Expr.h revision 9a901bb63990574ff0bcc12ff851d7a71cff8ddb
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66  /// \brief Construct an empty expression.
67  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
68
69public:
70  QualType getType() const { return TR; }
71  void setType(QualType t) {
72    // In C++, the type of an expression is always adjusted so that it
73    // will not have reference type an expression will never have
74    // reference type (C++ [expr]p6). Use
75    // QualType::getNonReferenceType() to retrieve the non-reference
76    // type. Additionally, inspect Expr::isLvalue to determine whether
77    // an expression that is adjusted in this manner should be
78    // considered an lvalue.
79    assert((TR.isNull() || !TR->isReferenceType()) &&
80           "Expressions can't have reference type");
81
82    TR = t;
83  }
84
85  /// isValueDependent - Determines whether this expression is
86  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
87  /// array bound of "Chars" in the following example is
88  /// value-dependent.
89  /// @code
90  /// template<int Size, char (&Chars)[Size]> struct meta_string;
91  /// @endcode
92  bool isValueDependent() const { return ValueDependent; }
93
94  /// \brief Set whether this expression is value-dependent or not.
95  void setValueDependent(bool VD) { ValueDependent = VD; }
96
97  /// isTypeDependent - Determines whether this expression is
98  /// type-dependent (C++ [temp.dep.expr]), which means that its type
99  /// could change from one template instantiation to the next. For
100  /// example, the expressions "x" and "x + y" are type-dependent in
101  /// the following code, but "y" is not type-dependent:
102  /// @code
103  /// template<typename T>
104  /// void add(T x, int y) {
105  ///   x + y;
106  /// }
107  /// @endcode
108  bool isTypeDependent() const { return TypeDependent; }
109
110  /// \brief Set whether this expression is type-dependent or not.
111  void setTypeDependent(bool TD) { TypeDependent = TD; }
112
113  /// SourceLocation tokens are not useful in isolation - they are low level
114  /// value objects created/interpreted by SourceManager. We assume AST
115  /// clients will have a pointer to the respective SourceManager.
116  virtual SourceRange getSourceRange() const = 0;
117
118  /// getExprLoc - Return the preferred location for the arrow when diagnosing
119  /// a problem with a generic expression.
120  virtual SourceLocation getExprLoc() const { return getLocStart(); }
121
122  /// isUnusedResultAWarning - Return true if this immediate expression should
123  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
124  /// with location to warn on and the source range[s] to report with the
125  /// warning.
126  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
127                              SourceRange &R2) const;
128
129  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
130  /// incomplete type other than void. Nonarray expressions that can be lvalues:
131  ///  - name, where name must be a variable
132  ///  - e[i]
133  ///  - (e), where e must be an lvalue
134  ///  - e.name, where e must be an lvalue
135  ///  - e->name
136  ///  - *e, the type of e cannot be a function type
137  ///  - string-constant
138  ///  - reference type [C++ [expr]]
139  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
140  ///
141  enum isLvalueResult {
142    LV_Valid,
143    LV_NotObjectType,
144    LV_IncompleteVoidType,
145    LV_DuplicateVectorComponents,
146    LV_InvalidExpression,
147    LV_MemberFunction
148  };
149  isLvalueResult isLvalue(ASTContext &Ctx) const;
150
151  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
152  /// does not have an incomplete type, does not have a const-qualified type,
153  /// and if it is a structure or union, does not have any member (including,
154  /// recursively, any member or element of all contained aggregates or unions)
155  /// with a const-qualified type.
156  ///
157  /// \param Loc [in] [out] - A source location which *may* be filled
158  /// in with the location of the expression making this a
159  /// non-modifiable lvalue, if specified.
160  enum isModifiableLvalueResult {
161    MLV_Valid,
162    MLV_NotObjectType,
163    MLV_IncompleteVoidType,
164    MLV_DuplicateVectorComponents,
165    MLV_InvalidExpression,
166    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
167    MLV_IncompleteType,
168    MLV_ConstQualified,
169    MLV_ArrayType,
170    MLV_NotBlockQualified,
171    MLV_ReadonlyProperty,
172    MLV_NoSetterProperty,
173    MLV_MemberFunction
174  };
175  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
176                                              SourceLocation *Loc = 0) const;
177
178  bool isBitField();
179
180  /// isIntegerConstantExpr - Return true if this expression is a valid integer
181  /// constant expression, and, if so, return its value in Result.  If not a
182  /// valid i-c-e, return false and fill in Loc (if specified) with the location
183  /// of the invalid expression.
184  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
185                             SourceLocation *Loc = 0,
186                             bool isEvaluated = true) const;
187  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
188    llvm::APSInt X;
189    return isIntegerConstantExpr(X, Ctx, Loc);
190  }
191  /// isConstantInitializer - Returns true if this expression is a constant
192  /// initializer, which can be emitted at compile-time.
193  bool isConstantInitializer(ASTContext &Ctx) const;
194
195  /// EvalResult is a struct with detailed info about an evaluated expression.
196  struct EvalResult {
197    /// Val - This is the value the expression can be folded to.
198    APValue Val;
199
200    /// HasSideEffects - Whether the evaluated expression has side effects.
201    /// For example, (f() && 0) can be folded, but it still has side effects.
202    bool HasSideEffects;
203
204    /// Diag - If the expression is unfoldable, then Diag contains a note
205    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
206    /// position for the error, and DiagExpr is the expression that caused
207    /// the error.
208    /// If the expression is foldable, but not an integer constant expression,
209    /// Diag contains a note diagnostic that describes why it isn't an integer
210    /// constant expression. If the expression *is* an integer constant
211    /// expression, then Diag will be zero.
212    unsigned Diag;
213    const Expr *DiagExpr;
214    SourceLocation DiagLoc;
215
216    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
217  };
218
219  /// Evaluate - Return true if this is a constant which we can fold using
220  /// any crazy technique (that has nothing to do with language standards) that
221  /// we want to.  If this function returns true, it returns the folded constant
222  /// in Result.
223  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
224
225  /// isEvaluatable - Call Evaluate to see if this expression can be constant
226  /// folded, but discard the result.
227  bool isEvaluatable(ASTContext &Ctx) const;
228
229  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
230  /// must be called on an expression that constant folds to an integer.
231  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
232
233  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
234  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
235
236  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
237  /// integer constant expression with the value zero, or if this is one that is
238  /// cast to void*.
239  bool isNullPointerConstant(ASTContext &Ctx) const;
240
241  /// hasGlobalStorage - Return true if this expression has static storage
242  /// duration.  This means that the address of this expression is a link-time
243  /// constant.
244  bool hasGlobalStorage() const;
245
246  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
247  /// write barrier.
248  bool isOBJCGCCandidate() const;
249
250  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
251  ///  its subexpression.  If that subexpression is also a ParenExpr,
252  ///  then this method recursively returns its subexpression, and so forth.
253  ///  Otherwise, the method returns the current Expr.
254  Expr* IgnoreParens();
255
256  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
257  /// or CastExprs, returning their operand.
258  Expr *IgnoreParenCasts();
259
260  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
261  /// value (including ptr->int casts of the same size).  Strip off any
262  /// ParenExpr or CastExprs, returning their operand.
263  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
264
265  const Expr* IgnoreParens() const {
266    return const_cast<Expr*>(this)->IgnoreParens();
267  }
268  const Expr *IgnoreParenCasts() const {
269    return const_cast<Expr*>(this)->IgnoreParenCasts();
270  }
271  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
272    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
273  }
274
275  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
276  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
277
278  static bool classof(const Stmt *T) {
279    return T->getStmtClass() >= firstExprConstant &&
280           T->getStmtClass() <= lastExprConstant;
281  }
282  static bool classof(const Expr *) { return true; }
283};
284
285
286//===----------------------------------------------------------------------===//
287// Primary Expressions.
288//===----------------------------------------------------------------------===//
289
290/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
291/// enum, etc.
292class DeclRefExpr : public Expr {
293  NamedDecl *D;
294  SourceLocation Loc;
295
296protected:
297  // FIXME: Eventually, this constructor will go away and all subclasses
298  // will have to provide the type- and value-dependent flags.
299  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
300    Expr(SC, t), D(d), Loc(l) {}
301
302  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
303              bool VD) :
304    Expr(SC, t, TD, VD), D(d), Loc(l) {}
305
306public:
307  // FIXME: Eventually, this constructor will go away and all clients
308  // will have to provide the type- and value-dependent flags.
309  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
310    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
311
312  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
313    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
314
315  /// \brief Construct an empty declaration reference expression.
316  explicit DeclRefExpr(EmptyShell Empty)
317    : Expr(DeclRefExprClass, Empty) { }
318
319  NamedDecl *getDecl() { return D; }
320  const NamedDecl *getDecl() const { return D; }
321  void setDecl(NamedDecl *NewD) { D = NewD; }
322
323  SourceLocation getLocation() const { return Loc; }
324  void setLocation(SourceLocation L) { Loc = L; }
325  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
326
327  static bool classof(const Stmt *T) {
328    return T->getStmtClass() == DeclRefExprClass ||
329           T->getStmtClass() == CXXConditionDeclExprClass ||
330           T->getStmtClass() == QualifiedDeclRefExprClass;
331  }
332  static bool classof(const DeclRefExpr *) { return true; }
333
334  // Iterators
335  virtual child_iterator child_begin();
336  virtual child_iterator child_end();
337};
338
339/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
340class PredefinedExpr : public Expr {
341public:
342  enum IdentType {
343    Func,
344    Function,
345    PrettyFunction
346  };
347
348private:
349  SourceLocation Loc;
350  IdentType Type;
351public:
352  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
353    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
354
355  /// \brief Construct an empty predefined expression.
356  explicit PredefinedExpr(EmptyShell Empty)
357    : Expr(PredefinedExprClass, Empty) { }
358
359  IdentType getIdentType() const { return Type; }
360  void setIdentType(IdentType IT) { Type = IT; }
361
362  SourceLocation getLocation() const { return Loc; }
363  void setLocation(SourceLocation L) { Loc = L; }
364
365  // FIXME: The logic for computing the value of a predefined expr should go
366  // into a method here that takes the inner-most code decl (a block, function
367  // or objc method) that the expr lives in.  This would allow sema and codegen
368  // to be consistent for things like sizeof(__func__) etc.
369
370  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
371
372  static bool classof(const Stmt *T) {
373    return T->getStmtClass() == PredefinedExprClass;
374  }
375  static bool classof(const PredefinedExpr *) { return true; }
376
377  // Iterators
378  virtual child_iterator child_begin();
379  virtual child_iterator child_end();
380};
381
382class IntegerLiteral : public Expr {
383  llvm::APInt Value;
384  SourceLocation Loc;
385public:
386  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
387  // or UnsignedLongLongTy
388  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
389    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
390    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
391  }
392
393  /// \brief Construct an empty integer literal.
394  explicit IntegerLiteral(EmptyShell Empty)
395    : Expr(IntegerLiteralClass, Empty) { }
396
397  IntegerLiteral* Clone(ASTContext &C) const;
398
399  const llvm::APInt &getValue() const { return Value; }
400  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
401
402  /// \brief Retrieve the location of the literal.
403  SourceLocation getLocation() const { return Loc; }
404
405  void setValue(const llvm::APInt &Val) { Value = Val; }
406  void setLocation(SourceLocation Location) { Loc = Location; }
407
408  static bool classof(const Stmt *T) {
409    return T->getStmtClass() == IntegerLiteralClass;
410  }
411  static bool classof(const IntegerLiteral *) { return true; }
412
413  // Iterators
414  virtual child_iterator child_begin();
415  virtual child_iterator child_end();
416};
417
418class CharacterLiteral : public Expr {
419  unsigned Value;
420  SourceLocation Loc;
421  bool IsWide;
422public:
423  // type should be IntTy
424  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
425    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
426  }
427
428  /// \brief Construct an empty character literal.
429  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
430
431  SourceLocation getLoc() const { return Loc; }
432  bool isWide() const { return IsWide; }
433
434  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
435
436  unsigned getValue() const { return Value; }
437
438  void setLocation(SourceLocation Location) { Loc = Location; }
439  void setWide(bool W) { IsWide = W; }
440  void setValue(unsigned Val) { Value = Val; }
441
442  static bool classof(const Stmt *T) {
443    return T->getStmtClass() == CharacterLiteralClass;
444  }
445  static bool classof(const CharacterLiteral *) { return true; }
446
447  // Iterators
448  virtual child_iterator child_begin();
449  virtual child_iterator child_end();
450};
451
452class FloatingLiteral : public Expr {
453  llvm::APFloat Value;
454  bool IsExact : 1;
455  SourceLocation Loc;
456public:
457  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
458                  QualType Type, SourceLocation L)
459    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
460
461  /// \brief Construct an empty floating-point literal.
462  FloatingLiteral(EmptyShell Empty)
463    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
464
465  const llvm::APFloat &getValue() const { return Value; }
466  void setValue(const llvm::APFloat &Val) { Value = Val; }
467
468  bool isExact() const { return IsExact; }
469  void setExact(bool E) { IsExact = E; }
470
471  /// getValueAsApproximateDouble - This returns the value as an inaccurate
472  /// double.  Note that this may cause loss of precision, but is useful for
473  /// debugging dumps, etc.
474  double getValueAsApproximateDouble() const;
475
476  SourceLocation getLocation() const { return Loc; }
477  void setLocation(SourceLocation L) { Loc = L; }
478
479  // FIXME: The logic for computing the value of a predefined expr should go
480  // into a method here that takes the inner-most code decl (a block, function
481  // or objc method) that the expr lives in.  This would allow sema and codegen
482  // to be consistent for things like sizeof(__func__) etc.
483
484  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
485
486  static bool classof(const Stmt *T) {
487    return T->getStmtClass() == FloatingLiteralClass;
488  }
489  static bool classof(const FloatingLiteral *) { return true; }
490
491  // Iterators
492  virtual child_iterator child_begin();
493  virtual child_iterator child_end();
494};
495
496/// ImaginaryLiteral - We support imaginary integer and floating point literals,
497/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
498/// IntegerLiteral classes.  Instances of this class always have a Complex type
499/// whose element type matches the subexpression.
500///
501class ImaginaryLiteral : public Expr {
502  Stmt *Val;
503public:
504  ImaginaryLiteral(Expr *val, QualType Ty)
505    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
506
507  /// \brief Build an empty imaginary literal.
508  explicit ImaginaryLiteral(EmptyShell Empty)
509    : Expr(ImaginaryLiteralClass, Empty) { }
510
511  const Expr *getSubExpr() const { return cast<Expr>(Val); }
512  Expr *getSubExpr() { return cast<Expr>(Val); }
513  void setSubExpr(Expr *E) { Val = E; }
514
515  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
516  static bool classof(const Stmt *T) {
517    return T->getStmtClass() == ImaginaryLiteralClass;
518  }
519  static bool classof(const ImaginaryLiteral *) { return true; }
520
521  // Iterators
522  virtual child_iterator child_begin();
523  virtual child_iterator child_end();
524};
525
526/// StringLiteral - This represents a string literal expression, e.g. "foo"
527/// or L"bar" (wide strings).  The actual string is returned by getStrData()
528/// is NOT null-terminated, and the length of the string is determined by
529/// calling getByteLength().  The C type for a string is always a
530/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
531/// not.
532///
533/// Note that strings in C can be formed by concatenation of multiple string
534/// literal pptokens in translation phase #6.  This keeps track of the locations
535/// of each of these pieces.
536///
537/// Strings in C can also be truncated and extended by assigning into arrays,
538/// e.g. with constructs like:
539///   char X[2] = "foobar";
540/// In this case, getByteLength() will return 6, but the string literal will
541/// have type "char[2]".
542class StringLiteral : public Expr {
543  const char *StrData;
544  unsigned ByteLength;
545  bool IsWide;
546  unsigned NumConcatenated;
547  SourceLocation TokLocs[1];
548
549  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
550public:
551  /// This is the "fully general" constructor that allows representation of
552  /// strings formed from multiple concatenated tokens.
553  static StringLiteral *Create(ASTContext &C, const char *StrData,
554                               unsigned ByteLength, bool Wide, QualType Ty,
555                               const SourceLocation *Loc, unsigned NumStrs);
556
557  /// Simple constructor for string literals made from one token.
558  static StringLiteral *Create(ASTContext &C, const char *StrData,
559                               unsigned ByteLength,
560                               bool Wide, QualType Ty, SourceLocation Loc) {
561    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
562  }
563
564  /// \brief Construct an empty string literal.
565  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
566
567  StringLiteral* Clone(ASTContext &C) const;
568  void Destroy(ASTContext &C);
569
570  const char *getStrData() const { return StrData; }
571  unsigned getByteLength() const { return ByteLength; }
572
573  /// \brief Sets the string data to the given string data.
574  void setStrData(ASTContext &C, const char *Str, unsigned Len);
575
576  bool isWide() const { return IsWide; }
577  void setWide(bool W) { IsWide = W; }
578
579  bool containsNonAsciiOrNull() const {
580    for (unsigned i = 0; i < getByteLength(); ++i)
581      if (!isascii(getStrData()[i]) || !getStrData()[i])
582        return true;
583    return false;
584  }
585  /// getNumConcatenated - Get the number of string literal tokens that were
586  /// concatenated in translation phase #6 to form this string literal.
587  unsigned getNumConcatenated() const { return NumConcatenated; }
588
589  SourceLocation getStrTokenLoc(unsigned TokNum) const {
590    assert(TokNum < NumConcatenated && "Invalid tok number");
591    return TokLocs[TokNum];
592  }
593  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
594    assert(TokNum < NumConcatenated && "Invalid tok number");
595    TokLocs[TokNum] = L;
596  }
597
598  typedef const SourceLocation *tokloc_iterator;
599  tokloc_iterator tokloc_begin() const { return TokLocs; }
600  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
601
602  virtual SourceRange getSourceRange() const {
603    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
604  }
605  static bool classof(const Stmt *T) {
606    return T->getStmtClass() == StringLiteralClass;
607  }
608  static bool classof(const StringLiteral *) { return true; }
609
610  // Iterators
611  virtual child_iterator child_begin();
612  virtual child_iterator child_end();
613};
614
615/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
616/// AST node is only formed if full location information is requested.
617class ParenExpr : public Expr {
618  SourceLocation L, R;
619  Stmt *Val;
620public:
621  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
622    : Expr(ParenExprClass, val->getType(),
623           val->isTypeDependent(), val->isValueDependent()),
624      L(l), R(r), Val(val) {}
625
626  /// \brief Construct an empty parenthesized expression.
627  explicit ParenExpr(EmptyShell Empty)
628    : Expr(ParenExprClass, Empty) { }
629
630  const Expr *getSubExpr() const { return cast<Expr>(Val); }
631  Expr *getSubExpr() { return cast<Expr>(Val); }
632  void setSubExpr(Expr *E) { Val = E; }
633
634  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
635
636  /// \brief Get the location of the left parentheses '('.
637  SourceLocation getLParen() const { return L; }
638  void setLParen(SourceLocation Loc) { L = Loc; }
639
640  /// \brief Get the location of the right parentheses ')'.
641  SourceLocation getRParen() const { return R; }
642  void setRParen(SourceLocation Loc) { R = Loc; }
643
644  static bool classof(const Stmt *T) {
645    return T->getStmtClass() == ParenExprClass;
646  }
647  static bool classof(const ParenExpr *) { return true; }
648
649  // Iterators
650  virtual child_iterator child_begin();
651  virtual child_iterator child_end();
652};
653
654
655/// UnaryOperator - This represents the unary-expression's (except sizeof and
656/// alignof), the postinc/postdec operators from postfix-expression, and various
657/// extensions.
658///
659/// Notes on various nodes:
660///
661/// Real/Imag - These return the real/imag part of a complex operand.  If
662///   applied to a non-complex value, the former returns its operand and the
663///   later returns zero in the type of the operand.
664///
665/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
666///   subexpression is a compound literal with the various MemberExpr and
667///   ArraySubscriptExpr's applied to it.
668///
669class UnaryOperator : public Expr {
670public:
671  // Note that additions to this should also update the StmtVisitor class.
672  enum Opcode {
673    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
674    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
675    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
676    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
677    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
678    Real, Imag,       // "__real expr"/"__imag expr" Extension.
679    Extension,        // __extension__ marker.
680    OffsetOf          // __builtin_offsetof
681  };
682private:
683  Stmt *Val;
684  Opcode Opc;
685  SourceLocation Loc;
686public:
687
688  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
689    : Expr(UnaryOperatorClass, type,
690           input->isTypeDependent() && opc != OffsetOf,
691           input->isValueDependent()),
692      Val(input), Opc(opc), Loc(l) {}
693
694  /// \brief Build an empty unary operator.
695  explicit UnaryOperator(EmptyShell Empty)
696    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
697
698  Opcode getOpcode() const { return Opc; }
699  void setOpcode(Opcode O) { Opc = O; }
700
701  Expr *getSubExpr() const { return cast<Expr>(Val); }
702  void setSubExpr(Expr *E) { Val = E; }
703
704  /// getOperatorLoc - Return the location of the operator.
705  SourceLocation getOperatorLoc() const { return Loc; }
706  void setOperatorLoc(SourceLocation L) { Loc = L; }
707
708  /// isPostfix - Return true if this is a postfix operation, like x++.
709  static bool isPostfix(Opcode Op) {
710    return Op == PostInc || Op == PostDec;
711  }
712
713  /// isPostfix - Return true if this is a prefix operation, like --x.
714  static bool isPrefix(Opcode Op) {
715    return Op == PreInc || Op == PreDec;
716  }
717
718  bool isPrefix() const { return isPrefix(Opc); }
719  bool isPostfix() const { return isPostfix(Opc); }
720  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
721  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
722  bool isOffsetOfOp() const { return Opc == OffsetOf; }
723  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
724
725  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
726  /// corresponds to, e.g. "sizeof" or "[pre]++"
727  static const char *getOpcodeStr(Opcode Op);
728
729  /// \brief Retrieve the unary opcode that corresponds to the given
730  /// overloaded operator.
731  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
732
733  /// \brief Retrieve the overloaded operator kind that corresponds to
734  /// the given unary opcode.
735  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
736
737  virtual SourceRange getSourceRange() const {
738    if (isPostfix())
739      return SourceRange(Val->getLocStart(), Loc);
740    else
741      return SourceRange(Loc, Val->getLocEnd());
742  }
743  virtual SourceLocation getExprLoc() const { return Loc; }
744
745  static bool classof(const Stmt *T) {
746    return T->getStmtClass() == UnaryOperatorClass;
747  }
748  static bool classof(const UnaryOperator *) { return true; }
749
750  // Iterators
751  virtual child_iterator child_begin();
752  virtual child_iterator child_end();
753};
754
755/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
756/// types and expressions.
757class SizeOfAlignOfExpr : public Expr {
758  bool isSizeof : 1;  // true if sizeof, false if alignof.
759  bool isType : 1;    // true if operand is a type, false if an expression
760  union {
761    void *Ty;
762    Stmt *Ex;
763  } Argument;
764  SourceLocation OpLoc, RParenLoc;
765public:
766  SizeOfAlignOfExpr(bool issizeof, QualType T,
767                    QualType resultType, SourceLocation op,
768                    SourceLocation rp) :
769      Expr(SizeOfAlignOfExprClass, resultType,
770           false, // Never type-dependent (C++ [temp.dep.expr]p3).
771           // Value-dependent if the argument is type-dependent.
772           T->isDependentType()),
773      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
774    Argument.Ty = T.getAsOpaquePtr();
775  }
776
777  SizeOfAlignOfExpr(bool issizeof, Expr *E,
778                    QualType resultType, SourceLocation op,
779                    SourceLocation rp) :
780      Expr(SizeOfAlignOfExprClass, resultType,
781           false, // Never type-dependent (C++ [temp.dep.expr]p3).
782           // Value-dependent if the argument is type-dependent.
783           E->isTypeDependent()),
784      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
785    Argument.Ex = E;
786  }
787
788  /// \brief Construct an empty sizeof/alignof expression.
789  explicit SizeOfAlignOfExpr(EmptyShell Empty)
790    : Expr(SizeOfAlignOfExprClass, Empty) { }
791
792  virtual void Destroy(ASTContext& C);
793
794  bool isSizeOf() const { return isSizeof; }
795  void setSizeof(bool S) { isSizeof = S; }
796
797  bool isArgumentType() const { return isType; }
798  QualType getArgumentType() const {
799    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
800    return QualType::getFromOpaquePtr(Argument.Ty);
801  }
802  Expr *getArgumentExpr() {
803    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
804    return static_cast<Expr*>(Argument.Ex);
805  }
806  const Expr *getArgumentExpr() const {
807    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
808  }
809
810  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
811  void setArgument(QualType T) {
812    Argument.Ty = T.getAsOpaquePtr();
813    isType = true;
814  }
815
816  /// Gets the argument type, or the type of the argument expression, whichever
817  /// is appropriate.
818  QualType getTypeOfArgument() const {
819    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
820  }
821
822  SourceLocation getOperatorLoc() const { return OpLoc; }
823  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
824
825  SourceLocation getRParenLoc() const { return RParenLoc; }
826  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
827
828  virtual SourceRange getSourceRange() const {
829    return SourceRange(OpLoc, RParenLoc);
830  }
831
832  static bool classof(const Stmt *T) {
833    return T->getStmtClass() == SizeOfAlignOfExprClass;
834  }
835  static bool classof(const SizeOfAlignOfExpr *) { return true; }
836
837  // Iterators
838  virtual child_iterator child_begin();
839  virtual child_iterator child_end();
840};
841
842//===----------------------------------------------------------------------===//
843// Postfix Operators.
844//===----------------------------------------------------------------------===//
845
846/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
847class ArraySubscriptExpr : public Expr {
848  enum { LHS, RHS, END_EXPR=2 };
849  Stmt* SubExprs[END_EXPR];
850  SourceLocation RBracketLoc;
851public:
852  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
853                     SourceLocation rbracketloc)
854  : Expr(ArraySubscriptExprClass, t,
855         lhs->isTypeDependent() || rhs->isTypeDependent(),
856         lhs->isValueDependent() || rhs->isValueDependent()),
857    RBracketLoc(rbracketloc) {
858    SubExprs[LHS] = lhs;
859    SubExprs[RHS] = rhs;
860  }
861
862  /// \brief Create an empty array subscript expression.
863  explicit ArraySubscriptExpr(EmptyShell Shell)
864    : Expr(ArraySubscriptExprClass, Shell) { }
865
866  /// An array access can be written A[4] or 4[A] (both are equivalent).
867  /// - getBase() and getIdx() always present the normalized view: A[4].
868  ///    In this case getBase() returns "A" and getIdx() returns "4".
869  /// - getLHS() and getRHS() present the syntactic view. e.g. for
870  ///    4[A] getLHS() returns "4".
871  /// Note: Because vector element access is also written A[4] we must
872  /// predicate the format conversion in getBase and getIdx only on the
873  /// the type of the RHS, as it is possible for the LHS to be a vector of
874  /// integer type
875  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
876  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
877  void setLHS(Expr *E) { SubExprs[LHS] = E; }
878
879  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
880  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
881  void setRHS(Expr *E) { SubExprs[RHS] = E; }
882
883  Expr *getBase() {
884    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
885  }
886
887  const Expr *getBase() const {
888    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
889  }
890
891  Expr *getIdx() {
892    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
893  }
894
895  const Expr *getIdx() const {
896    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
897  }
898
899  virtual SourceRange getSourceRange() const {
900    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
901  }
902
903  SourceLocation getRBracketLoc() const { return RBracketLoc; }
904  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
905
906  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
907
908  static bool classof(const Stmt *T) {
909    return T->getStmtClass() == ArraySubscriptExprClass;
910  }
911  static bool classof(const ArraySubscriptExpr *) { return true; }
912
913  // Iterators
914  virtual child_iterator child_begin();
915  virtual child_iterator child_end();
916};
917
918
919/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
920/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
921/// while its subclasses may represent alternative syntax that (semantically)
922/// results in a function call. For example, CXXOperatorCallExpr is
923/// a subclass for overloaded operator calls that use operator syntax, e.g.,
924/// "str1 + str2" to resolve to a function call.
925class CallExpr : public Expr {
926  enum { FN=0, ARGS_START=1 };
927  Stmt **SubExprs;
928  unsigned NumArgs;
929  SourceLocation RParenLoc;
930
931  // This version of the ctor is for deserialization.
932  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
933           SourceLocation rparenloc)
934  : Expr(SC,t), SubExprs(subexprs),
935    NumArgs(numargs), RParenLoc(rparenloc) {}
936
937protected:
938  // This version of the constructor is for derived classes.
939  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
940           QualType t, SourceLocation rparenloc);
941
942public:
943  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
944           SourceLocation rparenloc);
945
946  /// \brief Build an empty call expression.
947  CallExpr(ASTContext &C, EmptyShell Empty);
948
949  ~CallExpr() {}
950
951  void Destroy(ASTContext& C);
952
953  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
954  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
955  void setCallee(Expr *F) { SubExprs[FN] = F; }
956
957  /// getNumArgs - Return the number of actual arguments to this call.
958  ///
959  unsigned getNumArgs() const { return NumArgs; }
960
961  /// getArg - Return the specified argument.
962  Expr *getArg(unsigned Arg) {
963    assert(Arg < NumArgs && "Arg access out of range!");
964    return cast<Expr>(SubExprs[Arg+ARGS_START]);
965  }
966  const Expr *getArg(unsigned Arg) const {
967    assert(Arg < NumArgs && "Arg access out of range!");
968    return cast<Expr>(SubExprs[Arg+ARGS_START]);
969  }
970
971  /// setArg - Set the specified argument.
972  void setArg(unsigned Arg, Expr *ArgExpr) {
973    assert(Arg < NumArgs && "Arg access out of range!");
974    SubExprs[Arg+ARGS_START] = ArgExpr;
975  }
976
977  /// setNumArgs - This changes the number of arguments present in this call.
978  /// Any orphaned expressions are deleted by this, and any new operands are set
979  /// to null.
980  void setNumArgs(ASTContext& C, unsigned NumArgs);
981
982  typedef ExprIterator arg_iterator;
983  typedef ConstExprIterator const_arg_iterator;
984
985  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
986  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
987  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
988  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
989
990  /// getNumCommas - Return the number of commas that must have been present in
991  /// this function call.
992  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
993
994  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
995  /// not, return 0.
996  unsigned isBuiltinCall(ASTContext &Context) const;
997
998  SourceLocation getRParenLoc() const { return RParenLoc; }
999  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1000
1001  virtual SourceRange getSourceRange() const {
1002    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1003  }
1004
1005  static bool classof(const Stmt *T) {
1006    return T->getStmtClass() == CallExprClass ||
1007           T->getStmtClass() == CXXOperatorCallExprClass ||
1008           T->getStmtClass() == CXXMemberCallExprClass;
1009  }
1010  static bool classof(const CallExpr *) { return true; }
1011  static bool classof(const CXXOperatorCallExpr *) { return true; }
1012  static bool classof(const CXXMemberCallExpr *) { return true; }
1013
1014  // Iterators
1015  virtual child_iterator child_begin();
1016  virtual child_iterator child_end();
1017};
1018
1019/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1020///
1021class MemberExpr : public Expr {
1022  /// Base - the expression for the base pointer or structure references.  In
1023  /// X.F, this is "X".
1024  Stmt *Base;
1025
1026  /// MemberDecl - This is the decl being referenced by the field/member name.
1027  /// In X.F, this is the decl referenced by F.
1028  NamedDecl *MemberDecl;
1029
1030  /// MemberLoc - This is the location of the member name.
1031  SourceLocation MemberLoc;
1032
1033  /// IsArrow - True if this is "X->F", false if this is "X.F".
1034  bool IsArrow;
1035public:
1036  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1037             QualType ty)
1038    : Expr(MemberExprClass, ty),
1039      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
1040
1041  /// \brief Build an empty member reference expression.
1042  explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }
1043
1044  void setBase(Expr *E) { Base = E; }
1045  Expr *getBase() const { return cast<Expr>(Base); }
1046
1047  /// \brief Retrieve the member declaration to which this expression refers.
1048  ///
1049  /// The returned declaration will either be a FieldDecl or (in C++)
1050  /// a CXXMethodDecl.
1051  NamedDecl *getMemberDecl() const { return MemberDecl; }
1052  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1053
1054  bool isArrow() const { return IsArrow; }
1055  void setArrow(bool A) { IsArrow = A; }
1056
1057  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1058  /// location of 'F'.
1059  SourceLocation getMemberLoc() const { return MemberLoc; }
1060  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1061
1062  virtual SourceRange getSourceRange() const {
1063    return SourceRange(getBase()->getLocStart(), MemberLoc);
1064  }
1065
1066  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1067
1068  static bool classof(const Stmt *T) {
1069    return T->getStmtClass() == MemberExprClass;
1070  }
1071  static bool classof(const MemberExpr *) { return true; }
1072
1073  // Iterators
1074  virtual child_iterator child_begin();
1075  virtual child_iterator child_end();
1076};
1077
1078/// CompoundLiteralExpr - [C99 6.5.2.5]
1079///
1080class CompoundLiteralExpr : public Expr {
1081  /// LParenLoc - If non-null, this is the location of the left paren in a
1082  /// compound literal like "(int){4}".  This can be null if this is a
1083  /// synthesized compound expression.
1084  SourceLocation LParenLoc;
1085  Stmt *Init;
1086  bool FileScope;
1087public:
1088  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1089                      bool fileScope)
1090    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1091      FileScope(fileScope) {}
1092
1093  /// \brief Construct an empty compound literal.
1094  explicit CompoundLiteralExpr(EmptyShell Empty)
1095    : Expr(CompoundLiteralExprClass, Empty) { }
1096
1097  const Expr *getInitializer() const { return cast<Expr>(Init); }
1098  Expr *getInitializer() { return cast<Expr>(Init); }
1099  void setInitializer(Expr *E) { Init = E; }
1100
1101  bool isFileScope() const { return FileScope; }
1102  void setFileScope(bool FS) { FileScope = FS; }
1103
1104  SourceLocation getLParenLoc() const { return LParenLoc; }
1105  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1106
1107  virtual SourceRange getSourceRange() const {
1108    // FIXME: Init should never be null.
1109    if (!Init)
1110      return SourceRange();
1111    if (LParenLoc.isInvalid())
1112      return Init->getSourceRange();
1113    return SourceRange(LParenLoc, Init->getLocEnd());
1114  }
1115
1116  static bool classof(const Stmt *T) {
1117    return T->getStmtClass() == CompoundLiteralExprClass;
1118  }
1119  static bool classof(const CompoundLiteralExpr *) { return true; }
1120
1121  // Iterators
1122  virtual child_iterator child_begin();
1123  virtual child_iterator child_end();
1124};
1125
1126/// CastExpr - Base class for type casts, including both implicit
1127/// casts (ImplicitCastExpr) and explicit casts that have some
1128/// representation in the source code (ExplicitCastExpr's derived
1129/// classes).
1130class CastExpr : public Expr {
1131  Stmt *Op;
1132protected:
1133  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1134    Expr(SC, ty,
1135         // Cast expressions are type-dependent if the type is
1136         // dependent (C++ [temp.dep.expr]p3).
1137         ty->isDependentType(),
1138         // Cast expressions are value-dependent if the type is
1139         // dependent or if the subexpression is value-dependent.
1140         ty->isDependentType() || (op && op->isValueDependent())),
1141    Op(op) {}
1142
1143  /// \brief Construct an empty cast.
1144  CastExpr(StmtClass SC, EmptyShell Empty)
1145    : Expr(SC, Empty) { }
1146
1147public:
1148  Expr *getSubExpr() { return cast<Expr>(Op); }
1149  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1150  void setSubExpr(Expr *E) { Op = E; }
1151
1152  static bool classof(const Stmt *T) {
1153    StmtClass SC = T->getStmtClass();
1154    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1155      return true;
1156
1157    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1158      return true;
1159
1160    return false;
1161  }
1162  static bool classof(const CastExpr *) { return true; }
1163
1164  // Iterators
1165  virtual child_iterator child_begin();
1166  virtual child_iterator child_end();
1167};
1168
1169/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1170/// conversions, which have no direct representation in the original
1171/// source code. For example: converting T[]->T*, void f()->void
1172/// (*f)(), float->double, short->int, etc.
1173///
1174/// In C, implicit casts always produce rvalues. However, in C++, an
1175/// implicit cast whose result is being bound to a reference will be
1176/// an lvalue. For example:
1177///
1178/// @code
1179/// class Base { };
1180/// class Derived : public Base { };
1181/// void f(Derived d) {
1182///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1183/// }
1184/// @endcode
1185class ImplicitCastExpr : public CastExpr {
1186  /// LvalueCast - Whether this cast produces an lvalue.
1187  bool LvalueCast;
1188
1189public:
1190  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1191    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1192
1193  /// \brief Construct an empty implicit cast.
1194  explicit ImplicitCastExpr(EmptyShell Shell)
1195    : CastExpr(ImplicitCastExprClass, Shell) { }
1196
1197
1198  virtual SourceRange getSourceRange() const {
1199    return getSubExpr()->getSourceRange();
1200  }
1201
1202  /// isLvalueCast - Whether this cast produces an lvalue.
1203  bool isLvalueCast() const { return LvalueCast; }
1204
1205  /// setLvalueCast - Set whether this cast produces an lvalue.
1206  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1207
1208  static bool classof(const Stmt *T) {
1209    return T->getStmtClass() == ImplicitCastExprClass;
1210  }
1211  static bool classof(const ImplicitCastExpr *) { return true; }
1212};
1213
1214/// ExplicitCastExpr - An explicit cast written in the source
1215/// code.
1216///
1217/// This class is effectively an abstract class, because it provides
1218/// the basic representation of an explicitly-written cast without
1219/// specifying which kind of cast (C cast, functional cast, static
1220/// cast, etc.) was written; specific derived classes represent the
1221/// particular style of cast and its location information.
1222///
1223/// Unlike implicit casts, explicit cast nodes have two different
1224/// types: the type that was written into the source code, and the
1225/// actual type of the expression as determined by semantic
1226/// analysis. These types may differ slightly. For example, in C++ one
1227/// can cast to a reference type, which indicates that the resulting
1228/// expression will be an lvalue. The reference type, however, will
1229/// not be used as the type of the expression.
1230class ExplicitCastExpr : public CastExpr {
1231  /// TypeAsWritten - The type that this expression is casting to, as
1232  /// written in the source code.
1233  QualType TypeAsWritten;
1234
1235protected:
1236  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1237    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1238
1239  /// \brief Construct an empty explicit cast.
1240  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1241    : CastExpr(SC, Shell) { }
1242
1243public:
1244  /// getTypeAsWritten - Returns the type that this expression is
1245  /// casting to, as written in the source code.
1246  QualType getTypeAsWritten() const { return TypeAsWritten; }
1247  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1248
1249  static bool classof(const Stmt *T) {
1250    StmtClass SC = T->getStmtClass();
1251    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1252      return true;
1253    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1254      return true;
1255
1256    return false;
1257  }
1258  static bool classof(const ExplicitCastExpr *) { return true; }
1259};
1260
1261/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1262/// cast in C++ (C++ [expr.cast]), which uses the syntax
1263/// (Type)expr. For example: @c (int)f.
1264class CStyleCastExpr : public ExplicitCastExpr {
1265  SourceLocation LPLoc; // the location of the left paren
1266  SourceLocation RPLoc; // the location of the right paren
1267public:
1268  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1269                    SourceLocation l, SourceLocation r) :
1270    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1271    LPLoc(l), RPLoc(r) {}
1272
1273  /// \brief Construct an empty C-style explicit cast.
1274  explicit CStyleCastExpr(EmptyShell Shell)
1275    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1276
1277  SourceLocation getLParenLoc() const { return LPLoc; }
1278  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1279
1280  SourceLocation getRParenLoc() const { return RPLoc; }
1281  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1282
1283  virtual SourceRange getSourceRange() const {
1284    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1285  }
1286  static bool classof(const Stmt *T) {
1287    return T->getStmtClass() == CStyleCastExprClass;
1288  }
1289  static bool classof(const CStyleCastExpr *) { return true; }
1290};
1291
1292/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1293///
1294/// This expression node kind describes a builtin binary operation,
1295/// such as "x + y" for integer values "x" and "y". The operands will
1296/// already have been converted to appropriate types (e.g., by
1297/// performing promotions or conversions).
1298///
1299/// In C++, where operators may be overloaded, a different kind of
1300/// expression node (CXXOperatorCallExpr) is used to express the
1301/// invocation of an overloaded operator with operator syntax. Within
1302/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1303/// used to store an expression "x + y" depends on the subexpressions
1304/// for x and y. If neither x or y is type-dependent, and the "+"
1305/// operator resolves to a built-in operation, BinaryOperator will be
1306/// used to express the computation (x and y may still be
1307/// value-dependent). If either x or y is type-dependent, or if the
1308/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1309/// be used to express the computation.
1310class BinaryOperator : public Expr {
1311public:
1312  enum Opcode {
1313    // Operators listed in order of precedence.
1314    // Note that additions to this should also update the StmtVisitor class.
1315    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1316    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1317    Add, Sub,         // [C99 6.5.6] Additive operators.
1318    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1319    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1320    EQ, NE,           // [C99 6.5.9] Equality operators.
1321    And,              // [C99 6.5.10] Bitwise AND operator.
1322    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1323    Or,               // [C99 6.5.12] Bitwise OR operator.
1324    LAnd,             // [C99 6.5.13] Logical AND operator.
1325    LOr,              // [C99 6.5.14] Logical OR operator.
1326    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1327    DivAssign, RemAssign,
1328    AddAssign, SubAssign,
1329    ShlAssign, ShrAssign,
1330    AndAssign, XorAssign,
1331    OrAssign,
1332    Comma             // [C99 6.5.17] Comma operator.
1333  };
1334private:
1335  enum { LHS, RHS, END_EXPR };
1336  Stmt* SubExprs[END_EXPR];
1337  Opcode Opc;
1338  SourceLocation OpLoc;
1339public:
1340
1341  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1342                 SourceLocation opLoc)
1343    : Expr(BinaryOperatorClass, ResTy,
1344           lhs->isTypeDependent() || rhs->isTypeDependent(),
1345           lhs->isValueDependent() || rhs->isValueDependent()),
1346      Opc(opc), OpLoc(opLoc) {
1347    SubExprs[LHS] = lhs;
1348    SubExprs[RHS] = rhs;
1349    assert(!isCompoundAssignmentOp() &&
1350           "Use ArithAssignBinaryOperator for compound assignments");
1351  }
1352
1353  /// \brief Construct an empty binary operator.
1354  explicit BinaryOperator(EmptyShell Empty)
1355    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1356
1357  SourceLocation getOperatorLoc() const { return OpLoc; }
1358  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1359
1360  Opcode getOpcode() const { return Opc; }
1361  void setOpcode(Opcode O) { Opc = O; }
1362
1363  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1364  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1365  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1366  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1367
1368  virtual SourceRange getSourceRange() const {
1369    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1370  }
1371
1372  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1373  /// corresponds to, e.g. "<<=".
1374  static const char *getOpcodeStr(Opcode Op);
1375
1376  /// \brief Retrieve the binary opcode that corresponds to the given
1377  /// overloaded operator.
1378  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1379
1380  /// \brief Retrieve the overloaded operator kind that corresponds to
1381  /// the given binary opcode.
1382  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1383
1384  /// predicates to categorize the respective opcodes.
1385  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1386  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1387  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1388  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1389
1390  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1391  bool isRelationalOp() const { return isRelationalOp(Opc); }
1392
1393  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1394  bool isEqualityOp() const { return isEqualityOp(Opc); }
1395
1396  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1397  bool isLogicalOp() const { return isLogicalOp(Opc); }
1398
1399  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1400  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1401  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1402
1403  static bool classof(const Stmt *S) {
1404    return S->getStmtClass() == BinaryOperatorClass ||
1405           S->getStmtClass() == CompoundAssignOperatorClass;
1406  }
1407  static bool classof(const BinaryOperator *) { return true; }
1408
1409  // Iterators
1410  virtual child_iterator child_begin();
1411  virtual child_iterator child_end();
1412
1413protected:
1414  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1415                 SourceLocation oploc, bool dead)
1416    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1417    SubExprs[LHS] = lhs;
1418    SubExprs[RHS] = rhs;
1419  }
1420
1421  BinaryOperator(StmtClass SC, EmptyShell Empty)
1422    : Expr(SC, Empty), Opc(MulAssign) { }
1423};
1424
1425/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1426/// track of the type the operation is performed in.  Due to the semantics of
1427/// these operators, the operands are promoted, the aritmetic performed, an
1428/// implicit conversion back to the result type done, then the assignment takes
1429/// place.  This captures the intermediate type which the computation is done
1430/// in.
1431class CompoundAssignOperator : public BinaryOperator {
1432  QualType ComputationLHSType;
1433  QualType ComputationResultType;
1434public:
1435  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1436                         QualType ResType, QualType CompLHSType,
1437                         QualType CompResultType,
1438                         SourceLocation OpLoc)
1439    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1440      ComputationLHSType(CompLHSType),
1441      ComputationResultType(CompResultType) {
1442    assert(isCompoundAssignmentOp() &&
1443           "Only should be used for compound assignments");
1444  }
1445
1446  /// \brief Build an empty compound assignment operator expression.
1447  explicit CompoundAssignOperator(EmptyShell Empty)
1448    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1449
1450  // The two computation types are the type the LHS is converted
1451  // to for the computation and the type of the result; the two are
1452  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1453  QualType getComputationLHSType() const { return ComputationLHSType; }
1454  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1455
1456  QualType getComputationResultType() const { return ComputationResultType; }
1457  void setComputationResultType(QualType T) { ComputationResultType = T; }
1458
1459  static bool classof(const CompoundAssignOperator *) { return true; }
1460  static bool classof(const Stmt *S) {
1461    return S->getStmtClass() == CompoundAssignOperatorClass;
1462  }
1463};
1464
1465/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1466/// GNU "missing LHS" extension is in use.
1467///
1468class ConditionalOperator : public Expr {
1469  enum { COND, LHS, RHS, END_EXPR };
1470  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1471public:
1472  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1473    : Expr(ConditionalOperatorClass, t,
1474           // FIXME: the type of the conditional operator doesn't
1475           // depend on the type of the conditional, but the standard
1476           // seems to imply that it could. File a bug!
1477           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1478           (cond->isValueDependent() ||
1479            (lhs && lhs->isValueDependent()) ||
1480            (rhs && rhs->isValueDependent()))) {
1481    SubExprs[COND] = cond;
1482    SubExprs[LHS] = lhs;
1483    SubExprs[RHS] = rhs;
1484  }
1485
1486  /// \brief Build an empty conditional operator.
1487  explicit ConditionalOperator(EmptyShell Empty)
1488    : Expr(ConditionalOperatorClass, Empty) { }
1489
1490  // getCond - Return the expression representing the condition for
1491  //  the ?: operator.
1492  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1493  void setCond(Expr *E) { SubExprs[COND] = E; }
1494
1495  // getTrueExpr - Return the subexpression representing the value of the ?:
1496  //  expression if the condition evaluates to true.  In most cases this value
1497  //  will be the same as getLHS() except a GCC extension allows the left
1498  //  subexpression to be omitted, and instead of the condition be returned.
1499  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1500  //  is only evaluated once.
1501  Expr *getTrueExpr() const {
1502    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1503  }
1504
1505  // getTrueExpr - Return the subexpression representing the value of the ?:
1506  // expression if the condition evaluates to false. This is the same as getRHS.
1507  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1508
1509  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1510  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1511
1512  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1513  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1514
1515  virtual SourceRange getSourceRange() const {
1516    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1517  }
1518  static bool classof(const Stmt *T) {
1519    return T->getStmtClass() == ConditionalOperatorClass;
1520  }
1521  static bool classof(const ConditionalOperator *) { return true; }
1522
1523  // Iterators
1524  virtual child_iterator child_begin();
1525  virtual child_iterator child_end();
1526};
1527
1528/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1529class AddrLabelExpr : public Expr {
1530  SourceLocation AmpAmpLoc, LabelLoc;
1531  LabelStmt *Label;
1532public:
1533  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1534                QualType t)
1535    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1536
1537  /// \brief Build an empty address of a label expression.
1538  explicit AddrLabelExpr(EmptyShell Empty)
1539    : Expr(AddrLabelExprClass, Empty) { }
1540
1541  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
1542  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
1543  SourceLocation getLabelLoc() const { return LabelLoc; }
1544  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1545
1546  virtual SourceRange getSourceRange() const {
1547    return SourceRange(AmpAmpLoc, LabelLoc);
1548  }
1549
1550  LabelStmt *getLabel() const { return Label; }
1551  void setLabel(LabelStmt *S) { Label = S; }
1552
1553  static bool classof(const Stmt *T) {
1554    return T->getStmtClass() == AddrLabelExprClass;
1555  }
1556  static bool classof(const AddrLabelExpr *) { return true; }
1557
1558  // Iterators
1559  virtual child_iterator child_begin();
1560  virtual child_iterator child_end();
1561};
1562
1563/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1564/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1565/// takes the value of the last subexpression.
1566class StmtExpr : public Expr {
1567  Stmt *SubStmt;
1568  SourceLocation LParenLoc, RParenLoc;
1569public:
1570  StmtExpr(CompoundStmt *substmt, QualType T,
1571           SourceLocation lp, SourceLocation rp) :
1572    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1573
1574  /// \brief Build an empty statement expression.
1575  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
1576
1577  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1578  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1579  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
1580
1581  virtual SourceRange getSourceRange() const {
1582    return SourceRange(LParenLoc, RParenLoc);
1583  }
1584
1585  SourceLocation getLParenLoc() const { return LParenLoc; }
1586  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1587  SourceLocation getRParenLoc() const { return RParenLoc; }
1588  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1589
1590  static bool classof(const Stmt *T) {
1591    return T->getStmtClass() == StmtExprClass;
1592  }
1593  static bool classof(const StmtExpr *) { return true; }
1594
1595  // Iterators
1596  virtual child_iterator child_begin();
1597  virtual child_iterator child_end();
1598};
1599
1600/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1601/// This AST node represents a function that returns 1 if two *types* (not
1602/// expressions) are compatible. The result of this built-in function can be
1603/// used in integer constant expressions.
1604class TypesCompatibleExpr : public Expr {
1605  QualType Type1;
1606  QualType Type2;
1607  SourceLocation BuiltinLoc, RParenLoc;
1608public:
1609  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1610                      QualType t1, QualType t2, SourceLocation RP) :
1611    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1612    BuiltinLoc(BLoc), RParenLoc(RP) {}
1613
1614  /// \brief Build an empty __builtin_type_compatible_p expression.
1615  explicit TypesCompatibleExpr(EmptyShell Empty)
1616    : Expr(TypesCompatibleExprClass, Empty) { }
1617
1618  QualType getArgType1() const { return Type1; }
1619  void setArgType1(QualType T) { Type1 = T; }
1620  QualType getArgType2() const { return Type2; }
1621  void setArgType2(QualType T) { Type2 = T; }
1622
1623  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1624  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1625
1626  SourceLocation getRParenLoc() const { return RParenLoc; }
1627  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1628
1629  virtual SourceRange getSourceRange() const {
1630    return SourceRange(BuiltinLoc, RParenLoc);
1631  }
1632  static bool classof(const Stmt *T) {
1633    return T->getStmtClass() == TypesCompatibleExprClass;
1634  }
1635  static bool classof(const TypesCompatibleExpr *) { return true; }
1636
1637  // Iterators
1638  virtual child_iterator child_begin();
1639  virtual child_iterator child_end();
1640};
1641
1642/// ShuffleVectorExpr - clang-specific builtin-in function
1643/// __builtin_shufflevector.
1644/// This AST node represents a operator that does a constant
1645/// shuffle, similar to LLVM's shufflevector instruction. It takes
1646/// two vectors and a variable number of constant indices,
1647/// and returns the appropriately shuffled vector.
1648class ShuffleVectorExpr : public Expr {
1649  SourceLocation BuiltinLoc, RParenLoc;
1650
1651  // SubExprs - the list of values passed to the __builtin_shufflevector
1652  // function. The first two are vectors, and the rest are constant
1653  // indices.  The number of values in this list is always
1654  // 2+the number of indices in the vector type.
1655  Stmt **SubExprs;
1656  unsigned NumExprs;
1657
1658public:
1659  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1660                    QualType Type, SourceLocation BLoc,
1661                    SourceLocation RP) :
1662    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1663    RParenLoc(RP), NumExprs(nexpr) {
1664
1665    SubExprs = new Stmt*[nexpr];
1666    for (unsigned i = 0; i < nexpr; i++)
1667      SubExprs[i] = args[i];
1668  }
1669
1670  /// \brief Build an empty vector-shuffle expression.
1671  explicit ShuffleVectorExpr(EmptyShell Empty)
1672    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1673
1674  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1675  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1676
1677  SourceLocation getRParenLoc() const { return RParenLoc; }
1678  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1679
1680  virtual SourceRange getSourceRange() const {
1681    return SourceRange(BuiltinLoc, RParenLoc);
1682  }
1683  static bool classof(const Stmt *T) {
1684    return T->getStmtClass() == ShuffleVectorExprClass;
1685  }
1686  static bool classof(const ShuffleVectorExpr *) { return true; }
1687
1688  ~ShuffleVectorExpr() {
1689    delete [] SubExprs;
1690  }
1691
1692  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1693  /// constant expression, the actual arguments passed in, and the function
1694  /// pointers.
1695  unsigned getNumSubExprs() const { return NumExprs; }
1696
1697  /// getExpr - Return the Expr at the specified index.
1698  Expr *getExpr(unsigned Index) {
1699    assert((Index < NumExprs) && "Arg access out of range!");
1700    return cast<Expr>(SubExprs[Index]);
1701  }
1702  const Expr *getExpr(unsigned Index) const {
1703    assert((Index < NumExprs) && "Arg access out of range!");
1704    return cast<Expr>(SubExprs[Index]);
1705  }
1706
1707  void setExprs(Expr ** Exprs, unsigned NumExprs);
1708
1709  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1710    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1711    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
1712  }
1713
1714  // Iterators
1715  virtual child_iterator child_begin();
1716  virtual child_iterator child_end();
1717};
1718
1719/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1720/// This AST node is similar to the conditional operator (?:) in C, with
1721/// the following exceptions:
1722/// - the test expression must be a integer constant expression.
1723/// - the expression returned acts like the chosen subexpression in every
1724///   visible way: the type is the same as that of the chosen subexpression,
1725///   and all predicates (whether it's an l-value, whether it's an integer
1726///   constant expression, etc.) return the same result as for the chosen
1727///   sub-expression.
1728class ChooseExpr : public Expr {
1729  enum { COND, LHS, RHS, END_EXPR };
1730  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1731  SourceLocation BuiltinLoc, RParenLoc;
1732public:
1733  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1734             SourceLocation RP)
1735    : Expr(ChooseExprClass, t),
1736      BuiltinLoc(BLoc), RParenLoc(RP) {
1737      SubExprs[COND] = cond;
1738      SubExprs[LHS] = lhs;
1739      SubExprs[RHS] = rhs;
1740    }
1741
1742  /// \brief Build an empty __builtin_choose_expr.
1743  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
1744
1745  /// isConditionTrue - Return whether the condition is true (i.e. not
1746  /// equal to zero).
1747  bool isConditionTrue(ASTContext &C) const;
1748
1749  /// getChosenSubExpr - Return the subexpression chosen according to the
1750  /// condition.
1751  Expr *getChosenSubExpr(ASTContext &C) const {
1752    return isConditionTrue(C) ? getLHS() : getRHS();
1753  }
1754
1755  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1756  void setCond(Expr *E) { SubExprs[COND] = E; }
1757  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1758  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1759  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1760  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1761
1762  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1763  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1764
1765  SourceLocation getRParenLoc() const { return RParenLoc; }
1766  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1767
1768  virtual SourceRange getSourceRange() const {
1769    return SourceRange(BuiltinLoc, RParenLoc);
1770  }
1771  static bool classof(const Stmt *T) {
1772    return T->getStmtClass() == ChooseExprClass;
1773  }
1774  static bool classof(const ChooseExpr *) { return true; }
1775
1776  // Iterators
1777  virtual child_iterator child_begin();
1778  virtual child_iterator child_end();
1779};
1780
1781/// GNUNullExpr - Implements the GNU __null extension, which is a name
1782/// for a null pointer constant that has integral type (e.g., int or
1783/// long) and is the same size and alignment as a pointer. The __null
1784/// extension is typically only used by system headers, which define
1785/// NULL as __null in C++ rather than using 0 (which is an integer
1786/// that may not match the size of a pointer).
1787class GNUNullExpr : public Expr {
1788  /// TokenLoc - The location of the __null keyword.
1789  SourceLocation TokenLoc;
1790
1791public:
1792  GNUNullExpr(QualType Ty, SourceLocation Loc)
1793    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1794
1795  /// \brief Build an empty GNU __null expression.
1796  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
1797
1798  /// getTokenLocation - The location of the __null token.
1799  SourceLocation getTokenLocation() const { return TokenLoc; }
1800  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
1801
1802  virtual SourceRange getSourceRange() const {
1803    return SourceRange(TokenLoc);
1804  }
1805  static bool classof(const Stmt *T) {
1806    return T->getStmtClass() == GNUNullExprClass;
1807  }
1808  static bool classof(const GNUNullExpr *) { return true; }
1809
1810  // Iterators
1811  virtual child_iterator child_begin();
1812  virtual child_iterator child_end();
1813};
1814
1815/// VAArgExpr, used for the builtin function __builtin_va_start.
1816class VAArgExpr : public Expr {
1817  Stmt *Val;
1818  SourceLocation BuiltinLoc, RParenLoc;
1819public:
1820  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1821    : Expr(VAArgExprClass, t),
1822      Val(e),
1823      BuiltinLoc(BLoc),
1824      RParenLoc(RPLoc) { }
1825
1826  /// \brief Create an empty __builtin_va_start expression.
1827  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
1828
1829  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1830  Expr *getSubExpr() { return cast<Expr>(Val); }
1831  void setSubExpr(Expr *E) { Val = E; }
1832
1833  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1834  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1835
1836  SourceLocation getRParenLoc() const { return RParenLoc; }
1837  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1838
1839  virtual SourceRange getSourceRange() const {
1840    return SourceRange(BuiltinLoc, RParenLoc);
1841  }
1842  static bool classof(const Stmt *T) {
1843    return T->getStmtClass() == VAArgExprClass;
1844  }
1845  static bool classof(const VAArgExpr *) { return true; }
1846
1847  // Iterators
1848  virtual child_iterator child_begin();
1849  virtual child_iterator child_end();
1850};
1851
1852/// @brief Describes an C or C++ initializer list.
1853///
1854/// InitListExpr describes an initializer list, which can be used to
1855/// initialize objects of different types, including
1856/// struct/class/union types, arrays, and vectors. For example:
1857///
1858/// @code
1859/// struct foo x = { 1, { 2, 3 } };
1860/// @endcode
1861///
1862/// Prior to semantic analysis, an initializer list will represent the
1863/// initializer list as written by the user, but will have the
1864/// placeholder type "void". This initializer list is called the
1865/// syntactic form of the initializer, and may contain C99 designated
1866/// initializers (represented as DesignatedInitExprs), initializations
1867/// of subobject members without explicit braces, and so on. Clients
1868/// interested in the original syntax of the initializer list should
1869/// use the syntactic form of the initializer list.
1870///
1871/// After semantic analysis, the initializer list will represent the
1872/// semantic form of the initializer, where the initializations of all
1873/// subobjects are made explicit with nested InitListExpr nodes and
1874/// C99 designators have been eliminated by placing the designated
1875/// initializations into the subobject they initialize. Additionally,
1876/// any "holes" in the initialization, where no initializer has been
1877/// specified for a particular subobject, will be replaced with
1878/// implicitly-generated ImplicitValueInitExpr expressions that
1879/// value-initialize the subobjects. Note, however, that the
1880/// initializer lists may still have fewer initializers than there are
1881/// elements to initialize within the object.
1882///
1883/// Given the semantic form of the initializer list, one can retrieve
1884/// the original syntactic form of that initializer list (if it
1885/// exists) using getSyntacticForm(). Since many initializer lists
1886/// have the same syntactic and semantic forms, getSyntacticForm() may
1887/// return NULL, indicating that the current initializer list also
1888/// serves as its syntactic form.
1889class InitListExpr : public Expr {
1890  std::vector<Stmt *> InitExprs;
1891  SourceLocation LBraceLoc, RBraceLoc;
1892
1893  /// Contains the initializer list that describes the syntactic form
1894  /// written in the source code.
1895  InitListExpr *SyntacticForm;
1896
1897  /// If this initializer list initializes a union, specifies which
1898  /// field within the union will be initialized.
1899  FieldDecl *UnionFieldInit;
1900
1901  /// Whether this initializer list originally had a GNU array-range
1902  /// designator in it. This is a temporary marker used by CodeGen.
1903  bool HadArrayRangeDesignator;
1904
1905public:
1906  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1907               SourceLocation rbraceloc);
1908
1909  /// \brief Build an empty initializer list.
1910  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
1911
1912  unsigned getNumInits() const { return InitExprs.size(); }
1913
1914  const Expr* getInit(unsigned Init) const {
1915    assert(Init < getNumInits() && "Initializer access out of range!");
1916    return cast_or_null<Expr>(InitExprs[Init]);
1917  }
1918
1919  Expr* getInit(unsigned Init) {
1920    assert(Init < getNumInits() && "Initializer access out of range!");
1921    return cast_or_null<Expr>(InitExprs[Init]);
1922  }
1923
1924  void setInit(unsigned Init, Expr *expr) {
1925    assert(Init < getNumInits() && "Initializer access out of range!");
1926    InitExprs[Init] = expr;
1927  }
1928
1929  /// \brief Reserve space for some number of initializers.
1930  void reserveInits(unsigned NumInits);
1931
1932  /// @brief Specify the number of initializers
1933  ///
1934  /// If there are more than @p NumInits initializers, the remaining
1935  /// initializers will be destroyed. If there are fewer than @p
1936  /// NumInits initializers, NULL expressions will be added for the
1937  /// unknown initializers.
1938  void resizeInits(ASTContext &Context, unsigned NumInits);
1939
1940  /// @brief Updates the initializer at index @p Init with the new
1941  /// expression @p expr, and returns the old expression at that
1942  /// location.
1943  ///
1944  /// When @p Init is out of range for this initializer list, the
1945  /// initializer list will be extended with NULL expressions to
1946  /// accomodate the new entry.
1947  Expr *updateInit(unsigned Init, Expr *expr);
1948
1949  /// \brief If this initializes a union, specifies which field in the
1950  /// union to initialize.
1951  ///
1952  /// Typically, this field is the first named field within the
1953  /// union. However, a designated initializer can specify the
1954  /// initialization of a different field within the union.
1955  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1956  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1957
1958  // Explicit InitListExpr's originate from source code (and have valid source
1959  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1960  bool isExplicit() {
1961    return LBraceLoc.isValid() && RBraceLoc.isValid();
1962  }
1963
1964  SourceLocation getLBraceLoc() const { return LBraceLoc; }
1965  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
1966  SourceLocation getRBraceLoc() const { return RBraceLoc; }
1967  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1968
1969  /// @brief Retrieve the initializer list that describes the
1970  /// syntactic form of the initializer.
1971  ///
1972  ///
1973  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1974  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1975
1976  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1977  void sawArrayRangeDesignator(bool ARD = true) {
1978    HadArrayRangeDesignator = ARD;
1979  }
1980
1981  virtual SourceRange getSourceRange() const {
1982    return SourceRange(LBraceLoc, RBraceLoc);
1983  }
1984  static bool classof(const Stmt *T) {
1985    return T->getStmtClass() == InitListExprClass;
1986  }
1987  static bool classof(const InitListExpr *) { return true; }
1988
1989  // Iterators
1990  virtual child_iterator child_begin();
1991  virtual child_iterator child_end();
1992
1993  typedef std::vector<Stmt *>::iterator iterator;
1994  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1995
1996  iterator begin() { return InitExprs.begin(); }
1997  iterator end() { return InitExprs.end(); }
1998  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1999  reverse_iterator rend() { return InitExprs.rend(); }
2000};
2001
2002/// @brief Represents a C99 designated initializer expression.
2003///
2004/// A designated initializer expression (C99 6.7.8) contains one or
2005/// more designators (which can be field designators, array
2006/// designators, or GNU array-range designators) followed by an
2007/// expression that initializes the field or element(s) that the
2008/// designators refer to. For example, given:
2009///
2010/// @code
2011/// struct point {
2012///   double x;
2013///   double y;
2014/// };
2015/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2016/// @endcode
2017///
2018/// The InitListExpr contains three DesignatedInitExprs, the first of
2019/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2020/// designators, one array designator for @c [2] followed by one field
2021/// designator for @c .y. The initalization expression will be 1.0.
2022class DesignatedInitExpr : public Expr {
2023public:
2024  /// \brief Forward declaration of the Designator class.
2025  class Designator;
2026
2027private:
2028  /// The location of the '=' or ':' prior to the actual initializer
2029  /// expression.
2030  SourceLocation EqualOrColonLoc;
2031
2032  /// Whether this designated initializer used the GNU deprecated
2033  /// syntax rather than the C99 '=' syntax.
2034  bool GNUSyntax : 1;
2035
2036  /// The number of designators in this initializer expression.
2037  unsigned NumDesignators : 15;
2038
2039  /// \brief The designators in this designated initialization
2040  /// expression.
2041  Designator *Designators;
2042
2043  /// The number of subexpressions of this initializer expression,
2044  /// which contains both the initializer and any additional
2045  /// expressions used by array and array-range designators.
2046  unsigned NumSubExprs : 16;
2047
2048
2049  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2050                     const Designator *Designators,
2051                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2052                     unsigned NumSubExprs);
2053
2054  explicit DesignatedInitExpr(unsigned NumSubExprs)
2055    : Expr(DesignatedInitExprClass, EmptyShell()),
2056      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2057
2058public:
2059  /// A field designator, e.g., ".x".
2060  struct FieldDesignator {
2061    /// Refers to the field that is being initialized. The low bit
2062    /// of this field determines whether this is actually a pointer
2063    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2064    /// initially constructed, a field designator will store an
2065    /// IdentifierInfo*. After semantic analysis has resolved that
2066    /// name, the field designator will instead store a FieldDecl*.
2067    uintptr_t NameOrField;
2068
2069    /// The location of the '.' in the designated initializer.
2070    unsigned DotLoc;
2071
2072    /// The location of the field name in the designated initializer.
2073    unsigned FieldLoc;
2074  };
2075
2076  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2077  struct ArrayOrRangeDesignator {
2078    /// Location of the first index expression within the designated
2079    /// initializer expression's list of subexpressions.
2080    unsigned Index;
2081    /// The location of the '[' starting the array range designator.
2082    unsigned LBracketLoc;
2083    /// The location of the ellipsis separating the start and end
2084    /// indices. Only valid for GNU array-range designators.
2085    unsigned EllipsisLoc;
2086    /// The location of the ']' terminating the array range designator.
2087    unsigned RBracketLoc;
2088  };
2089
2090  /// @brief Represents a single C99 designator.
2091  ///
2092  /// @todo This class is infuriatingly similar to clang::Designator,
2093  /// but minor differences (storing indices vs. storing pointers)
2094  /// keep us from reusing it. Try harder, later, to rectify these
2095  /// differences.
2096  class Designator {
2097    /// @brief The kind of designator this describes.
2098    enum {
2099      FieldDesignator,
2100      ArrayDesignator,
2101      ArrayRangeDesignator
2102    } Kind;
2103
2104    union {
2105      /// A field designator, e.g., ".x".
2106      struct FieldDesignator Field;
2107      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2108      struct ArrayOrRangeDesignator ArrayOrRange;
2109    };
2110    friend class DesignatedInitExpr;
2111
2112  public:
2113    Designator() {}
2114
2115    /// @brief Initializes a field designator.
2116    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2117               SourceLocation FieldLoc)
2118      : Kind(FieldDesignator) {
2119      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2120      Field.DotLoc = DotLoc.getRawEncoding();
2121      Field.FieldLoc = FieldLoc.getRawEncoding();
2122    }
2123
2124    /// @brief Initializes an array designator.
2125    Designator(unsigned Index, SourceLocation LBracketLoc,
2126               SourceLocation RBracketLoc)
2127      : Kind(ArrayDesignator) {
2128      ArrayOrRange.Index = Index;
2129      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2130      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2131      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2132    }
2133
2134    /// @brief Initializes a GNU array-range designator.
2135    Designator(unsigned Index, SourceLocation LBracketLoc,
2136               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2137      : Kind(ArrayRangeDesignator) {
2138      ArrayOrRange.Index = Index;
2139      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2140      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2141      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2142    }
2143
2144    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2145    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2146    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2147
2148    IdentifierInfo * getFieldName();
2149
2150    FieldDecl *getField() {
2151      assert(Kind == FieldDesignator && "Only valid on a field designator");
2152      if (Field.NameOrField & 0x01)
2153        return 0;
2154      else
2155        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2156    }
2157
2158    void setField(FieldDecl *FD) {
2159      assert(Kind == FieldDesignator && "Only valid on a field designator");
2160      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2161    }
2162
2163    SourceLocation getDotLoc() const {
2164      assert(Kind == FieldDesignator && "Only valid on a field designator");
2165      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2166    }
2167
2168    SourceLocation getFieldLoc() const {
2169      assert(Kind == FieldDesignator && "Only valid on a field designator");
2170      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2171    }
2172
2173    SourceLocation getLBracketLoc() const {
2174      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2175             "Only valid on an array or array-range designator");
2176      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2177    }
2178
2179    SourceLocation getRBracketLoc() const {
2180      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2181             "Only valid on an array or array-range designator");
2182      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2183    }
2184
2185    SourceLocation getEllipsisLoc() const {
2186      assert(Kind == ArrayRangeDesignator &&
2187             "Only valid on an array-range designator");
2188      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2189    }
2190
2191    unsigned getFirstExprIndex() const {
2192      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2193             "Only valid on an array or array-range designator");
2194      return ArrayOrRange.Index;
2195    }
2196
2197    SourceLocation getStartLocation() const {
2198      if (Kind == FieldDesignator)
2199        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2200      else
2201        return getLBracketLoc();
2202    }
2203  };
2204
2205  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2206                                    unsigned NumDesignators,
2207                                    Expr **IndexExprs, unsigned NumIndexExprs,
2208                                    SourceLocation EqualOrColonLoc,
2209                                    bool GNUSyntax, Expr *Init);
2210
2211  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2212
2213  /// @brief Returns the number of designators in this initializer.
2214  unsigned size() const { return NumDesignators; }
2215
2216  // Iterator access to the designators.
2217  typedef Designator* designators_iterator;
2218  designators_iterator designators_begin() { return Designators; }
2219  designators_iterator designators_end() {
2220    return Designators + NumDesignators;
2221  }
2222
2223  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2224
2225  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2226
2227  Expr *getArrayIndex(const Designator& D);
2228  Expr *getArrayRangeStart(const Designator& D);
2229  Expr *getArrayRangeEnd(const Designator& D);
2230
2231  /// @brief Retrieve the location of the '=' that precedes the
2232  /// initializer value itself, if present.
2233  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2234  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2235
2236  /// @brief Determines whether this designated initializer used the
2237  /// deprecated GNU syntax for designated initializers.
2238  bool usesGNUSyntax() const { return GNUSyntax; }
2239  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2240
2241  /// @brief Retrieve the initializer value.
2242  Expr *getInit() const {
2243    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2244  }
2245
2246  void setInit(Expr *init) {
2247    *child_begin() = init;
2248  }
2249
2250  /// \brief Retrieve the total number of subexpressions in this
2251  /// designated initializer expression, including the actual
2252  /// initialized value and any expressions that occur within array
2253  /// and array-range designators.
2254  unsigned getNumSubExprs() const { return NumSubExprs; }
2255
2256  Expr *getSubExpr(unsigned Idx) {
2257    assert(Idx < NumSubExprs && "Subscript out of range");
2258    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2259    Ptr += sizeof(DesignatedInitExpr);
2260    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2261  }
2262
2263  void setSubExpr(unsigned Idx, Expr *E) {
2264    assert(Idx < NumSubExprs && "Subscript out of range");
2265    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2266    Ptr += sizeof(DesignatedInitExpr);
2267    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2268  }
2269
2270  /// \brief Replaces the designator at index @p Idx with the series
2271  /// of designators in [First, Last).
2272  void ExpandDesignator(unsigned Idx, const Designator *First,
2273                        const Designator *Last);
2274
2275  virtual SourceRange getSourceRange() const;
2276
2277  virtual void Destroy(ASTContext &C);
2278
2279  static bool classof(const Stmt *T) {
2280    return T->getStmtClass() == DesignatedInitExprClass;
2281  }
2282  static bool classof(const DesignatedInitExpr *) { return true; }
2283
2284  // Iterators
2285  virtual child_iterator child_begin();
2286  virtual child_iterator child_end();
2287};
2288
2289/// \brief Represents an implicitly-generated value initialization of
2290/// an object of a given type.
2291///
2292/// Implicit value initializations occur within semantic initializer
2293/// list expressions (InitListExpr) as placeholders for subobject
2294/// initializations not explicitly specified by the user.
2295///
2296/// \see InitListExpr
2297class ImplicitValueInitExpr : public Expr {
2298public:
2299  explicit ImplicitValueInitExpr(QualType ty)
2300    : Expr(ImplicitValueInitExprClass, ty) { }
2301
2302  /// \brief Construct an empty implicit value initialization.
2303  explicit ImplicitValueInitExpr(EmptyShell Empty)
2304    : Expr(ImplicitValueInitExprClass, Empty) { }
2305
2306  static bool classof(const Stmt *T) {
2307    return T->getStmtClass() == ImplicitValueInitExprClass;
2308  }
2309  static bool classof(const ImplicitValueInitExpr *) { return true; }
2310
2311  virtual SourceRange getSourceRange() const {
2312    return SourceRange();
2313  }
2314
2315  // Iterators
2316  virtual child_iterator child_begin();
2317  virtual child_iterator child_end();
2318};
2319
2320//===----------------------------------------------------------------------===//
2321// Clang Extensions
2322//===----------------------------------------------------------------------===//
2323
2324
2325/// ExtVectorElementExpr - This represents access to specific elements of a
2326/// vector, and may occur on the left hand side or right hand side.  For example
2327/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2328///
2329/// Note that the base may have either vector or pointer to vector type, just
2330/// like a struct field reference.
2331///
2332class ExtVectorElementExpr : public Expr {
2333  Stmt *Base;
2334  IdentifierInfo *Accessor;
2335  SourceLocation AccessorLoc;
2336public:
2337  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2338                       SourceLocation loc)
2339    : Expr(ExtVectorElementExprClass, ty),
2340      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2341
2342  /// \brief Build an empty vector element expression.
2343  explicit ExtVectorElementExpr(EmptyShell Empty)
2344    : Expr(ExtVectorElementExprClass, Empty) { }
2345
2346  const Expr *getBase() const { return cast<Expr>(Base); }
2347  Expr *getBase() { return cast<Expr>(Base); }
2348  void setBase(Expr *E) { Base = E; }
2349
2350  IdentifierInfo &getAccessor() const { return *Accessor; }
2351  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2352
2353  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2354  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2355
2356  /// getNumElements - Get the number of components being selected.
2357  unsigned getNumElements() const;
2358
2359  /// containsDuplicateElements - Return true if any element access is
2360  /// repeated.
2361  bool containsDuplicateElements() const;
2362
2363  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2364  /// aggregate Constant of ConstantInt(s).
2365  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2366
2367  virtual SourceRange getSourceRange() const {
2368    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2369  }
2370
2371  /// isArrow - Return true if the base expression is a pointer to vector,
2372  /// return false if the base expression is a vector.
2373  bool isArrow() const;
2374
2375  static bool classof(const Stmt *T) {
2376    return T->getStmtClass() == ExtVectorElementExprClass;
2377  }
2378  static bool classof(const ExtVectorElementExpr *) { return true; }
2379
2380  // Iterators
2381  virtual child_iterator child_begin();
2382  virtual child_iterator child_end();
2383};
2384
2385
2386/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2387/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2388class BlockExpr : public Expr {
2389protected:
2390  BlockDecl *TheBlock;
2391  bool HasBlockDeclRefExprs;
2392public:
2393  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2394    : Expr(BlockExprClass, ty),
2395      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2396
2397  /// \brief Build an empty block expression.
2398  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2399
2400  const BlockDecl *getBlockDecl() const { return TheBlock; }
2401  BlockDecl *getBlockDecl() { return TheBlock; }
2402  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2403
2404  // Convenience functions for probing the underlying BlockDecl.
2405  SourceLocation getCaretLocation() const;
2406  const Stmt *getBody() const;
2407  Stmt *getBody();
2408
2409  const Stmt *getBody(ASTContext &C) const { return getBody(); }
2410  Stmt *getBody(ASTContext &C) { return getBody(); }
2411
2412  virtual SourceRange getSourceRange() const {
2413    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2414  }
2415
2416  /// getFunctionType - Return the underlying function type for this block.
2417  const FunctionType *getFunctionType() const;
2418
2419  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2420  /// inside of the block that reference values outside the block.
2421  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2422  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2423
2424  static bool classof(const Stmt *T) {
2425    return T->getStmtClass() == BlockExprClass;
2426  }
2427  static bool classof(const BlockExpr *) { return true; }
2428
2429  // Iterators
2430  virtual child_iterator child_begin();
2431  virtual child_iterator child_end();
2432};
2433
2434/// BlockDeclRefExpr - A reference to a declared variable, function,
2435/// enum, etc.
2436class BlockDeclRefExpr : public Expr {
2437  ValueDecl *D;
2438  SourceLocation Loc;
2439  bool IsByRef;
2440public:
2441  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2442       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2443
2444  // \brief Build an empty reference to a declared variable in a
2445  // block.
2446  explicit BlockDeclRefExpr(EmptyShell Empty)
2447    : Expr(BlockDeclRefExprClass, Empty) { }
2448
2449  ValueDecl *getDecl() { return D; }
2450  const ValueDecl *getDecl() const { return D; }
2451  void setDecl(ValueDecl *VD) { D = VD; }
2452
2453  SourceLocation getLocation() const { return Loc; }
2454  void setLocation(SourceLocation L) { Loc = L; }
2455
2456  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2457
2458  bool isByRef() const { return IsByRef; }
2459  void setByRef(bool BR) { IsByRef = BR; }
2460
2461  static bool classof(const Stmt *T) {
2462    return T->getStmtClass() == BlockDeclRefExprClass;
2463  }
2464  static bool classof(const BlockDeclRefExpr *) { return true; }
2465
2466  // Iterators
2467  virtual child_iterator child_begin();
2468  virtual child_iterator child_end();
2469};
2470
2471}  // end namespace clang
2472
2473#endif
2474