Expr.h revision 8ecdb65716cd7914ffb2eeee993fa9039fcd31e8
1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//                     The LLVM Compiler Infrastructure
4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is distributed under the University of Illinois Open Source
6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// License. See LICENSE.TXT for details.
7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//===----------------------------------------------------------------------===//
9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//  This file defines the Expr interface and subclasses.
11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//===----------------------------------------------------------------------===//
13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#ifndef LLVM_CLANG_AST_EXPR_H
15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#define LLVM_CLANG_AST_EXPR_H
16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "clang/AST/APValue.h"
18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "clang/AST/Stmt.h"
19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "clang/AST/Type.h"
20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "clang/AST/DeclAccessPair.h"
21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "clang/AST/ASTVector.h"
22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "clang/AST/UsuallyTinyPtrVector.h"
23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "llvm/ADT/APSInt.h"
24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "llvm/ADT/APFloat.h"
25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "llvm/ADT/SmallVector.h"
26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "llvm/ADT/StringRef.h"
27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include <vector>
28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace clang {
30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class ASTContext;
31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class APValue;
32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class Decl;
33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class IdentifierInfo;
34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class ParmVarDecl;
35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class NamedDecl;
36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class ValueDecl;
37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class BlockDecl;
38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class CXXBaseSpecifier;
39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class CXXOperatorCallExpr;
40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class CXXMemberCallExpr;
41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class TemplateArgumentLoc;
42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  class TemplateArgumentListInfo;
43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/// \brief A simple array of base specifiers.
45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtypedef UsuallyTinyPtrVector<const CXXBaseSpecifier> CXXBaseSpecifierArray;
46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/// Expr - This represents one expression.  Note that Expr's are subclasses of
48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/// Stmt.  This allows an expression to be transparently used any place a Stmt
49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/// is required.
50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath///
51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathclass Expr : public Stmt {
52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  QualType TR;
53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathprotected:
55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// TypeDependent - Whether this expression is type-dependent
56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// (C++ [temp.dep.expr]).
57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool TypeDependent : 1;
58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// ValueDependent - Whether this expression is value-dependent
60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// (C++ [temp.dep.constexpr]).
61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool ValueDependent : 1;
62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Expr(StmtClass SC, QualType T, bool TD, bool VD)
64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    setType(T);
66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Construct an empty expression.
69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathpublic:
72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Increases the reference count for this expression.
73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///
74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// Invoke the Retain() operation when this expression
75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// is being shared by another owner.
76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Expr *Retain() {
77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Stmt::Retain();
78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return this;
79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  QualType getType() const { return TR; }
82c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  void setType(QualType t) {
83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // In C++, the type of an expression is always adjusted so that it
84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // will not have reference type an expression will never have
85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // reference type (C++ [expr]p6). Use
86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // QualType::getNonReferenceType() to retrieve the non-reference
87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // type. Additionally, inspect Expr::isLvalue to determine whether
88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // an expression that is adjusted in this manner should be
89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // considered an lvalue.
90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    assert((t.isNull() || !t->isReferenceType()) &&
91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath           "Expressions can't have reference type");
92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    TR = t;
94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isValueDependent - Determines whether this expression is
97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// array bound of "Chars" in the following example is
99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// value-dependent.
100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// @code
101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// template<int Size, char (&Chars)[Size]> struct meta_string;
102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// @endcode
103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isValueDependent() const { return ValueDependent; }
104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Set whether this expression is value-dependent or not.
106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  void setValueDependent(bool VD) { ValueDependent = VD; }
107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isTypeDependent - Determines whether this expression is
109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// type-dependent (C++ [temp.dep.expr]), which means that its type
110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// could change from one template instantiation to the next. For
111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// example, the expressions "x" and "x + y" are type-dependent in
112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// the following code, but "y" is not type-dependent:
113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// @code
114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// template<typename T>
115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// void add(T x, int y) {
116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///   x + y;
117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// }
118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// @endcode
119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isTypeDependent() const { return TypeDependent; }
120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Set whether this expression is type-dependent or not.
122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  void setTypeDependent(bool TD) { TypeDependent = TD; }
123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// SourceLocation tokens are not useful in isolation - they are low level
125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// value objects created/interpreted by SourceManager. We assume AST
126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// clients will have a pointer to the respective SourceManager.
127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  virtual SourceRange getSourceRange() const = 0;
128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// getExprLoc - Return the preferred location for the arrow when diagnosing
130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// a problem with a generic expression.
131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  virtual SourceLocation getExprLoc() const { return getLocStart(); }
132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isUnusedResultAWarning - Return true if this immediate expression should
134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// with location to warn on and the source range[s] to report with the
136c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// warning.
137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                              SourceRange &R2, ASTContext &Ctx) const;
139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// incomplete type other than void. Nonarray expressions that can be lvalues:
142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - name, where name must be a variable
143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - e[i]
144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - (e), where e must be an lvalue
145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - e.name, where e must be an lvalue
146c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - e->name
147c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - *e, the type of e cannot be a function type
148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - string-constant
149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - reference type [C++ [expr]]
150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///
152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum isLvalueResult {
153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    LV_Valid,
154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    LV_NotObjectType,
155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    LV_IncompleteVoidType,
156c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    LV_DuplicateVectorComponents,
157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    LV_InvalidExpression,
158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    LV_MemberFunction,
159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    LV_SubObjCPropertySetting,
160c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    LV_ClassTemporary
161c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  };
162c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  isLvalueResult isLvalue(ASTContext &Ctx) const;
163c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
164c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Same as above, but excluding checks for non-object and void types in C
165c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
166c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
167c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
168c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// does not have an incomplete type, does not have a const-qualified type,
169c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// and if it is a structure or union, does not have any member (including,
170c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// recursively, any member or element of all contained aggregates or unions)
171c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// with a const-qualified type.
172c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///
173c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \param Loc [in] [out] - A source location which *may* be filled
174c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// in with the location of the expression making this a
175c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// non-modifiable lvalue, if specified.
176c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum isModifiableLvalueResult {
177c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_Valid,
178c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_NotObjectType,
179c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_IncompleteVoidType,
180c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_DuplicateVectorComponents,
181c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_InvalidExpression,
182c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
183c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_IncompleteType,
184c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_ConstQualified,
185c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_ArrayType,
186c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_NotBlockQualified,
187c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_ReadonlyProperty,
188c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_NoSetterProperty,
189c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_MemberFunction,
190c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_SubObjCPropertySetting,
191c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MLV_ClassTemporary
192c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  };
193c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
194c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                                              SourceLocation *Loc = 0) const;
195c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
196c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief If this expression refers to a bit-field, retrieve the
197c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// declaration of that bit-field.
198c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  FieldDecl *getBitField();
199c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
200c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const FieldDecl *getBitField() const {
201c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return const_cast<Expr*>(this)->getBitField();
202c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
203c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
204c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Returns whether this expression refers to a vector element.
205c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool refersToVectorElement() const;
206c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
207c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
208c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
209c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// but also int expressions which are produced by things like comparisons in
210c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// C.
211c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isKnownToHaveBooleanValue() const;
212c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
213c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isIntegerConstantExpr - Return true if this expression is a valid integer
214c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// constant expression, and, if so, return its value in Result.  If not a
215c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// valid i-c-e, return false and fill in Loc (if specified) with the location
216c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// of the invalid expression.
217c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
218c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                             SourceLocation *Loc = 0,
219c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                             bool isEvaluated = true) const;
220c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
221c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    llvm::APSInt X;
222c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return isIntegerConstantExpr(X, Ctx, Loc);
223c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
224c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isConstantInitializer - Returns true if this expression is a constant
225c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// initializer, which can be emitted at compile-time.
226c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isConstantInitializer(ASTContext &Ctx) const;
227c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
228c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// EvalResult is a struct with detailed info about an evaluated expression.
229c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  struct EvalResult {
230c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// Val - This is the value the expression can be folded to.
231c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    APValue Val;
232c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
233c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// HasSideEffects - Whether the evaluated expression has side effects.
234c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// For example, (f() && 0) can be folded, but it still has side effects.
235c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    bool HasSideEffects;
236c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
237c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// Diag - If the expression is unfoldable, then Diag contains a note
238c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
239c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// position for the error, and DiagExpr is the expression that caused
240c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// the error.
241c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// If the expression is foldable, but not an integer constant expression,
242c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// Diag contains a note diagnostic that describes why it isn't an integer
243c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// constant expression. If the expression *is* an integer constant
244c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// expression, then Diag will be zero.
245c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    unsigned Diag;
246c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    const Expr *DiagExpr;
247c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    SourceLocation DiagLoc;
248c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
249c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
250c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  };
251c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
252c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// Evaluate - Return true if this is a constant which we can fold using
253c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// any crazy technique (that has nothing to do with language standards) that
254c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// we want to.  If this function returns true, it returns the folded constant
255c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// in Result.
256c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
257c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
258c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
259c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// stack based objects.
260c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
261c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
262c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// EvaluateAsBooleanCondition - Return true if this is a constant
263c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// which we we can fold and convert to a boolean condition using
264c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// any crazy technique that we want to.
265c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
266c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
267c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isEvaluatable - Call Evaluate to see if this expression can be constant
268c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// folded, but discard the result.
269c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isEvaluatable(ASTContext &Ctx) const;
270c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
271c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// HasSideEffects - This routine returns true for all those expressions
272c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// which must be evaluated each time and must not be optimization away
273c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// or evaluated at compile time. Example is a function call, volatile
274c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// variable read.
275c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool HasSideEffects(ASTContext &Ctx) const;
276c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
277c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
278c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// must be called on an expression that constant folds to an integer.
279c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
280c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
281c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
282c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// with link time known address.
283c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
284c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
285c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
286c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// also succeeds on stack based, immutable address lvalues.
287c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
288c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
289c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Enumeration used to describe how \c isNullPointerConstant()
290c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// should cope with value-dependent expressions.
291c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum NullPointerConstantValueDependence {
292c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// \brief Specifies that the expression should never be value-dependent.
293c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    NPC_NeverValueDependent = 0,
294c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
295c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// \brief Specifies that a value-dependent expression of integral or
296c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// dependent type should be considered a null pointer constant.
297c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    NPC_ValueDependentIsNull,
298c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
299c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// \brief Specifies that a value-dependent expression should be considered
300c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /// to never be a null pointer constant.
301c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    NPC_ValueDependentIsNotNull
302c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  };
303c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
304c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
305c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// integer constant expression with the value zero, or if this is one that is
306c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// cast to void*.
307c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isNullPointerConstant(ASTContext &Ctx,
308c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                             NullPointerConstantValueDependence NPC) const;
309c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
310c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
311c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// write barrier.
312c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isOBJCGCCandidate(ASTContext &Ctx) const;
313c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
314c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
315c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  its subexpression.  If that subexpression is also a ParenExpr,
316c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  then this method recursively returns its subexpression, and so forth.
317c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///  Otherwise, the method returns the current Expr.
318c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Expr *IgnoreParens();
319c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
320c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
321c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// or CastExprs, returning their operand.
322c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Expr *IgnoreParenCasts();
323c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
324c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
325c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// value (including ptr->int casts of the same size).  Strip off any
326c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// ParenExpr or CastExprs, returning their operand.
327c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
328c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
329c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Determine whether this expression is a default function argument.
330c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  ///
331c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// Default arguments are implicitly generated in the abstract syntax tree
332c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// by semantic analysis for function calls, object constructions, etc. in
3337faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
3347faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez  /// this routine also looks through any implicit casts to determine whether
335c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// the expression is a default argument.
336c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isDefaultArgument() const;
337c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
338c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Determine whether this expression directly creates a
339c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// temporary object (of class type).
340c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
341c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
342c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief If this expression directly creates a temporary object of
3437faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez  /// class type, return the expression that actually constructs that
3447faaa9f3f0df9d23790277834d426c3d992ac3baCarlos Hernandez  /// temporary object.
345c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Expr *getTemporaryObject() const;
346c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
347c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Expr *IgnoreParens() const {
348c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return const_cast<Expr*>(this)->IgnoreParens();
349c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
350c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Expr *IgnoreParenCasts() const {
351c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return const_cast<Expr*>(this)->IgnoreParenCasts();
352c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
353c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
354c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
355c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
356c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
357c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
358c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
359c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
360c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static bool classof(const Stmt *T) {
361c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return T->getStmtClass() >= firstExprConstant &&
362c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath           T->getStmtClass() <= lastExprConstant;
363c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
364c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static bool classof(const Expr *) { return true; }
365c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
366c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
367c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
368c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//===----------------------------------------------------------------------===//
369c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Primary Expressions.
370c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//===----------------------------------------------------------------------===//
371c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
372c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/// \brief Represents the qualifier that may precede a C++ name, e.g., the
373c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/// "std::" in "std::sort".
374c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct NameQualifier {
375c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief The nested name specifier.
376c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  NestedNameSpecifier *NNS;
377c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
378c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief The source range covered by the nested name specifier.
379c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  SourceRange Range;
380c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
381c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
382c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/// \brief Represents an explicit template argument list in C++, e.g.,
383c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/// the "<int>" in "sort<int>".
384c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct ExplicitTemplateArgumentList {
385c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief The source location of the left angle bracket ('<');
386c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  SourceLocation LAngleLoc;
387c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
388c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief The source location of the right angle bracket ('>');
389c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  SourceLocation RAngleLoc;
390c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
391c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief The number of template arguments in TemplateArgs.
392c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// The actual template arguments (if any) are stored after the
393c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// ExplicitTemplateArgumentList structure.
394c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  unsigned NumTemplateArgs;
395c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
396c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Retrieve the template arguments
397c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  TemplateArgumentLoc *getTemplateArgs() {
398c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
399c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
400c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
401c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  /// \brief Retrieve the template arguments
402c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const TemplateArgumentLoc *getTemplateArgs() const {
403c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
404c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
405c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
406c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  void initializeFrom(const TemplateArgumentListInfo &List);
407c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  void copyInto(TemplateArgumentListInfo &List) const;
408c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
409};
410
411/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
412/// enum, etc.
413class DeclRefExpr : public Expr {
414  enum {
415    // Flag on DecoratedD that specifies when this declaration reference
416    // expression has a C++ nested-name-specifier.
417    HasQualifierFlag = 0x01,
418    // Flag on DecoratedD that specifies when this declaration reference
419    // expression has an explicit C++ template argument list.
420    HasExplicitTemplateArgumentListFlag = 0x02
421  };
422
423  // DecoratedD - The declaration that we are referencing, plus two bits to
424  // indicate whether (1) the declaration's name was explicitly qualified and
425  // (2) the declaration's name was followed by an explicit template
426  // argument list.
427  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
428
429  // Loc - The location of the declaration name itself.
430  SourceLocation Loc;
431
432  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
433  NameQualifier *getNameQualifier() {
434    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
435      return 0;
436
437    return reinterpret_cast<NameQualifier *> (this + 1);
438  }
439
440  /// \brief Retrieve the qualifier that preceded the member name, if any.
441  const NameQualifier *getNameQualifier() const {
442    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
443  }
444
445  /// \brief Retrieve the explicit template argument list that followed the
446  /// member template name, if any.
447  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
448    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
449      return 0;
450
451    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
452      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
453
454    return reinterpret_cast<ExplicitTemplateArgumentList *>(
455                                                      getNameQualifier() + 1);
456  }
457
458  /// \brief Retrieve the explicit template argument list that followed the
459  /// member template name, if any.
460  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
461    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
462  }
463
464  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
465              ValueDecl *D, SourceLocation NameLoc,
466              const TemplateArgumentListInfo *TemplateArgs,
467              QualType T);
468
469protected:
470  /// \brief Computes the type- and value-dependence flags for this
471  /// declaration reference expression.
472  void computeDependence();
473
474  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
475    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
476    computeDependence();
477  }
478
479public:
480  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
481    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
482    computeDependence();
483  }
484
485  /// \brief Construct an empty declaration reference expression.
486  explicit DeclRefExpr(EmptyShell Empty)
487    : Expr(DeclRefExprClass, Empty) { }
488
489  static DeclRefExpr *Create(ASTContext &Context,
490                             NestedNameSpecifier *Qualifier,
491                             SourceRange QualifierRange,
492                             ValueDecl *D,
493                             SourceLocation NameLoc,
494                             QualType T,
495                             const TemplateArgumentListInfo *TemplateArgs = 0);
496
497  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
498  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
499  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
500
501  SourceLocation getLocation() const { return Loc; }
502  void setLocation(SourceLocation L) { Loc = L; }
503  virtual SourceRange getSourceRange() const;
504
505  /// \brief Determine whether this declaration reference was preceded by a
506  /// C++ nested-name-specifier, e.g., \c N::foo.
507  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
508
509  /// \brief If the name was qualified, retrieves the source range of
510  /// the nested-name-specifier that precedes the name. Otherwise,
511  /// returns an empty source range.
512  SourceRange getQualifierRange() const {
513    if (!hasQualifier())
514      return SourceRange();
515
516    return getNameQualifier()->Range;
517  }
518
519  /// \brief If the name was qualified, retrieves the nested-name-specifier
520  /// that precedes the name. Otherwise, returns NULL.
521  NestedNameSpecifier *getQualifier() const {
522    if (!hasQualifier())
523      return 0;
524
525    return getNameQualifier()->NNS;
526  }
527
528  /// \brief Determines whether this member expression actually had a C++
529  /// template argument list explicitly specified, e.g., x.f<int>.
530  bool hasExplicitTemplateArgumentList() const {
531    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
532  }
533
534  /// \brief Copies the template arguments (if present) into the given
535  /// structure.
536  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
537    if (hasExplicitTemplateArgumentList())
538      getExplicitTemplateArgumentList()->copyInto(List);
539  }
540
541  /// \brief Retrieve the location of the left angle bracket following the
542  /// member name ('<'), if any.
543  SourceLocation getLAngleLoc() const {
544    if (!hasExplicitTemplateArgumentList())
545      return SourceLocation();
546
547    return getExplicitTemplateArgumentList()->LAngleLoc;
548  }
549
550  /// \brief Retrieve the template arguments provided as part of this
551  /// template-id.
552  const TemplateArgumentLoc *getTemplateArgs() const {
553    if (!hasExplicitTemplateArgumentList())
554      return 0;
555
556    return getExplicitTemplateArgumentList()->getTemplateArgs();
557  }
558
559  /// \brief Retrieve the number of template arguments provided as part of this
560  /// template-id.
561  unsigned getNumTemplateArgs() const {
562    if (!hasExplicitTemplateArgumentList())
563      return 0;
564
565    return getExplicitTemplateArgumentList()->NumTemplateArgs;
566  }
567
568  /// \brief Retrieve the location of the right angle bracket following the
569  /// template arguments ('>').
570  SourceLocation getRAngleLoc() const {
571    if (!hasExplicitTemplateArgumentList())
572      return SourceLocation();
573
574    return getExplicitTemplateArgumentList()->RAngleLoc;
575  }
576
577  static bool classof(const Stmt *T) {
578    return T->getStmtClass() == DeclRefExprClass;
579  }
580  static bool classof(const DeclRefExpr *) { return true; }
581
582  // Iterators
583  virtual child_iterator child_begin();
584  virtual child_iterator child_end();
585};
586
587/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
588class PredefinedExpr : public Expr {
589public:
590  enum IdentType {
591    Func,
592    Function,
593    PrettyFunction,
594    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
595    /// 'virtual' keyword is omitted for virtual member functions.
596    PrettyFunctionNoVirtual
597  };
598
599private:
600  SourceLocation Loc;
601  IdentType Type;
602public:
603  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
604    : Expr(PredefinedExprClass, type, type->isDependentType(),
605           type->isDependentType()), Loc(l), Type(IT) {}
606
607  /// \brief Construct an empty predefined expression.
608  explicit PredefinedExpr(EmptyShell Empty)
609    : Expr(PredefinedExprClass, Empty) { }
610
611  IdentType getIdentType() const { return Type; }
612  void setIdentType(IdentType IT) { Type = IT; }
613
614  SourceLocation getLocation() const { return Loc; }
615  void setLocation(SourceLocation L) { Loc = L; }
616
617  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
618
619  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
620
621  static bool classof(const Stmt *T) {
622    return T->getStmtClass() == PredefinedExprClass;
623  }
624  static bool classof(const PredefinedExpr *) { return true; }
625
626  // Iterators
627  virtual child_iterator child_begin();
628  virtual child_iterator child_end();
629};
630
631class IntegerLiteral : public Expr {
632  llvm::APInt Value;
633  SourceLocation Loc;
634public:
635  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
636  // or UnsignedLongLongTy
637  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
638    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
639    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
640  }
641
642  /// \brief Construct an empty integer literal.
643  explicit IntegerLiteral(EmptyShell Empty)
644    : Expr(IntegerLiteralClass, Empty) { }
645
646  const llvm::APInt &getValue() const { return Value; }
647  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
648
649  /// \brief Retrieve the location of the literal.
650  SourceLocation getLocation() const { return Loc; }
651
652  void setValue(const llvm::APInt &Val) { Value = Val; }
653  void setLocation(SourceLocation Location) { Loc = Location; }
654
655  static bool classof(const Stmt *T) {
656    return T->getStmtClass() == IntegerLiteralClass;
657  }
658  static bool classof(const IntegerLiteral *) { return true; }
659
660  // Iterators
661  virtual child_iterator child_begin();
662  virtual child_iterator child_end();
663};
664
665class CharacterLiteral : public Expr {
666  unsigned Value;
667  SourceLocation Loc;
668  bool IsWide;
669public:
670  // type should be IntTy
671  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
672    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
673      IsWide(iswide) {
674  }
675
676  /// \brief Construct an empty character literal.
677  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
678
679  SourceLocation getLocation() const { return Loc; }
680  bool isWide() const { return IsWide; }
681
682  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
683
684  unsigned getValue() const { return Value; }
685
686  void setLocation(SourceLocation Location) { Loc = Location; }
687  void setWide(bool W) { IsWide = W; }
688  void setValue(unsigned Val) { Value = Val; }
689
690  static bool classof(const Stmt *T) {
691    return T->getStmtClass() == CharacterLiteralClass;
692  }
693  static bool classof(const CharacterLiteral *) { return true; }
694
695  // Iterators
696  virtual child_iterator child_begin();
697  virtual child_iterator child_end();
698};
699
700class FloatingLiteral : public Expr {
701  llvm::APFloat Value;
702  bool IsExact : 1;
703  SourceLocation Loc;
704public:
705  FloatingLiteral(const llvm::APFloat &V, bool isexact,
706                  QualType Type, SourceLocation L)
707    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
708      IsExact(isexact), Loc(L) {}
709
710  /// \brief Construct an empty floating-point literal.
711  explicit FloatingLiteral(EmptyShell Empty)
712    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
713
714  const llvm::APFloat &getValue() const { return Value; }
715  void setValue(const llvm::APFloat &Val) { Value = Val; }
716
717  bool isExact() const { return IsExact; }
718  void setExact(bool E) { IsExact = E; }
719
720  /// getValueAsApproximateDouble - This returns the value as an inaccurate
721  /// double.  Note that this may cause loss of precision, but is useful for
722  /// debugging dumps, etc.
723  double getValueAsApproximateDouble() const;
724
725  SourceLocation getLocation() const { return Loc; }
726  void setLocation(SourceLocation L) { Loc = L; }
727
728  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
729
730  static bool classof(const Stmt *T) {
731    return T->getStmtClass() == FloatingLiteralClass;
732  }
733  static bool classof(const FloatingLiteral *) { return true; }
734
735  // Iterators
736  virtual child_iterator child_begin();
737  virtual child_iterator child_end();
738};
739
740/// ImaginaryLiteral - We support imaginary integer and floating point literals,
741/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
742/// IntegerLiteral classes.  Instances of this class always have a Complex type
743/// whose element type matches the subexpression.
744///
745class ImaginaryLiteral : public Expr {
746  Stmt *Val;
747public:
748  ImaginaryLiteral(Expr *val, QualType Ty)
749    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
750
751  /// \brief Build an empty imaginary literal.
752  explicit ImaginaryLiteral(EmptyShell Empty)
753    : Expr(ImaginaryLiteralClass, Empty) { }
754
755  const Expr *getSubExpr() const { return cast<Expr>(Val); }
756  Expr *getSubExpr() { return cast<Expr>(Val); }
757  void setSubExpr(Expr *E) { Val = E; }
758
759  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
760  static bool classof(const Stmt *T) {
761    return T->getStmtClass() == ImaginaryLiteralClass;
762  }
763  static bool classof(const ImaginaryLiteral *) { return true; }
764
765  // Iterators
766  virtual child_iterator child_begin();
767  virtual child_iterator child_end();
768};
769
770/// StringLiteral - This represents a string literal expression, e.g. "foo"
771/// or L"bar" (wide strings).  The actual string is returned by getStrData()
772/// is NOT null-terminated, and the length of the string is determined by
773/// calling getByteLength().  The C type for a string is always a
774/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
775/// not.
776///
777/// Note that strings in C can be formed by concatenation of multiple string
778/// literal pptokens in translation phase #6.  This keeps track of the locations
779/// of each of these pieces.
780///
781/// Strings in C can also be truncated and extended by assigning into arrays,
782/// e.g. with constructs like:
783///   char X[2] = "foobar";
784/// In this case, getByteLength() will return 6, but the string literal will
785/// have type "char[2]".
786class StringLiteral : public Expr {
787  const char *StrData;
788  unsigned ByteLength;
789  bool IsWide;
790  unsigned NumConcatenated;
791  SourceLocation TokLocs[1];
792
793  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
794
795protected:
796  virtual void DoDestroy(ASTContext &C);
797
798public:
799  /// This is the "fully general" constructor that allows representation of
800  /// strings formed from multiple concatenated tokens.
801  static StringLiteral *Create(ASTContext &C, const char *StrData,
802                               unsigned ByteLength, bool Wide, QualType Ty,
803                               const SourceLocation *Loc, unsigned NumStrs);
804
805  /// Simple constructor for string literals made from one token.
806  static StringLiteral *Create(ASTContext &C, const char *StrData,
807                               unsigned ByteLength,
808                               bool Wide, QualType Ty, SourceLocation Loc) {
809    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
810  }
811
812  /// \brief Construct an empty string literal.
813  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
814
815  llvm::StringRef getString() const {
816    return llvm::StringRef(StrData, ByteLength);
817  }
818  // FIXME: These are deprecated, replace with StringRef.
819  const char *getStrData() const { return StrData; }
820  unsigned getByteLength() const { return ByteLength; }
821
822  /// \brief Sets the string data to the given string data.
823  void setString(ASTContext &C, llvm::StringRef Str);
824
825  bool isWide() const { return IsWide; }
826  void setWide(bool W) { IsWide = W; }
827
828  bool containsNonAsciiOrNull() const {
829    llvm::StringRef Str = getString();
830    for (unsigned i = 0, e = Str.size(); i != e; ++i)
831      if (!isascii(Str[i]) || !Str[i])
832        return true;
833    return false;
834  }
835  /// getNumConcatenated - Get the number of string literal tokens that were
836  /// concatenated in translation phase #6 to form this string literal.
837  unsigned getNumConcatenated() const { return NumConcatenated; }
838
839  SourceLocation getStrTokenLoc(unsigned TokNum) const {
840    assert(TokNum < NumConcatenated && "Invalid tok number");
841    return TokLocs[TokNum];
842  }
843  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
844    assert(TokNum < NumConcatenated && "Invalid tok number");
845    TokLocs[TokNum] = L;
846  }
847
848  typedef const SourceLocation *tokloc_iterator;
849  tokloc_iterator tokloc_begin() const { return TokLocs; }
850  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
851
852  virtual SourceRange getSourceRange() const {
853    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
854  }
855  static bool classof(const Stmt *T) {
856    return T->getStmtClass() == StringLiteralClass;
857  }
858  static bool classof(const StringLiteral *) { return true; }
859
860  // Iterators
861  virtual child_iterator child_begin();
862  virtual child_iterator child_end();
863};
864
865/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
866/// AST node is only formed if full location information is requested.
867class ParenExpr : public Expr {
868  SourceLocation L, R;
869  Stmt *Val;
870public:
871  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
872    : Expr(ParenExprClass, val->getType(),
873           val->isTypeDependent(), val->isValueDependent()),
874      L(l), R(r), Val(val) {}
875
876  /// \brief Construct an empty parenthesized expression.
877  explicit ParenExpr(EmptyShell Empty)
878    : Expr(ParenExprClass, Empty) { }
879
880  const Expr *getSubExpr() const { return cast<Expr>(Val); }
881  Expr *getSubExpr() { return cast<Expr>(Val); }
882  void setSubExpr(Expr *E) { Val = E; }
883
884  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
885
886  /// \brief Get the location of the left parentheses '('.
887  SourceLocation getLParen() const { return L; }
888  void setLParen(SourceLocation Loc) { L = Loc; }
889
890  /// \brief Get the location of the right parentheses ')'.
891  SourceLocation getRParen() const { return R; }
892  void setRParen(SourceLocation Loc) { R = Loc; }
893
894  static bool classof(const Stmt *T) {
895    return T->getStmtClass() == ParenExprClass;
896  }
897  static bool classof(const ParenExpr *) { return true; }
898
899  // Iterators
900  virtual child_iterator child_begin();
901  virtual child_iterator child_end();
902};
903
904
905/// UnaryOperator - This represents the unary-expression's (except sizeof and
906/// alignof), the postinc/postdec operators from postfix-expression, and various
907/// extensions.
908///
909/// Notes on various nodes:
910///
911/// Real/Imag - These return the real/imag part of a complex operand.  If
912///   applied to a non-complex value, the former returns its operand and the
913///   later returns zero in the type of the operand.
914///
915/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
916///   subexpression is a compound literal with the various MemberExpr and
917///   ArraySubscriptExpr's applied to it. (This is only used in C)
918///
919class UnaryOperator : public Expr {
920public:
921  // Note that additions to this should also update the StmtVisitor class.
922  enum Opcode {
923    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
924    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
925    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
926    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
927    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
928    Real, Imag,       // "__real expr"/"__imag expr" Extension.
929    Extension,        // __extension__ marker.
930    OffsetOf          // __builtin_offsetof
931  };
932private:
933  Stmt *Val;
934  Opcode Opc;
935  SourceLocation Loc;
936public:
937
938  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
939    : Expr(UnaryOperatorClass, type,
940           input->isTypeDependent() && opc != OffsetOf,
941           input->isValueDependent()),
942      Val(input), Opc(opc), Loc(l) {}
943
944  /// \brief Build an empty unary operator.
945  explicit UnaryOperator(EmptyShell Empty)
946    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
947
948  Opcode getOpcode() const { return Opc; }
949  void setOpcode(Opcode O) { Opc = O; }
950
951  Expr *getSubExpr() const { return cast<Expr>(Val); }
952  void setSubExpr(Expr *E) { Val = E; }
953
954  /// getOperatorLoc - Return the location of the operator.
955  SourceLocation getOperatorLoc() const { return Loc; }
956  void setOperatorLoc(SourceLocation L) { Loc = L; }
957
958  /// isPostfix - Return true if this is a postfix operation, like x++.
959  static bool isPostfix(Opcode Op) {
960    return Op == PostInc || Op == PostDec;
961  }
962
963  /// isPostfix - Return true if this is a prefix operation, like --x.
964  static bool isPrefix(Opcode Op) {
965    return Op == PreInc || Op == PreDec;
966  }
967
968  bool isPrefix() const { return isPrefix(Opc); }
969  bool isPostfix() const { return isPostfix(Opc); }
970  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
971  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
972  bool isOffsetOfOp() const { return Opc == OffsetOf; }
973  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
974  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
975
976  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
977  /// corresponds to, e.g. "sizeof" or "[pre]++"
978  static const char *getOpcodeStr(Opcode Op);
979
980  /// \brief Retrieve the unary opcode that corresponds to the given
981  /// overloaded operator.
982  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
983
984  /// \brief Retrieve the overloaded operator kind that corresponds to
985  /// the given unary opcode.
986  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
987
988  virtual SourceRange getSourceRange() const {
989    if (isPostfix())
990      return SourceRange(Val->getLocStart(), Loc);
991    else
992      return SourceRange(Loc, Val->getLocEnd());
993  }
994  virtual SourceLocation getExprLoc() const { return Loc; }
995
996  static bool classof(const Stmt *T) {
997    return T->getStmtClass() == UnaryOperatorClass;
998  }
999  static bool classof(const UnaryOperator *) { return true; }
1000
1001  // Iterators
1002  virtual child_iterator child_begin();
1003  virtual child_iterator child_end();
1004};
1005
1006/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1007/// offsetof(record-type, member-designator). For example, given:
1008/// @code
1009/// struct S {
1010///   float f;
1011///   double d;
1012/// };
1013/// struct T {
1014///   int i;
1015///   struct S s[10];
1016/// };
1017/// @endcode
1018/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1019
1020class OffsetOfExpr : public Expr {
1021public:
1022  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1023  class OffsetOfNode {
1024  public:
1025    /// \brief The kind of offsetof node we have.
1026    enum Kind {
1027      Array = 0x00,
1028      Field = 0x01,
1029      Identifier = 0x02
1030    };
1031
1032  private:
1033    enum { MaskBits = 2, Mask = 0x03 };
1034
1035    /// \brief The source range that covers this part of the designator.
1036    SourceRange Range;
1037
1038    /// \brief The data describing the designator, which comes in three
1039    /// different forms, depending on the lower two bits.
1040    ///   - An unsigned index into the array of Expr*'s stored after this node
1041    ///     in memory, for [constant-expression] designators.
1042    ///   - A FieldDecl*, for references to a known field.
1043    ///   - An IdentifierInfo*, for references to a field with a given name
1044    ///     when the class type is dependent.
1045    uintptr_t Data;
1046
1047  public:
1048    /// \brief Create an offsetof node that refers to an array element.
1049    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1050                 SourceLocation RBracketLoc)
1051      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1052
1053    /// \brief Create an offsetof node that refers to a field.
1054    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1055                 SourceLocation NameLoc)
1056      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1057        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1058
1059    /// \brief Create an offsetof node that refers to an identifier.
1060    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1061                 SourceLocation NameLoc)
1062      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1063        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1064
1065    /// \brief Determine what kind of offsetof node this is.
1066    Kind getKind() const {
1067      return static_cast<Kind>(Data & Mask);
1068    }
1069
1070    /// \brief For an array element node, returns the index into the array
1071    /// of expressions.
1072    unsigned getArrayExprIndex() const {
1073      assert(getKind() == Array);
1074      return Data >> 2;
1075    }
1076
1077    /// \brief For a field offsetof node, returns the field.
1078    FieldDecl *getField() const {
1079      assert(getKind() == Field);
1080      return reinterpret_cast<FieldDecl *> (Data & ~(uintptr_t)Mask);
1081    }
1082
1083    /// \brief For a field or identifier offsetof node, returns the name of
1084    /// the field.
1085    IdentifierInfo *getFieldName() const;
1086
1087    /// \brief Retrieve the source range that covers this offsetof node.
1088    ///
1089    /// For an array element node, the source range contains the locations of
1090    /// the square brackets. For a field or identifier node, the source range
1091    /// contains the location of the period (if there is one) and the
1092    /// identifier.
1093    SourceRange getRange() const { return Range; }
1094  };
1095
1096private:
1097
1098  SourceLocation OperatorLoc, RParenLoc;
1099  // Base type;
1100  TypeSourceInfo *TSInfo;
1101  // Number of sub-components (i.e. instances of OffsetOfNode).
1102  unsigned NumComps;
1103  // Number of sub-expressions (i.e. array subscript expressions).
1104  unsigned NumExprs;
1105
1106  OffsetOfExpr(ASTContext &C, QualType type,
1107               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1108               OffsetOfNode* compsPtr, unsigned numComps,
1109               Expr** exprsPtr, unsigned numExprs,
1110               SourceLocation RParenLoc);
1111
1112  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1113    : Expr(OffsetOfExprClass, EmptyShell()),
1114      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1115
1116public:
1117
1118  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1119                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1120                              OffsetOfNode* compsPtr, unsigned numComps,
1121                              Expr** exprsPtr, unsigned numExprs,
1122                              SourceLocation RParenLoc);
1123
1124  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1125                                   unsigned NumComps, unsigned NumExprs);
1126
1127  /// getOperatorLoc - Return the location of the operator.
1128  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1129  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1130
1131  /// \brief Return the location of the right parentheses.
1132  SourceLocation getRParenLoc() const { return RParenLoc; }
1133  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1134
1135  TypeSourceInfo *getTypeSourceInfo() const {
1136    return TSInfo;
1137  }
1138  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1139    TSInfo = tsi;
1140  }
1141
1142  const OffsetOfNode &getComponent(unsigned Idx) {
1143    assert(Idx < NumComps && "Subscript out of range");
1144    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1145  }
1146
1147  void setComponent(unsigned Idx, OffsetOfNode ON) {
1148    assert(Idx < NumComps && "Subscript out of range");
1149    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1150  }
1151
1152  unsigned getNumComponents() const {
1153    return NumComps;
1154  }
1155
1156  Expr* getIndexExpr(unsigned Idx) {
1157    assert(Idx < NumExprs && "Subscript out of range");
1158    return reinterpret_cast<Expr **>(
1159                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1160  }
1161
1162  void setIndexExpr(unsigned Idx, Expr* E) {
1163    assert(Idx < NumComps && "Subscript out of range");
1164    reinterpret_cast<Expr **>(
1165                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1166  }
1167
1168  unsigned getNumExpressions() const {
1169    return NumExprs;
1170  }
1171
1172  virtual SourceRange getSourceRange() const {
1173    return SourceRange(OperatorLoc, RParenLoc);
1174  }
1175
1176  static bool classof(const Stmt *T) {
1177    return T->getStmtClass() == OffsetOfExprClass;
1178  }
1179
1180  static bool classof(const OffsetOfExpr *) { return true; }
1181
1182  // Iterators
1183  virtual child_iterator child_begin();
1184  virtual child_iterator child_end();
1185};
1186
1187/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1188/// types and expressions.
1189class SizeOfAlignOfExpr : public Expr {
1190  bool isSizeof : 1;  // true if sizeof, false if alignof.
1191  bool isType : 1;    // true if operand is a type, false if an expression
1192  union {
1193    TypeSourceInfo *Ty;
1194    Stmt *Ex;
1195  } Argument;
1196  SourceLocation OpLoc, RParenLoc;
1197
1198protected:
1199  virtual void DoDestroy(ASTContext& C);
1200
1201public:
1202  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1203                    QualType resultType, SourceLocation op,
1204                    SourceLocation rp) :
1205      Expr(SizeOfAlignOfExprClass, resultType,
1206           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1207           // Value-dependent if the argument is type-dependent.
1208           TInfo->getType()->isDependentType()),
1209      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1210    Argument.Ty = TInfo;
1211  }
1212
1213  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1214                    QualType resultType, SourceLocation op,
1215                    SourceLocation rp) :
1216      Expr(SizeOfAlignOfExprClass, resultType,
1217           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1218           // Value-dependent if the argument is type-dependent.
1219           E->isTypeDependent()),
1220      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1221    Argument.Ex = E;
1222  }
1223
1224  /// \brief Construct an empty sizeof/alignof expression.
1225  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1226    : Expr(SizeOfAlignOfExprClass, Empty) { }
1227
1228  bool isSizeOf() const { return isSizeof; }
1229  void setSizeof(bool S) { isSizeof = S; }
1230
1231  bool isArgumentType() const { return isType; }
1232  QualType getArgumentType() const {
1233    return getArgumentTypeInfo()->getType();
1234  }
1235  TypeSourceInfo *getArgumentTypeInfo() const {
1236    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1237    return Argument.Ty;
1238  }
1239  Expr *getArgumentExpr() {
1240    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1241    return static_cast<Expr*>(Argument.Ex);
1242  }
1243  const Expr *getArgumentExpr() const {
1244    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1245  }
1246
1247  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1248  void setArgument(TypeSourceInfo *TInfo) {
1249    Argument.Ty = TInfo;
1250    isType = true;
1251  }
1252
1253  /// Gets the argument type, or the type of the argument expression, whichever
1254  /// is appropriate.
1255  QualType getTypeOfArgument() const {
1256    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1257  }
1258
1259  SourceLocation getOperatorLoc() const { return OpLoc; }
1260  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1261
1262  SourceLocation getRParenLoc() const { return RParenLoc; }
1263  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1264
1265  virtual SourceRange getSourceRange() const {
1266    return SourceRange(OpLoc, RParenLoc);
1267  }
1268
1269  static bool classof(const Stmt *T) {
1270    return T->getStmtClass() == SizeOfAlignOfExprClass;
1271  }
1272  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1273
1274  // Iterators
1275  virtual child_iterator child_begin();
1276  virtual child_iterator child_end();
1277};
1278
1279//===----------------------------------------------------------------------===//
1280// Postfix Operators.
1281//===----------------------------------------------------------------------===//
1282
1283/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1284class ArraySubscriptExpr : public Expr {
1285  enum { LHS, RHS, END_EXPR=2 };
1286  Stmt* SubExprs[END_EXPR];
1287  SourceLocation RBracketLoc;
1288public:
1289  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1290                     SourceLocation rbracketloc)
1291  : Expr(ArraySubscriptExprClass, t,
1292         lhs->isTypeDependent() || rhs->isTypeDependent(),
1293         lhs->isValueDependent() || rhs->isValueDependent()),
1294    RBracketLoc(rbracketloc) {
1295    SubExprs[LHS] = lhs;
1296    SubExprs[RHS] = rhs;
1297  }
1298
1299  /// \brief Create an empty array subscript expression.
1300  explicit ArraySubscriptExpr(EmptyShell Shell)
1301    : Expr(ArraySubscriptExprClass, Shell) { }
1302
1303  /// An array access can be written A[4] or 4[A] (both are equivalent).
1304  /// - getBase() and getIdx() always present the normalized view: A[4].
1305  ///    In this case getBase() returns "A" and getIdx() returns "4".
1306  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1307  ///    4[A] getLHS() returns "4".
1308  /// Note: Because vector element access is also written A[4] we must
1309  /// predicate the format conversion in getBase and getIdx only on the
1310  /// the type of the RHS, as it is possible for the LHS to be a vector of
1311  /// integer type
1312  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1313  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1314  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1315
1316  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1317  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1318  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1319
1320  Expr *getBase() {
1321    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1322  }
1323
1324  const Expr *getBase() const {
1325    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1326  }
1327
1328  Expr *getIdx() {
1329    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1330  }
1331
1332  const Expr *getIdx() const {
1333    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1334  }
1335
1336  virtual SourceRange getSourceRange() const {
1337    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1338  }
1339
1340  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1341  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1342
1343  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1344
1345  static bool classof(const Stmt *T) {
1346    return T->getStmtClass() == ArraySubscriptExprClass;
1347  }
1348  static bool classof(const ArraySubscriptExpr *) { return true; }
1349
1350  // Iterators
1351  virtual child_iterator child_begin();
1352  virtual child_iterator child_end();
1353};
1354
1355
1356/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1357/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1358/// while its subclasses may represent alternative syntax that (semantically)
1359/// results in a function call. For example, CXXOperatorCallExpr is
1360/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1361/// "str1 + str2" to resolve to a function call.
1362class CallExpr : public Expr {
1363  enum { FN=0, ARGS_START=1 };
1364  Stmt **SubExprs;
1365  unsigned NumArgs;
1366  SourceLocation RParenLoc;
1367
1368protected:
1369  // This version of the constructor is for derived classes.
1370  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1371           QualType t, SourceLocation rparenloc);
1372
1373  virtual void DoDestroy(ASTContext& C);
1374
1375public:
1376  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1377           SourceLocation rparenloc);
1378
1379  /// \brief Build an empty call expression.
1380  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1381
1382  ~CallExpr() {}
1383
1384  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1385  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1386  void setCallee(Expr *F) { SubExprs[FN] = F; }
1387
1388  Decl *getCalleeDecl();
1389  const Decl *getCalleeDecl() const {
1390    return const_cast<CallExpr*>(this)->getCalleeDecl();
1391  }
1392
1393  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1394  FunctionDecl *getDirectCallee();
1395  const FunctionDecl *getDirectCallee() const {
1396    return const_cast<CallExpr*>(this)->getDirectCallee();
1397  }
1398
1399  /// getNumArgs - Return the number of actual arguments to this call.
1400  ///
1401  unsigned getNumArgs() const { return NumArgs; }
1402
1403  /// getArg - Return the specified argument.
1404  Expr *getArg(unsigned Arg) {
1405    assert(Arg < NumArgs && "Arg access out of range!");
1406    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1407  }
1408  const Expr *getArg(unsigned Arg) const {
1409    assert(Arg < NumArgs && "Arg access out of range!");
1410    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1411  }
1412
1413  /// setArg - Set the specified argument.
1414  void setArg(unsigned Arg, Expr *ArgExpr) {
1415    assert(Arg < NumArgs && "Arg access out of range!");
1416    SubExprs[Arg+ARGS_START] = ArgExpr;
1417  }
1418
1419  /// setNumArgs - This changes the number of arguments present in this call.
1420  /// Any orphaned expressions are deleted by this, and any new operands are set
1421  /// to null.
1422  void setNumArgs(ASTContext& C, unsigned NumArgs);
1423
1424  typedef ExprIterator arg_iterator;
1425  typedef ConstExprIterator const_arg_iterator;
1426
1427  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1428  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1429  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1430  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1431
1432  /// getNumCommas - Return the number of commas that must have been present in
1433  /// this function call.
1434  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1435
1436  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1437  /// not, return 0.
1438  unsigned isBuiltinCall(ASTContext &Context) const;
1439
1440  /// getCallReturnType - Get the return type of the call expr. This is not
1441  /// always the type of the expr itself, if the return type is a reference
1442  /// type.
1443  QualType getCallReturnType() const;
1444
1445  SourceLocation getRParenLoc() const { return RParenLoc; }
1446  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1447
1448  virtual SourceRange getSourceRange() const {
1449    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1450  }
1451
1452  static bool classof(const Stmt *T) {
1453    return T->getStmtClass() == CallExprClass ||
1454           T->getStmtClass() == CXXOperatorCallExprClass ||
1455           T->getStmtClass() == CXXMemberCallExprClass;
1456  }
1457  static bool classof(const CallExpr *) { return true; }
1458  static bool classof(const CXXOperatorCallExpr *) { return true; }
1459  static bool classof(const CXXMemberCallExpr *) { return true; }
1460
1461  // Iterators
1462  virtual child_iterator child_begin();
1463  virtual child_iterator child_end();
1464};
1465
1466/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1467///
1468class MemberExpr : public Expr {
1469  /// Extra data stored in some member expressions.
1470  struct MemberNameQualifier : public NameQualifier {
1471    DeclAccessPair FoundDecl;
1472  };
1473
1474  /// Base - the expression for the base pointer or structure references.  In
1475  /// X.F, this is "X".
1476  Stmt *Base;
1477
1478  /// MemberDecl - This is the decl being referenced by the field/member name.
1479  /// In X.F, this is the decl referenced by F.
1480  ValueDecl *MemberDecl;
1481
1482  /// MemberLoc - This is the location of the member name.
1483  SourceLocation MemberLoc;
1484
1485  /// IsArrow - True if this is "X->F", false if this is "X.F".
1486  bool IsArrow : 1;
1487
1488  /// \brief True if this member expression used a nested-name-specifier to
1489  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1490  /// declaration.  When true, a MemberNameQualifier
1491  /// structure is allocated immediately after the MemberExpr.
1492  bool HasQualifierOrFoundDecl : 1;
1493
1494  /// \brief True if this member expression specified a template argument list
1495  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1496  /// structure (and its TemplateArguments) are allocated immediately after
1497  /// the MemberExpr or, if the member expression also has a qualifier, after
1498  /// the MemberNameQualifier structure.
1499  bool HasExplicitTemplateArgumentList : 1;
1500
1501  /// \brief Retrieve the qualifier that preceded the member name, if any.
1502  MemberNameQualifier *getMemberQualifier() {
1503    assert(HasQualifierOrFoundDecl);
1504    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1505  }
1506
1507  /// \brief Retrieve the qualifier that preceded the member name, if any.
1508  const MemberNameQualifier *getMemberQualifier() const {
1509    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1510  }
1511
1512  /// \brief Retrieve the explicit template argument list that followed the
1513  /// member template name, if any.
1514  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1515    if (!HasExplicitTemplateArgumentList)
1516      return 0;
1517
1518    if (!HasQualifierOrFoundDecl)
1519      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1520
1521    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1522                                                      getMemberQualifier() + 1);
1523  }
1524
1525  /// \brief Retrieve the explicit template argument list that followed the
1526  /// member template name, if any.
1527  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1528    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1529  }
1530
1531public:
1532  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1533             SourceLocation l, QualType ty)
1534    : Expr(MemberExprClass, ty,
1535           base->isTypeDependent(), base->isValueDependent()),
1536      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1537      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1538
1539  /// \brief Build an empty member reference expression.
1540  explicit MemberExpr(EmptyShell Empty)
1541    : Expr(MemberExprClass, Empty), HasQualifierOrFoundDecl(false),
1542      HasExplicitTemplateArgumentList(false) { }
1543
1544  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1545                            NestedNameSpecifier *qual, SourceRange qualrange,
1546                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1547                            SourceLocation l,
1548                            const TemplateArgumentListInfo *targs,
1549                            QualType ty);
1550
1551  void setBase(Expr *E) { Base = E; }
1552  Expr *getBase() const { return cast<Expr>(Base); }
1553
1554  /// \brief Retrieve the member declaration to which this expression refers.
1555  ///
1556  /// The returned declaration will either be a FieldDecl or (in C++)
1557  /// a CXXMethodDecl.
1558  ValueDecl *getMemberDecl() const { return MemberDecl; }
1559  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1560
1561  /// \brief Retrieves the declaration found by lookup.
1562  DeclAccessPair getFoundDecl() const {
1563    if (!HasQualifierOrFoundDecl)
1564      return DeclAccessPair::make(getMemberDecl(),
1565                                  getMemberDecl()->getAccess());
1566    return getMemberQualifier()->FoundDecl;
1567  }
1568
1569  /// \brief Determines whether this member expression actually had
1570  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1571  /// x->Base::foo.
1572  bool hasQualifier() const { return getQualifier() != 0; }
1573
1574  /// \brief If the member name was qualified, retrieves the source range of
1575  /// the nested-name-specifier that precedes the member name. Otherwise,
1576  /// returns an empty source range.
1577  SourceRange getQualifierRange() const {
1578    if (!HasQualifierOrFoundDecl)
1579      return SourceRange();
1580
1581    return getMemberQualifier()->Range;
1582  }
1583
1584  /// \brief If the member name was qualified, retrieves the
1585  /// nested-name-specifier that precedes the member name. Otherwise, returns
1586  /// NULL.
1587  NestedNameSpecifier *getQualifier() const {
1588    if (!HasQualifierOrFoundDecl)
1589      return 0;
1590
1591    return getMemberQualifier()->NNS;
1592  }
1593
1594  /// \brief Determines whether this member expression actually had a C++
1595  /// template argument list explicitly specified, e.g., x.f<int>.
1596  bool hasExplicitTemplateArgumentList() const {
1597    return HasExplicitTemplateArgumentList;
1598  }
1599
1600  /// \brief Copies the template arguments (if present) into the given
1601  /// structure.
1602  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1603    if (hasExplicitTemplateArgumentList())
1604      getExplicitTemplateArgumentList()->copyInto(List);
1605  }
1606
1607  /// \brief Retrieve the location of the left angle bracket following the
1608  /// member name ('<'), if any.
1609  SourceLocation getLAngleLoc() const {
1610    if (!HasExplicitTemplateArgumentList)
1611      return SourceLocation();
1612
1613    return getExplicitTemplateArgumentList()->LAngleLoc;
1614  }
1615
1616  /// \brief Retrieve the template arguments provided as part of this
1617  /// template-id.
1618  const TemplateArgumentLoc *getTemplateArgs() const {
1619    if (!HasExplicitTemplateArgumentList)
1620      return 0;
1621
1622    return getExplicitTemplateArgumentList()->getTemplateArgs();
1623  }
1624
1625  /// \brief Retrieve the number of template arguments provided as part of this
1626  /// template-id.
1627  unsigned getNumTemplateArgs() const {
1628    if (!HasExplicitTemplateArgumentList)
1629      return 0;
1630
1631    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1632  }
1633
1634  /// \brief Retrieve the location of the right angle bracket following the
1635  /// template arguments ('>').
1636  SourceLocation getRAngleLoc() const {
1637    if (!HasExplicitTemplateArgumentList)
1638      return SourceLocation();
1639
1640    return getExplicitTemplateArgumentList()->RAngleLoc;
1641  }
1642
1643  bool isArrow() const { return IsArrow; }
1644  void setArrow(bool A) { IsArrow = A; }
1645
1646  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1647  /// location of 'F'.
1648  SourceLocation getMemberLoc() const { return MemberLoc; }
1649  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1650
1651  virtual SourceRange getSourceRange() const {
1652    // If we have an implicit base (like a C++ implicit this),
1653    // make sure not to return its location
1654    SourceLocation EndLoc = MemberLoc;
1655    if (HasExplicitTemplateArgumentList)
1656      EndLoc = getRAngleLoc();
1657
1658    SourceLocation BaseLoc = getBase()->getLocStart();
1659    if (BaseLoc.isInvalid())
1660      return SourceRange(MemberLoc, EndLoc);
1661    return SourceRange(BaseLoc, EndLoc);
1662  }
1663
1664  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1665
1666  static bool classof(const Stmt *T) {
1667    return T->getStmtClass() == MemberExprClass;
1668  }
1669  static bool classof(const MemberExpr *) { return true; }
1670
1671  // Iterators
1672  virtual child_iterator child_begin();
1673  virtual child_iterator child_end();
1674};
1675
1676/// CompoundLiteralExpr - [C99 6.5.2.5]
1677///
1678class CompoundLiteralExpr : public Expr {
1679  /// LParenLoc - If non-null, this is the location of the left paren in a
1680  /// compound literal like "(int){4}".  This can be null if this is a
1681  /// synthesized compound expression.
1682  SourceLocation LParenLoc;
1683
1684  /// The type as written.  This can be an incomplete array type, in
1685  /// which case the actual expression type will be different.
1686  TypeSourceInfo *TInfo;
1687  Stmt *Init;
1688  bool FileScope;
1689public:
1690  // FIXME: Can compound literals be value-dependent?
1691  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1692                      QualType T, Expr *init, bool fileScope)
1693    : Expr(CompoundLiteralExprClass, T,
1694           tinfo->getType()->isDependentType(), false),
1695      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1696
1697  /// \brief Construct an empty compound literal.
1698  explicit CompoundLiteralExpr(EmptyShell Empty)
1699    : Expr(CompoundLiteralExprClass, Empty) { }
1700
1701  const Expr *getInitializer() const { return cast<Expr>(Init); }
1702  Expr *getInitializer() { return cast<Expr>(Init); }
1703  void setInitializer(Expr *E) { Init = E; }
1704
1705  bool isFileScope() const { return FileScope; }
1706  void setFileScope(bool FS) { FileScope = FS; }
1707
1708  SourceLocation getLParenLoc() const { return LParenLoc; }
1709  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1710
1711  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1712  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1713
1714  virtual SourceRange getSourceRange() const {
1715    // FIXME: Init should never be null.
1716    if (!Init)
1717      return SourceRange();
1718    if (LParenLoc.isInvalid())
1719      return Init->getSourceRange();
1720    return SourceRange(LParenLoc, Init->getLocEnd());
1721  }
1722
1723  static bool classof(const Stmt *T) {
1724    return T->getStmtClass() == CompoundLiteralExprClass;
1725  }
1726  static bool classof(const CompoundLiteralExpr *) { return true; }
1727
1728  // Iterators
1729  virtual child_iterator child_begin();
1730  virtual child_iterator child_end();
1731};
1732
1733/// CastExpr - Base class for type casts, including both implicit
1734/// casts (ImplicitCastExpr) and explicit casts that have some
1735/// representation in the source code (ExplicitCastExpr's derived
1736/// classes).
1737class CastExpr : public Expr {
1738public:
1739  /// CastKind - the kind of cast this represents.
1740  enum CastKind {
1741    /// CK_Unknown - Unknown cast kind.
1742    /// FIXME: The goal is to get rid of this and make all casts have a
1743    /// kind so that the AST client doesn't have to try to figure out what's
1744    /// going on.
1745    CK_Unknown,
1746
1747    /// CK_BitCast - Used for reinterpret_cast.
1748    CK_BitCast,
1749
1750    /// CK_NoOp - Used for const_cast.
1751    CK_NoOp,
1752
1753    /// CK_BaseToDerived - Base to derived class casts.
1754    CK_BaseToDerived,
1755
1756    /// CK_DerivedToBase - Derived to base class casts.
1757    CK_DerivedToBase,
1758
1759    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1760    /// assume that the derived pointer is not null.
1761    CK_UncheckedDerivedToBase,
1762
1763    /// CK_Dynamic - Dynamic cast.
1764    CK_Dynamic,
1765
1766    /// CK_ToUnion - Cast to union (GCC extension).
1767    CK_ToUnion,
1768
1769    /// CK_ArrayToPointerDecay - Array to pointer decay.
1770    CK_ArrayToPointerDecay,
1771
1772    // CK_FunctionToPointerDecay - Function to pointer decay.
1773    CK_FunctionToPointerDecay,
1774
1775    /// CK_NullToMemberPointer - Null pointer to member pointer.
1776    CK_NullToMemberPointer,
1777
1778    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1779    /// member pointer in derived class.
1780    CK_BaseToDerivedMemberPointer,
1781
1782    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1783    /// member pointer in base class.
1784    CK_DerivedToBaseMemberPointer,
1785
1786    /// CK_UserDefinedConversion - Conversion using a user defined type
1787    /// conversion function.
1788    CK_UserDefinedConversion,
1789
1790    /// CK_ConstructorConversion - Conversion by constructor
1791    CK_ConstructorConversion,
1792
1793    /// CK_IntegralToPointer - Integral to pointer
1794    CK_IntegralToPointer,
1795
1796    /// CK_PointerToIntegral - Pointer to integral
1797    CK_PointerToIntegral,
1798
1799    /// CK_ToVoid - Cast to void.
1800    CK_ToVoid,
1801
1802    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1803    /// vector type with the same element type as the src type. Splats the
1804    /// src expression into the destination expression.
1805    CK_VectorSplat,
1806
1807    /// CK_IntegralCast - Casting between integral types of different size.
1808    CK_IntegralCast,
1809
1810    /// CK_IntegralToFloating - Integral to floating point.
1811    CK_IntegralToFloating,
1812
1813    /// CK_FloatingToIntegral - Floating point to integral.
1814    CK_FloatingToIntegral,
1815
1816    /// CK_FloatingCast - Casting between floating types of different size.
1817    CK_FloatingCast,
1818
1819    /// CK_MemberPointerToBoolean - Member pointer to boolean
1820    CK_MemberPointerToBoolean,
1821
1822    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1823    /// pointer
1824    CK_AnyPointerToObjCPointerCast,
1825    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1826    /// pointer
1827    CK_AnyPointerToBlockPointerCast
1828
1829  };
1830
1831private:
1832  CastKind Kind;
1833  Stmt *Op;
1834
1835  /// BasePath - For derived-to-base and base-to-derived casts, the base array
1836  /// contains the inheritance path.
1837  CXXBaseSpecifierArray BasePath;
1838
1839  void CheckBasePath() const {
1840#ifndef NDEBUG
1841    switch (getCastKind()) {
1842    case CK_DerivedToBase:
1843    case CK_UncheckedDerivedToBase:
1844    case CK_DerivedToBaseMemberPointer:
1845    case CK_BaseToDerived:
1846    case CK_BaseToDerivedMemberPointer:
1847      assert(!BasePath.empty() && "Cast kind should have a base path!");
1848      break;
1849
1850    // These should not have an inheritance path.
1851    case CK_Unknown:
1852    case CK_BitCast:
1853    case CK_NoOp:
1854    case CK_Dynamic:
1855    case CK_ToUnion:
1856    case CK_ArrayToPointerDecay:
1857    case CK_FunctionToPointerDecay:
1858    case CK_NullToMemberPointer:
1859    case CK_UserDefinedConversion:
1860    case CK_ConstructorConversion:
1861    case CK_IntegralToPointer:
1862    case CK_PointerToIntegral:
1863    case CK_ToVoid:
1864    case CK_VectorSplat:
1865    case CK_IntegralCast:
1866    case CK_IntegralToFloating:
1867    case CK_FloatingToIntegral:
1868    case CK_FloatingCast:
1869    case CK_MemberPointerToBoolean:
1870    case CK_AnyPointerToObjCPointerCast:
1871    case CK_AnyPointerToBlockPointerCast:
1872      assert(BasePath.empty() && "Cast kind should not have a base path!");
1873      break;
1874    }
1875#endif
1876  }
1877
1878protected:
1879  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
1880           CXXBaseSpecifierArray BasePath) :
1881    Expr(SC, ty,
1882         // Cast expressions are type-dependent if the type is
1883         // dependent (C++ [temp.dep.expr]p3).
1884         ty->isDependentType(),
1885         // Cast expressions are value-dependent if the type is
1886         // dependent or if the subexpression is value-dependent.
1887         ty->isDependentType() || (op && op->isValueDependent())),
1888    Kind(kind), Op(op), BasePath(BasePath) {
1889      CheckBasePath();
1890    }
1891
1892  /// \brief Construct an empty cast.
1893  CastExpr(StmtClass SC, EmptyShell Empty)
1894    : Expr(SC, Empty) { }
1895
1896  virtual void DoDestroy(ASTContext &C);
1897
1898public:
1899  CastKind getCastKind() const { return Kind; }
1900  void setCastKind(CastKind K) { Kind = K; }
1901  const char *getCastKindName() const;
1902
1903  Expr *getSubExpr() { return cast<Expr>(Op); }
1904  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1905  void setSubExpr(Expr *E) { Op = E; }
1906
1907  /// \brief Retrieve the cast subexpression as it was written in the source
1908  /// code, looking through any implicit casts or other intermediate nodes
1909  /// introduced by semantic analysis.
1910  Expr *getSubExprAsWritten();
1911  const Expr *getSubExprAsWritten() const {
1912    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
1913  }
1914
1915  const CXXBaseSpecifierArray& getBasePath() const { return BasePath; }
1916
1917  static bool classof(const Stmt *T) {
1918    StmtClass SC = T->getStmtClass();
1919    if (SC >= CXXStaticCastExprClass && SC <= CXXFunctionalCastExprClass)
1920      return true;
1921
1922    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1923      return true;
1924
1925    return false;
1926  }
1927  static bool classof(const CastExpr *) { return true; }
1928
1929  // Iterators
1930  virtual child_iterator child_begin();
1931  virtual child_iterator child_end();
1932};
1933
1934/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1935/// conversions, which have no direct representation in the original
1936/// source code. For example: converting T[]->T*, void f()->void
1937/// (*f)(), float->double, short->int, etc.
1938///
1939/// In C, implicit casts always produce rvalues. However, in C++, an
1940/// implicit cast whose result is being bound to a reference will be
1941/// an lvalue. For example:
1942///
1943/// @code
1944/// class Base { };
1945/// class Derived : public Base { };
1946/// void f(Derived d) {
1947///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1948/// }
1949/// @endcode
1950class ImplicitCastExpr : public CastExpr {
1951  /// LvalueCast - Whether this cast produces an lvalue.
1952  bool LvalueCast;
1953
1954public:
1955  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
1956                   CXXBaseSpecifierArray BasePath, bool Lvalue)
1957    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePath),
1958    LvalueCast(Lvalue) { }
1959
1960  /// \brief Construct an empty implicit cast.
1961  explicit ImplicitCastExpr(EmptyShell Shell)
1962    : CastExpr(ImplicitCastExprClass, Shell) { }
1963
1964  virtual SourceRange getSourceRange() const {
1965    return getSubExpr()->getSourceRange();
1966  }
1967
1968  /// isLvalueCast - Whether this cast produces an lvalue.
1969  bool isLvalueCast() const { return LvalueCast; }
1970
1971  /// setLvalueCast - Set whether this cast produces an lvalue.
1972  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1973
1974  static bool classof(const Stmt *T) {
1975    return T->getStmtClass() == ImplicitCastExprClass;
1976  }
1977  static bool classof(const ImplicitCastExpr *) { return true; }
1978};
1979
1980/// ExplicitCastExpr - An explicit cast written in the source
1981/// code.
1982///
1983/// This class is effectively an abstract class, because it provides
1984/// the basic representation of an explicitly-written cast without
1985/// specifying which kind of cast (C cast, functional cast, static
1986/// cast, etc.) was written; specific derived classes represent the
1987/// particular style of cast and its location information.
1988///
1989/// Unlike implicit casts, explicit cast nodes have two different
1990/// types: the type that was written into the source code, and the
1991/// actual type of the expression as determined by semantic
1992/// analysis. These types may differ slightly. For example, in C++ one
1993/// can cast to a reference type, which indicates that the resulting
1994/// expression will be an lvalue. The reference type, however, will
1995/// not be used as the type of the expression.
1996class ExplicitCastExpr : public CastExpr {
1997  /// TInfo - Source type info for the (written) type
1998  /// this expression is casting to.
1999  TypeSourceInfo *TInfo;
2000
2001protected:
2002  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2003                   Expr *op, CXXBaseSpecifierArray BasePath,
2004                   TypeSourceInfo *writtenTy)
2005    : CastExpr(SC, exprTy, kind, op, BasePath), TInfo(writtenTy) {}
2006
2007  /// \brief Construct an empty explicit cast.
2008  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
2009    : CastExpr(SC, Shell) { }
2010
2011public:
2012  /// getTypeInfoAsWritten - Returns the type source info for the type
2013  /// that this expression is casting to.
2014  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2015  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2016
2017  /// getTypeAsWritten - Returns the type that this expression is
2018  /// casting to, as written in the source code.
2019  QualType getTypeAsWritten() const { return TInfo->getType(); }
2020
2021  static bool classof(const Stmt *T) {
2022    StmtClass SC = T->getStmtClass();
2023    if (SC >= CStyleCastExprClass && SC <= CStyleCastExprClass)
2024      return true;
2025    if (SC >= CXXStaticCastExprClass && SC <= CXXFunctionalCastExprClass)
2026      return true;
2027
2028    return false;
2029  }
2030  static bool classof(const ExplicitCastExpr *) { return true; }
2031};
2032
2033/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2034/// cast in C++ (C++ [expr.cast]), which uses the syntax
2035/// (Type)expr. For example: @c (int)f.
2036class CStyleCastExpr : public ExplicitCastExpr {
2037  SourceLocation LPLoc; // the location of the left paren
2038  SourceLocation RPLoc; // the location of the right paren
2039public:
2040  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2041                 CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
2042                 SourceLocation l, SourceLocation r)
2043    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, BasePath,
2044                       writtenTy), LPLoc(l), RPLoc(r) {}
2045
2046  /// \brief Construct an empty C-style explicit cast.
2047  explicit CStyleCastExpr(EmptyShell Shell)
2048    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
2049
2050  SourceLocation getLParenLoc() const { return LPLoc; }
2051  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2052
2053  SourceLocation getRParenLoc() const { return RPLoc; }
2054  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2055
2056  virtual SourceRange getSourceRange() const {
2057    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2058  }
2059  static bool classof(const Stmt *T) {
2060    return T->getStmtClass() == CStyleCastExprClass;
2061  }
2062  static bool classof(const CStyleCastExpr *) { return true; }
2063};
2064
2065/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2066///
2067/// This expression node kind describes a builtin binary operation,
2068/// such as "x + y" for integer values "x" and "y". The operands will
2069/// already have been converted to appropriate types (e.g., by
2070/// performing promotions or conversions).
2071///
2072/// In C++, where operators may be overloaded, a different kind of
2073/// expression node (CXXOperatorCallExpr) is used to express the
2074/// invocation of an overloaded operator with operator syntax. Within
2075/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2076/// used to store an expression "x + y" depends on the subexpressions
2077/// for x and y. If neither x or y is type-dependent, and the "+"
2078/// operator resolves to a built-in operation, BinaryOperator will be
2079/// used to express the computation (x and y may still be
2080/// value-dependent). If either x or y is type-dependent, or if the
2081/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2082/// be used to express the computation.
2083class BinaryOperator : public Expr {
2084public:
2085  enum Opcode {
2086    // Operators listed in order of precedence.
2087    // Note that additions to this should also update the StmtVisitor class.
2088    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2089    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2090    Add, Sub,         // [C99 6.5.6] Additive operators.
2091    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2092    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2093    EQ, NE,           // [C99 6.5.9] Equality operators.
2094    And,              // [C99 6.5.10] Bitwise AND operator.
2095    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2096    Or,               // [C99 6.5.12] Bitwise OR operator.
2097    LAnd,             // [C99 6.5.13] Logical AND operator.
2098    LOr,              // [C99 6.5.14] Logical OR operator.
2099    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2100    DivAssign, RemAssign,
2101    AddAssign, SubAssign,
2102    ShlAssign, ShrAssign,
2103    AndAssign, XorAssign,
2104    OrAssign,
2105    Comma             // [C99 6.5.17] Comma operator.
2106  };
2107private:
2108  enum { LHS, RHS, END_EXPR };
2109  Stmt* SubExprs[END_EXPR];
2110  Opcode Opc;
2111  SourceLocation OpLoc;
2112public:
2113
2114  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2115                 SourceLocation opLoc)
2116    : Expr(BinaryOperatorClass, ResTy,
2117           lhs->isTypeDependent() || rhs->isTypeDependent(),
2118           lhs->isValueDependent() || rhs->isValueDependent()),
2119      Opc(opc), OpLoc(opLoc) {
2120    SubExprs[LHS] = lhs;
2121    SubExprs[RHS] = rhs;
2122    assert(!isCompoundAssignmentOp() &&
2123           "Use ArithAssignBinaryOperator for compound assignments");
2124  }
2125
2126  /// \brief Construct an empty binary operator.
2127  explicit BinaryOperator(EmptyShell Empty)
2128    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2129
2130  SourceLocation getOperatorLoc() const { return OpLoc; }
2131  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2132
2133  Opcode getOpcode() const { return Opc; }
2134  void setOpcode(Opcode O) { Opc = O; }
2135
2136  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2137  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2138  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2139  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2140
2141  virtual SourceRange getSourceRange() const {
2142    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2143  }
2144
2145  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2146  /// corresponds to, e.g. "<<=".
2147  static const char *getOpcodeStr(Opcode Op);
2148
2149  /// \brief Retrieve the binary opcode that corresponds to the given
2150  /// overloaded operator.
2151  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2152
2153  /// \brief Retrieve the overloaded operator kind that corresponds to
2154  /// the given binary opcode.
2155  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2156
2157  /// predicates to categorize the respective opcodes.
2158  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2159  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
2160  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2161  bool isShiftOp() const { return isShiftOp(Opc); }
2162
2163  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2164  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2165
2166  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2167  bool isRelationalOp() const { return isRelationalOp(Opc); }
2168
2169  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2170  bool isEqualityOp() const { return isEqualityOp(Opc); }
2171
2172  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2173  bool isComparisonOp() const { return isComparisonOp(Opc); }
2174
2175  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2176  bool isLogicalOp() const { return isLogicalOp(Opc); }
2177
2178  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2179  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2180  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2181
2182  static bool classof(const Stmt *S) {
2183    return S->getStmtClass() == BinaryOperatorClass ||
2184           S->getStmtClass() == CompoundAssignOperatorClass;
2185  }
2186  static bool classof(const BinaryOperator *) { return true; }
2187
2188  // Iterators
2189  virtual child_iterator child_begin();
2190  virtual child_iterator child_end();
2191
2192protected:
2193  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2194                 SourceLocation opLoc, bool dead)
2195    : Expr(CompoundAssignOperatorClass, ResTy,
2196           lhs->isTypeDependent() || rhs->isTypeDependent(),
2197           lhs->isValueDependent() || rhs->isValueDependent()),
2198      Opc(opc), OpLoc(opLoc) {
2199    SubExprs[LHS] = lhs;
2200    SubExprs[RHS] = rhs;
2201  }
2202
2203  BinaryOperator(StmtClass SC, EmptyShell Empty)
2204    : Expr(SC, Empty), Opc(MulAssign) { }
2205};
2206
2207/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2208/// track of the type the operation is performed in.  Due to the semantics of
2209/// these operators, the operands are promoted, the aritmetic performed, an
2210/// implicit conversion back to the result type done, then the assignment takes
2211/// place.  This captures the intermediate type which the computation is done
2212/// in.
2213class CompoundAssignOperator : public BinaryOperator {
2214  QualType ComputationLHSType;
2215  QualType ComputationResultType;
2216public:
2217  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2218                         QualType ResType, QualType CompLHSType,
2219                         QualType CompResultType,
2220                         SourceLocation OpLoc)
2221    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2222      ComputationLHSType(CompLHSType),
2223      ComputationResultType(CompResultType) {
2224    assert(isCompoundAssignmentOp() &&
2225           "Only should be used for compound assignments");
2226  }
2227
2228  /// \brief Build an empty compound assignment operator expression.
2229  explicit CompoundAssignOperator(EmptyShell Empty)
2230    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2231
2232  // The two computation types are the type the LHS is converted
2233  // to for the computation and the type of the result; the two are
2234  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2235  QualType getComputationLHSType() const { return ComputationLHSType; }
2236  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2237
2238  QualType getComputationResultType() const { return ComputationResultType; }
2239  void setComputationResultType(QualType T) { ComputationResultType = T; }
2240
2241  static bool classof(const CompoundAssignOperator *) { return true; }
2242  static bool classof(const Stmt *S) {
2243    return S->getStmtClass() == CompoundAssignOperatorClass;
2244  }
2245};
2246
2247/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2248/// GNU "missing LHS" extension is in use.
2249///
2250class ConditionalOperator : public Expr {
2251  enum { COND, LHS, RHS, END_EXPR };
2252  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2253  SourceLocation QuestionLoc, ColonLoc;
2254public:
2255  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2256                      SourceLocation CLoc, Expr *rhs, QualType t)
2257    : Expr(ConditionalOperatorClass, t,
2258           // FIXME: the type of the conditional operator doesn't
2259           // depend on the type of the conditional, but the standard
2260           // seems to imply that it could. File a bug!
2261           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2262           (cond->isValueDependent() ||
2263            (lhs && lhs->isValueDependent()) ||
2264            (rhs && rhs->isValueDependent()))),
2265      QuestionLoc(QLoc),
2266      ColonLoc(CLoc) {
2267    SubExprs[COND] = cond;
2268    SubExprs[LHS] = lhs;
2269    SubExprs[RHS] = rhs;
2270  }
2271
2272  /// \brief Build an empty conditional operator.
2273  explicit ConditionalOperator(EmptyShell Empty)
2274    : Expr(ConditionalOperatorClass, Empty) { }
2275
2276  // getCond - Return the expression representing the condition for
2277  //  the ?: operator.
2278  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2279  void setCond(Expr *E) { SubExprs[COND] = E; }
2280
2281  // getTrueExpr - Return the subexpression representing the value of the ?:
2282  //  expression if the condition evaluates to true.  In most cases this value
2283  //  will be the same as getLHS() except a GCC extension allows the left
2284  //  subexpression to be omitted, and instead of the condition be returned.
2285  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2286  //  is only evaluated once.
2287  Expr *getTrueExpr() const {
2288    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2289  }
2290
2291  // getTrueExpr - Return the subexpression representing the value of the ?:
2292  // expression if the condition evaluates to false. This is the same as getRHS.
2293  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2294
2295  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2296  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2297
2298  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2299  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2300
2301  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2302  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2303
2304  SourceLocation getColonLoc() const { return ColonLoc; }
2305  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2306
2307  virtual SourceRange getSourceRange() const {
2308    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2309  }
2310  static bool classof(const Stmt *T) {
2311    return T->getStmtClass() == ConditionalOperatorClass;
2312  }
2313  static bool classof(const ConditionalOperator *) { return true; }
2314
2315  // Iterators
2316  virtual child_iterator child_begin();
2317  virtual child_iterator child_end();
2318};
2319
2320/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2321class AddrLabelExpr : public Expr {
2322  SourceLocation AmpAmpLoc, LabelLoc;
2323  LabelStmt *Label;
2324public:
2325  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2326                QualType t)
2327    : Expr(AddrLabelExprClass, t, false, false),
2328      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2329
2330  /// \brief Build an empty address of a label expression.
2331  explicit AddrLabelExpr(EmptyShell Empty)
2332    : Expr(AddrLabelExprClass, Empty) { }
2333
2334  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2335  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2336  SourceLocation getLabelLoc() const { return LabelLoc; }
2337  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2338
2339  virtual SourceRange getSourceRange() const {
2340    return SourceRange(AmpAmpLoc, LabelLoc);
2341  }
2342
2343  LabelStmt *getLabel() const { return Label; }
2344  void setLabel(LabelStmt *S) { Label = S; }
2345
2346  static bool classof(const Stmt *T) {
2347    return T->getStmtClass() == AddrLabelExprClass;
2348  }
2349  static bool classof(const AddrLabelExpr *) { return true; }
2350
2351  // Iterators
2352  virtual child_iterator child_begin();
2353  virtual child_iterator child_end();
2354};
2355
2356/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2357/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2358/// takes the value of the last subexpression.
2359class StmtExpr : public Expr {
2360  Stmt *SubStmt;
2361  SourceLocation LParenLoc, RParenLoc;
2362public:
2363  // FIXME: Does type-dependence need to be computed differently?
2364  StmtExpr(CompoundStmt *substmt, QualType T,
2365           SourceLocation lp, SourceLocation rp) :
2366    Expr(StmtExprClass, T, T->isDependentType(), false),
2367    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2368
2369  /// \brief Build an empty statement expression.
2370  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2371
2372  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2373  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2374  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2375
2376  virtual SourceRange getSourceRange() const {
2377    return SourceRange(LParenLoc, RParenLoc);
2378  }
2379
2380  SourceLocation getLParenLoc() const { return LParenLoc; }
2381  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2382  SourceLocation getRParenLoc() const { return RParenLoc; }
2383  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2384
2385  static bool classof(const Stmt *T) {
2386    return T->getStmtClass() == StmtExprClass;
2387  }
2388  static bool classof(const StmtExpr *) { return true; }
2389
2390  // Iterators
2391  virtual child_iterator child_begin();
2392  virtual child_iterator child_end();
2393};
2394
2395/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2396/// This AST node represents a function that returns 1 if two *types* (not
2397/// expressions) are compatible. The result of this built-in function can be
2398/// used in integer constant expressions.
2399class TypesCompatibleExpr : public Expr {
2400  QualType Type1;
2401  QualType Type2;
2402  SourceLocation BuiltinLoc, RParenLoc;
2403public:
2404  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2405                      QualType t1, QualType t2, SourceLocation RP) :
2406    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2407    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2408
2409  /// \brief Build an empty __builtin_type_compatible_p expression.
2410  explicit TypesCompatibleExpr(EmptyShell Empty)
2411    : Expr(TypesCompatibleExprClass, Empty) { }
2412
2413  QualType getArgType1() const { return Type1; }
2414  void setArgType1(QualType T) { Type1 = T; }
2415  QualType getArgType2() const { return Type2; }
2416  void setArgType2(QualType T) { Type2 = T; }
2417
2418  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2419  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2420
2421  SourceLocation getRParenLoc() const { return RParenLoc; }
2422  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2423
2424  virtual SourceRange getSourceRange() const {
2425    return SourceRange(BuiltinLoc, RParenLoc);
2426  }
2427  static bool classof(const Stmt *T) {
2428    return T->getStmtClass() == TypesCompatibleExprClass;
2429  }
2430  static bool classof(const TypesCompatibleExpr *) { return true; }
2431
2432  // Iterators
2433  virtual child_iterator child_begin();
2434  virtual child_iterator child_end();
2435};
2436
2437/// ShuffleVectorExpr - clang-specific builtin-in function
2438/// __builtin_shufflevector.
2439/// This AST node represents a operator that does a constant
2440/// shuffle, similar to LLVM's shufflevector instruction. It takes
2441/// two vectors and a variable number of constant indices,
2442/// and returns the appropriately shuffled vector.
2443class ShuffleVectorExpr : public Expr {
2444  SourceLocation BuiltinLoc, RParenLoc;
2445
2446  // SubExprs - the list of values passed to the __builtin_shufflevector
2447  // function. The first two are vectors, and the rest are constant
2448  // indices.  The number of values in this list is always
2449  // 2+the number of indices in the vector type.
2450  Stmt **SubExprs;
2451  unsigned NumExprs;
2452
2453protected:
2454  virtual void DoDestroy(ASTContext &C);
2455
2456public:
2457  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2458  // to be computed differently?
2459  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2460                    QualType Type, SourceLocation BLoc,
2461                    SourceLocation RP) :
2462    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2463    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2464
2465    SubExprs = new (C) Stmt*[nexpr];
2466    for (unsigned i = 0; i < nexpr; i++)
2467      SubExprs[i] = args[i];
2468  }
2469
2470  /// \brief Build an empty vector-shuffle expression.
2471  explicit ShuffleVectorExpr(EmptyShell Empty)
2472    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2473
2474  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2475  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2476
2477  SourceLocation getRParenLoc() const { return RParenLoc; }
2478  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2479
2480  virtual SourceRange getSourceRange() const {
2481    return SourceRange(BuiltinLoc, RParenLoc);
2482  }
2483  static bool classof(const Stmt *T) {
2484    return T->getStmtClass() == ShuffleVectorExprClass;
2485  }
2486  static bool classof(const ShuffleVectorExpr *) { return true; }
2487
2488  ~ShuffleVectorExpr() {}
2489
2490  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2491  /// constant expression, the actual arguments passed in, and the function
2492  /// pointers.
2493  unsigned getNumSubExprs() const { return NumExprs; }
2494
2495  /// getExpr - Return the Expr at the specified index.
2496  Expr *getExpr(unsigned Index) {
2497    assert((Index < NumExprs) && "Arg access out of range!");
2498    return cast<Expr>(SubExprs[Index]);
2499  }
2500  const Expr *getExpr(unsigned Index) const {
2501    assert((Index < NumExprs) && "Arg access out of range!");
2502    return cast<Expr>(SubExprs[Index]);
2503  }
2504
2505  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2506
2507  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2508    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2509    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2510  }
2511
2512  // Iterators
2513  virtual child_iterator child_begin();
2514  virtual child_iterator child_end();
2515};
2516
2517/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2518/// This AST node is similar to the conditional operator (?:) in C, with
2519/// the following exceptions:
2520/// - the test expression must be a integer constant expression.
2521/// - the expression returned acts like the chosen subexpression in every
2522///   visible way: the type is the same as that of the chosen subexpression,
2523///   and all predicates (whether it's an l-value, whether it's an integer
2524///   constant expression, etc.) return the same result as for the chosen
2525///   sub-expression.
2526class ChooseExpr : public Expr {
2527  enum { COND, LHS, RHS, END_EXPR };
2528  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2529  SourceLocation BuiltinLoc, RParenLoc;
2530public:
2531  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2532             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2533    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2534      BuiltinLoc(BLoc), RParenLoc(RP) {
2535      SubExprs[COND] = cond;
2536      SubExprs[LHS] = lhs;
2537      SubExprs[RHS] = rhs;
2538    }
2539
2540  /// \brief Build an empty __builtin_choose_expr.
2541  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2542
2543  /// isConditionTrue - Return whether the condition is true (i.e. not
2544  /// equal to zero).
2545  bool isConditionTrue(ASTContext &C) const;
2546
2547  /// getChosenSubExpr - Return the subexpression chosen according to the
2548  /// condition.
2549  Expr *getChosenSubExpr(ASTContext &C) const {
2550    return isConditionTrue(C) ? getLHS() : getRHS();
2551  }
2552
2553  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2554  void setCond(Expr *E) { SubExprs[COND] = E; }
2555  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2556  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2557  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2558  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2559
2560  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2561  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2562
2563  SourceLocation getRParenLoc() const { return RParenLoc; }
2564  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2565
2566  virtual SourceRange getSourceRange() const {
2567    return SourceRange(BuiltinLoc, RParenLoc);
2568  }
2569  static bool classof(const Stmt *T) {
2570    return T->getStmtClass() == ChooseExprClass;
2571  }
2572  static bool classof(const ChooseExpr *) { return true; }
2573
2574  // Iterators
2575  virtual child_iterator child_begin();
2576  virtual child_iterator child_end();
2577};
2578
2579/// GNUNullExpr - Implements the GNU __null extension, which is a name
2580/// for a null pointer constant that has integral type (e.g., int or
2581/// long) and is the same size and alignment as a pointer. The __null
2582/// extension is typically only used by system headers, which define
2583/// NULL as __null in C++ rather than using 0 (which is an integer
2584/// that may not match the size of a pointer).
2585class GNUNullExpr : public Expr {
2586  /// TokenLoc - The location of the __null keyword.
2587  SourceLocation TokenLoc;
2588
2589public:
2590  GNUNullExpr(QualType Ty, SourceLocation Loc)
2591    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2592
2593  /// \brief Build an empty GNU __null expression.
2594  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2595
2596  /// getTokenLocation - The location of the __null token.
2597  SourceLocation getTokenLocation() const { return TokenLoc; }
2598  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2599
2600  virtual SourceRange getSourceRange() const {
2601    return SourceRange(TokenLoc);
2602  }
2603  static bool classof(const Stmt *T) {
2604    return T->getStmtClass() == GNUNullExprClass;
2605  }
2606  static bool classof(const GNUNullExpr *) { return true; }
2607
2608  // Iterators
2609  virtual child_iterator child_begin();
2610  virtual child_iterator child_end();
2611};
2612
2613/// VAArgExpr, used for the builtin function __builtin_va_arg.
2614class VAArgExpr : public Expr {
2615  Stmt *Val;
2616  SourceLocation BuiltinLoc, RParenLoc;
2617public:
2618  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2619    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2620      Val(e),
2621      BuiltinLoc(BLoc),
2622      RParenLoc(RPLoc) { }
2623
2624  /// \brief Create an empty __builtin_va_arg expression.
2625  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2626
2627  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2628  Expr *getSubExpr() { return cast<Expr>(Val); }
2629  void setSubExpr(Expr *E) { Val = E; }
2630
2631  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2632  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2633
2634  SourceLocation getRParenLoc() const { return RParenLoc; }
2635  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2636
2637  virtual SourceRange getSourceRange() const {
2638    return SourceRange(BuiltinLoc, RParenLoc);
2639  }
2640  static bool classof(const Stmt *T) {
2641    return T->getStmtClass() == VAArgExprClass;
2642  }
2643  static bool classof(const VAArgExpr *) { return true; }
2644
2645  // Iterators
2646  virtual child_iterator child_begin();
2647  virtual child_iterator child_end();
2648};
2649
2650/// @brief Describes an C or C++ initializer list.
2651///
2652/// InitListExpr describes an initializer list, which can be used to
2653/// initialize objects of different types, including
2654/// struct/class/union types, arrays, and vectors. For example:
2655///
2656/// @code
2657/// struct foo x = { 1, { 2, 3 } };
2658/// @endcode
2659///
2660/// Prior to semantic analysis, an initializer list will represent the
2661/// initializer list as written by the user, but will have the
2662/// placeholder type "void". This initializer list is called the
2663/// syntactic form of the initializer, and may contain C99 designated
2664/// initializers (represented as DesignatedInitExprs), initializations
2665/// of subobject members without explicit braces, and so on. Clients
2666/// interested in the original syntax of the initializer list should
2667/// use the syntactic form of the initializer list.
2668///
2669/// After semantic analysis, the initializer list will represent the
2670/// semantic form of the initializer, where the initializations of all
2671/// subobjects are made explicit with nested InitListExpr nodes and
2672/// C99 designators have been eliminated by placing the designated
2673/// initializations into the subobject they initialize. Additionally,
2674/// any "holes" in the initialization, where no initializer has been
2675/// specified for a particular subobject, will be replaced with
2676/// implicitly-generated ImplicitValueInitExpr expressions that
2677/// value-initialize the subobjects. Note, however, that the
2678/// initializer lists may still have fewer initializers than there are
2679/// elements to initialize within the object.
2680///
2681/// Given the semantic form of the initializer list, one can retrieve
2682/// the original syntactic form of that initializer list (if it
2683/// exists) using getSyntacticForm(). Since many initializer lists
2684/// have the same syntactic and semantic forms, getSyntacticForm() may
2685/// return NULL, indicating that the current initializer list also
2686/// serves as its syntactic form.
2687class InitListExpr : public Expr {
2688  // FIXME: Eliminate this vector in favor of ASTContext allocation
2689  typedef ASTVector<Stmt *> InitExprsTy;
2690  InitExprsTy InitExprs;
2691  SourceLocation LBraceLoc, RBraceLoc;
2692
2693  /// Contains the initializer list that describes the syntactic form
2694  /// written in the source code.
2695  InitListExpr *SyntacticForm;
2696
2697  /// If this initializer list initializes a union, specifies which
2698  /// field within the union will be initialized.
2699  FieldDecl *UnionFieldInit;
2700
2701  /// Whether this initializer list originally had a GNU array-range
2702  /// designator in it. This is a temporary marker used by CodeGen.
2703  bool HadArrayRangeDesignator;
2704
2705public:
2706  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2707               Expr **initexprs, unsigned numinits,
2708               SourceLocation rbraceloc);
2709
2710  /// \brief Build an empty initializer list.
2711  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2712    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2713
2714  unsigned getNumInits() const { return InitExprs.size(); }
2715
2716  const Expr* getInit(unsigned Init) const {
2717    assert(Init < getNumInits() && "Initializer access out of range!");
2718    return cast_or_null<Expr>(InitExprs[Init]);
2719  }
2720
2721  Expr* getInit(unsigned Init) {
2722    assert(Init < getNumInits() && "Initializer access out of range!");
2723    return cast_or_null<Expr>(InitExprs[Init]);
2724  }
2725
2726  void setInit(unsigned Init, Expr *expr) {
2727    assert(Init < getNumInits() && "Initializer access out of range!");
2728    InitExprs[Init] = expr;
2729  }
2730
2731  /// \brief Reserve space for some number of initializers.
2732  void reserveInits(ASTContext &C, unsigned NumInits);
2733
2734  /// @brief Specify the number of initializers
2735  ///
2736  /// If there are more than @p NumInits initializers, the remaining
2737  /// initializers will be destroyed. If there are fewer than @p
2738  /// NumInits initializers, NULL expressions will be added for the
2739  /// unknown initializers.
2740  void resizeInits(ASTContext &Context, unsigned NumInits);
2741
2742  /// @brief Updates the initializer at index @p Init with the new
2743  /// expression @p expr, and returns the old expression at that
2744  /// location.
2745  ///
2746  /// When @p Init is out of range for this initializer list, the
2747  /// initializer list will be extended with NULL expressions to
2748  /// accomodate the new entry.
2749  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2750
2751  /// \brief If this initializes a union, specifies which field in the
2752  /// union to initialize.
2753  ///
2754  /// Typically, this field is the first named field within the
2755  /// union. However, a designated initializer can specify the
2756  /// initialization of a different field within the union.
2757  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2758  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2759
2760  // Explicit InitListExpr's originate from source code (and have valid source
2761  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2762  bool isExplicit() {
2763    return LBraceLoc.isValid() && RBraceLoc.isValid();
2764  }
2765
2766  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2767  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2768  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2769  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2770
2771  /// @brief Retrieve the initializer list that describes the
2772  /// syntactic form of the initializer.
2773  ///
2774  ///
2775  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2776  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2777
2778  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2779  void sawArrayRangeDesignator(bool ARD = true) {
2780    HadArrayRangeDesignator = ARD;
2781  }
2782
2783  virtual SourceRange getSourceRange() const {
2784    return SourceRange(LBraceLoc, RBraceLoc);
2785  }
2786  static bool classof(const Stmt *T) {
2787    return T->getStmtClass() == InitListExprClass;
2788  }
2789  static bool classof(const InitListExpr *) { return true; }
2790
2791  // Iterators
2792  virtual child_iterator child_begin();
2793  virtual child_iterator child_end();
2794
2795  typedef InitExprsTy::iterator iterator;
2796  typedef InitExprsTy::reverse_iterator reverse_iterator;
2797
2798  iterator begin() { return InitExprs.begin(); }
2799  iterator end() { return InitExprs.end(); }
2800  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2801  reverse_iterator rend() { return InitExprs.rend(); }
2802};
2803
2804/// @brief Represents a C99 designated initializer expression.
2805///
2806/// A designated initializer expression (C99 6.7.8) contains one or
2807/// more designators (which can be field designators, array
2808/// designators, or GNU array-range designators) followed by an
2809/// expression that initializes the field or element(s) that the
2810/// designators refer to. For example, given:
2811///
2812/// @code
2813/// struct point {
2814///   double x;
2815///   double y;
2816/// };
2817/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2818/// @endcode
2819///
2820/// The InitListExpr contains three DesignatedInitExprs, the first of
2821/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2822/// designators, one array designator for @c [2] followed by one field
2823/// designator for @c .y. The initalization expression will be 1.0.
2824class DesignatedInitExpr : public Expr {
2825public:
2826  /// \brief Forward declaration of the Designator class.
2827  class Designator;
2828
2829private:
2830  /// The location of the '=' or ':' prior to the actual initializer
2831  /// expression.
2832  SourceLocation EqualOrColonLoc;
2833
2834  /// Whether this designated initializer used the GNU deprecated
2835  /// syntax rather than the C99 '=' syntax.
2836  bool GNUSyntax : 1;
2837
2838  /// The number of designators in this initializer expression.
2839  unsigned NumDesignators : 15;
2840
2841  /// \brief The designators in this designated initialization
2842  /// expression.
2843  Designator *Designators;
2844
2845  /// The number of subexpressions of this initializer expression,
2846  /// which contains both the initializer and any additional
2847  /// expressions used by array and array-range designators.
2848  unsigned NumSubExprs : 16;
2849
2850
2851  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2852                     const Designator *Designators,
2853                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2854                     Expr **IndexExprs, unsigned NumIndexExprs,
2855                     Expr *Init);
2856
2857  explicit DesignatedInitExpr(unsigned NumSubExprs)
2858    : Expr(DesignatedInitExprClass, EmptyShell()),
2859      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2860
2861protected:
2862  virtual void DoDestroy(ASTContext &C);
2863
2864  void DestroyDesignators(ASTContext &C);
2865
2866public:
2867  /// A field designator, e.g., ".x".
2868  struct FieldDesignator {
2869    /// Refers to the field that is being initialized. The low bit
2870    /// of this field determines whether this is actually a pointer
2871    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2872    /// initially constructed, a field designator will store an
2873    /// IdentifierInfo*. After semantic analysis has resolved that
2874    /// name, the field designator will instead store a FieldDecl*.
2875    uintptr_t NameOrField;
2876
2877    /// The location of the '.' in the designated initializer.
2878    unsigned DotLoc;
2879
2880    /// The location of the field name in the designated initializer.
2881    unsigned FieldLoc;
2882  };
2883
2884  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2885  struct ArrayOrRangeDesignator {
2886    /// Location of the first index expression within the designated
2887    /// initializer expression's list of subexpressions.
2888    unsigned Index;
2889    /// The location of the '[' starting the array range designator.
2890    unsigned LBracketLoc;
2891    /// The location of the ellipsis separating the start and end
2892    /// indices. Only valid for GNU array-range designators.
2893    unsigned EllipsisLoc;
2894    /// The location of the ']' terminating the array range designator.
2895    unsigned RBracketLoc;
2896  };
2897
2898  /// @brief Represents a single C99 designator.
2899  ///
2900  /// @todo This class is infuriatingly similar to clang::Designator,
2901  /// but minor differences (storing indices vs. storing pointers)
2902  /// keep us from reusing it. Try harder, later, to rectify these
2903  /// differences.
2904  class Designator {
2905    /// @brief The kind of designator this describes.
2906    enum {
2907      FieldDesignator,
2908      ArrayDesignator,
2909      ArrayRangeDesignator
2910    } Kind;
2911
2912    union {
2913      /// A field designator, e.g., ".x".
2914      struct FieldDesignator Field;
2915      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2916      struct ArrayOrRangeDesignator ArrayOrRange;
2917    };
2918    friend class DesignatedInitExpr;
2919
2920  public:
2921    Designator() {}
2922
2923    /// @brief Initializes a field designator.
2924    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2925               SourceLocation FieldLoc)
2926      : Kind(FieldDesignator) {
2927      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2928      Field.DotLoc = DotLoc.getRawEncoding();
2929      Field.FieldLoc = FieldLoc.getRawEncoding();
2930    }
2931
2932    /// @brief Initializes an array designator.
2933    Designator(unsigned Index, SourceLocation LBracketLoc,
2934               SourceLocation RBracketLoc)
2935      : Kind(ArrayDesignator) {
2936      ArrayOrRange.Index = Index;
2937      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2938      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2939      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2940    }
2941
2942    /// @brief Initializes a GNU array-range designator.
2943    Designator(unsigned Index, SourceLocation LBracketLoc,
2944               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2945      : Kind(ArrayRangeDesignator) {
2946      ArrayOrRange.Index = Index;
2947      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2948      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2949      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2950    }
2951
2952    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2953    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2954    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2955
2956    IdentifierInfo * getFieldName();
2957
2958    FieldDecl *getField() {
2959      assert(Kind == FieldDesignator && "Only valid on a field designator");
2960      if (Field.NameOrField & 0x01)
2961        return 0;
2962      else
2963        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2964    }
2965
2966    void setField(FieldDecl *FD) {
2967      assert(Kind == FieldDesignator && "Only valid on a field designator");
2968      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2969    }
2970
2971    SourceLocation getDotLoc() const {
2972      assert(Kind == FieldDesignator && "Only valid on a field designator");
2973      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2974    }
2975
2976    SourceLocation getFieldLoc() const {
2977      assert(Kind == FieldDesignator && "Only valid on a field designator");
2978      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2979    }
2980
2981    SourceLocation getLBracketLoc() const {
2982      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2983             "Only valid on an array or array-range designator");
2984      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2985    }
2986
2987    SourceLocation getRBracketLoc() const {
2988      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2989             "Only valid on an array or array-range designator");
2990      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2991    }
2992
2993    SourceLocation getEllipsisLoc() const {
2994      assert(Kind == ArrayRangeDesignator &&
2995             "Only valid on an array-range designator");
2996      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2997    }
2998
2999    unsigned getFirstExprIndex() const {
3000      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3001             "Only valid on an array or array-range designator");
3002      return ArrayOrRange.Index;
3003    }
3004
3005    SourceLocation getStartLocation() const {
3006      if (Kind == FieldDesignator)
3007        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3008      else
3009        return getLBracketLoc();
3010    }
3011  };
3012
3013  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3014                                    unsigned NumDesignators,
3015                                    Expr **IndexExprs, unsigned NumIndexExprs,
3016                                    SourceLocation EqualOrColonLoc,
3017                                    bool GNUSyntax, Expr *Init);
3018
3019  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3020
3021  /// @brief Returns the number of designators in this initializer.
3022  unsigned size() const { return NumDesignators; }
3023
3024  // Iterator access to the designators.
3025  typedef Designator* designators_iterator;
3026  designators_iterator designators_begin() { return Designators; }
3027  designators_iterator designators_end() {
3028    return Designators + NumDesignators;
3029  }
3030
3031  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3032
3033  void setDesignators(ASTContext &C, const Designator *Desigs,
3034                      unsigned NumDesigs);
3035
3036  Expr *getArrayIndex(const Designator& D);
3037  Expr *getArrayRangeStart(const Designator& D);
3038  Expr *getArrayRangeEnd(const Designator& D);
3039
3040  /// @brief Retrieve the location of the '=' that precedes the
3041  /// initializer value itself, if present.
3042  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3043  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3044
3045  /// @brief Determines whether this designated initializer used the
3046  /// deprecated GNU syntax for designated initializers.
3047  bool usesGNUSyntax() const { return GNUSyntax; }
3048  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3049
3050  /// @brief Retrieve the initializer value.
3051  Expr *getInit() const {
3052    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3053  }
3054
3055  void setInit(Expr *init) {
3056    *child_begin() = init;
3057  }
3058
3059  /// \brief Retrieve the total number of subexpressions in this
3060  /// designated initializer expression, including the actual
3061  /// initialized value and any expressions that occur within array
3062  /// and array-range designators.
3063  unsigned getNumSubExprs() const { return NumSubExprs; }
3064
3065  Expr *getSubExpr(unsigned Idx) {
3066    assert(Idx < NumSubExprs && "Subscript out of range");
3067    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3068    Ptr += sizeof(DesignatedInitExpr);
3069    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3070  }
3071
3072  void setSubExpr(unsigned Idx, Expr *E) {
3073    assert(Idx < NumSubExprs && "Subscript out of range");
3074    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3075    Ptr += sizeof(DesignatedInitExpr);
3076    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3077  }
3078
3079  /// \brief Replaces the designator at index @p Idx with the series
3080  /// of designators in [First, Last).
3081  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3082                        const Designator *Last);
3083
3084  virtual SourceRange getSourceRange() const;
3085
3086  static bool classof(const Stmt *T) {
3087    return T->getStmtClass() == DesignatedInitExprClass;
3088  }
3089  static bool classof(const DesignatedInitExpr *) { return true; }
3090
3091  // Iterators
3092  virtual child_iterator child_begin();
3093  virtual child_iterator child_end();
3094};
3095
3096/// \brief Represents an implicitly-generated value initialization of
3097/// an object of a given type.
3098///
3099/// Implicit value initializations occur within semantic initializer
3100/// list expressions (InitListExpr) as placeholders for subobject
3101/// initializations not explicitly specified by the user.
3102///
3103/// \see InitListExpr
3104class ImplicitValueInitExpr : public Expr {
3105public:
3106  explicit ImplicitValueInitExpr(QualType ty)
3107    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3108
3109  /// \brief Construct an empty implicit value initialization.
3110  explicit ImplicitValueInitExpr(EmptyShell Empty)
3111    : Expr(ImplicitValueInitExprClass, Empty) { }
3112
3113  static bool classof(const Stmt *T) {
3114    return T->getStmtClass() == ImplicitValueInitExprClass;
3115  }
3116  static bool classof(const ImplicitValueInitExpr *) { return true; }
3117
3118  virtual SourceRange getSourceRange() const {
3119    return SourceRange();
3120  }
3121
3122  // Iterators
3123  virtual child_iterator child_begin();
3124  virtual child_iterator child_end();
3125};
3126
3127
3128class ParenListExpr : public Expr {
3129  Stmt **Exprs;
3130  unsigned NumExprs;
3131  SourceLocation LParenLoc, RParenLoc;
3132
3133protected:
3134  virtual void DoDestroy(ASTContext& C);
3135
3136public:
3137  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3138                unsigned numexprs, SourceLocation rparenloc);
3139
3140  ~ParenListExpr() {}
3141
3142  /// \brief Build an empty paren list.
3143  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3144
3145  unsigned getNumExprs() const { return NumExprs; }
3146
3147  const Expr* getExpr(unsigned Init) const {
3148    assert(Init < getNumExprs() && "Initializer access out of range!");
3149    return cast_or_null<Expr>(Exprs[Init]);
3150  }
3151
3152  Expr* getExpr(unsigned Init) {
3153    assert(Init < getNumExprs() && "Initializer access out of range!");
3154    return cast_or_null<Expr>(Exprs[Init]);
3155  }
3156
3157  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3158
3159  SourceLocation getLParenLoc() const { return LParenLoc; }
3160  SourceLocation getRParenLoc() const { return RParenLoc; }
3161
3162  virtual SourceRange getSourceRange() const {
3163    return SourceRange(LParenLoc, RParenLoc);
3164  }
3165  static bool classof(const Stmt *T) {
3166    return T->getStmtClass() == ParenListExprClass;
3167  }
3168  static bool classof(const ParenListExpr *) { return true; }
3169
3170  // Iterators
3171  virtual child_iterator child_begin();
3172  virtual child_iterator child_end();
3173};
3174
3175
3176//===----------------------------------------------------------------------===//
3177// Clang Extensions
3178//===----------------------------------------------------------------------===//
3179
3180
3181/// ExtVectorElementExpr - This represents access to specific elements of a
3182/// vector, and may occur on the left hand side or right hand side.  For example
3183/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3184///
3185/// Note that the base may have either vector or pointer to vector type, just
3186/// like a struct field reference.
3187///
3188class ExtVectorElementExpr : public Expr {
3189  Stmt *Base;
3190  IdentifierInfo *Accessor;
3191  SourceLocation AccessorLoc;
3192public:
3193  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3194                       SourceLocation loc)
3195    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3196           base->isValueDependent()),
3197      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3198
3199  /// \brief Build an empty vector element expression.
3200  explicit ExtVectorElementExpr(EmptyShell Empty)
3201    : Expr(ExtVectorElementExprClass, Empty) { }
3202
3203  const Expr *getBase() const { return cast<Expr>(Base); }
3204  Expr *getBase() { return cast<Expr>(Base); }
3205  void setBase(Expr *E) { Base = E; }
3206
3207  IdentifierInfo &getAccessor() const { return *Accessor; }
3208  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3209
3210  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3211  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3212
3213  /// getNumElements - Get the number of components being selected.
3214  unsigned getNumElements() const;
3215
3216  /// containsDuplicateElements - Return true if any element access is
3217  /// repeated.
3218  bool containsDuplicateElements() const;
3219
3220  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3221  /// aggregate Constant of ConstantInt(s).
3222  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3223
3224  virtual SourceRange getSourceRange() const {
3225    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3226  }
3227
3228  /// isArrow - Return true if the base expression is a pointer to vector,
3229  /// return false if the base expression is a vector.
3230  bool isArrow() const;
3231
3232  static bool classof(const Stmt *T) {
3233    return T->getStmtClass() == ExtVectorElementExprClass;
3234  }
3235  static bool classof(const ExtVectorElementExpr *) { return true; }
3236
3237  // Iterators
3238  virtual child_iterator child_begin();
3239  virtual child_iterator child_end();
3240};
3241
3242
3243/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3244/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3245class BlockExpr : public Expr {
3246protected:
3247  BlockDecl *TheBlock;
3248  bool HasBlockDeclRefExprs;
3249public:
3250  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3251    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3252      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3253
3254  /// \brief Build an empty block expression.
3255  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3256
3257  const BlockDecl *getBlockDecl() const { return TheBlock; }
3258  BlockDecl *getBlockDecl() { return TheBlock; }
3259  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3260
3261  // Convenience functions for probing the underlying BlockDecl.
3262  SourceLocation getCaretLocation() const;
3263  const Stmt *getBody() const;
3264  Stmt *getBody();
3265
3266  virtual SourceRange getSourceRange() const {
3267    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3268  }
3269
3270  /// getFunctionType - Return the underlying function type for this block.
3271  const FunctionType *getFunctionType() const;
3272
3273  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3274  /// inside of the block that reference values outside the block.
3275  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3276  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3277
3278  static bool classof(const Stmt *T) {
3279    return T->getStmtClass() == BlockExprClass;
3280  }
3281  static bool classof(const BlockExpr *) { return true; }
3282
3283  // Iterators
3284  virtual child_iterator child_begin();
3285  virtual child_iterator child_end();
3286};
3287
3288/// BlockDeclRefExpr - A reference to a declared variable, function,
3289/// enum, etc.
3290class BlockDeclRefExpr : public Expr {
3291  ValueDecl *D;
3292  SourceLocation Loc;
3293  bool IsByRef : 1;
3294  bool ConstQualAdded : 1;
3295public:
3296  // FIXME: Fix type/value dependence!
3297  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3298                   bool constAdded = false)
3299  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3300    ConstQualAdded(constAdded) {}
3301
3302  // \brief Build an empty reference to a declared variable in a
3303  // block.
3304  explicit BlockDeclRefExpr(EmptyShell Empty)
3305    : Expr(BlockDeclRefExprClass, Empty) { }
3306
3307  ValueDecl *getDecl() { return D; }
3308  const ValueDecl *getDecl() const { return D; }
3309  void setDecl(ValueDecl *VD) { D = VD; }
3310
3311  SourceLocation getLocation() const { return Loc; }
3312  void setLocation(SourceLocation L) { Loc = L; }
3313
3314  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3315
3316  bool isByRef() const { return IsByRef; }
3317  void setByRef(bool BR) { IsByRef = BR; }
3318
3319  bool isConstQualAdded() const { return ConstQualAdded; }
3320  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3321
3322  static bool classof(const Stmt *T) {
3323    return T->getStmtClass() == BlockDeclRefExprClass;
3324  }
3325  static bool classof(const BlockDeclRefExpr *) { return true; }
3326
3327  // Iterators
3328  virtual child_iterator child_begin();
3329  virtual child_iterator child_end();
3330};
3331
3332}  // end namespace clang
3333
3334#endif
3335