Expr.h revision 9852f58f50b4fc20914fbce5b4454135a42343f4
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/Stmt.h"
20#include "clang/AST/Type.h"
21#include "clang/AST/DeclAccessPair.h"
22#include "clang/AST/OperationKinds.h"
23#include "clang/AST/ASTVector.h"
24#include "clang/AST/TemplateBase.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Support/Compiler.h"
31#include <cctype>
32
33namespace clang {
34  class APValue;
35  class ASTContext;
36  class BlockDecl;
37  class CXXBaseSpecifier;
38  class CXXMemberCallExpr;
39  class CXXOperatorCallExpr;
40  class CastExpr;
41  class Decl;
42  class IdentifierInfo;
43  class MaterializeTemporaryExpr;
44  class NamedDecl;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47  class ParmVarDecl;
48  class TargetInfo;
49  class ValueDecl;
50
51/// \brief A simple array of base specifiers.
52typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
53
54/// \brief An adjustment to be made to the temporary created when emitting a
55/// reference binding, which accesses a particular subobject of that temporary.
56struct SubobjectAdjustment {
57  enum {
58    DerivedToBaseAdjustment,
59    FieldAdjustment,
60    MemberPointerAdjustment
61  } Kind;
62
63   union {
64    struct {
65      const CastExpr *BasePath;
66      const CXXRecordDecl *DerivedClass;
67    } DerivedToBase;
68
69    FieldDecl *Field;
70
71    struct {
72      const MemberPointerType *MPT;
73      Expr *RHS;
74    } Ptr;
75  };
76
77  SubobjectAdjustment(const CastExpr *BasePath,
78                      const CXXRecordDecl *DerivedClass)
79    : Kind(DerivedToBaseAdjustment) {
80    DerivedToBase.BasePath = BasePath;
81    DerivedToBase.DerivedClass = DerivedClass;
82  }
83
84  SubobjectAdjustment(FieldDecl *Field)
85    : Kind(FieldAdjustment) {
86    this->Field = Field;
87  }
88
89  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
90    : Kind(MemberPointerAdjustment) {
91    this->Ptr.MPT = MPT;
92    this->Ptr.RHS = RHS;
93  }
94};
95
96/// Expr - This represents one expression.  Note that Expr's are subclasses of
97/// Stmt.  This allows an expression to be transparently used any place a Stmt
98/// is required.
99///
100class Expr : public Stmt {
101  QualType TR;
102
103protected:
104  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
105       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
106    : Stmt(SC)
107  {
108    ExprBits.TypeDependent = TD;
109    ExprBits.ValueDependent = VD;
110    ExprBits.InstantiationDependent = ID;
111    ExprBits.ValueKind = VK;
112    ExprBits.ObjectKind = OK;
113    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
114    setType(T);
115  }
116
117  /// \brief Construct an empty expression.
118  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
119
120public:
121  QualType getType() const { return TR; }
122  void setType(QualType t) {
123    // In C++, the type of an expression is always adjusted so that it
124    // will not have reference type an expression will never have
125    // reference type (C++ [expr]p6). Use
126    // QualType::getNonReferenceType() to retrieve the non-reference
127    // type. Additionally, inspect Expr::isLvalue to determine whether
128    // an expression that is adjusted in this manner should be
129    // considered an lvalue.
130    assert((t.isNull() || !t->isReferenceType()) &&
131           "Expressions can't have reference type");
132
133    TR = t;
134  }
135
136  /// isValueDependent - Determines whether this expression is
137  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
138  /// array bound of "Chars" in the following example is
139  /// value-dependent.
140  /// @code
141  /// template<int Size, char (&Chars)[Size]> struct meta_string;
142  /// @endcode
143  bool isValueDependent() const { return ExprBits.ValueDependent; }
144
145  /// \brief Set whether this expression is value-dependent or not.
146  void setValueDependent(bool VD) {
147    ExprBits.ValueDependent = VD;
148    if (VD)
149      ExprBits.InstantiationDependent = true;
150  }
151
152  /// isTypeDependent - Determines whether this expression is
153  /// type-dependent (C++ [temp.dep.expr]), which means that its type
154  /// could change from one template instantiation to the next. For
155  /// example, the expressions "x" and "x + y" are type-dependent in
156  /// the following code, but "y" is not type-dependent:
157  /// @code
158  /// template<typename T>
159  /// void add(T x, int y) {
160  ///   x + y;
161  /// }
162  /// @endcode
163  bool isTypeDependent() const { return ExprBits.TypeDependent; }
164
165  /// \brief Set whether this expression is type-dependent or not.
166  void setTypeDependent(bool TD) {
167    ExprBits.TypeDependent = TD;
168    if (TD)
169      ExprBits.InstantiationDependent = true;
170  }
171
172  /// \brief Whether this expression is instantiation-dependent, meaning that
173  /// it depends in some way on a template parameter, even if neither its type
174  /// nor (constant) value can change due to the template instantiation.
175  ///
176  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
177  /// instantiation-dependent (since it involves a template parameter \c T), but
178  /// is neither type- nor value-dependent, since the type of the inner
179  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
180  /// \c sizeof is known.
181  ///
182  /// \code
183  /// template<typename T>
184  /// void f(T x, T y) {
185  ///   sizeof(sizeof(T() + T());
186  /// }
187  /// \endcode
188  ///
189  bool isInstantiationDependent() const {
190    return ExprBits.InstantiationDependent;
191  }
192
193  /// \brief Set whether this expression is instantiation-dependent or not.
194  void setInstantiationDependent(bool ID) {
195    ExprBits.InstantiationDependent = ID;
196  }
197
198  /// \brief Whether this expression contains an unexpanded parameter
199  /// pack (for C++0x variadic templates).
200  ///
201  /// Given the following function template:
202  ///
203  /// \code
204  /// template<typename F, typename ...Types>
205  /// void forward(const F &f, Types &&...args) {
206  ///   f(static_cast<Types&&>(args)...);
207  /// }
208  /// \endcode
209  ///
210  /// The expressions \c args and \c static_cast<Types&&>(args) both
211  /// contain parameter packs.
212  bool containsUnexpandedParameterPack() const {
213    return ExprBits.ContainsUnexpandedParameterPack;
214  }
215
216  /// \brief Set the bit that describes whether this expression
217  /// contains an unexpanded parameter pack.
218  void setContainsUnexpandedParameterPack(bool PP = true) {
219    ExprBits.ContainsUnexpandedParameterPack = PP;
220  }
221
222  /// getExprLoc - Return the preferred location for the arrow when diagnosing
223  /// a problem with a generic expression.
224  SourceLocation getExprLoc() const LLVM_READONLY;
225
226  /// isUnusedResultAWarning - Return true if this immediate expression should
227  /// be warned about if the result is unused.  If so, fill in expr, location,
228  /// and ranges with expr to warn on and source locations/ranges appropriate
229  /// for a warning.
230  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
231                              SourceRange &R1, SourceRange &R2,
232                              ASTContext &Ctx) const;
233
234  /// isLValue - True if this expression is an "l-value" according to
235  /// the rules of the current language.  C and C++ give somewhat
236  /// different rules for this concept, but in general, the result of
237  /// an l-value expression identifies a specific object whereas the
238  /// result of an r-value expression is a value detached from any
239  /// specific storage.
240  ///
241  /// C++0x divides the concept of "r-value" into pure r-values
242  /// ("pr-values") and so-called expiring values ("x-values"), which
243  /// identify specific objects that can be safely cannibalized for
244  /// their resources.  This is an unfortunate abuse of terminology on
245  /// the part of the C++ committee.  In Clang, when we say "r-value",
246  /// we generally mean a pr-value.
247  bool isLValue() const { return getValueKind() == VK_LValue; }
248  bool isRValue() const { return getValueKind() == VK_RValue; }
249  bool isXValue() const { return getValueKind() == VK_XValue; }
250  bool isGLValue() const { return getValueKind() != VK_RValue; }
251
252  enum LValueClassification {
253    LV_Valid,
254    LV_NotObjectType,
255    LV_IncompleteVoidType,
256    LV_DuplicateVectorComponents,
257    LV_InvalidExpression,
258    LV_InvalidMessageExpression,
259    LV_MemberFunction,
260    LV_SubObjCPropertySetting,
261    LV_ClassTemporary,
262    LV_ArrayTemporary
263  };
264  /// Reasons why an expression might not be an l-value.
265  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
266
267  enum isModifiableLvalueResult {
268    MLV_Valid,
269    MLV_NotObjectType,
270    MLV_IncompleteVoidType,
271    MLV_DuplicateVectorComponents,
272    MLV_InvalidExpression,
273    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
274    MLV_IncompleteType,
275    MLV_ConstQualified,
276    MLV_ArrayType,
277    MLV_ReadonlyProperty,
278    MLV_NoSetterProperty,
279    MLV_MemberFunction,
280    MLV_SubObjCPropertySetting,
281    MLV_InvalidMessageExpression,
282    MLV_ClassTemporary,
283    MLV_ArrayTemporary
284  };
285  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
286  /// does not have an incomplete type, does not have a const-qualified type,
287  /// and if it is a structure or union, does not have any member (including,
288  /// recursively, any member or element of all contained aggregates or unions)
289  /// with a const-qualified type.
290  ///
291  /// \param Loc [in,out] - A source location which *may* be filled
292  /// in with the location of the expression making this a
293  /// non-modifiable lvalue, if specified.
294  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
295                                              SourceLocation *Loc = 0) const;
296
297  /// \brief The return type of classify(). Represents the C++0x expression
298  ///        taxonomy.
299  class Classification {
300  public:
301    /// \brief The various classification results. Most of these mean prvalue.
302    enum Kinds {
303      CL_LValue,
304      CL_XValue,
305      CL_Function, // Functions cannot be lvalues in C.
306      CL_Void, // Void cannot be an lvalue in C.
307      CL_AddressableVoid, // Void expression whose address can be taken in C.
308      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
309      CL_MemberFunction, // An expression referring to a member function
310      CL_SubObjCPropertySetting,
311      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
312      CL_ArrayTemporary, // A temporary of array type.
313      CL_ObjCMessageRValue, // ObjC message is an rvalue
314      CL_PRValue // A prvalue for any other reason, of any other type
315    };
316    /// \brief The results of modification testing.
317    enum ModifiableType {
318      CM_Untested, // testModifiable was false.
319      CM_Modifiable,
320      CM_RValue, // Not modifiable because it's an rvalue
321      CM_Function, // Not modifiable because it's a function; C++ only
322      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
323      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
324      CM_ConstQualified,
325      CM_ArrayType,
326      CM_IncompleteType
327    };
328
329  private:
330    friend class Expr;
331
332    unsigned short Kind;
333    unsigned short Modifiable;
334
335    explicit Classification(Kinds k, ModifiableType m)
336      : Kind(k), Modifiable(m)
337    {}
338
339  public:
340    Classification() {}
341
342    Kinds getKind() const { return static_cast<Kinds>(Kind); }
343    ModifiableType getModifiable() const {
344      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
345      return static_cast<ModifiableType>(Modifiable);
346    }
347    bool isLValue() const { return Kind == CL_LValue; }
348    bool isXValue() const { return Kind == CL_XValue; }
349    bool isGLValue() const { return Kind <= CL_XValue; }
350    bool isPRValue() const { return Kind >= CL_Function; }
351    bool isRValue() const { return Kind >= CL_XValue; }
352    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
353
354    /// \brief Create a simple, modifiably lvalue
355    static Classification makeSimpleLValue() {
356      return Classification(CL_LValue, CM_Modifiable);
357    }
358
359  };
360  /// \brief Classify - Classify this expression according to the C++0x
361  ///        expression taxonomy.
362  ///
363  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
364  /// old lvalue vs rvalue. This function determines the type of expression this
365  /// is. There are three expression types:
366  /// - lvalues are classical lvalues as in C++03.
367  /// - prvalues are equivalent to rvalues in C++03.
368  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
369  ///   function returning an rvalue reference.
370  /// lvalues and xvalues are collectively referred to as glvalues, while
371  /// prvalues and xvalues together form rvalues.
372  Classification Classify(ASTContext &Ctx) const {
373    return ClassifyImpl(Ctx, 0);
374  }
375
376  /// \brief ClassifyModifiable - Classify this expression according to the
377  ///        C++0x expression taxonomy, and see if it is valid on the left side
378  ///        of an assignment.
379  ///
380  /// This function extends classify in that it also tests whether the
381  /// expression is modifiable (C99 6.3.2.1p1).
382  /// \param Loc A source location that might be filled with a relevant location
383  ///            if the expression is not modifiable.
384  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
385    return ClassifyImpl(Ctx, &Loc);
386  }
387
388  /// getValueKindForType - Given a formal return or parameter type,
389  /// give its value kind.
390  static ExprValueKind getValueKindForType(QualType T) {
391    if (const ReferenceType *RT = T->getAs<ReferenceType>())
392      return (isa<LValueReferenceType>(RT)
393                ? VK_LValue
394                : (RT->getPointeeType()->isFunctionType()
395                     ? VK_LValue : VK_XValue));
396    return VK_RValue;
397  }
398
399  /// getValueKind - The value kind that this expression produces.
400  ExprValueKind getValueKind() const {
401    return static_cast<ExprValueKind>(ExprBits.ValueKind);
402  }
403
404  /// getObjectKind - The object kind that this expression produces.
405  /// Object kinds are meaningful only for expressions that yield an
406  /// l-value or x-value.
407  ExprObjectKind getObjectKind() const {
408    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
409  }
410
411  bool isOrdinaryOrBitFieldObject() const {
412    ExprObjectKind OK = getObjectKind();
413    return (OK == OK_Ordinary || OK == OK_BitField);
414  }
415
416  /// setValueKind - Set the value kind produced by this expression.
417  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
418
419  /// setObjectKind - Set the object kind produced by this expression.
420  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
421
422private:
423  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
424
425public:
426
427  /// \brief If this expression refers to a bit-field, retrieve the
428  /// declaration of that bit-field.
429  FieldDecl *getBitField();
430
431  const FieldDecl *getBitField() const {
432    return const_cast<Expr*>(this)->getBitField();
433  }
434
435  /// \brief If this expression is an l-value for an Objective C
436  /// property, find the underlying property reference expression.
437  const ObjCPropertyRefExpr *getObjCProperty() const;
438
439  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
440  bool isObjCSelfExpr() const;
441
442  /// \brief Returns whether this expression refers to a vector element.
443  bool refersToVectorElement() const;
444
445  /// \brief Returns whether this expression has a placeholder type.
446  bool hasPlaceholderType() const {
447    return getType()->isPlaceholderType();
448  }
449
450  /// \brief Returns whether this expression has a specific placeholder type.
451  bool hasPlaceholderType(BuiltinType::Kind K) const {
452    assert(BuiltinType::isPlaceholderTypeKind(K));
453    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
454      return BT->getKind() == K;
455    return false;
456  }
457
458  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
459  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
460  /// but also int expressions which are produced by things like comparisons in
461  /// C.
462  bool isKnownToHaveBooleanValue() const;
463
464  /// isIntegerConstantExpr - Return true if this expression is a valid integer
465  /// constant expression, and, if so, return its value in Result.  If not a
466  /// valid i-c-e, return false and fill in Loc (if specified) with the location
467  /// of the invalid expression.
468  ///
469  /// Note: This does not perform the implicit conversions required by C++11
470  /// [expr.const]p5.
471  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
472                             SourceLocation *Loc = 0,
473                             bool isEvaluated = true) const;
474  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
475
476  /// isCXX98IntegralConstantExpr - Return true if this expression is an
477  /// integral constant expression in C++98. Can only be used in C++.
478  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
479
480  /// isCXX11ConstantExpr - Return true if this expression is a constant
481  /// expression in C++11. Can only be used in C++.
482  ///
483  /// Note: This does not perform the implicit conversions required by C++11
484  /// [expr.const]p5.
485  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
486                           SourceLocation *Loc = 0) const;
487
488  /// isPotentialConstantExpr - Return true if this function's definition
489  /// might be usable in a constant expression in C++11, if it were marked
490  /// constexpr. Return false if the function can never produce a constant
491  /// expression, along with diagnostics describing why not.
492  static bool isPotentialConstantExpr(const FunctionDecl *FD,
493                                      llvm::SmallVectorImpl<
494                                        PartialDiagnosticAt> &Diags);
495
496  /// isConstantInitializer - Returns true if this expression can be emitted to
497  /// IR as a constant, and thus can be used as a constant initializer in C.
498  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
499
500  /// EvalStatus is a struct with detailed info about an evaluation in progress.
501  struct EvalStatus {
502    /// HasSideEffects - Whether the evaluated expression has side effects.
503    /// For example, (f() && 0) can be folded, but it still has side effects.
504    bool HasSideEffects;
505
506    /// Diag - If this is non-null, it will be filled in with a stack of notes
507    /// indicating why evaluation failed (or why it failed to produce a constant
508    /// expression).
509    /// If the expression is unfoldable, the notes will indicate why it's not
510    /// foldable. If the expression is foldable, but not a constant expression,
511    /// the notes will describes why it isn't a constant expression. If the
512    /// expression *is* a constant expression, no notes will be produced.
513    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
514
515    EvalStatus() : HasSideEffects(false), Diag(0) {}
516
517    // hasSideEffects - Return true if the evaluated expression has
518    // side effects.
519    bool hasSideEffects() const {
520      return HasSideEffects;
521    }
522  };
523
524  /// EvalResult is a struct with detailed info about an evaluated expression.
525  struct EvalResult : EvalStatus {
526    /// Val - This is the value the expression can be folded to.
527    APValue Val;
528
529    // isGlobalLValue - Return true if the evaluated lvalue expression
530    // is global.
531    bool isGlobalLValue() const;
532  };
533
534  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
535  /// an rvalue using any crazy technique (that has nothing to do with language
536  /// standards) that we want to, even if the expression has side-effects. If
537  /// this function returns true, it returns the folded constant in Result. If
538  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
539  /// applied.
540  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
541
542  /// EvaluateAsBooleanCondition - Return true if this is a constant
543  /// which we we can fold and convert to a boolean condition using
544  /// any crazy technique that we want to, even if the expression has
545  /// side-effects.
546  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
547
548  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
549
550  /// EvaluateAsInt - Return true if this is a constant which we can fold and
551  /// convert to an integer, using any crazy technique that we want to.
552  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
553                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
554
555  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
556  /// constant folded without side-effects, but discard the result.
557  bool isEvaluatable(const ASTContext &Ctx) const;
558
559  /// HasSideEffects - This routine returns true for all those expressions
560  /// which have any effect other than producing a value. Example is a function
561  /// call, volatile variable read, or throwing an exception.
562  bool HasSideEffects(const ASTContext &Ctx) const;
563
564  /// \brief Determine whether this expression involves a call to any function
565  /// that is not trivial.
566  bool hasNonTrivialCall(ASTContext &Ctx);
567
568  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
569  /// integer. This must be called on an expression that constant folds to an
570  /// integer.
571  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
572
573  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
574  /// lvalue with link time known address, with no side-effects.
575  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
576
577  /// EvaluateAsInitializer - Evaluate an expression as if it were the
578  /// initializer of the given declaration. Returns true if the initializer
579  /// can be folded to a constant, and produces any relevant notes. In C++11,
580  /// notes will be produced if the expression is not a constant expression.
581  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
582                             const VarDecl *VD,
583                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
584
585  /// \brief Enumeration used to describe the kind of Null pointer constant
586  /// returned from \c isNullPointerConstant().
587  enum NullPointerConstantKind {
588    /// \brief Expression is not a Null pointer constant.
589    NPCK_NotNull = 0,
590
591    /// \brief Expression is a Null pointer constant built from a zero integer
592    /// expression that is not a simple, possibly parenthesized, zero literal.
593    /// C++ Core Issue 903 will classify these expressions as "not pointers"
594    /// once it is adopted.
595    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
596    NPCK_ZeroExpression,
597
598    /// \brief Expression is a Null pointer constant built from a literal zero.
599    NPCK_ZeroLiteral,
600
601    /// \brief Expression is a C++0X nullptr.
602    NPCK_CXX0X_nullptr,
603
604    /// \brief Expression is a GNU-style __null constant.
605    NPCK_GNUNull
606  };
607
608  /// \brief Enumeration used to describe how \c isNullPointerConstant()
609  /// should cope with value-dependent expressions.
610  enum NullPointerConstantValueDependence {
611    /// \brief Specifies that the expression should never be value-dependent.
612    NPC_NeverValueDependent = 0,
613
614    /// \brief Specifies that a value-dependent expression of integral or
615    /// dependent type should be considered a null pointer constant.
616    NPC_ValueDependentIsNull,
617
618    /// \brief Specifies that a value-dependent expression should be considered
619    /// to never be a null pointer constant.
620    NPC_ValueDependentIsNotNull
621  };
622
623  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
624  /// a Null pointer constant. The return value can further distinguish the
625  /// kind of NULL pointer constant that was detected.
626  NullPointerConstantKind isNullPointerConstant(
627      ASTContext &Ctx,
628      NullPointerConstantValueDependence NPC) const;
629
630  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
631  /// write barrier.
632  bool isOBJCGCCandidate(ASTContext &Ctx) const;
633
634  /// \brief Returns true if this expression is a bound member function.
635  bool isBoundMemberFunction(ASTContext &Ctx) const;
636
637  /// \brief Given an expression of bound-member type, find the type
638  /// of the member.  Returns null if this is an *overloaded* bound
639  /// member expression.
640  static QualType findBoundMemberType(const Expr *expr);
641
642  /// IgnoreImpCasts - Skip past any implicit casts which might
643  /// surround this expression.  Only skips ImplicitCastExprs.
644  Expr *IgnoreImpCasts() LLVM_READONLY;
645
646  /// IgnoreImplicit - Skip past any implicit AST nodes which might
647  /// surround this expression.
648  Expr *IgnoreImplicit() LLVM_READONLY {
649    return cast<Expr>(Stmt::IgnoreImplicit());
650  }
651
652  const Expr *IgnoreImplicit() const LLVM_READONLY {
653    return const_cast<Expr*>(this)->IgnoreImplicit();
654  }
655
656  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
657  ///  its subexpression.  If that subexpression is also a ParenExpr,
658  ///  then this method recursively returns its subexpression, and so forth.
659  ///  Otherwise, the method returns the current Expr.
660  Expr *IgnoreParens() LLVM_READONLY;
661
662  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
663  /// or CastExprs, returning their operand.
664  Expr *IgnoreParenCasts() LLVM_READONLY;
665
666  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
667  /// any ParenExpr or ImplicitCastExprs, returning their operand.
668  Expr *IgnoreParenImpCasts() LLVM_READONLY;
669
670  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
671  /// call to a conversion operator, return the argument.
672  Expr *IgnoreConversionOperator() LLVM_READONLY;
673
674  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
675    return const_cast<Expr*>(this)->IgnoreConversionOperator();
676  }
677
678  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
679    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
680  }
681
682  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
683  /// CastExprs that represent lvalue casts, returning their operand.
684  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
685
686  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
687    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
688  }
689
690  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
691  /// value (including ptr->int casts of the same size).  Strip off any
692  /// ParenExpr or CastExprs, returning their operand.
693  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
694
695  /// Ignore parentheses and derived-to-base casts.
696  Expr *ignoreParenBaseCasts() LLVM_READONLY;
697
698  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
699    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
700  }
701
702  /// \brief Determine whether this expression is a default function argument.
703  ///
704  /// Default arguments are implicitly generated in the abstract syntax tree
705  /// by semantic analysis for function calls, object constructions, etc. in
706  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
707  /// this routine also looks through any implicit casts to determine whether
708  /// the expression is a default argument.
709  bool isDefaultArgument() const;
710
711  /// \brief Determine whether the result of this expression is a
712  /// temporary object of the given class type.
713  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
714
715  /// \brief Whether this expression is an implicit reference to 'this' in C++.
716  bool isImplicitCXXThis() const;
717
718  const Expr *IgnoreImpCasts() const LLVM_READONLY {
719    return const_cast<Expr*>(this)->IgnoreImpCasts();
720  }
721  const Expr *IgnoreParens() const LLVM_READONLY {
722    return const_cast<Expr*>(this)->IgnoreParens();
723  }
724  const Expr *IgnoreParenCasts() const LLVM_READONLY {
725    return const_cast<Expr*>(this)->IgnoreParenCasts();
726  }
727  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
728    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
729  }
730
731  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
732
733  /// \brief For an expression of class type or pointer to class type,
734  /// return the most derived class decl the expression is known to refer to.
735  ///
736  /// If this expression is a cast, this method looks through it to find the
737  /// most derived decl that can be inferred from the expression.
738  /// This is valid because derived-to-base conversions have undefined
739  /// behavior if the object isn't dynamically of the derived type.
740  const CXXRecordDecl *getBestDynamicClassType() const;
741
742  /// Walk outwards from an expression we want to bind a reference to and
743  /// find the expression whose lifetime needs to be extended. Record
744  /// the adjustments needed along the path.
745  const Expr *
746  skipRValueSubobjectAdjustments(
747                       SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
748
749  /// Skip irrelevant expressions to find what should be materialize for
750  /// binding with a reference.
751  const Expr *
752  findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const;
753
754  static bool classof(const Stmt *T) {
755    return T->getStmtClass() >= firstExprConstant &&
756           T->getStmtClass() <= lastExprConstant;
757  }
758};
759
760
761//===----------------------------------------------------------------------===//
762// Primary Expressions.
763//===----------------------------------------------------------------------===//
764
765/// OpaqueValueExpr - An expression referring to an opaque object of a
766/// fixed type and value class.  These don't correspond to concrete
767/// syntax; instead they're used to express operations (usually copy
768/// operations) on values whose source is generally obvious from
769/// context.
770class OpaqueValueExpr : public Expr {
771  friend class ASTStmtReader;
772  Expr *SourceExpr;
773  SourceLocation Loc;
774
775public:
776  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
777                  ExprObjectKind OK = OK_Ordinary,
778                  Expr *SourceExpr = 0)
779    : Expr(OpaqueValueExprClass, T, VK, OK,
780           T->isDependentType(),
781           T->isDependentType() ||
782           (SourceExpr && SourceExpr->isValueDependent()),
783           T->isInstantiationDependentType(),
784           false),
785      SourceExpr(SourceExpr), Loc(Loc) {
786  }
787
788  /// Given an expression which invokes a copy constructor --- i.e.  a
789  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
790  /// find the OpaqueValueExpr that's the source of the construction.
791  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
792
793  explicit OpaqueValueExpr(EmptyShell Empty)
794    : Expr(OpaqueValueExprClass, Empty) { }
795
796  /// \brief Retrieve the location of this expression.
797  SourceLocation getLocation() const { return Loc; }
798
799  SourceRange getSourceRange() const LLVM_READONLY {
800    if (SourceExpr) return SourceExpr->getSourceRange();
801    return Loc;
802  }
803  SourceLocation getExprLoc() const LLVM_READONLY {
804    if (SourceExpr) return SourceExpr->getExprLoc();
805    return Loc;
806  }
807
808  child_range children() { return child_range(); }
809
810  /// The source expression of an opaque value expression is the
811  /// expression which originally generated the value.  This is
812  /// provided as a convenience for analyses that don't wish to
813  /// precisely model the execution behavior of the program.
814  ///
815  /// The source expression is typically set when building the
816  /// expression which binds the opaque value expression in the first
817  /// place.
818  Expr *getSourceExpr() const { return SourceExpr; }
819
820  static bool classof(const Stmt *T) {
821    return T->getStmtClass() == OpaqueValueExprClass;
822  }
823};
824
825/// \brief A reference to a declared variable, function, enum, etc.
826/// [C99 6.5.1p2]
827///
828/// This encodes all the information about how a declaration is referenced
829/// within an expression.
830///
831/// There are several optional constructs attached to DeclRefExprs only when
832/// they apply in order to conserve memory. These are laid out past the end of
833/// the object, and flags in the DeclRefExprBitfield track whether they exist:
834///
835///   DeclRefExprBits.HasQualifier:
836///       Specifies when this declaration reference expression has a C++
837///       nested-name-specifier.
838///   DeclRefExprBits.HasFoundDecl:
839///       Specifies when this declaration reference expression has a record of
840///       a NamedDecl (different from the referenced ValueDecl) which was found
841///       during name lookup and/or overload resolution.
842///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
843///       Specifies when this declaration reference expression has an explicit
844///       C++ template keyword and/or template argument list.
845///   DeclRefExprBits.RefersToEnclosingLocal
846///       Specifies when this declaration reference expression (validly)
847///       refers to a local variable from a different function.
848class DeclRefExpr : public Expr {
849  /// \brief The declaration that we are referencing.
850  ValueDecl *D;
851
852  /// \brief The location of the declaration name itself.
853  SourceLocation Loc;
854
855  /// \brief Provides source/type location info for the declaration name
856  /// embedded in D.
857  DeclarationNameLoc DNLoc;
858
859  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
860  NestedNameSpecifierLoc &getInternalQualifierLoc() {
861    assert(hasQualifier());
862    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
863  }
864
865  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
866  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
867    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
868  }
869
870  /// \brief Test whether there is a distinct FoundDecl attached to the end of
871  /// this DRE.
872  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
873
874  /// \brief Helper to retrieve the optional NamedDecl through which this
875  /// reference occured.
876  NamedDecl *&getInternalFoundDecl() {
877    assert(hasFoundDecl());
878    if (hasQualifier())
879      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
880    return *reinterpret_cast<NamedDecl **>(this + 1);
881  }
882
883  /// \brief Helper to retrieve the optional NamedDecl through which this
884  /// reference occured.
885  NamedDecl *getInternalFoundDecl() const {
886    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
887  }
888
889  DeclRefExpr(ASTContext &Ctx,
890              NestedNameSpecifierLoc QualifierLoc,
891              SourceLocation TemplateKWLoc,
892              ValueDecl *D, bool refersToEnclosingLocal,
893              const DeclarationNameInfo &NameInfo,
894              NamedDecl *FoundD,
895              const TemplateArgumentListInfo *TemplateArgs,
896              QualType T, ExprValueKind VK);
897
898  /// \brief Construct an empty declaration reference expression.
899  explicit DeclRefExpr(EmptyShell Empty)
900    : Expr(DeclRefExprClass, Empty) { }
901
902  /// \brief Computes the type- and value-dependence flags for this
903  /// declaration reference expression.
904  void computeDependence(ASTContext &C);
905
906public:
907  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
908              ExprValueKind VK, SourceLocation L,
909              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
910    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
911      D(D), Loc(L), DNLoc(LocInfo) {
912    DeclRefExprBits.HasQualifier = 0;
913    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
914    DeclRefExprBits.HasFoundDecl = 0;
915    DeclRefExprBits.HadMultipleCandidates = 0;
916    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
917    computeDependence(D->getASTContext());
918  }
919
920  static DeclRefExpr *Create(ASTContext &Context,
921                             NestedNameSpecifierLoc QualifierLoc,
922                             SourceLocation TemplateKWLoc,
923                             ValueDecl *D,
924                             bool isEnclosingLocal,
925                             SourceLocation NameLoc,
926                             QualType T, ExprValueKind VK,
927                             NamedDecl *FoundD = 0,
928                             const TemplateArgumentListInfo *TemplateArgs = 0);
929
930  static DeclRefExpr *Create(ASTContext &Context,
931                             NestedNameSpecifierLoc QualifierLoc,
932                             SourceLocation TemplateKWLoc,
933                             ValueDecl *D,
934                             bool isEnclosingLocal,
935                             const DeclarationNameInfo &NameInfo,
936                             QualType T, ExprValueKind VK,
937                             NamedDecl *FoundD = 0,
938                             const TemplateArgumentListInfo *TemplateArgs = 0);
939
940  /// \brief Construct an empty declaration reference expression.
941  static DeclRefExpr *CreateEmpty(ASTContext &Context,
942                                  bool HasQualifier,
943                                  bool HasFoundDecl,
944                                  bool HasTemplateKWAndArgsInfo,
945                                  unsigned NumTemplateArgs);
946
947  ValueDecl *getDecl() { return D; }
948  const ValueDecl *getDecl() const { return D; }
949  void setDecl(ValueDecl *NewD) { D = NewD; }
950
951  DeclarationNameInfo getNameInfo() const {
952    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
953  }
954
955  SourceLocation getLocation() const { return Loc; }
956  void setLocation(SourceLocation L) { Loc = L; }
957  SourceRange getSourceRange() const LLVM_READONLY;
958  SourceLocation getLocStart() const LLVM_READONLY;
959  SourceLocation getLocEnd() const LLVM_READONLY;
960
961  /// \brief Determine whether this declaration reference was preceded by a
962  /// C++ nested-name-specifier, e.g., \c N::foo.
963  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
964
965  /// \brief If the name was qualified, retrieves the nested-name-specifier
966  /// that precedes the name. Otherwise, returns NULL.
967  NestedNameSpecifier *getQualifier() const {
968    if (!hasQualifier())
969      return 0;
970
971    return getInternalQualifierLoc().getNestedNameSpecifier();
972  }
973
974  /// \brief If the name was qualified, retrieves the nested-name-specifier
975  /// that precedes the name, with source-location information.
976  NestedNameSpecifierLoc getQualifierLoc() const {
977    if (!hasQualifier())
978      return NestedNameSpecifierLoc();
979
980    return getInternalQualifierLoc();
981  }
982
983  /// \brief Get the NamedDecl through which this reference occured.
984  ///
985  /// This Decl may be different from the ValueDecl actually referred to in the
986  /// presence of using declarations, etc. It always returns non-NULL, and may
987  /// simple return the ValueDecl when appropriate.
988  NamedDecl *getFoundDecl() {
989    return hasFoundDecl() ? getInternalFoundDecl() : D;
990  }
991
992  /// \brief Get the NamedDecl through which this reference occurred.
993  /// See non-const variant.
994  const NamedDecl *getFoundDecl() const {
995    return hasFoundDecl() ? getInternalFoundDecl() : D;
996  }
997
998  bool hasTemplateKWAndArgsInfo() const {
999    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1000  }
1001
1002  /// \brief Return the optional template keyword and arguments info.
1003  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
1004    if (!hasTemplateKWAndArgsInfo())
1005      return 0;
1006
1007    if (hasFoundDecl())
1008      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1009        &getInternalFoundDecl() + 1);
1010
1011    if (hasQualifier())
1012      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1013        &getInternalQualifierLoc() + 1);
1014
1015    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
1016  }
1017
1018  /// \brief Return the optional template keyword and arguments info.
1019  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
1020    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
1021  }
1022
1023  /// \brief Retrieve the location of the template keyword preceding
1024  /// this name, if any.
1025  SourceLocation getTemplateKeywordLoc() const {
1026    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1027    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
1028  }
1029
1030  /// \brief Retrieve the location of the left angle bracket starting the
1031  /// explicit template argument list following the name, if any.
1032  SourceLocation getLAngleLoc() const {
1033    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1034    return getTemplateKWAndArgsInfo()->LAngleLoc;
1035  }
1036
1037  /// \brief Retrieve the location of the right angle bracket ending the
1038  /// explicit template argument list following the name, if any.
1039  SourceLocation getRAngleLoc() const {
1040    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1041    return getTemplateKWAndArgsInfo()->RAngleLoc;
1042  }
1043
1044  /// \brief Determines whether the name in this declaration reference
1045  /// was preceded by the template keyword.
1046  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1047
1048  /// \brief Determines whether this declaration reference was followed by an
1049  /// explicit template argument list.
1050  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1051
1052  /// \brief Retrieve the explicit template argument list that followed the
1053  /// member template name.
1054  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1055    assert(hasExplicitTemplateArgs());
1056    return *getTemplateKWAndArgsInfo();
1057  }
1058
1059  /// \brief Retrieve the explicit template argument list that followed the
1060  /// member template name.
1061  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1062    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1063  }
1064
1065  /// \brief Retrieves the optional explicit template arguments.
1066  /// This points to the same data as getExplicitTemplateArgs(), but
1067  /// returns null if there are no explicit template arguments.
1068  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1069    if (!hasExplicitTemplateArgs()) return 0;
1070    return &getExplicitTemplateArgs();
1071  }
1072
1073  /// \brief Copies the template arguments (if present) into the given
1074  /// structure.
1075  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1076    if (hasExplicitTemplateArgs())
1077      getExplicitTemplateArgs().copyInto(List);
1078  }
1079
1080  /// \brief Retrieve the template arguments provided as part of this
1081  /// template-id.
1082  const TemplateArgumentLoc *getTemplateArgs() const {
1083    if (!hasExplicitTemplateArgs())
1084      return 0;
1085
1086    return getExplicitTemplateArgs().getTemplateArgs();
1087  }
1088
1089  /// \brief Retrieve the number of template arguments provided as part of this
1090  /// template-id.
1091  unsigned getNumTemplateArgs() const {
1092    if (!hasExplicitTemplateArgs())
1093      return 0;
1094
1095    return getExplicitTemplateArgs().NumTemplateArgs;
1096  }
1097
1098  /// \brief Returns true if this expression refers to a function that
1099  /// was resolved from an overloaded set having size greater than 1.
1100  bool hadMultipleCandidates() const {
1101    return DeclRefExprBits.HadMultipleCandidates;
1102  }
1103  /// \brief Sets the flag telling whether this expression refers to
1104  /// a function that was resolved from an overloaded set having size
1105  /// greater than 1.
1106  void setHadMultipleCandidates(bool V = true) {
1107    DeclRefExprBits.HadMultipleCandidates = V;
1108  }
1109
1110  /// Does this DeclRefExpr refer to a local declaration from an
1111  /// enclosing function scope?
1112  bool refersToEnclosingLocal() const {
1113    return DeclRefExprBits.RefersToEnclosingLocal;
1114  }
1115
1116  static bool classof(const Stmt *T) {
1117    return T->getStmtClass() == DeclRefExprClass;
1118  }
1119
1120  // Iterators
1121  child_range children() { return child_range(); }
1122
1123  friend class ASTStmtReader;
1124  friend class ASTStmtWriter;
1125};
1126
1127/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1128class PredefinedExpr : public Expr {
1129public:
1130  enum IdentType {
1131    Func,
1132    Function,
1133    LFunction,  // Same as Function, but as wide string.
1134    PrettyFunction,
1135    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1136    /// 'virtual' keyword is omitted for virtual member functions.
1137    PrettyFunctionNoVirtual
1138  };
1139
1140private:
1141  SourceLocation Loc;
1142  IdentType Type;
1143public:
1144  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1145    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1146           type->isDependentType(), type->isDependentType(),
1147           type->isInstantiationDependentType(),
1148           /*ContainsUnexpandedParameterPack=*/false),
1149      Loc(l), Type(IT) {}
1150
1151  /// \brief Construct an empty predefined expression.
1152  explicit PredefinedExpr(EmptyShell Empty)
1153    : Expr(PredefinedExprClass, Empty) { }
1154
1155  IdentType getIdentType() const { return Type; }
1156  void setIdentType(IdentType IT) { Type = IT; }
1157
1158  SourceLocation getLocation() const { return Loc; }
1159  void setLocation(SourceLocation L) { Loc = L; }
1160
1161  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1162
1163  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1164
1165  static bool classof(const Stmt *T) {
1166    return T->getStmtClass() == PredefinedExprClass;
1167  }
1168
1169  // Iterators
1170  child_range children() { return child_range(); }
1171};
1172
1173/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1174/// leaking memory.
1175///
1176/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1177/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1178/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1179/// the APFloat/APInt values will never get freed. APNumericStorage uses
1180/// ASTContext's allocator for memory allocation.
1181class APNumericStorage {
1182  union {
1183    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1184    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1185  };
1186  unsigned BitWidth;
1187
1188  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1189
1190  APNumericStorage(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1191  void operator=(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1192
1193protected:
1194  APNumericStorage() : VAL(0), BitWidth(0) { }
1195
1196  llvm::APInt getIntValue() const {
1197    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1198    if (NumWords > 1)
1199      return llvm::APInt(BitWidth, NumWords, pVal);
1200    else
1201      return llvm::APInt(BitWidth, VAL);
1202  }
1203  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1204};
1205
1206class APIntStorage : private APNumericStorage {
1207public:
1208  llvm::APInt getValue() const { return getIntValue(); }
1209  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1210};
1211
1212class APFloatStorage : private APNumericStorage {
1213public:
1214  llvm::APFloat getValue(bool IsIEEE) const {
1215    return llvm::APFloat(getIntValue(), IsIEEE);
1216  }
1217  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1218    setIntValue(C, Val.bitcastToAPInt());
1219  }
1220};
1221
1222class IntegerLiteral : public Expr, public APIntStorage {
1223  SourceLocation Loc;
1224
1225  /// \brief Construct an empty integer literal.
1226  explicit IntegerLiteral(EmptyShell Empty)
1227    : Expr(IntegerLiteralClass, Empty) { }
1228
1229public:
1230  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1231  // or UnsignedLongLongTy
1232  IntegerLiteral(ASTContext &C, const llvm::APInt &V, QualType type,
1233                 SourceLocation l);
1234
1235  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1236  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1237  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1238  /// \param V - the value that the returned integer literal contains.
1239  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1240                                QualType type, SourceLocation l);
1241  /// \brief Returns a new empty integer literal.
1242  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1243
1244  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1245
1246  /// \brief Retrieve the location of the literal.
1247  SourceLocation getLocation() const { return Loc; }
1248
1249  void setLocation(SourceLocation Location) { Loc = Location; }
1250
1251  static bool classof(const Stmt *T) {
1252    return T->getStmtClass() == IntegerLiteralClass;
1253  }
1254
1255  // Iterators
1256  child_range children() { return child_range(); }
1257};
1258
1259class CharacterLiteral : public Expr {
1260public:
1261  enum CharacterKind {
1262    Ascii,
1263    Wide,
1264    UTF16,
1265    UTF32
1266  };
1267
1268private:
1269  unsigned Value;
1270  SourceLocation Loc;
1271public:
1272  // type should be IntTy
1273  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1274                   SourceLocation l)
1275    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1276           false, false),
1277      Value(value), Loc(l) {
1278    CharacterLiteralBits.Kind = kind;
1279  }
1280
1281  /// \brief Construct an empty character literal.
1282  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1283
1284  SourceLocation getLocation() const { return Loc; }
1285  CharacterKind getKind() const {
1286    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1287  }
1288
1289  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1290
1291  unsigned getValue() const { return Value; }
1292
1293  void setLocation(SourceLocation Location) { Loc = Location; }
1294  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1295  void setValue(unsigned Val) { Value = Val; }
1296
1297  static bool classof(const Stmt *T) {
1298    return T->getStmtClass() == CharacterLiteralClass;
1299  }
1300
1301  // Iterators
1302  child_range children() { return child_range(); }
1303};
1304
1305class FloatingLiteral : public Expr, private APFloatStorage {
1306  SourceLocation Loc;
1307
1308  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1309                  QualType Type, SourceLocation L);
1310
1311  /// \brief Construct an empty floating-point literal.
1312  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty);
1313
1314public:
1315  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1316                                 bool isexact, QualType Type, SourceLocation L);
1317  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1318
1319  llvm::APFloat getValue() const {
1320    return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE);
1321  }
1322  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1323    APFloatStorage::setValue(C, Val);
1324  }
1325
1326  bool isExact() const { return FloatingLiteralBits.IsExact; }
1327  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1328
1329  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1330  /// double.  Note that this may cause loss of precision, but is useful for
1331  /// debugging dumps, etc.
1332  double getValueAsApproximateDouble() const;
1333
1334  SourceLocation getLocation() const { return Loc; }
1335  void setLocation(SourceLocation L) { Loc = L; }
1336
1337  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1338
1339  static bool classof(const Stmt *T) {
1340    return T->getStmtClass() == FloatingLiteralClass;
1341  }
1342
1343  // Iterators
1344  child_range children() { return child_range(); }
1345};
1346
1347/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1348/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1349/// IntegerLiteral classes.  Instances of this class always have a Complex type
1350/// whose element type matches the subexpression.
1351///
1352class ImaginaryLiteral : public Expr {
1353  Stmt *Val;
1354public:
1355  ImaginaryLiteral(Expr *val, QualType Ty)
1356    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1357           false, false),
1358      Val(val) {}
1359
1360  /// \brief Build an empty imaginary literal.
1361  explicit ImaginaryLiteral(EmptyShell Empty)
1362    : Expr(ImaginaryLiteralClass, Empty) { }
1363
1364  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1365  Expr *getSubExpr() { return cast<Expr>(Val); }
1366  void setSubExpr(Expr *E) { Val = E; }
1367
1368  SourceRange getSourceRange() const LLVM_READONLY { return Val->getSourceRange(); }
1369  static bool classof(const Stmt *T) {
1370    return T->getStmtClass() == ImaginaryLiteralClass;
1371  }
1372
1373  // Iterators
1374  child_range children() { return child_range(&Val, &Val+1); }
1375};
1376
1377/// StringLiteral - This represents a string literal expression, e.g. "foo"
1378/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1379/// is NOT null-terminated, and the length of the string is determined by
1380/// calling getByteLength().  The C type for a string is always a
1381/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1382/// not.
1383///
1384/// Note that strings in C can be formed by concatenation of multiple string
1385/// literal pptokens in translation phase #6.  This keeps track of the locations
1386/// of each of these pieces.
1387///
1388/// Strings in C can also be truncated and extended by assigning into arrays,
1389/// e.g. with constructs like:
1390///   char X[2] = "foobar";
1391/// In this case, getByteLength() will return 6, but the string literal will
1392/// have type "char[2]".
1393class StringLiteral : public Expr {
1394public:
1395  enum StringKind {
1396    Ascii,
1397    Wide,
1398    UTF8,
1399    UTF16,
1400    UTF32
1401  };
1402
1403private:
1404  friend class ASTStmtReader;
1405
1406  union {
1407    const char *asChar;
1408    const uint16_t *asUInt16;
1409    const uint32_t *asUInt32;
1410  } StrData;
1411  unsigned Length;
1412  unsigned CharByteWidth : 4;
1413  unsigned Kind : 3;
1414  unsigned IsPascal : 1;
1415  unsigned NumConcatenated;
1416  SourceLocation TokLocs[1];
1417
1418  StringLiteral(QualType Ty) :
1419    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1420         false) {}
1421
1422  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1423
1424public:
1425  /// This is the "fully general" constructor that allows representation of
1426  /// strings formed from multiple concatenated tokens.
1427  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1428                               bool Pascal, QualType Ty,
1429                               const SourceLocation *Loc, unsigned NumStrs);
1430
1431  /// Simple constructor for string literals made from one token.
1432  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1433                               bool Pascal, QualType Ty,
1434                               SourceLocation Loc) {
1435    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1436  }
1437
1438  /// \brief Construct an empty string literal.
1439  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1440
1441  StringRef getString() const {
1442    assert(CharByteWidth==1
1443           && "This function is used in places that assume strings use char");
1444    return StringRef(StrData.asChar, getByteLength());
1445  }
1446
1447  /// Allow access to clients that need the byte representation, such as
1448  /// ASTWriterStmt::VisitStringLiteral().
1449  StringRef getBytes() const {
1450    // FIXME: StringRef may not be the right type to use as a result for this.
1451    if (CharByteWidth == 1)
1452      return StringRef(StrData.asChar, getByteLength());
1453    if (CharByteWidth == 4)
1454      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1455                       getByteLength());
1456    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1457    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1458                     getByteLength());
1459  }
1460
1461  void outputString(raw_ostream &OS);
1462
1463  uint32_t getCodeUnit(size_t i) const {
1464    assert(i < Length && "out of bounds access");
1465    if (CharByteWidth == 1)
1466      return static_cast<unsigned char>(StrData.asChar[i]);
1467    if (CharByteWidth == 4)
1468      return StrData.asUInt32[i];
1469    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1470    return StrData.asUInt16[i];
1471  }
1472
1473  unsigned getByteLength() const { return CharByteWidth*Length; }
1474  unsigned getLength() const { return Length; }
1475  unsigned getCharByteWidth() const { return CharByteWidth; }
1476
1477  /// \brief Sets the string data to the given string data.
1478  void setString(ASTContext &C, StringRef Str,
1479                 StringKind Kind, bool IsPascal);
1480
1481  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1482
1483
1484  bool isAscii() const { return Kind == Ascii; }
1485  bool isWide() const { return Kind == Wide; }
1486  bool isUTF8() const { return Kind == UTF8; }
1487  bool isUTF16() const { return Kind == UTF16; }
1488  bool isUTF32() const { return Kind == UTF32; }
1489  bool isPascal() const { return IsPascal; }
1490
1491  bool containsNonAsciiOrNull() const {
1492    StringRef Str = getString();
1493    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1494      if (!isascii(Str[i]) || !Str[i])
1495        return true;
1496    return false;
1497  }
1498
1499  /// getNumConcatenated - Get the number of string literal tokens that were
1500  /// concatenated in translation phase #6 to form this string literal.
1501  unsigned getNumConcatenated() const { return NumConcatenated; }
1502
1503  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1504    assert(TokNum < NumConcatenated && "Invalid tok number");
1505    return TokLocs[TokNum];
1506  }
1507  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1508    assert(TokNum < NumConcatenated && "Invalid tok number");
1509    TokLocs[TokNum] = L;
1510  }
1511
1512  /// getLocationOfByte - Return a source location that points to the specified
1513  /// byte of this string literal.
1514  ///
1515  /// Strings are amazingly complex.  They can be formed from multiple tokens
1516  /// and can have escape sequences in them in addition to the usual trigraph
1517  /// and escaped newline business.  This routine handles this complexity.
1518  ///
1519  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1520                                   const LangOptions &Features,
1521                                   const TargetInfo &Target) const;
1522
1523  typedef const SourceLocation *tokloc_iterator;
1524  tokloc_iterator tokloc_begin() const { return TokLocs; }
1525  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1526
1527  SourceRange getSourceRange() const LLVM_READONLY {
1528    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1529  }
1530  static bool classof(const Stmt *T) {
1531    return T->getStmtClass() == StringLiteralClass;
1532  }
1533
1534  // Iterators
1535  child_range children() { return child_range(); }
1536};
1537
1538/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1539/// AST node is only formed if full location information is requested.
1540class ParenExpr : public Expr {
1541  SourceLocation L, R;
1542  Stmt *Val;
1543public:
1544  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1545    : Expr(ParenExprClass, val->getType(),
1546           val->getValueKind(), val->getObjectKind(),
1547           val->isTypeDependent(), val->isValueDependent(),
1548           val->isInstantiationDependent(),
1549           val->containsUnexpandedParameterPack()),
1550      L(l), R(r), Val(val) {}
1551
1552  /// \brief Construct an empty parenthesized expression.
1553  explicit ParenExpr(EmptyShell Empty)
1554    : Expr(ParenExprClass, Empty) { }
1555
1556  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1557  Expr *getSubExpr() { return cast<Expr>(Val); }
1558  void setSubExpr(Expr *E) { Val = E; }
1559
1560  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(L, R); }
1561
1562  /// \brief Get the location of the left parentheses '('.
1563  SourceLocation getLParen() const { return L; }
1564  void setLParen(SourceLocation Loc) { L = Loc; }
1565
1566  /// \brief Get the location of the right parentheses ')'.
1567  SourceLocation getRParen() const { return R; }
1568  void setRParen(SourceLocation Loc) { R = Loc; }
1569
1570  static bool classof(const Stmt *T) {
1571    return T->getStmtClass() == ParenExprClass;
1572  }
1573
1574  // Iterators
1575  child_range children() { return child_range(&Val, &Val+1); }
1576};
1577
1578
1579/// UnaryOperator - This represents the unary-expression's (except sizeof and
1580/// alignof), the postinc/postdec operators from postfix-expression, and various
1581/// extensions.
1582///
1583/// Notes on various nodes:
1584///
1585/// Real/Imag - These return the real/imag part of a complex operand.  If
1586///   applied to a non-complex value, the former returns its operand and the
1587///   later returns zero in the type of the operand.
1588///
1589class UnaryOperator : public Expr {
1590public:
1591  typedef UnaryOperatorKind Opcode;
1592
1593private:
1594  unsigned Opc : 5;
1595  SourceLocation Loc;
1596  Stmt *Val;
1597public:
1598
1599  UnaryOperator(Expr *input, Opcode opc, QualType type,
1600                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1601    : Expr(UnaryOperatorClass, type, VK, OK,
1602           input->isTypeDependent() || type->isDependentType(),
1603           input->isValueDependent(),
1604           (input->isInstantiationDependent() ||
1605            type->isInstantiationDependentType()),
1606           input->containsUnexpandedParameterPack()),
1607      Opc(opc), Loc(l), Val(input) {}
1608
1609  /// \brief Build an empty unary operator.
1610  explicit UnaryOperator(EmptyShell Empty)
1611    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1612
1613  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1614  void setOpcode(Opcode O) { Opc = O; }
1615
1616  Expr *getSubExpr() const { return cast<Expr>(Val); }
1617  void setSubExpr(Expr *E) { Val = E; }
1618
1619  /// getOperatorLoc - Return the location of the operator.
1620  SourceLocation getOperatorLoc() const { return Loc; }
1621  void setOperatorLoc(SourceLocation L) { Loc = L; }
1622
1623  /// isPostfix - Return true if this is a postfix operation, like x++.
1624  static bool isPostfix(Opcode Op) {
1625    return Op == UO_PostInc || Op == UO_PostDec;
1626  }
1627
1628  /// isPrefix - Return true if this is a prefix operation, like --x.
1629  static bool isPrefix(Opcode Op) {
1630    return Op == UO_PreInc || Op == UO_PreDec;
1631  }
1632
1633  bool isPrefix() const { return isPrefix(getOpcode()); }
1634  bool isPostfix() const { return isPostfix(getOpcode()); }
1635
1636  static bool isIncrementOp(Opcode Op) {
1637    return Op == UO_PreInc || Op == UO_PostInc;
1638  }
1639  bool isIncrementOp() const {
1640    return isIncrementOp(getOpcode());
1641  }
1642
1643  static bool isDecrementOp(Opcode Op) {
1644    return Op == UO_PreDec || Op == UO_PostDec;
1645  }
1646  bool isDecrementOp() const {
1647    return isDecrementOp(getOpcode());
1648  }
1649
1650  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1651  bool isIncrementDecrementOp() const {
1652    return isIncrementDecrementOp(getOpcode());
1653  }
1654
1655  static bool isArithmeticOp(Opcode Op) {
1656    return Op >= UO_Plus && Op <= UO_LNot;
1657  }
1658  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1659
1660  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1661  /// corresponds to, e.g. "sizeof" or "[pre]++"
1662  static StringRef getOpcodeStr(Opcode Op);
1663
1664  /// \brief Retrieve the unary opcode that corresponds to the given
1665  /// overloaded operator.
1666  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1667
1668  /// \brief Retrieve the overloaded operator kind that corresponds to
1669  /// the given unary opcode.
1670  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1671
1672  SourceRange getSourceRange() const LLVM_READONLY {
1673    if (isPostfix())
1674      return SourceRange(Val->getLocStart(), Loc);
1675    else
1676      return SourceRange(Loc, Val->getLocEnd());
1677  }
1678  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1679
1680  static bool classof(const Stmt *T) {
1681    return T->getStmtClass() == UnaryOperatorClass;
1682  }
1683
1684  // Iterators
1685  child_range children() { return child_range(&Val, &Val+1); }
1686};
1687
1688/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1689/// offsetof(record-type, member-designator). For example, given:
1690/// @code
1691/// struct S {
1692///   float f;
1693///   double d;
1694/// };
1695/// struct T {
1696///   int i;
1697///   struct S s[10];
1698/// };
1699/// @endcode
1700/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1701
1702class OffsetOfExpr : public Expr {
1703public:
1704  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1705  class OffsetOfNode {
1706  public:
1707    /// \brief The kind of offsetof node we have.
1708    enum Kind {
1709      /// \brief An index into an array.
1710      Array = 0x00,
1711      /// \brief A field.
1712      Field = 0x01,
1713      /// \brief A field in a dependent type, known only by its name.
1714      Identifier = 0x02,
1715      /// \brief An implicit indirection through a C++ base class, when the
1716      /// field found is in a base class.
1717      Base = 0x03
1718    };
1719
1720  private:
1721    enum { MaskBits = 2, Mask = 0x03 };
1722
1723    /// \brief The source range that covers this part of the designator.
1724    SourceRange Range;
1725
1726    /// \brief The data describing the designator, which comes in three
1727    /// different forms, depending on the lower two bits.
1728    ///   - An unsigned index into the array of Expr*'s stored after this node
1729    ///     in memory, for [constant-expression] designators.
1730    ///   - A FieldDecl*, for references to a known field.
1731    ///   - An IdentifierInfo*, for references to a field with a given name
1732    ///     when the class type is dependent.
1733    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1734    ///     base class.
1735    uintptr_t Data;
1736
1737  public:
1738    /// \brief Create an offsetof node that refers to an array element.
1739    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1740                 SourceLocation RBracketLoc)
1741      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1742
1743    /// \brief Create an offsetof node that refers to a field.
1744    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1745                 SourceLocation NameLoc)
1746      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1747        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1748
1749    /// \brief Create an offsetof node that refers to an identifier.
1750    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1751                 SourceLocation NameLoc)
1752      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1753        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1754
1755    /// \brief Create an offsetof node that refers into a C++ base class.
1756    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1757      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1758
1759    /// \brief Determine what kind of offsetof node this is.
1760    Kind getKind() const {
1761      return static_cast<Kind>(Data & Mask);
1762    }
1763
1764    /// \brief For an array element node, returns the index into the array
1765    /// of expressions.
1766    unsigned getArrayExprIndex() const {
1767      assert(getKind() == Array);
1768      return Data >> 2;
1769    }
1770
1771    /// \brief For a field offsetof node, returns the field.
1772    FieldDecl *getField() const {
1773      assert(getKind() == Field);
1774      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1775    }
1776
1777    /// \brief For a field or identifier offsetof node, returns the name of
1778    /// the field.
1779    IdentifierInfo *getFieldName() const;
1780
1781    /// \brief For a base class node, returns the base specifier.
1782    CXXBaseSpecifier *getBase() const {
1783      assert(getKind() == Base);
1784      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1785    }
1786
1787    /// \brief Retrieve the source range that covers this offsetof node.
1788    ///
1789    /// For an array element node, the source range contains the locations of
1790    /// the square brackets. For a field or identifier node, the source range
1791    /// contains the location of the period (if there is one) and the
1792    /// identifier.
1793    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1794  };
1795
1796private:
1797
1798  SourceLocation OperatorLoc, RParenLoc;
1799  // Base type;
1800  TypeSourceInfo *TSInfo;
1801  // Number of sub-components (i.e. instances of OffsetOfNode).
1802  unsigned NumComps;
1803  // Number of sub-expressions (i.e. array subscript expressions).
1804  unsigned NumExprs;
1805
1806  OffsetOfExpr(ASTContext &C, QualType type,
1807               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1808               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1809               SourceLocation RParenLoc);
1810
1811  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1812    : Expr(OffsetOfExprClass, EmptyShell()),
1813      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1814
1815public:
1816
1817  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1818                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1819                              ArrayRef<OffsetOfNode> comps,
1820                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1821
1822  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1823                                   unsigned NumComps, unsigned NumExprs);
1824
1825  /// getOperatorLoc - Return the location of the operator.
1826  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1827  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1828
1829  /// \brief Return the location of the right parentheses.
1830  SourceLocation getRParenLoc() const { return RParenLoc; }
1831  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1832
1833  TypeSourceInfo *getTypeSourceInfo() const {
1834    return TSInfo;
1835  }
1836  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1837    TSInfo = tsi;
1838  }
1839
1840  const OffsetOfNode &getComponent(unsigned Idx) const {
1841    assert(Idx < NumComps && "Subscript out of range");
1842    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1843  }
1844
1845  void setComponent(unsigned Idx, OffsetOfNode ON) {
1846    assert(Idx < NumComps && "Subscript out of range");
1847    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1848  }
1849
1850  unsigned getNumComponents() const {
1851    return NumComps;
1852  }
1853
1854  Expr* getIndexExpr(unsigned Idx) {
1855    assert(Idx < NumExprs && "Subscript out of range");
1856    return reinterpret_cast<Expr **>(
1857                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1858  }
1859  const Expr *getIndexExpr(unsigned Idx) const {
1860    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1861  }
1862
1863  void setIndexExpr(unsigned Idx, Expr* E) {
1864    assert(Idx < NumComps && "Subscript out of range");
1865    reinterpret_cast<Expr **>(
1866                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1867  }
1868
1869  unsigned getNumExpressions() const {
1870    return NumExprs;
1871  }
1872
1873  SourceRange getSourceRange() const LLVM_READONLY {
1874    return SourceRange(OperatorLoc, RParenLoc);
1875  }
1876
1877  static bool classof(const Stmt *T) {
1878    return T->getStmtClass() == OffsetOfExprClass;
1879  }
1880
1881  // Iterators
1882  child_range children() {
1883    Stmt **begin =
1884      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1885                               + NumComps);
1886    return child_range(begin, begin + NumExprs);
1887  }
1888};
1889
1890/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1891/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1892/// vec_step (OpenCL 1.1 6.11.12).
1893class UnaryExprOrTypeTraitExpr : public Expr {
1894  union {
1895    TypeSourceInfo *Ty;
1896    Stmt *Ex;
1897  } Argument;
1898  SourceLocation OpLoc, RParenLoc;
1899
1900public:
1901  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1902                           QualType resultType, SourceLocation op,
1903                           SourceLocation rp) :
1904      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1905           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1906           // Value-dependent if the argument is type-dependent.
1907           TInfo->getType()->isDependentType(),
1908           TInfo->getType()->isInstantiationDependentType(),
1909           TInfo->getType()->containsUnexpandedParameterPack()),
1910      OpLoc(op), RParenLoc(rp) {
1911    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1912    UnaryExprOrTypeTraitExprBits.IsType = true;
1913    Argument.Ty = TInfo;
1914  }
1915
1916  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1917                           QualType resultType, SourceLocation op,
1918                           SourceLocation rp) :
1919      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1920           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1921           // Value-dependent if the argument is type-dependent.
1922           E->isTypeDependent(),
1923           E->isInstantiationDependent(),
1924           E->containsUnexpandedParameterPack()),
1925      OpLoc(op), RParenLoc(rp) {
1926    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1927    UnaryExprOrTypeTraitExprBits.IsType = false;
1928    Argument.Ex = E;
1929  }
1930
1931  /// \brief Construct an empty sizeof/alignof expression.
1932  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1933    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1934
1935  UnaryExprOrTypeTrait getKind() const {
1936    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1937  }
1938  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1939
1940  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1941  QualType getArgumentType() const {
1942    return getArgumentTypeInfo()->getType();
1943  }
1944  TypeSourceInfo *getArgumentTypeInfo() const {
1945    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1946    return Argument.Ty;
1947  }
1948  Expr *getArgumentExpr() {
1949    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1950    return static_cast<Expr*>(Argument.Ex);
1951  }
1952  const Expr *getArgumentExpr() const {
1953    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1954  }
1955
1956  void setArgument(Expr *E) {
1957    Argument.Ex = E;
1958    UnaryExprOrTypeTraitExprBits.IsType = false;
1959  }
1960  void setArgument(TypeSourceInfo *TInfo) {
1961    Argument.Ty = TInfo;
1962    UnaryExprOrTypeTraitExprBits.IsType = true;
1963  }
1964
1965  /// Gets the argument type, or the type of the argument expression, whichever
1966  /// is appropriate.
1967  QualType getTypeOfArgument() const {
1968    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1969  }
1970
1971  SourceLocation getOperatorLoc() const { return OpLoc; }
1972  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1973
1974  SourceLocation getRParenLoc() const { return RParenLoc; }
1975  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1976
1977  SourceRange getSourceRange() const LLVM_READONLY {
1978    return SourceRange(OpLoc, RParenLoc);
1979  }
1980
1981  static bool classof(const Stmt *T) {
1982    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1983  }
1984
1985  // Iterators
1986  child_range children();
1987};
1988
1989//===----------------------------------------------------------------------===//
1990// Postfix Operators.
1991//===----------------------------------------------------------------------===//
1992
1993/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1994class ArraySubscriptExpr : public Expr {
1995  enum { LHS, RHS, END_EXPR=2 };
1996  Stmt* SubExprs[END_EXPR];
1997  SourceLocation RBracketLoc;
1998public:
1999  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2000                     ExprValueKind VK, ExprObjectKind OK,
2001                     SourceLocation rbracketloc)
2002  : Expr(ArraySubscriptExprClass, t, VK, OK,
2003         lhs->isTypeDependent() || rhs->isTypeDependent(),
2004         lhs->isValueDependent() || rhs->isValueDependent(),
2005         (lhs->isInstantiationDependent() ||
2006          rhs->isInstantiationDependent()),
2007         (lhs->containsUnexpandedParameterPack() ||
2008          rhs->containsUnexpandedParameterPack())),
2009    RBracketLoc(rbracketloc) {
2010    SubExprs[LHS] = lhs;
2011    SubExprs[RHS] = rhs;
2012  }
2013
2014  /// \brief Create an empty array subscript expression.
2015  explicit ArraySubscriptExpr(EmptyShell Shell)
2016    : Expr(ArraySubscriptExprClass, Shell) { }
2017
2018  /// An array access can be written A[4] or 4[A] (both are equivalent).
2019  /// - getBase() and getIdx() always present the normalized view: A[4].
2020  ///    In this case getBase() returns "A" and getIdx() returns "4".
2021  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2022  ///    4[A] getLHS() returns "4".
2023  /// Note: Because vector element access is also written A[4] we must
2024  /// predicate the format conversion in getBase and getIdx only on the
2025  /// the type of the RHS, as it is possible for the LHS to be a vector of
2026  /// integer type
2027  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2028  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2029  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2030
2031  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2032  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2033  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2034
2035  Expr *getBase() {
2036    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2037  }
2038
2039  const Expr *getBase() const {
2040    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2041  }
2042
2043  Expr *getIdx() {
2044    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2045  }
2046
2047  const Expr *getIdx() const {
2048    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2049  }
2050
2051  SourceRange getSourceRange() const LLVM_READONLY {
2052    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
2053  }
2054
2055  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2056  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2057
2058  SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); }
2059
2060  static bool classof(const Stmt *T) {
2061    return T->getStmtClass() == ArraySubscriptExprClass;
2062  }
2063
2064  // Iterators
2065  child_range children() {
2066    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2067  }
2068};
2069
2070
2071/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2072/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2073/// while its subclasses may represent alternative syntax that (semantically)
2074/// results in a function call. For example, CXXOperatorCallExpr is
2075/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2076/// "str1 + str2" to resolve to a function call.
2077class CallExpr : public Expr {
2078  enum { FN=0, PREARGS_START=1 };
2079  Stmt **SubExprs;
2080  unsigned NumArgs;
2081  SourceLocation RParenLoc;
2082
2083protected:
2084  // These versions of the constructor are for derived classes.
2085  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2086           ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2087           SourceLocation rparenloc);
2088  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2089
2090  Stmt *getPreArg(unsigned i) {
2091    assert(i < getNumPreArgs() && "Prearg access out of range!");
2092    return SubExprs[PREARGS_START+i];
2093  }
2094  const Stmt *getPreArg(unsigned i) const {
2095    assert(i < getNumPreArgs() && "Prearg access out of range!");
2096    return SubExprs[PREARGS_START+i];
2097  }
2098  void setPreArg(unsigned i, Stmt *PreArg) {
2099    assert(i < getNumPreArgs() && "Prearg access out of range!");
2100    SubExprs[PREARGS_START+i] = PreArg;
2101  }
2102
2103  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2104
2105public:
2106  CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2107           ExprValueKind VK, SourceLocation rparenloc);
2108
2109  /// \brief Build an empty call expression.
2110  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2111
2112  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2113  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2114  void setCallee(Expr *F) { SubExprs[FN] = F; }
2115
2116  Decl *getCalleeDecl();
2117  const Decl *getCalleeDecl() const {
2118    return const_cast<CallExpr*>(this)->getCalleeDecl();
2119  }
2120
2121  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2122  FunctionDecl *getDirectCallee();
2123  const FunctionDecl *getDirectCallee() const {
2124    return const_cast<CallExpr*>(this)->getDirectCallee();
2125  }
2126
2127  /// getNumArgs - Return the number of actual arguments to this call.
2128  ///
2129  unsigned getNumArgs() const { return NumArgs; }
2130
2131  /// \brief Retrieve the call arguments.
2132  Expr **getArgs() {
2133    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2134  }
2135  const Expr *const *getArgs() const {
2136    return const_cast<CallExpr*>(this)->getArgs();
2137  }
2138
2139  /// getArg - Return the specified argument.
2140  Expr *getArg(unsigned Arg) {
2141    assert(Arg < NumArgs && "Arg access out of range!");
2142    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2143  }
2144  const Expr *getArg(unsigned Arg) const {
2145    assert(Arg < NumArgs && "Arg access out of range!");
2146    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2147  }
2148
2149  /// setArg - Set the specified argument.
2150  void setArg(unsigned Arg, Expr *ArgExpr) {
2151    assert(Arg < NumArgs && "Arg access out of range!");
2152    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2153  }
2154
2155  /// setNumArgs - This changes the number of arguments present in this call.
2156  /// Any orphaned expressions are deleted by this, and any new operands are set
2157  /// to null.
2158  void setNumArgs(ASTContext& C, unsigned NumArgs);
2159
2160  typedef ExprIterator arg_iterator;
2161  typedef ConstExprIterator const_arg_iterator;
2162
2163  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2164  arg_iterator arg_end() {
2165    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2166  }
2167  const_arg_iterator arg_begin() const {
2168    return SubExprs+PREARGS_START+getNumPreArgs();
2169  }
2170  const_arg_iterator arg_end() const {
2171    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2172  }
2173
2174  /// getNumCommas - Return the number of commas that must have been present in
2175  /// this function call.
2176  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2177
2178  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2179  /// not, return 0.
2180  unsigned isBuiltinCall() const;
2181
2182  /// getCallReturnType - Get the return type of the call expr. This is not
2183  /// always the type of the expr itself, if the return type is a reference
2184  /// type.
2185  QualType getCallReturnType() const;
2186
2187  SourceLocation getRParenLoc() const { return RParenLoc; }
2188  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2189
2190  SourceRange getSourceRange() const LLVM_READONLY;
2191  SourceLocation getLocStart() const LLVM_READONLY;
2192  SourceLocation getLocEnd() const LLVM_READONLY;
2193
2194  static bool classof(const Stmt *T) {
2195    return T->getStmtClass() >= firstCallExprConstant &&
2196           T->getStmtClass() <= lastCallExprConstant;
2197  }
2198
2199  // Iterators
2200  child_range children() {
2201    return child_range(&SubExprs[0],
2202                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2203  }
2204};
2205
2206/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2207///
2208class MemberExpr : public Expr {
2209  /// Extra data stored in some member expressions.
2210  struct MemberNameQualifier {
2211    /// \brief The nested-name-specifier that qualifies the name, including
2212    /// source-location information.
2213    NestedNameSpecifierLoc QualifierLoc;
2214
2215    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2216    /// name qualifiers.
2217    DeclAccessPair FoundDecl;
2218  };
2219
2220  /// Base - the expression for the base pointer or structure references.  In
2221  /// X.F, this is "X".
2222  Stmt *Base;
2223
2224  /// MemberDecl - This is the decl being referenced by the field/member name.
2225  /// In X.F, this is the decl referenced by F.
2226  ValueDecl *MemberDecl;
2227
2228  /// MemberDNLoc - Provides source/type location info for the
2229  /// declaration name embedded in MemberDecl.
2230  DeclarationNameLoc MemberDNLoc;
2231
2232  /// MemberLoc - This is the location of the member name.
2233  SourceLocation MemberLoc;
2234
2235  /// IsArrow - True if this is "X->F", false if this is "X.F".
2236  bool IsArrow : 1;
2237
2238  /// \brief True if this member expression used a nested-name-specifier to
2239  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2240  /// declaration.  When true, a MemberNameQualifier
2241  /// structure is allocated immediately after the MemberExpr.
2242  bool HasQualifierOrFoundDecl : 1;
2243
2244  /// \brief True if this member expression specified a template keyword
2245  /// and/or a template argument list explicitly, e.g., x->f<int>,
2246  /// x->template f, x->template f<int>.
2247  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2248  /// TemplateArguments (if any) are allocated immediately after
2249  /// the MemberExpr or, if the member expression also has a qualifier,
2250  /// after the MemberNameQualifier structure.
2251  bool HasTemplateKWAndArgsInfo : 1;
2252
2253  /// \brief True if this member expression refers to a method that
2254  /// was resolved from an overloaded set having size greater than 1.
2255  bool HadMultipleCandidates : 1;
2256
2257  /// \brief Retrieve the qualifier that preceded the member name, if any.
2258  MemberNameQualifier *getMemberQualifier() {
2259    assert(HasQualifierOrFoundDecl);
2260    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2261  }
2262
2263  /// \brief Retrieve the qualifier that preceded the member name, if any.
2264  const MemberNameQualifier *getMemberQualifier() const {
2265    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2266  }
2267
2268public:
2269  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2270             const DeclarationNameInfo &NameInfo, QualType ty,
2271             ExprValueKind VK, ExprObjectKind OK)
2272    : Expr(MemberExprClass, ty, VK, OK,
2273           base->isTypeDependent(),
2274           base->isValueDependent(),
2275           base->isInstantiationDependent(),
2276           base->containsUnexpandedParameterPack()),
2277      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2278      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2279      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2280      HadMultipleCandidates(false) {
2281    assert(memberdecl->getDeclName() == NameInfo.getName());
2282  }
2283
2284  // NOTE: this constructor should be used only when it is known that
2285  // the member name can not provide additional syntactic info
2286  // (i.e., source locations for C++ operator names or type source info
2287  // for constructors, destructors and conversion operators).
2288  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2289             SourceLocation l, QualType ty,
2290             ExprValueKind VK, ExprObjectKind OK)
2291    : Expr(MemberExprClass, ty, VK, OK,
2292           base->isTypeDependent(), base->isValueDependent(),
2293           base->isInstantiationDependent(),
2294           base->containsUnexpandedParameterPack()),
2295      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2296      IsArrow(isarrow),
2297      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2298      HadMultipleCandidates(false) {}
2299
2300  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2301                            NestedNameSpecifierLoc QualifierLoc,
2302                            SourceLocation TemplateKWLoc,
2303                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2304                            DeclarationNameInfo MemberNameInfo,
2305                            const TemplateArgumentListInfo *targs,
2306                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2307
2308  void setBase(Expr *E) { Base = E; }
2309  Expr *getBase() const { return cast<Expr>(Base); }
2310
2311  /// \brief Retrieve the member declaration to which this expression refers.
2312  ///
2313  /// The returned declaration will either be a FieldDecl or (in C++)
2314  /// a CXXMethodDecl.
2315  ValueDecl *getMemberDecl() const { return MemberDecl; }
2316  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2317
2318  /// \brief Retrieves the declaration found by lookup.
2319  DeclAccessPair getFoundDecl() const {
2320    if (!HasQualifierOrFoundDecl)
2321      return DeclAccessPair::make(getMemberDecl(),
2322                                  getMemberDecl()->getAccess());
2323    return getMemberQualifier()->FoundDecl;
2324  }
2325
2326  /// \brief Determines whether this member expression actually had
2327  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2328  /// x->Base::foo.
2329  bool hasQualifier() const { return getQualifier() != 0; }
2330
2331  /// \brief If the member name was qualified, retrieves the
2332  /// nested-name-specifier that precedes the member name. Otherwise, returns
2333  /// NULL.
2334  NestedNameSpecifier *getQualifier() const {
2335    if (!HasQualifierOrFoundDecl)
2336      return 0;
2337
2338    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2339  }
2340
2341  /// \brief If the member name was qualified, retrieves the
2342  /// nested-name-specifier that precedes the member name, with source-location
2343  /// information.
2344  NestedNameSpecifierLoc getQualifierLoc() const {
2345    if (!hasQualifier())
2346      return NestedNameSpecifierLoc();
2347
2348    return getMemberQualifier()->QualifierLoc;
2349  }
2350
2351  /// \brief Return the optional template keyword and arguments info.
2352  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2353    if (!HasTemplateKWAndArgsInfo)
2354      return 0;
2355
2356    if (!HasQualifierOrFoundDecl)
2357      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2358
2359    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2360                                                      getMemberQualifier() + 1);
2361  }
2362
2363  /// \brief Return the optional template keyword and arguments info.
2364  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2365    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2366  }
2367
2368  /// \brief Retrieve the location of the template keyword preceding
2369  /// the member name, if any.
2370  SourceLocation getTemplateKeywordLoc() const {
2371    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2372    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2373  }
2374
2375  /// \brief Retrieve the location of the left angle bracket starting the
2376  /// explicit template argument list following the member name, if any.
2377  SourceLocation getLAngleLoc() const {
2378    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2379    return getTemplateKWAndArgsInfo()->LAngleLoc;
2380  }
2381
2382  /// \brief Retrieve the location of the right angle bracket ending the
2383  /// explicit template argument list following the member name, if any.
2384  SourceLocation getRAngleLoc() const {
2385    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2386    return getTemplateKWAndArgsInfo()->RAngleLoc;
2387  }
2388
2389  /// Determines whether the member name was preceded by the template keyword.
2390  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2391
2392  /// \brief Determines whether the member name was followed by an
2393  /// explicit template argument list.
2394  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2395
2396  /// \brief Copies the template arguments (if present) into the given
2397  /// structure.
2398  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2399    if (hasExplicitTemplateArgs())
2400      getExplicitTemplateArgs().copyInto(List);
2401  }
2402
2403  /// \brief Retrieve the explicit template argument list that
2404  /// follow the member template name.  This must only be called on an
2405  /// expression with explicit template arguments.
2406  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2407    assert(hasExplicitTemplateArgs());
2408    return *getTemplateKWAndArgsInfo();
2409  }
2410
2411  /// \brief Retrieve the explicit template argument list that
2412  /// followed the member template name.  This must only be called on
2413  /// an expression with explicit template arguments.
2414  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2415    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2416  }
2417
2418  /// \brief Retrieves the optional explicit template arguments.
2419  /// This points to the same data as getExplicitTemplateArgs(), but
2420  /// returns null if there are no explicit template arguments.
2421  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2422    if (!hasExplicitTemplateArgs()) return 0;
2423    return &getExplicitTemplateArgs();
2424  }
2425
2426  /// \brief Retrieve the template arguments provided as part of this
2427  /// template-id.
2428  const TemplateArgumentLoc *getTemplateArgs() const {
2429    if (!hasExplicitTemplateArgs())
2430      return 0;
2431
2432    return getExplicitTemplateArgs().getTemplateArgs();
2433  }
2434
2435  /// \brief Retrieve the number of template arguments provided as part of this
2436  /// template-id.
2437  unsigned getNumTemplateArgs() const {
2438    if (!hasExplicitTemplateArgs())
2439      return 0;
2440
2441    return getExplicitTemplateArgs().NumTemplateArgs;
2442  }
2443
2444  /// \brief Retrieve the member declaration name info.
2445  DeclarationNameInfo getMemberNameInfo() const {
2446    return DeclarationNameInfo(MemberDecl->getDeclName(),
2447                               MemberLoc, MemberDNLoc);
2448  }
2449
2450  bool isArrow() const { return IsArrow; }
2451  void setArrow(bool A) { IsArrow = A; }
2452
2453  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2454  /// location of 'F'.
2455  SourceLocation getMemberLoc() const { return MemberLoc; }
2456  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2457
2458  SourceRange getSourceRange() const LLVM_READONLY;
2459  SourceLocation getLocStart() const LLVM_READONLY;
2460  SourceLocation getLocEnd() const LLVM_READONLY;
2461
2462  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2463
2464  /// \brief Determine whether the base of this explicit is implicit.
2465  bool isImplicitAccess() const {
2466    return getBase() && getBase()->isImplicitCXXThis();
2467  }
2468
2469  /// \brief Returns true if this member expression refers to a method that
2470  /// was resolved from an overloaded set having size greater than 1.
2471  bool hadMultipleCandidates() const {
2472    return HadMultipleCandidates;
2473  }
2474  /// \brief Sets the flag telling whether this expression refers to
2475  /// a method that was resolved from an overloaded set having size
2476  /// greater than 1.
2477  void setHadMultipleCandidates(bool V = true) {
2478    HadMultipleCandidates = V;
2479  }
2480
2481  static bool classof(const Stmt *T) {
2482    return T->getStmtClass() == MemberExprClass;
2483  }
2484
2485  // Iterators
2486  child_range children() { return child_range(&Base, &Base+1); }
2487
2488  friend class ASTReader;
2489  friend class ASTStmtWriter;
2490};
2491
2492/// CompoundLiteralExpr - [C99 6.5.2.5]
2493///
2494class CompoundLiteralExpr : public Expr {
2495  /// LParenLoc - If non-null, this is the location of the left paren in a
2496  /// compound literal like "(int){4}".  This can be null if this is a
2497  /// synthesized compound expression.
2498  SourceLocation LParenLoc;
2499
2500  /// The type as written.  This can be an incomplete array type, in
2501  /// which case the actual expression type will be different.
2502  /// The int part of the pair stores whether this expr is file scope.
2503  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2504  Stmt *Init;
2505public:
2506  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2507                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2508    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2509           tinfo->getType()->isDependentType(),
2510           init->isValueDependent(),
2511           (init->isInstantiationDependent() ||
2512            tinfo->getType()->isInstantiationDependentType()),
2513           init->containsUnexpandedParameterPack()),
2514      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2515
2516  /// \brief Construct an empty compound literal.
2517  explicit CompoundLiteralExpr(EmptyShell Empty)
2518    : Expr(CompoundLiteralExprClass, Empty) { }
2519
2520  const Expr *getInitializer() const { return cast<Expr>(Init); }
2521  Expr *getInitializer() { return cast<Expr>(Init); }
2522  void setInitializer(Expr *E) { Init = E; }
2523
2524  bool isFileScope() const { return TInfoAndScope.getInt(); }
2525  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2526
2527  SourceLocation getLParenLoc() const { return LParenLoc; }
2528  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2529
2530  TypeSourceInfo *getTypeSourceInfo() const {
2531    return TInfoAndScope.getPointer();
2532  }
2533  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2534    TInfoAndScope.setPointer(tinfo);
2535  }
2536
2537  SourceRange getSourceRange() const LLVM_READONLY {
2538    // FIXME: Init should never be null.
2539    if (!Init)
2540      return SourceRange();
2541    if (LParenLoc.isInvalid())
2542      return Init->getSourceRange();
2543    return SourceRange(LParenLoc, Init->getLocEnd());
2544  }
2545
2546  static bool classof(const Stmt *T) {
2547    return T->getStmtClass() == CompoundLiteralExprClass;
2548  }
2549
2550  // Iterators
2551  child_range children() { return child_range(&Init, &Init+1); }
2552};
2553
2554/// CastExpr - Base class for type casts, including both implicit
2555/// casts (ImplicitCastExpr) and explicit casts that have some
2556/// representation in the source code (ExplicitCastExpr's derived
2557/// classes).
2558class CastExpr : public Expr {
2559public:
2560  typedef clang::CastKind CastKind;
2561
2562private:
2563  Stmt *Op;
2564
2565  void CheckCastConsistency() const;
2566
2567  const CXXBaseSpecifier * const *path_buffer() const {
2568    return const_cast<CastExpr*>(this)->path_buffer();
2569  }
2570  CXXBaseSpecifier **path_buffer();
2571
2572  void setBasePathSize(unsigned basePathSize) {
2573    CastExprBits.BasePathSize = basePathSize;
2574    assert(CastExprBits.BasePathSize == basePathSize &&
2575           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2576  }
2577
2578protected:
2579  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2580           const CastKind kind, Expr *op, unsigned BasePathSize) :
2581    Expr(SC, ty, VK, OK_Ordinary,
2582         // Cast expressions are type-dependent if the type is
2583         // dependent (C++ [temp.dep.expr]p3).
2584         ty->isDependentType(),
2585         // Cast expressions are value-dependent if the type is
2586         // dependent or if the subexpression is value-dependent.
2587         ty->isDependentType() || (op && op->isValueDependent()),
2588         (ty->isInstantiationDependentType() ||
2589          (op && op->isInstantiationDependent())),
2590         (ty->containsUnexpandedParameterPack() ||
2591          op->containsUnexpandedParameterPack())),
2592    Op(op) {
2593    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2594    CastExprBits.Kind = kind;
2595    setBasePathSize(BasePathSize);
2596#ifndef NDEBUG
2597    CheckCastConsistency();
2598#endif
2599  }
2600
2601  /// \brief Construct an empty cast.
2602  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2603    : Expr(SC, Empty) {
2604    setBasePathSize(BasePathSize);
2605  }
2606
2607public:
2608  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2609  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2610  const char *getCastKindName() const;
2611
2612  Expr *getSubExpr() { return cast<Expr>(Op); }
2613  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2614  void setSubExpr(Expr *E) { Op = E; }
2615
2616  /// \brief Retrieve the cast subexpression as it was written in the source
2617  /// code, looking through any implicit casts or other intermediate nodes
2618  /// introduced by semantic analysis.
2619  Expr *getSubExprAsWritten();
2620  const Expr *getSubExprAsWritten() const {
2621    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2622  }
2623
2624  typedef CXXBaseSpecifier **path_iterator;
2625  typedef const CXXBaseSpecifier * const *path_const_iterator;
2626  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2627  unsigned path_size() const { return CastExprBits.BasePathSize; }
2628  path_iterator path_begin() { return path_buffer(); }
2629  path_iterator path_end() { return path_buffer() + path_size(); }
2630  path_const_iterator path_begin() const { return path_buffer(); }
2631  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2632
2633  void setCastPath(const CXXCastPath &Path);
2634
2635  static bool classof(const Stmt *T) {
2636    return T->getStmtClass() >= firstCastExprConstant &&
2637           T->getStmtClass() <= lastCastExprConstant;
2638  }
2639
2640  // Iterators
2641  child_range children() { return child_range(&Op, &Op+1); }
2642};
2643
2644/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2645/// conversions, which have no direct representation in the original
2646/// source code. For example: converting T[]->T*, void f()->void
2647/// (*f)(), float->double, short->int, etc.
2648///
2649/// In C, implicit casts always produce rvalues. However, in C++, an
2650/// implicit cast whose result is being bound to a reference will be
2651/// an lvalue or xvalue. For example:
2652///
2653/// @code
2654/// class Base { };
2655/// class Derived : public Base { };
2656/// Derived &&ref();
2657/// void f(Derived d) {
2658///   Base& b = d; // initializer is an ImplicitCastExpr
2659///                // to an lvalue of type Base
2660///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2661///                     // to an xvalue of type Base
2662/// }
2663/// @endcode
2664class ImplicitCastExpr : public CastExpr {
2665private:
2666  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2667                   unsigned BasePathLength, ExprValueKind VK)
2668    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2669  }
2670
2671  /// \brief Construct an empty implicit cast.
2672  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2673    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2674
2675public:
2676  enum OnStack_t { OnStack };
2677  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2678                   ExprValueKind VK)
2679    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2680  }
2681
2682  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2683                                  CastKind Kind, Expr *Operand,
2684                                  const CXXCastPath *BasePath,
2685                                  ExprValueKind Cat);
2686
2687  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2688
2689  SourceRange getSourceRange() const LLVM_READONLY {
2690    return getSubExpr()->getSourceRange();
2691  }
2692  SourceLocation getLocStart() const LLVM_READONLY {
2693    return getSubExpr()->getLocStart();
2694  }
2695  SourceLocation getLocEnd() const LLVM_READONLY {
2696    return getSubExpr()->getLocEnd();
2697  }
2698
2699  static bool classof(const Stmt *T) {
2700    return T->getStmtClass() == ImplicitCastExprClass;
2701  }
2702};
2703
2704inline Expr *Expr::IgnoreImpCasts() {
2705  Expr *e = this;
2706  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2707    e = ice->getSubExpr();
2708  return e;
2709}
2710
2711/// ExplicitCastExpr - An explicit cast written in the source
2712/// code.
2713///
2714/// This class is effectively an abstract class, because it provides
2715/// the basic representation of an explicitly-written cast without
2716/// specifying which kind of cast (C cast, functional cast, static
2717/// cast, etc.) was written; specific derived classes represent the
2718/// particular style of cast and its location information.
2719///
2720/// Unlike implicit casts, explicit cast nodes have two different
2721/// types: the type that was written into the source code, and the
2722/// actual type of the expression as determined by semantic
2723/// analysis. These types may differ slightly. For example, in C++ one
2724/// can cast to a reference type, which indicates that the resulting
2725/// expression will be an lvalue or xvalue. The reference type, however,
2726/// will not be used as the type of the expression.
2727class ExplicitCastExpr : public CastExpr {
2728  /// TInfo - Source type info for the (written) type
2729  /// this expression is casting to.
2730  TypeSourceInfo *TInfo;
2731
2732protected:
2733  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2734                   CastKind kind, Expr *op, unsigned PathSize,
2735                   TypeSourceInfo *writtenTy)
2736    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2737
2738  /// \brief Construct an empty explicit cast.
2739  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2740    : CastExpr(SC, Shell, PathSize) { }
2741
2742public:
2743  /// getTypeInfoAsWritten - Returns the type source info for the type
2744  /// that this expression is casting to.
2745  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2746  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2747
2748  /// getTypeAsWritten - Returns the type that this expression is
2749  /// casting to, as written in the source code.
2750  QualType getTypeAsWritten() const { return TInfo->getType(); }
2751
2752  static bool classof(const Stmt *T) {
2753     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2754            T->getStmtClass() <= lastExplicitCastExprConstant;
2755  }
2756};
2757
2758/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2759/// cast in C++ (C++ [expr.cast]), which uses the syntax
2760/// (Type)expr. For example: @c (int)f.
2761class CStyleCastExpr : public ExplicitCastExpr {
2762  SourceLocation LPLoc; // the location of the left paren
2763  SourceLocation RPLoc; // the location of the right paren
2764
2765  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2766                 unsigned PathSize, TypeSourceInfo *writtenTy,
2767                 SourceLocation l, SourceLocation r)
2768    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2769                       writtenTy), LPLoc(l), RPLoc(r) {}
2770
2771  /// \brief Construct an empty C-style explicit cast.
2772  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2773    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2774
2775public:
2776  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2777                                ExprValueKind VK, CastKind K,
2778                                Expr *Op, const CXXCastPath *BasePath,
2779                                TypeSourceInfo *WrittenTy, SourceLocation L,
2780                                SourceLocation R);
2781
2782  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2783
2784  SourceLocation getLParenLoc() const { return LPLoc; }
2785  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2786
2787  SourceLocation getRParenLoc() const { return RPLoc; }
2788  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2789
2790  SourceRange getSourceRange() const LLVM_READONLY {
2791    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2792  }
2793  static bool classof(const Stmt *T) {
2794    return T->getStmtClass() == CStyleCastExprClass;
2795  }
2796};
2797
2798/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2799///
2800/// This expression node kind describes a builtin binary operation,
2801/// such as "x + y" for integer values "x" and "y". The operands will
2802/// already have been converted to appropriate types (e.g., by
2803/// performing promotions or conversions).
2804///
2805/// In C++, where operators may be overloaded, a different kind of
2806/// expression node (CXXOperatorCallExpr) is used to express the
2807/// invocation of an overloaded operator with operator syntax. Within
2808/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2809/// used to store an expression "x + y" depends on the subexpressions
2810/// for x and y. If neither x or y is type-dependent, and the "+"
2811/// operator resolves to a built-in operation, BinaryOperator will be
2812/// used to express the computation (x and y may still be
2813/// value-dependent). If either x or y is type-dependent, or if the
2814/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2815/// be used to express the computation.
2816class BinaryOperator : public Expr {
2817public:
2818  typedef BinaryOperatorKind Opcode;
2819
2820private:
2821  unsigned Opc : 6;
2822
2823  // Records the FP_CONTRACT pragma status at the point that this binary
2824  // operator was parsed. This bit is only meaningful for operations on
2825  // floating point types. For all other types it should default to
2826  // false.
2827  unsigned FPContractable : 1;
2828  SourceLocation OpLoc;
2829
2830  enum { LHS, RHS, END_EXPR };
2831  Stmt* SubExprs[END_EXPR];
2832public:
2833
2834  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2835                 ExprValueKind VK, ExprObjectKind OK,
2836                 SourceLocation opLoc, bool fpContractable)
2837    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2838           lhs->isTypeDependent() || rhs->isTypeDependent(),
2839           lhs->isValueDependent() || rhs->isValueDependent(),
2840           (lhs->isInstantiationDependent() ||
2841            rhs->isInstantiationDependent()),
2842           (lhs->containsUnexpandedParameterPack() ||
2843            rhs->containsUnexpandedParameterPack())),
2844      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2845    SubExprs[LHS] = lhs;
2846    SubExprs[RHS] = rhs;
2847    assert(!isCompoundAssignmentOp() &&
2848           "Use ArithAssignBinaryOperator for compound assignments");
2849  }
2850
2851  /// \brief Construct an empty binary operator.
2852  explicit BinaryOperator(EmptyShell Empty)
2853    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2854
2855  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2856  SourceLocation getOperatorLoc() const { return OpLoc; }
2857  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2858
2859  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2860  void setOpcode(Opcode O) { Opc = O; }
2861
2862  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2863  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2864  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2865  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2866
2867  SourceRange getSourceRange() const LLVM_READONLY {
2868    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2869  }
2870
2871  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2872  /// corresponds to, e.g. "<<=".
2873  static StringRef getOpcodeStr(Opcode Op);
2874
2875  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2876
2877  /// \brief Retrieve the binary opcode that corresponds to the given
2878  /// overloaded operator.
2879  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2880
2881  /// \brief Retrieve the overloaded operator kind that corresponds to
2882  /// the given binary opcode.
2883  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2884
2885  /// predicates to categorize the respective opcodes.
2886  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2887  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2888  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2889  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2890  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2891  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2892
2893  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2894  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2895
2896  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2897  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2898
2899  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2900  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2901
2902  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2903  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2904
2905  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2906  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2907
2908  static bool isAssignmentOp(Opcode Opc) {
2909    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2910  }
2911  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2912
2913  static bool isCompoundAssignmentOp(Opcode Opc) {
2914    return Opc > BO_Assign && Opc <= BO_OrAssign;
2915  }
2916  bool isCompoundAssignmentOp() const {
2917    return isCompoundAssignmentOp(getOpcode());
2918  }
2919  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2920    assert(isCompoundAssignmentOp(Opc));
2921    if (Opc >= BO_AndAssign)
2922      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2923    else
2924      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2925  }
2926
2927  static bool isShiftAssignOp(Opcode Opc) {
2928    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2929  }
2930  bool isShiftAssignOp() const {
2931    return isShiftAssignOp(getOpcode());
2932  }
2933
2934  static bool classof(const Stmt *S) {
2935    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2936           S->getStmtClass() <= lastBinaryOperatorConstant;
2937  }
2938
2939  // Iterators
2940  child_range children() {
2941    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2942  }
2943
2944  // Set the FP contractability status of this operator. Only meaningful for
2945  // operations on floating point types.
2946  void setFPContractable(bool FPC) { FPContractable = FPC; }
2947
2948  // Get the FP contractability status of this operator. Only meaningful for
2949  // operations on floating point types.
2950  bool isFPContractable() const { return FPContractable; }
2951
2952protected:
2953  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2954                 ExprValueKind VK, ExprObjectKind OK,
2955                 SourceLocation opLoc, bool fpContractable, bool dead2)
2956    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2957           lhs->isTypeDependent() || rhs->isTypeDependent(),
2958           lhs->isValueDependent() || rhs->isValueDependent(),
2959           (lhs->isInstantiationDependent() ||
2960            rhs->isInstantiationDependent()),
2961           (lhs->containsUnexpandedParameterPack() ||
2962            rhs->containsUnexpandedParameterPack())),
2963      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2964    SubExprs[LHS] = lhs;
2965    SubExprs[RHS] = rhs;
2966  }
2967
2968  BinaryOperator(StmtClass SC, EmptyShell Empty)
2969    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2970};
2971
2972/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2973/// track of the type the operation is performed in.  Due to the semantics of
2974/// these operators, the operands are promoted, the arithmetic performed, an
2975/// implicit conversion back to the result type done, then the assignment takes
2976/// place.  This captures the intermediate type which the computation is done
2977/// in.
2978class CompoundAssignOperator : public BinaryOperator {
2979  QualType ComputationLHSType;
2980  QualType ComputationResultType;
2981public:
2982  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2983                         ExprValueKind VK, ExprObjectKind OK,
2984                         QualType CompLHSType, QualType CompResultType,
2985                         SourceLocation OpLoc, bool fpContractable)
2986    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
2987                     true),
2988      ComputationLHSType(CompLHSType),
2989      ComputationResultType(CompResultType) {
2990    assert(isCompoundAssignmentOp() &&
2991           "Only should be used for compound assignments");
2992  }
2993
2994  /// \brief Build an empty compound assignment operator expression.
2995  explicit CompoundAssignOperator(EmptyShell Empty)
2996    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2997
2998  // The two computation types are the type the LHS is converted
2999  // to for the computation and the type of the result; the two are
3000  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3001  QualType getComputationLHSType() const { return ComputationLHSType; }
3002  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3003
3004  QualType getComputationResultType() const { return ComputationResultType; }
3005  void setComputationResultType(QualType T) { ComputationResultType = T; }
3006
3007  static bool classof(const Stmt *S) {
3008    return S->getStmtClass() == CompoundAssignOperatorClass;
3009  }
3010};
3011
3012/// AbstractConditionalOperator - An abstract base class for
3013/// ConditionalOperator and BinaryConditionalOperator.
3014class AbstractConditionalOperator : public Expr {
3015  SourceLocation QuestionLoc, ColonLoc;
3016  friend class ASTStmtReader;
3017
3018protected:
3019  AbstractConditionalOperator(StmtClass SC, QualType T,
3020                              ExprValueKind VK, ExprObjectKind OK,
3021                              bool TD, bool VD, bool ID,
3022                              bool ContainsUnexpandedParameterPack,
3023                              SourceLocation qloc,
3024                              SourceLocation cloc)
3025    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3026      QuestionLoc(qloc), ColonLoc(cloc) {}
3027
3028  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3029    : Expr(SC, Empty) { }
3030
3031public:
3032  // getCond - Return the expression representing the condition for
3033  //   the ?: operator.
3034  Expr *getCond() const;
3035
3036  // getTrueExpr - Return the subexpression representing the value of
3037  //   the expression if the condition evaluates to true.
3038  Expr *getTrueExpr() const;
3039
3040  // getFalseExpr - Return the subexpression representing the value of
3041  //   the expression if the condition evaluates to false.  This is
3042  //   the same as getRHS.
3043  Expr *getFalseExpr() const;
3044
3045  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3046  SourceLocation getColonLoc() const { return ColonLoc; }
3047
3048  static bool classof(const Stmt *T) {
3049    return T->getStmtClass() == ConditionalOperatorClass ||
3050           T->getStmtClass() == BinaryConditionalOperatorClass;
3051  }
3052};
3053
3054/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3055/// middle" extension is a BinaryConditionalOperator.
3056class ConditionalOperator : public AbstractConditionalOperator {
3057  enum { COND, LHS, RHS, END_EXPR };
3058  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3059
3060  friend class ASTStmtReader;
3061public:
3062  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3063                      SourceLocation CLoc, Expr *rhs,
3064                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3065    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3066           // FIXME: the type of the conditional operator doesn't
3067           // depend on the type of the conditional, but the standard
3068           // seems to imply that it could. File a bug!
3069           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3070           (cond->isValueDependent() || lhs->isValueDependent() ||
3071            rhs->isValueDependent()),
3072           (cond->isInstantiationDependent() ||
3073            lhs->isInstantiationDependent() ||
3074            rhs->isInstantiationDependent()),
3075           (cond->containsUnexpandedParameterPack() ||
3076            lhs->containsUnexpandedParameterPack() ||
3077            rhs->containsUnexpandedParameterPack()),
3078                                  QLoc, CLoc) {
3079    SubExprs[COND] = cond;
3080    SubExprs[LHS] = lhs;
3081    SubExprs[RHS] = rhs;
3082  }
3083
3084  /// \brief Build an empty conditional operator.
3085  explicit ConditionalOperator(EmptyShell Empty)
3086    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3087
3088  // getCond - Return the expression representing the condition for
3089  //   the ?: operator.
3090  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3091
3092  // getTrueExpr - Return the subexpression representing the value of
3093  //   the expression if the condition evaluates to true.
3094  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3095
3096  // getFalseExpr - Return the subexpression representing the value of
3097  //   the expression if the condition evaluates to false.  This is
3098  //   the same as getRHS.
3099  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3100
3101  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3102  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3103
3104  SourceRange getSourceRange() const LLVM_READONLY {
3105    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3106  }
3107  static bool classof(const Stmt *T) {
3108    return T->getStmtClass() == ConditionalOperatorClass;
3109  }
3110
3111  // Iterators
3112  child_range children() {
3113    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3114  }
3115};
3116
3117/// BinaryConditionalOperator - The GNU extension to the conditional
3118/// operator which allows the middle operand to be omitted.
3119///
3120/// This is a different expression kind on the assumption that almost
3121/// every client ends up needing to know that these are different.
3122class BinaryConditionalOperator : public AbstractConditionalOperator {
3123  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3124
3125  /// - the common condition/left-hand-side expression, which will be
3126  ///   evaluated as the opaque value
3127  /// - the condition, expressed in terms of the opaque value
3128  /// - the left-hand-side, expressed in terms of the opaque value
3129  /// - the right-hand-side
3130  Stmt *SubExprs[NUM_SUBEXPRS];
3131  OpaqueValueExpr *OpaqueValue;
3132
3133  friend class ASTStmtReader;
3134public:
3135  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3136                            Expr *cond, Expr *lhs, Expr *rhs,
3137                            SourceLocation qloc, SourceLocation cloc,
3138                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3139    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3140           (common->isTypeDependent() || rhs->isTypeDependent()),
3141           (common->isValueDependent() || rhs->isValueDependent()),
3142           (common->isInstantiationDependent() ||
3143            rhs->isInstantiationDependent()),
3144           (common->containsUnexpandedParameterPack() ||
3145            rhs->containsUnexpandedParameterPack()),
3146                                  qloc, cloc),
3147      OpaqueValue(opaqueValue) {
3148    SubExprs[COMMON] = common;
3149    SubExprs[COND] = cond;
3150    SubExprs[LHS] = lhs;
3151    SubExprs[RHS] = rhs;
3152    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3153  }
3154
3155  /// \brief Build an empty conditional operator.
3156  explicit BinaryConditionalOperator(EmptyShell Empty)
3157    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3158
3159  /// \brief getCommon - Return the common expression, written to the
3160  ///   left of the condition.  The opaque value will be bound to the
3161  ///   result of this expression.
3162  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3163
3164  /// \brief getOpaqueValue - Return the opaque value placeholder.
3165  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3166
3167  /// \brief getCond - Return the condition expression; this is defined
3168  ///   in terms of the opaque value.
3169  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3170
3171  /// \brief getTrueExpr - Return the subexpression which will be
3172  ///   evaluated if the condition evaluates to true;  this is defined
3173  ///   in terms of the opaque value.
3174  Expr *getTrueExpr() const {
3175    return cast<Expr>(SubExprs[LHS]);
3176  }
3177
3178  /// \brief getFalseExpr - Return the subexpression which will be
3179  ///   evaluated if the condnition evaluates to false; this is
3180  ///   defined in terms of the opaque value.
3181  Expr *getFalseExpr() const {
3182    return cast<Expr>(SubExprs[RHS]);
3183  }
3184
3185  SourceRange getSourceRange() const LLVM_READONLY {
3186    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3187  }
3188  static bool classof(const Stmt *T) {
3189    return T->getStmtClass() == BinaryConditionalOperatorClass;
3190  }
3191
3192  // Iterators
3193  child_range children() {
3194    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3195  }
3196};
3197
3198inline Expr *AbstractConditionalOperator::getCond() const {
3199  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3200    return co->getCond();
3201  return cast<BinaryConditionalOperator>(this)->getCond();
3202}
3203
3204inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3205  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3206    return co->getTrueExpr();
3207  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3208}
3209
3210inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3211  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3212    return co->getFalseExpr();
3213  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3214}
3215
3216/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3217class AddrLabelExpr : public Expr {
3218  SourceLocation AmpAmpLoc, LabelLoc;
3219  LabelDecl *Label;
3220public:
3221  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3222                QualType t)
3223    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3224           false),
3225      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3226
3227  /// \brief Build an empty address of a label expression.
3228  explicit AddrLabelExpr(EmptyShell Empty)
3229    : Expr(AddrLabelExprClass, Empty) { }
3230
3231  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3232  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3233  SourceLocation getLabelLoc() const { return LabelLoc; }
3234  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3235
3236  SourceRange getSourceRange() const LLVM_READONLY {
3237    return SourceRange(AmpAmpLoc, LabelLoc);
3238  }
3239
3240  LabelDecl *getLabel() const { return Label; }
3241  void setLabel(LabelDecl *L) { Label = L; }
3242
3243  static bool classof(const Stmt *T) {
3244    return T->getStmtClass() == AddrLabelExprClass;
3245  }
3246
3247  // Iterators
3248  child_range children() { return child_range(); }
3249};
3250
3251/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3252/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3253/// takes the value of the last subexpression.
3254///
3255/// A StmtExpr is always an r-value; values "returned" out of a
3256/// StmtExpr will be copied.
3257class StmtExpr : public Expr {
3258  Stmt *SubStmt;
3259  SourceLocation LParenLoc, RParenLoc;
3260public:
3261  // FIXME: Does type-dependence need to be computed differently?
3262  // FIXME: Do we need to compute instantiation instantiation-dependence for
3263  // statements? (ugh!)
3264  StmtExpr(CompoundStmt *substmt, QualType T,
3265           SourceLocation lp, SourceLocation rp) :
3266    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3267         T->isDependentType(), false, false, false),
3268    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3269
3270  /// \brief Build an empty statement expression.
3271  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3272
3273  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3274  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3275  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3276
3277  SourceRange getSourceRange() const LLVM_READONLY {
3278    return SourceRange(LParenLoc, RParenLoc);
3279  }
3280
3281  SourceLocation getLParenLoc() const { return LParenLoc; }
3282  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3283  SourceLocation getRParenLoc() const { return RParenLoc; }
3284  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3285
3286  static bool classof(const Stmt *T) {
3287    return T->getStmtClass() == StmtExprClass;
3288  }
3289
3290  // Iterators
3291  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3292};
3293
3294
3295/// ShuffleVectorExpr - clang-specific builtin-in function
3296/// __builtin_shufflevector.
3297/// This AST node represents a operator that does a constant
3298/// shuffle, similar to LLVM's shufflevector instruction. It takes
3299/// two vectors and a variable number of constant indices,
3300/// and returns the appropriately shuffled vector.
3301class ShuffleVectorExpr : public Expr {
3302  SourceLocation BuiltinLoc, RParenLoc;
3303
3304  // SubExprs - the list of values passed to the __builtin_shufflevector
3305  // function. The first two are vectors, and the rest are constant
3306  // indices.  The number of values in this list is always
3307  // 2+the number of indices in the vector type.
3308  Stmt **SubExprs;
3309  unsigned NumExprs;
3310
3311public:
3312  ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3313                    SourceLocation BLoc, SourceLocation RP);
3314
3315  /// \brief Build an empty vector-shuffle expression.
3316  explicit ShuffleVectorExpr(EmptyShell Empty)
3317    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3318
3319  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3320  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3321
3322  SourceLocation getRParenLoc() const { return RParenLoc; }
3323  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3324
3325  SourceRange getSourceRange() const LLVM_READONLY {
3326    return SourceRange(BuiltinLoc, RParenLoc);
3327  }
3328  static bool classof(const Stmt *T) {
3329    return T->getStmtClass() == ShuffleVectorExprClass;
3330  }
3331
3332  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3333  /// constant expression, the actual arguments passed in, and the function
3334  /// pointers.
3335  unsigned getNumSubExprs() const { return NumExprs; }
3336
3337  /// \brief Retrieve the array of expressions.
3338  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3339
3340  /// getExpr - Return the Expr at the specified index.
3341  Expr *getExpr(unsigned Index) {
3342    assert((Index < NumExprs) && "Arg access out of range!");
3343    return cast<Expr>(SubExprs[Index]);
3344  }
3345  const Expr *getExpr(unsigned Index) const {
3346    assert((Index < NumExprs) && "Arg access out of range!");
3347    return cast<Expr>(SubExprs[Index]);
3348  }
3349
3350  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3351
3352  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) const {
3353    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3354    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3355  }
3356
3357  // Iterators
3358  child_range children() {
3359    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3360  }
3361};
3362
3363/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3364/// This AST node is similar to the conditional operator (?:) in C, with
3365/// the following exceptions:
3366/// - the test expression must be a integer constant expression.
3367/// - the expression returned acts like the chosen subexpression in every
3368///   visible way: the type is the same as that of the chosen subexpression,
3369///   and all predicates (whether it's an l-value, whether it's an integer
3370///   constant expression, etc.) return the same result as for the chosen
3371///   sub-expression.
3372class ChooseExpr : public Expr {
3373  enum { COND, LHS, RHS, END_EXPR };
3374  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3375  SourceLocation BuiltinLoc, RParenLoc;
3376public:
3377  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3378             QualType t, ExprValueKind VK, ExprObjectKind OK,
3379             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3380    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3381           (cond->isInstantiationDependent() ||
3382            lhs->isInstantiationDependent() ||
3383            rhs->isInstantiationDependent()),
3384           (cond->containsUnexpandedParameterPack() ||
3385            lhs->containsUnexpandedParameterPack() ||
3386            rhs->containsUnexpandedParameterPack())),
3387      BuiltinLoc(BLoc), RParenLoc(RP) {
3388      SubExprs[COND] = cond;
3389      SubExprs[LHS] = lhs;
3390      SubExprs[RHS] = rhs;
3391    }
3392
3393  /// \brief Build an empty __builtin_choose_expr.
3394  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3395
3396  /// isConditionTrue - Return whether the condition is true (i.e. not
3397  /// equal to zero).
3398  bool isConditionTrue(const ASTContext &C) const;
3399
3400  /// getChosenSubExpr - Return the subexpression chosen according to the
3401  /// condition.
3402  Expr *getChosenSubExpr(const ASTContext &C) const {
3403    return isConditionTrue(C) ? getLHS() : getRHS();
3404  }
3405
3406  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3407  void setCond(Expr *E) { SubExprs[COND] = E; }
3408  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3409  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3410  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3411  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3412
3413  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3414  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3415
3416  SourceLocation getRParenLoc() const { return RParenLoc; }
3417  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3418
3419  SourceRange getSourceRange() const LLVM_READONLY {
3420    return SourceRange(BuiltinLoc, RParenLoc);
3421  }
3422  static bool classof(const Stmt *T) {
3423    return T->getStmtClass() == ChooseExprClass;
3424  }
3425
3426  // Iterators
3427  child_range children() {
3428    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3429  }
3430};
3431
3432/// GNUNullExpr - Implements the GNU __null extension, which is a name
3433/// for a null pointer constant that has integral type (e.g., int or
3434/// long) and is the same size and alignment as a pointer. The __null
3435/// extension is typically only used by system headers, which define
3436/// NULL as __null in C++ rather than using 0 (which is an integer
3437/// that may not match the size of a pointer).
3438class GNUNullExpr : public Expr {
3439  /// TokenLoc - The location of the __null keyword.
3440  SourceLocation TokenLoc;
3441
3442public:
3443  GNUNullExpr(QualType Ty, SourceLocation Loc)
3444    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3445           false),
3446      TokenLoc(Loc) { }
3447
3448  /// \brief Build an empty GNU __null expression.
3449  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3450
3451  /// getTokenLocation - The location of the __null token.
3452  SourceLocation getTokenLocation() const { return TokenLoc; }
3453  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3454
3455  SourceRange getSourceRange() const LLVM_READONLY {
3456    return SourceRange(TokenLoc);
3457  }
3458  static bool classof(const Stmt *T) {
3459    return T->getStmtClass() == GNUNullExprClass;
3460  }
3461
3462  // Iterators
3463  child_range children() { return child_range(); }
3464};
3465
3466/// VAArgExpr, used for the builtin function __builtin_va_arg.
3467class VAArgExpr : public Expr {
3468  Stmt *Val;
3469  TypeSourceInfo *TInfo;
3470  SourceLocation BuiltinLoc, RParenLoc;
3471public:
3472  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3473            SourceLocation RPLoc, QualType t)
3474    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3475           t->isDependentType(), false,
3476           (TInfo->getType()->isInstantiationDependentType() ||
3477            e->isInstantiationDependent()),
3478           (TInfo->getType()->containsUnexpandedParameterPack() ||
3479            e->containsUnexpandedParameterPack())),
3480      Val(e), TInfo(TInfo),
3481      BuiltinLoc(BLoc),
3482      RParenLoc(RPLoc) { }
3483
3484  /// \brief Create an empty __builtin_va_arg expression.
3485  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3486
3487  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3488  Expr *getSubExpr() { return cast<Expr>(Val); }
3489  void setSubExpr(Expr *E) { Val = E; }
3490
3491  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3492  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3493
3494  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3495  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3496
3497  SourceLocation getRParenLoc() const { return RParenLoc; }
3498  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3499
3500  SourceRange getSourceRange() const LLVM_READONLY {
3501    return SourceRange(BuiltinLoc, RParenLoc);
3502  }
3503  static bool classof(const Stmt *T) {
3504    return T->getStmtClass() == VAArgExprClass;
3505  }
3506
3507  // Iterators
3508  child_range children() { return child_range(&Val, &Val+1); }
3509};
3510
3511/// @brief Describes an C or C++ initializer list.
3512///
3513/// InitListExpr describes an initializer list, which can be used to
3514/// initialize objects of different types, including
3515/// struct/class/union types, arrays, and vectors. For example:
3516///
3517/// @code
3518/// struct foo x = { 1, { 2, 3 } };
3519/// @endcode
3520///
3521/// Prior to semantic analysis, an initializer list will represent the
3522/// initializer list as written by the user, but will have the
3523/// placeholder type "void". This initializer list is called the
3524/// syntactic form of the initializer, and may contain C99 designated
3525/// initializers (represented as DesignatedInitExprs), initializations
3526/// of subobject members without explicit braces, and so on. Clients
3527/// interested in the original syntax of the initializer list should
3528/// use the syntactic form of the initializer list.
3529///
3530/// After semantic analysis, the initializer list will represent the
3531/// semantic form of the initializer, where the initializations of all
3532/// subobjects are made explicit with nested InitListExpr nodes and
3533/// C99 designators have been eliminated by placing the designated
3534/// initializations into the subobject they initialize. Additionally,
3535/// any "holes" in the initialization, where no initializer has been
3536/// specified for a particular subobject, will be replaced with
3537/// implicitly-generated ImplicitValueInitExpr expressions that
3538/// value-initialize the subobjects. Note, however, that the
3539/// initializer lists may still have fewer initializers than there are
3540/// elements to initialize within the object.
3541///
3542/// After semantic analysis has completed, given an initializer list,
3543/// method isSemanticForm() returns true if and only if this is the
3544/// semantic form of the initializer list (note: the same AST node
3545/// may at the same time be the syntactic form).
3546/// Given the semantic form of the initializer list, one can retrieve
3547/// the syntactic form of that initializer list (when different)
3548/// using method getSyntacticForm(); the method returns null if applied
3549/// to a initializer list which is already in syntactic form.
3550/// Similarly, given the syntactic form (i.e., an initializer list such
3551/// that isSemanticForm() returns false), one can retrieve the semantic
3552/// form using method getSemanticForm().
3553/// Since many initializer lists have the same syntactic and semantic forms,
3554/// getSyntacticForm() may return NULL, indicating that the current
3555/// semantic initializer list also serves as its syntactic form.
3556class InitListExpr : public Expr {
3557  // FIXME: Eliminate this vector in favor of ASTContext allocation
3558  typedef ASTVector<Stmt *> InitExprsTy;
3559  InitExprsTy InitExprs;
3560  SourceLocation LBraceLoc, RBraceLoc;
3561
3562  /// The alternative form of the initializer list (if it exists).
3563  /// The int part of the pair stores whether this initalizer list is
3564  /// in semantic form. If not null, the pointer points to:
3565  ///   - the syntactic form, if this is in semantic form;
3566  ///   - the semantic form, if this is in syntactic form.
3567  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3568
3569  /// \brief Either:
3570  ///  If this initializer list initializes an array with more elements than
3571  ///  there are initializers in the list, specifies an expression to be used
3572  ///  for value initialization of the rest of the elements.
3573  /// Or
3574  ///  If this initializer list initializes a union, specifies which
3575  ///  field within the union will be initialized.
3576  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3577
3578public:
3579  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3580               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3581
3582  /// \brief Build an empty initializer list.
3583  explicit InitListExpr(EmptyShell Empty)
3584    : Expr(InitListExprClass, Empty) { }
3585
3586  unsigned getNumInits() const { return InitExprs.size(); }
3587
3588  /// \brief Retrieve the set of initializers.
3589  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3590
3591  const Expr *getInit(unsigned Init) const {
3592    assert(Init < getNumInits() && "Initializer access out of range!");
3593    return cast_or_null<Expr>(InitExprs[Init]);
3594  }
3595
3596  Expr *getInit(unsigned Init) {
3597    assert(Init < getNumInits() && "Initializer access out of range!");
3598    return cast_or_null<Expr>(InitExprs[Init]);
3599  }
3600
3601  void setInit(unsigned Init, Expr *expr) {
3602    assert(Init < getNumInits() && "Initializer access out of range!");
3603    InitExprs[Init] = expr;
3604  }
3605
3606  /// \brief Reserve space for some number of initializers.
3607  void reserveInits(ASTContext &C, unsigned NumInits);
3608
3609  /// @brief Specify the number of initializers
3610  ///
3611  /// If there are more than @p NumInits initializers, the remaining
3612  /// initializers will be destroyed. If there are fewer than @p
3613  /// NumInits initializers, NULL expressions will be added for the
3614  /// unknown initializers.
3615  void resizeInits(ASTContext &Context, unsigned NumInits);
3616
3617  /// @brief Updates the initializer at index @p Init with the new
3618  /// expression @p expr, and returns the old expression at that
3619  /// location.
3620  ///
3621  /// When @p Init is out of range for this initializer list, the
3622  /// initializer list will be extended with NULL expressions to
3623  /// accommodate the new entry.
3624  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3625
3626  /// \brief If this initializer list initializes an array with more elements
3627  /// than there are initializers in the list, specifies an expression to be
3628  /// used for value initialization of the rest of the elements.
3629  Expr *getArrayFiller() {
3630    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3631  }
3632  const Expr *getArrayFiller() const {
3633    return const_cast<InitListExpr *>(this)->getArrayFiller();
3634  }
3635  void setArrayFiller(Expr *filler);
3636
3637  /// \brief Return true if this is an array initializer and its array "filler"
3638  /// has been set.
3639  bool hasArrayFiller() const { return getArrayFiller(); }
3640
3641  /// \brief If this initializes a union, specifies which field in the
3642  /// union to initialize.
3643  ///
3644  /// Typically, this field is the first named field within the
3645  /// union. However, a designated initializer can specify the
3646  /// initialization of a different field within the union.
3647  FieldDecl *getInitializedFieldInUnion() {
3648    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3649  }
3650  const FieldDecl *getInitializedFieldInUnion() const {
3651    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3652  }
3653  void setInitializedFieldInUnion(FieldDecl *FD) {
3654    ArrayFillerOrUnionFieldInit = FD;
3655  }
3656
3657  // Explicit InitListExpr's originate from source code (and have valid source
3658  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3659  bool isExplicit() {
3660    return LBraceLoc.isValid() && RBraceLoc.isValid();
3661  }
3662
3663  // Is this an initializer for an array of characters, initialized by a string
3664  // literal or an @encode?
3665  bool isStringLiteralInit() const;
3666
3667  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3668  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3669  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3670  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3671
3672  bool isSemanticForm() const { return AltForm.getInt(); }
3673  InitListExpr *getSemanticForm() const {
3674    return isSemanticForm() ? 0 : AltForm.getPointer();
3675  }
3676  InitListExpr *getSyntacticForm() const {
3677    return isSemanticForm() ? AltForm.getPointer() : 0;
3678  }
3679
3680  void setSyntacticForm(InitListExpr *Init) {
3681    AltForm.setPointer(Init);
3682    AltForm.setInt(true);
3683    Init->AltForm.setPointer(this);
3684    Init->AltForm.setInt(false);
3685  }
3686
3687  bool hadArrayRangeDesignator() const {
3688    return InitListExprBits.HadArrayRangeDesignator != 0;
3689  }
3690  void sawArrayRangeDesignator(bool ARD = true) {
3691    InitListExprBits.HadArrayRangeDesignator = ARD;
3692  }
3693
3694  bool initializesStdInitializerList() const {
3695    return InitListExprBits.InitializesStdInitializerList != 0;
3696  }
3697  void setInitializesStdInitializerList(bool ISIL = true) {
3698    InitListExprBits.InitializesStdInitializerList = ISIL;
3699  }
3700
3701  SourceRange getSourceRange() const LLVM_READONLY;
3702
3703  static bool classof(const Stmt *T) {
3704    return T->getStmtClass() == InitListExprClass;
3705  }
3706
3707  // Iterators
3708  child_range children() {
3709    if (InitExprs.empty()) return child_range();
3710    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3711  }
3712
3713  typedef InitExprsTy::iterator iterator;
3714  typedef InitExprsTy::const_iterator const_iterator;
3715  typedef InitExprsTy::reverse_iterator reverse_iterator;
3716  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3717
3718  iterator begin() { return InitExprs.begin(); }
3719  const_iterator begin() const { return InitExprs.begin(); }
3720  iterator end() { return InitExprs.end(); }
3721  const_iterator end() const { return InitExprs.end(); }
3722  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3723  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3724  reverse_iterator rend() { return InitExprs.rend(); }
3725  const_reverse_iterator rend() const { return InitExprs.rend(); }
3726
3727  friend class ASTStmtReader;
3728  friend class ASTStmtWriter;
3729};
3730
3731/// @brief Represents a C99 designated initializer expression.
3732///
3733/// A designated initializer expression (C99 6.7.8) contains one or
3734/// more designators (which can be field designators, array
3735/// designators, or GNU array-range designators) followed by an
3736/// expression that initializes the field or element(s) that the
3737/// designators refer to. For example, given:
3738///
3739/// @code
3740/// struct point {
3741///   double x;
3742///   double y;
3743/// };
3744/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3745/// @endcode
3746///
3747/// The InitListExpr contains three DesignatedInitExprs, the first of
3748/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3749/// designators, one array designator for @c [2] followed by one field
3750/// designator for @c .y. The initalization expression will be 1.0.
3751class DesignatedInitExpr : public Expr {
3752public:
3753  /// \brief Forward declaration of the Designator class.
3754  class Designator;
3755
3756private:
3757  /// The location of the '=' or ':' prior to the actual initializer
3758  /// expression.
3759  SourceLocation EqualOrColonLoc;
3760
3761  /// Whether this designated initializer used the GNU deprecated
3762  /// syntax rather than the C99 '=' syntax.
3763  bool GNUSyntax : 1;
3764
3765  /// The number of designators in this initializer expression.
3766  unsigned NumDesignators : 15;
3767
3768  /// The number of subexpressions of this initializer expression,
3769  /// which contains both the initializer and any additional
3770  /// expressions used by array and array-range designators.
3771  unsigned NumSubExprs : 16;
3772
3773  /// \brief The designators in this designated initialization
3774  /// expression.
3775  Designator *Designators;
3776
3777
3778  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3779                     const Designator *Designators,
3780                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3781                     ArrayRef<Expr*> IndexExprs, Expr *Init);
3782
3783  explicit DesignatedInitExpr(unsigned NumSubExprs)
3784    : Expr(DesignatedInitExprClass, EmptyShell()),
3785      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3786
3787public:
3788  /// A field designator, e.g., ".x".
3789  struct FieldDesignator {
3790    /// Refers to the field that is being initialized. The low bit
3791    /// of this field determines whether this is actually a pointer
3792    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3793    /// initially constructed, a field designator will store an
3794    /// IdentifierInfo*. After semantic analysis has resolved that
3795    /// name, the field designator will instead store a FieldDecl*.
3796    uintptr_t NameOrField;
3797
3798    /// The location of the '.' in the designated initializer.
3799    unsigned DotLoc;
3800
3801    /// The location of the field name in the designated initializer.
3802    unsigned FieldLoc;
3803  };
3804
3805  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3806  struct ArrayOrRangeDesignator {
3807    /// Location of the first index expression within the designated
3808    /// initializer expression's list of subexpressions.
3809    unsigned Index;
3810    /// The location of the '[' starting the array range designator.
3811    unsigned LBracketLoc;
3812    /// The location of the ellipsis separating the start and end
3813    /// indices. Only valid for GNU array-range designators.
3814    unsigned EllipsisLoc;
3815    /// The location of the ']' terminating the array range designator.
3816    unsigned RBracketLoc;
3817  };
3818
3819  /// @brief Represents a single C99 designator.
3820  ///
3821  /// @todo This class is infuriatingly similar to clang::Designator,
3822  /// but minor differences (storing indices vs. storing pointers)
3823  /// keep us from reusing it. Try harder, later, to rectify these
3824  /// differences.
3825  class Designator {
3826    /// @brief The kind of designator this describes.
3827    enum {
3828      FieldDesignator,
3829      ArrayDesignator,
3830      ArrayRangeDesignator
3831    } Kind;
3832
3833    union {
3834      /// A field designator, e.g., ".x".
3835      struct FieldDesignator Field;
3836      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3837      struct ArrayOrRangeDesignator ArrayOrRange;
3838    };
3839    friend class DesignatedInitExpr;
3840
3841  public:
3842    Designator() {}
3843
3844    /// @brief Initializes a field designator.
3845    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3846               SourceLocation FieldLoc)
3847      : Kind(FieldDesignator) {
3848      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3849      Field.DotLoc = DotLoc.getRawEncoding();
3850      Field.FieldLoc = FieldLoc.getRawEncoding();
3851    }
3852
3853    /// @brief Initializes an array designator.
3854    Designator(unsigned Index, SourceLocation LBracketLoc,
3855               SourceLocation RBracketLoc)
3856      : Kind(ArrayDesignator) {
3857      ArrayOrRange.Index = Index;
3858      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3859      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3860      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3861    }
3862
3863    /// @brief Initializes a GNU array-range designator.
3864    Designator(unsigned Index, SourceLocation LBracketLoc,
3865               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3866      : Kind(ArrayRangeDesignator) {
3867      ArrayOrRange.Index = Index;
3868      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3869      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3870      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3871    }
3872
3873    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3874    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3875    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3876
3877    IdentifierInfo *getFieldName() const;
3878
3879    FieldDecl *getField() const {
3880      assert(Kind == FieldDesignator && "Only valid on a field designator");
3881      if (Field.NameOrField & 0x01)
3882        return 0;
3883      else
3884        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3885    }
3886
3887    void setField(FieldDecl *FD) {
3888      assert(Kind == FieldDesignator && "Only valid on a field designator");
3889      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3890    }
3891
3892    SourceLocation getDotLoc() const {
3893      assert(Kind == FieldDesignator && "Only valid on a field designator");
3894      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3895    }
3896
3897    SourceLocation getFieldLoc() const {
3898      assert(Kind == FieldDesignator && "Only valid on a field designator");
3899      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3900    }
3901
3902    SourceLocation getLBracketLoc() const {
3903      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3904             "Only valid on an array or array-range designator");
3905      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3906    }
3907
3908    SourceLocation getRBracketLoc() const {
3909      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3910             "Only valid on an array or array-range designator");
3911      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3912    }
3913
3914    SourceLocation getEllipsisLoc() const {
3915      assert(Kind == ArrayRangeDesignator &&
3916             "Only valid on an array-range designator");
3917      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3918    }
3919
3920    unsigned getFirstExprIndex() const {
3921      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3922             "Only valid on an array or array-range designator");
3923      return ArrayOrRange.Index;
3924    }
3925
3926    SourceLocation getStartLocation() const {
3927      if (Kind == FieldDesignator)
3928        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3929      else
3930        return getLBracketLoc();
3931    }
3932    SourceLocation getEndLocation() const {
3933      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3934    }
3935    SourceRange getSourceRange() const LLVM_READONLY {
3936      return SourceRange(getStartLocation(), getEndLocation());
3937    }
3938  };
3939
3940  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3941                                    unsigned NumDesignators,
3942                                    ArrayRef<Expr*> IndexExprs,
3943                                    SourceLocation EqualOrColonLoc,
3944                                    bool GNUSyntax, Expr *Init);
3945
3946  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3947
3948  /// @brief Returns the number of designators in this initializer.
3949  unsigned size() const { return NumDesignators; }
3950
3951  // Iterator access to the designators.
3952  typedef Designator *designators_iterator;
3953  designators_iterator designators_begin() { return Designators; }
3954  designators_iterator designators_end() {
3955    return Designators + NumDesignators;
3956  }
3957
3958  typedef const Designator *const_designators_iterator;
3959  const_designators_iterator designators_begin() const { return Designators; }
3960  const_designators_iterator designators_end() const {
3961    return Designators + NumDesignators;
3962  }
3963
3964  typedef std::reverse_iterator<designators_iterator>
3965          reverse_designators_iterator;
3966  reverse_designators_iterator designators_rbegin() {
3967    return reverse_designators_iterator(designators_end());
3968  }
3969  reverse_designators_iterator designators_rend() {
3970    return reverse_designators_iterator(designators_begin());
3971  }
3972
3973  typedef std::reverse_iterator<const_designators_iterator>
3974          const_reverse_designators_iterator;
3975  const_reverse_designators_iterator designators_rbegin() const {
3976    return const_reverse_designators_iterator(designators_end());
3977  }
3978  const_reverse_designators_iterator designators_rend() const {
3979    return const_reverse_designators_iterator(designators_begin());
3980  }
3981
3982  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3983
3984  void setDesignators(ASTContext &C, const Designator *Desigs,
3985                      unsigned NumDesigs);
3986
3987  Expr *getArrayIndex(const Designator& D);
3988  Expr *getArrayRangeStart(const Designator& D);
3989  Expr *getArrayRangeEnd(const Designator& D);
3990
3991  /// @brief Retrieve the location of the '=' that precedes the
3992  /// initializer value itself, if present.
3993  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3994  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3995
3996  /// @brief Determines whether this designated initializer used the
3997  /// deprecated GNU syntax for designated initializers.
3998  bool usesGNUSyntax() const { return GNUSyntax; }
3999  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4000
4001  /// @brief Retrieve the initializer value.
4002  Expr *getInit() const {
4003    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4004  }
4005
4006  void setInit(Expr *init) {
4007    *child_begin() = init;
4008  }
4009
4010  /// \brief Retrieve the total number of subexpressions in this
4011  /// designated initializer expression, including the actual
4012  /// initialized value and any expressions that occur within array
4013  /// and array-range designators.
4014  unsigned getNumSubExprs() const { return NumSubExprs; }
4015
4016  Expr *getSubExpr(unsigned Idx) {
4017    assert(Idx < NumSubExprs && "Subscript out of range");
4018    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4019    Ptr += sizeof(DesignatedInitExpr);
4020    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
4021  }
4022
4023  void setSubExpr(unsigned Idx, Expr *E) {
4024    assert(Idx < NumSubExprs && "Subscript out of range");
4025    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4026    Ptr += sizeof(DesignatedInitExpr);
4027    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
4028  }
4029
4030  /// \brief Replaces the designator at index @p Idx with the series
4031  /// of designators in [First, Last).
4032  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
4033                        const Designator *Last);
4034
4035  SourceRange getDesignatorsSourceRange() const;
4036
4037  SourceRange getSourceRange() const LLVM_READONLY;
4038
4039  static bool classof(const Stmt *T) {
4040    return T->getStmtClass() == DesignatedInitExprClass;
4041  }
4042
4043  // Iterators
4044  child_range children() {
4045    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
4046    return child_range(begin, begin + NumSubExprs);
4047  }
4048};
4049
4050/// \brief Represents an implicitly-generated value initialization of
4051/// an object of a given type.
4052///
4053/// Implicit value initializations occur within semantic initializer
4054/// list expressions (InitListExpr) as placeholders for subobject
4055/// initializations not explicitly specified by the user.
4056///
4057/// \see InitListExpr
4058class ImplicitValueInitExpr : public Expr {
4059public:
4060  explicit ImplicitValueInitExpr(QualType ty)
4061    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4062           false, false, ty->isInstantiationDependentType(), false) { }
4063
4064  /// \brief Construct an empty implicit value initialization.
4065  explicit ImplicitValueInitExpr(EmptyShell Empty)
4066    : Expr(ImplicitValueInitExprClass, Empty) { }
4067
4068  static bool classof(const Stmt *T) {
4069    return T->getStmtClass() == ImplicitValueInitExprClass;
4070  }
4071
4072  SourceRange getSourceRange() const LLVM_READONLY {
4073    return SourceRange();
4074  }
4075
4076  // Iterators
4077  child_range children() { return child_range(); }
4078};
4079
4080
4081class ParenListExpr : public Expr {
4082  Stmt **Exprs;
4083  unsigned NumExprs;
4084  SourceLocation LParenLoc, RParenLoc;
4085
4086public:
4087  ParenListExpr(ASTContext& C, SourceLocation lparenloc, ArrayRef<Expr*> exprs,
4088                SourceLocation rparenloc);
4089
4090  /// \brief Build an empty paren list.
4091  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4092
4093  unsigned getNumExprs() const { return NumExprs; }
4094
4095  const Expr* getExpr(unsigned Init) const {
4096    assert(Init < getNumExprs() && "Initializer access out of range!");
4097    return cast_or_null<Expr>(Exprs[Init]);
4098  }
4099
4100  Expr* getExpr(unsigned Init) {
4101    assert(Init < getNumExprs() && "Initializer access out of range!");
4102    return cast_or_null<Expr>(Exprs[Init]);
4103  }
4104
4105  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4106
4107  SourceLocation getLParenLoc() const { return LParenLoc; }
4108  SourceLocation getRParenLoc() const { return RParenLoc; }
4109
4110  SourceRange getSourceRange() const LLVM_READONLY {
4111    return SourceRange(LParenLoc, RParenLoc);
4112  }
4113  static bool classof(const Stmt *T) {
4114    return T->getStmtClass() == ParenListExprClass;
4115  }
4116
4117  // Iterators
4118  child_range children() {
4119    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4120  }
4121
4122  friend class ASTStmtReader;
4123  friend class ASTStmtWriter;
4124};
4125
4126
4127/// \brief Represents a C11 generic selection.
4128///
4129/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4130/// expression, followed by one or more generic associations.  Each generic
4131/// association specifies a type name and an expression, or "default" and an
4132/// expression (in which case it is known as a default generic association).
4133/// The type and value of the generic selection are identical to those of its
4134/// result expression, which is defined as the expression in the generic
4135/// association with a type name that is compatible with the type of the
4136/// controlling expression, or the expression in the default generic association
4137/// if no types are compatible.  For example:
4138///
4139/// @code
4140/// _Generic(X, double: 1, float: 2, default: 3)
4141/// @endcode
4142///
4143/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4144/// or 3 if "hello".
4145///
4146/// As an extension, generic selections are allowed in C++, where the following
4147/// additional semantics apply:
4148///
4149/// Any generic selection whose controlling expression is type-dependent or
4150/// which names a dependent type in its association list is result-dependent,
4151/// which means that the choice of result expression is dependent.
4152/// Result-dependent generic associations are both type- and value-dependent.
4153class GenericSelectionExpr : public Expr {
4154  enum { CONTROLLING, END_EXPR };
4155  TypeSourceInfo **AssocTypes;
4156  Stmt **SubExprs;
4157  unsigned NumAssocs, ResultIndex;
4158  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4159
4160public:
4161  GenericSelectionExpr(ASTContext &Context,
4162                       SourceLocation GenericLoc, Expr *ControllingExpr,
4163                       ArrayRef<TypeSourceInfo*> AssocTypes,
4164                       ArrayRef<Expr*> AssocExprs,
4165                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4166                       bool ContainsUnexpandedParameterPack,
4167                       unsigned ResultIndex);
4168
4169  /// This constructor is used in the result-dependent case.
4170  GenericSelectionExpr(ASTContext &Context,
4171                       SourceLocation GenericLoc, Expr *ControllingExpr,
4172                       ArrayRef<TypeSourceInfo*> AssocTypes,
4173                       ArrayRef<Expr*> AssocExprs,
4174                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4175                       bool ContainsUnexpandedParameterPack);
4176
4177  explicit GenericSelectionExpr(EmptyShell Empty)
4178    : Expr(GenericSelectionExprClass, Empty) { }
4179
4180  unsigned getNumAssocs() const { return NumAssocs; }
4181
4182  SourceLocation getGenericLoc() const { return GenericLoc; }
4183  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4184  SourceLocation getRParenLoc() const { return RParenLoc; }
4185
4186  const Expr *getAssocExpr(unsigned i) const {
4187    return cast<Expr>(SubExprs[END_EXPR+i]);
4188  }
4189  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4190
4191  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4192    return AssocTypes[i];
4193  }
4194  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4195
4196  QualType getAssocType(unsigned i) const {
4197    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4198      return TS->getType();
4199    else
4200      return QualType();
4201  }
4202
4203  const Expr *getControllingExpr() const {
4204    return cast<Expr>(SubExprs[CONTROLLING]);
4205  }
4206  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4207
4208  /// Whether this generic selection is result-dependent.
4209  bool isResultDependent() const { return ResultIndex == -1U; }
4210
4211  /// The zero-based index of the result expression's generic association in
4212  /// the generic selection's association list.  Defined only if the
4213  /// generic selection is not result-dependent.
4214  unsigned getResultIndex() const {
4215    assert(!isResultDependent() && "Generic selection is result-dependent");
4216    return ResultIndex;
4217  }
4218
4219  /// The generic selection's result expression.  Defined only if the
4220  /// generic selection is not result-dependent.
4221  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4222  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4223
4224  SourceRange getSourceRange() const LLVM_READONLY {
4225    return SourceRange(GenericLoc, RParenLoc);
4226  }
4227  static bool classof(const Stmt *T) {
4228    return T->getStmtClass() == GenericSelectionExprClass;
4229  }
4230
4231  child_range children() {
4232    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4233  }
4234
4235  friend class ASTStmtReader;
4236};
4237
4238//===----------------------------------------------------------------------===//
4239// Clang Extensions
4240//===----------------------------------------------------------------------===//
4241
4242
4243/// ExtVectorElementExpr - This represents access to specific elements of a
4244/// vector, and may occur on the left hand side or right hand side.  For example
4245/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4246///
4247/// Note that the base may have either vector or pointer to vector type, just
4248/// like a struct field reference.
4249///
4250class ExtVectorElementExpr : public Expr {
4251  Stmt *Base;
4252  IdentifierInfo *Accessor;
4253  SourceLocation AccessorLoc;
4254public:
4255  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4256                       IdentifierInfo &accessor, SourceLocation loc)
4257    : Expr(ExtVectorElementExprClass, ty, VK,
4258           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4259           base->isTypeDependent(), base->isValueDependent(),
4260           base->isInstantiationDependent(),
4261           base->containsUnexpandedParameterPack()),
4262      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4263
4264  /// \brief Build an empty vector element expression.
4265  explicit ExtVectorElementExpr(EmptyShell Empty)
4266    : Expr(ExtVectorElementExprClass, Empty) { }
4267
4268  const Expr *getBase() const { return cast<Expr>(Base); }
4269  Expr *getBase() { return cast<Expr>(Base); }
4270  void setBase(Expr *E) { Base = E; }
4271
4272  IdentifierInfo &getAccessor() const { return *Accessor; }
4273  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4274
4275  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4276  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4277
4278  /// getNumElements - Get the number of components being selected.
4279  unsigned getNumElements() const;
4280
4281  /// containsDuplicateElements - Return true if any element access is
4282  /// repeated.
4283  bool containsDuplicateElements() const;
4284
4285  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4286  /// aggregate Constant of ConstantInt(s).
4287  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4288
4289  SourceRange getSourceRange() const LLVM_READONLY {
4290    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4291  }
4292
4293  /// isArrow - Return true if the base expression is a pointer to vector,
4294  /// return false if the base expression is a vector.
4295  bool isArrow() const;
4296
4297  static bool classof(const Stmt *T) {
4298    return T->getStmtClass() == ExtVectorElementExprClass;
4299  }
4300
4301  // Iterators
4302  child_range children() { return child_range(&Base, &Base+1); }
4303};
4304
4305
4306/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4307/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4308class BlockExpr : public Expr {
4309protected:
4310  BlockDecl *TheBlock;
4311public:
4312  BlockExpr(BlockDecl *BD, QualType ty)
4313    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4314           ty->isDependentType(), ty->isDependentType(),
4315           ty->isInstantiationDependentType() || BD->isDependentContext(),
4316           false),
4317      TheBlock(BD) {}
4318
4319  /// \brief Build an empty block expression.
4320  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4321
4322  const BlockDecl *getBlockDecl() const { return TheBlock; }
4323  BlockDecl *getBlockDecl() { return TheBlock; }
4324  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4325
4326  // Convenience functions for probing the underlying BlockDecl.
4327  SourceLocation getCaretLocation() const;
4328  const Stmt *getBody() const;
4329  Stmt *getBody();
4330
4331  SourceRange getSourceRange() const LLVM_READONLY {
4332    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4333  }
4334
4335  /// getFunctionType - Return the underlying function type for this block.
4336  const FunctionProtoType *getFunctionType() const;
4337
4338  static bool classof(const Stmt *T) {
4339    return T->getStmtClass() == BlockExprClass;
4340  }
4341
4342  // Iterators
4343  child_range children() { return child_range(); }
4344};
4345
4346/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4347/// This AST node provides support for reinterpreting a type to another
4348/// type of the same size.
4349class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4350private:
4351  Stmt *SrcExpr;
4352  SourceLocation BuiltinLoc, RParenLoc;
4353
4354  friend class ASTReader;
4355  friend class ASTStmtReader;
4356  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4357
4358public:
4359  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4360             ExprValueKind VK, ExprObjectKind OK,
4361             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4362    : Expr(AsTypeExprClass, DstType, VK, OK,
4363           DstType->isDependentType(),
4364           DstType->isDependentType() || SrcExpr->isValueDependent(),
4365           (DstType->isInstantiationDependentType() ||
4366            SrcExpr->isInstantiationDependent()),
4367           (DstType->containsUnexpandedParameterPack() ||
4368            SrcExpr->containsUnexpandedParameterPack())),
4369  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4370
4371  /// getSrcExpr - Return the Expr to be converted.
4372  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4373
4374  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4375  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4376
4377  /// getRParenLoc - Return the location of final right parenthesis.
4378  SourceLocation getRParenLoc() const { return RParenLoc; }
4379
4380  SourceRange getSourceRange() const LLVM_READONLY {
4381    return SourceRange(BuiltinLoc, RParenLoc);
4382  }
4383
4384  static bool classof(const Stmt *T) {
4385    return T->getStmtClass() == AsTypeExprClass;
4386  }
4387
4388  // Iterators
4389  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4390};
4391
4392/// PseudoObjectExpr - An expression which accesses a pseudo-object
4393/// l-value.  A pseudo-object is an abstract object, accesses to which
4394/// are translated to calls.  The pseudo-object expression has a
4395/// syntactic form, which shows how the expression was actually
4396/// written in the source code, and a semantic form, which is a series
4397/// of expressions to be executed in order which detail how the
4398/// operation is actually evaluated.  Optionally, one of the semantic
4399/// forms may also provide a result value for the expression.
4400///
4401/// If any of the semantic-form expressions is an OpaqueValueExpr,
4402/// that OVE is required to have a source expression, and it is bound
4403/// to the result of that source expression.  Such OVEs may appear
4404/// only in subsequent semantic-form expressions and as
4405/// sub-expressions of the syntactic form.
4406///
4407/// PseudoObjectExpr should be used only when an operation can be
4408/// usefully described in terms of fairly simple rewrite rules on
4409/// objects and functions that are meant to be used by end-developers.
4410/// For example, under the Itanium ABI, dynamic casts are implemented
4411/// as a call to a runtime function called __dynamic_cast; using this
4412/// class to describe that would be inappropriate because that call is
4413/// not really part of the user-visible semantics, and instead the
4414/// cast is properly reflected in the AST and IR-generation has been
4415/// taught to generate the call as necessary.  In contrast, an
4416/// Objective-C property access is semantically defined to be
4417/// equivalent to a particular message send, and this is very much
4418/// part of the user model.  The name of this class encourages this
4419/// modelling design.
4420class PseudoObjectExpr : public Expr {
4421  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4422  // Always at least two, because the first sub-expression is the
4423  // syntactic form.
4424
4425  // PseudoObjectExprBits.ResultIndex - The index of the
4426  // sub-expression holding the result.  0 means the result is void,
4427  // which is unambiguous because it's the index of the syntactic
4428  // form.  Note that this is therefore 1 higher than the value passed
4429  // in to Create, which is an index within the semantic forms.
4430  // Note also that ASTStmtWriter assumes this encoding.
4431
4432  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4433  const Expr * const *getSubExprsBuffer() const {
4434    return reinterpret_cast<const Expr * const *>(this + 1);
4435  }
4436
4437  friend class ASTStmtReader;
4438
4439  PseudoObjectExpr(QualType type, ExprValueKind VK,
4440                   Expr *syntactic, ArrayRef<Expr*> semantic,
4441                   unsigned resultIndex);
4442
4443  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4444
4445  unsigned getNumSubExprs() const {
4446    return PseudoObjectExprBits.NumSubExprs;
4447  }
4448
4449public:
4450  /// NoResult - A value for the result index indicating that there is
4451  /// no semantic result.
4452  enum { NoResult = ~0U };
4453
4454  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4455                                  ArrayRef<Expr*> semantic,
4456                                  unsigned resultIndex);
4457
4458  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4459                                  unsigned numSemanticExprs);
4460
4461  /// Return the syntactic form of this expression, i.e. the
4462  /// expression it actually looks like.  Likely to be expressed in
4463  /// terms of OpaqueValueExprs bound in the semantic form.
4464  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4465  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4466
4467  /// Return the index of the result-bearing expression into the semantics
4468  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4469  unsigned getResultExprIndex() const {
4470    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4471    return PseudoObjectExprBits.ResultIndex - 1;
4472  }
4473
4474  /// Return the result-bearing expression, or null if there is none.
4475  Expr *getResultExpr() {
4476    if (PseudoObjectExprBits.ResultIndex == 0)
4477      return 0;
4478    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4479  }
4480  const Expr *getResultExpr() const {
4481    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4482  }
4483
4484  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4485
4486  typedef Expr * const *semantics_iterator;
4487  typedef const Expr * const *const_semantics_iterator;
4488  semantics_iterator semantics_begin() {
4489    return getSubExprsBuffer() + 1;
4490  }
4491  const_semantics_iterator semantics_begin() const {
4492    return getSubExprsBuffer() + 1;
4493  }
4494  semantics_iterator semantics_end() {
4495    return getSubExprsBuffer() + getNumSubExprs();
4496  }
4497  const_semantics_iterator semantics_end() const {
4498    return getSubExprsBuffer() + getNumSubExprs();
4499  }
4500  Expr *getSemanticExpr(unsigned index) {
4501    assert(index + 1 < getNumSubExprs());
4502    return getSubExprsBuffer()[index + 1];
4503  }
4504  const Expr *getSemanticExpr(unsigned index) const {
4505    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4506  }
4507
4508  SourceLocation getExprLoc() const LLVM_READONLY {
4509    return getSyntacticForm()->getExprLoc();
4510  }
4511  SourceRange getSourceRange() const LLVM_READONLY {
4512    return getSyntacticForm()->getSourceRange();
4513  }
4514
4515  child_range children() {
4516    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4517    return child_range(cs, cs + getNumSubExprs());
4518  }
4519
4520  static bool classof(const Stmt *T) {
4521    return T->getStmtClass() == PseudoObjectExprClass;
4522  }
4523};
4524
4525/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4526/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4527/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4528/// All of these instructions take one primary pointer and at least one memory
4529/// order.
4530class AtomicExpr : public Expr {
4531public:
4532  enum AtomicOp {
4533#define BUILTIN(ID, TYPE, ATTRS)
4534#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4535#include "clang/Basic/Builtins.def"
4536    // Avoid trailing comma
4537    BI_First = 0
4538  };
4539
4540private:
4541  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4542  Stmt* SubExprs[END_EXPR];
4543  unsigned NumSubExprs;
4544  SourceLocation BuiltinLoc, RParenLoc;
4545  AtomicOp Op;
4546
4547  friend class ASTStmtReader;
4548
4549public:
4550  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4551             AtomicOp op, SourceLocation RP);
4552
4553  /// \brief Determine the number of arguments the specified atomic builtin
4554  /// should have.
4555  static unsigned getNumSubExprs(AtomicOp Op);
4556
4557  /// \brief Build an empty AtomicExpr.
4558  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4559
4560  Expr *getPtr() const {
4561    return cast<Expr>(SubExprs[PTR]);
4562  }
4563  Expr *getOrder() const {
4564    return cast<Expr>(SubExprs[ORDER]);
4565  }
4566  Expr *getVal1() const {
4567    if (Op == AO__c11_atomic_init)
4568      return cast<Expr>(SubExprs[ORDER]);
4569    assert(NumSubExprs > VAL1);
4570    return cast<Expr>(SubExprs[VAL1]);
4571  }
4572  Expr *getOrderFail() const {
4573    assert(NumSubExprs > ORDER_FAIL);
4574    return cast<Expr>(SubExprs[ORDER_FAIL]);
4575  }
4576  Expr *getVal2() const {
4577    if (Op == AO__atomic_exchange)
4578      return cast<Expr>(SubExprs[ORDER_FAIL]);
4579    assert(NumSubExprs > VAL2);
4580    return cast<Expr>(SubExprs[VAL2]);
4581  }
4582  Expr *getWeak() const {
4583    assert(NumSubExprs > WEAK);
4584    return cast<Expr>(SubExprs[WEAK]);
4585  }
4586
4587  AtomicOp getOp() const { return Op; }
4588  unsigned getNumSubExprs() { return NumSubExprs; }
4589
4590  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4591
4592  bool isVolatile() const {
4593    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4594  }
4595
4596  bool isCmpXChg() const {
4597    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4598           getOp() == AO__c11_atomic_compare_exchange_weak ||
4599           getOp() == AO__atomic_compare_exchange ||
4600           getOp() == AO__atomic_compare_exchange_n;
4601  }
4602
4603  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4604  SourceLocation getRParenLoc() const { return RParenLoc; }
4605
4606  SourceRange getSourceRange() const LLVM_READONLY {
4607    return SourceRange(BuiltinLoc, RParenLoc);
4608  }
4609  static bool classof(const Stmt *T) {
4610    return T->getStmtClass() == AtomicExprClass;
4611  }
4612
4613  // Iterators
4614  child_range children() {
4615    return child_range(SubExprs, SubExprs+NumSubExprs);
4616  }
4617};
4618}  // end namespace clang
4619
4620#endif
4621