Expr.h revision 90c71268f04369328e8f579007b8b4f1da9feea0
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include <vector>
25
26namespace clang {
27  class ASTContext;
28  class APValue;
29  class Decl;
30  class IdentifierInfo;
31  class ParmVarDecl;
32  class NamedDecl;
33  class ValueDecl;
34  class BlockDecl;
35  class CXXOperatorCallExpr;
36  class CXXMemberCallExpr;
37  class TemplateArgumentLoc;
38  class TemplateArgumentListInfo;
39
40/// Expr - This represents one expression.  Note that Expr's are subclasses of
41/// Stmt.  This allows an expression to be transparently used any place a Stmt
42/// is required.
43///
44class Expr : public Stmt {
45  QualType TR;
46
47protected:
48  /// TypeDependent - Whether this expression is type-dependent
49  /// (C++ [temp.dep.expr]).
50  bool TypeDependent : 1;
51
52  /// ValueDependent - Whether this expression is value-dependent
53  /// (C++ [temp.dep.constexpr]).
54  bool ValueDependent : 1;
55
56  Expr(StmtClass SC, QualType T, bool TD, bool VD)
57    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
58    setType(T);
59  }
60
61  /// \brief Construct an empty expression.
62  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
63
64public:
65  /// \brief Increases the reference count for this expression.
66  ///
67  /// Invoke the Retain() operation when this expression
68  /// is being shared by another owner.
69  Expr *Retain() {
70    Stmt::Retain();
71    return this;
72  }
73
74  QualType getType() const { return TR; }
75  void setType(QualType t) {
76    // In C++, the type of an expression is always adjusted so that it
77    // will not have reference type an expression will never have
78    // reference type (C++ [expr]p6). Use
79    // QualType::getNonReferenceType() to retrieve the non-reference
80    // type. Additionally, inspect Expr::isLvalue to determine whether
81    // an expression that is adjusted in this manner should be
82    // considered an lvalue.
83    assert((t.isNull() || !t->isReferenceType()) &&
84           "Expressions can't have reference type");
85
86    TR = t;
87  }
88
89  /// isValueDependent - Determines whether this expression is
90  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
91  /// array bound of "Chars" in the following example is
92  /// value-dependent.
93  /// @code
94  /// template<int Size, char (&Chars)[Size]> struct meta_string;
95  /// @endcode
96  bool isValueDependent() const { return ValueDependent; }
97
98  /// \brief Set whether this expression is value-dependent or not.
99  void setValueDependent(bool VD) { ValueDependent = VD; }
100
101  /// isTypeDependent - Determines whether this expression is
102  /// type-dependent (C++ [temp.dep.expr]), which means that its type
103  /// could change from one template instantiation to the next. For
104  /// example, the expressions "x" and "x + y" are type-dependent in
105  /// the following code, but "y" is not type-dependent:
106  /// @code
107  /// template<typename T>
108  /// void add(T x, int y) {
109  ///   x + y;
110  /// }
111  /// @endcode
112  bool isTypeDependent() const { return TypeDependent; }
113
114  /// \brief Set whether this expression is type-dependent or not.
115  void setTypeDependent(bool TD) { TypeDependent = TD; }
116
117  /// SourceLocation tokens are not useful in isolation - they are low level
118  /// value objects created/interpreted by SourceManager. We assume AST
119  /// clients will have a pointer to the respective SourceManager.
120  virtual SourceRange getSourceRange() const = 0;
121
122  /// getExprLoc - Return the preferred location for the arrow when diagnosing
123  /// a problem with a generic expression.
124  virtual SourceLocation getExprLoc() const { return getLocStart(); }
125
126  /// isUnusedResultAWarning - Return true if this immediate expression should
127  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
128  /// with location to warn on and the source range[s] to report with the
129  /// warning.
130  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
131                              SourceRange &R2, ASTContext &Ctx) const;
132
133  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
134  /// incomplete type other than void. Nonarray expressions that can be lvalues:
135  ///  - name, where name must be a variable
136  ///  - e[i]
137  ///  - (e), where e must be an lvalue
138  ///  - e.name, where e must be an lvalue
139  ///  - e->name
140  ///  - *e, the type of e cannot be a function type
141  ///  - string-constant
142  ///  - reference type [C++ [expr]]
143  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
144  ///
145  enum isLvalueResult {
146    LV_Valid,
147    LV_NotObjectType,
148    LV_IncompleteVoidType,
149    LV_DuplicateVectorComponents,
150    LV_InvalidExpression,
151    LV_MemberFunction,
152    LV_SubObjCPropertySetting,
153    LV_ClassTemporary
154  };
155  isLvalueResult isLvalue(ASTContext &Ctx) const;
156
157  // Same as above, but excluding checks for non-object and void types in C
158  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
159
160  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
161  /// does not have an incomplete type, does not have a const-qualified type,
162  /// and if it is a structure or union, does not have any member (including,
163  /// recursively, any member or element of all contained aggregates or unions)
164  /// with a const-qualified type.
165  ///
166  /// \param Loc [in] [out] - A source location which *may* be filled
167  /// in with the location of the expression making this a
168  /// non-modifiable lvalue, if specified.
169  enum isModifiableLvalueResult {
170    MLV_Valid,
171    MLV_NotObjectType,
172    MLV_IncompleteVoidType,
173    MLV_DuplicateVectorComponents,
174    MLV_InvalidExpression,
175    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
176    MLV_IncompleteType,
177    MLV_ConstQualified,
178    MLV_ArrayType,
179    MLV_NotBlockQualified,
180    MLV_ReadonlyProperty,
181    MLV_NoSetterProperty,
182    MLV_MemberFunction,
183    MLV_SubObjCPropertySetting,
184    MLV_ClassTemporary
185  };
186  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
187                                              SourceLocation *Loc = 0) const;
188
189  /// \brief If this expression refers to a bit-field, retrieve the
190  /// declaration of that bit-field.
191  FieldDecl *getBitField();
192
193  const FieldDecl *getBitField() const {
194    return const_cast<Expr*>(this)->getBitField();
195  }
196
197  /// \brief Returns whether this expression refers to a vector element.
198  bool refersToVectorElement() const;
199
200  /// isIntegerConstantExpr - Return true if this expression is a valid integer
201  /// constant expression, and, if so, return its value in Result.  If not a
202  /// valid i-c-e, return false and fill in Loc (if specified) with the location
203  /// of the invalid expression.
204  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
205                             SourceLocation *Loc = 0,
206                             bool isEvaluated = true) const;
207  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
208    llvm::APSInt X;
209    return isIntegerConstantExpr(X, Ctx, Loc);
210  }
211  /// isConstantInitializer - Returns true if this expression is a constant
212  /// initializer, which can be emitted at compile-time.
213  bool isConstantInitializer(ASTContext &Ctx) const;
214
215  /// EvalResult is a struct with detailed info about an evaluated expression.
216  struct EvalResult {
217    /// Val - This is the value the expression can be folded to.
218    APValue Val;
219
220    /// HasSideEffects - Whether the evaluated expression has side effects.
221    /// For example, (f() && 0) can be folded, but it still has side effects.
222    bool HasSideEffects;
223
224    /// Diag - If the expression is unfoldable, then Diag contains a note
225    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
226    /// position for the error, and DiagExpr is the expression that caused
227    /// the error.
228    /// If the expression is foldable, but not an integer constant expression,
229    /// Diag contains a note diagnostic that describes why it isn't an integer
230    /// constant expression. If the expression *is* an integer constant
231    /// expression, then Diag will be zero.
232    unsigned Diag;
233    const Expr *DiagExpr;
234    SourceLocation DiagLoc;
235
236    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
237  };
238
239  /// Evaluate - Return true if this is a constant which we can fold using
240  /// any crazy technique (that has nothing to do with language standards) that
241  /// we want to.  If this function returns true, it returns the folded constant
242  /// in Result.
243  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
244
245  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
246  /// stack based objects.
247  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
248
249  /// EvaluateAsBooleanCondition - Return true if this is a constant
250  /// which we we can fold and convert to a boolean condition using
251  /// any crazy technique that we want to.
252  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
253
254  /// isEvaluatable - Call Evaluate to see if this expression can be constant
255  /// folded, but discard the result.
256  bool isEvaluatable(ASTContext &Ctx) const;
257
258  /// HasSideEffects - This routine returns true for all those expressions
259  /// which must be evaluated each time and must not be optimization away
260  /// or evaluated at compile time. Example is a function call, volatile
261  /// variable read.
262  bool HasSideEffects(ASTContext &Ctx) const;
263
264  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
265  /// must be called on an expression that constant folds to an integer.
266  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
267
268  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
269  /// with link time known address.
270  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
271
272  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
273  /// also succeeds on stack based, immutable address lvalues.
274  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
275
276  /// \brief Enumeration used to describe how \c isNullPointerConstant()
277  /// should cope with value-dependent expressions.
278  enum NullPointerConstantValueDependence {
279    /// \brief Specifies that the expression should never be value-dependent.
280    NPC_NeverValueDependent = 0,
281
282    /// \brief Specifies that a value-dependent expression of integral or
283    /// dependent type should be considered a null pointer constant.
284    NPC_ValueDependentIsNull,
285
286    /// \brief Specifies that a value-dependent expression should be considered
287    /// to never be a null pointer constant.
288    NPC_ValueDependentIsNotNull
289  };
290
291  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
292  /// integer constant expression with the value zero, or if this is one that is
293  /// cast to void*.
294  bool isNullPointerConstant(ASTContext &Ctx,
295                             NullPointerConstantValueDependence NPC) const;
296
297  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
298  /// write barrier.
299  bool isOBJCGCCandidate(ASTContext &Ctx) const;
300
301  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
302  ///  its subexpression.  If that subexpression is also a ParenExpr,
303  ///  then this method recursively returns its subexpression, and so forth.
304  ///  Otherwise, the method returns the current Expr.
305  Expr* IgnoreParens();
306
307  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
308  /// or CastExprs, returning their operand.
309  Expr *IgnoreParenCasts();
310
311  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
312  /// value (including ptr->int casts of the same size).  Strip off any
313  /// ParenExpr or CastExprs, returning their operand.
314  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
315
316  /// \brief Determine whether this expression is a default function argument.
317  ///
318  /// Default arguments are implicitly generated in the abstract syntax tree
319  /// by semantic analysis for function calls, object constructions, etc. in
320  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
321  /// this routine also looks through any implicit casts to determine whether
322  /// the expression is a default argument.
323  bool isDefaultArgument() const;
324
325  const Expr* IgnoreParens() const {
326    return const_cast<Expr*>(this)->IgnoreParens();
327  }
328  const Expr *IgnoreParenCasts() const {
329    return const_cast<Expr*>(this)->IgnoreParenCasts();
330  }
331  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
332    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
333  }
334
335  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
336  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
337
338  static bool classof(const Stmt *T) {
339    return T->getStmtClass() >= firstExprConstant &&
340           T->getStmtClass() <= lastExprConstant;
341  }
342  static bool classof(const Expr *) { return true; }
343};
344
345
346//===----------------------------------------------------------------------===//
347// Primary Expressions.
348//===----------------------------------------------------------------------===//
349
350/// \brief Represents the qualifier that may precede a C++ name, e.g., the
351/// "std::" in "std::sort".
352struct NameQualifier {
353  /// \brief The nested name specifier.
354  NestedNameSpecifier *NNS;
355
356  /// \brief The source range covered by the nested name specifier.
357  SourceRange Range;
358};
359
360/// \brief Represents an explicit template argument list in C++, e.g.,
361/// the "<int>" in "sort<int>".
362struct ExplicitTemplateArgumentList {
363  /// \brief The source location of the left angle bracket ('<');
364  SourceLocation LAngleLoc;
365
366  /// \brief The source location of the right angle bracket ('>');
367  SourceLocation RAngleLoc;
368
369  /// \brief The number of template arguments in TemplateArgs.
370  /// The actual template arguments (if any) are stored after the
371  /// ExplicitTemplateArgumentList structure.
372  unsigned NumTemplateArgs;
373
374  /// \brief Retrieve the template arguments
375  TemplateArgumentLoc *getTemplateArgs() {
376    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
377  }
378
379  /// \brief Retrieve the template arguments
380  const TemplateArgumentLoc *getTemplateArgs() const {
381    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
382  }
383
384  void initializeFrom(const TemplateArgumentListInfo &List);
385  void copyInto(TemplateArgumentListInfo &List) const;
386  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
387};
388
389/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
390/// enum, etc.
391class DeclRefExpr : public Expr {
392  enum {
393    // Flag on DecoratedD that specifies when this declaration reference
394    // expression has a C++ nested-name-specifier.
395    HasQualifierFlag = 0x01,
396    // Flag on DecoratedD that specifies when this declaration reference
397    // expression has an explicit C++ template argument list.
398    HasExplicitTemplateArgumentListFlag = 0x02
399  };
400
401  // DecoratedD - The declaration that we are referencing, plus two bits to
402  // indicate whether (1) the declaration's name was explicitly qualified and
403  // (2) the declaration's name was followed by an explicit template
404  // argument list.
405  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
406
407  // Loc - The location of the declaration name itself.
408  SourceLocation Loc;
409
410  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
411  NameQualifier *getNameQualifier() {
412    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
413      return 0;
414
415    return reinterpret_cast<NameQualifier *> (this + 1);
416  }
417
418  /// \brief Retrieve the qualifier that preceded the member name, if any.
419  const NameQualifier *getNameQualifier() const {
420    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
421  }
422
423  /// \brief Retrieve the explicit template argument list that followed the
424  /// member template name, if any.
425  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
426    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
427      return 0;
428
429    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
430      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
431
432    return reinterpret_cast<ExplicitTemplateArgumentList *>(
433                                                      getNameQualifier() + 1);
434  }
435
436  /// \brief Retrieve the explicit template argument list that followed the
437  /// member template name, if any.
438  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
439    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
440  }
441
442  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
443              ValueDecl *D, SourceLocation NameLoc,
444              const TemplateArgumentListInfo *TemplateArgs,
445              QualType T);
446
447protected:
448  /// \brief Computes the type- and value-dependence flags for this
449  /// declaration reference expression.
450  void computeDependence();
451
452  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
453    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
454    computeDependence();
455  }
456
457public:
458  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
459    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
460    computeDependence();
461  }
462
463  /// \brief Construct an empty declaration reference expression.
464  explicit DeclRefExpr(EmptyShell Empty)
465    : Expr(DeclRefExprClass, Empty) { }
466
467  static DeclRefExpr *Create(ASTContext &Context,
468                             NestedNameSpecifier *Qualifier,
469                             SourceRange QualifierRange,
470                             ValueDecl *D,
471                             SourceLocation NameLoc,
472                             QualType T,
473                             const TemplateArgumentListInfo *TemplateArgs = 0);
474
475  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
476  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
477  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
478
479  SourceLocation getLocation() const { return Loc; }
480  void setLocation(SourceLocation L) { Loc = L; }
481  virtual SourceRange getSourceRange() const;
482
483  /// \brief Determine whether this declaration reference was preceded by a
484  /// C++ nested-name-specifier, e.g., \c N::foo.
485  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
486
487  /// \brief If the name was qualified, retrieves the source range of
488  /// the nested-name-specifier that precedes the name. Otherwise,
489  /// returns an empty source range.
490  SourceRange getQualifierRange() const {
491    if (!hasQualifier())
492      return SourceRange();
493
494    return getNameQualifier()->Range;
495  }
496
497  /// \brief If the name was qualified, retrieves the nested-name-specifier
498  /// that precedes the name. Otherwise, returns NULL.
499  NestedNameSpecifier *getQualifier() const {
500    if (!hasQualifier())
501      return 0;
502
503    return getNameQualifier()->NNS;
504  }
505
506  /// \brief Determines whether this member expression actually had a C++
507  /// template argument list explicitly specified, e.g., x.f<int>.
508  bool hasExplicitTemplateArgumentList() const {
509    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
510  }
511
512  /// \brief Copies the template arguments (if present) into the given
513  /// structure.
514  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
515    if (hasExplicitTemplateArgumentList())
516      getExplicitTemplateArgumentList()->copyInto(List);
517  }
518
519  /// \brief Retrieve the location of the left angle bracket following the
520  /// member name ('<'), if any.
521  SourceLocation getLAngleLoc() const {
522    if (!hasExplicitTemplateArgumentList())
523      return SourceLocation();
524
525    return getExplicitTemplateArgumentList()->LAngleLoc;
526  }
527
528  /// \brief Retrieve the template arguments provided as part of this
529  /// template-id.
530  const TemplateArgumentLoc *getTemplateArgs() const {
531    if (!hasExplicitTemplateArgumentList())
532      return 0;
533
534    return getExplicitTemplateArgumentList()->getTemplateArgs();
535  }
536
537  /// \brief Retrieve the number of template arguments provided as part of this
538  /// template-id.
539  unsigned getNumTemplateArgs() const {
540    if (!hasExplicitTemplateArgumentList())
541      return 0;
542
543    return getExplicitTemplateArgumentList()->NumTemplateArgs;
544  }
545
546  /// \brief Retrieve the location of the right angle bracket following the
547  /// template arguments ('>').
548  SourceLocation getRAngleLoc() const {
549    if (!hasExplicitTemplateArgumentList())
550      return SourceLocation();
551
552    return getExplicitTemplateArgumentList()->RAngleLoc;
553  }
554
555  static bool classof(const Stmt *T) {
556    return T->getStmtClass() == DeclRefExprClass;
557  }
558  static bool classof(const DeclRefExpr *) { return true; }
559
560  // Iterators
561  virtual child_iterator child_begin();
562  virtual child_iterator child_end();
563};
564
565/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
566class PredefinedExpr : public Expr {
567public:
568  enum IdentType {
569    Func,
570    Function,
571    PrettyFunction,
572    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
573    /// 'virtual' keyword is omitted for virtual member functions.
574    PrettyFunctionNoVirtual
575  };
576
577private:
578  SourceLocation Loc;
579  IdentType Type;
580public:
581  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
582    : Expr(PredefinedExprClass, type, type->isDependentType(),
583           type->isDependentType()), Loc(l), Type(IT) {}
584
585  /// \brief Construct an empty predefined expression.
586  explicit PredefinedExpr(EmptyShell Empty)
587    : Expr(PredefinedExprClass, Empty) { }
588
589  IdentType getIdentType() const { return Type; }
590  void setIdentType(IdentType IT) { Type = IT; }
591
592  SourceLocation getLocation() const { return Loc; }
593  void setLocation(SourceLocation L) { Loc = L; }
594
595  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
596
597  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
598
599  static bool classof(const Stmt *T) {
600    return T->getStmtClass() == PredefinedExprClass;
601  }
602  static bool classof(const PredefinedExpr *) { return true; }
603
604  // Iterators
605  virtual child_iterator child_begin();
606  virtual child_iterator child_end();
607};
608
609class IntegerLiteral : public Expr {
610  llvm::APInt Value;
611  SourceLocation Loc;
612public:
613  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
614  // or UnsignedLongLongTy
615  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
616    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
617    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
618  }
619
620  /// \brief Construct an empty integer literal.
621  explicit IntegerLiteral(EmptyShell Empty)
622    : Expr(IntegerLiteralClass, Empty) { }
623
624  const llvm::APInt &getValue() const { return Value; }
625  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
626
627  /// \brief Retrieve the location of the literal.
628  SourceLocation getLocation() const { return Loc; }
629
630  void setValue(const llvm::APInt &Val) { Value = Val; }
631  void setLocation(SourceLocation Location) { Loc = Location; }
632
633  static bool classof(const Stmt *T) {
634    return T->getStmtClass() == IntegerLiteralClass;
635  }
636  static bool classof(const IntegerLiteral *) { return true; }
637
638  // Iterators
639  virtual child_iterator child_begin();
640  virtual child_iterator child_end();
641};
642
643class CharacterLiteral : public Expr {
644  unsigned Value;
645  SourceLocation Loc;
646  bool IsWide;
647public:
648  // type should be IntTy
649  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
650    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
651      IsWide(iswide) {
652  }
653
654  /// \brief Construct an empty character literal.
655  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
656
657  SourceLocation getLocation() const { return Loc; }
658  bool isWide() const { return IsWide; }
659
660  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
661
662  unsigned getValue() const { return Value; }
663
664  void setLocation(SourceLocation Location) { Loc = Location; }
665  void setWide(bool W) { IsWide = W; }
666  void setValue(unsigned Val) { Value = Val; }
667
668  static bool classof(const Stmt *T) {
669    return T->getStmtClass() == CharacterLiteralClass;
670  }
671  static bool classof(const CharacterLiteral *) { return true; }
672
673  // Iterators
674  virtual child_iterator child_begin();
675  virtual child_iterator child_end();
676};
677
678class FloatingLiteral : public Expr {
679  llvm::APFloat Value;
680  bool IsExact : 1;
681  SourceLocation Loc;
682public:
683  FloatingLiteral(const llvm::APFloat &V, bool isexact,
684                  QualType Type, SourceLocation L)
685    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
686      IsExact(isexact), Loc(L) {}
687
688  /// \brief Construct an empty floating-point literal.
689  explicit FloatingLiteral(EmptyShell Empty)
690    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
691
692  const llvm::APFloat &getValue() const { return Value; }
693  void setValue(const llvm::APFloat &Val) { Value = Val; }
694
695  bool isExact() const { return IsExact; }
696  void setExact(bool E) { IsExact = E; }
697
698  /// getValueAsApproximateDouble - This returns the value as an inaccurate
699  /// double.  Note that this may cause loss of precision, but is useful for
700  /// debugging dumps, etc.
701  double getValueAsApproximateDouble() const;
702
703  SourceLocation getLocation() const { return Loc; }
704  void setLocation(SourceLocation L) { Loc = L; }
705
706  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
707
708  static bool classof(const Stmt *T) {
709    return T->getStmtClass() == FloatingLiteralClass;
710  }
711  static bool classof(const FloatingLiteral *) { return true; }
712
713  // Iterators
714  virtual child_iterator child_begin();
715  virtual child_iterator child_end();
716};
717
718/// ImaginaryLiteral - We support imaginary integer and floating point literals,
719/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
720/// IntegerLiteral classes.  Instances of this class always have a Complex type
721/// whose element type matches the subexpression.
722///
723class ImaginaryLiteral : public Expr {
724  Stmt *Val;
725public:
726  ImaginaryLiteral(Expr *val, QualType Ty)
727    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
728
729  /// \brief Build an empty imaginary literal.
730  explicit ImaginaryLiteral(EmptyShell Empty)
731    : Expr(ImaginaryLiteralClass, Empty) { }
732
733  const Expr *getSubExpr() const { return cast<Expr>(Val); }
734  Expr *getSubExpr() { return cast<Expr>(Val); }
735  void setSubExpr(Expr *E) { Val = E; }
736
737  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
738  static bool classof(const Stmt *T) {
739    return T->getStmtClass() == ImaginaryLiteralClass;
740  }
741  static bool classof(const ImaginaryLiteral *) { return true; }
742
743  // Iterators
744  virtual child_iterator child_begin();
745  virtual child_iterator child_end();
746};
747
748/// StringLiteral - This represents a string literal expression, e.g. "foo"
749/// or L"bar" (wide strings).  The actual string is returned by getStrData()
750/// is NOT null-terminated, and the length of the string is determined by
751/// calling getByteLength().  The C type for a string is always a
752/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
753/// not.
754///
755/// Note that strings in C can be formed by concatenation of multiple string
756/// literal pptokens in translation phase #6.  This keeps track of the locations
757/// of each of these pieces.
758///
759/// Strings in C can also be truncated and extended by assigning into arrays,
760/// e.g. with constructs like:
761///   char X[2] = "foobar";
762/// In this case, getByteLength() will return 6, but the string literal will
763/// have type "char[2]".
764class StringLiteral : public Expr {
765  const char *StrData;
766  unsigned ByteLength;
767  bool IsWide;
768  unsigned NumConcatenated;
769  SourceLocation TokLocs[1];
770
771  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
772
773protected:
774  virtual void DoDestroy(ASTContext &C);
775
776public:
777  /// This is the "fully general" constructor that allows representation of
778  /// strings formed from multiple concatenated tokens.
779  static StringLiteral *Create(ASTContext &C, const char *StrData,
780                               unsigned ByteLength, bool Wide, QualType Ty,
781                               const SourceLocation *Loc, unsigned NumStrs);
782
783  /// Simple constructor for string literals made from one token.
784  static StringLiteral *Create(ASTContext &C, const char *StrData,
785                               unsigned ByteLength,
786                               bool Wide, QualType Ty, SourceLocation Loc) {
787    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
788  }
789
790  /// \brief Construct an empty string literal.
791  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
792
793  llvm::StringRef getString() const {
794    return llvm::StringRef(StrData, ByteLength);
795  }
796  // FIXME: These are deprecated, replace with StringRef.
797  const char *getStrData() const { return StrData; }
798  unsigned getByteLength() const { return ByteLength; }
799
800  /// \brief Sets the string data to the given string data.
801  void setString(ASTContext &C, llvm::StringRef Str);
802
803  bool isWide() const { return IsWide; }
804  void setWide(bool W) { IsWide = W; }
805
806  bool containsNonAsciiOrNull() const {
807    llvm::StringRef Str = getString();
808    for (unsigned i = 0, e = Str.size(); i != e; ++i)
809      if (!isascii(Str[i]) || !Str[i])
810        return true;
811    return false;
812  }
813  /// getNumConcatenated - Get the number of string literal tokens that were
814  /// concatenated in translation phase #6 to form this string literal.
815  unsigned getNumConcatenated() const { return NumConcatenated; }
816
817  SourceLocation getStrTokenLoc(unsigned TokNum) const {
818    assert(TokNum < NumConcatenated && "Invalid tok number");
819    return TokLocs[TokNum];
820  }
821  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
822    assert(TokNum < NumConcatenated && "Invalid tok number");
823    TokLocs[TokNum] = L;
824  }
825
826  typedef const SourceLocation *tokloc_iterator;
827  tokloc_iterator tokloc_begin() const { return TokLocs; }
828  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
829
830  virtual SourceRange getSourceRange() const {
831    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
832  }
833  static bool classof(const Stmt *T) {
834    return T->getStmtClass() == StringLiteralClass;
835  }
836  static bool classof(const StringLiteral *) { return true; }
837
838  // Iterators
839  virtual child_iterator child_begin();
840  virtual child_iterator child_end();
841};
842
843/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
844/// AST node is only formed if full location information is requested.
845class ParenExpr : public Expr {
846  SourceLocation L, R;
847  Stmt *Val;
848public:
849  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
850    : Expr(ParenExprClass, val->getType(),
851           val->isTypeDependent(), val->isValueDependent()),
852      L(l), R(r), Val(val) {}
853
854  /// \brief Construct an empty parenthesized expression.
855  explicit ParenExpr(EmptyShell Empty)
856    : Expr(ParenExprClass, Empty) { }
857
858  const Expr *getSubExpr() const { return cast<Expr>(Val); }
859  Expr *getSubExpr() { return cast<Expr>(Val); }
860  void setSubExpr(Expr *E) { Val = E; }
861
862  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
863
864  /// \brief Get the location of the left parentheses '('.
865  SourceLocation getLParen() const { return L; }
866  void setLParen(SourceLocation Loc) { L = Loc; }
867
868  /// \brief Get the location of the right parentheses ')'.
869  SourceLocation getRParen() const { return R; }
870  void setRParen(SourceLocation Loc) { R = Loc; }
871
872  static bool classof(const Stmt *T) {
873    return T->getStmtClass() == ParenExprClass;
874  }
875  static bool classof(const ParenExpr *) { return true; }
876
877  // Iterators
878  virtual child_iterator child_begin();
879  virtual child_iterator child_end();
880};
881
882
883/// UnaryOperator - This represents the unary-expression's (except sizeof and
884/// alignof), the postinc/postdec operators from postfix-expression, and various
885/// extensions.
886///
887/// Notes on various nodes:
888///
889/// Real/Imag - These return the real/imag part of a complex operand.  If
890///   applied to a non-complex value, the former returns its operand and the
891///   later returns zero in the type of the operand.
892///
893/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
894///   subexpression is a compound literal with the various MemberExpr and
895///   ArraySubscriptExpr's applied to it.
896///
897class UnaryOperator : public Expr {
898public:
899  // Note that additions to this should also update the StmtVisitor class.
900  enum Opcode {
901    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
902    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
903    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
904    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
905    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
906    Real, Imag,       // "__real expr"/"__imag expr" Extension.
907    Extension,        // __extension__ marker.
908    OffsetOf          // __builtin_offsetof
909  };
910private:
911  Stmt *Val;
912  Opcode Opc;
913  SourceLocation Loc;
914public:
915
916  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
917    : Expr(UnaryOperatorClass, type,
918           input->isTypeDependent() && opc != OffsetOf,
919           input->isValueDependent()),
920      Val(input), Opc(opc), Loc(l) {}
921
922  /// \brief Build an empty unary operator.
923  explicit UnaryOperator(EmptyShell Empty)
924    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
925
926  Opcode getOpcode() const { return Opc; }
927  void setOpcode(Opcode O) { Opc = O; }
928
929  Expr *getSubExpr() const { return cast<Expr>(Val); }
930  void setSubExpr(Expr *E) { Val = E; }
931
932  /// getOperatorLoc - Return the location of the operator.
933  SourceLocation getOperatorLoc() const { return Loc; }
934  void setOperatorLoc(SourceLocation L) { Loc = L; }
935
936  /// isPostfix - Return true if this is a postfix operation, like x++.
937  static bool isPostfix(Opcode Op) {
938    return Op == PostInc || Op == PostDec;
939  }
940
941  /// isPostfix - Return true if this is a prefix operation, like --x.
942  static bool isPrefix(Opcode Op) {
943    return Op == PreInc || Op == PreDec;
944  }
945
946  bool isPrefix() const { return isPrefix(Opc); }
947  bool isPostfix() const { return isPostfix(Opc); }
948  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
949  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
950  bool isOffsetOfOp() const { return Opc == OffsetOf; }
951  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
952  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
953
954  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
955  /// corresponds to, e.g. "sizeof" or "[pre]++"
956  static const char *getOpcodeStr(Opcode Op);
957
958  /// \brief Retrieve the unary opcode that corresponds to the given
959  /// overloaded operator.
960  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
961
962  /// \brief Retrieve the overloaded operator kind that corresponds to
963  /// the given unary opcode.
964  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
965
966  virtual SourceRange getSourceRange() const {
967    if (isPostfix())
968      return SourceRange(Val->getLocStart(), Loc);
969    else
970      return SourceRange(Loc, Val->getLocEnd());
971  }
972  virtual SourceLocation getExprLoc() const { return Loc; }
973
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == UnaryOperatorClass;
976  }
977  static bool classof(const UnaryOperator *) { return true; }
978
979  // Iterators
980  virtual child_iterator child_begin();
981  virtual child_iterator child_end();
982};
983
984/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
985/// types and expressions.
986class SizeOfAlignOfExpr : public Expr {
987  bool isSizeof : 1;  // true if sizeof, false if alignof.
988  bool isType : 1;    // true if operand is a type, false if an expression
989  union {
990    TypeSourceInfo *Ty;
991    Stmt *Ex;
992  } Argument;
993  SourceLocation OpLoc, RParenLoc;
994
995protected:
996  virtual void DoDestroy(ASTContext& C);
997
998public:
999  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1000                    QualType resultType, SourceLocation op,
1001                    SourceLocation rp) :
1002      Expr(SizeOfAlignOfExprClass, resultType,
1003           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1004           // Value-dependent if the argument is type-dependent.
1005           TInfo->getType()->isDependentType()),
1006      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1007    Argument.Ty = TInfo;
1008  }
1009
1010  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1011                    QualType resultType, SourceLocation op,
1012                    SourceLocation rp) :
1013      Expr(SizeOfAlignOfExprClass, resultType,
1014           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1015           // Value-dependent if the argument is type-dependent.
1016           E->isTypeDependent()),
1017      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1018    Argument.Ex = E;
1019  }
1020
1021  /// \brief Construct an empty sizeof/alignof expression.
1022  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1023    : Expr(SizeOfAlignOfExprClass, Empty) { }
1024
1025  bool isSizeOf() const { return isSizeof; }
1026  void setSizeof(bool S) { isSizeof = S; }
1027
1028  bool isArgumentType() const { return isType; }
1029  QualType getArgumentType() const {
1030    return getArgumentTypeInfo()->getType();
1031  }
1032  TypeSourceInfo *getArgumentTypeInfo() const {
1033    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1034    return Argument.Ty;
1035  }
1036  Expr *getArgumentExpr() {
1037    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1038    return static_cast<Expr*>(Argument.Ex);
1039  }
1040  const Expr *getArgumentExpr() const {
1041    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1042  }
1043
1044  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1045  void setArgument(TypeSourceInfo *TInfo) {
1046    Argument.Ty = TInfo;
1047    isType = true;
1048  }
1049
1050  /// Gets the argument type, or the type of the argument expression, whichever
1051  /// is appropriate.
1052  QualType getTypeOfArgument() const {
1053    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1054  }
1055
1056  SourceLocation getOperatorLoc() const { return OpLoc; }
1057  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1058
1059  SourceLocation getRParenLoc() const { return RParenLoc; }
1060  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1061
1062  virtual SourceRange getSourceRange() const {
1063    return SourceRange(OpLoc, RParenLoc);
1064  }
1065
1066  static bool classof(const Stmt *T) {
1067    return T->getStmtClass() == SizeOfAlignOfExprClass;
1068  }
1069  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1070
1071  // Iterators
1072  virtual child_iterator child_begin();
1073  virtual child_iterator child_end();
1074};
1075
1076//===----------------------------------------------------------------------===//
1077// Postfix Operators.
1078//===----------------------------------------------------------------------===//
1079
1080/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1081class ArraySubscriptExpr : public Expr {
1082  enum { LHS, RHS, END_EXPR=2 };
1083  Stmt* SubExprs[END_EXPR];
1084  SourceLocation RBracketLoc;
1085public:
1086  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1087                     SourceLocation rbracketloc)
1088  : Expr(ArraySubscriptExprClass, t,
1089         lhs->isTypeDependent() || rhs->isTypeDependent(),
1090         lhs->isValueDependent() || rhs->isValueDependent()),
1091    RBracketLoc(rbracketloc) {
1092    SubExprs[LHS] = lhs;
1093    SubExprs[RHS] = rhs;
1094  }
1095
1096  /// \brief Create an empty array subscript expression.
1097  explicit ArraySubscriptExpr(EmptyShell Shell)
1098    : Expr(ArraySubscriptExprClass, Shell) { }
1099
1100  /// An array access can be written A[4] or 4[A] (both are equivalent).
1101  /// - getBase() and getIdx() always present the normalized view: A[4].
1102  ///    In this case getBase() returns "A" and getIdx() returns "4".
1103  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1104  ///    4[A] getLHS() returns "4".
1105  /// Note: Because vector element access is also written A[4] we must
1106  /// predicate the format conversion in getBase and getIdx only on the
1107  /// the type of the RHS, as it is possible for the LHS to be a vector of
1108  /// integer type
1109  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1110  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1111  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1112
1113  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1114  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1115  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1116
1117  Expr *getBase() {
1118    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1119  }
1120
1121  const Expr *getBase() const {
1122    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1123  }
1124
1125  Expr *getIdx() {
1126    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1127  }
1128
1129  const Expr *getIdx() const {
1130    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1131  }
1132
1133  virtual SourceRange getSourceRange() const {
1134    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1135  }
1136
1137  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1138  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1139
1140  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1141
1142  static bool classof(const Stmt *T) {
1143    return T->getStmtClass() == ArraySubscriptExprClass;
1144  }
1145  static bool classof(const ArraySubscriptExpr *) { return true; }
1146
1147  // Iterators
1148  virtual child_iterator child_begin();
1149  virtual child_iterator child_end();
1150};
1151
1152
1153/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1154/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1155/// while its subclasses may represent alternative syntax that (semantically)
1156/// results in a function call. For example, CXXOperatorCallExpr is
1157/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1158/// "str1 + str2" to resolve to a function call.
1159class CallExpr : public Expr {
1160  enum { FN=0, ARGS_START=1 };
1161  Stmt **SubExprs;
1162  unsigned NumArgs;
1163  SourceLocation RParenLoc;
1164
1165protected:
1166  // This version of the constructor is for derived classes.
1167  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1168           QualType t, SourceLocation rparenloc);
1169
1170  virtual void DoDestroy(ASTContext& C);
1171
1172public:
1173  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1174           SourceLocation rparenloc);
1175
1176  /// \brief Build an empty call expression.
1177  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1178
1179  ~CallExpr() {}
1180
1181  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1182  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1183  void setCallee(Expr *F) { SubExprs[FN] = F; }
1184
1185  Decl *getCalleeDecl();
1186  const Decl *getCalleeDecl() const {
1187    return const_cast<CallExpr*>(this)->getCalleeDecl();
1188  }
1189
1190  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1191  FunctionDecl *getDirectCallee();
1192  const FunctionDecl *getDirectCallee() const {
1193    return const_cast<CallExpr*>(this)->getDirectCallee();
1194  }
1195
1196  /// getNumArgs - Return the number of actual arguments to this call.
1197  ///
1198  unsigned getNumArgs() const { return NumArgs; }
1199
1200  /// getArg - Return the specified argument.
1201  Expr *getArg(unsigned Arg) {
1202    assert(Arg < NumArgs && "Arg access out of range!");
1203    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1204  }
1205  const Expr *getArg(unsigned Arg) const {
1206    assert(Arg < NumArgs && "Arg access out of range!");
1207    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1208  }
1209
1210  /// setArg - Set the specified argument.
1211  void setArg(unsigned Arg, Expr *ArgExpr) {
1212    assert(Arg < NumArgs && "Arg access out of range!");
1213    SubExprs[Arg+ARGS_START] = ArgExpr;
1214  }
1215
1216  /// setNumArgs - This changes the number of arguments present in this call.
1217  /// Any orphaned expressions are deleted by this, and any new operands are set
1218  /// to null.
1219  void setNumArgs(ASTContext& C, unsigned NumArgs);
1220
1221  typedef ExprIterator arg_iterator;
1222  typedef ConstExprIterator const_arg_iterator;
1223
1224  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1225  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1226  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1227  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1228
1229  /// getNumCommas - Return the number of commas that must have been present in
1230  /// this function call.
1231  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1232
1233  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1234  /// not, return 0.
1235  unsigned isBuiltinCall(ASTContext &Context) const;
1236
1237  /// getCallReturnType - Get the return type of the call expr. This is not
1238  /// always the type of the expr itself, if the return type is a reference
1239  /// type.
1240  QualType getCallReturnType() const;
1241
1242  SourceLocation getRParenLoc() const { return RParenLoc; }
1243  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1244
1245  virtual SourceRange getSourceRange() const {
1246    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1247  }
1248
1249  static bool classof(const Stmt *T) {
1250    return T->getStmtClass() == CallExprClass ||
1251           T->getStmtClass() == CXXOperatorCallExprClass ||
1252           T->getStmtClass() == CXXMemberCallExprClass;
1253  }
1254  static bool classof(const CallExpr *) { return true; }
1255  static bool classof(const CXXOperatorCallExpr *) { return true; }
1256  static bool classof(const CXXMemberCallExpr *) { return true; }
1257
1258  // Iterators
1259  virtual child_iterator child_begin();
1260  virtual child_iterator child_end();
1261};
1262
1263/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1264///
1265class MemberExpr : public Expr {
1266  /// Base - the expression for the base pointer or structure references.  In
1267  /// X.F, this is "X".
1268  Stmt *Base;
1269
1270  /// MemberDecl - This is the decl being referenced by the field/member name.
1271  /// In X.F, this is the decl referenced by F.
1272  ValueDecl *MemberDecl;
1273
1274  /// MemberLoc - This is the location of the member name.
1275  SourceLocation MemberLoc;
1276
1277  /// IsArrow - True if this is "X->F", false if this is "X.F".
1278  bool IsArrow : 1;
1279
1280  /// \brief True if this member expression used a nested-name-specifier to
1281  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1282  /// structure is allocated immediately after the MemberExpr.
1283  bool HasQualifier : 1;
1284
1285  /// \brief True if this member expression specified a template argument list
1286  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1287  /// structure (and its TemplateArguments) are allocated immediately after
1288  /// the MemberExpr or, if the member expression also has a qualifier, after
1289  /// the NameQualifier structure.
1290  bool HasExplicitTemplateArgumentList : 1;
1291
1292  /// \brief Retrieve the qualifier that preceded the member name, if any.
1293  NameQualifier *getMemberQualifier() {
1294    if (!HasQualifier)
1295      return 0;
1296
1297    return reinterpret_cast<NameQualifier *> (this + 1);
1298  }
1299
1300  /// \brief Retrieve the qualifier that preceded the member name, if any.
1301  const NameQualifier *getMemberQualifier() const {
1302    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1303  }
1304
1305  /// \brief Retrieve the explicit template argument list that followed the
1306  /// member template name, if any.
1307  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1308    if (!HasExplicitTemplateArgumentList)
1309      return 0;
1310
1311    if (!HasQualifier)
1312      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1313
1314    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1315                                                      getMemberQualifier() + 1);
1316  }
1317
1318  /// \brief Retrieve the explicit template argument list that followed the
1319  /// member template name, if any.
1320  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1321    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1322  }
1323
1324  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1325             SourceRange qualrange, ValueDecl *memberdecl, SourceLocation l,
1326             const TemplateArgumentListInfo *targs, QualType ty);
1327
1328public:
1329  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1330             SourceLocation l, QualType ty)
1331    : Expr(MemberExprClass, ty,
1332           base->isTypeDependent(), base->isValueDependent()),
1333      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1334      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1335
1336  /// \brief Build an empty member reference expression.
1337  explicit MemberExpr(EmptyShell Empty)
1338    : Expr(MemberExprClass, Empty), HasQualifier(false),
1339      HasExplicitTemplateArgumentList(false) { }
1340
1341  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1342                            NestedNameSpecifier *qual, SourceRange qualrange,
1343                            ValueDecl *memberdecl,
1344                            SourceLocation l,
1345                            const TemplateArgumentListInfo *targs,
1346                            QualType ty);
1347
1348  void setBase(Expr *E) { Base = E; }
1349  Expr *getBase() const { return cast<Expr>(Base); }
1350
1351  /// \brief Retrieve the member declaration to which this expression refers.
1352  ///
1353  /// The returned declaration will either be a FieldDecl or (in C++)
1354  /// a CXXMethodDecl.
1355  ValueDecl *getMemberDecl() const { return MemberDecl; }
1356  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1357
1358  /// \brief Determines whether this member expression actually had
1359  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1360  /// x->Base::foo.
1361  bool hasQualifier() const { return HasQualifier; }
1362
1363  /// \brief If the member name was qualified, retrieves the source range of
1364  /// the nested-name-specifier that precedes the member name. Otherwise,
1365  /// returns an empty source range.
1366  SourceRange getQualifierRange() const {
1367    if (!HasQualifier)
1368      return SourceRange();
1369
1370    return getMemberQualifier()->Range;
1371  }
1372
1373  /// \brief If the member name was qualified, retrieves the
1374  /// nested-name-specifier that precedes the member name. Otherwise, returns
1375  /// NULL.
1376  NestedNameSpecifier *getQualifier() const {
1377    if (!HasQualifier)
1378      return 0;
1379
1380    return getMemberQualifier()->NNS;
1381  }
1382
1383  /// \brief Determines whether this member expression actually had a C++
1384  /// template argument list explicitly specified, e.g., x.f<int>.
1385  bool hasExplicitTemplateArgumentList() const {
1386    return HasExplicitTemplateArgumentList;
1387  }
1388
1389  /// \brief Copies the template arguments (if present) into the given
1390  /// structure.
1391  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1392    if (hasExplicitTemplateArgumentList())
1393      getExplicitTemplateArgumentList()->copyInto(List);
1394  }
1395
1396  /// \brief Retrieve the location of the left angle bracket following the
1397  /// member name ('<'), if any.
1398  SourceLocation getLAngleLoc() const {
1399    if (!HasExplicitTemplateArgumentList)
1400      return SourceLocation();
1401
1402    return getExplicitTemplateArgumentList()->LAngleLoc;
1403  }
1404
1405  /// \brief Retrieve the template arguments provided as part of this
1406  /// template-id.
1407  const TemplateArgumentLoc *getTemplateArgs() const {
1408    if (!HasExplicitTemplateArgumentList)
1409      return 0;
1410
1411    return getExplicitTemplateArgumentList()->getTemplateArgs();
1412  }
1413
1414  /// \brief Retrieve the number of template arguments provided as part of this
1415  /// template-id.
1416  unsigned getNumTemplateArgs() const {
1417    if (!HasExplicitTemplateArgumentList)
1418      return 0;
1419
1420    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1421  }
1422
1423  /// \brief Retrieve the location of the right angle bracket following the
1424  /// template arguments ('>').
1425  SourceLocation getRAngleLoc() const {
1426    if (!HasExplicitTemplateArgumentList)
1427      return SourceLocation();
1428
1429    return getExplicitTemplateArgumentList()->RAngleLoc;
1430  }
1431
1432  bool isArrow() const { return IsArrow; }
1433  void setArrow(bool A) { IsArrow = A; }
1434
1435  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1436  /// location of 'F'.
1437  SourceLocation getMemberLoc() const { return MemberLoc; }
1438  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1439
1440  virtual SourceRange getSourceRange() const {
1441    // If we have an implicit base (like a C++ implicit this),
1442    // make sure not to return its location
1443    SourceLocation EndLoc = MemberLoc;
1444    if (HasExplicitTemplateArgumentList)
1445      EndLoc = getRAngleLoc();
1446
1447    SourceLocation BaseLoc = getBase()->getLocStart();
1448    if (BaseLoc.isInvalid())
1449      return SourceRange(MemberLoc, EndLoc);
1450    return SourceRange(BaseLoc, EndLoc);
1451  }
1452
1453  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1454
1455  static bool classof(const Stmt *T) {
1456    return T->getStmtClass() == MemberExprClass;
1457  }
1458  static bool classof(const MemberExpr *) { return true; }
1459
1460  // Iterators
1461  virtual child_iterator child_begin();
1462  virtual child_iterator child_end();
1463};
1464
1465/// CompoundLiteralExpr - [C99 6.5.2.5]
1466///
1467class CompoundLiteralExpr : public Expr {
1468  /// LParenLoc - If non-null, this is the location of the left paren in a
1469  /// compound literal like "(int){4}".  This can be null if this is a
1470  /// synthesized compound expression.
1471  SourceLocation LParenLoc;
1472
1473  /// The type as written.  This can be an incomplete array type, in
1474  /// which case the actual expression type will be different.
1475  TypeSourceInfo *TInfo;
1476  Stmt *Init;
1477  bool FileScope;
1478public:
1479  // FIXME: Can compound literals be value-dependent?
1480  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1481                      QualType T, Expr *init, bool fileScope)
1482    : Expr(CompoundLiteralExprClass, T,
1483           tinfo->getType()->isDependentType(), false),
1484      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1485
1486  /// \brief Construct an empty compound literal.
1487  explicit CompoundLiteralExpr(EmptyShell Empty)
1488    : Expr(CompoundLiteralExprClass, Empty) { }
1489
1490  const Expr *getInitializer() const { return cast<Expr>(Init); }
1491  Expr *getInitializer() { return cast<Expr>(Init); }
1492  void setInitializer(Expr *E) { Init = E; }
1493
1494  bool isFileScope() const { return FileScope; }
1495  void setFileScope(bool FS) { FileScope = FS; }
1496
1497  SourceLocation getLParenLoc() const { return LParenLoc; }
1498  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1499
1500  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1501  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1502
1503  virtual SourceRange getSourceRange() const {
1504    // FIXME: Init should never be null.
1505    if (!Init)
1506      return SourceRange();
1507    if (LParenLoc.isInvalid())
1508      return Init->getSourceRange();
1509    return SourceRange(LParenLoc, Init->getLocEnd());
1510  }
1511
1512  static bool classof(const Stmt *T) {
1513    return T->getStmtClass() == CompoundLiteralExprClass;
1514  }
1515  static bool classof(const CompoundLiteralExpr *) { return true; }
1516
1517  // Iterators
1518  virtual child_iterator child_begin();
1519  virtual child_iterator child_end();
1520};
1521
1522/// CastExpr - Base class for type casts, including both implicit
1523/// casts (ImplicitCastExpr) and explicit casts that have some
1524/// representation in the source code (ExplicitCastExpr's derived
1525/// classes).
1526class CastExpr : public Expr {
1527public:
1528  /// CastKind - the kind of cast this represents.
1529  enum CastKind {
1530    /// CK_Unknown - Unknown cast kind.
1531    /// FIXME: The goal is to get rid of this and make all casts have a
1532    /// kind so that the AST client doesn't have to try to figure out what's
1533    /// going on.
1534    CK_Unknown,
1535
1536    /// CK_BitCast - Used for reinterpret_cast.
1537    CK_BitCast,
1538
1539    /// CK_NoOp - Used for const_cast.
1540    CK_NoOp,
1541
1542    /// CK_BaseToDerived - Base to derived class casts.
1543    CK_BaseToDerived,
1544
1545    /// CK_DerivedToBase - Derived to base class casts.
1546    CK_DerivedToBase,
1547
1548    /// CK_Dynamic - Dynamic cast.
1549    CK_Dynamic,
1550
1551    /// CK_ToUnion - Cast to union (GCC extension).
1552    CK_ToUnion,
1553
1554    /// CK_ArrayToPointerDecay - Array to pointer decay.
1555    CK_ArrayToPointerDecay,
1556
1557    // CK_FunctionToPointerDecay - Function to pointer decay.
1558    CK_FunctionToPointerDecay,
1559
1560    /// CK_NullToMemberPointer - Null pointer to member pointer.
1561    CK_NullToMemberPointer,
1562
1563    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1564    /// member pointer in derived class.
1565    CK_BaseToDerivedMemberPointer,
1566
1567    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1568    /// member pointer in base class.
1569    CK_DerivedToBaseMemberPointer,
1570
1571    /// CK_UserDefinedConversion - Conversion using a user defined type
1572    /// conversion function.
1573    CK_UserDefinedConversion,
1574
1575    /// CK_ConstructorConversion - Conversion by constructor
1576    CK_ConstructorConversion,
1577
1578    /// CK_IntegralToPointer - Integral to pointer
1579    CK_IntegralToPointer,
1580
1581    /// CK_PointerToIntegral - Pointer to integral
1582    CK_PointerToIntegral,
1583
1584    /// CK_ToVoid - Cast to void.
1585    CK_ToVoid,
1586
1587    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1588    /// vector type with the same element type as the src type. Splats the
1589    /// src expression into the destination expression.
1590    CK_VectorSplat,
1591
1592    /// CK_IntegralCast - Casting between integral types of different size.
1593    CK_IntegralCast,
1594
1595    /// CK_IntegralToFloating - Integral to floating point.
1596    CK_IntegralToFloating,
1597
1598    /// CK_FloatingToIntegral - Floating point to integral.
1599    CK_FloatingToIntegral,
1600
1601    /// CK_FloatingCast - Casting between floating types of different size.
1602    CK_FloatingCast,
1603
1604    /// CK_MemberPointerToBoolean - Member pointer to boolean
1605    CK_MemberPointerToBoolean,
1606
1607    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1608    /// pointer
1609    CK_AnyPointerToObjCPointerCast,
1610    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1611    /// pointer
1612    CK_AnyPointerToBlockPointerCast
1613
1614  };
1615
1616private:
1617  CastKind Kind;
1618  Stmt *Op;
1619protected:
1620  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op) :
1621    Expr(SC, ty,
1622         // Cast expressions are type-dependent if the type is
1623         // dependent (C++ [temp.dep.expr]p3).
1624         ty->isDependentType(),
1625         // Cast expressions are value-dependent if the type is
1626         // dependent or if the subexpression is value-dependent.
1627         ty->isDependentType() || (op && op->isValueDependent())),
1628    Kind(kind), Op(op) {}
1629
1630  /// \brief Construct an empty cast.
1631  CastExpr(StmtClass SC, EmptyShell Empty)
1632    : Expr(SC, Empty) { }
1633
1634public:
1635  CastKind getCastKind() const { return Kind; }
1636  void setCastKind(CastKind K) { Kind = K; }
1637  const char *getCastKindName() const;
1638
1639  Expr *getSubExpr() { return cast<Expr>(Op); }
1640  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1641  void setSubExpr(Expr *E) { Op = E; }
1642
1643  /// \brief Retrieve the cast subexpression as it was written in the source
1644  /// code, looking through any implicit casts or other intermediate nodes
1645  /// introduced by semantic analysis.
1646  Expr *getSubExprAsWritten();
1647  const Expr *getSubExprAsWritten() const {
1648    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
1649  }
1650
1651  static bool classof(const Stmt *T) {
1652    StmtClass SC = T->getStmtClass();
1653    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1654      return true;
1655
1656    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1657      return true;
1658
1659    return false;
1660  }
1661  static bool classof(const CastExpr *) { return true; }
1662
1663  // Iterators
1664  virtual child_iterator child_begin();
1665  virtual child_iterator child_end();
1666};
1667
1668/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1669/// conversions, which have no direct representation in the original
1670/// source code. For example: converting T[]->T*, void f()->void
1671/// (*f)(), float->double, short->int, etc.
1672///
1673/// In C, implicit casts always produce rvalues. However, in C++, an
1674/// implicit cast whose result is being bound to a reference will be
1675/// an lvalue. For example:
1676///
1677/// @code
1678/// class Base { };
1679/// class Derived : public Base { };
1680/// void f(Derived d) {
1681///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1682/// }
1683/// @endcode
1684class ImplicitCastExpr : public CastExpr {
1685  /// LvalueCast - Whether this cast produces an lvalue.
1686  bool LvalueCast;
1687
1688public:
1689  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, bool Lvalue) :
1690    CastExpr(ImplicitCastExprClass, ty, kind, op), LvalueCast(Lvalue) { }
1691
1692  /// \brief Construct an empty implicit cast.
1693  explicit ImplicitCastExpr(EmptyShell Shell)
1694    : CastExpr(ImplicitCastExprClass, Shell) { }
1695
1696
1697  virtual SourceRange getSourceRange() const {
1698    return getSubExpr()->getSourceRange();
1699  }
1700
1701  /// isLvalueCast - Whether this cast produces an lvalue.
1702  bool isLvalueCast() const { return LvalueCast; }
1703
1704  /// setLvalueCast - Set whether this cast produces an lvalue.
1705  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1706
1707  static bool classof(const Stmt *T) {
1708    return T->getStmtClass() == ImplicitCastExprClass;
1709  }
1710  static bool classof(const ImplicitCastExpr *) { return true; }
1711};
1712
1713/// ExplicitCastExpr - An explicit cast written in the source
1714/// code.
1715///
1716/// This class is effectively an abstract class, because it provides
1717/// the basic representation of an explicitly-written cast without
1718/// specifying which kind of cast (C cast, functional cast, static
1719/// cast, etc.) was written; specific derived classes represent the
1720/// particular style of cast and its location information.
1721///
1722/// Unlike implicit casts, explicit cast nodes have two different
1723/// types: the type that was written into the source code, and the
1724/// actual type of the expression as determined by semantic
1725/// analysis. These types may differ slightly. For example, in C++ one
1726/// can cast to a reference type, which indicates that the resulting
1727/// expression will be an lvalue. The reference type, however, will
1728/// not be used as the type of the expression.
1729class ExplicitCastExpr : public CastExpr {
1730  /// TInfo - Source type info for the (written) type
1731  /// this expression is casting to.
1732  TypeSourceInfo *TInfo;
1733
1734protected:
1735  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
1736                   Expr *op, TypeSourceInfo *writtenTy)
1737    : CastExpr(SC, exprTy, kind, op), TInfo(writtenTy) {}
1738
1739  /// \brief Construct an empty explicit cast.
1740  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1741    : CastExpr(SC, Shell) { }
1742
1743public:
1744  /// getTypeInfoAsWritten - Returns the type source info for the type
1745  /// that this expression is casting to.
1746  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
1747  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
1748
1749  /// getTypeAsWritten - Returns the type that this expression is
1750  /// casting to, as written in the source code.
1751  QualType getTypeAsWritten() const { return TInfo->getType(); }
1752
1753  static bool classof(const Stmt *T) {
1754    StmtClass SC = T->getStmtClass();
1755    if (SC >= CStyleCastExprClass && SC <= CStyleCastExprClass)
1756      return true;
1757    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1758      return true;
1759
1760    return false;
1761  }
1762  static bool classof(const ExplicitCastExpr *) { return true; }
1763};
1764
1765/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1766/// cast in C++ (C++ [expr.cast]), which uses the syntax
1767/// (Type)expr. For example: @c (int)f.
1768class CStyleCastExpr : public ExplicitCastExpr {
1769  SourceLocation LPLoc; // the location of the left paren
1770  SourceLocation RPLoc; // the location of the right paren
1771public:
1772  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
1773                 TypeSourceInfo *writtenTy,
1774                 SourceLocation l, SourceLocation r) :
1775    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1776    LPLoc(l), RPLoc(r) {}
1777
1778  /// \brief Construct an empty C-style explicit cast.
1779  explicit CStyleCastExpr(EmptyShell Shell)
1780    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1781
1782  SourceLocation getLParenLoc() const { return LPLoc; }
1783  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1784
1785  SourceLocation getRParenLoc() const { return RPLoc; }
1786  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1787
1788  virtual SourceRange getSourceRange() const {
1789    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1790  }
1791  static bool classof(const Stmt *T) {
1792    return T->getStmtClass() == CStyleCastExprClass;
1793  }
1794  static bool classof(const CStyleCastExpr *) { return true; }
1795};
1796
1797/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1798///
1799/// This expression node kind describes a builtin binary operation,
1800/// such as "x + y" for integer values "x" and "y". The operands will
1801/// already have been converted to appropriate types (e.g., by
1802/// performing promotions or conversions).
1803///
1804/// In C++, where operators may be overloaded, a different kind of
1805/// expression node (CXXOperatorCallExpr) is used to express the
1806/// invocation of an overloaded operator with operator syntax. Within
1807/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1808/// used to store an expression "x + y" depends on the subexpressions
1809/// for x and y. If neither x or y is type-dependent, and the "+"
1810/// operator resolves to a built-in operation, BinaryOperator will be
1811/// used to express the computation (x and y may still be
1812/// value-dependent). If either x or y is type-dependent, or if the
1813/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1814/// be used to express the computation.
1815class BinaryOperator : public Expr {
1816public:
1817  enum Opcode {
1818    // Operators listed in order of precedence.
1819    // Note that additions to this should also update the StmtVisitor class.
1820    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1821    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1822    Add, Sub,         // [C99 6.5.6] Additive operators.
1823    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1824    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1825    EQ, NE,           // [C99 6.5.9] Equality operators.
1826    And,              // [C99 6.5.10] Bitwise AND operator.
1827    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1828    Or,               // [C99 6.5.12] Bitwise OR operator.
1829    LAnd,             // [C99 6.5.13] Logical AND operator.
1830    LOr,              // [C99 6.5.14] Logical OR operator.
1831    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1832    DivAssign, RemAssign,
1833    AddAssign, SubAssign,
1834    ShlAssign, ShrAssign,
1835    AndAssign, XorAssign,
1836    OrAssign,
1837    Comma             // [C99 6.5.17] Comma operator.
1838  };
1839private:
1840  enum { LHS, RHS, END_EXPR };
1841  Stmt* SubExprs[END_EXPR];
1842  Opcode Opc;
1843  SourceLocation OpLoc;
1844public:
1845
1846  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1847                 SourceLocation opLoc)
1848    : Expr(BinaryOperatorClass, ResTy,
1849           lhs->isTypeDependent() || rhs->isTypeDependent(),
1850           lhs->isValueDependent() || rhs->isValueDependent()),
1851      Opc(opc), OpLoc(opLoc) {
1852    SubExprs[LHS] = lhs;
1853    SubExprs[RHS] = rhs;
1854    assert(!isCompoundAssignmentOp() &&
1855           "Use ArithAssignBinaryOperator for compound assignments");
1856  }
1857
1858  /// \brief Construct an empty binary operator.
1859  explicit BinaryOperator(EmptyShell Empty)
1860    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1861
1862  SourceLocation getOperatorLoc() const { return OpLoc; }
1863  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1864
1865  Opcode getOpcode() const { return Opc; }
1866  void setOpcode(Opcode O) { Opc = O; }
1867
1868  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1869  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1870  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1871  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1872
1873  virtual SourceRange getSourceRange() const {
1874    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1875  }
1876
1877  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1878  /// corresponds to, e.g. "<<=".
1879  static const char *getOpcodeStr(Opcode Op);
1880
1881  /// \brief Retrieve the binary opcode that corresponds to the given
1882  /// overloaded operator.
1883  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1884
1885  /// \brief Retrieve the overloaded operator kind that corresponds to
1886  /// the given binary opcode.
1887  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1888
1889  /// predicates to categorize the respective opcodes.
1890  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1891  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1892  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
1893  bool isShiftOp() const { return isShiftOp(Opc); }
1894
1895  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
1896  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
1897
1898  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1899  bool isRelationalOp() const { return isRelationalOp(Opc); }
1900
1901  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1902  bool isEqualityOp() const { return isEqualityOp(Opc); }
1903
1904  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
1905  bool isComparisonOp() const { return isComparisonOp(Opc); }
1906
1907  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1908  bool isLogicalOp() const { return isLogicalOp(Opc); }
1909
1910  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1911  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1912  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1913
1914  static bool classof(const Stmt *S) {
1915    return S->getStmtClass() == BinaryOperatorClass ||
1916           S->getStmtClass() == CompoundAssignOperatorClass;
1917  }
1918  static bool classof(const BinaryOperator *) { return true; }
1919
1920  // Iterators
1921  virtual child_iterator child_begin();
1922  virtual child_iterator child_end();
1923
1924protected:
1925  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1926                 SourceLocation opLoc, bool dead)
1927    : Expr(CompoundAssignOperatorClass, ResTy,
1928           lhs->isTypeDependent() || rhs->isTypeDependent(),
1929           lhs->isValueDependent() || rhs->isValueDependent()),
1930      Opc(opc), OpLoc(opLoc) {
1931    SubExprs[LHS] = lhs;
1932    SubExprs[RHS] = rhs;
1933  }
1934
1935  BinaryOperator(StmtClass SC, EmptyShell Empty)
1936    : Expr(SC, Empty), Opc(MulAssign) { }
1937};
1938
1939/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1940/// track of the type the operation is performed in.  Due to the semantics of
1941/// these operators, the operands are promoted, the aritmetic performed, an
1942/// implicit conversion back to the result type done, then the assignment takes
1943/// place.  This captures the intermediate type which the computation is done
1944/// in.
1945class CompoundAssignOperator : public BinaryOperator {
1946  QualType ComputationLHSType;
1947  QualType ComputationResultType;
1948public:
1949  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1950                         QualType ResType, QualType CompLHSType,
1951                         QualType CompResultType,
1952                         SourceLocation OpLoc)
1953    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1954      ComputationLHSType(CompLHSType),
1955      ComputationResultType(CompResultType) {
1956    assert(isCompoundAssignmentOp() &&
1957           "Only should be used for compound assignments");
1958  }
1959
1960  /// \brief Build an empty compound assignment operator expression.
1961  explicit CompoundAssignOperator(EmptyShell Empty)
1962    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1963
1964  // The two computation types are the type the LHS is converted
1965  // to for the computation and the type of the result; the two are
1966  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1967  QualType getComputationLHSType() const { return ComputationLHSType; }
1968  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1969
1970  QualType getComputationResultType() const { return ComputationResultType; }
1971  void setComputationResultType(QualType T) { ComputationResultType = T; }
1972
1973  static bool classof(const CompoundAssignOperator *) { return true; }
1974  static bool classof(const Stmt *S) {
1975    return S->getStmtClass() == CompoundAssignOperatorClass;
1976  }
1977};
1978
1979/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1980/// GNU "missing LHS" extension is in use.
1981///
1982class ConditionalOperator : public Expr {
1983  enum { COND, LHS, RHS, END_EXPR };
1984  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1985  SourceLocation QuestionLoc, ColonLoc;
1986public:
1987  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1988                      SourceLocation CLoc, Expr *rhs, QualType t)
1989    : Expr(ConditionalOperatorClass, t,
1990           // FIXME: the type of the conditional operator doesn't
1991           // depend on the type of the conditional, but the standard
1992           // seems to imply that it could. File a bug!
1993           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1994           (cond->isValueDependent() ||
1995            (lhs && lhs->isValueDependent()) ||
1996            (rhs && rhs->isValueDependent()))),
1997      QuestionLoc(QLoc),
1998      ColonLoc(CLoc) {
1999    SubExprs[COND] = cond;
2000    SubExprs[LHS] = lhs;
2001    SubExprs[RHS] = rhs;
2002  }
2003
2004  /// \brief Build an empty conditional operator.
2005  explicit ConditionalOperator(EmptyShell Empty)
2006    : Expr(ConditionalOperatorClass, Empty) { }
2007
2008  // getCond - Return the expression representing the condition for
2009  //  the ?: operator.
2010  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2011  void setCond(Expr *E) { SubExprs[COND] = E; }
2012
2013  // getTrueExpr - Return the subexpression representing the value of the ?:
2014  //  expression if the condition evaluates to true.  In most cases this value
2015  //  will be the same as getLHS() except a GCC extension allows the left
2016  //  subexpression to be omitted, and instead of the condition be returned.
2017  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2018  //  is only evaluated once.
2019  Expr *getTrueExpr() const {
2020    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2021  }
2022
2023  // getTrueExpr - Return the subexpression representing the value of the ?:
2024  // expression if the condition evaluates to false. This is the same as getRHS.
2025  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2026
2027  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2028  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2029
2030  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2031  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2032
2033  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2034  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2035
2036  SourceLocation getColonLoc() const { return ColonLoc; }
2037  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2038
2039  virtual SourceRange getSourceRange() const {
2040    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2041  }
2042  static bool classof(const Stmt *T) {
2043    return T->getStmtClass() == ConditionalOperatorClass;
2044  }
2045  static bool classof(const ConditionalOperator *) { return true; }
2046
2047  // Iterators
2048  virtual child_iterator child_begin();
2049  virtual child_iterator child_end();
2050};
2051
2052/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2053class AddrLabelExpr : public Expr {
2054  SourceLocation AmpAmpLoc, LabelLoc;
2055  LabelStmt *Label;
2056public:
2057  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2058                QualType t)
2059    : Expr(AddrLabelExprClass, t, false, false),
2060      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2061
2062  /// \brief Build an empty address of a label expression.
2063  explicit AddrLabelExpr(EmptyShell Empty)
2064    : Expr(AddrLabelExprClass, Empty) { }
2065
2066  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2067  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2068  SourceLocation getLabelLoc() const { return LabelLoc; }
2069  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2070
2071  virtual SourceRange getSourceRange() const {
2072    return SourceRange(AmpAmpLoc, LabelLoc);
2073  }
2074
2075  LabelStmt *getLabel() const { return Label; }
2076  void setLabel(LabelStmt *S) { Label = S; }
2077
2078  static bool classof(const Stmt *T) {
2079    return T->getStmtClass() == AddrLabelExprClass;
2080  }
2081  static bool classof(const AddrLabelExpr *) { return true; }
2082
2083  // Iterators
2084  virtual child_iterator child_begin();
2085  virtual child_iterator child_end();
2086};
2087
2088/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2089/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2090/// takes the value of the last subexpression.
2091class StmtExpr : public Expr {
2092  Stmt *SubStmt;
2093  SourceLocation LParenLoc, RParenLoc;
2094public:
2095  // FIXME: Does type-dependence need to be computed differently?
2096  StmtExpr(CompoundStmt *substmt, QualType T,
2097           SourceLocation lp, SourceLocation rp) :
2098    Expr(StmtExprClass, T, T->isDependentType(), false),
2099    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2100
2101  /// \brief Build an empty statement expression.
2102  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2103
2104  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2105  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2106  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2107
2108  virtual SourceRange getSourceRange() const {
2109    return SourceRange(LParenLoc, RParenLoc);
2110  }
2111
2112  SourceLocation getLParenLoc() const { return LParenLoc; }
2113  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2114  SourceLocation getRParenLoc() const { return RParenLoc; }
2115  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2116
2117  static bool classof(const Stmt *T) {
2118    return T->getStmtClass() == StmtExprClass;
2119  }
2120  static bool classof(const StmtExpr *) { return true; }
2121
2122  // Iterators
2123  virtual child_iterator child_begin();
2124  virtual child_iterator child_end();
2125};
2126
2127/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2128/// This AST node represents a function that returns 1 if two *types* (not
2129/// expressions) are compatible. The result of this built-in function can be
2130/// used in integer constant expressions.
2131class TypesCompatibleExpr : public Expr {
2132  QualType Type1;
2133  QualType Type2;
2134  SourceLocation BuiltinLoc, RParenLoc;
2135public:
2136  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2137                      QualType t1, QualType t2, SourceLocation RP) :
2138    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2139    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2140
2141  /// \brief Build an empty __builtin_type_compatible_p expression.
2142  explicit TypesCompatibleExpr(EmptyShell Empty)
2143    : Expr(TypesCompatibleExprClass, Empty) { }
2144
2145  QualType getArgType1() const { return Type1; }
2146  void setArgType1(QualType T) { Type1 = T; }
2147  QualType getArgType2() const { return Type2; }
2148  void setArgType2(QualType T) { Type2 = T; }
2149
2150  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2151  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2152
2153  SourceLocation getRParenLoc() const { return RParenLoc; }
2154  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2155
2156  virtual SourceRange getSourceRange() const {
2157    return SourceRange(BuiltinLoc, RParenLoc);
2158  }
2159  static bool classof(const Stmt *T) {
2160    return T->getStmtClass() == TypesCompatibleExprClass;
2161  }
2162  static bool classof(const TypesCompatibleExpr *) { return true; }
2163
2164  // Iterators
2165  virtual child_iterator child_begin();
2166  virtual child_iterator child_end();
2167};
2168
2169/// ShuffleVectorExpr - clang-specific builtin-in function
2170/// __builtin_shufflevector.
2171/// This AST node represents a operator that does a constant
2172/// shuffle, similar to LLVM's shufflevector instruction. It takes
2173/// two vectors and a variable number of constant indices,
2174/// and returns the appropriately shuffled vector.
2175class ShuffleVectorExpr : public Expr {
2176  SourceLocation BuiltinLoc, RParenLoc;
2177
2178  // SubExprs - the list of values passed to the __builtin_shufflevector
2179  // function. The first two are vectors, and the rest are constant
2180  // indices.  The number of values in this list is always
2181  // 2+the number of indices in the vector type.
2182  Stmt **SubExprs;
2183  unsigned NumExprs;
2184
2185protected:
2186  virtual void DoDestroy(ASTContext &C);
2187
2188public:
2189  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2190  // to be computed differently?
2191  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2192                    QualType Type, SourceLocation BLoc,
2193                    SourceLocation RP) :
2194    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2195    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2196
2197    SubExprs = new (C) Stmt*[nexpr];
2198    for (unsigned i = 0; i < nexpr; i++)
2199      SubExprs[i] = args[i];
2200  }
2201
2202  /// \brief Build an empty vector-shuffle expression.
2203  explicit ShuffleVectorExpr(EmptyShell Empty)
2204    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2205
2206  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2207  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2208
2209  SourceLocation getRParenLoc() const { return RParenLoc; }
2210  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2211
2212  virtual SourceRange getSourceRange() const {
2213    return SourceRange(BuiltinLoc, RParenLoc);
2214  }
2215  static bool classof(const Stmt *T) {
2216    return T->getStmtClass() == ShuffleVectorExprClass;
2217  }
2218  static bool classof(const ShuffleVectorExpr *) { return true; }
2219
2220  ~ShuffleVectorExpr() {}
2221
2222  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2223  /// constant expression, the actual arguments passed in, and the function
2224  /// pointers.
2225  unsigned getNumSubExprs() const { return NumExprs; }
2226
2227  /// getExpr - Return the Expr at the specified index.
2228  Expr *getExpr(unsigned Index) {
2229    assert((Index < NumExprs) && "Arg access out of range!");
2230    return cast<Expr>(SubExprs[Index]);
2231  }
2232  const Expr *getExpr(unsigned Index) const {
2233    assert((Index < NumExprs) && "Arg access out of range!");
2234    return cast<Expr>(SubExprs[Index]);
2235  }
2236
2237  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2238
2239  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2240    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2241    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2242  }
2243
2244  // Iterators
2245  virtual child_iterator child_begin();
2246  virtual child_iterator child_end();
2247};
2248
2249/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2250/// This AST node is similar to the conditional operator (?:) in C, with
2251/// the following exceptions:
2252/// - the test expression must be a integer constant expression.
2253/// - the expression returned acts like the chosen subexpression in every
2254///   visible way: the type is the same as that of the chosen subexpression,
2255///   and all predicates (whether it's an l-value, whether it's an integer
2256///   constant expression, etc.) return the same result as for the chosen
2257///   sub-expression.
2258class ChooseExpr : public Expr {
2259  enum { COND, LHS, RHS, END_EXPR };
2260  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2261  SourceLocation BuiltinLoc, RParenLoc;
2262public:
2263  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2264             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2265    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2266      BuiltinLoc(BLoc), RParenLoc(RP) {
2267      SubExprs[COND] = cond;
2268      SubExprs[LHS] = lhs;
2269      SubExprs[RHS] = rhs;
2270    }
2271
2272  /// \brief Build an empty __builtin_choose_expr.
2273  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2274
2275  /// isConditionTrue - Return whether the condition is true (i.e. not
2276  /// equal to zero).
2277  bool isConditionTrue(ASTContext &C) const;
2278
2279  /// getChosenSubExpr - Return the subexpression chosen according to the
2280  /// condition.
2281  Expr *getChosenSubExpr(ASTContext &C) const {
2282    return isConditionTrue(C) ? getLHS() : getRHS();
2283  }
2284
2285  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2286  void setCond(Expr *E) { SubExprs[COND] = E; }
2287  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2288  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2289  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2290  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2291
2292  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2293  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2294
2295  SourceLocation getRParenLoc() const { return RParenLoc; }
2296  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2297
2298  virtual SourceRange getSourceRange() const {
2299    return SourceRange(BuiltinLoc, RParenLoc);
2300  }
2301  static bool classof(const Stmt *T) {
2302    return T->getStmtClass() == ChooseExprClass;
2303  }
2304  static bool classof(const ChooseExpr *) { return true; }
2305
2306  // Iterators
2307  virtual child_iterator child_begin();
2308  virtual child_iterator child_end();
2309};
2310
2311/// GNUNullExpr - Implements the GNU __null extension, which is a name
2312/// for a null pointer constant that has integral type (e.g., int or
2313/// long) and is the same size and alignment as a pointer. The __null
2314/// extension is typically only used by system headers, which define
2315/// NULL as __null in C++ rather than using 0 (which is an integer
2316/// that may not match the size of a pointer).
2317class GNUNullExpr : public Expr {
2318  /// TokenLoc - The location of the __null keyword.
2319  SourceLocation TokenLoc;
2320
2321public:
2322  GNUNullExpr(QualType Ty, SourceLocation Loc)
2323    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2324
2325  /// \brief Build an empty GNU __null expression.
2326  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2327
2328  /// getTokenLocation - The location of the __null token.
2329  SourceLocation getTokenLocation() const { return TokenLoc; }
2330  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2331
2332  virtual SourceRange getSourceRange() const {
2333    return SourceRange(TokenLoc);
2334  }
2335  static bool classof(const Stmt *T) {
2336    return T->getStmtClass() == GNUNullExprClass;
2337  }
2338  static bool classof(const GNUNullExpr *) { return true; }
2339
2340  // Iterators
2341  virtual child_iterator child_begin();
2342  virtual child_iterator child_end();
2343};
2344
2345/// VAArgExpr, used for the builtin function __builtin_va_start.
2346class VAArgExpr : public Expr {
2347  Stmt *Val;
2348  SourceLocation BuiltinLoc, RParenLoc;
2349public:
2350  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2351    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2352      Val(e),
2353      BuiltinLoc(BLoc),
2354      RParenLoc(RPLoc) { }
2355
2356  /// \brief Create an empty __builtin_va_start expression.
2357  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2358
2359  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2360  Expr *getSubExpr() { return cast<Expr>(Val); }
2361  void setSubExpr(Expr *E) { Val = E; }
2362
2363  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2364  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2365
2366  SourceLocation getRParenLoc() const { return RParenLoc; }
2367  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2368
2369  virtual SourceRange getSourceRange() const {
2370    return SourceRange(BuiltinLoc, RParenLoc);
2371  }
2372  static bool classof(const Stmt *T) {
2373    return T->getStmtClass() == VAArgExprClass;
2374  }
2375  static bool classof(const VAArgExpr *) { return true; }
2376
2377  // Iterators
2378  virtual child_iterator child_begin();
2379  virtual child_iterator child_end();
2380};
2381
2382/// @brief Describes an C or C++ initializer list.
2383///
2384/// InitListExpr describes an initializer list, which can be used to
2385/// initialize objects of different types, including
2386/// struct/class/union types, arrays, and vectors. For example:
2387///
2388/// @code
2389/// struct foo x = { 1, { 2, 3 } };
2390/// @endcode
2391///
2392/// Prior to semantic analysis, an initializer list will represent the
2393/// initializer list as written by the user, but will have the
2394/// placeholder type "void". This initializer list is called the
2395/// syntactic form of the initializer, and may contain C99 designated
2396/// initializers (represented as DesignatedInitExprs), initializations
2397/// of subobject members without explicit braces, and so on. Clients
2398/// interested in the original syntax of the initializer list should
2399/// use the syntactic form of the initializer list.
2400///
2401/// After semantic analysis, the initializer list will represent the
2402/// semantic form of the initializer, where the initializations of all
2403/// subobjects are made explicit with nested InitListExpr nodes and
2404/// C99 designators have been eliminated by placing the designated
2405/// initializations into the subobject they initialize. Additionally,
2406/// any "holes" in the initialization, where no initializer has been
2407/// specified for a particular subobject, will be replaced with
2408/// implicitly-generated ImplicitValueInitExpr expressions that
2409/// value-initialize the subobjects. Note, however, that the
2410/// initializer lists may still have fewer initializers than there are
2411/// elements to initialize within the object.
2412///
2413/// Given the semantic form of the initializer list, one can retrieve
2414/// the original syntactic form of that initializer list (if it
2415/// exists) using getSyntacticForm(). Since many initializer lists
2416/// have the same syntactic and semantic forms, getSyntacticForm() may
2417/// return NULL, indicating that the current initializer list also
2418/// serves as its syntactic form.
2419class InitListExpr : public Expr {
2420  // FIXME: Eliminate this vector in favor of ASTContext allocation
2421  std::vector<Stmt *> InitExprs;
2422  SourceLocation LBraceLoc, RBraceLoc;
2423
2424  /// Contains the initializer list that describes the syntactic form
2425  /// written in the source code.
2426  InitListExpr *SyntacticForm;
2427
2428  /// If this initializer list initializes a union, specifies which
2429  /// field within the union will be initialized.
2430  FieldDecl *UnionFieldInit;
2431
2432  /// Whether this initializer list originally had a GNU array-range
2433  /// designator in it. This is a temporary marker used by CodeGen.
2434  bool HadArrayRangeDesignator;
2435
2436public:
2437  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2438               SourceLocation rbraceloc);
2439
2440  /// \brief Build an empty initializer list.
2441  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2442
2443  unsigned getNumInits() const { return InitExprs.size(); }
2444
2445  const Expr* getInit(unsigned Init) const {
2446    assert(Init < getNumInits() && "Initializer access out of range!");
2447    return cast_or_null<Expr>(InitExprs[Init]);
2448  }
2449
2450  Expr* getInit(unsigned Init) {
2451    assert(Init < getNumInits() && "Initializer access out of range!");
2452    return cast_or_null<Expr>(InitExprs[Init]);
2453  }
2454
2455  void setInit(unsigned Init, Expr *expr) {
2456    assert(Init < getNumInits() && "Initializer access out of range!");
2457    InitExprs[Init] = expr;
2458  }
2459
2460  /// \brief Reserve space for some number of initializers.
2461  void reserveInits(unsigned NumInits);
2462
2463  /// @brief Specify the number of initializers
2464  ///
2465  /// If there are more than @p NumInits initializers, the remaining
2466  /// initializers will be destroyed. If there are fewer than @p
2467  /// NumInits initializers, NULL expressions will be added for the
2468  /// unknown initializers.
2469  void resizeInits(ASTContext &Context, unsigned NumInits);
2470
2471  /// @brief Updates the initializer at index @p Init with the new
2472  /// expression @p expr, and returns the old expression at that
2473  /// location.
2474  ///
2475  /// When @p Init is out of range for this initializer list, the
2476  /// initializer list will be extended with NULL expressions to
2477  /// accomodate the new entry.
2478  Expr *updateInit(unsigned Init, Expr *expr);
2479
2480  /// \brief If this initializes a union, specifies which field in the
2481  /// union to initialize.
2482  ///
2483  /// Typically, this field is the first named field within the
2484  /// union. However, a designated initializer can specify the
2485  /// initialization of a different field within the union.
2486  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2487  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2488
2489  // Explicit InitListExpr's originate from source code (and have valid source
2490  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2491  bool isExplicit() {
2492    return LBraceLoc.isValid() && RBraceLoc.isValid();
2493  }
2494
2495  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2496  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2497  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2498  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2499
2500  /// @brief Retrieve the initializer list that describes the
2501  /// syntactic form of the initializer.
2502  ///
2503  ///
2504  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2505  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2506
2507  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2508  void sawArrayRangeDesignator(bool ARD = true) {
2509    HadArrayRangeDesignator = ARD;
2510  }
2511
2512  virtual SourceRange getSourceRange() const {
2513    return SourceRange(LBraceLoc, RBraceLoc);
2514  }
2515  static bool classof(const Stmt *T) {
2516    return T->getStmtClass() == InitListExprClass;
2517  }
2518  static bool classof(const InitListExpr *) { return true; }
2519
2520  // Iterators
2521  virtual child_iterator child_begin();
2522  virtual child_iterator child_end();
2523
2524  typedef std::vector<Stmt *>::iterator iterator;
2525  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2526
2527  iterator begin() { return InitExprs.begin(); }
2528  iterator end() { return InitExprs.end(); }
2529  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2530  reverse_iterator rend() { return InitExprs.rend(); }
2531};
2532
2533/// @brief Represents a C99 designated initializer expression.
2534///
2535/// A designated initializer expression (C99 6.7.8) contains one or
2536/// more designators (which can be field designators, array
2537/// designators, or GNU array-range designators) followed by an
2538/// expression that initializes the field or element(s) that the
2539/// designators refer to. For example, given:
2540///
2541/// @code
2542/// struct point {
2543///   double x;
2544///   double y;
2545/// };
2546/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2547/// @endcode
2548///
2549/// The InitListExpr contains three DesignatedInitExprs, the first of
2550/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2551/// designators, one array designator for @c [2] followed by one field
2552/// designator for @c .y. The initalization expression will be 1.0.
2553class DesignatedInitExpr : public Expr {
2554public:
2555  /// \brief Forward declaration of the Designator class.
2556  class Designator;
2557
2558private:
2559  /// The location of the '=' or ':' prior to the actual initializer
2560  /// expression.
2561  SourceLocation EqualOrColonLoc;
2562
2563  /// Whether this designated initializer used the GNU deprecated
2564  /// syntax rather than the C99 '=' syntax.
2565  bool GNUSyntax : 1;
2566
2567  /// The number of designators in this initializer expression.
2568  unsigned NumDesignators : 15;
2569
2570  /// \brief The designators in this designated initialization
2571  /// expression.
2572  Designator *Designators;
2573
2574  /// The number of subexpressions of this initializer expression,
2575  /// which contains both the initializer and any additional
2576  /// expressions used by array and array-range designators.
2577  unsigned NumSubExprs : 16;
2578
2579
2580  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2581                     const Designator *Designators,
2582                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2583                     Expr **IndexExprs, unsigned NumIndexExprs,
2584                     Expr *Init);
2585
2586  explicit DesignatedInitExpr(unsigned NumSubExprs)
2587    : Expr(DesignatedInitExprClass, EmptyShell()),
2588      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2589
2590protected:
2591  virtual void DoDestroy(ASTContext &C);
2592
2593  void DestroyDesignators(ASTContext &C);
2594
2595public:
2596  /// A field designator, e.g., ".x".
2597  struct FieldDesignator {
2598    /// Refers to the field that is being initialized. The low bit
2599    /// of this field determines whether this is actually a pointer
2600    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2601    /// initially constructed, a field designator will store an
2602    /// IdentifierInfo*. After semantic analysis has resolved that
2603    /// name, the field designator will instead store a FieldDecl*.
2604    uintptr_t NameOrField;
2605
2606    /// The location of the '.' in the designated initializer.
2607    unsigned DotLoc;
2608
2609    /// The location of the field name in the designated initializer.
2610    unsigned FieldLoc;
2611  };
2612
2613  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2614  struct ArrayOrRangeDesignator {
2615    /// Location of the first index expression within the designated
2616    /// initializer expression's list of subexpressions.
2617    unsigned Index;
2618    /// The location of the '[' starting the array range designator.
2619    unsigned LBracketLoc;
2620    /// The location of the ellipsis separating the start and end
2621    /// indices. Only valid for GNU array-range designators.
2622    unsigned EllipsisLoc;
2623    /// The location of the ']' terminating the array range designator.
2624    unsigned RBracketLoc;
2625  };
2626
2627  /// @brief Represents a single C99 designator.
2628  ///
2629  /// @todo This class is infuriatingly similar to clang::Designator,
2630  /// but minor differences (storing indices vs. storing pointers)
2631  /// keep us from reusing it. Try harder, later, to rectify these
2632  /// differences.
2633  class Designator {
2634    /// @brief The kind of designator this describes.
2635    enum {
2636      FieldDesignator,
2637      ArrayDesignator,
2638      ArrayRangeDesignator
2639    } Kind;
2640
2641    union {
2642      /// A field designator, e.g., ".x".
2643      struct FieldDesignator Field;
2644      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2645      struct ArrayOrRangeDesignator ArrayOrRange;
2646    };
2647    friend class DesignatedInitExpr;
2648
2649  public:
2650    Designator() {}
2651
2652    /// @brief Initializes a field designator.
2653    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2654               SourceLocation FieldLoc)
2655      : Kind(FieldDesignator) {
2656      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2657      Field.DotLoc = DotLoc.getRawEncoding();
2658      Field.FieldLoc = FieldLoc.getRawEncoding();
2659    }
2660
2661    /// @brief Initializes an array designator.
2662    Designator(unsigned Index, SourceLocation LBracketLoc,
2663               SourceLocation RBracketLoc)
2664      : Kind(ArrayDesignator) {
2665      ArrayOrRange.Index = Index;
2666      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2667      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2668      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2669    }
2670
2671    /// @brief Initializes a GNU array-range designator.
2672    Designator(unsigned Index, SourceLocation LBracketLoc,
2673               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2674      : Kind(ArrayRangeDesignator) {
2675      ArrayOrRange.Index = Index;
2676      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2677      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2678      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2679    }
2680
2681    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2682    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2683    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2684
2685    IdentifierInfo * getFieldName();
2686
2687    FieldDecl *getField() {
2688      assert(Kind == FieldDesignator && "Only valid on a field designator");
2689      if (Field.NameOrField & 0x01)
2690        return 0;
2691      else
2692        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2693    }
2694
2695    void setField(FieldDecl *FD) {
2696      assert(Kind == FieldDesignator && "Only valid on a field designator");
2697      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2698    }
2699
2700    SourceLocation getDotLoc() const {
2701      assert(Kind == FieldDesignator && "Only valid on a field designator");
2702      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2703    }
2704
2705    SourceLocation getFieldLoc() const {
2706      assert(Kind == FieldDesignator && "Only valid on a field designator");
2707      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2708    }
2709
2710    SourceLocation getLBracketLoc() const {
2711      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2712             "Only valid on an array or array-range designator");
2713      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2714    }
2715
2716    SourceLocation getRBracketLoc() const {
2717      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2718             "Only valid on an array or array-range designator");
2719      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2720    }
2721
2722    SourceLocation getEllipsisLoc() const {
2723      assert(Kind == ArrayRangeDesignator &&
2724             "Only valid on an array-range designator");
2725      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2726    }
2727
2728    unsigned getFirstExprIndex() const {
2729      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2730             "Only valid on an array or array-range designator");
2731      return ArrayOrRange.Index;
2732    }
2733
2734    SourceLocation getStartLocation() const {
2735      if (Kind == FieldDesignator)
2736        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2737      else
2738        return getLBracketLoc();
2739    }
2740  };
2741
2742  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2743                                    unsigned NumDesignators,
2744                                    Expr **IndexExprs, unsigned NumIndexExprs,
2745                                    SourceLocation EqualOrColonLoc,
2746                                    bool GNUSyntax, Expr *Init);
2747
2748  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2749
2750  /// @brief Returns the number of designators in this initializer.
2751  unsigned size() const { return NumDesignators; }
2752
2753  // Iterator access to the designators.
2754  typedef Designator* designators_iterator;
2755  designators_iterator designators_begin() { return Designators; }
2756  designators_iterator designators_end() {
2757    return Designators + NumDesignators;
2758  }
2759
2760  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2761
2762  void setDesignators(ASTContext &C, const Designator *Desigs,
2763                      unsigned NumDesigs);
2764
2765  Expr *getArrayIndex(const Designator& D);
2766  Expr *getArrayRangeStart(const Designator& D);
2767  Expr *getArrayRangeEnd(const Designator& D);
2768
2769  /// @brief Retrieve the location of the '=' that precedes the
2770  /// initializer value itself, if present.
2771  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2772  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2773
2774  /// @brief Determines whether this designated initializer used the
2775  /// deprecated GNU syntax for designated initializers.
2776  bool usesGNUSyntax() const { return GNUSyntax; }
2777  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2778
2779  /// @brief Retrieve the initializer value.
2780  Expr *getInit() const {
2781    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2782  }
2783
2784  void setInit(Expr *init) {
2785    *child_begin() = init;
2786  }
2787
2788  /// \brief Retrieve the total number of subexpressions in this
2789  /// designated initializer expression, including the actual
2790  /// initialized value and any expressions that occur within array
2791  /// and array-range designators.
2792  unsigned getNumSubExprs() const { return NumSubExprs; }
2793
2794  Expr *getSubExpr(unsigned Idx) {
2795    assert(Idx < NumSubExprs && "Subscript out of range");
2796    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2797    Ptr += sizeof(DesignatedInitExpr);
2798    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2799  }
2800
2801  void setSubExpr(unsigned Idx, Expr *E) {
2802    assert(Idx < NumSubExprs && "Subscript out of range");
2803    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2804    Ptr += sizeof(DesignatedInitExpr);
2805    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2806  }
2807
2808  /// \brief Replaces the designator at index @p Idx with the series
2809  /// of designators in [First, Last).
2810  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
2811                        const Designator *Last);
2812
2813  virtual SourceRange getSourceRange() const;
2814
2815  static bool classof(const Stmt *T) {
2816    return T->getStmtClass() == DesignatedInitExprClass;
2817  }
2818  static bool classof(const DesignatedInitExpr *) { return true; }
2819
2820  // Iterators
2821  virtual child_iterator child_begin();
2822  virtual child_iterator child_end();
2823};
2824
2825/// \brief Represents an implicitly-generated value initialization of
2826/// an object of a given type.
2827///
2828/// Implicit value initializations occur within semantic initializer
2829/// list expressions (InitListExpr) as placeholders for subobject
2830/// initializations not explicitly specified by the user.
2831///
2832/// \see InitListExpr
2833class ImplicitValueInitExpr : public Expr {
2834public:
2835  explicit ImplicitValueInitExpr(QualType ty)
2836    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
2837
2838  /// \brief Construct an empty implicit value initialization.
2839  explicit ImplicitValueInitExpr(EmptyShell Empty)
2840    : Expr(ImplicitValueInitExprClass, Empty) { }
2841
2842  static bool classof(const Stmt *T) {
2843    return T->getStmtClass() == ImplicitValueInitExprClass;
2844  }
2845  static bool classof(const ImplicitValueInitExpr *) { return true; }
2846
2847  virtual SourceRange getSourceRange() const {
2848    return SourceRange();
2849  }
2850
2851  // Iterators
2852  virtual child_iterator child_begin();
2853  virtual child_iterator child_end();
2854};
2855
2856
2857class ParenListExpr : public Expr {
2858  Stmt **Exprs;
2859  unsigned NumExprs;
2860  SourceLocation LParenLoc, RParenLoc;
2861
2862protected:
2863  virtual void DoDestroy(ASTContext& C);
2864
2865public:
2866  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2867                unsigned numexprs, SourceLocation rparenloc);
2868
2869  ~ParenListExpr() {}
2870
2871  /// \brief Build an empty paren list.
2872  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2873
2874  unsigned getNumExprs() const { return NumExprs; }
2875
2876  const Expr* getExpr(unsigned Init) const {
2877    assert(Init < getNumExprs() && "Initializer access out of range!");
2878    return cast_or_null<Expr>(Exprs[Init]);
2879  }
2880
2881  Expr* getExpr(unsigned Init) {
2882    assert(Init < getNumExprs() && "Initializer access out of range!");
2883    return cast_or_null<Expr>(Exprs[Init]);
2884  }
2885
2886  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2887
2888  SourceLocation getLParenLoc() const { return LParenLoc; }
2889  SourceLocation getRParenLoc() const { return RParenLoc; }
2890
2891  virtual SourceRange getSourceRange() const {
2892    return SourceRange(LParenLoc, RParenLoc);
2893  }
2894  static bool classof(const Stmt *T) {
2895    return T->getStmtClass() == ParenListExprClass;
2896  }
2897  static bool classof(const ParenListExpr *) { return true; }
2898
2899  // Iterators
2900  virtual child_iterator child_begin();
2901  virtual child_iterator child_end();
2902};
2903
2904
2905//===----------------------------------------------------------------------===//
2906// Clang Extensions
2907//===----------------------------------------------------------------------===//
2908
2909
2910/// ExtVectorElementExpr - This represents access to specific elements of a
2911/// vector, and may occur on the left hand side or right hand side.  For example
2912/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2913///
2914/// Note that the base may have either vector or pointer to vector type, just
2915/// like a struct field reference.
2916///
2917class ExtVectorElementExpr : public Expr {
2918  Stmt *Base;
2919  IdentifierInfo *Accessor;
2920  SourceLocation AccessorLoc;
2921public:
2922  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2923                       SourceLocation loc)
2924    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
2925           base->isValueDependent()),
2926      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2927
2928  /// \brief Build an empty vector element expression.
2929  explicit ExtVectorElementExpr(EmptyShell Empty)
2930    : Expr(ExtVectorElementExprClass, Empty) { }
2931
2932  const Expr *getBase() const { return cast<Expr>(Base); }
2933  Expr *getBase() { return cast<Expr>(Base); }
2934  void setBase(Expr *E) { Base = E; }
2935
2936  IdentifierInfo &getAccessor() const { return *Accessor; }
2937  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2938
2939  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2940  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2941
2942  /// getNumElements - Get the number of components being selected.
2943  unsigned getNumElements() const;
2944
2945  /// containsDuplicateElements - Return true if any element access is
2946  /// repeated.
2947  bool containsDuplicateElements() const;
2948
2949  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2950  /// aggregate Constant of ConstantInt(s).
2951  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2952
2953  virtual SourceRange getSourceRange() const {
2954    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2955  }
2956
2957  /// isArrow - Return true if the base expression is a pointer to vector,
2958  /// return false if the base expression is a vector.
2959  bool isArrow() const;
2960
2961  static bool classof(const Stmt *T) {
2962    return T->getStmtClass() == ExtVectorElementExprClass;
2963  }
2964  static bool classof(const ExtVectorElementExpr *) { return true; }
2965
2966  // Iterators
2967  virtual child_iterator child_begin();
2968  virtual child_iterator child_end();
2969};
2970
2971
2972/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2973/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2974class BlockExpr : public Expr {
2975protected:
2976  BlockDecl *TheBlock;
2977  bool HasBlockDeclRefExprs;
2978public:
2979  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2980    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
2981      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2982
2983  /// \brief Build an empty block expression.
2984  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2985
2986  const BlockDecl *getBlockDecl() const { return TheBlock; }
2987  BlockDecl *getBlockDecl() { return TheBlock; }
2988  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2989
2990  // Convenience functions for probing the underlying BlockDecl.
2991  SourceLocation getCaretLocation() const;
2992  const Stmt *getBody() const;
2993  Stmt *getBody();
2994
2995  virtual SourceRange getSourceRange() const {
2996    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2997  }
2998
2999  /// getFunctionType - Return the underlying function type for this block.
3000  const FunctionType *getFunctionType() const;
3001
3002  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3003  /// inside of the block that reference values outside the block.
3004  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3005  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3006
3007  static bool classof(const Stmt *T) {
3008    return T->getStmtClass() == BlockExprClass;
3009  }
3010  static bool classof(const BlockExpr *) { return true; }
3011
3012  // Iterators
3013  virtual child_iterator child_begin();
3014  virtual child_iterator child_end();
3015};
3016
3017/// BlockDeclRefExpr - A reference to a declared variable, function,
3018/// enum, etc.
3019class BlockDeclRefExpr : public Expr {
3020  ValueDecl *D;
3021  SourceLocation Loc;
3022  bool IsByRef : 1;
3023  bool ConstQualAdded : 1;
3024public:
3025  // FIXME: Fix type/value dependence!
3026  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3027                   bool constAdded = false)
3028  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3029    ConstQualAdded(constAdded) {}
3030
3031  // \brief Build an empty reference to a declared variable in a
3032  // block.
3033  explicit BlockDeclRefExpr(EmptyShell Empty)
3034    : Expr(BlockDeclRefExprClass, Empty) { }
3035
3036  ValueDecl *getDecl() { return D; }
3037  const ValueDecl *getDecl() const { return D; }
3038  void setDecl(ValueDecl *VD) { D = VD; }
3039
3040  SourceLocation getLocation() const { return Loc; }
3041  void setLocation(SourceLocation L) { Loc = L; }
3042
3043  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3044
3045  bool isByRef() const { return IsByRef; }
3046  void setByRef(bool BR) { IsByRef = BR; }
3047
3048  bool isConstQualAdded() const { return ConstQualAdded; }
3049  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3050
3051  static bool classof(const Stmt *T) {
3052    return T->getStmtClass() == BlockDeclRefExprClass;
3053  }
3054  static bool classof(const BlockDeclRefExpr *) { return true; }
3055
3056  // Iterators
3057  virtual child_iterator child_begin();
3058  virtual child_iterator child_end();
3059};
3060
3061}  // end namespace clang
3062
3063#endif
3064