Expr.h revision 9d293dfc0ad7c44ae0b5eb9517f1ed8c8d8b7ff7
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/Stmt.h"
18#include "clang/AST/Type.h"
19#include "llvm/ADT/APSInt.h"
20#include "llvm/ADT/APFloat.h"
21#include "llvm/ADT/SmallVector.h"
22#include <vector>
23
24namespace clang {
25  class ASTContext;
26  class APValue;
27  class Decl;
28  class IdentifierInfo;
29  class ParmVarDecl;
30  class NamedDecl;
31  class ValueDecl;
32  class BlockDecl;
33
34/// Expr - This represents one expression.  Note that Expr's are subclasses of
35/// Stmt.  This allows an expression to be transparently used any place a Stmt
36/// is required.
37///
38class Expr : public Stmt {
39  QualType TR;
40protected:
41  Expr(StmtClass SC, QualType T) : Stmt(SC), TR(T) {
42    // In C++, the type of an expression is always adjusted so that it
43    // will not have reference type an expression will never have
44    // reference type (C++ [expr]p6). Use
45    // QualType::getNonReferenceType() to retrieve the non-reference
46    // type. Additionally, inspect Expr::isLvalue to determine whether
47    // an expression that is adjusted in this manner should be
48    // considered an lvalue.
49    assert((T.isNull() || !T->isReferenceType()) && "Expressions can't have reference type");
50  }
51public:
52  QualType getType() const { return TR; }
53  void setType(QualType t) { TR = t; }
54
55  /// SourceLocation tokens are not useful in isolation - they are low level
56  /// value objects created/interpreted by SourceManager. We assume AST
57  /// clients will have a pointer to the respective SourceManager.
58  virtual SourceRange getSourceRange() const = 0;
59
60  /// getExprLoc - Return the preferred location for the arrow when diagnosing
61  /// a problem with a generic expression.
62  virtual SourceLocation getExprLoc() const { return getLocStart(); }
63
64  /// hasLocalSideEffect - Return true if this immediate expression has side
65  /// effects, not counting any sub-expressions.
66  bool hasLocalSideEffect() const;
67
68  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
69  /// incomplete type other than void. Nonarray expressions that can be lvalues:
70  ///  - name, where name must be a variable
71  ///  - e[i]
72  ///  - (e), where e must be an lvalue
73  ///  - e.name, where e must be an lvalue
74  ///  - e->name
75  ///  - *e, the type of e cannot be a function type
76  ///  - string-constant
77  ///  - reference type [C++ [expr]]
78  ///
79  enum isLvalueResult {
80    LV_Valid,
81    LV_NotObjectType,
82    LV_IncompleteVoidType,
83    LV_DuplicateVectorComponents,
84    LV_InvalidExpression
85  };
86  isLvalueResult isLvalue(ASTContext &Ctx) const;
87
88  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
89  /// does not have an incomplete type, does not have a const-qualified type,
90  /// and if it is a structure or union, does not have any member (including,
91  /// recursively, any member or element of all contained aggregates or unions)
92  /// with a const-qualified type.
93  enum isModifiableLvalueResult {
94    MLV_Valid,
95    MLV_NotObjectType,
96    MLV_IncompleteVoidType,
97    MLV_DuplicateVectorComponents,
98    MLV_InvalidExpression,
99    MLV_IncompleteType,
100    MLV_ConstQualified,
101    MLV_ArrayType,
102    MLV_NotBlockQualified
103  };
104  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
105
106  bool isNullPointerConstant(ASTContext &Ctx) const;
107
108  /// getIntegerConstantExprValue() - Return the value of an integer
109  /// constant expression. The expression must be a valid integer
110  /// constant expression as determined by isIntegerConstantExpr.
111  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
112    llvm::APSInt X;
113    bool success = isIntegerConstantExpr(X, Ctx);
114    success = success;
115    assert(success && "Illegal argument to getIntegerConstantExpr");
116    return X;
117  }
118
119  /// isIntegerConstantExpr - Return true if this expression is a valid integer
120  /// constant expression, and, if so, return its value in Result.  If not a
121  /// valid i-c-e, return false and fill in Loc (if specified) with the location
122  /// of the invalid expression.
123  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
124                             SourceLocation *Loc = 0,
125                             bool isEvaluated = true) const;
126  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
127    llvm::APSInt X;
128    return isIntegerConstantExpr(X, Ctx, Loc);
129  }
130  /// isConstantExpr - Return true if this expression is a valid constant expr.
131  bool isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const;
132
133  /// tryEvaluate - Return true if this is a constant which we can fold using
134  /// any crazy technique (that has nothing to do with language standards) that
135  /// we want to.  If this function returns true, it returns the folded constant
136  /// in Result.
137  bool tryEvaluate(APValue& Result, ASTContext &Ctx) const;
138
139  /// isEvaluatable - Call tryEvaluate to see if this expression can be constant
140  /// folded, but discard the result.
141  bool isEvaluatable(ASTContext &Ctx) const;
142
143  /// hasGlobalStorage - Return true if this expression has static storage
144  /// duration.  This means that the address of this expression is a link-time
145  /// constant.
146  bool hasGlobalStorage() const;
147
148  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
149  ///  its subexpression.  If that subexpression is also a ParenExpr,
150  ///  then this method recursively returns its subexpression, and so forth.
151  ///  Otherwise, the method returns the current Expr.
152  Expr* IgnoreParens();
153
154  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
155  /// or CastExprs or ImplicitCastExprs, returning their operand.
156  Expr *IgnoreParenCasts();
157
158  const Expr* IgnoreParens() const {
159    return const_cast<Expr*>(this)->IgnoreParens();
160  }
161  const Expr *IgnoreParenCasts() const {
162    return const_cast<Expr*>(this)->IgnoreParenCasts();
163  }
164
165  static bool classof(const Stmt *T) {
166    return T->getStmtClass() >= firstExprConstant &&
167           T->getStmtClass() <= lastExprConstant;
168  }
169  static bool classof(const Expr *) { return true; }
170
171  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
172    return cast<Expr>(Stmt::Create(D, C));
173  }
174};
175
176
177//===----------------------------------------------------------------------===//
178// Primary Expressions.
179//===----------------------------------------------------------------------===//
180
181/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
182/// enum, etc.
183class DeclRefExpr : public Expr {
184  NamedDecl *D;
185  SourceLocation Loc;
186
187protected:
188  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
189    Expr(SC, t), D(d), Loc(l) {}
190
191public:
192  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
193    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
194
195  NamedDecl *getDecl() { return D; }
196  const NamedDecl *getDecl() const { return D; }
197  SourceLocation getLocation() const { return Loc; }
198  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
199
200
201  static bool classof(const Stmt *T) {
202    return T->getStmtClass() == DeclRefExprClass ||
203           T->getStmtClass() == CXXConditionDeclExprClass;
204  }
205  static bool classof(const DeclRefExpr *) { return true; }
206
207  // Iterators
208  virtual child_iterator child_begin();
209  virtual child_iterator child_end();
210
211  virtual void EmitImpl(llvm::Serializer& S) const;
212  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
213};
214
215/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
216class PredefinedExpr : public Expr {
217public:
218  enum IdentType {
219    Func,
220    Function,
221    PrettyFunction,
222    CXXThis,
223    ObjCSuper // super
224  };
225
226private:
227  SourceLocation Loc;
228  IdentType Type;
229public:
230  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
231    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
232
233  IdentType getIdentType() const { return Type; }
234
235  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
236
237  static bool classof(const Stmt *T) {
238    return T->getStmtClass() == PredefinedExprClass;
239  }
240  static bool classof(const PredefinedExpr *) { return true; }
241
242  // Iterators
243  virtual child_iterator child_begin();
244  virtual child_iterator child_end();
245
246  virtual void EmitImpl(llvm::Serializer& S) const;
247  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
248};
249
250class IntegerLiteral : public Expr {
251  llvm::APInt Value;
252  SourceLocation Loc;
253public:
254  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
255  // or UnsignedLongLongTy
256  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
257    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
258    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
259  }
260  const llvm::APInt &getValue() const { return Value; }
261  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
262
263  static bool classof(const Stmt *T) {
264    return T->getStmtClass() == IntegerLiteralClass;
265  }
266  static bool classof(const IntegerLiteral *) { return true; }
267
268  // Iterators
269  virtual child_iterator child_begin();
270  virtual child_iterator child_end();
271
272  virtual void EmitImpl(llvm::Serializer& S) const;
273  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
274};
275
276class CharacterLiteral : public Expr {
277  unsigned Value;
278  SourceLocation Loc;
279  bool IsWide;
280public:
281  // type should be IntTy
282  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
283    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
284  }
285  SourceLocation getLoc() const { return Loc; }
286  bool isWide() const { return IsWide; }
287
288  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
289
290  unsigned getValue() const { return Value; }
291
292  static bool classof(const Stmt *T) {
293    return T->getStmtClass() == CharacterLiteralClass;
294  }
295  static bool classof(const CharacterLiteral *) { return true; }
296
297  // Iterators
298  virtual child_iterator child_begin();
299  virtual child_iterator child_end();
300
301  virtual void EmitImpl(llvm::Serializer& S) const;
302  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
303};
304
305class FloatingLiteral : public Expr {
306  llvm::APFloat Value;
307  bool IsExact : 1;
308  SourceLocation Loc;
309public:
310  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
311                  QualType Type, SourceLocation L)
312    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
313
314  const llvm::APFloat &getValue() const { return Value; }
315
316  bool isExact() const { return IsExact; }
317
318  /// getValueAsApproximateDouble - This returns the value as an inaccurate
319  /// double.  Note that this may cause loss of precision, but is useful for
320  /// debugging dumps, etc.
321  double getValueAsApproximateDouble() const;
322
323  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
324
325  static bool classof(const Stmt *T) {
326    return T->getStmtClass() == FloatingLiteralClass;
327  }
328  static bool classof(const FloatingLiteral *) { return true; }
329
330  // Iterators
331  virtual child_iterator child_begin();
332  virtual child_iterator child_end();
333
334  virtual void EmitImpl(llvm::Serializer& S) const;
335  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
336};
337
338/// ImaginaryLiteral - We support imaginary integer and floating point literals,
339/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
340/// IntegerLiteral classes.  Instances of this class always have a Complex type
341/// whose element type matches the subexpression.
342///
343class ImaginaryLiteral : public Expr {
344  Stmt *Val;
345public:
346  ImaginaryLiteral(Expr *val, QualType Ty)
347    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
348
349  const Expr *getSubExpr() const { return cast<Expr>(Val); }
350  Expr *getSubExpr() { return cast<Expr>(Val); }
351
352  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
353  static bool classof(const Stmt *T) {
354    return T->getStmtClass() == ImaginaryLiteralClass;
355  }
356  static bool classof(const ImaginaryLiteral *) { return true; }
357
358  // Iterators
359  virtual child_iterator child_begin();
360  virtual child_iterator child_end();
361
362  virtual void EmitImpl(llvm::Serializer& S) const;
363  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
364};
365
366/// StringLiteral - This represents a string literal expression, e.g. "foo"
367/// or L"bar" (wide strings).  The actual string is returned by getStrData()
368/// is NOT null-terminated, and the length of the string is determined by
369/// calling getByteLength().  The C type for a string is always a
370/// ConstantArrayType.
371class StringLiteral : public Expr {
372  const char *StrData;
373  unsigned ByteLength;
374  bool IsWide;
375  // if the StringLiteral was composed using token pasting, both locations
376  // are needed. If not (the common case), firstTokLoc == lastTokLoc.
377  // FIXME: if space becomes an issue, we should create a sub-class.
378  SourceLocation firstTokLoc, lastTokLoc;
379public:
380  StringLiteral(const char *strData, unsigned byteLength, bool Wide,
381                QualType t, SourceLocation b, SourceLocation e);
382  virtual ~StringLiteral();
383
384  const char *getStrData() const { return StrData; }
385  unsigned getByteLength() const { return ByteLength; }
386  bool isWide() const { return IsWide; }
387
388  virtual SourceRange getSourceRange() const {
389    return SourceRange(firstTokLoc,lastTokLoc);
390  }
391  static bool classof(const Stmt *T) {
392    return T->getStmtClass() == StringLiteralClass;
393  }
394  static bool classof(const StringLiteral *) { return true; }
395
396  // Iterators
397  virtual child_iterator child_begin();
398  virtual child_iterator child_end();
399
400  virtual void EmitImpl(llvm::Serializer& S) const;
401  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
402};
403
404/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
405/// AST node is only formed if full location information is requested.
406class ParenExpr : public Expr {
407  SourceLocation L, R;
408  Stmt *Val;
409public:
410  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
411    : Expr(ParenExprClass, val->getType()), L(l), R(r), Val(val) {}
412
413  const Expr *getSubExpr() const { return cast<Expr>(Val); }
414  Expr *getSubExpr() { return cast<Expr>(Val); }
415  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
416
417  static bool classof(const Stmt *T) {
418    return T->getStmtClass() == ParenExprClass;
419  }
420  static bool classof(const ParenExpr *) { return true; }
421
422  // Iterators
423  virtual child_iterator child_begin();
424  virtual child_iterator child_end();
425
426  virtual void EmitImpl(llvm::Serializer& S) const;
427  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
428};
429
430
431/// UnaryOperator - This represents the unary-expression's (except sizeof of
432/// types), the postinc/postdec operators from postfix-expression, and various
433/// extensions.
434///
435/// Notes on various nodes:
436///
437/// Real/Imag - These return the real/imag part of a complex operand.  If
438///   applied to a non-complex value, the former returns its operand and the
439///   later returns zero in the type of the operand.
440///
441/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
442///   subexpression is a compound literal with the various MemberExpr and
443///   ArraySubscriptExpr's applied to it.
444///
445class UnaryOperator : public Expr {
446public:
447  // Note that additions to this should also update the StmtVisitor class.
448  enum Opcode {
449    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
450    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
451    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
452    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
453    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
454    SizeOf, AlignOf,  // [C99 6.5.3.4] Sizeof (expr, not type) operator.
455    Real, Imag,       // "__real expr"/"__imag expr" Extension.
456    Extension,        // __extension__ marker.
457    OffsetOf          // __builtin_offsetof
458  };
459private:
460  Stmt *Val;
461  Opcode Opc;
462  SourceLocation Loc;
463public:
464
465  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
466    : Expr(UnaryOperatorClass, type), Val(input), Opc(opc), Loc(l) {}
467
468  Opcode getOpcode() const { return Opc; }
469  Expr *getSubExpr() const { return cast<Expr>(Val); }
470
471  /// getOperatorLoc - Return the location of the operator.
472  SourceLocation getOperatorLoc() const { return Loc; }
473
474  /// isPostfix - Return true if this is a postfix operation, like x++.
475  static bool isPostfix(Opcode Op);
476
477  /// isPostfix - Return true if this is a prefix operation, like --x.
478  static bool isPrefix(Opcode Op);
479
480  bool isPrefix() const { return isPrefix(Opc); }
481  bool isPostfix() const { return isPostfix(Opc); }
482  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
483  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
484  bool isSizeOfAlignOfOp() const { return Opc == SizeOf || Opc == AlignOf; }
485  bool isOffsetOfOp() const { return Opc == OffsetOf; }
486  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
487
488  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
489  /// corresponds to, e.g. "sizeof" or "[pre]++"
490  static const char *getOpcodeStr(Opcode Op);
491
492  virtual SourceRange getSourceRange() const {
493    if (isPostfix())
494      return SourceRange(Val->getLocStart(), Loc);
495    else
496      return SourceRange(Loc, Val->getLocEnd());
497  }
498  virtual SourceLocation getExprLoc() const { return Loc; }
499
500  static bool classof(const Stmt *T) {
501    return T->getStmtClass() == UnaryOperatorClass;
502  }
503  static bool classof(const UnaryOperator *) { return true; }
504
505  int64_t evaluateOffsetOf(ASTContext& C) const;
506
507  // Iterators
508  virtual child_iterator child_begin();
509  virtual child_iterator child_end();
510
511  virtual void EmitImpl(llvm::Serializer& S) const;
512  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
513};
514
515/// SizeOfAlignOfTypeExpr - [C99 6.5.3.4] - This is only for sizeof/alignof of
516/// *types*.  sizeof(expr) is handled by UnaryOperator.
517class SizeOfAlignOfTypeExpr : public Expr {
518  bool isSizeof;  // true if sizeof, false if alignof.
519  QualType Ty;
520  SourceLocation OpLoc, RParenLoc;
521public:
522  SizeOfAlignOfTypeExpr(bool issizeof, QualType argType, QualType resultType,
523                        SourceLocation op, SourceLocation rp) :
524    Expr(SizeOfAlignOfTypeExprClass, resultType),
525    isSizeof(issizeof), Ty(argType), OpLoc(op), RParenLoc(rp) {}
526
527  virtual void Destroy(ASTContext& C);
528
529  bool isSizeOf() const { return isSizeof; }
530  QualType getArgumentType() const { return Ty; }
531
532  SourceLocation getOperatorLoc() const { return OpLoc; }
533
534  virtual SourceRange getSourceRange() const {
535    return SourceRange(OpLoc, RParenLoc);
536  }
537
538  static bool classof(const Stmt *T) {
539    return T->getStmtClass() == SizeOfAlignOfTypeExprClass;
540  }
541  static bool classof(const SizeOfAlignOfTypeExpr *) { return true; }
542
543  // Iterators
544  virtual child_iterator child_begin();
545  virtual child_iterator child_end();
546
547  virtual void EmitImpl(llvm::Serializer& S) const;
548  static SizeOfAlignOfTypeExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
549};
550
551//===----------------------------------------------------------------------===//
552// Postfix Operators.
553//===----------------------------------------------------------------------===//
554
555/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
556class ArraySubscriptExpr : public Expr {
557  enum { LHS, RHS, END_EXPR=2 };
558  Stmt* SubExprs[END_EXPR];
559  SourceLocation RBracketLoc;
560public:
561  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
562                     SourceLocation rbracketloc)
563  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
564    SubExprs[LHS] = lhs;
565    SubExprs[RHS] = rhs;
566  }
567
568  /// An array access can be written A[4] or 4[A] (both are equivalent).
569  /// - getBase() and getIdx() always present the normalized view: A[4].
570  ///    In this case getBase() returns "A" and getIdx() returns "4".
571  /// - getLHS() and getRHS() present the syntactic view. e.g. for
572  ///    4[A] getLHS() returns "4".
573  /// Note: Because vector element access is also written A[4] we must
574  /// predicate the format conversion in getBase and getIdx only on the
575  /// the type of the RHS, as it is possible for the LHS to be a vector of
576  /// integer type
577  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
578  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
579
580  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
581  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
582
583  Expr *getBase() {
584    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
585  }
586
587  const Expr *getBase() const {
588    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
589  }
590
591  Expr *getIdx() {
592    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
593  }
594
595  const Expr *getIdx() const {
596    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
597  }
598
599  virtual SourceRange getSourceRange() const {
600    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
601  }
602
603  virtual SourceLocation getExprLoc() const { return RBracketLoc; }
604
605  static bool classof(const Stmt *T) {
606    return T->getStmtClass() == ArraySubscriptExprClass;
607  }
608  static bool classof(const ArraySubscriptExpr *) { return true; }
609
610  // Iterators
611  virtual child_iterator child_begin();
612  virtual child_iterator child_end();
613
614  virtual void EmitImpl(llvm::Serializer& S) const;
615  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
616};
617
618
619/// CallExpr - [C99 6.5.2.2] Function Calls.
620///
621class CallExpr : public Expr {
622  enum { FN=0, ARGS_START=1 };
623  Stmt **SubExprs;
624  unsigned NumArgs;
625  SourceLocation RParenLoc;
626
627  // This version of the ctor is for deserialization.
628  CallExpr(Stmt** subexprs, unsigned numargs, QualType t,
629           SourceLocation rparenloc)
630  : Expr(CallExprClass,t), SubExprs(subexprs),
631    NumArgs(numargs), RParenLoc(rparenloc) {}
632
633public:
634  CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
635           SourceLocation rparenloc);
636  ~CallExpr() {
637    delete [] SubExprs;
638  }
639
640  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
641  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
642  void setCallee(Expr *F) { SubExprs[FN] = F; }
643
644  /// getNumArgs - Return the number of actual arguments to this call.
645  ///
646  unsigned getNumArgs() const { return NumArgs; }
647
648  /// getArg - Return the specified argument.
649  Expr *getArg(unsigned Arg) {
650    assert(Arg < NumArgs && "Arg access out of range!");
651    return cast<Expr>(SubExprs[Arg+ARGS_START]);
652  }
653  const Expr *getArg(unsigned Arg) const {
654    assert(Arg < NumArgs && "Arg access out of range!");
655    return cast<Expr>(SubExprs[Arg+ARGS_START]);
656  }
657  /// setArg - Set the specified argument.
658  void setArg(unsigned Arg, Expr *ArgExpr) {
659    assert(Arg < NumArgs && "Arg access out of range!");
660    SubExprs[Arg+ARGS_START] = ArgExpr;
661  }
662
663  /// setNumArgs - This changes the number of arguments present in this call.
664  /// Any orphaned expressions are deleted by this, and any new operands are set
665  /// to null.
666  void setNumArgs(unsigned NumArgs);
667
668  typedef ExprIterator arg_iterator;
669  typedef ConstExprIterator const_arg_iterator;
670
671  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
672  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
673  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
674  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
675
676  /// getNumCommas - Return the number of commas that must have been present in
677  /// this function call.
678  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
679
680  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
681  /// not, return 0.
682  unsigned isBuiltinCall() const;
683
684  SourceLocation getRParenLoc() const { return RParenLoc; }
685
686  virtual SourceRange getSourceRange() const {
687    return SourceRange(getCallee()->getLocStart(), RParenLoc);
688  }
689
690  static bool classof(const Stmt *T) {
691    return T->getStmtClass() == CallExprClass;
692  }
693  static bool classof(const CallExpr *) { return true; }
694
695  // Iterators
696  virtual child_iterator child_begin();
697  virtual child_iterator child_end();
698
699  virtual void EmitImpl(llvm::Serializer& S) const;
700  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
701};
702
703/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
704///
705class MemberExpr : public Expr {
706  Stmt *Base;
707  FieldDecl *MemberDecl;
708  SourceLocation MemberLoc;
709  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
710public:
711  MemberExpr(Expr *base, bool isarrow, FieldDecl *memberdecl, SourceLocation l,
712             QualType ty)
713    : Expr(MemberExprClass, ty),
714      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
715
716  Expr *getBase() const { return cast<Expr>(Base); }
717  FieldDecl *getMemberDecl() const { return MemberDecl; }
718  bool isArrow() const { return IsArrow; }
719
720  virtual SourceRange getSourceRange() const {
721    return SourceRange(getBase()->getLocStart(), MemberLoc);
722  }
723
724  virtual SourceLocation getExprLoc() const { return MemberLoc; }
725
726  static bool classof(const Stmt *T) {
727    return T->getStmtClass() == MemberExprClass;
728  }
729  static bool classof(const MemberExpr *) { return true; }
730
731  // Iterators
732  virtual child_iterator child_begin();
733  virtual child_iterator child_end();
734
735  virtual void EmitImpl(llvm::Serializer& S) const;
736  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
737};
738
739/// CompoundLiteralExpr - [C99 6.5.2.5]
740///
741class CompoundLiteralExpr : public Expr {
742  /// LParenLoc - If non-null, this is the location of the left paren in a
743  /// compound literal like "(int){4}".  This can be null if this is a
744  /// synthesized compound expression.
745  SourceLocation LParenLoc;
746  Stmt *Init;
747  bool FileScope;
748public:
749  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
750                      bool fileScope)
751    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
752      FileScope(fileScope) {}
753
754  const Expr *getInitializer() const { return cast<Expr>(Init); }
755  Expr *getInitializer() { return cast<Expr>(Init); }
756
757  bool isFileScope() const { return FileScope; }
758
759  SourceLocation getLParenLoc() const { return LParenLoc; }
760
761  virtual SourceRange getSourceRange() const {
762    // FIXME: Init should never be null.
763    if (!Init)
764      return SourceRange();
765    if (LParenLoc.isInvalid())
766      return Init->getSourceRange();
767    return SourceRange(LParenLoc, Init->getLocEnd());
768  }
769
770  static bool classof(const Stmt *T) {
771    return T->getStmtClass() == CompoundLiteralExprClass;
772  }
773  static bool classof(const CompoundLiteralExpr *) { return true; }
774
775  // Iterators
776  virtual child_iterator child_begin();
777  virtual child_iterator child_end();
778
779  virtual void EmitImpl(llvm::Serializer& S) const;
780  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
781};
782
783/// CastExpr - Base class for type casts, including both implicit
784/// casts (ImplicitCastExpr) and explicit casts that have some
785/// representation in the source code (ExplicitCastExpr's derived
786/// classes).
787class CastExpr : public Expr {
788  Stmt *Op;
789protected:
790  CastExpr(StmtClass SC, QualType ty, Expr *op) :
791    Expr(SC, ty), Op(op) {}
792
793public:
794  Expr *getSubExpr() { return cast<Expr>(Op); }
795  const Expr *getSubExpr() const { return cast<Expr>(Op); }
796
797  static bool classof(const Stmt *T) {
798    StmtClass SC = T->getStmtClass();
799    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
800      return true;
801
802    if (SC >= ImplicitCastExprClass && SC <= ExplicitCCastExprClass)
803      return true;
804
805    return false;
806  }
807  static bool classof(const CastExpr *) { return true; }
808
809  // Iterators
810  virtual child_iterator child_begin();
811  virtual child_iterator child_end();
812};
813
814/// ImplicitCastExpr - Allows us to explicitly represent implicit type
815/// conversions, which have no direct representation in the original
816/// source code. For example: converting T[]->T*, void f()->void
817/// (*f)(), float->double, short->int, etc.
818///
819class ImplicitCastExpr : public CastExpr {
820public:
821  ImplicitCastExpr(QualType ty, Expr *op) :
822    CastExpr(ImplicitCastExprClass, ty, op) {}
823
824  virtual SourceRange getSourceRange() const {
825    return getSubExpr()->getSourceRange();
826  }
827
828  static bool classof(const Stmt *T) {
829    return T->getStmtClass() == ImplicitCastExprClass;
830  }
831  static bool classof(const ImplicitCastExpr *) { return true; }
832
833  virtual void EmitImpl(llvm::Serializer& S) const;
834  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
835};
836
837/// ExplicitCastExpr - An explicit cast written in the source
838/// code.
839///
840/// This class is effectively an abstract class, because it provides
841/// the basic representation of an explicitly-written cast without
842/// specifying which kind of cast (C cast, functional cast, static
843/// cast, etc.) was written; specific derived classes represent the
844/// particular style of cast and its location information.
845///
846/// Unlike implicit casts, explicit cast nodes have two different
847/// types: the type that was written into the source code, and the
848/// actual type of the expression as determined by semantic
849/// analysis. These types may differ slightly. For example, in C++ one
850/// can cast to a reference type, which indicates that the resulting
851/// expression will be an lvalue. The reference type, however, will
852/// not be used as the type of the expression.
853class ExplicitCastExpr : public CastExpr {
854  /// TypeAsWritten - The type that this expression is casting to, as
855  /// written in the source code.
856  QualType TypeAsWritten;
857
858protected:
859  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy) :
860    CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
861
862public:
863  /// getTypeAsWritten - Returns the type that this expression is
864  /// casting to, as written in the source code.
865  QualType getTypeAsWritten() const { return TypeAsWritten; }
866
867  static bool classof(const Stmt *T) {
868    StmtClass SC = T->getStmtClass();
869    if (SC >= ExplicitCastExprClass && SC <= ExplicitCCastExprClass)
870      return true;
871    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
872      return true;
873
874    return false;
875  }
876  static bool classof(const ExplicitCastExpr *) { return true; }
877};
878
879/// ExplicitCCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
880/// cast in C++ (C++ [expr.cast]), which uses the syntax
881/// (Type)expr. For example: @c (int)f.
882class ExplicitCCastExpr : public ExplicitCastExpr {
883  SourceLocation Loc; // the location of the left paren
884public:
885  ExplicitCCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
886                    SourceLocation l) :
887    ExplicitCastExpr(ExplicitCCastExprClass, exprTy, op, writtenTy), Loc(l) {}
888
889  SourceLocation getLParenLoc() const { return Loc; }
890
891  virtual SourceRange getSourceRange() const {
892    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
893  }
894  static bool classof(const Stmt *T) {
895    return T->getStmtClass() == ExplicitCCastExprClass;
896  }
897  static bool classof(const ExplicitCCastExpr *) { return true; }
898
899  virtual void EmitImpl(llvm::Serializer& S) const;
900  static ExplicitCCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
901};
902
903class BinaryOperator : public Expr {
904public:
905  enum Opcode {
906    // Operators listed in order of precedence.
907    // Note that additions to this should also update the StmtVisitor class.
908    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
909    Add, Sub,         // [C99 6.5.6] Additive operators.
910    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
911    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
912    EQ, NE,           // [C99 6.5.9] Equality operators.
913    And,              // [C99 6.5.10] Bitwise AND operator.
914    Xor,              // [C99 6.5.11] Bitwise XOR operator.
915    Or,               // [C99 6.5.12] Bitwise OR operator.
916    LAnd,             // [C99 6.5.13] Logical AND operator.
917    LOr,              // [C99 6.5.14] Logical OR operator.
918    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
919    DivAssign, RemAssign,
920    AddAssign, SubAssign,
921    ShlAssign, ShrAssign,
922    AndAssign, XorAssign,
923    OrAssign,
924    Comma             // [C99 6.5.17] Comma operator.
925  };
926private:
927  enum { LHS, RHS, END_EXPR };
928  Stmt* SubExprs[END_EXPR];
929  Opcode Opc;
930  SourceLocation OpLoc;
931public:
932
933  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
934                 SourceLocation opLoc)
935    : Expr(BinaryOperatorClass, ResTy), Opc(opc), OpLoc(opLoc) {
936    SubExprs[LHS] = lhs;
937    SubExprs[RHS] = rhs;
938    assert(!isCompoundAssignmentOp() &&
939           "Use ArithAssignBinaryOperator for compound assignments");
940  }
941
942  SourceLocation getOperatorLoc() const { return OpLoc; }
943  Opcode getOpcode() const { return Opc; }
944  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
945  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
946  virtual SourceRange getSourceRange() const {
947    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
948  }
949
950  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
951  /// corresponds to, e.g. "<<=".
952  static const char *getOpcodeStr(Opcode Op);
953
954  /// predicates to categorize the respective opcodes.
955  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
956  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
957  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
958  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
959
960  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
961  bool isRelationalOp() const { return isRelationalOp(Opc); }
962
963  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
964  bool isEqualityOp() const { return isEqualityOp(Opc); }
965
966  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
967  bool isLogicalOp() const { return isLogicalOp(Opc); }
968
969  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
970  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
971  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
972
973  static bool classof(const Stmt *S) {
974    return S->getStmtClass() == BinaryOperatorClass ||
975           S->getStmtClass() == CompoundAssignOperatorClass;
976  }
977  static bool classof(const BinaryOperator *) { return true; }
978
979  // Iterators
980  virtual child_iterator child_begin();
981  virtual child_iterator child_end();
982
983  virtual void EmitImpl(llvm::Serializer& S) const;
984  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
985
986protected:
987  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
988                 SourceLocation oploc, bool dead)
989    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
990    SubExprs[LHS] = lhs;
991    SubExprs[RHS] = rhs;
992  }
993};
994
995/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
996/// track of the type the operation is performed in.  Due to the semantics of
997/// these operators, the operands are promoted, the aritmetic performed, an
998/// implicit conversion back to the result type done, then the assignment takes
999/// place.  This captures the intermediate type which the computation is done
1000/// in.
1001class CompoundAssignOperator : public BinaryOperator {
1002  QualType ComputationType;
1003public:
1004  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1005                         QualType ResType, QualType CompType,
1006                         SourceLocation OpLoc)
1007    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1008      ComputationType(CompType) {
1009    assert(isCompoundAssignmentOp() &&
1010           "Only should be used for compound assignments");
1011  }
1012
1013  QualType getComputationType() const { return ComputationType; }
1014
1015  static bool classof(const CompoundAssignOperator *) { return true; }
1016  static bool classof(const Stmt *S) {
1017    return S->getStmtClass() == CompoundAssignOperatorClass;
1018  }
1019
1020  virtual void EmitImpl(llvm::Serializer& S) const;
1021  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1022                                            ASTContext& C);
1023};
1024
1025/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1026/// GNU "missing LHS" extension is in use.
1027///
1028class ConditionalOperator : public Expr {
1029  enum { COND, LHS, RHS, END_EXPR };
1030  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1031public:
1032  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1033    : Expr(ConditionalOperatorClass, t) {
1034    SubExprs[COND] = cond;
1035    SubExprs[LHS] = lhs;
1036    SubExprs[RHS] = rhs;
1037  }
1038
1039  // getCond - Return the expression representing the condition for
1040  //  the ?: operator.
1041  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1042
1043  // getTrueExpr - Return the subexpression representing the value of the ?:
1044  //  expression if the condition evaluates to true.  In most cases this value
1045  //  will be the same as getLHS() except a GCC extension allows the left
1046  //  subexpression to be omitted, and instead of the condition be returned.
1047  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1048  //  is only evaluated once.
1049  Expr *getTrueExpr() const {
1050    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1051  }
1052
1053  // getTrueExpr - Return the subexpression representing the value of the ?:
1054  // expression if the condition evaluates to false. This is the same as getRHS.
1055  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1056
1057  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1058  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1059
1060  virtual SourceRange getSourceRange() const {
1061    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1062  }
1063  static bool classof(const Stmt *T) {
1064    return T->getStmtClass() == ConditionalOperatorClass;
1065  }
1066  static bool classof(const ConditionalOperator *) { return true; }
1067
1068  // Iterators
1069  virtual child_iterator child_begin();
1070  virtual child_iterator child_end();
1071
1072  virtual void EmitImpl(llvm::Serializer& S) const;
1073  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1074};
1075
1076/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1077class AddrLabelExpr : public Expr {
1078  SourceLocation AmpAmpLoc, LabelLoc;
1079  LabelStmt *Label;
1080public:
1081  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1082                QualType t)
1083    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1084
1085  virtual SourceRange getSourceRange() const {
1086    return SourceRange(AmpAmpLoc, LabelLoc);
1087  }
1088
1089  LabelStmt *getLabel() const { return Label; }
1090
1091  static bool classof(const Stmt *T) {
1092    return T->getStmtClass() == AddrLabelExprClass;
1093  }
1094  static bool classof(const AddrLabelExpr *) { return true; }
1095
1096  // Iterators
1097  virtual child_iterator child_begin();
1098  virtual child_iterator child_end();
1099
1100  virtual void EmitImpl(llvm::Serializer& S) const;
1101  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1102};
1103
1104/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1105/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1106/// takes the value of the last subexpression.
1107class StmtExpr : public Expr {
1108  Stmt *SubStmt;
1109  SourceLocation LParenLoc, RParenLoc;
1110public:
1111  StmtExpr(CompoundStmt *substmt, QualType T,
1112           SourceLocation lp, SourceLocation rp) :
1113    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1114
1115  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1116  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1117
1118  virtual SourceRange getSourceRange() const {
1119    return SourceRange(LParenLoc, RParenLoc);
1120  }
1121
1122  static bool classof(const Stmt *T) {
1123    return T->getStmtClass() == StmtExprClass;
1124  }
1125  static bool classof(const StmtExpr *) { return true; }
1126
1127  // Iterators
1128  virtual child_iterator child_begin();
1129  virtual child_iterator child_end();
1130
1131  virtual void EmitImpl(llvm::Serializer& S) const;
1132  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1133};
1134
1135/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1136/// This AST node represents a function that returns 1 if two *types* (not
1137/// expressions) are compatible. The result of this built-in function can be
1138/// used in integer constant expressions.
1139class TypesCompatibleExpr : public Expr {
1140  QualType Type1;
1141  QualType Type2;
1142  SourceLocation BuiltinLoc, RParenLoc;
1143public:
1144  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1145                      QualType t1, QualType t2, SourceLocation RP) :
1146    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1147    BuiltinLoc(BLoc), RParenLoc(RP) {}
1148
1149  QualType getArgType1() const { return Type1; }
1150  QualType getArgType2() const { return Type2; }
1151
1152  virtual SourceRange getSourceRange() const {
1153    return SourceRange(BuiltinLoc, RParenLoc);
1154  }
1155  static bool classof(const Stmt *T) {
1156    return T->getStmtClass() == TypesCompatibleExprClass;
1157  }
1158  static bool classof(const TypesCompatibleExpr *) { return true; }
1159
1160  // Iterators
1161  virtual child_iterator child_begin();
1162  virtual child_iterator child_end();
1163
1164  virtual void EmitImpl(llvm::Serializer& S) const;
1165  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1166};
1167
1168/// ShuffleVectorExpr - clang-specific builtin-in function
1169/// __builtin_shufflevector.
1170/// This AST node represents a operator that does a constant
1171/// shuffle, similar to LLVM's shufflevector instruction. It takes
1172/// two vectors and a variable number of constant indices,
1173/// and returns the appropriately shuffled vector.
1174class ShuffleVectorExpr : public Expr {
1175  SourceLocation BuiltinLoc, RParenLoc;
1176
1177  // SubExprs - the list of values passed to the __builtin_shufflevector
1178  // function. The first two are vectors, and the rest are constant
1179  // indices.  The number of values in this list is always
1180  // 2+the number of indices in the vector type.
1181  Stmt **SubExprs;
1182  unsigned NumExprs;
1183
1184public:
1185  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1186                    QualType Type, SourceLocation BLoc,
1187                    SourceLocation RP) :
1188    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1189    RParenLoc(RP), NumExprs(nexpr) {
1190
1191    SubExprs = new Stmt*[nexpr];
1192    for (unsigned i = 0; i < nexpr; i++)
1193      SubExprs[i] = args[i];
1194  }
1195
1196  virtual SourceRange getSourceRange() const {
1197    return SourceRange(BuiltinLoc, RParenLoc);
1198  }
1199  static bool classof(const Stmt *T) {
1200    return T->getStmtClass() == ShuffleVectorExprClass;
1201  }
1202  static bool classof(const ShuffleVectorExpr *) { return true; }
1203
1204  ~ShuffleVectorExpr() {
1205    delete [] SubExprs;
1206  }
1207
1208  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1209  /// constant expression, the actual arguments passed in, and the function
1210  /// pointers.
1211  unsigned getNumSubExprs() const { return NumExprs; }
1212
1213  /// getExpr - Return the Expr at the specified index.
1214  Expr *getExpr(unsigned Index) {
1215    assert((Index < NumExprs) && "Arg access out of range!");
1216    return cast<Expr>(SubExprs[Index]);
1217  }
1218  const Expr *getExpr(unsigned Index) const {
1219    assert((Index < NumExprs) && "Arg access out of range!");
1220    return cast<Expr>(SubExprs[Index]);
1221  }
1222
1223  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1224    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1225    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1226  }
1227
1228  // Iterators
1229  virtual child_iterator child_begin();
1230  virtual child_iterator child_end();
1231
1232  virtual void EmitImpl(llvm::Serializer& S) const;
1233  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1234};
1235
1236/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1237/// This AST node is similar to the conditional operator (?:) in C, with
1238/// the following exceptions:
1239/// - the test expression much be a constant expression.
1240/// - the expression returned has it's type unaltered by promotion rules.
1241/// - does not evaluate the expression that was not chosen.
1242class ChooseExpr : public Expr {
1243  enum { COND, LHS, RHS, END_EXPR };
1244  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1245  SourceLocation BuiltinLoc, RParenLoc;
1246public:
1247  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1248             SourceLocation RP)
1249    : Expr(ChooseExprClass, t),
1250      BuiltinLoc(BLoc), RParenLoc(RP) {
1251      SubExprs[COND] = cond;
1252      SubExprs[LHS] = lhs;
1253      SubExprs[RHS] = rhs;
1254    }
1255
1256  /// isConditionTrue - Return true if the condition is true.  This is always
1257  /// statically knowable for a well-formed choosexpr.
1258  bool isConditionTrue(ASTContext &C) const;
1259
1260  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1261  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1262  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1263
1264  virtual SourceRange getSourceRange() const {
1265    return SourceRange(BuiltinLoc, RParenLoc);
1266  }
1267  static bool classof(const Stmt *T) {
1268    return T->getStmtClass() == ChooseExprClass;
1269  }
1270  static bool classof(const ChooseExpr *) { return true; }
1271
1272  // Iterators
1273  virtual child_iterator child_begin();
1274  virtual child_iterator child_end();
1275
1276  virtual void EmitImpl(llvm::Serializer& S) const;
1277  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1278};
1279
1280/// OverloadExpr - Clang builtin function __builtin_overload.
1281/// This AST node provides a way to overload functions in C.
1282///
1283/// The first argument is required to be a constant expression, for the number
1284/// of arguments passed to each candidate function.
1285///
1286/// The next N arguments, where N is the value of the constant expression,
1287/// are the values to be passed as arguments.
1288///
1289/// The rest of the arguments are values of pointer to function type, which
1290/// are the candidate functions for overloading.
1291///
1292/// The result is a equivalent to a CallExpr taking N arguments to the
1293/// candidate function whose parameter types match the types of the N arguments.
1294///
1295/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1296/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1297/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1298class OverloadExpr : public Expr {
1299  // SubExprs - the list of values passed to the __builtin_overload function.
1300  // SubExpr[0] is a constant expression
1301  // SubExpr[1-N] are the parameters to pass to the matching function call
1302  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1303  Stmt **SubExprs;
1304
1305  // NumExprs - the size of the SubExprs array
1306  unsigned NumExprs;
1307
1308  // The index of the matching candidate function
1309  unsigned FnIndex;
1310
1311  SourceLocation BuiltinLoc;
1312  SourceLocation RParenLoc;
1313public:
1314  OverloadExpr(Expr **args, unsigned nexprs, unsigned idx, QualType t,
1315               SourceLocation bloc, SourceLocation rploc)
1316    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1317      BuiltinLoc(bloc), RParenLoc(rploc) {
1318    SubExprs = new Stmt*[nexprs];
1319    for (unsigned i = 0; i != nexprs; ++i)
1320      SubExprs[i] = args[i];
1321  }
1322  ~OverloadExpr() {
1323    delete [] SubExprs;
1324  }
1325
1326  /// arg_begin - Return a pointer to the list of arguments that will be passed
1327  /// to the matching candidate function, skipping over the initial constant
1328  /// expression.
1329  typedef ConstExprIterator const_arg_iterator;
1330  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1331  const_arg_iterator arg_end(ASTContext& Ctx) const {
1332    return &SubExprs[0]+1+getNumArgs(Ctx);
1333  }
1334
1335  /// getNumArgs - Return the number of arguments to pass to the candidate
1336  /// functions.
1337  unsigned getNumArgs(ASTContext &Ctx) const {
1338    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1339  }
1340
1341  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1342  /// constant expression, the actual arguments passed in, and the function
1343  /// pointers.
1344  unsigned getNumSubExprs() const { return NumExprs; }
1345
1346  /// getExpr - Return the Expr at the specified index.
1347  Expr *getExpr(unsigned Index) const {
1348    assert((Index < NumExprs) && "Arg access out of range!");
1349    return cast<Expr>(SubExprs[Index]);
1350  }
1351
1352  /// getFn - Return the matching candidate function for this OverloadExpr.
1353  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1354
1355  virtual SourceRange getSourceRange() const {
1356    return SourceRange(BuiltinLoc, RParenLoc);
1357  }
1358  static bool classof(const Stmt *T) {
1359    return T->getStmtClass() == OverloadExprClass;
1360  }
1361  static bool classof(const OverloadExpr *) { return true; }
1362
1363  // Iterators
1364  virtual child_iterator child_begin();
1365  virtual child_iterator child_end();
1366
1367  virtual void EmitImpl(llvm::Serializer& S) const;
1368  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1369};
1370
1371/// VAArgExpr, used for the builtin function __builtin_va_start.
1372class VAArgExpr : public Expr {
1373  Stmt *Val;
1374  SourceLocation BuiltinLoc, RParenLoc;
1375public:
1376  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1377    : Expr(VAArgExprClass, t),
1378      Val(e),
1379      BuiltinLoc(BLoc),
1380      RParenLoc(RPLoc) { }
1381
1382  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1383  Expr *getSubExpr() { return cast<Expr>(Val); }
1384  virtual SourceRange getSourceRange() const {
1385    return SourceRange(BuiltinLoc, RParenLoc);
1386  }
1387  static bool classof(const Stmt *T) {
1388    return T->getStmtClass() == VAArgExprClass;
1389  }
1390  static bool classof(const VAArgExpr *) { return true; }
1391
1392  // Iterators
1393  virtual child_iterator child_begin();
1394  virtual child_iterator child_end();
1395
1396  virtual void EmitImpl(llvm::Serializer& S) const;
1397  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1398};
1399
1400/// InitListExpr - used for struct and array initializers, such as:
1401///    struct foo x = { 1, { 2, 3 } };
1402///
1403/// Because C is somewhat loose with braces, the AST does not necessarily
1404/// directly model the C source.  Instead, the semantic analyzer aims to make
1405/// the InitListExprs match up with the type of the decl being initialized.  We
1406/// have the following exceptions:
1407///
1408///  1. Elements at the end of the list may be dropped from the initializer.
1409///     These elements are defined to be initialized to zero.  For example:
1410///         int x[20] = { 1 };
1411///  2. Initializers may have excess initializers which are to be ignored by the
1412///     compiler.  For example:
1413///         int x[1] = { 1, 2 };
1414///  3. Redundant InitListExprs may be present around scalar elements.  These
1415///     always have a single element whose type is the same as the InitListExpr.
1416///     this can only happen for Type::isScalarType() types.
1417///         int x = { 1 };  int y[2] = { {1}, {2} };
1418///
1419class InitListExpr : public Expr {
1420  std::vector<Stmt *> InitExprs;
1421  SourceLocation LBraceLoc, RBraceLoc;
1422
1423  /// HadDesignators - Return true if there were any designators in this
1424  /// init list expr.  FIXME: this should be replaced by storing the designators
1425  /// somehow and updating codegen.
1426  bool HadDesignators;
1427public:
1428  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1429               SourceLocation rbraceloc, bool HadDesignators);
1430
1431  unsigned getNumInits() const { return InitExprs.size(); }
1432  bool hadDesignators() const { return HadDesignators; }
1433
1434  const Expr* getInit(unsigned Init) const {
1435    assert(Init < getNumInits() && "Initializer access out of range!");
1436    return cast<Expr>(InitExprs[Init]);
1437  }
1438
1439  Expr* getInit(unsigned Init) {
1440    assert(Init < getNumInits() && "Initializer access out of range!");
1441    return cast<Expr>(InitExprs[Init]);
1442  }
1443
1444  void setInit(unsigned Init, Expr *expr) {
1445    assert(Init < getNumInits() && "Initializer access out of range!");
1446    InitExprs[Init] = expr;
1447  }
1448
1449  // Dynamic removal/addition (for constructing implicit InitExpr's).
1450  void removeInit(unsigned Init) {
1451    InitExprs.erase(InitExprs.begin()+Init);
1452  }
1453  void addInit(unsigned Init, Expr *expr) {
1454    InitExprs.insert(InitExprs.begin()+Init, expr);
1455  }
1456
1457  // Explicit InitListExpr's originate from source code (and have valid source
1458  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1459  bool isExplicit() {
1460    return LBraceLoc.isValid() && RBraceLoc.isValid();
1461  }
1462
1463  virtual SourceRange getSourceRange() const {
1464    return SourceRange(LBraceLoc, RBraceLoc);
1465  }
1466  static bool classof(const Stmt *T) {
1467    return T->getStmtClass() == InitListExprClass;
1468  }
1469  static bool classof(const InitListExpr *) { return true; }
1470
1471  // Iterators
1472  virtual child_iterator child_begin();
1473  virtual child_iterator child_end();
1474
1475  virtual void EmitImpl(llvm::Serializer& S) const;
1476  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1477
1478private:
1479  // Used by serializer.
1480  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1481};
1482
1483//===----------------------------------------------------------------------===//
1484// Clang Extensions
1485//===----------------------------------------------------------------------===//
1486
1487
1488/// ExtVectorElementExpr - This represents access to specific elements of a
1489/// vector, and may occur on the left hand side or right hand side.  For example
1490/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
1491///
1492class ExtVectorElementExpr : public Expr {
1493  Stmt *Base;
1494  IdentifierInfo &Accessor;
1495  SourceLocation AccessorLoc;
1496public:
1497  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
1498                       SourceLocation loc)
1499    : Expr(ExtVectorElementExprClass, ty),
1500      Base(base), Accessor(accessor), AccessorLoc(loc) {}
1501
1502  const Expr *getBase() const { return cast<Expr>(Base); }
1503  Expr *getBase() { return cast<Expr>(Base); }
1504
1505  IdentifierInfo &getAccessor() const { return Accessor; }
1506
1507  /// getNumElements - Get the number of components being selected.
1508  unsigned getNumElements() const;
1509
1510  /// containsDuplicateElements - Return true if any element access is
1511  /// repeated.
1512  bool containsDuplicateElements() const;
1513
1514  /// getEncodedElementAccess - Encode the elements accessed into an llvm
1515  /// aggregate Constant of ConstantInt(s).
1516  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
1517
1518  virtual SourceRange getSourceRange() const {
1519    return SourceRange(getBase()->getLocStart(), AccessorLoc);
1520  }
1521
1522  static bool classof(const Stmt *T) {
1523    return T->getStmtClass() == ExtVectorElementExprClass;
1524  }
1525  static bool classof(const ExtVectorElementExpr *) { return true; }
1526
1527  // Iterators
1528  virtual child_iterator child_begin();
1529  virtual child_iterator child_end();
1530
1531  virtual void EmitImpl(llvm::Serializer& S) const;
1532  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1533};
1534
1535
1536/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
1537/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
1538class BlockExpr : public Expr {
1539protected:
1540  BlockDecl *TheBlock;
1541public:
1542  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
1543            TheBlock(BD) {}
1544
1545  BlockDecl *getBlockDecl() { return TheBlock; }
1546
1547  // Convenience functions for probing the underlying BlockDecl.
1548  SourceLocation getCaretLocation() const;
1549  const Stmt *getBody() const;
1550  Stmt *getBody();
1551
1552  virtual SourceRange getSourceRange() const {
1553    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
1554  }
1555
1556  /// getFunctionType - Return the underlying function type for this block.
1557  const FunctionType *getFunctionType() const;
1558
1559  static bool classof(const Stmt *T) {
1560    return T->getStmtClass() == BlockExprClass;
1561  }
1562  static bool classof(const BlockExpr *) { return true; }
1563
1564  // Iterators
1565  virtual child_iterator child_begin();
1566  virtual child_iterator child_end();
1567
1568  virtual void EmitImpl(llvm::Serializer& S) const;
1569  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1570};
1571
1572/// BlockDeclRefExpr - A reference to a declared variable, function,
1573/// enum, etc.
1574class BlockDeclRefExpr : public Expr {
1575  ValueDecl *D;
1576  SourceLocation Loc;
1577  bool IsByRef;
1578public:
1579  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
1580       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
1581
1582  ValueDecl *getDecl() { return D; }
1583  const ValueDecl *getDecl() const { return D; }
1584  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
1585
1586  bool isByRef() const { return IsByRef; }
1587
1588  static bool classof(const Stmt *T) {
1589    return T->getStmtClass() == BlockDeclRefExprClass;
1590  }
1591  static bool classof(const BlockDeclRefExpr *) { return true; }
1592
1593  // Iterators
1594  virtual child_iterator child_begin();
1595  virtual child_iterator child_end();
1596
1597  virtual void EmitImpl(llvm::Serializer& S) const;
1598  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1599};
1600
1601}  // end namespace clang
1602
1603#endif
1604