestedNameSpecifier *getQualifier() const {
792    if (!hasQualifier())
793      return 0;
794
795    return getInternalQualifierLoc().getNestedNameSpecifier();
796  }
797
798  /// \brief If the name was qualified, retrieves the nested-name-specifier
799  /// that precedes the name, with source-location information.
800  NestedNameSpecifierLoc getQualifierLoc() const {
801    if (!hasQualifier())
802      return NestedNameSpecifierLoc();
803
804    return getInternalQualifierLoc();
805  }
806
807  /// \brief Get the NamedDecl through which this reference occured.
808  ///
809  /// This Decl may be different from the ValueDecl actually referred to in the
810  /// presence of using declarations, etc. It always returns non-NULL, and may
811  /// simple return the ValueDecl when appropriate.
812  NamedDecl *getFoundDecl() {
813    return hasFoundDecl() ? getInternalFoundDecl() : D;
814  }
815
816  /// \brief Get the NamedDecl through which this reference occurred.
817  /// See non-const variant.
818  const NamedDecl *getFoundDecl() const {
819    return hasFoundDecl() ? getInternalFoundDecl() : D;
820  }
821
822  /// \brief Determines whether this declaration reference was followed by an
823  /// explict template argument list.
824  bool hasExplicitTemplateArgs() const {
825    return DeclRefExprBits.HasExplicitTemplateArgs;
826  }
827
828  /// \brief Retrieve the explicit template argument list that followed the
829  /// member template name.
830  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
831    assert(hasExplicitTemplateArgs());
832    if (hasFoundDecl())
833      return *reinterpret_cast<ExplicitTemplateArgumentList *>(
834        &getInternalFoundDecl() + 1);
835
836    if (hasQualifier())
837      return *reinterpret_cast<ExplicitTemplateArgumentList *>(
838        &getInternalQualifierLoc() + 1);
839
840    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
841  }
842
843  /// \brief Retrieve the explicit template argument list that followed the
844  /// member template name.
845  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
846    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
847  }
848
849  /// \brief Retrieves the optional explicit template arguments.
850  /// This points to the same data as getExplicitTemplateArgs(), but
851  /// returns null if there are no explicit template arguments.
852  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
853    if (!hasExplicitTemplateArgs()) return 0;
854    return &getExplicitTemplateArgs();
855  }
856
857  /// \brief Copies the template arguments (if present) into the given
858  /// structure.
859  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
860    if (hasExplicitTemplateArgs())
861      getExplicitTemplateArgs().copyInto(List);
862  }
863
864  /// \brief Retrieve the location of the left angle bracket following the
865  /// member name ('<'), if any.
866  SourceLocation getLAngleLoc() const {
867    if (!hasExplicitTemplateArgs())
868      return SourceLocation();
869
870    return getExplicitTemplateArgs().LAngleLoc;
871  }
872
873  /// \brief Retrieve the template arguments provided as part of this
874  /// template-id.
875  const TemplateArgumentLoc *getTemplateArgs() const {
876    if (!hasExplicitTemplateArgs())
877      return 0;
878
879    return getExplicitTemplateArgs().getTemplateArgs();
880  }
881
882  /// \brief Retrieve the number of template arguments provided as part of this
883  /// template-id.
884  unsigned getNumTemplateArgs() const {
885    if (!hasExplicitTemplateArgs())
886      return 0;
887
888    return getExplicitTemplateArgs().NumTemplateArgs;
889  }
890
891  /// \brief Retrieve the location of the right angle bracket following the
892  /// template arguments ('>').
893  SourceLocation getRAngleLoc() const {
894    if (!hasExplicitTemplateArgs())
895      return SourceLocation();
896
897    return getExplicitTemplateArgs().RAngleLoc;
898  }
899
900  static bool classof(const Stmt *T) {
901    return T->getStmtClass() == DeclRefExprClass;
902  }
903  static bool classof(const DeclRefExpr *) { return true; }
904
905  // Iterators
906  child_range children() { return child_range(); }
907
908  friend class ASTStmtReader;
909  friend class ASTStmtWriter;
910};
911
912/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
913class PredefinedExpr : public Expr {
914public:
915  enum IdentType {
916    Func,
917    Function,
918    PrettyFunction,
919    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
920    /// 'virtual' keyword is omitted for virtual member functions.
921    PrettyFunctionNoVirtual
922  };
923
924private:
925  SourceLocation Loc;
926  IdentType Type;
927public:
928  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
929    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
930           type->isDependentType(), type->isDependentType(),
931           /*ContainsUnexpandedParameterPack=*/false),
932      Loc(l), Type(IT) {}
933
934  /// \brief Construct an empty predefined expression.
935  explicit PredefinedExpr(EmptyShell Empty)
936    : Expr(PredefinedExprClass, Empty) { }
937
938  IdentType getIdentType() const { return Type; }
939  void setIdentType(IdentType IT) { Type = IT; }
940
941  SourceLocation getLocation() const { return Loc; }
942  void setLocation(SourceLocation L) { Loc = L; }
943
944  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
945
946  SourceRange getSourceRange() const { return SourceRange(Loc); }
947
948  static bool classof(const Stmt *T) {
949    return T->getStmtClass() == PredefinedExprClass;
950  }
951  static bool classof(const PredefinedExpr *) { return true; }
952
953  // Iterators
954  child_range children() { return child_range(); }
955};
956
957/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
958/// leaking memory.
959///
960/// For large floats/integers, APFloat/APInt will allocate memory from the heap
961/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
962/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
963/// the APFloat/APInt values will never get freed. APNumericStorage uses
964/// ASTContext's allocator for memory allocation.
965class APNumericStorage {
966  unsigned BitWidth;
967  union {
968    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
969    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
970  };
971
972  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
973
974  APNumericStorage(const APNumericStorage&); // do not implement
975  APNumericStorage& operator=(const APNumericStorage&); // do not implement
976
977protected:
978  APNumericStorage() : BitWidth(0), VAL(0) { }
979
980  llvm::APInt getIntValue() const {
981    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
982    if (NumWords > 1)
983      return llvm::APInt(BitWidth, NumWords, pVal);
984    else
985      return llvm::APInt(BitWidth, VAL);
986  }
987  void setIntValue(ASTContext &C, const llvm::APInt &Val);
988};
989
990class APIntStorage : public APNumericStorage {
991public:
992  llvm::APInt getValue() const { return getIntValue(); }
993  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
994};
995
996class APFloatStorage : public APNumericStorage {
997public:
998  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
999  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1000    setIntValue(C, Val.bitcastToAPInt());
1001  }
1002};
1003
1004class IntegerLiteral : public Expr {
1005  APIntStorage Num;
1006  SourceLocation Loc;
1007
1008  /// \brief Construct an empty integer literal.
1009  explicit IntegerLiteral(EmptyShell Empty)
1010    : Expr(IntegerLiteralClass, Empty) { }
1011
1012public:
1013  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1014  // or UnsignedLongLongTy
1015  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1016                 QualType type, SourceLocation l)
1017    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1018           false),
1019      Loc(l) {
1020    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1021    assert(V.getBitWidth() == C.getIntWidth(type) &&
1022           "Integer type is not the correct size for constant.");
1023    setValue(C, V);
1024  }
1025
1026  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1027  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1028  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1029  /// \param V - the value that the returned integer literal contains.
1030  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1031                                QualType type, SourceLocation l);
1032  /// \brief Returns a new empty integer literal.
1033  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1034
1035  llvm::APInt getValue() const { return Num.getValue(); }
1036  SourceRange getSourceRange() const { return SourceRange(Loc); }
1037
1038  /// \brief Retrieve the location of the literal.
1039  SourceLocation getLocation() const { return Loc; }
1040
1041  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1042  void setLocation(SourceLocation Location) { Loc = Location; }
1043
1044  static bool classof(const Stmt *T) {
1045    return T->getStmtClass() == IntegerLiteralClass;
1046  }
1047  static bool classof(const IntegerLiteral *) { return true; }
1048
1049  // Iterators
1050  child_range children() { return child_range(); }
1051};
1052
1053class CharacterLiteral : public Expr {
1054  unsigned Value;
1055  SourceLocation Loc;
1056  bool IsWide;
1057public:
1058  // type should be IntTy
1059  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
1060    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1061           false),
1062      Value(value), Loc(l), IsWide(iswide) {
1063  }
1064
1065  /// \brief Construct an empty character literal.
1066  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1067
1068  SourceLocation getLocation() const { return Loc; }
1069  bool isWide() const { return IsWide; }
1070
1071  SourceRange getSourceRange() const { return SourceRange(Loc); }
1072
1073  unsigned getValue() const { return Value; }
1074
1075  void setLocation(SourceLocation Location) { Loc = Location; }
1076  void setWide(bool W) { IsWide = W; }
1077  void setValue(unsigned Val) { Value = Val; }
1078
1079  static bool classof(const Stmt *T) {
1080    return T->getStmtClass() == CharacterLiteralClass;
1081  }
1082  static bool classof(const CharacterLiteral *) { return true; }
1083
1084  // Iterators
1085  child_range children() { return child_range(); }
1086};
1087
1088class FloatingLiteral : public Expr {
1089  APFloatStorage Num;
1090  bool IsExact : 1;
1091  SourceLocation Loc;
1092
1093  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1094                  QualType Type, SourceLocation L)
1095    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1096           false),
1097      IsExact(isexact), Loc(L) {
1098    setValue(C, V);
1099  }
1100
1101  /// \brief Construct an empty floating-point literal.
1102  explicit FloatingLiteral(EmptyShell Empty)
1103    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1104
1105public:
1106  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1107                                 bool isexact, QualType Type, SourceLocation L);
1108  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1109
1110  llvm::APFloat getValue() const { return Num.getValue(); }
1111  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1112    Num.setValue(C, Val);
1113  }
1114
1115  bool isExact() const { return IsExact; }
1116  void setExact(bool E) { IsExact = E; }
1117
1118  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1119  /// double.  Note that this may cause loss of precision, but is useful for
1120  /// debugging dumps, etc.
1121  double getValueAsApproximateDouble() const;
1122
1123  SourceLocation getLocation() const { return Loc; }
1124  void setLocation(SourceLocation L) { Loc = L; }
1125
1126  SourceRange getSourceRange() const { return SourceRange(Loc); }
1127
1128  static bool classof(const Stmt *T) {
1129    return T->getStmtClass() == FloatingLiteralClass;
1130  }
1131  static bool classof(const FloatingLiteral *) { return true; }
1132
1133  // Iterators
1134  child_range children() { return child_range(); }
1135};
1136
1137/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1138/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1139/// IntegerLiteral classes.  Instances of this class always have a Complex type
1140/// whose element type matches the subexpression.
1141///
1142class ImaginaryLiteral : public Expr {
1143  Stmt *Val;
1144public:
1145  ImaginaryLiteral(Expr *val, QualType Ty)
1146    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1147           false),
1148      Val(val) {}
1149
1150  /// \brief Build an empty imaginary literal.
1151  explicit ImaginaryLiteral(EmptyShell Empty)
1152    : Expr(ImaginaryLiteralClass, Empty) { }
1153
1154  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1155  Expr *getSubExpr() { return cast<Expr>(Val); }
1156  void setSubExpr(Expr *E) { Val = E; }
1157
1158  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1159  static bool classof(const Stmt *T) {
1160    return T->getStmtClass() == ImaginaryLiteralClass;
1161  }
1162  static bool classof(const ImaginaryLiteral *) { return true; }
1163
1164  // Iterators
1165  child_range children() { return child_range(&Val, &Val+1); }
1166};
1167
1168/// StringLiteral - This represents a string literal expression, e.g. "foo"
1169/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1170/// is NOT null-terminated, and the length of the string is determined by
1171/// calling getByteLength().  The C type for a string is always a
1172/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1173/// not.
1174///
1175/// Note that strings in C can be formed by concatenation of multiple string
1176/// literal pptokens in translation phase #6.  This keeps track of the locations
1177/// of each of these pieces.
1178///
1179/// Strings in C can also be truncated and extended by assigning into arrays,
1180/// e.g. with constructs like:
1181///   char X[2] = "foobar";
1182/// In this case, getByteLength() will return 6, but the string literal will
1183/// have type "char[2]".
1184class StringLiteral : public Expr {
1185  friend class ASTStmtReader;
1186
1187  const char *StrData;
1188  unsigned ByteLength;
1189  bool IsWide;
1190  bool IsPascal;
1191  unsigned NumConcatenated;
1192  SourceLocation TokLocs[1];
1193
1194  StringLiteral(QualType Ty) :
1195    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false) {}
1196
1197public:
1198  /// This is the "fully general" constructor that allows representation of
1199  /// strings formed from multiple concatenated tokens.
1200  static StringLiteral *Create(ASTContext &C, const char *StrData,
1201                               unsigned ByteLength, bool Wide, bool Pascal,
1202                               QualType Ty,
1203                               const SourceLocation *Loc, unsigned NumStrs);
1204
1205  /// Simple constructor for string literals made from one token.
1206  static StringLiteral *Create(ASTContext &C, const char *StrData,
1207                               unsigned ByteLength, bool Wide,
1208                               bool Pascal, QualType Ty, SourceLocation Loc) {
1209    return Create(C, StrData, ByteLength, Wide, Pascal, Ty, &Loc, 1);
1210  }
1211
1212  /// \brief Construct an empty string literal.
1213  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1214
1215  llvm::StringRef getString() const {
1216    return llvm::StringRef(StrData, ByteLength);
1217  }
1218
1219  unsigned getByteLength() const { return ByteLength; }
1220
1221  /// \brief Sets the string data to the given string data.
1222  void setString(ASTContext &C, llvm::StringRef Str);
1223
1224  bool isWide() const { return IsWide; }
1225  bool isPascal() const { return IsPascal; }
1226
1227  bool containsNonAsciiOrNull() const {
1228    llvm::StringRef Str = getString();
1229    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1230      if (!isascii(Str[i]) || !Str[i])
1231        return true;
1232    return false;
1233  }
1234  /// getNumConcatenated - Get the number of string literal tokens that were
1235  /// concatenated in translation phase #6 to form this string literal.
1236  unsigned getNumConcatenated() const { return NumConcatenated; }
1237
1238  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1239    assert(TokNum < NumConcatenated && "Invalid tok number");
1240    return TokLocs[TokNum];
1241  }
1242  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1243    assert(TokNum < NumConcatenated && "Invalid tok number");
1244    TokLocs[TokNum] = L;
1245  }
1246
1247  /// getLocationOfByte - Return a source location that points to the specified
1248  /// byte of this string literal.
1249  ///
1250  /// Strings are amazingly complex.  They can be formed from multiple tokens
1251  /// and can have escape sequences in them in addition to the usual trigraph
1252  /// and escaped newline business.  This routine handles this complexity.
1253  ///
1254  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1255                                   const LangOptions &Features,
1256                                   const TargetInfo &Target) const;
1257
1258  typedef const SourceLocation *tokloc_iterator;
1259  tokloc_iterator tokloc_begin() const { return TokLocs; }
1260  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1261
1262  SourceRange getSourceRange() const {
1263    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1264  }
1265  static bool classof(const Stmt *T) {
1266    return T->getStmtClass() == StringLiteralClass;
1267  }
1268  static bool classof(const StringLiteral *) { return true; }
1269
1270  // Iterators
1271  child_range children() { return child_range(); }
1272};
1273
1274/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1275/// AST node is only formed if full location information is requested.
1276class ParenExpr : public Expr {
1277  SourceLocation L, R;
1278  Stmt *Val;
1279public:
1280  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1281    : Expr(ParenExprClass, val->getType(),
1282           val->getValueKind(), val->getObjectKind(),
1283           val->isTypeDependent(), val->isValueDependent(),
1284           val->containsUnexpandedParameterPack()),
1285      L(l), R(r), Val(val) {}
1286
1287  /// \brief Construct an empty parenthesized expression.
1288  explicit ParenExpr(EmptyShell Empty)
1289    : Expr(ParenExprClass, Empty) { }
1290
1291  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1292  Expr *getSubExpr() { return cast<Expr>(Val); }
1293  void setSubExpr(Expr *E) { Val = E; }
1294
1295  SourceRange getSourceRange() const { return SourceRange(L, R); }
1296
1297  /// \brief Get the location of the left parentheses '('.
1298  SourceLocation getLParen() const { return L; }
1299  void setLParen(SourceLocation Loc) { L = Loc; }
1300
1301  /// \brief Get the location of the right parentheses ')'.
1302  SourceLocation getRParen() const { return R; }
1303  void setRParen(SourceLocation Loc) { R = Loc; }
1304
1305  static bool classof(const Stmt *T) {
1306    return T->getStmtClass() == ParenExprClass;
1307  }
1308  static bool classof(const ParenExpr *) { return true; }
1309
1310  // Iterators
1311  child_range children() { return child_range(&Val, &Val+1); }
1312};
1313
1314
1315/// UnaryOperator - This represents the unary-expression's (except sizeof and
1316/// alignof), the postinc/postdec operators from postfix-expression, and various
1317/// extensions.
1318///
1319/// Notes on various nodes:
1320///
1321/// Real/Imag - These return the real/imag part of a complex operand.  If
1322///   applied to a non-complex value, the former returns its operand and the
1323///   later returns zero in the type of the operand.
1324///
1325class UnaryOperator : public Expr {
1326public:
1327  typedef UnaryOperatorKind Opcode;
1328
1329private:
1330  unsigned Opc : 5;
1331  SourceLocation Loc;
1332  Stmt *Val;
1333public:
1334
1335  UnaryOperator(Expr *input, Opcode opc, QualType type,
1336                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1337    : Expr(UnaryOperatorClass, type, VK, OK,
1338           input->isTypeDependent() || type->isDependentType(),
1339           input->isValueDependent(),
1340           input->containsUnexpandedParameterPack()),
1341      Opc(opc), Loc(l), Val(input) {}
1342
1343  /// \brief Build an empty unary operator.
1344  explicit UnaryOperator(EmptyShell Empty)
1345    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1346
1347  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1348  void setOpcode(Opcode O) { Opc = O; }
1349
1350  Expr *getSubExpr() const { return cast<Expr>(Val); }
1351  void setSubExpr(Expr *E) { Val = E; }
1352
1353  /// getOperatorLoc - Return the location of the operator.
1354  SourceLocation getOperatorLoc() const { return Loc; }
1355  void setOperatorLoc(SourceLocation L) { Loc = L; }
1356
1357  /// isPostfix - Return true if this is a postfix operation, like x++.
1358  static bool isPostfix(Opcode Op) {
1359    return Op == UO_PostInc || Op == UO_PostDec;
1360  }
1361
1362  /// isPrefix - Return true if this is a prefix operation, like --x.
1363  static bool isPrefix(Opcode Op) {
1364    return Op == UO_PreInc || Op == UO_PreDec;
1365  }
1366
1367  bool isPrefix() const { return isPrefix(getOpcode()); }
1368  bool isPostfix() const { return isPostfix(getOpcode()); }
1369  bool isIncrementOp() const {
1370    return Opc == UO_PreInc || Opc == UO_PostInc;
1371  }
1372  bool isIncrementDecrementOp() const {
1373    return Opc <= UO_PreDec;
1374  }
1375  static bool isArithmeticOp(Opcode Op) {
1376    return Op >= UO_Plus && Op <= UO_LNot;
1377  }
1378  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1379
1380  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1381  /// corresponds to, e.g. "sizeof" or "[pre]++"
1382  static const char *getOpcodeStr(Opcode Op);
1383
1384  /// \brief Retrieve the unary opcode that corresponds to the given
1385  /// overloaded operator.
1386  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1387
1388  /// \brief Retrieve the overloaded operator kind that corresponds to
1389  /// the given unary opcode.
1390  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1391
1392  SourceRange getSourceRange() const {
1393    if (isPostfix())
1394      return SourceRange(Val->getLocStart(), Loc);
1395    else
1396      return SourceRange(Loc, Val->getLocEnd());
1397  }
1398  SourceLocation getExprLoc() const { return Loc; }
1399
1400  static bool classof(const Stmt *T) {
1401    return T->getStmtClass() == UnaryOperatorClass;
1402  }
1403  static bool classof(const UnaryOperator *) { return true; }
1404
1405  // Iterators
1406  child_range children() { return child_range(&Val, &Val+1); }
1407};
1408
1409/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1410/// offsetof(record-type, member-designator). For example, given:
1411/// @code
1412/// struct S {
1413///   float f;
1414///   double d;
1415/// };
1416/// struct T {
1417///   int i;
1418///   struct S s[10];
1419/// };
1420/// @endcode
1421/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1422
1423class OffsetOfExpr : public Expr {
1424public:
1425  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1426  class OffsetOfNode {
1427  public:
1428    /// \brief The kind of offsetof node we have.
1429    enum Kind {
1430      /// \brief An index into an array.
1431      Array = 0x00,
1432      /// \brief A field.
1433      Field = 0x01,
1434      /// \brief A field in a dependent type, known only by its name.
1435      Identifier = 0x02,
1436      /// \brief An implicit indirection through a C++ base class, when the
1437      /// field found is in a base class.
1438      Base = 0x03
1439    };
1440
1441  private:
1442    enum { MaskBits = 2, Mask = 0x03 };
1443
1444    /// \brief The source range that covers this part of the designator.
1445    SourceRange Range;
1446
1447    /// \brief The data describing the designator, which comes in three
1448    /// different forms, depending on the lower two bits.
1449    ///   - An unsigned index into the array of Expr*'s stored after this node
1450    ///     in memory, for [constant-expression] designators.
1451    ///   - A FieldDecl*, for references to a known field.
1452    ///   - An IdentifierInfo*, for references to a field with a given name
1453    ///     when the class type is dependent.
1454    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1455    ///     base class.
1456    uintptr_t Data;
1457
1458  public:
1459    /// \brief Create an offsetof node that refers to an array element.
1460    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1461                 SourceLocation RBracketLoc)
1462      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1463
1464    /// \brief Create an offsetof node that refers to a field.
1465    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1466                 SourceLocation NameLoc)
1467      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1468        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1469
1470    /// \brief Create an offsetof node that refers to an identifier.
1471    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1472                 SourceLocation NameLoc)
1473      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1474        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1475
1476    /// \brief Create an offsetof node that refers into a C++ base class.
1477    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1478      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1479
1480    /// \brief Determine what kind of offsetof node this is.
1481    Kind getKind() const {
1482      return static_cast<Kind>(Data & Mask);
1483    }
1484
1485    /// \brief For an array element node, returns the index into the array
1486    /// of expressions.
1487    unsigned getArrayExprIndex() const {
1488      assert(getKind() == Array);
1489      return Data >> 2;
1490    }
1491
1492    /// \brief For a field offsetof node, returns the field.
1493    FieldDecl *getField() const {
1494      assert(getKind() == Field);
1495      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1496    }
1497
1498    /// \brief For a field or identifier offsetof node, returns the name of
1499    /// the field.
1500    IdentifierInfo *getFieldName() const;
1501
1502    /// \brief For a base class node, returns the base specifier.
1503    CXXBaseSpecifier *getBase() const {
1504      assert(getKind() == Base);
1505      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1506    }
1507
1508    /// \brief Retrieve the source range that covers this offsetof node.
1509    ///
1510    /// For an array element node, the source range contains the locations of
1511    /// the square brackets. For a field or identifier node, the source range
1512    /// contains the location of the period (if there is one) and the
1513    /// identifier.
1514    SourceRange getSourceRange() const { return Range; }
1515  };
1516
1517private:
1518
1519  SourceLocation OperatorLoc, RParenLoc;
1520  // Base type;
1521  TypeSourceInfo *TSInfo;
1522  // Number of sub-components (i.e. instances of OffsetOfNode).
1523  unsigned NumComps;
1524  // Number of sub-expressions (i.e. array subscript expressions).
1525  unsigned NumExprs;
1526
1527  OffsetOfExpr(ASTContext &C, QualType type,
1528               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1529               OffsetOfNode* compsPtr, unsigned numComps,
1530               Expr** exprsPtr, unsigned numExprs,
1531               SourceLocation RParenLoc);
1532
1533  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1534    : Expr(OffsetOfExprClass, EmptyShell()),
1535      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1536
1537public:
1538
1539  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1540                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1541                              OffsetOfNode* compsPtr, unsigned numComps,
1542                              Expr** exprsPtr, unsigned numExprs,
1543                              SourceLocation RParenLoc);
1544
1545  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1546                                   unsigned NumComps, unsigned NumExprs);
1547
1548  /// getOperatorLoc - Return the location of the operator.
1549  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1550  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1551
1552  /// \brief Return the location of the right parentheses.
1553  SourceLocation getRParenLoc() const { return RParenLoc; }
1554  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1555
1556  TypeSourceInfo *getTypeSourceInfo() const {
1557    return TSInfo;
1558  }
1559  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1560    TSInfo = tsi;
1561  }
1562
1563  const OffsetOfNode &getComponent(unsigned Idx) const {
1564    assert(Idx < NumComps && "Subscript out of range");
1565    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1566  }
1567
1568  void setComponent(unsigned Idx, OffsetOfNode ON) {
1569    assert(Idx < NumComps && "Subscript out of range");
1570    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1571  }
1572
1573  unsigned getNumComponents() const {
1574    return NumComps;
1575  }
1576
1577  Expr* getIndexExpr(unsigned Idx) {
1578    assert(Idx < NumExprs && "Subscript out of range");
1579    return reinterpret_cast<Expr **>(
1580                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1581  }
1582  const Expr *getIndexExpr(unsigned Idx) const {
1583    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1584  }
1585
1586  void setIndexExpr(unsigned Idx, Expr* E) {
1587    assert(Idx < NumComps && "Subscript out of range");
1588    reinterpret_cast<Expr **>(
1589                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1590  }
1591
1592  unsigned getNumExpressions() const {
1593    return NumExprs;
1594  }
1595
1596  SourceRange getSourceRange() const {
1597    return SourceRange(OperatorLoc, RParenLoc);
1598  }
1599
1600  static bool classof(const Stmt *T) {
1601    return T->getStmtClass() == OffsetOfExprClass;
1602  }
1603
1604  static bool classof(const OffsetOfExpr *) { return true; }
1605
1606  // Iterators
1607  child_range children() {
1608    Stmt **begin =
1609      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1610                               + NumComps);
1611    return child_range(begin, begin + NumExprs);
1612  }
1613};
1614
1615/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1616/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1617/// vec_step (OpenCL 1.1 6.11.12).
1618class UnaryExprOrTypeTraitExpr : public Expr {
1619  unsigned Kind : 2;
1620  bool isType : 1;    // true if operand is a type, false if an expression
1621  union {
1622    TypeSourceInfo *Ty;
1623    Stmt *Ex;
1624  } Argument;
1625  SourceLocation OpLoc, RParenLoc;
1626
1627public:
1628  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1629                           QualType resultType, SourceLocation op,
1630                           SourceLocation rp) :
1631      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1632           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1633           // Value-dependent if the argument is type-dependent.
1634           TInfo->getType()->isDependentType(),
1635           TInfo->getType()->containsUnexpandedParameterPack()),
1636      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1637    Argument.Ty = TInfo;
1638  }
1639
1640  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1641                           QualType resultType, SourceLocation op,
1642                           SourceLocation rp) :
1643      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1644           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1645           // Value-dependent if the argument is type-dependent.
1646           E->isTypeDependent(),
1647           E->containsUnexpandedParameterPack()),
1648      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1649    Argument.Ex = E;
1650  }
1651
1652  /// \brief Construct an empty sizeof/alignof expression.
1653  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1654    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1655
1656  UnaryExprOrTypeTrait getKind() const {
1657    return static_cast<UnaryExprOrTypeTrait>(Kind);
1658  }
1659  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1660
1661  bool isArgumentType() const { return isType; }
1662  QualType getArgumentType() const {
1663    return getArgumentTypeInfo()->getType();
1664  }
1665  TypeSourceInfo *getArgumentTypeInfo() const {
1666    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1667    return Argument.Ty;
1668  }
1669  Expr *getArgumentExpr() {
1670    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1671    return static_cast<Expr*>(Argument.Ex);
1672  }
1673  const Expr *getArgumentExpr() const {
1674    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1675  }
1676
1677  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1678  void setArgument(TypeSourceInfo *TInfo) {
1679    Argument.Ty = TInfo;
1680    isType = true;
1681  }
1682
1683  /// Gets the argument type, or the type of the argument expression, whichever
1684  /// is appropriate.
1685  QualType getTypeOfArgument() const {
1686    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1687  }
1688
1689  SourceLocation getOperatorLoc() const { return OpLoc; }
1690  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1691
1692  SourceLocation getRParenLoc() const { return RParenLoc; }
1693  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1694
1695  SourceRange getSourceRange() const {
1696    return SourceRange(OpLoc, RParenLoc);
1697  }
1698
1699  static bool classof(const Stmt *T) {
1700    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1701  }
1702  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1703
1704  // Iterators
1705  child_range children();
1706};
1707
1708//===----------------------------------------------------------------------===//
1709// Postfix Operators.
1710//===----------------------------------------------------------------------===//
1711
1712/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1713class ArraySubscriptExpr : public Expr {
1714  enum { LHS, RHS, END_EXPR=2 };
1715  Stmt* SubExprs[END_EXPR];
1716  SourceLocation RBracketLoc;
1717public:
1718  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1719                     ExprValueKind VK, ExprObjectKind OK,
1720                     SourceLocation rbracketloc)
1721  : Expr(ArraySubscriptExprClass, t, VK, OK,
1722         lhs->isTypeDependent() || rhs->isTypeDependent(),
1723         lhs->isValueDependent() || rhs->isValueDependent(),
1724         (lhs->containsUnexpandedParameterPack() ||
1725          rhs->containsUnexpandedParameterPack())),
1726    RBracketLoc(rbracketloc) {
1727    SubExprs[LHS] = lhs;
1728    SubExprs[RHS] = rhs;
1729  }
1730
1731  /// \brief Create an empty array subscript expression.
1732  explicit ArraySubscriptExpr(EmptyShell Shell)
1733    : Expr(ArraySubscriptExprClass, Shell) { }
1734
1735  /// An array access can be written A[4] or 4[A] (both are equivalent).
1736  /// - getBase() and getIdx() always present the normalized view: A[4].
1737  ///    In this case getBase() returns "A" and getIdx() returns "4".
1738  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1739  ///    4[A] getLHS() returns "4".
1740  /// Note: Because vector element access is also written A[4] we must
1741  /// predicate the format conversion in getBase and getIdx only on the
1742  /// the type of the RHS, as it is possible for the LHS to be a vector of
1743  /// integer type
1744  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1745  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1746  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1747
1748  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1749  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1750  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1751
1752  Expr *getBase() {
1753    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1754  }
1755
1756  const Expr *getBase() const {
1757    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1758  }
1759
1760  Expr *getIdx() {
1761    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1762  }
1763
1764  const Expr *getIdx() const {
1765    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1766  }
1767
1768  SourceRange getSourceRange() const {
1769    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1770  }
1771
1772  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1773  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1774
1775  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1776
1777  static bool classof(const Stmt *T) {
1778    return T->getStmtClass() == ArraySubscriptExprClass;
1779  }
1780  static bool classof(const ArraySubscriptExpr *) { return true; }
1781
1782  // Iterators
1783  child_range children() {
1784    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1785  }
1786};
1787
1788
1789/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1790/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1791/// while its subclasses may represent alternative syntax that (semantically)
1792/// results in a function call. For example, CXXOperatorCallExpr is
1793/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1794/// "str1 + str2" to resolve to a function call.
1795class CallExpr : public Expr {
1796  enum { FN=0, PREARGS_START=1 };
1797  Stmt **SubExprs;
1798  unsigned NumArgs;
1799  SourceLocation RParenLoc;
1800
1801protected:
1802  // These versions of the constructor are for derived classes.
1803  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1804           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1805           SourceLocation rparenloc);
1806  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1807
1808  Stmt *getPreArg(unsigned i) {
1809    assert(i < getNumPreArgs() && "Prearg access out of range!");
1810    return SubExprs[PREARGS_START+i];
1811  }
1812  const Stmt *getPreArg(unsigned i) const {
1813    assert(i < getNumPreArgs() && "Prearg access out of range!");
1814    return SubExprs[PREARGS_START+i];
1815  }
1816  void setPreArg(unsigned i, Stmt *PreArg) {
1817    assert(i < getNumPreArgs() && "Prearg access out of range!");
1818    SubExprs[PREARGS_START+i] = PreArg;
1819  }
1820
1821  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1822
1823public:
1824  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1825           ExprValueKind VK, SourceLocation rparenloc);
1826
1827  /// \brief Build an empty call expression.
1828  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1829
1830  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1831  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1832  void setCallee(Expr *F) { SubExprs[FN] = F; }
1833
1834  Decl *getCalleeDecl();
1835  const Decl *getCalleeDecl() const {
1836    return const_cast<CallExpr*>(this)->getCalleeDecl();
1837  }
1838
1839  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1840  FunctionDecl *getDirectCallee();
1841  const FunctionDecl *getDirectCallee() const {
1842    return const_cast<CallExpr*>(this)->getDirectCallee();
1843  }
1844
1845  /// getNumArgs - Return the number of actual arguments to this call.
1846  ///
1847  unsigned getNumArgs() const { return NumArgs; }
1848
1849  /// \brief Retrieve the call arguments.
1850  Expr **getArgs() {
1851    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1852  }
1853
1854  /// getArg - Return the specified argument.
1855  Expr *getArg(unsigned Arg) {
1856    assert(Arg < NumArgs && "Arg access out of range!");
1857    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1858  }
1859  const Expr *getArg(unsigned Arg) const {
1860    assert(Arg < NumArgs && "Arg access out of range!");
1861    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1862  }
1863
1864  /// setArg - Set the specified argument.
1865  void setArg(unsigned Arg, Expr *ArgExpr) {
1866    assert(Arg < NumArgs && "Arg access out of range!");
1867    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1868  }
1869
1870  /// setNumArgs - This changes the number of arguments present in this call.
1871  /// Any orphaned expressions are deleted by this, and any new operands are set
1872  /// to null.
1873  void setNumArgs(ASTContext& C, unsigned NumArgs);
1874
1875  typedef ExprIterator arg_iterator;
1876  typedef ConstExprIterator const_arg_iterator;
1877
1878  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1879  arg_iterator arg_end() {
1880    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1881  }
1882  const_arg_iterator arg_begin() const {
1883    return SubExprs+PREARGS_START+getNumPreArgs();
1884  }
1885  const_arg_iterator arg_end() const {
1886    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1887  }
1888
1889  /// getNumCommas - Return the number of commas that must have been present in
1890  /// this function call.
1891  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1892
1893  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1894  /// not, return 0.
1895  unsigned isBuiltinCall(const ASTContext &Context) const;
1896
1897  /// getCallReturnType - Get the return type of the call expr. This is not
1898  /// always the type of the expr itself, if the return type is a reference
1899  /// type.
1900  QualType getCallReturnType() const;
1901
1902  SourceLocation getRParenLoc() const { return RParenLoc; }
1903  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1904
1905  SourceRange getSourceRange() const;
1906
1907  static bool classof(const Stmt *T) {
1908    return T->getStmtClass() >= firstCallExprConstant &&
1909           T->getStmtClass() <= lastCallExprConstant;
1910  }
1911  static bool classof(const CallExpr *) { return true; }
1912
1913  // Iterators
1914  child_range children() {
1915    return child_range(&SubExprs[0],
1916                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
1917  }
1918};
1919
1920/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1921///
1922class MemberExpr : public Expr {
1923  /// Extra data stored in some member expressions.
1924  struct MemberNameQualifier {
1925    /// \brief The nested-name-specifier that qualifies the name, including
1926    /// source-location information.
1927    NestedNameSpecifierLoc QualifierLoc;
1928
1929    /// \brief The DeclAccessPair through which the MemberDecl was found due to
1930    /// name qualifiers.
1931    DeclAccessPair FoundDecl;
1932  };
1933
1934  /// Base - the expression for the base pointer or structure references.  In
1935  /// X.F, this is "X".
1936  Stmt *Base;
1937
1938  /// MemberDecl - This is the decl being referenced by the field/member name.
1939  /// In X.F, this is the decl referenced by F.
1940  ValueDecl *MemberDecl;
1941
1942  /// MemberLoc - This is the location of the member name.
1943  SourceLocation MemberLoc;
1944
1945  /// MemberDNLoc - Provides source/type location info for the
1946  /// declaration name embedded in MemberDecl.
1947  DeclarationNameLoc MemberDNLoc;
1948
1949  /// IsArrow - True if this is "X->F", false if this is "X.F".
1950  bool IsArrow : 1;
1951
1952  /// \brief True if this member expression used a nested-name-specifier to
1953  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1954  /// declaration.  When true, a MemberNameQualifier
1955  /// structure is allocated immediately after the MemberExpr.
1956  bool HasQualifierOrFoundDecl : 1;
1957
1958  /// \brief True if this member expression specified a template argument list
1959  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1960  /// structure (and its TemplateArguments) are allocated immediately after
1961  /// the MemberExpr or, if the member expression also has a qualifier, after
1962  /// the MemberNameQualifier structure.
1963  bool HasExplicitTemplateArgumentList : 1;
1964
1965  /// \brief Retrieve the qualifier that preceded the member name, if any.
1966  MemberNameQualifier *getMemberQualifier() {
1967    assert(HasQualifierOrFoundDecl);
1968    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1969  }
1970
1971  /// \brief Retrieve the qualifier that preceded the member name, if any.
1972  const MemberNameQualifier *getMemberQualifier() const {
1973    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1974  }
1975
1976public:
1977  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1978             const DeclarationNameInfo &NameInfo, QualType ty,
1979             ExprValueKind VK, ExprObjectKind OK)
1980    : Expr(MemberExprClass, ty, VK, OK,
1981           base->isTypeDependent(), base->isValueDependent(),
1982           base->containsUnexpandedParameterPack()),
1983      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1984      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1985      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1986    assert(memberdecl->getDeclName() == NameInfo.getName());
1987  }
1988
1989  // NOTE: this constructor should be used only when it is known that
1990  // the member name can not provide additional syntactic info
1991  // (i.e., source locations for C++ operator names or type source info
1992  // for constructors, destructors and conversion oeprators).
1993  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1994             SourceLocation l, QualType ty,
1995             ExprValueKind VK, ExprObjectKind OK)
1996    : Expr(MemberExprClass, ty, VK, OK,
1997           base->isTypeDependent(), base->isValueDependent(),
1998           base->containsUnexpandedParameterPack()),
1999      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2000      IsArrow(isarrow),
2001      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
2002
2003  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2004                            NestedNameSpecifierLoc QualifierLoc,
2005                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2006                            DeclarationNameInfo MemberNameInfo,
2007                            const TemplateArgumentListInfo *targs,
2008                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2009
2010  void setBase(Expr *E) { Base = E; }
2011  Expr *getBase() const { return cast<Expr>(Base); }
2012
2013  /// \brief Retrieve the member declaration to which this expression refers.
2014  ///
2015  /// The returned declaration will either be a FieldDecl or (in C++)
2016  /// a CXXMethodDecl.
2017  ValueDecl *getMemberDecl() const { return MemberDecl; }
2018  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2019
2020  /// \brief Retrieves the declaration found by lookup.
2021  DeclAccessPair getFoundDecl() const {
2022    if (!HasQualifierOrFoundDecl)
2023      return DeclAccessPair::make(getMemberDecl(),
2024                                  getMemberDecl()->getAccess());
2025    return getMemberQualifier()->FoundDecl;
2026  }
2027
2028  /// \brief Determines whether this member expression actually had
2029  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2030  /// x->Base::foo.
2031  bool hasQualifier() const { return getQualifier() != 0; }
2032
2033  /// \brief If the member name was qualified, retrieves the
2034  /// nested-name-specifier that precedes the member name. Otherwise, returns
2035  /// NULL.
2036  NestedNameSpecifier *getQualifier() const {
2037    if (!HasQualifierOrFoundDecl)
2038      return 0;
2039
2040    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2041  }
2042
2043  /// \brief If the member name was qualified, retrieves the
2044  /// nested-name-specifier that precedes the member name, with source-location
2045  /// information.
2046  NestedNameSpecifierLoc getQualifierLoc() const {
2047    if (!hasQualifier())
2048      return NestedNameSpecifierLoc();
2049
2050    return getMemberQualifier()->QualifierLoc;
2051  }
2052
2053  /// \brief Determines whether this member expression actually had a C++
2054  /// template argument list explicitly specified, e.g., x.f<int>.
2055  bool hasExplicitTemplateArgs() const {
2056    return HasExplicitTemplateArgumentList;
2057  }
2058
2059  /// \brief Copies the template arguments (if present) into the given
2060  /// structure.
2061  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2062    if (hasExplicitTemplateArgs())
2063      getExplicitTemplateArgs().copyInto(List);
2064  }
2065
2066  /// \brief Retrieve the explicit template argument list that
2067  /// follow the member template name.  This must only be called on an
2068  /// expression with explicit template arguments.
2069  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2070    assert(HasExplicitTemplateArgumentList);
2071    if (!HasQualifierOrFoundDecl)
2072      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2073
2074    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
2075                                                      getMemberQualifier() + 1);
2076  }
2077
2078  /// \brief Retrieve the explicit template argument list that
2079  /// followed the member template name.  This must only be called on
2080  /// an expression with explicit template arguments.
2081  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2082    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2083  }
2084
2085  /// \brief Retrieves the optional explicit template arguments.
2086  /// This points to the same data as getExplicitTemplateArgs(), but
2087  /// returns null if there are no explicit template arguments.
2088  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
2089    if (!hasExplicitTemplateArgs()) return 0;
2090    return &getExplicitTemplateArgs();
2091  }
2092
2093  /// \brief Retrieve the location of the left angle bracket following the
2094  /// member name ('<'), if any.
2095  SourceLocation getLAngleLoc() const {
2096    if (!HasExplicitTemplateArgumentList)
2097      return SourceLocation();
2098
2099    return getExplicitTemplateArgs().LAngleLoc;
2100  }
2101
2102  /// \brief Retrieve the template arguments provided as part of this
2103  /// template-id.
2104  const TemplateArgumentLoc *getTemplateArgs() const {
2105    if (!HasExplicitTemplateArgumentList)
2106      return 0;
2107
2108    return getExplicitTemplateArgs().getTemplateArgs();
2109  }
2110
2111  /// \brief Retrieve the number of template arguments provided as part of this
2112  /// template-id.
2113  unsigned getNumTemplateArgs() const {
2114    if (!HasExplicitTemplateArgumentList)
2115      return 0;
2116
2117    return getExplicitTemplateArgs().NumTemplateArgs;
2118  }
2119
2120  /// \brief Retrieve the location of the right angle bracket following the
2121  /// template arguments ('>').
2122  SourceLocation getRAngleLoc() const {
2123    if (!HasExplicitTemplateArgumentList)
2124      return SourceLocation();
2125
2126    return getExplicitTemplateArgs().RAngleLoc;
2127  }
2128
2129  /// \brief Retrieve the member declaration name info.
2130  DeclarationNameInfo getMemberNameInfo() const {
2131    return DeclarationNameInfo(MemberDecl->getDeclName(),
2132                               MemberLoc, MemberDNLoc);
2133  }
2134
2135  bool isArrow() const { return IsArrow; }
2136  void setArrow(bool A) { IsArrow = A; }
2137
2138  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2139  /// location of 'F'.
2140  SourceLocation getMemberLoc() const { return MemberLoc; }
2141  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2142
2143  SourceRange getSourceRange() const;
2144
2145  SourceLocation getExprLoc() const { return MemberLoc; }
2146
2147  /// \brief Determine whether the base of this explicit is implicit.
2148  bool isImplicitAccess() const {
2149    return getBase() && getBase()->isImplicitCXXThis();
2150  }
2151
2152  static bool classof(const Stmt *T) {
2153    return T->getStmtClass() == MemberExprClass;
2154  }
2155  static bool classof(const MemberExpr *) { return true; }
2156
2157  // Iterators
2158  child_range children() { return child_range(&Base, &Base+1); }
2159
2160  friend class ASTReader;
2161  friend class ASTStmtWriter;
2162};
2163
2164/// CompoundLiteralExpr - [C99 6.5.2.5]
2165///
2166class CompoundLiteralExpr : public Expr {
2167  /// LParenLoc - If non-null, this is the location of the left paren in a
2168  /// compound literal like "(int){4}".  This can be null if this is a
2169  /// synthesized compound expression.
2170  SourceLocation LParenLoc;
2171
2172  /// The type as written.  This can be an incomplete array type, in
2173  /// which case the actual expression type will be different.
2174  TypeSourceInfo *TInfo;
2175  Stmt *Init;
2176  bool FileScope;
2177public:
2178  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2179                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2180    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2181           tinfo->getType()->isDependentType(),
2182           init->isValueDependent(),
2183           init->containsUnexpandedParameterPack()),
2184      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2185
2186  /// \brief Construct an empty compound literal.
2187  explicit CompoundLiteralExpr(EmptyShell Empty)
2188    : Expr(CompoundLiteralExprClass, Empty) { }
2189
2190  const Expr *getInitializer() const { return cast<Expr>(Init); }
2191  Expr *getInitializer() { return cast<Expr>(Init); }
2192  void setInitializer(Expr *E) { Init = E; }
2193
2194  bool isFileScope() const { return FileScope; }
2195  void setFileScope(bool FS) { FileScope = FS; }
2196
2197  SourceLocation getLParenLoc() const { return LParenLoc; }
2198  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2199
2200  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2201  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2202
2203  SourceRange getSourceRange() const {
2204    // FIXME: Init should never be null.
2205    if (!Init)
2206      return SourceRange();
2207    if (LParenLoc.isInvalid())
2208      return Init->getSourceRange();
2209    return SourceRange(LParenLoc, Init->getLocEnd());
2210  }
2211
2212  static bool classof(const Stmt *T) {
2213    return T->getStmtClass() == CompoundLiteralExprClass;
2214  }
2215  static bool classof(const CompoundLiteralExpr *) { return true; }
2216
2217  // Iterators
2218  child_range children() { return child_range(&Init, &Init+1); }
2219};
2220
2221/// CastExpr - Base class for type casts, including both implicit
2222/// casts (ImplicitCastExpr) and explicit casts that have some
2223/// representation in the source code (ExplicitCastExpr's derived
2224/// classes).
2225class CastExpr : public Expr {
2226public:
2227  typedef clang::CastKind CastKind;
2228
2229private:
2230  Stmt *Op;
2231
2232  void CheckCastConsistency() const {
2233#ifndef NDEBUG
2234    switch (getCastKind()) {
2235    case CK_DerivedToBase:
2236    case CK_UncheckedDerivedToBase:
2237    case CK_DerivedToBaseMemberPointer:
2238    case CK_BaseToDerived:
2239    case CK_BaseToDerivedMemberPointer:
2240      assert(!path_empty() && "Cast kind should have a base path!");
2241      break;
2242
2243    // These should not have an inheritance path.
2244    case CK_BitCast:
2245    case CK_Dynamic:
2246    case CK_ToUnion:
2247    case CK_ArrayToPointerDecay:
2248    case CK_FunctionToPointerDecay:
2249    case CK_NullToMemberPointer:
2250    case CK_NullToPointer:
2251    case CK_ConstructorConversion:
2252    case CK_IntegralToPointer:
2253    case CK_PointerToIntegral:
2254    case CK_ToVoid:
2255    case CK_VectorSplat:
2256    case CK_IntegralCast:
2257    case CK_IntegralToFloating:
2258    case CK_FloatingToIntegral:
2259    case CK_FloatingCast:
2260    case CK_AnyPointerToObjCPointerCast:
2261    case CK_AnyPointerToBlockPointerCast:
2262    case CK_ObjCObjectLValueCast:
2263    case CK_FloatingRealToComplex:
2264    case CK_FloatingComplexToReal:
2265    case CK_FloatingComplexCast:
2266    case CK_FloatingComplexToIntegralComplex:
2267    case CK_IntegralRealToComplex:
2268    case CK_IntegralComplexToReal:
2269    case CK_IntegralComplexCast:
2270    case CK_IntegralComplexToFloatingComplex:
2271      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2272      // fallthrough to check for null base path
2273
2274    case CK_Dependent:
2275    case CK_LValueToRValue:
2276    case CK_GetObjCProperty:
2277    case CK_NoOp:
2278    case CK_PointerToBoolean:
2279    case CK_IntegralToBoolean:
2280    case CK_FloatingToBoolean:
2281    case CK_MemberPointerToBoolean:
2282    case CK_FloatingComplexToBoolean:
2283    case CK_IntegralComplexToBoolean:
2284    case CK_LValueBitCast:            // -> bool&
2285    case CK_UserDefinedConversion:    // operator bool()
2286      assert(path_empty() && "Cast kind should not have a base path!");
2287      break;
2288    }
2289#endif
2290  }
2291
2292  const CXXBaseSpecifier * const *path_buffer() const {
2293    return const_cast<CastExpr*>(this)->path_buffer();
2294  }
2295  CXXBaseSpecifier **path_buffer();
2296
2297  void setBasePathSize(unsigned basePathSize) {
2298    CastExprBits.BasePathSize = basePathSize;
2299    assert(CastExprBits.BasePathSize == basePathSize &&
2300           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2301  }
2302
2303protected:
2304  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2305           const CastKind kind, Expr *op, unsigned BasePathSize) :
2306    Expr(SC, ty, VK, OK_Ordinary,
2307         // Cast expressions are type-dependent if the type is
2308         // dependent (C++ [temp.dep.expr]p3).
2309         ty->isDependentType(),
2310         // Cast expressions are value-dependent if the type is
2311         // dependent or if the subexpression is value-dependent.
2312         ty->isDependentType() || (op && op->isValueDependent()),
2313         (ty->containsUnexpandedParameterPack() ||
2314          op->containsUnexpandedParameterPack())),
2315    Op(op) {
2316    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2317    CastExprBits.Kind = kind;
2318    setBasePathSize(BasePathSize);
2319    CheckCastConsistency();
2320  }
2321
2322  /// \brief Construct an empty cast.
2323  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2324    : Expr(SC, Empty) {
2325    setBasePathSize(BasePathSize);
2326  }
2327
2328public:
2329  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2330  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2331  const char *getCastKindName() const;
2332
2333  Expr *getSubExpr() { return cast<Expr>(Op); }
2334  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2335  void setSubExpr(Expr *E) { Op = E; }
2336
2337  /// \brief Retrieve the cast subexpression as it was written in the source
2338  /// code, looking through any implicit casts or other intermediate nodes
2339  /// introduced by semantic analysis.
2340  Expr *getSubExprAsWritten();
2341  const Expr *getSubExprAsWritten() const {
2342    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2343  }
2344
2345  typedef CXXBaseSpecifier **path_iterator;
2346  typedef const CXXBaseSpecifier * const *path_const_iterator;
2347  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2348  unsigned path_size() const { return CastExprBits.BasePathSize; }
2349  path_iterator path_begin() { return path_buffer(); }
2350  path_iterator path_end() { return path_buffer() + path_size(); }
2351  path_const_iterator path_begin() const { return path_buffer(); }
2352  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2353
2354  void setCastPath(const CXXCastPath &Path);
2355
2356  static bool classof(const Stmt *T) {
2357    return T->getStmtClass() >= firstCastExprConstant &&
2358           T->getStmtClass() <= lastCastExprConstant;
2359  }
2360  static bool classof(const CastExpr *) { return true; }
2361
2362  // Iterators
2363  child_range children() { return child_range(&Op, &Op+1); }
2364};
2365
2366/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2367/// conversions, which have no direct representation in the original
2368/// source code. For example: converting T[]->T*, void f()->void
2369/// (*f)(), float->double, short->int, etc.
2370///
2371/// In C, implicit casts always produce rvalues. However, in C++, an
2372/// implicit cast whose result is being bound to a reference will be
2373/// an lvalue or xvalue. For example:
2374///
2375/// @code
2376/// class Base { };
2377/// class Derived : public Base { };
2378/// Derived &&ref();
2379/// void f(Derived d) {
2380///   Base& b = d; // initializer is an ImplicitCastExpr
2381///                // to an lvalue of type Base
2382///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2383///                     // to an xvalue of type Base
2384/// }
2385/// @endcode
2386class ImplicitCastExpr : public CastExpr {
2387private:
2388  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2389                   unsigned BasePathLength, ExprValueKind VK)
2390    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2391  }
2392
2393  /// \brief Construct an empty implicit cast.
2394  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2395    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2396
2397public:
2398  enum OnStack_t { OnStack };
2399  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2400                   ExprValueKind VK)
2401    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2402  }
2403
2404  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2405                                  CastKind Kind, Expr *Operand,
2406                                  const CXXCastPath *BasePath,
2407                                  ExprValueKind Cat);
2408
2409  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2410
2411  SourceRange getSourceRange() const {
2412    return getSubExpr()->getSourceRange();
2413  }
2414
2415  static bool classof(const Stmt *T) {
2416    return T->getStmtClass() == ImplicitCastExprClass;
2417  }
2418  static bool classof(const ImplicitCastExpr *) { return true; }
2419};
2420
2421/// ExplicitCastExpr - An explicit cast written in the source
2422/// code.
2423///
2424/// This class is effectively an abstract class, because it provides
2425/// the basic representation of an explicitly-written cast without
2426/// specifying which kind of cast (C cast, functional cast, static
2427/// cast, etc.) was written; specific derived classes represent the
2428/// particular style of cast and its location information.
2429///
2430/// Unlike implicit casts, explicit cast nodes have two different
2431/// types: the type that was written into the source code, and the
2432/// actual type of the expression as determined by semantic
2433/// analysis. These types may differ slightly. For example, in C++ one
2434/// can cast to a reference type, which indicates that the resulting
2435/// expression will be an lvalue or xvalue. The reference type, however,
2436/// will not be used as the type of the expression.
2437class ExplicitCastExpr : public CastExpr {
2438  /// TInfo - Source type info for the (written) type
2439  /// this expression is casting to.
2440  TypeSourceInfo *TInfo;
2441
2442protected:
2443  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2444                   CastKind kind, Expr *op, unsigned PathSize,
2445                   TypeSourceInfo *writtenTy)
2446    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2447
2448  /// \brief Construct an empty explicit cast.
2449  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2450    : CastExpr(SC, Shell, PathSize) { }
2451
2452public:
2453  /// getTypeInfoAsWritten - Returns the type source info for the type
2454  /// that this expression is casting to.
2455  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2456  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2457
2458  /// getTypeAsWritten - Returns the type that this expression is
2459  /// casting to, as written in the source code.
2460  QualType getTypeAsWritten() const { return TInfo->getType(); }
2461
2462  static bool classof(const Stmt *T) {
2463     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2464            T->getStmtClass() <= lastExplicitCastExprConstant;
2465  }
2466  static bool classof(const ExplicitCastExpr *) { return true; }
2467};
2468
2469/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2470/// cast in C++ (C++ [expr.cast]), which uses the syntax
2471/// (Type)expr. For example: @c (int)f.
2472class CStyleCastExpr : public ExplicitCastExpr {
2473  SourceLocation LPLoc; // the location of the left paren
2474  SourceLocation RPLoc; // the location of the right paren
2475
2476  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2477                 unsigned PathSize, TypeSourceInfo *writtenTy,
2478                 SourceLocation l, SourceLocation r)
2479    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2480                       writtenTy), LPLoc(l), RPLoc(r) {}
2481
2482  /// \brief Construct an empty C-style explicit cast.
2483  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2484    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2485
2486public:
2487  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2488                                ExprValueKind VK, CastKind K,
2489                                Expr *Op, const CXXCastPath *BasePath,
2490                                TypeSourceInfo *WrittenTy, SourceLocation L,
2491                                SourceLocation R);
2492
2493  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2494
2495  SourceLocation getLParenLoc() const { return LPLoc; }
2496  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2497
2498  SourceLocation getRParenLoc() const { return RPLoc; }
2499  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2500
2501  SourceRange getSourceRange() const {
2502    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2503  }
2504  static bool classof(const Stmt *T) {
2505    return T->getStmtClass() == CStyleCastExprClass;
2506  }
2507  static bool classof(const CStyleCastExpr *) { return true; }
2508};
2509
2510/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2511///
2512/// This expression node kind describes a builtin binary operation,
2513/// such as "x + y" for integer values "x" and "y". The operands will
2514/// already have been converted to appropriate types (e.g., by
2515/// performing promotions or conversions).
2516///
2517/// In C++, where operators may be overloaded, a different kind of
2518/// expression node (CXXOperatorCallExpr) is used to express the
2519/// invocation of an overloaded operator with operator syntax. Within
2520/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2521/// used to store an expression "x + y" depends on the subexpressions
2522/// for x and y. If neither x or y is type-dependent, and the "+"
2523/// operator resolves to a built-in operation, BinaryOperator will be
2524/// used to express the computation (x and y may still be
2525/// value-dependent). If either x or y is type-dependent, or if the
2526/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2527/// be used to express the computation.
2528class BinaryOperator : public Expr {
2529public:
2530  typedef BinaryOperatorKind Opcode;
2531
2532private:
2533  unsigned Opc : 6;
2534  SourceLocation OpLoc;
2535
2536  enum { LHS, RHS, END_EXPR };
2537  Stmt* SubExprs[END_EXPR];
2538public:
2539
2540  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2541                 ExprValueKind VK, ExprObjectKind OK,
2542                 SourceLocation opLoc)
2543    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2544           lhs->isTypeDependent() || rhs->isTypeDependent(),
2545           lhs->isValueDependent() || rhs->isValueDependent(),
2546           (lhs->containsUnexpandedParameterPack() ||
2547            rhs->containsUnexpandedParameterPack())),
2548      Opc(opc), OpLoc(opLoc) {
2549    SubExprs[LHS] = lhs;
2550    SubExprs[RHS] = rhs;
2551    assert(!isCompoundAssignmentOp() &&
2552           "Use ArithAssignBinaryOperator for compound assignments");
2553  }
2554
2555  /// \brief Construct an empty binary operator.
2556  explicit BinaryOperator(EmptyShell Empty)
2557    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2558
2559  SourceLocation getOperatorLoc() const { return OpLoc; }
2560  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2561
2562  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2563  void setOpcode(Opcode O) { Opc = O; }
2564
2565  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2566  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2567  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2568  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2569
2570  SourceRange getSourceRange() const {
2571    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2572  }
2573
2574  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2575  /// corresponds to, e.g. "<<=".
2576  static const char *getOpcodeStr(Opcode Op);
2577
2578  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2579
2580  /// \brief Retrieve the binary opcode that corresponds to the given
2581  /// overloaded operator.
2582  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2583
2584  /// \brief Retrieve the overloaded operator kind that corresponds to
2585  /// the given binary opcode.
2586  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2587
2588  /// predicates to categorize the respective opcodes.
2589  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2590  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2591  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2592  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2593  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2594  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2595
2596  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2597  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2598
2599  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2600  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2601
2602  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2603  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2604
2605  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2606  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2607
2608  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2609  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2610
2611  static bool isAssignmentOp(Opcode Opc) {
2612    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2613  }
2614  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2615
2616  static bool isCompoundAssignmentOp(Opcode Opc) {
2617    return Opc > BO_Assign && Opc <= BO_OrAssign;
2618  }
2619  bool isCompoundAssignmentOp() const {
2620    return isCompoundAssignmentOp(getOpcode());
2621  }
2622
2623  static bool isShiftAssignOp(Opcode Opc) {
2624    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2625  }
2626  bool isShiftAssignOp() const {
2627    return isShiftAssignOp(getOpcode());
2628  }
2629
2630  static bool classof(const Stmt *S) {
2631    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2632           S->getStmtClass() <= lastBinaryOperatorConstant;
2633  }
2634  static bool classof(const BinaryOperator *) { return true; }
2635
2636  // Iterators
2637  child_range children() {
2638    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2639  }
2640
2641protected:
2642  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2643                 ExprValueKind VK, ExprObjectKind OK,
2644                 SourceLocation opLoc, bool dead)
2645    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2646           lhs->isTypeDependent() || rhs->isTypeDependent(),
2647           lhs->isValueDependent() || rhs->isValueDependent(),
2648           (lhs->containsUnexpandedParameterPack() ||
2649            rhs->containsUnexpandedParameterPack())),
2650      Opc(opc), OpLoc(opLoc) {
2651    SubExprs[LHS] = lhs;
2652    SubExprs[RHS] = rhs;
2653  }
2654
2655  BinaryOperator(StmtClass SC, EmptyShell Empty)
2656    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2657};
2658
2659/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2660/// track of the type the operation is performed in.  Due to the semantics of
2661/// these operators, the operands are promoted, the aritmetic performed, an
2662/// implicit conversion back to the result type done, then the assignment takes
2663/// place.  This captures the intermediate type which the computation is done
2664/// in.
2665class CompoundAssignOperator : public BinaryOperator {
2666  QualType ComputationLHSType;
2667  QualType ComputationResultType;
2668public:
2669  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2670                         ExprValueKind VK, ExprObjectKind OK,
2671                         QualType CompLHSType, QualType CompResultType,
2672                         SourceLocation OpLoc)
2673    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2674      ComputationLHSType(CompLHSType),
2675      ComputationResultType(CompResultType) {
2676    assert(isCompoundAssignmentOp() &&
2677           "Only should be used for compound assignments");
2678  }
2679
2680  /// \brief Build an empty compound assignment operator expression.
2681  explicit CompoundAssignOperator(EmptyShell Empty)
2682    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2683
2684  // The two computation types are the type the LHS is converted
2685  // to for the computation and the type of the result; the two are
2686  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2687  QualType getComputationLHSType() const { return ComputationLHSType; }
2688  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2689
2690  QualType getComputationResultType() const { return ComputationResultType; }
2691  void setComputationResultType(QualType T) { ComputationResultType = T; }
2692
2693  static bool classof(const CompoundAssignOperator *) { return true; }
2694  static bool classof(const Stmt *S) {
2695    return S->getStmtClass() == CompoundAssignOperatorClass;
2696  }
2697};
2698
2699/// AbstractConditionalOperator - An abstract base class for
2700/// ConditionalOperator and BinaryConditionalOperator.
2701class AbstractConditionalOperator : public Expr {
2702  SourceLocation QuestionLoc, ColonLoc;
2703  friend class ASTStmtReader;
2704
2705protected:
2706  AbstractConditionalOperator(StmtClass SC, QualType T,
2707                              ExprValueKind VK, ExprObjectKind OK,
2708                              bool TD, bool VD,
2709                              bool ContainsUnexpandedParameterPack,
2710                              SourceLocation qloc,
2711                              SourceLocation cloc)
2712    : Expr(SC, T, VK, OK, TD, VD, ContainsUnexpandedParameterPack),
2713      QuestionLoc(qloc), ColonLoc(cloc) {}
2714
2715  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2716    : Expr(SC, Empty) { }
2717
2718public:
2719  // getCond - Return the expression representing the condition for
2720  //   the ?: operator.
2721  Expr *getCond() const;
2722
2723  // getTrueExpr - Return the subexpression representing the value of
2724  //   the expression if the condition evaluates to true.
2725  Expr *getTrueExpr() const;
2726
2727  // getFalseExpr - Return the subexpression representing the value of
2728  //   the expression if the condition evaluates to false.  This is
2729  //   the same as getRHS.
2730  Expr *getFalseExpr() const;
2731
2732  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2733  SourceLocation getColonLoc() const { return ColonLoc; }
2734
2735  static bool classof(const Stmt *T) {
2736    return T->getStmtClass() == ConditionalOperatorClass ||
2737           T->getStmtClass() == BinaryConditionalOperatorClass;
2738  }
2739  static bool classof(const AbstractConditionalOperator *) { return true; }
2740};
2741
2742/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2743/// middle" extension is a BinaryConditionalOperator.
2744class ConditionalOperator : public AbstractConditionalOperator {
2745  enum { COND, LHS, RHS, END_EXPR };
2746  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2747
2748  friend class ASTStmtReader;
2749public:
2750  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2751                      SourceLocation CLoc, Expr *rhs,
2752                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2753    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2754           // FIXME: the type of the conditional operator doesn't
2755           // depend on the type of the conditional, but the standard
2756           // seems to imply that it could. File a bug!
2757           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2758           (cond->isValueDependent() || lhs->isValueDependent() ||
2759            rhs->isValueDependent()),
2760           (cond->containsUnexpandedParameterPack() ||
2761            lhs->containsUnexpandedParameterPack() ||
2762            rhs->containsUnexpandedParameterPack()),
2763                                  QLoc, CLoc) {
2764    SubExprs[COND] = cond;
2765    SubExprs[LHS] = lhs;
2766    SubExprs[RHS] = rhs;
2767  }
2768
2769  /// \brief Build an empty conditional operator.
2770  explicit ConditionalOperator(EmptyShell Empty)
2771    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2772
2773  // getCond - Return the expression representing the condition for
2774  //   the ?: operator.
2775  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2776
2777  // getTrueExpr - Return the subexpression representing the value of
2778  //   the expression if the condition evaluates to true.
2779  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2780
2781  // getFalseExpr - Return the subexpression representing the value of
2782  //   the expression if the condition evaluates to false.  This is
2783  //   the same as getRHS.
2784  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2785
2786  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2787  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2788
2789  SourceRange getSourceRange() const {
2790    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2791  }
2792  static bool classof(const Stmt *T) {
2793    return T->getStmtClass() == ConditionalOperatorClass;
2794  }
2795  static bool classof(const ConditionalOperator *) { return true; }
2796
2797  // Iterators
2798  child_range children() {
2799    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2800  }
2801};
2802
2803/// BinaryConditionalOperator - The GNU extension to the conditional
2804/// operator which allows the middle operand to be omitted.
2805///
2806/// This is a different expression kind on the assumption that almost
2807/// every client ends up needing to know that these are different.
2808class BinaryConditionalOperator : public AbstractConditionalOperator {
2809  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2810
2811  /// - the common condition/left-hand-side expression, which will be
2812  ///   evaluated as the opaque value
2813  /// - the condition, expressed in terms of the opaque value
2814  /// - the left-hand-side, expressed in terms of the opaque value
2815  /// - the right-hand-side
2816  Stmt *SubExprs[NUM_SUBEXPRS];
2817  OpaqueValueExpr *OpaqueValue;
2818
2819  friend class ASTStmtReader;
2820public:
2821  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2822                            Expr *cond, Expr *lhs, Expr *rhs,
2823                            SourceLocation qloc, SourceLocation cloc,
2824                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2825    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2826           (common->isTypeDependent() || rhs->isTypeDependent()),
2827           (common->isValueDependent() || rhs->isValueDependent()),
2828           (common->containsUnexpandedParameterPack() ||
2829            rhs->containsUnexpandedParameterPack()),
2830                                  qloc, cloc),
2831      OpaqueValue(opaqueValue) {
2832    SubExprs[COMMON] = common;
2833    SubExprs[COND] = cond;
2834    SubExprs[LHS] = lhs;
2835    SubExprs[RHS] = rhs;
2836
2837    OpaqueValue->setSourceExpr(common);
2838  }
2839
2840  /// \brief Build an empty conditional operator.
2841  explicit BinaryConditionalOperator(EmptyShell Empty)
2842    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2843
2844  /// \brief getCommon - Return the common expression, written to the
2845  ///   left of the condition.  The opaque value will be bound to the
2846  ///   result of this expression.
2847  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2848
2849  /// \brief getOpaqueValue - Return the opaque value placeholder.
2850  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2851
2852  /// \brief getCond - Return the condition expression; this is defined
2853  ///   in terms of the opaque value.
2854  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2855
2856  /// \brief getTrueExpr - Return the subexpression which will be
2857  ///   evaluated if the condition evaluates to true;  this is defined
2858  ///   in terms of the opaque value.
2859  Expr *getTrueExpr() const {
2860    return cast<Expr>(SubExprs[LHS]);
2861  }
2862
2863  /// \brief getFalseExpr - Return the subexpression which will be
2864  ///   evaluated if the condnition evaluates to false; this is
2865  ///   defined in terms of the opaque value.
2866  Expr *getFalseExpr() const {
2867    return cast<Expr>(SubExprs[RHS]);
2868  }
2869
2870  SourceRange getSourceRange() const {
2871    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2872  }
2873  static bool classof(const Stmt *T) {
2874    return T->getStmtClass() == BinaryConditionalOperatorClass;
2875  }
2876  static bool classof(const BinaryConditionalOperator *) { return true; }
2877
2878  // Iterators
2879  child_range children() {
2880    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2881  }
2882};
2883
2884inline Expr *AbstractConditionalOperator::getCond() const {
2885  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2886    return co->getCond();
2887  return cast<BinaryConditionalOperator>(this)->getCond();
2888}
2889
2890inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2891  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2892    return co->getTrueExpr();
2893  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2894}
2895
2896inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2897  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2898    return co->getFalseExpr();
2899  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2900}
2901
2902/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2903class AddrLabelExpr : public Expr {
2904  SourceLocation AmpAmpLoc, LabelLoc;
2905  LabelDecl *Label;
2906public:
2907  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2908                QualType t)
2909    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false),
2910      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2911
2912  /// \brief Build an empty address of a label expression.
2913  explicit AddrLabelExpr(EmptyShell Empty)
2914    : Expr(AddrLabelExprClass, Empty) { }
2915
2916  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2917  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2918  SourceLocation getLabelLoc() const { return LabelLoc; }
2919  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2920
2921  SourceRange getSourceRange() const {
2922    return SourceRange(AmpAmpLoc, LabelLoc);
2923  }
2924
2925  LabelDecl *getLabel() const { return Label; }
2926  void setLabel(LabelDecl *L) { Label = L; }
2927
2928  static bool classof(const Stmt *T) {
2929    return T->getStmtClass() == AddrLabelExprClass;
2930  }
2931  static bool classof(const AddrLabelExpr *) { return true; }
2932
2933  // Iterators
2934  child_range children() { return child_range(); }
2935};
2936
2937/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2938/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2939/// takes the value of the last subexpression.
2940///
2941/// A StmtExpr is always an r-value; values "returned" out of a
2942/// StmtExpr will be copied.
2943class StmtExpr : public Expr {
2944  Stmt *SubStmt;
2945  SourceLocation LParenLoc, RParenLoc;
2946public:
2947  // FIXME: Does type-dependence need to be computed differently?
2948  StmtExpr(CompoundStmt *substmt, QualType T,
2949           SourceLocation lp, SourceLocation rp) :
2950    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2951         T->isDependentType(), false, false),
2952    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2953
2954  /// \brief Build an empty statement expression.
2955  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2956
2957  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2958  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2959  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2960
2961  SourceRange getSourceRange() const {
2962    return SourceRange(LParenLoc, RParenLoc);
2963  }
2964
2965  SourceLocation getLParenLoc() const { return LParenLoc; }
2966  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2967  SourceLocation getRParenLoc() const { return RParenLoc; }
2968  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2969
2970  static bool classof(const Stmt *T) {
2971    return T->getStmtClass() == StmtExprClass;
2972  }
2973  static bool classof(const StmtExpr *) { return true; }
2974
2975  // Iterators
2976  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
2977};
2978
2979
2980/// ShuffleVectorExpr - clang-specific builtin-in function
2981/// __builtin_shufflevector.
2982/// This AST node represents a operator that does a constant
2983/// shuffle, similar to LLVM's shufflevector instruction. It takes
2984/// two vectors and a variable number of constant indices,
2985/// and returns the appropriately shuffled vector.
2986class ShuffleVectorExpr : public Expr {
2987  SourceLocation BuiltinLoc, RParenLoc;
2988
2989  // SubExprs - the list of values passed to the __builtin_shufflevector
2990  // function. The first two are vectors, and the rest are constant
2991  // indices.  The number of values in this list is always
2992  // 2+the number of indices in the vector type.
2993  Stmt **SubExprs;
2994  unsigned NumExprs;
2995
2996public:
2997  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2998                    QualType Type, SourceLocation BLoc,
2999                    SourceLocation RP);
3000
3001  /// \brief Build an empty vector-shuffle expression.
3002  explicit ShuffleVectorExpr(EmptyShell Empty)
3003    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3004
3005  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3006  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3007
3008  SourceLocation getRParenLoc() const { return RParenLoc; }
3009  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3010
3011  SourceRange getSourceRange() const {
3012    return SourceRange(BuiltinLoc, RParenLoc);
3013  }
3014  static bool classof(const Stmt *T) {
3015    return T->getStmtClass() == ShuffleVectorExprClass;
3016  }
3017  static bool classof(const ShuffleVectorExpr *) { return true; }
3018
3019  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3020  /// constant expression, the actual arguments passed in, and the function
3021  /// pointers.
3022  unsigned getNumSubExprs() const { return NumExprs; }
3023
3024  /// \brief Retrieve the array of expressions.
3025  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3026
3027  /// getExpr - Return the Expr at the specified index.
3028  Expr *getExpr(unsigned Index) {
3029    assert((Index < NumExprs) && "Arg access out of range!");
3030    return cast<Expr>(SubExprs[Index]);
3031  }
3032  const Expr *getExpr(unsigned Index) const {
3033    assert((Index < NumExprs) && "Arg access out of range!");
3034    return cast<Expr>(SubExprs[Index]);
3035  }
3036
3037  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3038
3039  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3040    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3041    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
3042  }
3043
3044  // Iterators
3045  child_range children() {
3046    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3047  }
3048};
3049
3050/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3051/// This AST node is similar to the conditional operator (?:) in C, with
3052/// the following exceptions:
3053/// - the test expression must be a integer constant expression.
3054/// - the expression returned acts like the chosen subexpression in every
3055///   visible way: the type is the same as that of the chosen subexpression,
3056///   and all predicates (whether it's an l-value, whether it's an integer
3057///   constant expression, etc.) return the same result as for the chosen
3058///   sub-expression.
3059class ChooseExpr : public Expr {
3060  enum { COND, LHS, RHS, END_EXPR };
3061  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3062  SourceLocation BuiltinLoc, RParenLoc;
3063public:
3064  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3065             QualType t, ExprValueKind VK, ExprObjectKind OK,
3066             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3067    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3068           (cond->containsUnexpandedParameterPack() ||
3069            lhs->containsUnexpandedParameterPack() ||
3070            rhs->containsUnexpandedParameterPack())),
3071      BuiltinLoc(BLoc), RParenLoc(RP) {
3072      SubExprs[COND] = cond;
3073      SubExprs[LHS] = lhs;
3074      SubExprs[RHS] = rhs;
3075    }
3076
3077  /// \brief Build an empty __builtin_choose_expr.
3078  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3079
3080  /// isConditionTrue - Return whether the condition is true (i.e. not
3081  /// equal to zero).
3082  bool isConditionTrue(const ASTContext &C) const;
3083
3084  /// getChosenSubExpr - Return the subexpression chosen according to the
3085  /// condition.
3086  Expr *getChosenSubExpr(const ASTContext &C) const {
3087    return isConditionTrue(C) ? getLHS() : getRHS();
3088  }
3089
3090  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3091  void setCond(Expr *E) { SubExprs[COND] = E; }
3092  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3093  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3094  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3095  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3096
3097  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3098  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3099
3100  SourceLocation getRParenLoc() const { return RParenLoc; }
3101  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3102
3103  SourceRange getSourceRange() const {
3104    return SourceRange(BuiltinLoc, RParenLoc);
3105  }
3106  static bool classof(const Stmt *T) {
3107    return T->getStmtClass() == ChooseExprClass;
3108  }
3109  static bool classof(const ChooseExpr *) { return true; }
3110
3111  // Iterators
3112  child_range children() {
3113    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3114  }
3115};
3116
3117/// GNUNullExpr - Implements the GNU __null extension, which is a name
3118/// for a null pointer constant that has integral type (e.g., int or
3119/// long) and is the same size and alignment as a pointer. The __null
3120/// extension is typically only used by system headers, which define
3121/// NULL as __null in C++ rather than using 0 (which is an integer
3122/// that may not match the size of a pointer).
3123class GNUNullExpr : public Expr {
3124  /// TokenLoc - The location of the __null keyword.
3125  SourceLocation TokenLoc;
3126
3127public:
3128  GNUNullExpr(QualType Ty, SourceLocation Loc)
3129    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false),
3130      TokenLoc(Loc) { }
3131
3132  /// \brief Build an empty GNU __null expression.
3133  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3134
3135  /// getTokenLocation - The location of the __null token.
3136  SourceLocation getTokenLocation() const { return TokenLoc; }
3137  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3138
3139  SourceRange getSourceRange() const {
3140    return SourceRange(TokenLoc);
3141  }
3142  static bool classof(const Stmt *T) {
3143    return T->getStmtClass() == GNUNullExprClass;
3144  }
3145  static bool classof(const GNUNullExpr *) { return true; }
3146
3147  // Iterators
3148  child_range children() { return child_range(); }
3149};
3150
3151/// VAArgExpr, used for the builtin function __builtin_va_arg.
3152class VAArgExpr : public Expr {
3153  Stmt *Val;
3154  TypeSourceInfo *TInfo;
3155  SourceLocation BuiltinLoc, RParenLoc;
3156public:
3157  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3158            SourceLocation RPLoc, QualType t)
3159    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3160           t->isDependentType(), false,
3161           (TInfo->getType()->containsUnexpandedParameterPack() ||
3162            e->containsUnexpandedParameterPack())),
3163      Val(e), TInfo(TInfo),
3164      BuiltinLoc(BLoc),
3165      RParenLoc(RPLoc) { }
3166
3167  /// \brief Create an empty __builtin_va_arg expression.
3168  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3169
3170  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3171  Expr *getSubExpr() { return cast<Expr>(Val); }
3172  void setSubExpr(Expr *E) { Val = E; }
3173
3174  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3175  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3176
3177  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3178  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3179
3180  SourceLocation getRParenLoc() const { return RParenLoc; }
3181  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3182
3183  SourceRange getSourceRange() const {
3184    return SourceRange(BuiltinLoc, RParenLoc);
3185  }
3186  static bool classof(const Stmt *T) {
3187    return T->getStmtClass() == VAArgExprClass;
3188  }
3189  static bool classof(const VAArgExpr *) { return true; }
3190
3191  // Iterators
3192  child_range children() { return child_range(&Val, &Val+1); }
3193};
3194
3195/// @brief Describes an C or C++ initializer list.
3196///
3197/// InitListExpr describes an initializer list, which can be used to
3198/// initialize objects of different types, including
3199/// struct/class/union types, arrays, and vectors. For example:
3200///
3201/// @code
3202/// struct foo x = { 1, { 2, 3 } };
3203/// @endcode
3204///
3205/// Prior to semantic analysis, an initializer list will represent the
3206/// initializer list as written by the user, but will have the
3207/// placeholder type "void". This initializer list is called the
3208/// syntactic form of the initializer, and may contain C99 designated
3209/// initializers (represented as DesignatedInitExprs), initializations
3210/// of subobject members without explicit braces, and so on. Clients
3211/// interested in the original syntax of the initializer list should
3212/// use the syntactic form of the initializer list.
3213///
3214/// After semantic analysis, the initializer list will represent the
3215/// semantic form of the initializer, where the initializations of all
3216/// subobjects are made explicit with nested InitListExpr nodes and
3217/// C99 designators have been eliminated by placing the designated
3218/// initializations into the subobject they initialize. Additionally,
3219/// any "holes" in the initialization, where no initializer has been
3220/// specified for a particular subobject, will be replaced with
3221/// implicitly-generated ImplicitValueInitExpr expressions that
3222/// value-initialize the subobjects. Note, however, that the
3223/// initializer lists may still have fewer initializers than there are
3224/// elements to initialize within the object.
3225///
3226/// Given the semantic form of the initializer list, one can retrieve
3227/// the original syntactic form of that initializer list (if it
3228/// exists) using getSyntacticForm(). Since many initializer lists
3229/// have the same syntactic and semantic forms, getSyntacticForm() may
3230/// return NULL, indicating that the current initializer list also
3231/// serves as its syntactic form.
3232class InitListExpr : public Expr {
3233  // FIXME: Eliminate this vector in favor of ASTContext allocation
3234  typedef ASTVector<Stmt *> InitExprsTy;
3235  InitExprsTy InitExprs;
3236  SourceLocation LBraceLoc, RBraceLoc;
3237
3238  /// Contains the initializer list that describes the syntactic form
3239  /// written in the source code.
3240  InitListExpr *SyntacticForm;
3241
3242  /// \brief Either:
3243  ///  If this initializer list initializes an array with more elements than
3244  ///  there are initializers in the list, specifies an expression to be used
3245  ///  for value initialization of the rest of the elements.
3246  /// Or
3247  ///  If this initializer list initializes a union, specifies which
3248  ///  field within the union will be initialized.
3249  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3250
3251  /// Whether this initializer list originally had a GNU array-range
3252  /// designator in it. This is a temporary marker used by CodeGen.
3253  bool HadArrayRangeDesignator;
3254
3255public:
3256  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3257               Expr **initexprs, unsigned numinits,
3258               SourceLocation rbraceloc);
3259
3260  /// \brief Build an empty initializer list.
3261  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3262    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3263
3264  unsigned getNumInits() const { return InitExprs.size(); }
3265
3266  /// \brief Retrieve the set of initializers.
3267  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3268
3269  const Expr *getInit(unsigned Init) const {
3270    assert(Init < getNumInits() && "Initializer access out of range!");
3271    return cast_or_null<Expr>(InitExprs[Init]);
3272  }
3273
3274  Expr *getInit(unsigned Init) {
3275    assert(Init < getNumInits() && "Initializer access out of range!");
3276    return cast_or_null<Expr>(InitExprs[Init]);
3277  }
3278
3279  void setInit(unsigned Init, Expr *expr) {
3280    assert(Init < getNumInits() && "Initializer access out of range!");
3281    InitExprs[Init] = expr;
3282  }
3283
3284  /// \brief Reserve space for some number of initializers.
3285  void reserveInits(ASTContext &C, unsigned NumInits);
3286
3287  /// @brief Specify the number of initializers
3288  ///
3289  /// If there are more than @p NumInits initializers, the remaining
3290  /// initializers will be destroyed. If there are fewer than @p
3291  /// NumInits initializers, NULL expressions will be added for the
3292  /// unknown initializers.
3293  void resizeInits(ASTContext &Context, unsigned NumInits);
3294
3295  /// @brief Updates the initializer at index @p Init with the new
3296  /// expression @p expr, and returns the old expression at that
3297  /// location.
3298  ///
3299  /// When @p Init is out of range for this initializer list, the
3300  /// initializer list will be extended with NULL expressions to
3301  /// accommodate the new entry.
3302  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3303
3304  /// \brief If this initializer list initializes an array with more elements
3305  /// than there are initializers in the list, specifies an expression to be
3306  /// used for value initialization of the rest of the elements.
3307  Expr *getArrayFiller() {
3308    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3309  }
3310  const Expr *getArrayFiller() const {
3311    return const_cast<InitListExpr *>(this)->getArrayFiller();
3312  }
3313  void setArrayFiller(Expr *filler);
3314
3315  /// \brief If this initializes a union, specifies which field in the
3316  /// union to initialize.
3317  ///
3318  /// Typically, this field is the first named field within the
3319  /// union. However, a designated initializer can specify the
3320  /// initialization of a different field within the union.
3321  FieldDecl *getInitializedFieldInUnion() {
3322    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3323  }
3324  const FieldDecl *getInitializedFieldInUnion() const {
3325    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3326  }
3327  void setInitializedFieldInUnion(FieldDecl *FD) {
3328    ArrayFillerOrUnionFieldInit = FD;
3329  }
3330
3331  // Explicit InitListExpr's originate from source code (and have valid source
3332  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3333  bool isExplicit() {
3334    return LBraceLoc.isValid() && RBraceLoc.isValid();
3335  }
3336
3337  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3338  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3339  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3340  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3341
3342  /// @brief Retrieve the initializer list that describes the
3343  /// syntactic form of the initializer.
3344  ///
3345  ///
3346  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3347  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3348
3349  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3350  void sawArrayRangeDesignator(bool ARD = true) {
3351    HadArrayRangeDesignator = ARD;
3352  }
3353
3354  SourceRange getSourceRange() const;
3355
3356  static bool classof(const Stmt *T) {
3357    return T->getStmtClass() == InitListExprClass;
3358  }
3359  static bool classof(const InitListExpr *) { return true; }
3360
3361  // Iterators
3362  child_range children() {
3363    if (InitExprs.empty()) return child_range();
3364    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3365  }
3366
3367  typedef InitExprsTy::iterator iterator;
3368  typedef InitExprsTy::const_iterator const_iterator;
3369  typedef InitExprsTy::reverse_iterator reverse_iterator;
3370  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3371
3372  iterator begin() { return InitExprs.begin(); }
3373  const_iterator begin() const { return InitExprs.begin(); }
3374  iterator end() { return InitExprs.end(); }
3375  const_iterator end() const { return InitExprs.end(); }
3376  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3377  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3378  reverse_iterator rend() { return InitExprs.rend(); }
3379  const_reverse_iterator rend() const { return InitExprs.rend(); }
3380
3381  friend class ASTStmtReader;
3382  friend class ASTStmtWriter;
3383};
3384
3385/// @brief Represents a C99 designated initializer expression.
3386///
3387/// A designated initializer expression (C99 6.7.8) contains one or
3388/// more designators (which can be field designators, array
3389/// designators, or GNU array-range designators) followed by an
3390/// expression that initializes the field or element(s) that the
3391/// designators refer to. For example, given:
3392///
3393/// @code
3394/// struct point {
3395///   double x;
3396///   double y;
3397/// };
3398/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3399/// @endcode
3400///
3401/// The InitListExpr contains three DesignatedInitExprs, the first of
3402/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3403/// designators, one array designator for @c [2] followed by one field
3404/// designator for @c .y. The initalization expression will be 1.0.
3405class DesignatedInitExpr : public Expr {
3406public:
3407  /// \brief Forward declaration of the Designator class.
3408  class Designator;
3409
3410private:
3411  /// The location of the '=' or ':' prior to the actual initializer
3412  /// expression.
3413  SourceLocation EqualOrColonLoc;
3414
3415  /// Whether this designated initializer used the GNU deprecated
3416  /// syntax rather than the C99 '=' syntax.
3417  bool GNUSyntax : 1;
3418
3419  /// The number of designators in this initializer expression.
3420  unsigned NumDesignators : 15;
3421
3422  /// \brief The designators in this designated initialization
3423  /// expression.
3424  Designator *Designators;
3425
3426  /// The number of subexpressions of this initializer expression,
3427  /// which contains both the initializer and any additional
3428  /// expressions used by array and array-range designators.
3429  unsigned NumSubExprs : 16;
3430
3431
3432  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3433                     const Designator *Designators,
3434                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3435                     Expr **IndexExprs, unsigned NumIndexExprs,
3436                     Expr *Init);
3437
3438  explicit DesignatedInitExpr(unsigned NumSubExprs)
3439    : Expr(DesignatedInitExprClass, EmptyShell()),
3440      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3441
3442public:
3443  /// A field designator, e.g., ".x".
3444  struct FieldDesignator {
3445    /// Refers to the field that is being initialized. The low bit
3446    /// of this field determines whether this is actually a pointer
3447    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3448    /// initially constructed, a field designator will store an
3449    /// IdentifierInfo*. After semantic analysis has resolved that
3450    /// name, the field designator will instead store a FieldDecl*.
3451    uintptr_t NameOrField;
3452
3453    /// The location of the '.' in the designated initializer.
3454    unsigned DotLoc;
3455
3456    /// The location of the field name in the designated initializer.
3457    unsigned FieldLoc;
3458  };
3459
3460  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3461  struct ArrayOrRangeDesignator {
3462    /// Location of the first index expression within the designated
3463    /// initializer expression's list of subexpressions.
3464    unsigned Index;
3465    /// The location of the '[' starting the array range designator.
3466    unsigned LBracketLoc;
3467    /// The location of the ellipsis separating the start and end
3468    /// indices. Only valid for GNU array-range designators.
3469    unsigned EllipsisLoc;
3470    /// The location of the ']' terminating the array range designator.
3471    unsigned RBracketLoc;
3472  };
3473
3474  /// @brief Represents a single C99 designator.
3475  ///
3476  /// @todo This class is infuriatingly similar to clang::Designator,
3477  /// but minor differences (storing indices vs. storing pointers)
3478  /// keep us from reusing it. Try harder, later, to rectify these
3479  /// differences.
3480  class Designator {
3481    /// @brief The kind of designator this describes.
3482    enum {
3483      FieldDesignator,
3484      ArrayDesignator,
3485      ArrayRangeDesignator
3486    } Kind;
3487
3488    union {
3489      /// A field designator, e.g., ".x".
3490      struct FieldDesignator Field;
3491      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3492      struct ArrayOrRangeDesignator ArrayOrRange;
3493    };
3494    friend class DesignatedInitExpr;
3495
3496  public:
3497    Designator() {}
3498
3499    /// @brief Initializes a field designator.
3500    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3501               SourceLocation FieldLoc)
3502      : Kind(FieldDesignator) {
3503      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3504      Field.DotLoc = DotLoc.getRawEncoding();
3505      Field.FieldLoc = FieldLoc.getRawEncoding();
3506    }
3507
3508    /// @brief Initializes an array designator.
3509    Designator(unsigned Index, SourceLocation LBracketLoc,
3510               SourceLocation RBracketLoc)
3511      : Kind(ArrayDesignator) {
3512      ArrayOrRange.Index = Index;
3513      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3514      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3515      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3516    }
3517
3518    /// @brief Initializes a GNU array-range designator.
3519    Designator(unsigned Index, SourceLocation LBracketLoc,
3520               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3521      : Kind(ArrayRangeDesignator) {
3522      ArrayOrRange.Index = Index;
3523      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3524      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3525      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3526    }
3527
3528    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3529    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3530    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3531
3532    IdentifierInfo * getFieldName();
3533
3534    FieldDecl *getField() {
3535      assert(Kind == FieldDesignator && "Only valid on a field designator");
3536      if (Field.NameOrField & 0x01)
3537        return 0;
3538      else
3539        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3540    }
3541
3542    void setField(FieldDecl *FD) {
3543      assert(Kind == FieldDesignator && "Only valid on a field designator");
3544      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3545    }
3546
3547    SourceLocation getDotLoc() const {
3548      assert(Kind == FieldDesignator && "Only valid on a field designator");
3549      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3550    }
3551
3552    SourceLocation getFieldLoc() const {
3553      assert(Kind == FieldDesignator && "Only valid on a field designator");
3554      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3555    }
3556
3557    SourceLocation getLBracketLoc() const {
3558      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3559             "Only valid on an array or array-range designator");
3560      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3561    }
3562
3563    SourceLocation getRBracketLoc() const {
3564      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3565             "Only valid on an array or array-range designator");
3566      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3567    }
3568
3569    SourceLocation getEllipsisLoc() const {
3570      assert(Kind == ArrayRangeDesignator &&
3571             "Only valid on an array-range designator");
3572      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3573    }
3574
3575    unsigned getFirstExprIndex() const {
3576      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3577             "Only valid on an array or array-range designator");
3578      return ArrayOrRange.Index;
3579    }
3580
3581    SourceLocation getStartLocation() const {
3582      if (Kind == FieldDesignator)
3583        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3584      else
3585        return getLBracketLoc();
3586    }
3587    SourceLocation getEndLocation() const {
3588      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3589    }
3590    SourceRange getSourceRange() const {
3591      return SourceRange(getStartLocation(), getEndLocation());
3592    }
3593  };
3594
3595  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3596                                    unsigned NumDesignators,
3597                                    Expr **IndexExprs, unsigned NumIndexExprs,
3598                                    SourceLocation EqualOrColonLoc,
3599                                    bool GNUSyntax, Expr *Init);
3600
3601  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3602
3603  /// @brief Returns the number of designators in this initializer.
3604  unsigned size() const { return NumDesignators; }
3605
3606  // Iterator access to the designators.
3607  typedef Designator* designators_iterator;
3608  designators_iterator designators_begin() { return Designators; }
3609  designators_iterator designators_end() {
3610    return Designators + NumDesignators;
3611  }
3612
3613  typedef std::reverse_iterator<designators_iterator>
3614          reverse_designators_iterator;
3615  reverse_designators_iterator designators_rbegin() {
3616    return reverse_designators_iterator(designators_end());
3617  }
3618  reverse_designators_iterator designators_rend() {
3619    return reverse_designators_iterator(designators_begin());
3620  }
3621
3622  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3623
3624  void setDesignators(ASTContext &C, const Designator *Desigs,
3625                      unsigned NumDesigs);
3626
3627  Expr *getArrayIndex(const Designator& D);
3628  Expr *getArrayRangeStart(const Designator& D);
3629  Expr *getArrayRangeEnd(const Designator& D);
3630
3631  /// @brief Retrieve the location of the '=' that precedes the
3632  /// initializer value itself, if present.
3633  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3634  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3635
3636  /// @brief Determines whether this designated initializer used the
3637  /// deprecated GNU syntax for designated initializers.
3638  bool usesGNUSyntax() const { return GNUSyntax; }
3639  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3640
3641  /// @brief Retrieve the initializer value.
3642  Expr *getInit() const {
3643    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3644  }
3645
3646  void setInit(Expr *init) {
3647    *child_begin() = init;
3648  }
3649
3650  /// \brief Retrieve the total number of subexpressions in this
3651  /// designated initializer expression, including the actual
3652  /// initialized value and any expressions that occur within array
3653  /// and array-range designators.
3654  unsigned getNumSubExprs() const { return NumSubExprs; }
3655
3656  Expr *getSubExpr(unsigned Idx) {
3657    assert(Idx < NumSubExprs && "Subscript out of range");
3658    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3659    Ptr += sizeof(DesignatedInitExpr);
3660    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3661  }
3662
3663  void setSubExpr(unsigned Idx, Expr *E) {
3664    assert(Idx < NumSubExprs && "Subscript out of range");
3665    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3666    Ptr += sizeof(DesignatedInitExpr);
3667    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3668  }
3669
3670  /// \brief Replaces the designator at index @p Idx with the series
3671  /// of designators in [First, Last).
3672  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3673                        const Designator *Last);
3674
3675  SourceRange getDesignatorsSourceRange() const;
3676
3677  SourceRange getSourceRange() const;
3678
3679  static bool classof(const Stmt *T) {
3680    return T->getStmtClass() == DesignatedInitExprClass;
3681  }
3682  static bool classof(const DesignatedInitExpr *) { return true; }
3683
3684  // Iterators
3685  child_range children() {
3686    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3687    return child_range(begin, begin + NumSubExprs);
3688  }
3689};
3690
3691/// \brief Represents an implicitly-generated value initialization of
3692/// an object of a given type.
3693///
3694/// Implicit value initializations occur within semantic initializer
3695/// list expressions (InitListExpr) as placeholders for subobject
3696/// initializations not explicitly specified by the user.
3697///
3698/// \see InitListExpr
3699class ImplicitValueInitExpr : public Expr {
3700public:
3701  explicit ImplicitValueInitExpr(QualType ty)
3702    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3703           false, false, false) { }
3704
3705  /// \brief Construct an empty implicit value initialization.
3706  explicit ImplicitValueInitExpr(EmptyShell Empty)
3707    : Expr(ImplicitValueInitExprClass, Empty) { }
3708
3709  static bool classof(const Stmt *T) {
3710    return T->getStmtClass() == ImplicitValueInitExprClass;
3711  }
3712  static bool classof(const ImplicitValueInitExpr *) { return true; }
3713
3714  SourceRange getSourceRange() const {
3715    return SourceRange();
3716  }
3717
3718  // Iterators
3719  child_range children() { return child_range(); }
3720};
3721
3722
3723class ParenListExpr : public Expr {
3724  Stmt **Exprs;
3725  unsigned NumExprs;
3726  SourceLocation LParenLoc, RParenLoc;
3727
3728public:
3729  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3730                unsigned numexprs, SourceLocation rparenloc);
3731
3732  /// \brief Build an empty paren list.
3733  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3734
3735  unsigned getNumExprs() const { return NumExprs; }
3736
3737  const Expr* getExpr(unsigned Init) const {
3738    assert(Init < getNumExprs() && "Initializer access out of range!");
3739    return cast_or_null<Expr>(Exprs[Init]);
3740  }
3741
3742  Expr* getExpr(unsigned Init) {
3743    assert(Init < getNumExprs() && "Initializer access out of range!");
3744    return cast_or_null<Expr>(Exprs[Init]);
3745  }
3746
3747  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3748
3749  SourceLocation getLParenLoc() const { return LParenLoc; }
3750  SourceLocation getRParenLoc() const { return RParenLoc; }
3751
3752  SourceRange getSourceRange() const {
3753    return SourceRange(LParenLoc, RParenLoc);
3754  }
3755  static bool classof(const Stmt *T) {
3756    return T->getStmtClass() == ParenListExprClass;
3757  }
3758  static bool classof(const ParenListExpr *) { return true; }
3759
3760  // Iterators
3761  child_range children() {
3762    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3763  }
3764
3765  friend class ASTStmtReader;
3766  friend class ASTStmtWriter;
3767};
3768
3769
3770/// \brief Represents a C1X generic selection.
3771///
3772/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3773/// expression, followed by one or more generic associations.  Each generic
3774/// association specifies a type name and an expression, or "default" and an
3775/// expression (in which case it is known as a default generic association).
3776/// The type and value of the generic selection are identical to those of its
3777/// result expression, which is defined as the expression in the generic
3778/// association with a type name that is compatible with the type of the
3779/// controlling expression, or the expression in the default generic association
3780/// if no types are compatible.  For example:
3781///
3782/// @code
3783/// _Generic(X, double: 1, float: 2, default: 3)
3784/// @endcode
3785///
3786/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3787/// or 3 if "hello".
3788///
3789/// As an extension, generic selections are allowed in C++, where the following
3790/// additional semantics apply:
3791///
3792/// Any generic selection whose controlling expression is type-dependent or
3793/// which names a dependent type in its association list is result-dependent,
3794/// which means that the choice of result expression is dependent.
3795/// Result-dependent generic associations are both type- and value-dependent.
3796class GenericSelectionExpr : public Expr {
3797  enum { CONTROLLING, END_EXPR };
3798  TypeSourceInfo **AssocTypes;
3799  Stmt **SubExprs;
3800  unsigned NumAssocs, ResultIndex;
3801  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3802
3803public:
3804  GenericSelectionExpr(ASTContext &Context,
3805                       SourceLocation GenericLoc, Expr *ControllingExpr,
3806                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3807                       unsigned NumAssocs, SourceLocation DefaultLoc,
3808                       SourceLocation RParenLoc,
3809                       bool ContainsUnexpandedParameterPack,
3810                       unsigned ResultIndex);
3811
3812  /// This constructor is used in the result-dependent case.
3813  GenericSelectionExpr(ASTContext &Context,
3814                       SourceLocation GenericLoc, Expr *ControllingExpr,
3815                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3816                       unsigned NumAssocs, SourceLocation DefaultLoc,
3817                       SourceLocation RParenLoc,
3818                       bool ContainsUnexpandedParameterPack);
3819
3820  explicit GenericSelectionExpr(EmptyShell Empty)
3821    : Expr(GenericSelectionExprClass, Empty) { }
3822
3823  unsigned getNumAssocs() const { return NumAssocs; }
3824
3825  SourceLocation getGenericLoc() const { return GenericLoc; }
3826  SourceLocation getDefaultLoc() const { return DefaultLoc; }
3827  SourceLocation getRParenLoc() const { return RParenLoc; }
3828
3829  const Expr *getAssocExpr(unsigned i) const {
3830    return cast<Expr>(SubExprs[END_EXPR+i]);
3831  }
3832  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
3833
3834  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
3835    return AssocTypes[i];
3836  }
3837  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
3838
3839  QualType getAssocType(unsigned i) const {
3840    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
3841      return TS->getType();
3842    else
3843      return QualType();
3844  }
3845
3846  const Expr *getControllingExpr() const {
3847    return cast<Expr>(SubExprs[CONTROLLING]);
3848  }
3849  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
3850
3851  /// Whether this generic selection is result-dependent.
3852  bool isResultDependent() const { return ResultIndex == -1U; }
3853
3854  /// The zero-based index of the result expression's generic association in
3855  /// the generic selection's association list.  Defined only if the
3856  /// generic selection is not result-dependent.
3857  unsigned getResultIndex() const {
3858    assert(!isResultDependent() && "Generic selection is result-dependent");
3859    return ResultIndex;
3860  }
3861
3862  /// The generic selection's result expression.  Defined only if the
3863  /// generic selection is not result-dependent.
3864  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
3865  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
3866
3867  SourceRange getSourceRange() const {
3868    return SourceRange(GenericLoc, RParenLoc);
3869  }
3870  static bool classof(const Stmt *T) {
3871    return T->getStmtClass() == GenericSelectionExprClass;
3872  }
3873  static bool classof(const GenericSelectionExpr *) { return true; }
3874
3875  child_range children() {
3876    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
3877  }
3878
3879  friend class ASTStmtReader;
3880};
3881
3882//===----------------------------------------------------------------------===//
3883// Clang Extensions
3884//===----------------------------------------------------------------------===//
3885
3886
3887/// ExtVectorElementExpr - This represents access to specific elements of a
3888/// vector, and may occur on the left hand side or right hand side.  For example
3889/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3890///
3891/// Note that the base may have either vector or pointer to vector type, just
3892/// like a struct field reference.
3893///
3894class ExtVectorElementExpr : public Expr {
3895  Stmt *Base;
3896  IdentifierInfo *Accessor;
3897  SourceLocation AccessorLoc;
3898public:
3899  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3900                       IdentifierInfo &accessor, SourceLocation loc)
3901    : Expr(ExtVectorElementExprClass, ty, VK,
3902           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3903           base->isTypeDependent(), base->isValueDependent(),
3904           base->containsUnexpandedParameterPack()),
3905      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3906
3907  /// \brief Build an empty vector element expression.
3908  explicit ExtVectorElementExpr(EmptyShell Empty)
3909    : Expr(ExtVectorElementExprClass, Empty) { }
3910
3911  const Expr *getBase() const { return cast<Expr>(Base); }
3912  Expr *getBase() { return cast<Expr>(Base); }
3913  void setBase(Expr *E) { Base = E; }
3914
3915  IdentifierInfo &getAccessor() const { return *Accessor; }
3916  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3917
3918  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3919  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3920
3921  /// getNumElements - Get the number of components being selected.
3922  unsigned getNumElements() const;
3923
3924  /// containsDuplicateElements - Return true if any element access is
3925  /// repeated.
3926  bool containsDuplicateElements() const;
3927
3928  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3929  /// aggregate Constant of ConstantInt(s).
3930  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3931
3932  SourceRange getSourceRange() const {
3933    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3934  }
3935
3936  /// isArrow - Return true if the base expression is a pointer to vector,
3937  /// return false if the base expression is a vector.
3938  bool isArrow() const;
3939
3940  static bool classof(const Stmt *T) {
3941    return T->getStmtClass() == ExtVectorElementExprClass;
3942  }
3943  static bool classof(const ExtVectorElementExpr *) { return true; }
3944
3945  // Iterators
3946  child_range children() { return child_range(&Base, &Base+1); }
3947};
3948
3949
3950/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3951/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3952class BlockExpr : public Expr {
3953protected:
3954  BlockDecl *TheBlock;
3955public:
3956  BlockExpr(BlockDecl *BD, QualType ty)
3957    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3958           ty->isDependentType(), false, false),
3959      TheBlock(BD) {}
3960
3961  /// \brief Build an empty block expression.
3962  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3963
3964  const BlockDecl *getBlockDecl() const { return TheBlock; }
3965  BlockDecl *getBlockDecl() { return TheBlock; }
3966  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3967
3968  // Convenience functions for probing the underlying BlockDecl.
3969  SourceLocation getCaretLocation() const;
3970  const Stmt *getBody() const;
3971  Stmt *getBody();
3972
3973  SourceRange getSourceRange() const {
3974    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3975  }
3976
3977  /// getFunctionType - Return the underlying function type for this block.
3978  const FunctionType *getFunctionType() const;
3979
3980  static bool classof(const Stmt *T) {
3981    return T->getStmtClass() == BlockExprClass;
3982  }
3983  static bool classof(const BlockExpr *) { return true; }
3984
3985  // Iterators
3986  child_range children() { return child_range(); }
3987};
3988
3989/// BlockDeclRefExpr - A reference to a local variable declared in an
3990/// enclosing scope.
3991class BlockDeclRefExpr : public Expr {
3992  VarDecl *D;
3993  SourceLocation Loc;
3994  bool IsByRef : 1;
3995  bool ConstQualAdded : 1;
3996public:
3997  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3998                   SourceLocation l, bool ByRef, bool constAdded = false);
3999
4000  // \brief Build an empty reference to a declared variable in a
4001  // block.
4002  explicit BlockDeclRefExpr(EmptyShell Empty)
4003    : Expr(BlockDeclRefExprClass, Empty) { }
4004
4005  VarDecl *getDecl() { return D; }
4006  const VarDecl *getDecl() const { return D; }
4007  void setDecl(VarDecl *VD) { D = VD; }
4008
4009  SourceLocation getLocation() const { return Loc; }
4010  void setLocation(SourceLocation L) { Loc = L; }
4011
4012  SourceRange getSourceRange() const { return SourceRange(Loc); }
4013
4014  bool isByRef() const { return IsByRef; }
4015  void setByRef(bool BR) { IsByRef = BR; }
4016
4017  bool isConstQualAdded() const { return ConstQualAdded; }
4018  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4019
4020  static bool classof(const Stmt *T) {
4021    return T->getStmtClass() == BlockDeclRefExprClass;
4022  }
4023  static bool classof(const BlockDeclRefExpr *) { return true; }
4024
4025  // Iterators
4026  child_range children() { return child_range(); }
4027};
4028
4029}  // end namespace clang
4030
4031#endif
4032