Expr.h revision 905d11d53aeb6b26744f44fedc2b2820c7a62df6
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include <vector>
25
26namespace clang {
27  class ASTContext;
28  class APValue;
29  class Decl;
30  class IdentifierInfo;
31  class ParmVarDecl;
32  class NamedDecl;
33  class ValueDecl;
34  class BlockDecl;
35  class CXXOperatorCallExpr;
36  class CXXMemberCallExpr;
37  class TemplateArgumentLoc;
38
39/// Expr - This represents one expression.  Note that Expr's are subclasses of
40/// Stmt.  This allows an expression to be transparently used any place a Stmt
41/// is required.
42///
43class Expr : public Stmt {
44  QualType TR;
45
46protected:
47  /// TypeDependent - Whether this expression is type-dependent
48  /// (C++ [temp.dep.expr]).
49  bool TypeDependent : 1;
50
51  /// ValueDependent - Whether this expression is value-dependent
52  /// (C++ [temp.dep.constexpr]).
53  bool ValueDependent : 1;
54
55  // FIXME: Eventually, this constructor should go away and we should
56  // require every subclass to provide type/value-dependence
57  // information.
58  Expr(StmtClass SC, QualType T)
59    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
60    setType(T);
61  }
62
63  Expr(StmtClass SC, QualType T, bool TD, bool VD)
64    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
65    setType(T);
66  }
67
68  /// \brief Construct an empty expression.
69  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
70
71public:
72  /// \brief Increases the reference count for this expression.
73  ///
74  /// Invoke the Retain() operation when this expression
75  /// is being shared by another owner.
76  Expr *Retain() {
77    Stmt::Retain();
78    return this;
79  }
80
81  QualType getType() const { return TR; }
82  void setType(QualType t) {
83    // In C++, the type of an expression is always adjusted so that it
84    // will not have reference type an expression will never have
85    // reference type (C++ [expr]p6). Use
86    // QualType::getNonReferenceType() to retrieve the non-reference
87    // type. Additionally, inspect Expr::isLvalue to determine whether
88    // an expression that is adjusted in this manner should be
89    // considered an lvalue.
90    assert((t.isNull() || !t->isReferenceType()) &&
91           "Expressions can't have reference type");
92
93    TR = t;
94  }
95
96  /// isValueDependent - Determines whether this expression is
97  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
98  /// array bound of "Chars" in the following example is
99  /// value-dependent.
100  /// @code
101  /// template<int Size, char (&Chars)[Size]> struct meta_string;
102  /// @endcode
103  bool isValueDependent() const { return ValueDependent; }
104
105  /// \brief Set whether this expression is value-dependent or not.
106  void setValueDependent(bool VD) { ValueDependent = VD; }
107
108  /// isTypeDependent - Determines whether this expression is
109  /// type-dependent (C++ [temp.dep.expr]), which means that its type
110  /// could change from one template instantiation to the next. For
111  /// example, the expressions "x" and "x + y" are type-dependent in
112  /// the following code, but "y" is not type-dependent:
113  /// @code
114  /// template<typename T>
115  /// void add(T x, int y) {
116  ///   x + y;
117  /// }
118  /// @endcode
119  bool isTypeDependent() const { return TypeDependent; }
120
121  /// \brief Set whether this expression is type-dependent or not.
122  void setTypeDependent(bool TD) { TypeDependent = TD; }
123
124  /// SourceLocation tokens are not useful in isolation - they are low level
125  /// value objects created/interpreted by SourceManager. We assume AST
126  /// clients will have a pointer to the respective SourceManager.
127  virtual SourceRange getSourceRange() const = 0;
128
129  /// getExprLoc - Return the preferred location for the arrow when diagnosing
130  /// a problem with a generic expression.
131  virtual SourceLocation getExprLoc() const { return getLocStart(); }
132
133  /// isUnusedResultAWarning - Return true if this immediate expression should
134  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
135  /// with location to warn on and the source range[s] to report with the
136  /// warning.
137  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
138                              SourceRange &R2, ASTContext &Ctx) const;
139
140  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
141  /// incomplete type other than void. Nonarray expressions that can be lvalues:
142  ///  - name, where name must be a variable
143  ///  - e[i]
144  ///  - (e), where e must be an lvalue
145  ///  - e.name, where e must be an lvalue
146  ///  - e->name
147  ///  - *e, the type of e cannot be a function type
148  ///  - string-constant
149  ///  - reference type [C++ [expr]]
150  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
151  ///
152  enum isLvalueResult {
153    LV_Valid,
154    LV_NotObjectType,
155    LV_IncompleteVoidType,
156    LV_DuplicateVectorComponents,
157    LV_InvalidExpression,
158    LV_MemberFunction
159  };
160  isLvalueResult isLvalue(ASTContext &Ctx) const;
161
162  // Same as above, but excluding checks for non-object and void types in C
163  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
164
165  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
166  /// does not have an incomplete type, does not have a const-qualified type,
167  /// and if it is a structure or union, does not have any member (including,
168  /// recursively, any member or element of all contained aggregates or unions)
169  /// with a const-qualified type.
170  ///
171  /// \param Loc [in] [out] - A source location which *may* be filled
172  /// in with the location of the expression making this a
173  /// non-modifiable lvalue, if specified.
174  enum isModifiableLvalueResult {
175    MLV_Valid,
176    MLV_NotObjectType,
177    MLV_IncompleteVoidType,
178    MLV_DuplicateVectorComponents,
179    MLV_InvalidExpression,
180    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
181    MLV_IncompleteType,
182    MLV_ConstQualified,
183    MLV_ArrayType,
184    MLV_NotBlockQualified,
185    MLV_ReadonlyProperty,
186    MLV_NoSetterProperty,
187    MLV_MemberFunction
188  };
189  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
190                                              SourceLocation *Loc = 0) const;
191
192  /// \brief If this expression refers to a bit-field, retrieve the
193  /// declaration of that bit-field.
194  FieldDecl *getBitField();
195
196  const FieldDecl *getBitField() const {
197    return const_cast<Expr*>(this)->getBitField();
198  }
199
200  /// isIntegerConstantExpr - Return true if this expression is a valid integer
201  /// constant expression, and, if so, return its value in Result.  If not a
202  /// valid i-c-e, return false and fill in Loc (if specified) with the location
203  /// of the invalid expression.
204  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
205                             SourceLocation *Loc = 0,
206                             bool isEvaluated = true) const;
207  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
208    llvm::APSInt X;
209    return isIntegerConstantExpr(X, Ctx, Loc);
210  }
211  /// isConstantInitializer - Returns true if this expression is a constant
212  /// initializer, which can be emitted at compile-time.
213  bool isConstantInitializer(ASTContext &Ctx) const;
214
215  /// EvalResult is a struct with detailed info about an evaluated expression.
216  struct EvalResult {
217    /// Val - This is the value the expression can be folded to.
218    APValue Val;
219
220    /// HasSideEffects - Whether the evaluated expression has side effects.
221    /// For example, (f() && 0) can be folded, but it still has side effects.
222    bool HasSideEffects;
223
224    /// Diag - If the expression is unfoldable, then Diag contains a note
225    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
226    /// position for the error, and DiagExpr is the expression that caused
227    /// the error.
228    /// If the expression is foldable, but not an integer constant expression,
229    /// Diag contains a note diagnostic that describes why it isn't an integer
230    /// constant expression. If the expression *is* an integer constant
231    /// expression, then Diag will be zero.
232    unsigned Diag;
233    const Expr *DiagExpr;
234    SourceLocation DiagLoc;
235
236    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
237  };
238
239  /// Evaluate - Return true if this is a constant which we can fold using
240  /// any crazy technique (that has nothing to do with language standards) that
241  /// we want to.  If this function returns true, it returns the folded constant
242  /// in Result.
243  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
244
245  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
246  /// stack based objects.
247  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
248
249  /// isEvaluatable - Call Evaluate to see if this expression can be constant
250  /// folded, but discard the result.
251  bool isEvaluatable(ASTContext &Ctx) const;
252
253  /// HasSideEffects - This routine returns true for all those expressions
254  /// which must be evaluated each time and must not be optimization away
255  /// or evaluated at compile time. Example is a function call, volatile
256  /// variable read.
257  bool HasSideEffects(ASTContext &Ctx) const;
258
259  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
260  /// must be called on an expression that constant folds to an integer.
261  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
262
263  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
264  /// with link time known address.
265  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
266
267  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
268  /// also succeeds on stack based, immutable address lvalues.
269  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
270
271  /// \brief Enumeration used to describe how \c isNullPointerConstant()
272  /// should cope with value-dependent expressions.
273  enum NullPointerConstantValueDependence {
274    /// \brief Specifies that the expression should never be value-dependent.
275    NPC_NeverValueDependent = 0,
276
277    /// \brief Specifies that a value-dependent expression of integral or
278    /// dependent type should be considered a null pointer constant.
279    NPC_ValueDependentIsNull,
280
281    /// \brief Specifies that a value-dependent expression should be considered
282    /// to never be a null pointer constant.
283    NPC_ValueDependentIsNotNull
284  };
285
286  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
287  /// integer constant expression with the value zero, or if this is one that is
288  /// cast to void*.
289  bool isNullPointerConstant(ASTContext &Ctx,
290                             NullPointerConstantValueDependence NPC) const;
291
292  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
293  /// write barrier.
294  bool isOBJCGCCandidate(ASTContext &Ctx) const;
295
296  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
297  ///  its subexpression.  If that subexpression is also a ParenExpr,
298  ///  then this method recursively returns its subexpression, and so forth.
299  ///  Otherwise, the method returns the current Expr.
300  Expr* IgnoreParens();
301
302  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
303  /// or CastExprs, returning their operand.
304  Expr *IgnoreParenCasts();
305
306  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
307  /// value (including ptr->int casts of the same size).  Strip off any
308  /// ParenExpr or CastExprs, returning their operand.
309  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
310
311  const Expr* IgnoreParens() const {
312    return const_cast<Expr*>(this)->IgnoreParens();
313  }
314  const Expr *IgnoreParenCasts() const {
315    return const_cast<Expr*>(this)->IgnoreParenCasts();
316  }
317  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
318    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
319  }
320
321  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
322  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
323
324  static bool classof(const Stmt *T) {
325    return T->getStmtClass() >= firstExprConstant &&
326           T->getStmtClass() <= lastExprConstant;
327  }
328  static bool classof(const Expr *) { return true; }
329};
330
331
332//===----------------------------------------------------------------------===//
333// Primary Expressions.
334//===----------------------------------------------------------------------===//
335
336/// \brief Represents the qualifier that may precede a C++ name, e.g., the
337/// "std::" in "std::sort".
338struct NameQualifier {
339  /// \brief The nested name specifier.
340  NestedNameSpecifier *NNS;
341
342  /// \brief The source range covered by the nested name specifier.
343  SourceRange Range;
344};
345
346/// \brief Represents an explicit template argument list in C++, e.g.,
347/// the "<int>" in "sort<int>".
348struct ExplicitTemplateArgumentList {
349  /// \brief The source location of the left angle bracket ('<');
350  SourceLocation LAngleLoc;
351
352  /// \brief The source location of the right angle bracket ('>');
353  SourceLocation RAngleLoc;
354
355  /// \brief The number of template arguments in TemplateArgs.
356  /// The actual template arguments (if any) are stored after the
357  /// ExplicitTemplateArgumentList structure.
358  unsigned NumTemplateArgs;
359
360  /// \brief Retrieve the template arguments
361  TemplateArgumentLoc *getTemplateArgs() {
362    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
363  }
364
365  /// \brief Retrieve the template arguments
366  const TemplateArgumentLoc *getTemplateArgs() const {
367    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
368  }
369};
370
371/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
372/// enum, etc.
373class DeclRefExpr : public Expr {
374  enum {
375    // Flag on DecoratedD that specifies when this declaration reference
376    // expression has a C++ nested-name-specifier.
377    HasQualifierFlag = 0x01,
378    // Flag on DecoratedD that specifies when this declaration reference
379    // expression has an explicit C++ template argument list.
380    HasExplicitTemplateArgumentListFlag = 0x02
381  };
382
383  // DecoratedD - The declaration that we are referencing, plus two bits to
384  // indicate whether (1) the declaration's name was explicitly qualified and
385  // (2) the declaration's name was followed by an explicit template
386  // argument list.
387  llvm::PointerIntPair<NamedDecl *, 2> DecoratedD;
388
389  // Loc - The location of the declaration name itself.
390  SourceLocation Loc;
391
392  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
393  NameQualifier *getNameQualifier() {
394    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
395      return 0;
396
397    return reinterpret_cast<NameQualifier *> (this + 1);
398  }
399
400  /// \brief Retrieve the qualifier that preceded the member name, if any.
401  const NameQualifier *getNameQualifier() const {
402    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
403  }
404
405  /// \brief Retrieve the explicit template argument list that followed the
406  /// member template name, if any.
407  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
408    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
409      return 0;
410
411    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
412      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
413
414    return reinterpret_cast<ExplicitTemplateArgumentList *>(
415                                                      getNameQualifier() + 1);
416  }
417
418  /// \brief Retrieve the explicit template argument list that followed the
419  /// member template name, if any.
420  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
421    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
422  }
423
424  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
425              NamedDecl *D, SourceLocation NameLoc,
426              bool HasExplicitTemplateArgumentList,
427              SourceLocation LAngleLoc,
428              const TemplateArgumentLoc *ExplicitTemplateArgs,
429              unsigned NumExplicitTemplateArgs,
430              SourceLocation RAngleLoc,
431              QualType T, bool TD, bool VD);
432
433protected:
434  // FIXME: Eventually, this constructor will go away and all subclasses
435  // will have to provide the type- and value-dependent flags.
436  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
437    Expr(SC, t), DecoratedD(d, 0), Loc(l) {}
438
439  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
440              bool VD) :
441    Expr(SC, t, TD, VD), DecoratedD(d, 0), Loc(l) {}
442
443public:
444  // FIXME: Eventually, this constructor will go away and all clients
445  // will have to provide the type- and value-dependent flags.
446  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
447    Expr(DeclRefExprClass, t), DecoratedD(d, 0), Loc(l) {}
448
449  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
450    Expr(DeclRefExprClass, t, TD, VD), DecoratedD(d, 0), Loc(l) {}
451
452  /// \brief Construct an empty declaration reference expression.
453  explicit DeclRefExpr(EmptyShell Empty)
454    : Expr(DeclRefExprClass, Empty) { }
455
456  static DeclRefExpr *Create(ASTContext &Context,
457                             NestedNameSpecifier *Qualifier,
458                             SourceRange QualifierRange,
459                             NamedDecl *D,
460                             SourceLocation NameLoc,
461                             QualType T, bool TD, bool VD);
462
463  static DeclRefExpr *Create(ASTContext &Context,
464                             NestedNameSpecifier *Qualifier,
465                             SourceRange QualifierRange,
466                             NamedDecl *D,
467                             SourceLocation NameLoc,
468                             bool HasExplicitTemplateArgumentList,
469                             SourceLocation LAngleLoc,
470                             const TemplateArgumentLoc *ExplicitTemplateArgs,
471                             unsigned NumExplicitTemplateArgs,
472                             SourceLocation RAngleLoc,
473                             QualType T, bool TD, bool VD);
474
475  NamedDecl *getDecl() { return DecoratedD.getPointer(); }
476  const NamedDecl *getDecl() const { return DecoratedD.getPointer(); }
477  void setDecl(NamedDecl *NewD) { DecoratedD.setPointer(NewD); }
478
479  SourceLocation getLocation() const { return Loc; }
480  void setLocation(SourceLocation L) { Loc = L; }
481  virtual SourceRange getSourceRange() const;
482
483  /// \brief Determine whether this declaration reference was preceded by a
484  /// C++ nested-name-specifier, e.g., \c N::foo.
485  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
486
487  /// \brief If the name was qualified, retrieves the source range of
488  /// the nested-name-specifier that precedes the name. Otherwise,
489  /// returns an empty source range.
490  SourceRange getQualifierRange() const {
491    if (!hasQualifier())
492      return SourceRange();
493
494    return getNameQualifier()->Range;
495  }
496
497  /// \brief If the name was qualified, retrieves the nested-name-specifier
498  /// that precedes the name. Otherwise, returns NULL.
499  NestedNameSpecifier *getQualifier() const {
500    if (!hasQualifier())
501      return 0;
502
503    return getNameQualifier()->NNS;
504  }
505
506  /// \brief Determines whether this member expression actually had a C++
507  /// template argument list explicitly specified, e.g., x.f<int>.
508  bool hasExplicitTemplateArgumentList() const {
509    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
510  }
511
512  /// \brief Retrieve the location of the left angle bracket following the
513  /// member name ('<'), if any.
514  SourceLocation getLAngleLoc() const {
515    if (!hasExplicitTemplateArgumentList())
516      return SourceLocation();
517
518    return getExplicitTemplateArgumentList()->LAngleLoc;
519  }
520
521  /// \brief Retrieve the template arguments provided as part of this
522  /// template-id.
523  const TemplateArgumentLoc *getTemplateArgs() const {
524    if (!hasExplicitTemplateArgumentList())
525      return 0;
526
527    return getExplicitTemplateArgumentList()->getTemplateArgs();
528  }
529
530  /// \brief Retrieve the number of template arguments provided as part of this
531  /// template-id.
532  unsigned getNumTemplateArgs() const {
533    if (!hasExplicitTemplateArgumentList())
534      return 0;
535
536    return getExplicitTemplateArgumentList()->NumTemplateArgs;
537  }
538
539  /// \brief Retrieve the location of the right angle bracket following the
540  /// template arguments ('>').
541  SourceLocation getRAngleLoc() const {
542    if (!hasExplicitTemplateArgumentList())
543      return SourceLocation();
544
545    return getExplicitTemplateArgumentList()->RAngleLoc;
546  }
547
548  static bool classof(const Stmt *T) {
549    return T->getStmtClass() == DeclRefExprClass ||
550           T->getStmtClass() == CXXConditionDeclExprClass;
551  }
552  static bool classof(const DeclRefExpr *) { return true; }
553
554  // Iterators
555  virtual child_iterator child_begin();
556  virtual child_iterator child_end();
557};
558
559/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
560class PredefinedExpr : public Expr {
561public:
562  enum IdentType {
563    Func,
564    Function,
565    PrettyFunction
566  };
567
568private:
569  SourceLocation Loc;
570  IdentType Type;
571public:
572  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
573    : Expr(PredefinedExprClass, type, type->isDependentType(),
574           type->isDependentType()), Loc(l), Type(IT) {}
575
576  /// \brief Construct an empty predefined expression.
577  explicit PredefinedExpr(EmptyShell Empty)
578    : Expr(PredefinedExprClass, Empty) { }
579
580  IdentType getIdentType() const { return Type; }
581  void setIdentType(IdentType IT) { Type = IT; }
582
583  SourceLocation getLocation() const { return Loc; }
584  void setLocation(SourceLocation L) { Loc = L; }
585
586  static std::string ComputeName(ASTContext &Context, IdentType IT,
587                                 const Decl *CurrentDecl);
588
589  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
590
591  static bool classof(const Stmt *T) {
592    return T->getStmtClass() == PredefinedExprClass;
593  }
594  static bool classof(const PredefinedExpr *) { return true; }
595
596  // Iterators
597  virtual child_iterator child_begin();
598  virtual child_iterator child_end();
599};
600
601class IntegerLiteral : public Expr {
602  llvm::APInt Value;
603  SourceLocation Loc;
604public:
605  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
606  // or UnsignedLongLongTy
607  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
608    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
609    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
610  }
611
612  /// \brief Construct an empty integer literal.
613  explicit IntegerLiteral(EmptyShell Empty)
614    : Expr(IntegerLiteralClass, Empty) { }
615
616  const llvm::APInt &getValue() const { return Value; }
617  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
618
619  /// \brief Retrieve the location of the literal.
620  SourceLocation getLocation() const { return Loc; }
621
622  void setValue(const llvm::APInt &Val) { Value = Val; }
623  void setLocation(SourceLocation Location) { Loc = Location; }
624
625  static bool classof(const Stmt *T) {
626    return T->getStmtClass() == IntegerLiteralClass;
627  }
628  static bool classof(const IntegerLiteral *) { return true; }
629
630  // Iterators
631  virtual child_iterator child_begin();
632  virtual child_iterator child_end();
633};
634
635class CharacterLiteral : public Expr {
636  unsigned Value;
637  SourceLocation Loc;
638  bool IsWide;
639public:
640  // type should be IntTy
641  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
642    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
643  }
644
645  /// \brief Construct an empty character literal.
646  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
647
648  SourceLocation getLocation() const { return Loc; }
649  bool isWide() const { return IsWide; }
650
651  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
652
653  unsigned getValue() const { return Value; }
654
655  void setLocation(SourceLocation Location) { Loc = Location; }
656  void setWide(bool W) { IsWide = W; }
657  void setValue(unsigned Val) { Value = Val; }
658
659  static bool classof(const Stmt *T) {
660    return T->getStmtClass() == CharacterLiteralClass;
661  }
662  static bool classof(const CharacterLiteral *) { return true; }
663
664  // Iterators
665  virtual child_iterator child_begin();
666  virtual child_iterator child_end();
667};
668
669class FloatingLiteral : public Expr {
670  llvm::APFloat Value;
671  bool IsExact : 1;
672  SourceLocation Loc;
673public:
674  FloatingLiteral(const llvm::APFloat &V, bool isexact,
675                  QualType Type, SourceLocation L)
676    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(isexact), Loc(L) {}
677
678  /// \brief Construct an empty floating-point literal.
679  explicit FloatingLiteral(EmptyShell Empty)
680    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
681
682  const llvm::APFloat &getValue() const { return Value; }
683  void setValue(const llvm::APFloat &Val) { Value = Val; }
684
685  bool isExact() const { return IsExact; }
686  void setExact(bool E) { IsExact = E; }
687
688  /// getValueAsApproximateDouble - This returns the value as an inaccurate
689  /// double.  Note that this may cause loss of precision, but is useful for
690  /// debugging dumps, etc.
691  double getValueAsApproximateDouble() const;
692
693  SourceLocation getLocation() const { return Loc; }
694  void setLocation(SourceLocation L) { Loc = L; }
695
696  // FIXME: The logic for computing the value of a predefined expr should go
697  // into a method here that takes the inner-most code decl (a block, function
698  // or objc method) that the expr lives in.  This would allow sema and codegen
699  // to be consistent for things like sizeof(__func__) etc.
700
701  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
702
703  static bool classof(const Stmt *T) {
704    return T->getStmtClass() == FloatingLiteralClass;
705  }
706  static bool classof(const FloatingLiteral *) { return true; }
707
708  // Iterators
709  virtual child_iterator child_begin();
710  virtual child_iterator child_end();
711};
712
713/// ImaginaryLiteral - We support imaginary integer and floating point literals,
714/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
715/// IntegerLiteral classes.  Instances of this class always have a Complex type
716/// whose element type matches the subexpression.
717///
718class ImaginaryLiteral : public Expr {
719  Stmt *Val;
720public:
721  ImaginaryLiteral(Expr *val, QualType Ty)
722    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
723
724  /// \brief Build an empty imaginary literal.
725  explicit ImaginaryLiteral(EmptyShell Empty)
726    : Expr(ImaginaryLiteralClass, Empty) { }
727
728  const Expr *getSubExpr() const { return cast<Expr>(Val); }
729  Expr *getSubExpr() { return cast<Expr>(Val); }
730  void setSubExpr(Expr *E) { Val = E; }
731
732  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
733  static bool classof(const Stmt *T) {
734    return T->getStmtClass() == ImaginaryLiteralClass;
735  }
736  static bool classof(const ImaginaryLiteral *) { return true; }
737
738  // Iterators
739  virtual child_iterator child_begin();
740  virtual child_iterator child_end();
741};
742
743/// StringLiteral - This represents a string literal expression, e.g. "foo"
744/// or L"bar" (wide strings).  The actual string is returned by getStrData()
745/// is NOT null-terminated, and the length of the string is determined by
746/// calling getByteLength().  The C type for a string is always a
747/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
748/// not.
749///
750/// Note that strings in C can be formed by concatenation of multiple string
751/// literal pptokens in translation phase #6.  This keeps track of the locations
752/// of each of these pieces.
753///
754/// Strings in C can also be truncated and extended by assigning into arrays,
755/// e.g. with constructs like:
756///   char X[2] = "foobar";
757/// In this case, getByteLength() will return 6, but the string literal will
758/// have type "char[2]".
759class StringLiteral : public Expr {
760  const char *StrData;
761  unsigned ByteLength;
762  bool IsWide;
763  unsigned NumConcatenated;
764  SourceLocation TokLocs[1];
765
766  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
767
768protected:
769  virtual void DoDestroy(ASTContext &C);
770
771public:
772  /// This is the "fully general" constructor that allows representation of
773  /// strings formed from multiple concatenated tokens.
774  static StringLiteral *Create(ASTContext &C, const char *StrData,
775                               unsigned ByteLength, bool Wide, QualType Ty,
776                               const SourceLocation *Loc, unsigned NumStrs);
777
778  /// Simple constructor for string literals made from one token.
779  static StringLiteral *Create(ASTContext &C, const char *StrData,
780                               unsigned ByteLength,
781                               bool Wide, QualType Ty, SourceLocation Loc) {
782    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
783  }
784
785  /// \brief Construct an empty string literal.
786  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
787
788  llvm::StringRef getString() const {
789    return llvm::StringRef(StrData, ByteLength);
790  }
791  // FIXME: These are deprecated, replace with StringRef.
792  const char *getStrData() const { return StrData; }
793  unsigned getByteLength() const { return ByteLength; }
794
795  /// \brief Sets the string data to the given string data.
796  void setString(ASTContext &C, llvm::StringRef Str);
797
798  bool isWide() const { return IsWide; }
799  void setWide(bool W) { IsWide = W; }
800
801  bool containsNonAsciiOrNull() const {
802    llvm::StringRef Str = getString();
803    for (unsigned i = 0, e = Str.size(); i != e; ++i)
804      if (!isascii(Str[i]) || !Str[i])
805        return true;
806    return false;
807  }
808  /// getNumConcatenated - Get the number of string literal tokens that were
809  /// concatenated in translation phase #6 to form this string literal.
810  unsigned getNumConcatenated() const { return NumConcatenated; }
811
812  SourceLocation getStrTokenLoc(unsigned TokNum) const {
813    assert(TokNum < NumConcatenated && "Invalid tok number");
814    return TokLocs[TokNum];
815  }
816  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
817    assert(TokNum < NumConcatenated && "Invalid tok number");
818    TokLocs[TokNum] = L;
819  }
820
821  typedef const SourceLocation *tokloc_iterator;
822  tokloc_iterator tokloc_begin() const { return TokLocs; }
823  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
824
825  virtual SourceRange getSourceRange() const {
826    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
827  }
828  static bool classof(const Stmt *T) {
829    return T->getStmtClass() == StringLiteralClass;
830  }
831  static bool classof(const StringLiteral *) { return true; }
832
833  // Iterators
834  virtual child_iterator child_begin();
835  virtual child_iterator child_end();
836};
837
838/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
839/// AST node is only formed if full location information is requested.
840class ParenExpr : public Expr {
841  SourceLocation L, R;
842  Stmt *Val;
843public:
844  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
845    : Expr(ParenExprClass, val->getType(),
846           val->isTypeDependent(), val->isValueDependent()),
847      L(l), R(r), Val(val) {}
848
849  /// \brief Construct an empty parenthesized expression.
850  explicit ParenExpr(EmptyShell Empty)
851    : Expr(ParenExprClass, Empty) { }
852
853  const Expr *getSubExpr() const { return cast<Expr>(Val); }
854  Expr *getSubExpr() { return cast<Expr>(Val); }
855  void setSubExpr(Expr *E) { Val = E; }
856
857  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
858
859  /// \brief Get the location of the left parentheses '('.
860  SourceLocation getLParen() const { return L; }
861  void setLParen(SourceLocation Loc) { L = Loc; }
862
863  /// \brief Get the location of the right parentheses ')'.
864  SourceLocation getRParen() const { return R; }
865  void setRParen(SourceLocation Loc) { R = Loc; }
866
867  static bool classof(const Stmt *T) {
868    return T->getStmtClass() == ParenExprClass;
869  }
870  static bool classof(const ParenExpr *) { return true; }
871
872  // Iterators
873  virtual child_iterator child_begin();
874  virtual child_iterator child_end();
875};
876
877
878/// UnaryOperator - This represents the unary-expression's (except sizeof and
879/// alignof), the postinc/postdec operators from postfix-expression, and various
880/// extensions.
881///
882/// Notes on various nodes:
883///
884/// Real/Imag - These return the real/imag part of a complex operand.  If
885///   applied to a non-complex value, the former returns its operand and the
886///   later returns zero in the type of the operand.
887///
888/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
889///   subexpression is a compound literal with the various MemberExpr and
890///   ArraySubscriptExpr's applied to it.
891///
892class UnaryOperator : public Expr {
893public:
894  // Note that additions to this should also update the StmtVisitor class.
895  enum Opcode {
896    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
897    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
898    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
899    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
900    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
901    Real, Imag,       // "__real expr"/"__imag expr" Extension.
902    Extension,        // __extension__ marker.
903    OffsetOf          // __builtin_offsetof
904  };
905private:
906  Stmt *Val;
907  Opcode Opc;
908  SourceLocation Loc;
909public:
910
911  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
912    : Expr(UnaryOperatorClass, type,
913           input->isTypeDependent() && opc != OffsetOf,
914           input->isValueDependent()),
915      Val(input), Opc(opc), Loc(l) {}
916
917  /// \brief Build an empty unary operator.
918  explicit UnaryOperator(EmptyShell Empty)
919    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
920
921  Opcode getOpcode() const { return Opc; }
922  void setOpcode(Opcode O) { Opc = O; }
923
924  Expr *getSubExpr() const { return cast<Expr>(Val); }
925  void setSubExpr(Expr *E) { Val = E; }
926
927  /// getOperatorLoc - Return the location of the operator.
928  SourceLocation getOperatorLoc() const { return Loc; }
929  void setOperatorLoc(SourceLocation L) { Loc = L; }
930
931  /// isPostfix - Return true if this is a postfix operation, like x++.
932  static bool isPostfix(Opcode Op) {
933    return Op == PostInc || Op == PostDec;
934  }
935
936  /// isPostfix - Return true if this is a prefix operation, like --x.
937  static bool isPrefix(Opcode Op) {
938    return Op == PreInc || Op == PreDec;
939  }
940
941  bool isPrefix() const { return isPrefix(Opc); }
942  bool isPostfix() const { return isPostfix(Opc); }
943  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
944  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
945  bool isOffsetOfOp() const { return Opc == OffsetOf; }
946  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
947  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
948
949  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
950  /// corresponds to, e.g. "sizeof" or "[pre]++"
951  static const char *getOpcodeStr(Opcode Op);
952
953  /// \brief Retrieve the unary opcode that corresponds to the given
954  /// overloaded operator.
955  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
956
957  /// \brief Retrieve the overloaded operator kind that corresponds to
958  /// the given unary opcode.
959  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
960
961  virtual SourceRange getSourceRange() const {
962    if (isPostfix())
963      return SourceRange(Val->getLocStart(), Loc);
964    else
965      return SourceRange(Loc, Val->getLocEnd());
966  }
967  virtual SourceLocation getExprLoc() const { return Loc; }
968
969  static bool classof(const Stmt *T) {
970    return T->getStmtClass() == UnaryOperatorClass;
971  }
972  static bool classof(const UnaryOperator *) { return true; }
973
974  // Iterators
975  virtual child_iterator child_begin();
976  virtual child_iterator child_end();
977};
978
979/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
980/// types and expressions.
981class SizeOfAlignOfExpr : public Expr {
982  bool isSizeof : 1;  // true if sizeof, false if alignof.
983  bool isType : 1;    // true if operand is a type, false if an expression
984  union {
985    DeclaratorInfo *Ty;
986    Stmt *Ex;
987  } Argument;
988  SourceLocation OpLoc, RParenLoc;
989
990protected:
991  virtual void DoDestroy(ASTContext& C);
992
993public:
994  SizeOfAlignOfExpr(bool issizeof, DeclaratorInfo *DInfo,
995                    QualType resultType, SourceLocation op,
996                    SourceLocation rp) :
997      Expr(SizeOfAlignOfExprClass, resultType,
998           false, // Never type-dependent (C++ [temp.dep.expr]p3).
999           // Value-dependent if the argument is type-dependent.
1000           DInfo->getType()->isDependentType()),
1001      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1002    Argument.Ty = DInfo;
1003  }
1004
1005  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1006                    QualType resultType, SourceLocation op,
1007                    SourceLocation rp) :
1008      Expr(SizeOfAlignOfExprClass, resultType,
1009           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1010           // Value-dependent if the argument is type-dependent.
1011           E->isTypeDependent()),
1012      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1013    Argument.Ex = E;
1014  }
1015
1016  /// \brief Construct an empty sizeof/alignof expression.
1017  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1018    : Expr(SizeOfAlignOfExprClass, Empty) { }
1019
1020  bool isSizeOf() const { return isSizeof; }
1021  void setSizeof(bool S) { isSizeof = S; }
1022
1023  bool isArgumentType() const { return isType; }
1024  QualType getArgumentType() const {
1025    return getArgumentTypeInfo()->getType();
1026  }
1027  DeclaratorInfo *getArgumentTypeInfo() const {
1028    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1029    return Argument.Ty;
1030  }
1031  Expr *getArgumentExpr() {
1032    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1033    return static_cast<Expr*>(Argument.Ex);
1034  }
1035  const Expr *getArgumentExpr() const {
1036    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1037  }
1038
1039  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1040  void setArgument(DeclaratorInfo *DInfo) {
1041    Argument.Ty = DInfo;
1042    isType = true;
1043  }
1044
1045  /// Gets the argument type, or the type of the argument expression, whichever
1046  /// is appropriate.
1047  QualType getTypeOfArgument() const {
1048    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1049  }
1050
1051  SourceLocation getOperatorLoc() const { return OpLoc; }
1052  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1053
1054  SourceLocation getRParenLoc() const { return RParenLoc; }
1055  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1056
1057  virtual SourceRange getSourceRange() const {
1058    return SourceRange(OpLoc, RParenLoc);
1059  }
1060
1061  static bool classof(const Stmt *T) {
1062    return T->getStmtClass() == SizeOfAlignOfExprClass;
1063  }
1064  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1065
1066  // Iterators
1067  virtual child_iterator child_begin();
1068  virtual child_iterator child_end();
1069};
1070
1071//===----------------------------------------------------------------------===//
1072// Postfix Operators.
1073//===----------------------------------------------------------------------===//
1074
1075/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1076class ArraySubscriptExpr : public Expr {
1077  enum { LHS, RHS, END_EXPR=2 };
1078  Stmt* SubExprs[END_EXPR];
1079  SourceLocation RBracketLoc;
1080public:
1081  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1082                     SourceLocation rbracketloc)
1083  : Expr(ArraySubscriptExprClass, t,
1084         lhs->isTypeDependent() || rhs->isTypeDependent(),
1085         lhs->isValueDependent() || rhs->isValueDependent()),
1086    RBracketLoc(rbracketloc) {
1087    SubExprs[LHS] = lhs;
1088    SubExprs[RHS] = rhs;
1089  }
1090
1091  /// \brief Create an empty array subscript expression.
1092  explicit ArraySubscriptExpr(EmptyShell Shell)
1093    : Expr(ArraySubscriptExprClass, Shell) { }
1094
1095  /// An array access can be written A[4] or 4[A] (both are equivalent).
1096  /// - getBase() and getIdx() always present the normalized view: A[4].
1097  ///    In this case getBase() returns "A" and getIdx() returns "4".
1098  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1099  ///    4[A] getLHS() returns "4".
1100  /// Note: Because vector element access is also written A[4] we must
1101  /// predicate the format conversion in getBase and getIdx only on the
1102  /// the type of the RHS, as it is possible for the LHS to be a vector of
1103  /// integer type
1104  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1105  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1106  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1107
1108  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1109  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1110  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1111
1112  Expr *getBase() {
1113    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1114  }
1115
1116  const Expr *getBase() const {
1117    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1118  }
1119
1120  Expr *getIdx() {
1121    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1122  }
1123
1124  const Expr *getIdx() const {
1125    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1126  }
1127
1128  virtual SourceRange getSourceRange() const {
1129    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1130  }
1131
1132  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1133  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1134
1135  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1136
1137  static bool classof(const Stmt *T) {
1138    return T->getStmtClass() == ArraySubscriptExprClass;
1139  }
1140  static bool classof(const ArraySubscriptExpr *) { return true; }
1141
1142  // Iterators
1143  virtual child_iterator child_begin();
1144  virtual child_iterator child_end();
1145};
1146
1147
1148/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1149/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1150/// while its subclasses may represent alternative syntax that (semantically)
1151/// results in a function call. For example, CXXOperatorCallExpr is
1152/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1153/// "str1 + str2" to resolve to a function call.
1154class CallExpr : public Expr {
1155  enum { FN=0, ARGS_START=1 };
1156  Stmt **SubExprs;
1157  unsigned NumArgs;
1158  SourceLocation RParenLoc;
1159
1160protected:
1161  // This version of the constructor is for derived classes.
1162  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1163           QualType t, SourceLocation rparenloc);
1164
1165  virtual void DoDestroy(ASTContext& C);
1166
1167public:
1168  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1169           SourceLocation rparenloc);
1170
1171  /// \brief Build an empty call expression.
1172  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1173
1174  ~CallExpr() {}
1175
1176  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1177  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1178  void setCallee(Expr *F) { SubExprs[FN] = F; }
1179
1180  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1181  FunctionDecl *getDirectCallee();
1182  const FunctionDecl *getDirectCallee() const {
1183    return const_cast<CallExpr*>(this)->getDirectCallee();
1184  }
1185
1186  /// getNumArgs - Return the number of actual arguments to this call.
1187  ///
1188  unsigned getNumArgs() const { return NumArgs; }
1189
1190  /// getArg - Return the specified argument.
1191  Expr *getArg(unsigned Arg) {
1192    assert(Arg < NumArgs && "Arg access out of range!");
1193    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1194  }
1195  const Expr *getArg(unsigned Arg) const {
1196    assert(Arg < NumArgs && "Arg access out of range!");
1197    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1198  }
1199
1200  /// setArg - Set the specified argument.
1201  void setArg(unsigned Arg, Expr *ArgExpr) {
1202    assert(Arg < NumArgs && "Arg access out of range!");
1203    SubExprs[Arg+ARGS_START] = ArgExpr;
1204  }
1205
1206  /// setNumArgs - This changes the number of arguments present in this call.
1207  /// Any orphaned expressions are deleted by this, and any new operands are set
1208  /// to null.
1209  void setNumArgs(ASTContext& C, unsigned NumArgs);
1210
1211  typedef ExprIterator arg_iterator;
1212  typedef ConstExprIterator const_arg_iterator;
1213
1214  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1215  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1216  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1217  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1218
1219  /// getNumCommas - Return the number of commas that must have been present in
1220  /// this function call.
1221  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1222
1223  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1224  /// not, return 0.
1225  unsigned isBuiltinCall(ASTContext &Context) const;
1226
1227  /// getCallReturnType - Get the return type of the call expr. This is not
1228  /// always the type of the expr itself, if the return type is a reference
1229  /// type.
1230  QualType getCallReturnType() const;
1231
1232  SourceLocation getRParenLoc() const { return RParenLoc; }
1233  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1234
1235  virtual SourceRange getSourceRange() const {
1236    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1237  }
1238
1239  static bool classof(const Stmt *T) {
1240    return T->getStmtClass() == CallExprClass ||
1241           T->getStmtClass() == CXXOperatorCallExprClass ||
1242           T->getStmtClass() == CXXMemberCallExprClass;
1243  }
1244  static bool classof(const CallExpr *) { return true; }
1245  static bool classof(const CXXOperatorCallExpr *) { return true; }
1246  static bool classof(const CXXMemberCallExpr *) { return true; }
1247
1248  // Iterators
1249  virtual child_iterator child_begin();
1250  virtual child_iterator child_end();
1251};
1252
1253/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1254///
1255class MemberExpr : public Expr {
1256  /// Base - the expression for the base pointer or structure references.  In
1257  /// X.F, this is "X".
1258  Stmt *Base;
1259
1260  /// MemberDecl - This is the decl being referenced by the field/member name.
1261  /// In X.F, this is the decl referenced by F.
1262  NamedDecl *MemberDecl;
1263
1264  /// MemberLoc - This is the location of the member name.
1265  SourceLocation MemberLoc;
1266
1267  /// IsArrow - True if this is "X->F", false if this is "X.F".
1268  bool IsArrow : 1;
1269
1270  /// \brief True if this member expression used a nested-name-specifier to
1271  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1272  /// structure is allocated immediately after the MemberExpr.
1273  bool HasQualifier : 1;
1274
1275  /// \brief True if this member expression specified a template argument list
1276  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1277  /// structure (and its TemplateArguments) are allocated immediately after
1278  /// the MemberExpr or, if the member expression also has a qualifier, after
1279  /// the NameQualifier structure.
1280  bool HasExplicitTemplateArgumentList : 1;
1281
1282  /// \brief Retrieve the qualifier that preceded the member name, if any.
1283  NameQualifier *getMemberQualifier() {
1284    if (!HasQualifier)
1285      return 0;
1286
1287    return reinterpret_cast<NameQualifier *> (this + 1);
1288  }
1289
1290  /// \brief Retrieve the qualifier that preceded the member name, if any.
1291  const NameQualifier *getMemberQualifier() const {
1292    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1293  }
1294
1295  /// \brief Retrieve the explicit template argument list that followed the
1296  /// member template name, if any.
1297  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1298    if (!HasExplicitTemplateArgumentList)
1299      return 0;
1300
1301    if (!HasQualifier)
1302      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1303
1304    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1305                                                      getMemberQualifier() + 1);
1306  }
1307
1308  /// \brief Retrieve the explicit template argument list that followed the
1309  /// member template name, if any.
1310  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1311    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1312  }
1313
1314  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1315             SourceRange qualrange, NamedDecl *memberdecl, SourceLocation l,
1316             bool has_explicit, SourceLocation langle,
1317             const TemplateArgumentLoc *targs, unsigned numtargs,
1318             SourceLocation rangle, QualType ty);
1319
1320public:
1321  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1322             QualType ty)
1323    : Expr(MemberExprClass, ty,
1324           base->isTypeDependent(), base->isValueDependent()),
1325      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1326      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1327
1328  /// \brief Build an empty member reference expression.
1329  explicit MemberExpr(EmptyShell Empty)
1330    : Expr(MemberExprClass, Empty), HasQualifier(false),
1331      HasExplicitTemplateArgumentList(false) { }
1332
1333  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1334                            NestedNameSpecifier *qual, SourceRange qualrange,
1335                            NamedDecl *memberdecl,
1336                            SourceLocation l,
1337                            bool has_explicit,
1338                            SourceLocation langle,
1339                            const TemplateArgumentLoc *targs,
1340                            unsigned numtargs,
1341                            SourceLocation rangle,
1342                            QualType ty);
1343
1344  void setBase(Expr *E) { Base = E; }
1345  Expr *getBase() const { return cast<Expr>(Base); }
1346
1347  /// \brief Retrieve the member declaration to which this expression refers.
1348  ///
1349  /// The returned declaration will either be a FieldDecl or (in C++)
1350  /// a CXXMethodDecl.
1351  NamedDecl *getMemberDecl() const { return MemberDecl; }
1352  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1353
1354  /// \brief Determines whether this member expression actually had
1355  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1356  /// x->Base::foo.
1357  bool hasQualifier() const { return HasQualifier; }
1358
1359  /// \brief If the member name was qualified, retrieves the source range of
1360  /// the nested-name-specifier that precedes the member name. Otherwise,
1361  /// returns an empty source range.
1362  SourceRange getQualifierRange() const {
1363    if (!HasQualifier)
1364      return SourceRange();
1365
1366    return getMemberQualifier()->Range;
1367  }
1368
1369  /// \brief If the member name was qualified, retrieves the
1370  /// nested-name-specifier that precedes the member name. Otherwise, returns
1371  /// NULL.
1372  NestedNameSpecifier *getQualifier() const {
1373    if (!HasQualifier)
1374      return 0;
1375
1376    return getMemberQualifier()->NNS;
1377  }
1378
1379  /// \brief Determines whether this member expression actually had a C++
1380  /// template argument list explicitly specified, e.g., x.f<int>.
1381  bool hasExplicitTemplateArgumentList() {
1382    return HasExplicitTemplateArgumentList;
1383  }
1384
1385  /// \brief Retrieve the location of the left angle bracket following the
1386  /// member name ('<'), if any.
1387  SourceLocation getLAngleLoc() const {
1388    if (!HasExplicitTemplateArgumentList)
1389      return SourceLocation();
1390
1391    return getExplicitTemplateArgumentList()->LAngleLoc;
1392  }
1393
1394  /// \brief Retrieve the template arguments provided as part of this
1395  /// template-id.
1396  const TemplateArgumentLoc *getTemplateArgs() const {
1397    if (!HasExplicitTemplateArgumentList)
1398      return 0;
1399
1400    return getExplicitTemplateArgumentList()->getTemplateArgs();
1401  }
1402
1403  /// \brief Retrieve the number of template arguments provided as part of this
1404  /// template-id.
1405  unsigned getNumTemplateArgs() const {
1406    if (!HasExplicitTemplateArgumentList)
1407      return 0;
1408
1409    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1410  }
1411
1412  /// \brief Retrieve the location of the right angle bracket following the
1413  /// template arguments ('>').
1414  SourceLocation getRAngleLoc() const {
1415    if (!HasExplicitTemplateArgumentList)
1416      return SourceLocation();
1417
1418    return getExplicitTemplateArgumentList()->RAngleLoc;
1419  }
1420
1421  bool isArrow() const { return IsArrow; }
1422  void setArrow(bool A) { IsArrow = A; }
1423
1424  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1425  /// location of 'F'.
1426  SourceLocation getMemberLoc() const { return MemberLoc; }
1427  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1428
1429  virtual SourceRange getSourceRange() const {
1430    // If we have an implicit base (like a C++ implicit this),
1431    // make sure not to return its location
1432    SourceLocation EndLoc = MemberLoc;
1433    if (HasExplicitTemplateArgumentList)
1434      EndLoc = getRAngleLoc();
1435
1436    SourceLocation BaseLoc = getBase()->getLocStart();
1437    if (BaseLoc.isInvalid())
1438      return SourceRange(MemberLoc, EndLoc);
1439    return SourceRange(BaseLoc, EndLoc);
1440  }
1441
1442  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1443
1444  static bool classof(const Stmt *T) {
1445    return T->getStmtClass() == MemberExprClass;
1446  }
1447  static bool classof(const MemberExpr *) { return true; }
1448
1449  // Iterators
1450  virtual child_iterator child_begin();
1451  virtual child_iterator child_end();
1452};
1453
1454/// CompoundLiteralExpr - [C99 6.5.2.5]
1455///
1456class CompoundLiteralExpr : public Expr {
1457  /// LParenLoc - If non-null, this is the location of the left paren in a
1458  /// compound literal like "(int){4}".  This can be null if this is a
1459  /// synthesized compound expression.
1460  SourceLocation LParenLoc;
1461  Stmt *Init;
1462  bool FileScope;
1463public:
1464  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1465                      bool fileScope)
1466    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1467      FileScope(fileScope) {}
1468
1469  /// \brief Construct an empty compound literal.
1470  explicit CompoundLiteralExpr(EmptyShell Empty)
1471    : Expr(CompoundLiteralExprClass, Empty) { }
1472
1473  const Expr *getInitializer() const { return cast<Expr>(Init); }
1474  Expr *getInitializer() { return cast<Expr>(Init); }
1475  void setInitializer(Expr *E) { Init = E; }
1476
1477  bool isFileScope() const { return FileScope; }
1478  void setFileScope(bool FS) { FileScope = FS; }
1479
1480  SourceLocation getLParenLoc() const { return LParenLoc; }
1481  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1482
1483  virtual SourceRange getSourceRange() const {
1484    // FIXME: Init should never be null.
1485    if (!Init)
1486      return SourceRange();
1487    if (LParenLoc.isInvalid())
1488      return Init->getSourceRange();
1489    return SourceRange(LParenLoc, Init->getLocEnd());
1490  }
1491
1492  static bool classof(const Stmt *T) {
1493    return T->getStmtClass() == CompoundLiteralExprClass;
1494  }
1495  static bool classof(const CompoundLiteralExpr *) { return true; }
1496
1497  // Iterators
1498  virtual child_iterator child_begin();
1499  virtual child_iterator child_end();
1500};
1501
1502/// CastExpr - Base class for type casts, including both implicit
1503/// casts (ImplicitCastExpr) and explicit casts that have some
1504/// representation in the source code (ExplicitCastExpr's derived
1505/// classes).
1506class CastExpr : public Expr {
1507public:
1508  /// CastKind - the kind of cast this represents.
1509  enum CastKind {
1510    /// CK_Unknown - Unknown cast kind.
1511    /// FIXME: The goal is to get rid of this and make all casts have a
1512    /// kind so that the AST client doesn't have to try to figure out what's
1513    /// going on.
1514    CK_Unknown,
1515
1516    /// CK_BitCast - Used for reinterpret_cast.
1517    CK_BitCast,
1518
1519    /// CK_NoOp - Used for const_cast.
1520    CK_NoOp,
1521
1522    /// CK_BaseToDerived - Base to derived class casts.
1523    CK_BaseToDerived,
1524
1525    /// CK_DerivedToBase - Derived to base class casts.
1526    CK_DerivedToBase,
1527
1528    /// CK_Dynamic - Dynamic cast.
1529    CK_Dynamic,
1530
1531    /// CK_ToUnion - Cast to union (GCC extension).
1532    CK_ToUnion,
1533
1534    /// CK_ArrayToPointerDecay - Array to pointer decay.
1535    CK_ArrayToPointerDecay,
1536
1537    // CK_FunctionToPointerDecay - Function to pointer decay.
1538    CK_FunctionToPointerDecay,
1539
1540    /// CK_NullToMemberPointer - Null pointer to member pointer.
1541    CK_NullToMemberPointer,
1542
1543    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1544    /// member pointer in derived class.
1545    CK_BaseToDerivedMemberPointer,
1546
1547    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1548    /// member pointer in base class.
1549    CK_DerivedToBaseMemberPointer,
1550
1551    /// CK_UserDefinedConversion - Conversion using a user defined type
1552    /// conversion function.
1553    CK_UserDefinedConversion,
1554
1555    /// CK_ConstructorConversion - Conversion by constructor
1556    CK_ConstructorConversion,
1557
1558    /// CK_IntegralToPointer - Integral to pointer
1559    CK_IntegralToPointer,
1560
1561    /// CK_PointerToIntegral - Pointer to integral
1562    CK_PointerToIntegral,
1563
1564    /// CK_ToVoid - Cast to void.
1565    CK_ToVoid,
1566
1567    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1568    /// vector type with the same element type as the src type. Splats the
1569    /// src expression into the destination expression.
1570    CK_VectorSplat,
1571
1572    /// CK_IntegralCast - Casting between integral types of different size.
1573    CK_IntegralCast,
1574
1575    /// CK_IntegralToFloating - Integral to floating point.
1576    CK_IntegralToFloating,
1577
1578    /// CK_FloatingToIntegral - Floating point to integral.
1579    CK_FloatingToIntegral,
1580
1581    /// CK_FloatingCast - Casting between floating types of different size.
1582    CK_FloatingCast
1583  };
1584
1585private:
1586  CastKind Kind;
1587  Stmt *Op;
1588protected:
1589  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op) :
1590    Expr(SC, ty,
1591         // Cast expressions are type-dependent if the type is
1592         // dependent (C++ [temp.dep.expr]p3).
1593         ty->isDependentType(),
1594         // Cast expressions are value-dependent if the type is
1595         // dependent or if the subexpression is value-dependent.
1596         ty->isDependentType() || (op && op->isValueDependent())),
1597    Kind(kind), Op(op) {}
1598
1599  /// \brief Construct an empty cast.
1600  CastExpr(StmtClass SC, EmptyShell Empty)
1601    : Expr(SC, Empty) { }
1602
1603public:
1604  CastKind getCastKind() const { return Kind; }
1605  void setCastKind(CastKind K) { Kind = K; }
1606  const char *getCastKindName() const;
1607
1608  Expr *getSubExpr() { return cast<Expr>(Op); }
1609  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1610  void setSubExpr(Expr *E) { Op = E; }
1611
1612  static bool classof(const Stmt *T) {
1613    StmtClass SC = T->getStmtClass();
1614    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1615      return true;
1616
1617    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1618      return true;
1619
1620    return false;
1621  }
1622  static bool classof(const CastExpr *) { return true; }
1623
1624  // Iterators
1625  virtual child_iterator child_begin();
1626  virtual child_iterator child_end();
1627};
1628
1629/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1630/// conversions, which have no direct representation in the original
1631/// source code. For example: converting T[]->T*, void f()->void
1632/// (*f)(), float->double, short->int, etc.
1633///
1634/// In C, implicit casts always produce rvalues. However, in C++, an
1635/// implicit cast whose result is being bound to a reference will be
1636/// an lvalue. For example:
1637///
1638/// @code
1639/// class Base { };
1640/// class Derived : public Base { };
1641/// void f(Derived d) {
1642///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1643/// }
1644/// @endcode
1645class ImplicitCastExpr : public CastExpr {
1646  /// LvalueCast - Whether this cast produces an lvalue.
1647  bool LvalueCast;
1648
1649public:
1650  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, bool Lvalue) :
1651    CastExpr(ImplicitCastExprClass, ty, kind, op), LvalueCast(Lvalue) { }
1652
1653  /// \brief Construct an empty implicit cast.
1654  explicit ImplicitCastExpr(EmptyShell Shell)
1655    : CastExpr(ImplicitCastExprClass, Shell) { }
1656
1657
1658  virtual SourceRange getSourceRange() const {
1659    return getSubExpr()->getSourceRange();
1660  }
1661
1662  /// isLvalueCast - Whether this cast produces an lvalue.
1663  bool isLvalueCast() const { return LvalueCast; }
1664
1665  /// setLvalueCast - Set whether this cast produces an lvalue.
1666  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1667
1668  static bool classof(const Stmt *T) {
1669    return T->getStmtClass() == ImplicitCastExprClass;
1670  }
1671  static bool classof(const ImplicitCastExpr *) { return true; }
1672};
1673
1674/// ExplicitCastExpr - An explicit cast written in the source
1675/// code.
1676///
1677/// This class is effectively an abstract class, because it provides
1678/// the basic representation of an explicitly-written cast without
1679/// specifying which kind of cast (C cast, functional cast, static
1680/// cast, etc.) was written; specific derived classes represent the
1681/// particular style of cast and its location information.
1682///
1683/// Unlike implicit casts, explicit cast nodes have two different
1684/// types: the type that was written into the source code, and the
1685/// actual type of the expression as determined by semantic
1686/// analysis. These types may differ slightly. For example, in C++ one
1687/// can cast to a reference type, which indicates that the resulting
1688/// expression will be an lvalue. The reference type, however, will
1689/// not be used as the type of the expression.
1690class ExplicitCastExpr : public CastExpr {
1691  /// TypeAsWritten - The type that this expression is casting to, as
1692  /// written in the source code.
1693  QualType TypeAsWritten;
1694
1695protected:
1696  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
1697                   Expr *op, QualType writtenTy)
1698    : CastExpr(SC, exprTy, kind, op), TypeAsWritten(writtenTy) {}
1699
1700  /// \brief Construct an empty explicit cast.
1701  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1702    : CastExpr(SC, Shell) { }
1703
1704public:
1705  /// getTypeAsWritten - Returns the type that this expression is
1706  /// casting to, as written in the source code.
1707  QualType getTypeAsWritten() const { return TypeAsWritten; }
1708  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1709
1710  static bool classof(const Stmt *T) {
1711    StmtClass SC = T->getStmtClass();
1712    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1713      return true;
1714    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1715      return true;
1716
1717    return false;
1718  }
1719  static bool classof(const ExplicitCastExpr *) { return true; }
1720};
1721
1722/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1723/// cast in C++ (C++ [expr.cast]), which uses the syntax
1724/// (Type)expr. For example: @c (int)f.
1725class CStyleCastExpr : public ExplicitCastExpr {
1726  SourceLocation LPLoc; // the location of the left paren
1727  SourceLocation RPLoc; // the location of the right paren
1728public:
1729  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, QualType writtenTy,
1730                    SourceLocation l, SourceLocation r) :
1731    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1732    LPLoc(l), RPLoc(r) {}
1733
1734  /// \brief Construct an empty C-style explicit cast.
1735  explicit CStyleCastExpr(EmptyShell Shell)
1736    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1737
1738  SourceLocation getLParenLoc() const { return LPLoc; }
1739  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1740
1741  SourceLocation getRParenLoc() const { return RPLoc; }
1742  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1743
1744  virtual SourceRange getSourceRange() const {
1745    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1746  }
1747  static bool classof(const Stmt *T) {
1748    return T->getStmtClass() == CStyleCastExprClass;
1749  }
1750  static bool classof(const CStyleCastExpr *) { return true; }
1751};
1752
1753/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1754///
1755/// This expression node kind describes a builtin binary operation,
1756/// such as "x + y" for integer values "x" and "y". The operands will
1757/// already have been converted to appropriate types (e.g., by
1758/// performing promotions or conversions).
1759///
1760/// In C++, where operators may be overloaded, a different kind of
1761/// expression node (CXXOperatorCallExpr) is used to express the
1762/// invocation of an overloaded operator with operator syntax. Within
1763/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1764/// used to store an expression "x + y" depends on the subexpressions
1765/// for x and y. If neither x or y is type-dependent, and the "+"
1766/// operator resolves to a built-in operation, BinaryOperator will be
1767/// used to express the computation (x and y may still be
1768/// value-dependent). If either x or y is type-dependent, or if the
1769/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1770/// be used to express the computation.
1771class BinaryOperator : public Expr {
1772public:
1773  enum Opcode {
1774    // Operators listed in order of precedence.
1775    // Note that additions to this should also update the StmtVisitor class.
1776    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1777    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1778    Add, Sub,         // [C99 6.5.6] Additive operators.
1779    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1780    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1781    EQ, NE,           // [C99 6.5.9] Equality operators.
1782    And,              // [C99 6.5.10] Bitwise AND operator.
1783    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1784    Or,               // [C99 6.5.12] Bitwise OR operator.
1785    LAnd,             // [C99 6.5.13] Logical AND operator.
1786    LOr,              // [C99 6.5.14] Logical OR operator.
1787    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1788    DivAssign, RemAssign,
1789    AddAssign, SubAssign,
1790    ShlAssign, ShrAssign,
1791    AndAssign, XorAssign,
1792    OrAssign,
1793    Comma             // [C99 6.5.17] Comma operator.
1794  };
1795private:
1796  enum { LHS, RHS, END_EXPR };
1797  Stmt* SubExprs[END_EXPR];
1798  Opcode Opc;
1799  SourceLocation OpLoc;
1800public:
1801
1802  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1803                 SourceLocation opLoc)
1804    : Expr(BinaryOperatorClass, ResTy,
1805           lhs->isTypeDependent() || rhs->isTypeDependent(),
1806           lhs->isValueDependent() || rhs->isValueDependent()),
1807      Opc(opc), OpLoc(opLoc) {
1808    SubExprs[LHS] = lhs;
1809    SubExprs[RHS] = rhs;
1810    assert(!isCompoundAssignmentOp() &&
1811           "Use ArithAssignBinaryOperator for compound assignments");
1812  }
1813
1814  /// \brief Construct an empty binary operator.
1815  explicit BinaryOperator(EmptyShell Empty)
1816    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1817
1818  SourceLocation getOperatorLoc() const { return OpLoc; }
1819  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1820
1821  Opcode getOpcode() const { return Opc; }
1822  void setOpcode(Opcode O) { Opc = O; }
1823
1824  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1825  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1826  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1827  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1828
1829  virtual SourceRange getSourceRange() const {
1830    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1831  }
1832
1833  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1834  /// corresponds to, e.g. "<<=".
1835  static const char *getOpcodeStr(Opcode Op);
1836
1837  /// \brief Retrieve the binary opcode that corresponds to the given
1838  /// overloaded operator.
1839  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1840
1841  /// \brief Retrieve the overloaded operator kind that corresponds to
1842  /// the given binary opcode.
1843  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1844
1845  /// predicates to categorize the respective opcodes.
1846  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1847  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1848  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
1849  bool isShiftOp() const { return isShiftOp(Opc); }
1850
1851  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
1852  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
1853
1854  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1855  bool isRelationalOp() const { return isRelationalOp(Opc); }
1856
1857  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1858  bool isEqualityOp() const { return isEqualityOp(Opc); }
1859
1860  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
1861  bool isComparisonOp() const { return isComparisonOp(Opc); }
1862
1863  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1864  bool isLogicalOp() const { return isLogicalOp(Opc); }
1865
1866  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1867  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1868  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1869
1870  static bool classof(const Stmt *S) {
1871    return S->getStmtClass() == BinaryOperatorClass ||
1872           S->getStmtClass() == CompoundAssignOperatorClass;
1873  }
1874  static bool classof(const BinaryOperator *) { return true; }
1875
1876  // Iterators
1877  virtual child_iterator child_begin();
1878  virtual child_iterator child_end();
1879
1880protected:
1881  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1882                 SourceLocation oploc, bool dead)
1883    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1884    SubExprs[LHS] = lhs;
1885    SubExprs[RHS] = rhs;
1886  }
1887
1888  BinaryOperator(StmtClass SC, EmptyShell Empty)
1889    : Expr(SC, Empty), Opc(MulAssign) { }
1890};
1891
1892/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1893/// track of the type the operation is performed in.  Due to the semantics of
1894/// these operators, the operands are promoted, the aritmetic performed, an
1895/// implicit conversion back to the result type done, then the assignment takes
1896/// place.  This captures the intermediate type which the computation is done
1897/// in.
1898class CompoundAssignOperator : public BinaryOperator {
1899  QualType ComputationLHSType;
1900  QualType ComputationResultType;
1901public:
1902  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1903                         QualType ResType, QualType CompLHSType,
1904                         QualType CompResultType,
1905                         SourceLocation OpLoc)
1906    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1907      ComputationLHSType(CompLHSType),
1908      ComputationResultType(CompResultType) {
1909    assert(isCompoundAssignmentOp() &&
1910           "Only should be used for compound assignments");
1911  }
1912
1913  /// \brief Build an empty compound assignment operator expression.
1914  explicit CompoundAssignOperator(EmptyShell Empty)
1915    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1916
1917  // The two computation types are the type the LHS is converted
1918  // to for the computation and the type of the result; the two are
1919  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1920  QualType getComputationLHSType() const { return ComputationLHSType; }
1921  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1922
1923  QualType getComputationResultType() const { return ComputationResultType; }
1924  void setComputationResultType(QualType T) { ComputationResultType = T; }
1925
1926  static bool classof(const CompoundAssignOperator *) { return true; }
1927  static bool classof(const Stmt *S) {
1928    return S->getStmtClass() == CompoundAssignOperatorClass;
1929  }
1930};
1931
1932/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1933/// GNU "missing LHS" extension is in use.
1934///
1935class ConditionalOperator : public Expr {
1936  enum { COND, LHS, RHS, END_EXPR };
1937  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1938  SourceLocation QuestionLoc, ColonLoc;
1939public:
1940  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1941                      SourceLocation CLoc, Expr *rhs, QualType t)
1942    : Expr(ConditionalOperatorClass, t,
1943           // FIXME: the type of the conditional operator doesn't
1944           // depend on the type of the conditional, but the standard
1945           // seems to imply that it could. File a bug!
1946           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1947           (cond->isValueDependent() ||
1948            (lhs && lhs->isValueDependent()) ||
1949            (rhs && rhs->isValueDependent()))),
1950      QuestionLoc(QLoc),
1951      ColonLoc(CLoc) {
1952    SubExprs[COND] = cond;
1953    SubExprs[LHS] = lhs;
1954    SubExprs[RHS] = rhs;
1955  }
1956
1957  /// \brief Build an empty conditional operator.
1958  explicit ConditionalOperator(EmptyShell Empty)
1959    : Expr(ConditionalOperatorClass, Empty) { }
1960
1961  // getCond - Return the expression representing the condition for
1962  //  the ?: operator.
1963  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1964  void setCond(Expr *E) { SubExprs[COND] = E; }
1965
1966  // getTrueExpr - Return the subexpression representing the value of the ?:
1967  //  expression if the condition evaluates to true.  In most cases this value
1968  //  will be the same as getLHS() except a GCC extension allows the left
1969  //  subexpression to be omitted, and instead of the condition be returned.
1970  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1971  //  is only evaluated once.
1972  Expr *getTrueExpr() const {
1973    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1974  }
1975
1976  // getTrueExpr - Return the subexpression representing the value of the ?:
1977  // expression if the condition evaluates to false. This is the same as getRHS.
1978  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1979
1980  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1981  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1982
1983  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1984  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1985
1986  SourceLocation getQuestionLoc() const { return QuestionLoc; }
1987  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
1988
1989  SourceLocation getColonLoc() const { return ColonLoc; }
1990  void setColonLoc(SourceLocation L) { ColonLoc = L; }
1991
1992  virtual SourceRange getSourceRange() const {
1993    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1994  }
1995  static bool classof(const Stmt *T) {
1996    return T->getStmtClass() == ConditionalOperatorClass;
1997  }
1998  static bool classof(const ConditionalOperator *) { return true; }
1999
2000  // Iterators
2001  virtual child_iterator child_begin();
2002  virtual child_iterator child_end();
2003};
2004
2005/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2006class AddrLabelExpr : public Expr {
2007  SourceLocation AmpAmpLoc, LabelLoc;
2008  LabelStmt *Label;
2009public:
2010  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2011                QualType t)
2012    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2013
2014  /// \brief Build an empty address of a label expression.
2015  explicit AddrLabelExpr(EmptyShell Empty)
2016    : Expr(AddrLabelExprClass, Empty) { }
2017
2018  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2019  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2020  SourceLocation getLabelLoc() const { return LabelLoc; }
2021  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2022
2023  virtual SourceRange getSourceRange() const {
2024    return SourceRange(AmpAmpLoc, LabelLoc);
2025  }
2026
2027  LabelStmt *getLabel() const { return Label; }
2028  void setLabel(LabelStmt *S) { Label = S; }
2029
2030  static bool classof(const Stmt *T) {
2031    return T->getStmtClass() == AddrLabelExprClass;
2032  }
2033  static bool classof(const AddrLabelExpr *) { return true; }
2034
2035  // Iterators
2036  virtual child_iterator child_begin();
2037  virtual child_iterator child_end();
2038};
2039
2040/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2041/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2042/// takes the value of the last subexpression.
2043class StmtExpr : public Expr {
2044  Stmt *SubStmt;
2045  SourceLocation LParenLoc, RParenLoc;
2046public:
2047  StmtExpr(CompoundStmt *substmt, QualType T,
2048           SourceLocation lp, SourceLocation rp) :
2049    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
2050
2051  /// \brief Build an empty statement expression.
2052  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2053
2054  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2055  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2056  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2057
2058  virtual SourceRange getSourceRange() const {
2059    return SourceRange(LParenLoc, RParenLoc);
2060  }
2061
2062  SourceLocation getLParenLoc() const { return LParenLoc; }
2063  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2064  SourceLocation getRParenLoc() const { return RParenLoc; }
2065  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2066
2067  static bool classof(const Stmt *T) {
2068    return T->getStmtClass() == StmtExprClass;
2069  }
2070  static bool classof(const StmtExpr *) { return true; }
2071
2072  // Iterators
2073  virtual child_iterator child_begin();
2074  virtual child_iterator child_end();
2075};
2076
2077/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2078/// This AST node represents a function that returns 1 if two *types* (not
2079/// expressions) are compatible. The result of this built-in function can be
2080/// used in integer constant expressions.
2081class TypesCompatibleExpr : public Expr {
2082  QualType Type1;
2083  QualType Type2;
2084  SourceLocation BuiltinLoc, RParenLoc;
2085public:
2086  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2087                      QualType t1, QualType t2, SourceLocation RP) :
2088    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
2089    BuiltinLoc(BLoc), RParenLoc(RP) {}
2090
2091  /// \brief Build an empty __builtin_type_compatible_p expression.
2092  explicit TypesCompatibleExpr(EmptyShell Empty)
2093    : Expr(TypesCompatibleExprClass, Empty) { }
2094
2095  QualType getArgType1() const { return Type1; }
2096  void setArgType1(QualType T) { Type1 = T; }
2097  QualType getArgType2() const { return Type2; }
2098  void setArgType2(QualType T) { Type2 = T; }
2099
2100  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2101  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2102
2103  SourceLocation getRParenLoc() const { return RParenLoc; }
2104  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2105
2106  virtual SourceRange getSourceRange() const {
2107    return SourceRange(BuiltinLoc, RParenLoc);
2108  }
2109  static bool classof(const Stmt *T) {
2110    return T->getStmtClass() == TypesCompatibleExprClass;
2111  }
2112  static bool classof(const TypesCompatibleExpr *) { return true; }
2113
2114  // Iterators
2115  virtual child_iterator child_begin();
2116  virtual child_iterator child_end();
2117};
2118
2119/// ShuffleVectorExpr - clang-specific builtin-in function
2120/// __builtin_shufflevector.
2121/// This AST node represents a operator that does a constant
2122/// shuffle, similar to LLVM's shufflevector instruction. It takes
2123/// two vectors and a variable number of constant indices,
2124/// and returns the appropriately shuffled vector.
2125class ShuffleVectorExpr : public Expr {
2126  SourceLocation BuiltinLoc, RParenLoc;
2127
2128  // SubExprs - the list of values passed to the __builtin_shufflevector
2129  // function. The first two are vectors, and the rest are constant
2130  // indices.  The number of values in this list is always
2131  // 2+the number of indices in the vector type.
2132  Stmt **SubExprs;
2133  unsigned NumExprs;
2134
2135protected:
2136  virtual void DoDestroy(ASTContext &C);
2137
2138public:
2139  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2140                    QualType Type, SourceLocation BLoc,
2141                    SourceLocation RP) :
2142    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
2143    RParenLoc(RP), NumExprs(nexpr) {
2144
2145    SubExprs = new (C) Stmt*[nexpr];
2146    for (unsigned i = 0; i < nexpr; i++)
2147      SubExprs[i] = args[i];
2148  }
2149
2150  /// \brief Build an empty vector-shuffle expression.
2151  explicit ShuffleVectorExpr(EmptyShell Empty)
2152    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2153
2154  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2155  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2156
2157  SourceLocation getRParenLoc() const { return RParenLoc; }
2158  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2159
2160  virtual SourceRange getSourceRange() const {
2161    return SourceRange(BuiltinLoc, RParenLoc);
2162  }
2163  static bool classof(const Stmt *T) {
2164    return T->getStmtClass() == ShuffleVectorExprClass;
2165  }
2166  static bool classof(const ShuffleVectorExpr *) { return true; }
2167
2168  ~ShuffleVectorExpr() {}
2169
2170  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2171  /// constant expression, the actual arguments passed in, and the function
2172  /// pointers.
2173  unsigned getNumSubExprs() const { return NumExprs; }
2174
2175  /// getExpr - Return the Expr at the specified index.
2176  Expr *getExpr(unsigned Index) {
2177    assert((Index < NumExprs) && "Arg access out of range!");
2178    return cast<Expr>(SubExprs[Index]);
2179  }
2180  const Expr *getExpr(unsigned Index) const {
2181    assert((Index < NumExprs) && "Arg access out of range!");
2182    return cast<Expr>(SubExprs[Index]);
2183  }
2184
2185  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2186
2187  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2188    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2189    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2190  }
2191
2192  // Iterators
2193  virtual child_iterator child_begin();
2194  virtual child_iterator child_end();
2195};
2196
2197/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2198/// This AST node is similar to the conditional operator (?:) in C, with
2199/// the following exceptions:
2200/// - the test expression must be a integer constant expression.
2201/// - the expression returned acts like the chosen subexpression in every
2202///   visible way: the type is the same as that of the chosen subexpression,
2203///   and all predicates (whether it's an l-value, whether it's an integer
2204///   constant expression, etc.) return the same result as for the chosen
2205///   sub-expression.
2206class ChooseExpr : public Expr {
2207  enum { COND, LHS, RHS, END_EXPR };
2208  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2209  SourceLocation BuiltinLoc, RParenLoc;
2210public:
2211  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2212             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2213    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2214      BuiltinLoc(BLoc), RParenLoc(RP) {
2215      SubExprs[COND] = cond;
2216      SubExprs[LHS] = lhs;
2217      SubExprs[RHS] = rhs;
2218    }
2219
2220  /// \brief Build an empty __builtin_choose_expr.
2221  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2222
2223  /// isConditionTrue - Return whether the condition is true (i.e. not
2224  /// equal to zero).
2225  bool isConditionTrue(ASTContext &C) const;
2226
2227  /// getChosenSubExpr - Return the subexpression chosen according to the
2228  /// condition.
2229  Expr *getChosenSubExpr(ASTContext &C) const {
2230    return isConditionTrue(C) ? getLHS() : getRHS();
2231  }
2232
2233  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2234  void setCond(Expr *E) { SubExprs[COND] = E; }
2235  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2236  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2237  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2238  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2239
2240  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2241  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2242
2243  SourceLocation getRParenLoc() const { return RParenLoc; }
2244  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2245
2246  virtual SourceRange getSourceRange() const {
2247    return SourceRange(BuiltinLoc, RParenLoc);
2248  }
2249  static bool classof(const Stmt *T) {
2250    return T->getStmtClass() == ChooseExprClass;
2251  }
2252  static bool classof(const ChooseExpr *) { return true; }
2253
2254  // Iterators
2255  virtual child_iterator child_begin();
2256  virtual child_iterator child_end();
2257};
2258
2259/// GNUNullExpr - Implements the GNU __null extension, which is a name
2260/// for a null pointer constant that has integral type (e.g., int or
2261/// long) and is the same size and alignment as a pointer. The __null
2262/// extension is typically only used by system headers, which define
2263/// NULL as __null in C++ rather than using 0 (which is an integer
2264/// that may not match the size of a pointer).
2265class GNUNullExpr : public Expr {
2266  /// TokenLoc - The location of the __null keyword.
2267  SourceLocation TokenLoc;
2268
2269public:
2270  GNUNullExpr(QualType Ty, SourceLocation Loc)
2271    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
2272
2273  /// \brief Build an empty GNU __null expression.
2274  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2275
2276  /// getTokenLocation - The location of the __null token.
2277  SourceLocation getTokenLocation() const { return TokenLoc; }
2278  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2279
2280  virtual SourceRange getSourceRange() const {
2281    return SourceRange(TokenLoc);
2282  }
2283  static bool classof(const Stmt *T) {
2284    return T->getStmtClass() == GNUNullExprClass;
2285  }
2286  static bool classof(const GNUNullExpr *) { return true; }
2287
2288  // Iterators
2289  virtual child_iterator child_begin();
2290  virtual child_iterator child_end();
2291};
2292
2293/// VAArgExpr, used for the builtin function __builtin_va_start.
2294class VAArgExpr : public Expr {
2295  Stmt *Val;
2296  SourceLocation BuiltinLoc, RParenLoc;
2297public:
2298  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2299    : Expr(VAArgExprClass, t),
2300      Val(e),
2301      BuiltinLoc(BLoc),
2302      RParenLoc(RPLoc) { }
2303
2304  /// \brief Create an empty __builtin_va_start expression.
2305  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2306
2307  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2308  Expr *getSubExpr() { return cast<Expr>(Val); }
2309  void setSubExpr(Expr *E) { Val = E; }
2310
2311  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2312  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2313
2314  SourceLocation getRParenLoc() const { return RParenLoc; }
2315  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2316
2317  virtual SourceRange getSourceRange() const {
2318    return SourceRange(BuiltinLoc, RParenLoc);
2319  }
2320  static bool classof(const Stmt *T) {
2321    return T->getStmtClass() == VAArgExprClass;
2322  }
2323  static bool classof(const VAArgExpr *) { return true; }
2324
2325  // Iterators
2326  virtual child_iterator child_begin();
2327  virtual child_iterator child_end();
2328};
2329
2330/// @brief Describes an C or C++ initializer list.
2331///
2332/// InitListExpr describes an initializer list, which can be used to
2333/// initialize objects of different types, including
2334/// struct/class/union types, arrays, and vectors. For example:
2335///
2336/// @code
2337/// struct foo x = { 1, { 2, 3 } };
2338/// @endcode
2339///
2340/// Prior to semantic analysis, an initializer list will represent the
2341/// initializer list as written by the user, but will have the
2342/// placeholder type "void". This initializer list is called the
2343/// syntactic form of the initializer, and may contain C99 designated
2344/// initializers (represented as DesignatedInitExprs), initializations
2345/// of subobject members without explicit braces, and so on. Clients
2346/// interested in the original syntax of the initializer list should
2347/// use the syntactic form of the initializer list.
2348///
2349/// After semantic analysis, the initializer list will represent the
2350/// semantic form of the initializer, where the initializations of all
2351/// subobjects are made explicit with nested InitListExpr nodes and
2352/// C99 designators have been eliminated by placing the designated
2353/// initializations into the subobject they initialize. Additionally,
2354/// any "holes" in the initialization, where no initializer has been
2355/// specified for a particular subobject, will be replaced with
2356/// implicitly-generated ImplicitValueInitExpr expressions that
2357/// value-initialize the subobjects. Note, however, that the
2358/// initializer lists may still have fewer initializers than there are
2359/// elements to initialize within the object.
2360///
2361/// Given the semantic form of the initializer list, one can retrieve
2362/// the original syntactic form of that initializer list (if it
2363/// exists) using getSyntacticForm(). Since many initializer lists
2364/// have the same syntactic and semantic forms, getSyntacticForm() may
2365/// return NULL, indicating that the current initializer list also
2366/// serves as its syntactic form.
2367class InitListExpr : public Expr {
2368  // FIXME: Eliminate this vector in favor of ASTContext allocation
2369  std::vector<Stmt *> InitExprs;
2370  SourceLocation LBraceLoc, RBraceLoc;
2371
2372  /// Contains the initializer list that describes the syntactic form
2373  /// written in the source code.
2374  InitListExpr *SyntacticForm;
2375
2376  /// If this initializer list initializes a union, specifies which
2377  /// field within the union will be initialized.
2378  FieldDecl *UnionFieldInit;
2379
2380  /// Whether this initializer list originally had a GNU array-range
2381  /// designator in it. This is a temporary marker used by CodeGen.
2382  bool HadArrayRangeDesignator;
2383
2384public:
2385  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2386               SourceLocation rbraceloc);
2387
2388  /// \brief Build an empty initializer list.
2389  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2390
2391  unsigned getNumInits() const { return InitExprs.size(); }
2392
2393  const Expr* getInit(unsigned Init) const {
2394    assert(Init < getNumInits() && "Initializer access out of range!");
2395    return cast_or_null<Expr>(InitExprs[Init]);
2396  }
2397
2398  Expr* getInit(unsigned Init) {
2399    assert(Init < getNumInits() && "Initializer access out of range!");
2400    return cast_or_null<Expr>(InitExprs[Init]);
2401  }
2402
2403  void setInit(unsigned Init, Expr *expr) {
2404    assert(Init < getNumInits() && "Initializer access out of range!");
2405    InitExprs[Init] = expr;
2406  }
2407
2408  /// \brief Reserve space for some number of initializers.
2409  void reserveInits(unsigned NumInits);
2410
2411  /// @brief Specify the number of initializers
2412  ///
2413  /// If there are more than @p NumInits initializers, the remaining
2414  /// initializers will be destroyed. If there are fewer than @p
2415  /// NumInits initializers, NULL expressions will be added for the
2416  /// unknown initializers.
2417  void resizeInits(ASTContext &Context, unsigned NumInits);
2418
2419  /// @brief Updates the initializer at index @p Init with the new
2420  /// expression @p expr, and returns the old expression at that
2421  /// location.
2422  ///
2423  /// When @p Init is out of range for this initializer list, the
2424  /// initializer list will be extended with NULL expressions to
2425  /// accomodate the new entry.
2426  Expr *updateInit(unsigned Init, Expr *expr);
2427
2428  /// \brief If this initializes a union, specifies which field in the
2429  /// union to initialize.
2430  ///
2431  /// Typically, this field is the first named field within the
2432  /// union. However, a designated initializer can specify the
2433  /// initialization of a different field within the union.
2434  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2435  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2436
2437  // Explicit InitListExpr's originate from source code (and have valid source
2438  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2439  bool isExplicit() {
2440    return LBraceLoc.isValid() && RBraceLoc.isValid();
2441  }
2442
2443  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2444  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2445  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2446  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2447
2448  /// @brief Retrieve the initializer list that describes the
2449  /// syntactic form of the initializer.
2450  ///
2451  ///
2452  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2453  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2454
2455  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2456  void sawArrayRangeDesignator(bool ARD = true) {
2457    HadArrayRangeDesignator = ARD;
2458  }
2459
2460  virtual SourceRange getSourceRange() const {
2461    return SourceRange(LBraceLoc, RBraceLoc);
2462  }
2463  static bool classof(const Stmt *T) {
2464    return T->getStmtClass() == InitListExprClass;
2465  }
2466  static bool classof(const InitListExpr *) { return true; }
2467
2468  // Iterators
2469  virtual child_iterator child_begin();
2470  virtual child_iterator child_end();
2471
2472  typedef std::vector<Stmt *>::iterator iterator;
2473  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2474
2475  iterator begin() { return InitExprs.begin(); }
2476  iterator end() { return InitExprs.end(); }
2477  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2478  reverse_iterator rend() { return InitExprs.rend(); }
2479};
2480
2481/// @brief Represents a C99 designated initializer expression.
2482///
2483/// A designated initializer expression (C99 6.7.8) contains one or
2484/// more designators (which can be field designators, array
2485/// designators, or GNU array-range designators) followed by an
2486/// expression that initializes the field or element(s) that the
2487/// designators refer to. For example, given:
2488///
2489/// @code
2490/// struct point {
2491///   double x;
2492///   double y;
2493/// };
2494/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2495/// @endcode
2496///
2497/// The InitListExpr contains three DesignatedInitExprs, the first of
2498/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2499/// designators, one array designator for @c [2] followed by one field
2500/// designator for @c .y. The initalization expression will be 1.0.
2501class DesignatedInitExpr : public Expr {
2502public:
2503  /// \brief Forward declaration of the Designator class.
2504  class Designator;
2505
2506private:
2507  /// The location of the '=' or ':' prior to the actual initializer
2508  /// expression.
2509  SourceLocation EqualOrColonLoc;
2510
2511  /// Whether this designated initializer used the GNU deprecated
2512  /// syntax rather than the C99 '=' syntax.
2513  bool GNUSyntax : 1;
2514
2515  /// The number of designators in this initializer expression.
2516  unsigned NumDesignators : 15;
2517
2518  /// \brief The designators in this designated initialization
2519  /// expression.
2520  Designator *Designators;
2521
2522  /// The number of subexpressions of this initializer expression,
2523  /// which contains both the initializer and any additional
2524  /// expressions used by array and array-range designators.
2525  unsigned NumSubExprs : 16;
2526
2527
2528  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2529                     const Designator *Designators,
2530                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2531                     Expr **IndexExprs, unsigned NumIndexExprs,
2532                     Expr *Init);
2533
2534  explicit DesignatedInitExpr(unsigned NumSubExprs)
2535    : Expr(DesignatedInitExprClass, EmptyShell()),
2536      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2537
2538protected:
2539  virtual void DoDestroy(ASTContext &C);
2540
2541public:
2542  /// A field designator, e.g., ".x".
2543  struct FieldDesignator {
2544    /// Refers to the field that is being initialized. The low bit
2545    /// of this field determines whether this is actually a pointer
2546    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2547    /// initially constructed, a field designator will store an
2548    /// IdentifierInfo*. After semantic analysis has resolved that
2549    /// name, the field designator will instead store a FieldDecl*.
2550    uintptr_t NameOrField;
2551
2552    /// The location of the '.' in the designated initializer.
2553    unsigned DotLoc;
2554
2555    /// The location of the field name in the designated initializer.
2556    unsigned FieldLoc;
2557  };
2558
2559  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2560  struct ArrayOrRangeDesignator {
2561    /// Location of the first index expression within the designated
2562    /// initializer expression's list of subexpressions.
2563    unsigned Index;
2564    /// The location of the '[' starting the array range designator.
2565    unsigned LBracketLoc;
2566    /// The location of the ellipsis separating the start and end
2567    /// indices. Only valid for GNU array-range designators.
2568    unsigned EllipsisLoc;
2569    /// The location of the ']' terminating the array range designator.
2570    unsigned RBracketLoc;
2571  };
2572
2573  /// @brief Represents a single C99 designator.
2574  ///
2575  /// @todo This class is infuriatingly similar to clang::Designator,
2576  /// but minor differences (storing indices vs. storing pointers)
2577  /// keep us from reusing it. Try harder, later, to rectify these
2578  /// differences.
2579  class Designator {
2580    /// @brief The kind of designator this describes.
2581    enum {
2582      FieldDesignator,
2583      ArrayDesignator,
2584      ArrayRangeDesignator
2585    } Kind;
2586
2587    union {
2588      /// A field designator, e.g., ".x".
2589      struct FieldDesignator Field;
2590      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2591      struct ArrayOrRangeDesignator ArrayOrRange;
2592    };
2593    friend class DesignatedInitExpr;
2594
2595  public:
2596    Designator() {}
2597
2598    /// @brief Initializes a field designator.
2599    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2600               SourceLocation FieldLoc)
2601      : Kind(FieldDesignator) {
2602      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2603      Field.DotLoc = DotLoc.getRawEncoding();
2604      Field.FieldLoc = FieldLoc.getRawEncoding();
2605    }
2606
2607    /// @brief Initializes an array designator.
2608    Designator(unsigned Index, SourceLocation LBracketLoc,
2609               SourceLocation RBracketLoc)
2610      : Kind(ArrayDesignator) {
2611      ArrayOrRange.Index = Index;
2612      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2613      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2614      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2615    }
2616
2617    /// @brief Initializes a GNU array-range designator.
2618    Designator(unsigned Index, SourceLocation LBracketLoc,
2619               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2620      : Kind(ArrayRangeDesignator) {
2621      ArrayOrRange.Index = Index;
2622      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2623      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2624      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2625    }
2626
2627    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2628    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2629    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2630
2631    IdentifierInfo * getFieldName();
2632
2633    FieldDecl *getField() {
2634      assert(Kind == FieldDesignator && "Only valid on a field designator");
2635      if (Field.NameOrField & 0x01)
2636        return 0;
2637      else
2638        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2639    }
2640
2641    void setField(FieldDecl *FD) {
2642      assert(Kind == FieldDesignator && "Only valid on a field designator");
2643      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2644    }
2645
2646    SourceLocation getDotLoc() const {
2647      assert(Kind == FieldDesignator && "Only valid on a field designator");
2648      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2649    }
2650
2651    SourceLocation getFieldLoc() const {
2652      assert(Kind == FieldDesignator && "Only valid on a field designator");
2653      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2654    }
2655
2656    SourceLocation getLBracketLoc() const {
2657      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2658             "Only valid on an array or array-range designator");
2659      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2660    }
2661
2662    SourceLocation getRBracketLoc() const {
2663      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2664             "Only valid on an array or array-range designator");
2665      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2666    }
2667
2668    SourceLocation getEllipsisLoc() const {
2669      assert(Kind == ArrayRangeDesignator &&
2670             "Only valid on an array-range designator");
2671      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2672    }
2673
2674    unsigned getFirstExprIndex() const {
2675      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2676             "Only valid on an array or array-range designator");
2677      return ArrayOrRange.Index;
2678    }
2679
2680    SourceLocation getStartLocation() const {
2681      if (Kind == FieldDesignator)
2682        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2683      else
2684        return getLBracketLoc();
2685    }
2686  };
2687
2688  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2689                                    unsigned NumDesignators,
2690                                    Expr **IndexExprs, unsigned NumIndexExprs,
2691                                    SourceLocation EqualOrColonLoc,
2692                                    bool GNUSyntax, Expr *Init);
2693
2694  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2695
2696  /// @brief Returns the number of designators in this initializer.
2697  unsigned size() const { return NumDesignators; }
2698
2699  // Iterator access to the designators.
2700  typedef Designator* designators_iterator;
2701  designators_iterator designators_begin() { return Designators; }
2702  designators_iterator designators_end() {
2703    return Designators + NumDesignators;
2704  }
2705
2706  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2707
2708  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2709
2710  Expr *getArrayIndex(const Designator& D);
2711  Expr *getArrayRangeStart(const Designator& D);
2712  Expr *getArrayRangeEnd(const Designator& D);
2713
2714  /// @brief Retrieve the location of the '=' that precedes the
2715  /// initializer value itself, if present.
2716  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2717  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2718
2719  /// @brief Determines whether this designated initializer used the
2720  /// deprecated GNU syntax for designated initializers.
2721  bool usesGNUSyntax() const { return GNUSyntax; }
2722  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2723
2724  /// @brief Retrieve the initializer value.
2725  Expr *getInit() const {
2726    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2727  }
2728
2729  void setInit(Expr *init) {
2730    *child_begin() = init;
2731  }
2732
2733  /// \brief Retrieve the total number of subexpressions in this
2734  /// designated initializer expression, including the actual
2735  /// initialized value and any expressions that occur within array
2736  /// and array-range designators.
2737  unsigned getNumSubExprs() const { return NumSubExprs; }
2738
2739  Expr *getSubExpr(unsigned Idx) {
2740    assert(Idx < NumSubExprs && "Subscript out of range");
2741    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2742    Ptr += sizeof(DesignatedInitExpr);
2743    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2744  }
2745
2746  void setSubExpr(unsigned Idx, Expr *E) {
2747    assert(Idx < NumSubExprs && "Subscript out of range");
2748    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2749    Ptr += sizeof(DesignatedInitExpr);
2750    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2751  }
2752
2753  /// \brief Replaces the designator at index @p Idx with the series
2754  /// of designators in [First, Last).
2755  void ExpandDesignator(unsigned Idx, const Designator *First,
2756                        const Designator *Last);
2757
2758  virtual SourceRange getSourceRange() const;
2759
2760  static bool classof(const Stmt *T) {
2761    return T->getStmtClass() == DesignatedInitExprClass;
2762  }
2763  static bool classof(const DesignatedInitExpr *) { return true; }
2764
2765  // Iterators
2766  virtual child_iterator child_begin();
2767  virtual child_iterator child_end();
2768};
2769
2770/// \brief Represents an implicitly-generated value initialization of
2771/// an object of a given type.
2772///
2773/// Implicit value initializations occur within semantic initializer
2774/// list expressions (InitListExpr) as placeholders for subobject
2775/// initializations not explicitly specified by the user.
2776///
2777/// \see InitListExpr
2778class ImplicitValueInitExpr : public Expr {
2779public:
2780  explicit ImplicitValueInitExpr(QualType ty)
2781    : Expr(ImplicitValueInitExprClass, ty) { }
2782
2783  /// \brief Construct an empty implicit value initialization.
2784  explicit ImplicitValueInitExpr(EmptyShell Empty)
2785    : Expr(ImplicitValueInitExprClass, Empty) { }
2786
2787  static bool classof(const Stmt *T) {
2788    return T->getStmtClass() == ImplicitValueInitExprClass;
2789  }
2790  static bool classof(const ImplicitValueInitExpr *) { return true; }
2791
2792  virtual SourceRange getSourceRange() const {
2793    return SourceRange();
2794  }
2795
2796  // Iterators
2797  virtual child_iterator child_begin();
2798  virtual child_iterator child_end();
2799};
2800
2801
2802class ParenListExpr : public Expr {
2803  Stmt **Exprs;
2804  unsigned NumExprs;
2805  SourceLocation LParenLoc, RParenLoc;
2806
2807protected:
2808  virtual void DoDestroy(ASTContext& C);
2809
2810public:
2811  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2812                unsigned numexprs, SourceLocation rparenloc);
2813
2814  ~ParenListExpr() {}
2815
2816  /// \brief Build an empty paren list.
2817  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2818
2819  unsigned getNumExprs() const { return NumExprs; }
2820
2821  const Expr* getExpr(unsigned Init) const {
2822    assert(Init < getNumExprs() && "Initializer access out of range!");
2823    return cast_or_null<Expr>(Exprs[Init]);
2824  }
2825
2826  Expr* getExpr(unsigned Init) {
2827    assert(Init < getNumExprs() && "Initializer access out of range!");
2828    return cast_or_null<Expr>(Exprs[Init]);
2829  }
2830
2831  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2832
2833  SourceLocation getLParenLoc() const { return LParenLoc; }
2834  SourceLocation getRParenLoc() const { return RParenLoc; }
2835
2836  virtual SourceRange getSourceRange() const {
2837    return SourceRange(LParenLoc, RParenLoc);
2838  }
2839  static bool classof(const Stmt *T) {
2840    return T->getStmtClass() == ParenListExprClass;
2841  }
2842  static bool classof(const ParenListExpr *) { return true; }
2843
2844  // Iterators
2845  virtual child_iterator child_begin();
2846  virtual child_iterator child_end();
2847};
2848
2849
2850//===----------------------------------------------------------------------===//
2851// Clang Extensions
2852//===----------------------------------------------------------------------===//
2853
2854
2855/// ExtVectorElementExpr - This represents access to specific elements of a
2856/// vector, and may occur on the left hand side or right hand side.  For example
2857/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2858///
2859/// Note that the base may have either vector or pointer to vector type, just
2860/// like a struct field reference.
2861///
2862class ExtVectorElementExpr : public Expr {
2863  Stmt *Base;
2864  IdentifierInfo *Accessor;
2865  SourceLocation AccessorLoc;
2866public:
2867  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2868                       SourceLocation loc)
2869    : Expr(ExtVectorElementExprClass, ty),
2870      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2871
2872  /// \brief Build an empty vector element expression.
2873  explicit ExtVectorElementExpr(EmptyShell Empty)
2874    : Expr(ExtVectorElementExprClass, Empty) { }
2875
2876  const Expr *getBase() const { return cast<Expr>(Base); }
2877  Expr *getBase() { return cast<Expr>(Base); }
2878  void setBase(Expr *E) { Base = E; }
2879
2880  IdentifierInfo &getAccessor() const { return *Accessor; }
2881  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2882
2883  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2884  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2885
2886  /// getNumElements - Get the number of components being selected.
2887  unsigned getNumElements() const;
2888
2889  /// containsDuplicateElements - Return true if any element access is
2890  /// repeated.
2891  bool containsDuplicateElements() const;
2892
2893  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2894  /// aggregate Constant of ConstantInt(s).
2895  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2896
2897  virtual SourceRange getSourceRange() const {
2898    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2899  }
2900
2901  /// isArrow - Return true if the base expression is a pointer to vector,
2902  /// return false if the base expression is a vector.
2903  bool isArrow() const;
2904
2905  static bool classof(const Stmt *T) {
2906    return T->getStmtClass() == ExtVectorElementExprClass;
2907  }
2908  static bool classof(const ExtVectorElementExpr *) { return true; }
2909
2910  // Iterators
2911  virtual child_iterator child_begin();
2912  virtual child_iterator child_end();
2913};
2914
2915
2916/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2917/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2918class BlockExpr : public Expr {
2919protected:
2920  BlockDecl *TheBlock;
2921  bool HasBlockDeclRefExprs;
2922public:
2923  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2924    : Expr(BlockExprClass, ty),
2925      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2926
2927  /// \brief Build an empty block expression.
2928  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2929
2930  const BlockDecl *getBlockDecl() const { return TheBlock; }
2931  BlockDecl *getBlockDecl() { return TheBlock; }
2932  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2933
2934  // Convenience functions for probing the underlying BlockDecl.
2935  SourceLocation getCaretLocation() const;
2936  const Stmt *getBody() const;
2937  Stmt *getBody();
2938
2939  virtual SourceRange getSourceRange() const {
2940    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2941  }
2942
2943  /// getFunctionType - Return the underlying function type for this block.
2944  const FunctionType *getFunctionType() const;
2945
2946  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2947  /// inside of the block that reference values outside the block.
2948  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2949  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2950
2951  static bool classof(const Stmt *T) {
2952    return T->getStmtClass() == BlockExprClass;
2953  }
2954  static bool classof(const BlockExpr *) { return true; }
2955
2956  // Iterators
2957  virtual child_iterator child_begin();
2958  virtual child_iterator child_end();
2959};
2960
2961/// BlockDeclRefExpr - A reference to a declared variable, function,
2962/// enum, etc.
2963class BlockDeclRefExpr : public Expr {
2964  ValueDecl *D;
2965  SourceLocation Loc;
2966  bool IsByRef : 1;
2967  bool ConstQualAdded : 1;
2968public:
2969  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
2970                   bool constAdded = false) :
2971       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
2972                                       ConstQualAdded(constAdded) {}
2973
2974  // \brief Build an empty reference to a declared variable in a
2975  // block.
2976  explicit BlockDeclRefExpr(EmptyShell Empty)
2977    : Expr(BlockDeclRefExprClass, Empty) { }
2978
2979  ValueDecl *getDecl() { return D; }
2980  const ValueDecl *getDecl() const { return D; }
2981  void setDecl(ValueDecl *VD) { D = VD; }
2982
2983  SourceLocation getLocation() const { return Loc; }
2984  void setLocation(SourceLocation L) { Loc = L; }
2985
2986  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2987
2988  bool isByRef() const { return IsByRef; }
2989  void setByRef(bool BR) { IsByRef = BR; }
2990
2991  bool isConstQualAdded() const { return ConstQualAdded; }
2992  void setConstQualAdded(bool C) { ConstQualAdded = C; }
2993
2994  static bool classof(const Stmt *T) {
2995    return T->getStmtClass() == BlockDeclRefExprClass;
2996  }
2997  static bool classof(const BlockDeclRefExpr *) { return true; }
2998
2999  // Iterators
3000  virtual child_iterator child_begin();
3001  virtual child_iterator child_end();
3002};
3003
3004}  // end namespace clang
3005
3006#endif
3007