Expr.h revision 9d90d62e1661720d9cf533290b4227c4fde780a4
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "clang/AST/UsuallyTinyPtrVector.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include <vector>
28
29namespace clang {
30  class ASTContext;
31  class APValue;
32  class Decl;
33  class IdentifierInfo;
34  class ParmVarDecl;
35  class NamedDecl;
36  class ValueDecl;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXOperatorCallExpr;
40  class CXXMemberCallExpr;
41  class TemplateArgumentLoc;
42  class TemplateArgumentListInfo;
43
44/// \brief A simple array of base specifiers.
45typedef UsuallyTinyPtrVector<const CXXBaseSpecifier> CXXBaseSpecifierArray;
46
47/// Expr - This represents one expression.  Note that Expr's are subclasses of
48/// Stmt.  This allows an expression to be transparently used any place a Stmt
49/// is required.
50///
51class Expr : public Stmt {
52  QualType TR;
53
54protected:
55  /// TypeDependent - Whether this expression is type-dependent
56  /// (C++ [temp.dep.expr]).
57  bool TypeDependent : 1;
58
59  /// ValueDependent - Whether this expression is value-dependent
60  /// (C++ [temp.dep.constexpr]).
61  bool ValueDependent : 1;
62
63  Expr(StmtClass SC, QualType T, bool TD, bool VD)
64    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
65    setType(T);
66  }
67
68  /// \brief Construct an empty expression.
69  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
70
71public:
72  /// \brief Increases the reference count for this expression.
73  ///
74  /// Invoke the Retain() operation when this expression
75  /// is being shared by another owner.
76  Expr *Retain() {
77    Stmt::Retain();
78    return this;
79  }
80
81  QualType getType() const { return TR; }
82  void setType(QualType t) {
83    // In C++, the type of an expression is always adjusted so that it
84    // will not have reference type an expression will never have
85    // reference type (C++ [expr]p6). Use
86    // QualType::getNonReferenceType() to retrieve the non-reference
87    // type. Additionally, inspect Expr::isLvalue to determine whether
88    // an expression that is adjusted in this manner should be
89    // considered an lvalue.
90    assert((t.isNull() || !t->isReferenceType()) &&
91           "Expressions can't have reference type");
92
93    TR = t;
94  }
95
96  /// isValueDependent - Determines whether this expression is
97  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
98  /// array bound of "Chars" in the following example is
99  /// value-dependent.
100  /// @code
101  /// template<int Size, char (&Chars)[Size]> struct meta_string;
102  /// @endcode
103  bool isValueDependent() const { return ValueDependent; }
104
105  /// \brief Set whether this expression is value-dependent or not.
106  void setValueDependent(bool VD) { ValueDependent = VD; }
107
108  /// isTypeDependent - Determines whether this expression is
109  /// type-dependent (C++ [temp.dep.expr]), which means that its type
110  /// could change from one template instantiation to the next. For
111  /// example, the expressions "x" and "x + y" are type-dependent in
112  /// the following code, but "y" is not type-dependent:
113  /// @code
114  /// template<typename T>
115  /// void add(T x, int y) {
116  ///   x + y;
117  /// }
118  /// @endcode
119  bool isTypeDependent() const { return TypeDependent; }
120
121  /// \brief Set whether this expression is type-dependent or not.
122  void setTypeDependent(bool TD) { TypeDependent = TD; }
123
124  /// SourceLocation tokens are not useful in isolation - they are low level
125  /// value objects created/interpreted by SourceManager. We assume AST
126  /// clients will have a pointer to the respective SourceManager.
127  virtual SourceRange getSourceRange() const = 0;
128
129  /// getExprLoc - Return the preferred location for the arrow when diagnosing
130  /// a problem with a generic expression.
131  virtual SourceLocation getExprLoc() const { return getLocStart(); }
132
133  /// isUnusedResultAWarning - Return true if this immediate expression should
134  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
135  /// with location to warn on and the source range[s] to report with the
136  /// warning.
137  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
138                              SourceRange &R2, ASTContext &Ctx) const;
139
140  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
141  /// incomplete type other than void. Nonarray expressions that can be lvalues:
142  ///  - name, where name must be a variable
143  ///  - e[i]
144  ///  - (e), where e must be an lvalue
145  ///  - e.name, where e must be an lvalue
146  ///  - e->name
147  ///  - *e, the type of e cannot be a function type
148  ///  - string-constant
149  ///  - reference type [C++ [expr]]
150  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
151  ///
152  enum isLvalueResult {
153    LV_Valid,
154    LV_NotObjectType,
155    LV_IncompleteVoidType,
156    LV_DuplicateVectorComponents,
157    LV_InvalidExpression,
158    LV_MemberFunction,
159    LV_SubObjCPropertySetting,
160    LV_ClassTemporary
161  };
162  isLvalueResult isLvalue(ASTContext &Ctx) const;
163
164  // Same as above, but excluding checks for non-object and void types in C
165  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
166
167  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
168  /// does not have an incomplete type, does not have a const-qualified type,
169  /// and if it is a structure or union, does not have any member (including,
170  /// recursively, any member or element of all contained aggregates or unions)
171  /// with a const-qualified type.
172  ///
173  /// \param Loc [in] [out] - A source location which *may* be filled
174  /// in with the location of the expression making this a
175  /// non-modifiable lvalue, if specified.
176  enum isModifiableLvalueResult {
177    MLV_Valid,
178    MLV_NotObjectType,
179    MLV_IncompleteVoidType,
180    MLV_DuplicateVectorComponents,
181    MLV_InvalidExpression,
182    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
183    MLV_IncompleteType,
184    MLV_ConstQualified,
185    MLV_ArrayType,
186    MLV_NotBlockQualified,
187    MLV_ReadonlyProperty,
188    MLV_NoSetterProperty,
189    MLV_MemberFunction,
190    MLV_SubObjCPropertySetting,
191    MLV_ClassTemporary
192  };
193  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
194                                              SourceLocation *Loc = 0) const;
195
196  /// \brief If this expression refers to a bit-field, retrieve the
197  /// declaration of that bit-field.
198  FieldDecl *getBitField();
199
200  const FieldDecl *getBitField() const {
201    return const_cast<Expr*>(this)->getBitField();
202  }
203
204  /// \brief Returns whether this expression refers to a vector element.
205  bool refersToVectorElement() const;
206
207  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
208  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
209  /// but also int expressions which are produced by things like comparisons in
210  /// C.
211  bool isKnownToHaveBooleanValue() const;
212
213  /// isIntegerConstantExpr - Return true if this expression is a valid integer
214  /// constant expression, and, if so, return its value in Result.  If not a
215  /// valid i-c-e, return false and fill in Loc (if specified) with the location
216  /// of the invalid expression.
217  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
218                             SourceLocation *Loc = 0,
219                             bool isEvaluated = true) const;
220  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
221    llvm::APSInt X;
222    return isIntegerConstantExpr(X, Ctx, Loc);
223  }
224  /// isConstantInitializer - Returns true if this expression is a constant
225  /// initializer, which can be emitted at compile-time.
226  bool isConstantInitializer(ASTContext &Ctx) const;
227
228  /// EvalResult is a struct with detailed info about an evaluated expression.
229  struct EvalResult {
230    /// Val - This is the value the expression can be folded to.
231    APValue Val;
232
233    /// HasSideEffects - Whether the evaluated expression has side effects.
234    /// For example, (f() && 0) can be folded, but it still has side effects.
235    bool HasSideEffects;
236
237    /// Diag - If the expression is unfoldable, then Diag contains a note
238    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
239    /// position for the error, and DiagExpr is the expression that caused
240    /// the error.
241    /// If the expression is foldable, but not an integer constant expression,
242    /// Diag contains a note diagnostic that describes why it isn't an integer
243    /// constant expression. If the expression *is* an integer constant
244    /// expression, then Diag will be zero.
245    unsigned Diag;
246    const Expr *DiagExpr;
247    SourceLocation DiagLoc;
248
249    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
250  };
251
252  /// Evaluate - Return true if this is a constant which we can fold using
253  /// any crazy technique (that has nothing to do with language standards) that
254  /// we want to.  If this function returns true, it returns the folded constant
255  /// in Result.
256  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
257
258  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
259  /// stack based objects.
260  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
261
262  /// EvaluateAsBooleanCondition - Return true if this is a constant
263  /// which we we can fold and convert to a boolean condition using
264  /// any crazy technique that we want to.
265  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
266
267  /// isEvaluatable - Call Evaluate to see if this expression can be constant
268  /// folded, but discard the result.
269  bool isEvaluatable(ASTContext &Ctx) const;
270
271  /// HasSideEffects - This routine returns true for all those expressions
272  /// which must be evaluated each time and must not be optimization away
273  /// or evaluated at compile time. Example is a function call, volatile
274  /// variable read.
275  bool HasSideEffects(ASTContext &Ctx) const;
276
277  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
278  /// must be called on an expression that constant folds to an integer.
279  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
280
281  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
282  /// with link time known address.
283  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
284
285  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
286  /// also succeeds on stack based, immutable address lvalues.
287  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
288
289  /// \brief Enumeration used to describe how \c isNullPointerConstant()
290  /// should cope with value-dependent expressions.
291  enum NullPointerConstantValueDependence {
292    /// \brief Specifies that the expression should never be value-dependent.
293    NPC_NeverValueDependent = 0,
294
295    /// \brief Specifies that a value-dependent expression of integral or
296    /// dependent type should be considered a null pointer constant.
297    NPC_ValueDependentIsNull,
298
299    /// \brief Specifies that a value-dependent expression should be considered
300    /// to never be a null pointer constant.
301    NPC_ValueDependentIsNotNull
302  };
303
304  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
305  /// integer constant expression with the value zero, or if this is one that is
306  /// cast to void*.
307  bool isNullPointerConstant(ASTContext &Ctx,
308                             NullPointerConstantValueDependence NPC) const;
309
310  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
311  /// write barrier.
312  bool isOBJCGCCandidate(ASTContext &Ctx) const;
313
314  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
315  ///  its subexpression.  If that subexpression is also a ParenExpr,
316  ///  then this method recursively returns its subexpression, and so forth.
317  ///  Otherwise, the method returns the current Expr.
318  Expr *IgnoreParens();
319
320  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
321  /// or CastExprs, returning their operand.
322  Expr *IgnoreParenCasts();
323
324  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
325  /// value (including ptr->int casts of the same size).  Strip off any
326  /// ParenExpr or CastExprs, returning their operand.
327  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
328
329  /// \brief Determine whether this expression is a default function argument.
330  ///
331  /// Default arguments are implicitly generated in the abstract syntax tree
332  /// by semantic analysis for function calls, object constructions, etc. in
333  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
334  /// this routine also looks through any implicit casts to determine whether
335  /// the expression is a default argument.
336  bool isDefaultArgument() const;
337
338  /// \brief Determine whether this expression directly creates a
339  /// temporary object (of class type).
340  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
341
342  /// \brief If this expression directly creates a temporary object of
343  /// class type, return the expression that actually constructs that
344  /// temporary object.
345  const Expr *getTemporaryObject() const;
346
347  const Expr *IgnoreParens() const {
348    return const_cast<Expr*>(this)->IgnoreParens();
349  }
350  const Expr *IgnoreParenCasts() const {
351    return const_cast<Expr*>(this)->IgnoreParenCasts();
352  }
353  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
354    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
355  }
356
357  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
358  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
359
360  static bool classof(const Stmt *T) {
361    return T->getStmtClass() >= firstExprConstant &&
362           T->getStmtClass() <= lastExprConstant;
363  }
364  static bool classof(const Expr *) { return true; }
365};
366
367
368//===----------------------------------------------------------------------===//
369// Primary Expressions.
370//===----------------------------------------------------------------------===//
371
372/// \brief Represents the qualifier that may precede a C++ name, e.g., the
373/// "std::" in "std::sort".
374struct NameQualifier {
375  /// \brief The nested name specifier.
376  NestedNameSpecifier *NNS;
377
378  /// \brief The source range covered by the nested name specifier.
379  SourceRange Range;
380};
381
382/// \brief Represents an explicit template argument list in C++, e.g.,
383/// the "<int>" in "sort<int>".
384struct ExplicitTemplateArgumentList {
385  /// \brief The source location of the left angle bracket ('<');
386  SourceLocation LAngleLoc;
387
388  /// \brief The source location of the right angle bracket ('>');
389  SourceLocation RAngleLoc;
390
391  /// \brief The number of template arguments in TemplateArgs.
392  /// The actual template arguments (if any) are stored after the
393  /// ExplicitTemplateArgumentList structure.
394  unsigned NumTemplateArgs;
395
396  /// \brief Retrieve the template arguments
397  TemplateArgumentLoc *getTemplateArgs() {
398    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
399  }
400
401  /// \brief Retrieve the template arguments
402  const TemplateArgumentLoc *getTemplateArgs() const {
403    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
404  }
405
406  void initializeFrom(const TemplateArgumentListInfo &List);
407  void copyInto(TemplateArgumentListInfo &List) const;
408  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
409};
410
411/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
412/// enum, etc.
413class DeclRefExpr : public Expr {
414  enum {
415    // Flag on DecoratedD that specifies when this declaration reference
416    // expression has a C++ nested-name-specifier.
417    HasQualifierFlag = 0x01,
418    // Flag on DecoratedD that specifies when this declaration reference
419    // expression has an explicit C++ template argument list.
420    HasExplicitTemplateArgumentListFlag = 0x02
421  };
422
423  // DecoratedD - The declaration that we are referencing, plus two bits to
424  // indicate whether (1) the declaration's name was explicitly qualified and
425  // (2) the declaration's name was followed by an explicit template
426  // argument list.
427  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
428
429  // Loc - The location of the declaration name itself.
430  SourceLocation Loc;
431
432  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
433  NameQualifier *getNameQualifier() {
434    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
435      return 0;
436
437    return reinterpret_cast<NameQualifier *> (this + 1);
438  }
439
440  /// \brief Retrieve the qualifier that preceded the member name, if any.
441  const NameQualifier *getNameQualifier() const {
442    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
443  }
444
445  /// \brief Retrieve the explicit template argument list that followed the
446  /// member template name, if any.
447  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
448    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
449      return 0;
450
451    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
452      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
453
454    return reinterpret_cast<ExplicitTemplateArgumentList *>(
455                                                      getNameQualifier() + 1);
456  }
457
458  /// \brief Retrieve the explicit template argument list that followed the
459  /// member template name, if any.
460  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
461    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
462  }
463
464  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
465              ValueDecl *D, SourceLocation NameLoc,
466              const TemplateArgumentListInfo *TemplateArgs,
467              QualType T);
468
469protected:
470  /// \brief Computes the type- and value-dependence flags for this
471  /// declaration reference expression.
472  void computeDependence();
473
474  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
475    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
476    computeDependence();
477  }
478
479public:
480  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
481    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
482    computeDependence();
483  }
484
485  /// \brief Construct an empty declaration reference expression.
486  explicit DeclRefExpr(EmptyShell Empty)
487    : Expr(DeclRefExprClass, Empty) { }
488
489  static DeclRefExpr *Create(ASTContext &Context,
490                             NestedNameSpecifier *Qualifier,
491                             SourceRange QualifierRange,
492                             ValueDecl *D,
493                             SourceLocation NameLoc,
494                             QualType T,
495                             const TemplateArgumentListInfo *TemplateArgs = 0);
496
497  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
498  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
499  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
500
501  SourceLocation getLocation() const { return Loc; }
502  void setLocation(SourceLocation L) { Loc = L; }
503  virtual SourceRange getSourceRange() const;
504
505  /// \brief Determine whether this declaration reference was preceded by a
506  /// C++ nested-name-specifier, e.g., \c N::foo.
507  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
508
509  /// \brief If the name was qualified, retrieves the source range of
510  /// the nested-name-specifier that precedes the name. Otherwise,
511  /// returns an empty source range.
512  SourceRange getQualifierRange() const {
513    if (!hasQualifier())
514      return SourceRange();
515
516    return getNameQualifier()->Range;
517  }
518
519  /// \brief If the name was qualified, retrieves the nested-name-specifier
520  /// that precedes the name. Otherwise, returns NULL.
521  NestedNameSpecifier *getQualifier() const {
522    if (!hasQualifier())
523      return 0;
524
525    return getNameQualifier()->NNS;
526  }
527
528  /// \brief Determines whether this member expression actually had a C++
529  /// template argument list explicitly specified, e.g., x.f<int>.
530  bool hasExplicitTemplateArgumentList() const {
531    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
532  }
533
534  /// \brief Copies the template arguments (if present) into the given
535  /// structure.
536  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
537    if (hasExplicitTemplateArgumentList())
538      getExplicitTemplateArgumentList()->copyInto(List);
539  }
540
541  /// \brief Retrieve the location of the left angle bracket following the
542  /// member name ('<'), if any.
543  SourceLocation getLAngleLoc() const {
544    if (!hasExplicitTemplateArgumentList())
545      return SourceLocation();
546
547    return getExplicitTemplateArgumentList()->LAngleLoc;
548  }
549
550  /// \brief Retrieve the template arguments provided as part of this
551  /// template-id.
552  const TemplateArgumentLoc *getTemplateArgs() const {
553    if (!hasExplicitTemplateArgumentList())
554      return 0;
555
556    return getExplicitTemplateArgumentList()->getTemplateArgs();
557  }
558
559  /// \brief Retrieve the number of template arguments provided as part of this
560  /// template-id.
561  unsigned getNumTemplateArgs() const {
562    if (!hasExplicitTemplateArgumentList())
563      return 0;
564
565    return getExplicitTemplateArgumentList()->NumTemplateArgs;
566  }
567
568  /// \brief Retrieve the location of the right angle bracket following the
569  /// template arguments ('>').
570  SourceLocation getRAngleLoc() const {
571    if (!hasExplicitTemplateArgumentList())
572      return SourceLocation();
573
574    return getExplicitTemplateArgumentList()->RAngleLoc;
575  }
576
577  static bool classof(const Stmt *T) {
578    return T->getStmtClass() == DeclRefExprClass;
579  }
580  static bool classof(const DeclRefExpr *) { return true; }
581
582  // Iterators
583  virtual child_iterator child_begin();
584  virtual child_iterator child_end();
585};
586
587/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
588class PredefinedExpr : public Expr {
589public:
590  enum IdentType {
591    Func,
592    Function,
593    PrettyFunction,
594    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
595    /// 'virtual' keyword is omitted for virtual member functions.
596    PrettyFunctionNoVirtual
597  };
598
599private:
600  SourceLocation Loc;
601  IdentType Type;
602public:
603  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
604    : Expr(PredefinedExprClass, type, type->isDependentType(),
605           type->isDependentType()), Loc(l), Type(IT) {}
606
607  /// \brief Construct an empty predefined expression.
608  explicit PredefinedExpr(EmptyShell Empty)
609    : Expr(PredefinedExprClass, Empty) { }
610
611  IdentType getIdentType() const { return Type; }
612  void setIdentType(IdentType IT) { Type = IT; }
613
614  SourceLocation getLocation() const { return Loc; }
615  void setLocation(SourceLocation L) { Loc = L; }
616
617  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
618
619  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
620
621  static bool classof(const Stmt *T) {
622    return T->getStmtClass() == PredefinedExprClass;
623  }
624  static bool classof(const PredefinedExpr *) { return true; }
625
626  // Iterators
627  virtual child_iterator child_begin();
628  virtual child_iterator child_end();
629};
630
631class IntegerLiteral : public Expr {
632  llvm::APInt Value;
633  SourceLocation Loc;
634public:
635  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
636  // or UnsignedLongLongTy
637  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
638    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
639    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
640  }
641
642  /// \brief Construct an empty integer literal.
643  explicit IntegerLiteral(EmptyShell Empty)
644    : Expr(IntegerLiteralClass, Empty) { }
645
646  const llvm::APInt &getValue() const { return Value; }
647  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
648
649  /// \brief Retrieve the location of the literal.
650  SourceLocation getLocation() const { return Loc; }
651
652  void setValue(const llvm::APInt &Val) { Value = Val; }
653  void setLocation(SourceLocation Location) { Loc = Location; }
654
655  static bool classof(const Stmt *T) {
656    return T->getStmtClass() == IntegerLiteralClass;
657  }
658  static bool classof(const IntegerLiteral *) { return true; }
659
660  // Iterators
661  virtual child_iterator child_begin();
662  virtual child_iterator child_end();
663};
664
665class CharacterLiteral : public Expr {
666  unsigned Value;
667  SourceLocation Loc;
668  bool IsWide;
669public:
670  // type should be IntTy
671  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
672    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
673      IsWide(iswide) {
674  }
675
676  /// \brief Construct an empty character literal.
677  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
678
679  SourceLocation getLocation() const { return Loc; }
680  bool isWide() const { return IsWide; }
681
682  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
683
684  unsigned getValue() const { return Value; }
685
686  void setLocation(SourceLocation Location) { Loc = Location; }
687  void setWide(bool W) { IsWide = W; }
688  void setValue(unsigned Val) { Value = Val; }
689
690  static bool classof(const Stmt *T) {
691    return T->getStmtClass() == CharacterLiteralClass;
692  }
693  static bool classof(const CharacterLiteral *) { return true; }
694
695  // Iterators
696  virtual child_iterator child_begin();
697  virtual child_iterator child_end();
698};
699
700class FloatingLiteral : public Expr {
701  llvm::APFloat Value;
702  bool IsExact : 1;
703  SourceLocation Loc;
704public:
705  FloatingLiteral(const llvm::APFloat &V, bool isexact,
706                  QualType Type, SourceLocation L)
707    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
708      IsExact(isexact), Loc(L) {}
709
710  /// \brief Construct an empty floating-point literal.
711  explicit FloatingLiteral(EmptyShell Empty)
712    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
713
714  const llvm::APFloat &getValue() const { return Value; }
715  void setValue(const llvm::APFloat &Val) { Value = Val; }
716
717  bool isExact() const { return IsExact; }
718  void setExact(bool E) { IsExact = E; }
719
720  /// getValueAsApproximateDouble - This returns the value as an inaccurate
721  /// double.  Note that this may cause loss of precision, but is useful for
722  /// debugging dumps, etc.
723  double getValueAsApproximateDouble() const;
724
725  SourceLocation getLocation() const { return Loc; }
726  void setLocation(SourceLocation L) { Loc = L; }
727
728  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
729
730  static bool classof(const Stmt *T) {
731    return T->getStmtClass() == FloatingLiteralClass;
732  }
733  static bool classof(const FloatingLiteral *) { return true; }
734
735  // Iterators
736  virtual child_iterator child_begin();
737  virtual child_iterator child_end();
738};
739
740/// ImaginaryLiteral - We support imaginary integer and floating point literals,
741/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
742/// IntegerLiteral classes.  Instances of this class always have a Complex type
743/// whose element type matches the subexpression.
744///
745class ImaginaryLiteral : public Expr {
746  Stmt *Val;
747public:
748  ImaginaryLiteral(Expr *val, QualType Ty)
749    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
750
751  /// \brief Build an empty imaginary literal.
752  explicit ImaginaryLiteral(EmptyShell Empty)
753    : Expr(ImaginaryLiteralClass, Empty) { }
754
755  const Expr *getSubExpr() const { return cast<Expr>(Val); }
756  Expr *getSubExpr() { return cast<Expr>(Val); }
757  void setSubExpr(Expr *E) { Val = E; }
758
759  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
760  static bool classof(const Stmt *T) {
761    return T->getStmtClass() == ImaginaryLiteralClass;
762  }
763  static bool classof(const ImaginaryLiteral *) { return true; }
764
765  // Iterators
766  virtual child_iterator child_begin();
767  virtual child_iterator child_end();
768};
769
770/// StringLiteral - This represents a string literal expression, e.g. "foo"
771/// or L"bar" (wide strings).  The actual string is returned by getStrData()
772/// is NOT null-terminated, and the length of the string is determined by
773/// calling getByteLength().  The C type for a string is always a
774/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
775/// not.
776///
777/// Note that strings in C can be formed by concatenation of multiple string
778/// literal pptokens in translation phase #6.  This keeps track of the locations
779/// of each of these pieces.
780///
781/// Strings in C can also be truncated and extended by assigning into arrays,
782/// e.g. with constructs like:
783///   char X[2] = "foobar";
784/// In this case, getByteLength() will return 6, but the string literal will
785/// have type "char[2]".
786class StringLiteral : public Expr {
787  const char *StrData;
788  unsigned ByteLength;
789  bool IsWide;
790  unsigned NumConcatenated;
791  SourceLocation TokLocs[1];
792
793  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
794
795protected:
796  virtual void DoDestroy(ASTContext &C);
797
798public:
799  /// This is the "fully general" constructor that allows representation of
800  /// strings formed from multiple concatenated tokens.
801  static StringLiteral *Create(ASTContext &C, const char *StrData,
802                               unsigned ByteLength, bool Wide, QualType Ty,
803                               const SourceLocation *Loc, unsigned NumStrs);
804
805  /// Simple constructor for string literals made from one token.
806  static StringLiteral *Create(ASTContext &C, const char *StrData,
807                               unsigned ByteLength,
808                               bool Wide, QualType Ty, SourceLocation Loc) {
809    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
810  }
811
812  /// \brief Construct an empty string literal.
813  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
814
815  llvm::StringRef getString() const {
816    return llvm::StringRef(StrData, ByteLength);
817  }
818  // FIXME: These are deprecated, replace with StringRef.
819  const char *getStrData() const { return StrData; }
820  unsigned getByteLength() const { return ByteLength; }
821
822  /// \brief Sets the string data to the given string data.
823  void setString(ASTContext &C, llvm::StringRef Str);
824
825  bool isWide() const { return IsWide; }
826  void setWide(bool W) { IsWide = W; }
827
828  bool containsNonAsciiOrNull() const {
829    llvm::StringRef Str = getString();
830    for (unsigned i = 0, e = Str.size(); i != e; ++i)
831      if (!isascii(Str[i]) || !Str[i])
832        return true;
833    return false;
834  }
835  /// getNumConcatenated - Get the number of string literal tokens that were
836  /// concatenated in translation phase #6 to form this string literal.
837  unsigned getNumConcatenated() const { return NumConcatenated; }
838
839  SourceLocation getStrTokenLoc(unsigned TokNum) const {
840    assert(TokNum < NumConcatenated && "Invalid tok number");
841    return TokLocs[TokNum];
842  }
843  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
844    assert(TokNum < NumConcatenated && "Invalid tok number");
845    TokLocs[TokNum] = L;
846  }
847
848  typedef const SourceLocation *tokloc_iterator;
849  tokloc_iterator tokloc_begin() const { return TokLocs; }
850  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
851
852  virtual SourceRange getSourceRange() const {
853    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
854  }
855  static bool classof(const Stmt *T) {
856    return T->getStmtClass() == StringLiteralClass;
857  }
858  static bool classof(const StringLiteral *) { return true; }
859
860  // Iterators
861  virtual child_iterator child_begin();
862  virtual child_iterator child_end();
863};
864
865/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
866/// AST node is only formed if full location information is requested.
867class ParenExpr : public Expr {
868  SourceLocation L, R;
869  Stmt *Val;
870public:
871  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
872    : Expr(ParenExprClass, val->getType(),
873           val->isTypeDependent(), val->isValueDependent()),
874      L(l), R(r), Val(val) {}
875
876  /// \brief Construct an empty parenthesized expression.
877  explicit ParenExpr(EmptyShell Empty)
878    : Expr(ParenExprClass, Empty) { }
879
880  const Expr *getSubExpr() const { return cast<Expr>(Val); }
881  Expr *getSubExpr() { return cast<Expr>(Val); }
882  void setSubExpr(Expr *E) { Val = E; }
883
884  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
885
886  /// \brief Get the location of the left parentheses '('.
887  SourceLocation getLParen() const { return L; }
888  void setLParen(SourceLocation Loc) { L = Loc; }
889
890  /// \brief Get the location of the right parentheses ')'.
891  SourceLocation getRParen() const { return R; }
892  void setRParen(SourceLocation Loc) { R = Loc; }
893
894  static bool classof(const Stmt *T) {
895    return T->getStmtClass() == ParenExprClass;
896  }
897  static bool classof(const ParenExpr *) { return true; }
898
899  // Iterators
900  virtual child_iterator child_begin();
901  virtual child_iterator child_end();
902};
903
904
905/// UnaryOperator - This represents the unary-expression's (except sizeof and
906/// alignof), the postinc/postdec operators from postfix-expression, and various
907/// extensions.
908///
909/// Notes on various nodes:
910///
911/// Real/Imag - These return the real/imag part of a complex operand.  If
912///   applied to a non-complex value, the former returns its operand and the
913///   later returns zero in the type of the operand.
914///
915/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
916///   subexpression is a compound literal with the various MemberExpr and
917///   ArraySubscriptExpr's applied to it. (This is only used in C)
918///
919class UnaryOperator : public Expr {
920public:
921  // Note that additions to this should also update the StmtVisitor class.
922  enum Opcode {
923    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
924    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
925    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
926    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
927    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
928    Real, Imag,       // "__real expr"/"__imag expr" Extension.
929    Extension,        // __extension__ marker.
930    OffsetOf          // __builtin_offsetof
931  };
932private:
933  Stmt *Val;
934  Opcode Opc;
935  SourceLocation Loc;
936public:
937
938  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
939    : Expr(UnaryOperatorClass, type,
940           input->isTypeDependent() && opc != OffsetOf,
941           input->isValueDependent()),
942      Val(input), Opc(opc), Loc(l) {}
943
944  /// \brief Build an empty unary operator.
945  explicit UnaryOperator(EmptyShell Empty)
946    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
947
948  Opcode getOpcode() const { return Opc; }
949  void setOpcode(Opcode O) { Opc = O; }
950
951  Expr *getSubExpr() const { return cast<Expr>(Val); }
952  void setSubExpr(Expr *E) { Val = E; }
953
954  /// getOperatorLoc - Return the location of the operator.
955  SourceLocation getOperatorLoc() const { return Loc; }
956  void setOperatorLoc(SourceLocation L) { Loc = L; }
957
958  /// isPostfix - Return true if this is a postfix operation, like x++.
959  static bool isPostfix(Opcode Op) {
960    return Op == PostInc || Op == PostDec;
961  }
962
963  /// isPostfix - Return true if this is a prefix operation, like --x.
964  static bool isPrefix(Opcode Op) {
965    return Op == PreInc || Op == PreDec;
966  }
967
968  bool isPrefix() const { return isPrefix(Opc); }
969  bool isPostfix() const { return isPostfix(Opc); }
970  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
971  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
972  bool isOffsetOfOp() const { return Opc == OffsetOf; }
973  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
974  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
975
976  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
977  /// corresponds to, e.g. "sizeof" or "[pre]++"
978  static const char *getOpcodeStr(Opcode Op);
979
980  /// \brief Retrieve the unary opcode that corresponds to the given
981  /// overloaded operator.
982  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
983
984  /// \brief Retrieve the overloaded operator kind that corresponds to
985  /// the given unary opcode.
986  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
987
988  virtual SourceRange getSourceRange() const {
989    if (isPostfix())
990      return SourceRange(Val->getLocStart(), Loc);
991    else
992      return SourceRange(Loc, Val->getLocEnd());
993  }
994  virtual SourceLocation getExprLoc() const { return Loc; }
995
996  static bool classof(const Stmt *T) {
997    return T->getStmtClass() == UnaryOperatorClass;
998  }
999  static bool classof(const UnaryOperator *) { return true; }
1000
1001  // Iterators
1002  virtual child_iterator child_begin();
1003  virtual child_iterator child_end();
1004};
1005
1006/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1007/// offsetof(record-type, member-designator). For example, given:
1008/// @code
1009/// struct S {
1010///   float f;
1011///   double d;
1012/// };
1013/// struct T {
1014///   int i;
1015///   struct S s[10];
1016/// };
1017/// @endcode
1018/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1019
1020class OffsetOfExpr : public Expr {
1021public:
1022  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1023  class OffsetOfNode {
1024  public:
1025    /// \brief The kind of offsetof node we have.
1026    enum Kind {
1027      /// \brief An index into an array.
1028      Array = 0x00,
1029      /// \brief A field.
1030      Field = 0x01,
1031      /// \brief A field in a dependent type, known only by its name.
1032      Identifier = 0x02,
1033      /// \brief An implicit indirection through a C++ base class, when the
1034      /// field found is in a base class.
1035      Base = 0x03
1036    };
1037
1038  private:
1039    enum { MaskBits = 2, Mask = 0x03 };
1040
1041    /// \brief The source range that covers this part of the designator.
1042    SourceRange Range;
1043
1044    /// \brief The data describing the designator, which comes in three
1045    /// different forms, depending on the lower two bits.
1046    ///   - An unsigned index into the array of Expr*'s stored after this node
1047    ///     in memory, for [constant-expression] designators.
1048    ///   - A FieldDecl*, for references to a known field.
1049    ///   - An IdentifierInfo*, for references to a field with a given name
1050    ///     when the class type is dependent.
1051    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1052    ///     base class.
1053    uintptr_t Data;
1054
1055  public:
1056    /// \brief Create an offsetof node that refers to an array element.
1057    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1058                 SourceLocation RBracketLoc)
1059      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1060
1061    /// \brief Create an offsetof node that refers to a field.
1062    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1063                 SourceLocation NameLoc)
1064      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1065        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1066
1067    /// \brief Create an offsetof node that refers to an identifier.
1068    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1069                 SourceLocation NameLoc)
1070      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1071        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1072
1073    /// \brief Create an offsetof node that refers into a C++ base class.
1074    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1075      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1076
1077    /// \brief Determine what kind of offsetof node this is.
1078    Kind getKind() const {
1079      return static_cast<Kind>(Data & Mask);
1080    }
1081
1082    /// \brief For an array element node, returns the index into the array
1083    /// of expressions.
1084    unsigned getArrayExprIndex() const {
1085      assert(getKind() == Array);
1086      return Data >> 2;
1087    }
1088
1089    /// \brief For a field offsetof node, returns the field.
1090    FieldDecl *getField() const {
1091      assert(getKind() == Field);
1092      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1093    }
1094
1095    /// \brief For a field or identifier offsetof node, returns the name of
1096    /// the field.
1097    IdentifierInfo *getFieldName() const;
1098
1099    /// \brief For a base class node, returns the base specifier.
1100    CXXBaseSpecifier *getBase() const {
1101      assert(getKind() == Base);
1102      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1103    }
1104
1105    /// \brief Retrieve the source range that covers this offsetof node.
1106    ///
1107    /// For an array element node, the source range contains the locations of
1108    /// the square brackets. For a field or identifier node, the source range
1109    /// contains the location of the period (if there is one) and the
1110    /// identifier.
1111    SourceRange getRange() const { return Range; }
1112  };
1113
1114private:
1115
1116  SourceLocation OperatorLoc, RParenLoc;
1117  // Base type;
1118  TypeSourceInfo *TSInfo;
1119  // Number of sub-components (i.e. instances of OffsetOfNode).
1120  unsigned NumComps;
1121  // Number of sub-expressions (i.e. array subscript expressions).
1122  unsigned NumExprs;
1123
1124  OffsetOfExpr(ASTContext &C, QualType type,
1125               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1126               OffsetOfNode* compsPtr, unsigned numComps,
1127               Expr** exprsPtr, unsigned numExprs,
1128               SourceLocation RParenLoc);
1129
1130  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1131    : Expr(OffsetOfExprClass, EmptyShell()),
1132      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1133
1134public:
1135
1136  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1137                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1138                              OffsetOfNode* compsPtr, unsigned numComps,
1139                              Expr** exprsPtr, unsigned numExprs,
1140                              SourceLocation RParenLoc);
1141
1142  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1143                                   unsigned NumComps, unsigned NumExprs);
1144
1145  /// getOperatorLoc - Return the location of the operator.
1146  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1147  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1148
1149  /// \brief Return the location of the right parentheses.
1150  SourceLocation getRParenLoc() const { return RParenLoc; }
1151  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1152
1153  TypeSourceInfo *getTypeSourceInfo() const {
1154    return TSInfo;
1155  }
1156  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1157    TSInfo = tsi;
1158  }
1159
1160  const OffsetOfNode &getComponent(unsigned Idx) {
1161    assert(Idx < NumComps && "Subscript out of range");
1162    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1163  }
1164
1165  void setComponent(unsigned Idx, OffsetOfNode ON) {
1166    assert(Idx < NumComps && "Subscript out of range");
1167    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1168  }
1169
1170  unsigned getNumComponents() const {
1171    return NumComps;
1172  }
1173
1174  Expr* getIndexExpr(unsigned Idx) {
1175    assert(Idx < NumExprs && "Subscript out of range");
1176    return reinterpret_cast<Expr **>(
1177                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1178  }
1179
1180  void setIndexExpr(unsigned Idx, Expr* E) {
1181    assert(Idx < NumComps && "Subscript out of range");
1182    reinterpret_cast<Expr **>(
1183                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1184  }
1185
1186  unsigned getNumExpressions() const {
1187    return NumExprs;
1188  }
1189
1190  virtual SourceRange getSourceRange() const {
1191    return SourceRange(OperatorLoc, RParenLoc);
1192  }
1193
1194  static bool classof(const Stmt *T) {
1195    return T->getStmtClass() == OffsetOfExprClass;
1196  }
1197
1198  static bool classof(const OffsetOfExpr *) { return true; }
1199
1200  // Iterators
1201  virtual child_iterator child_begin();
1202  virtual child_iterator child_end();
1203};
1204
1205/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1206/// types and expressions.
1207class SizeOfAlignOfExpr : public Expr {
1208  bool isSizeof : 1;  // true if sizeof, false if alignof.
1209  bool isType : 1;    // true if operand is a type, false if an expression
1210  union {
1211    TypeSourceInfo *Ty;
1212    Stmt *Ex;
1213  } Argument;
1214  SourceLocation OpLoc, RParenLoc;
1215
1216protected:
1217  virtual void DoDestroy(ASTContext& C);
1218
1219public:
1220  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1221                    QualType resultType, SourceLocation op,
1222                    SourceLocation rp) :
1223      Expr(SizeOfAlignOfExprClass, resultType,
1224           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1225           // Value-dependent if the argument is type-dependent.
1226           TInfo->getType()->isDependentType()),
1227      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1228    Argument.Ty = TInfo;
1229  }
1230
1231  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1232                    QualType resultType, SourceLocation op,
1233                    SourceLocation rp) :
1234      Expr(SizeOfAlignOfExprClass, resultType,
1235           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1236           // Value-dependent if the argument is type-dependent.
1237           E->isTypeDependent()),
1238      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1239    Argument.Ex = E;
1240  }
1241
1242  /// \brief Construct an empty sizeof/alignof expression.
1243  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1244    : Expr(SizeOfAlignOfExprClass, Empty) { }
1245
1246  bool isSizeOf() const { return isSizeof; }
1247  void setSizeof(bool S) { isSizeof = S; }
1248
1249  bool isArgumentType() const { return isType; }
1250  QualType getArgumentType() const {
1251    return getArgumentTypeInfo()->getType();
1252  }
1253  TypeSourceInfo *getArgumentTypeInfo() const {
1254    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1255    return Argument.Ty;
1256  }
1257  Expr *getArgumentExpr() {
1258    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1259    return static_cast<Expr*>(Argument.Ex);
1260  }
1261  const Expr *getArgumentExpr() const {
1262    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1263  }
1264
1265  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1266  void setArgument(TypeSourceInfo *TInfo) {
1267    Argument.Ty = TInfo;
1268    isType = true;
1269  }
1270
1271  /// Gets the argument type, or the type of the argument expression, whichever
1272  /// is appropriate.
1273  QualType getTypeOfArgument() const {
1274    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1275  }
1276
1277  SourceLocation getOperatorLoc() const { return OpLoc; }
1278  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1279
1280  SourceLocation getRParenLoc() const { return RParenLoc; }
1281  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1282
1283  virtual SourceRange getSourceRange() const {
1284    return SourceRange(OpLoc, RParenLoc);
1285  }
1286
1287  static bool classof(const Stmt *T) {
1288    return T->getStmtClass() == SizeOfAlignOfExprClass;
1289  }
1290  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1291
1292  // Iterators
1293  virtual child_iterator child_begin();
1294  virtual child_iterator child_end();
1295};
1296
1297//===----------------------------------------------------------------------===//
1298// Postfix Operators.
1299//===----------------------------------------------------------------------===//
1300
1301/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1302class ArraySubscriptExpr : public Expr {
1303  enum { LHS, RHS, END_EXPR=2 };
1304  Stmt* SubExprs[END_EXPR];
1305  SourceLocation RBracketLoc;
1306public:
1307  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1308                     SourceLocation rbracketloc)
1309  : Expr(ArraySubscriptExprClass, t,
1310         lhs->isTypeDependent() || rhs->isTypeDependent(),
1311         lhs->isValueDependent() || rhs->isValueDependent()),
1312    RBracketLoc(rbracketloc) {
1313    SubExprs[LHS] = lhs;
1314    SubExprs[RHS] = rhs;
1315  }
1316
1317  /// \brief Create an empty array subscript expression.
1318  explicit ArraySubscriptExpr(EmptyShell Shell)
1319    : Expr(ArraySubscriptExprClass, Shell) { }
1320
1321  /// An array access can be written A[4] or 4[A] (both are equivalent).
1322  /// - getBase() and getIdx() always present the normalized view: A[4].
1323  ///    In this case getBase() returns "A" and getIdx() returns "4".
1324  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1325  ///    4[A] getLHS() returns "4".
1326  /// Note: Because vector element access is also written A[4] we must
1327  /// predicate the format conversion in getBase and getIdx only on the
1328  /// the type of the RHS, as it is possible for the LHS to be a vector of
1329  /// integer type
1330  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1331  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1332  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1333
1334  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1335  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1336  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1337
1338  Expr *getBase() {
1339    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1340  }
1341
1342  const Expr *getBase() const {
1343    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1344  }
1345
1346  Expr *getIdx() {
1347    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1348  }
1349
1350  const Expr *getIdx() const {
1351    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1352  }
1353
1354  virtual SourceRange getSourceRange() const {
1355    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1356  }
1357
1358  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1359  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1360
1361  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1362
1363  static bool classof(const Stmt *T) {
1364    return T->getStmtClass() == ArraySubscriptExprClass;
1365  }
1366  static bool classof(const ArraySubscriptExpr *) { return true; }
1367
1368  // Iterators
1369  virtual child_iterator child_begin();
1370  virtual child_iterator child_end();
1371};
1372
1373
1374/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1375/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1376/// while its subclasses may represent alternative syntax that (semantically)
1377/// results in a function call. For example, CXXOperatorCallExpr is
1378/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1379/// "str1 + str2" to resolve to a function call.
1380class CallExpr : public Expr {
1381  enum { FN=0, ARGS_START=1 };
1382  Stmt **SubExprs;
1383  unsigned NumArgs;
1384  SourceLocation RParenLoc;
1385
1386protected:
1387  // This version of the constructor is for derived classes.
1388  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1389           QualType t, SourceLocation rparenloc);
1390
1391  virtual void DoDestroy(ASTContext& C);
1392
1393public:
1394  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1395           SourceLocation rparenloc);
1396
1397  /// \brief Build an empty call expression.
1398  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1399
1400  ~CallExpr() {}
1401
1402  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1403  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1404  void setCallee(Expr *F) { SubExprs[FN] = F; }
1405
1406  Decl *getCalleeDecl();
1407  const Decl *getCalleeDecl() const {
1408    return const_cast<CallExpr*>(this)->getCalleeDecl();
1409  }
1410
1411  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1412  FunctionDecl *getDirectCallee();
1413  const FunctionDecl *getDirectCallee() const {
1414    return const_cast<CallExpr*>(this)->getDirectCallee();
1415  }
1416
1417  /// getNumArgs - Return the number of actual arguments to this call.
1418  ///
1419  unsigned getNumArgs() const { return NumArgs; }
1420
1421  /// getArg - Return the specified argument.
1422  Expr *getArg(unsigned Arg) {
1423    assert(Arg < NumArgs && "Arg access out of range!");
1424    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1425  }
1426  const Expr *getArg(unsigned Arg) const {
1427    assert(Arg < NumArgs && "Arg access out of range!");
1428    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1429  }
1430
1431  /// setArg - Set the specified argument.
1432  void setArg(unsigned Arg, Expr *ArgExpr) {
1433    assert(Arg < NumArgs && "Arg access out of range!");
1434    SubExprs[Arg+ARGS_START] = ArgExpr;
1435  }
1436
1437  /// setNumArgs - This changes the number of arguments present in this call.
1438  /// Any orphaned expressions are deleted by this, and any new operands are set
1439  /// to null.
1440  void setNumArgs(ASTContext& C, unsigned NumArgs);
1441
1442  typedef ExprIterator arg_iterator;
1443  typedef ConstExprIterator const_arg_iterator;
1444
1445  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1446  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1447  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1448  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1449
1450  /// getNumCommas - Return the number of commas that must have been present in
1451  /// this function call.
1452  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1453
1454  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1455  /// not, return 0.
1456  unsigned isBuiltinCall(ASTContext &Context) const;
1457
1458  /// getCallReturnType - Get the return type of the call expr. This is not
1459  /// always the type of the expr itself, if the return type is a reference
1460  /// type.
1461  QualType getCallReturnType() const;
1462
1463  SourceLocation getRParenLoc() const { return RParenLoc; }
1464  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1465
1466  virtual SourceRange getSourceRange() const {
1467    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1468  }
1469
1470  static bool classof(const Stmt *T) {
1471    return T->getStmtClass() >= firstCallExprConstant &&
1472           T->getStmtClass() <= lastCallExprConstant;
1473  }
1474  static bool classof(const CallExpr *) { return true; }
1475
1476  // Iterators
1477  virtual child_iterator child_begin();
1478  virtual child_iterator child_end();
1479};
1480
1481/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1482///
1483class MemberExpr : public Expr {
1484  /// Extra data stored in some member expressions.
1485  struct MemberNameQualifier : public NameQualifier {
1486    DeclAccessPair FoundDecl;
1487  };
1488
1489  /// Base - the expression for the base pointer or structure references.  In
1490  /// X.F, this is "X".
1491  Stmt *Base;
1492
1493  /// MemberDecl - This is the decl being referenced by the field/member name.
1494  /// In X.F, this is the decl referenced by F.
1495  ValueDecl *MemberDecl;
1496
1497  /// MemberLoc - This is the location of the member name.
1498  SourceLocation MemberLoc;
1499
1500  /// IsArrow - True if this is "X->F", false if this is "X.F".
1501  bool IsArrow : 1;
1502
1503  /// \brief True if this member expression used a nested-name-specifier to
1504  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1505  /// declaration.  When true, a MemberNameQualifier
1506  /// structure is allocated immediately after the MemberExpr.
1507  bool HasQualifierOrFoundDecl : 1;
1508
1509  /// \brief True if this member expression specified a template argument list
1510  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1511  /// structure (and its TemplateArguments) are allocated immediately after
1512  /// the MemberExpr or, if the member expression also has a qualifier, after
1513  /// the MemberNameQualifier structure.
1514  bool HasExplicitTemplateArgumentList : 1;
1515
1516  /// \brief Retrieve the qualifier that preceded the member name, if any.
1517  MemberNameQualifier *getMemberQualifier() {
1518    assert(HasQualifierOrFoundDecl);
1519    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1520  }
1521
1522  /// \brief Retrieve the qualifier that preceded the member name, if any.
1523  const MemberNameQualifier *getMemberQualifier() const {
1524    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1525  }
1526
1527  /// \brief Retrieve the explicit template argument list that followed the
1528  /// member template name, if any.
1529  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1530    if (!HasExplicitTemplateArgumentList)
1531      return 0;
1532
1533    if (!HasQualifierOrFoundDecl)
1534      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1535
1536    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1537                                                      getMemberQualifier() + 1);
1538  }
1539
1540  /// \brief Retrieve the explicit template argument list that followed the
1541  /// member template name, if any.
1542  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1543    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1544  }
1545
1546public:
1547  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1548             SourceLocation l, QualType ty)
1549    : Expr(MemberExprClass, ty,
1550           base->isTypeDependent(), base->isValueDependent()),
1551      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1552      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1553
1554  /// \brief Build an empty member reference expression.
1555  explicit MemberExpr(EmptyShell Empty)
1556    : Expr(MemberExprClass, Empty), HasQualifierOrFoundDecl(false),
1557      HasExplicitTemplateArgumentList(false) { }
1558
1559  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1560                            NestedNameSpecifier *qual, SourceRange qualrange,
1561                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1562                            SourceLocation l,
1563                            const TemplateArgumentListInfo *targs,
1564                            QualType ty);
1565
1566  void setBase(Expr *E) { Base = E; }
1567  Expr *getBase() const { return cast<Expr>(Base); }
1568
1569  /// \brief Retrieve the member declaration to which this expression refers.
1570  ///
1571  /// The returned declaration will either be a FieldDecl or (in C++)
1572  /// a CXXMethodDecl.
1573  ValueDecl *getMemberDecl() const { return MemberDecl; }
1574  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1575
1576  /// \brief Retrieves the declaration found by lookup.
1577  DeclAccessPair getFoundDecl() const {
1578    if (!HasQualifierOrFoundDecl)
1579      return DeclAccessPair::make(getMemberDecl(),
1580                                  getMemberDecl()->getAccess());
1581    return getMemberQualifier()->FoundDecl;
1582  }
1583
1584  /// \brief Determines whether this member expression actually had
1585  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1586  /// x->Base::foo.
1587  bool hasQualifier() const { return getQualifier() != 0; }
1588
1589  /// \brief If the member name was qualified, retrieves the source range of
1590  /// the nested-name-specifier that precedes the member name. Otherwise,
1591  /// returns an empty source range.
1592  SourceRange getQualifierRange() const {
1593    if (!HasQualifierOrFoundDecl)
1594      return SourceRange();
1595
1596    return getMemberQualifier()->Range;
1597  }
1598
1599  /// \brief If the member name was qualified, retrieves the
1600  /// nested-name-specifier that precedes the member name. Otherwise, returns
1601  /// NULL.
1602  NestedNameSpecifier *getQualifier() const {
1603    if (!HasQualifierOrFoundDecl)
1604      return 0;
1605
1606    return getMemberQualifier()->NNS;
1607  }
1608
1609  /// \brief Determines whether this member expression actually had a C++
1610  /// template argument list explicitly specified, e.g., x.f<int>.
1611  bool hasExplicitTemplateArgumentList() const {
1612    return HasExplicitTemplateArgumentList;
1613  }
1614
1615  /// \brief Copies the template arguments (if present) into the given
1616  /// structure.
1617  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1618    if (hasExplicitTemplateArgumentList())
1619      getExplicitTemplateArgumentList()->copyInto(List);
1620  }
1621
1622  /// \brief Retrieve the location of the left angle bracket following the
1623  /// member name ('<'), if any.
1624  SourceLocation getLAngleLoc() const {
1625    if (!HasExplicitTemplateArgumentList)
1626      return SourceLocation();
1627
1628    return getExplicitTemplateArgumentList()->LAngleLoc;
1629  }
1630
1631  /// \brief Retrieve the template arguments provided as part of this
1632  /// template-id.
1633  const TemplateArgumentLoc *getTemplateArgs() const {
1634    if (!HasExplicitTemplateArgumentList)
1635      return 0;
1636
1637    return getExplicitTemplateArgumentList()->getTemplateArgs();
1638  }
1639
1640  /// \brief Retrieve the number of template arguments provided as part of this
1641  /// template-id.
1642  unsigned getNumTemplateArgs() const {
1643    if (!HasExplicitTemplateArgumentList)
1644      return 0;
1645
1646    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1647  }
1648
1649  /// \brief Retrieve the location of the right angle bracket following the
1650  /// template arguments ('>').
1651  SourceLocation getRAngleLoc() const {
1652    if (!HasExplicitTemplateArgumentList)
1653      return SourceLocation();
1654
1655    return getExplicitTemplateArgumentList()->RAngleLoc;
1656  }
1657
1658  bool isArrow() const { return IsArrow; }
1659  void setArrow(bool A) { IsArrow = A; }
1660
1661  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1662  /// location of 'F'.
1663  SourceLocation getMemberLoc() const { return MemberLoc; }
1664  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1665
1666  virtual SourceRange getSourceRange() const {
1667    // If we have an implicit base (like a C++ implicit this),
1668    // make sure not to return its location
1669    SourceLocation EndLoc = MemberLoc;
1670    if (HasExplicitTemplateArgumentList)
1671      EndLoc = getRAngleLoc();
1672
1673    SourceLocation BaseLoc = getBase()->getLocStart();
1674    if (BaseLoc.isInvalid())
1675      return SourceRange(MemberLoc, EndLoc);
1676    return SourceRange(BaseLoc, EndLoc);
1677  }
1678
1679  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1680
1681  static bool classof(const Stmt *T) {
1682    return T->getStmtClass() == MemberExprClass;
1683  }
1684  static bool classof(const MemberExpr *) { return true; }
1685
1686  // Iterators
1687  virtual child_iterator child_begin();
1688  virtual child_iterator child_end();
1689};
1690
1691/// CompoundLiteralExpr - [C99 6.5.2.5]
1692///
1693class CompoundLiteralExpr : public Expr {
1694  /// LParenLoc - If non-null, this is the location of the left paren in a
1695  /// compound literal like "(int){4}".  This can be null if this is a
1696  /// synthesized compound expression.
1697  SourceLocation LParenLoc;
1698
1699  /// The type as written.  This can be an incomplete array type, in
1700  /// which case the actual expression type will be different.
1701  TypeSourceInfo *TInfo;
1702  Stmt *Init;
1703  bool FileScope;
1704public:
1705  // FIXME: Can compound literals be value-dependent?
1706  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1707                      QualType T, Expr *init, bool fileScope)
1708    : Expr(CompoundLiteralExprClass, T,
1709           tinfo->getType()->isDependentType(), false),
1710      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1711
1712  /// \brief Construct an empty compound literal.
1713  explicit CompoundLiteralExpr(EmptyShell Empty)
1714    : Expr(CompoundLiteralExprClass, Empty) { }
1715
1716  const Expr *getInitializer() const { return cast<Expr>(Init); }
1717  Expr *getInitializer() { return cast<Expr>(Init); }
1718  void setInitializer(Expr *E) { Init = E; }
1719
1720  bool isFileScope() const { return FileScope; }
1721  void setFileScope(bool FS) { FileScope = FS; }
1722
1723  SourceLocation getLParenLoc() const { return LParenLoc; }
1724  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1725
1726  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1727  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1728
1729  virtual SourceRange getSourceRange() const {
1730    // FIXME: Init should never be null.
1731    if (!Init)
1732      return SourceRange();
1733    if (LParenLoc.isInvalid())
1734      return Init->getSourceRange();
1735    return SourceRange(LParenLoc, Init->getLocEnd());
1736  }
1737
1738  static bool classof(const Stmt *T) {
1739    return T->getStmtClass() == CompoundLiteralExprClass;
1740  }
1741  static bool classof(const CompoundLiteralExpr *) { return true; }
1742
1743  // Iterators
1744  virtual child_iterator child_begin();
1745  virtual child_iterator child_end();
1746};
1747
1748/// CastExpr - Base class for type casts, including both implicit
1749/// casts (ImplicitCastExpr) and explicit casts that have some
1750/// representation in the source code (ExplicitCastExpr's derived
1751/// classes).
1752class CastExpr : public Expr {
1753public:
1754  /// CastKind - the kind of cast this represents.
1755  enum CastKind {
1756    /// CK_Unknown - Unknown cast kind.
1757    /// FIXME: The goal is to get rid of this and make all casts have a
1758    /// kind so that the AST client doesn't have to try to figure out what's
1759    /// going on.
1760    CK_Unknown,
1761
1762    /// CK_BitCast - Used for reinterpret_cast.
1763    CK_BitCast,
1764
1765    /// CK_NoOp - Used for const_cast.
1766    CK_NoOp,
1767
1768    /// CK_BaseToDerived - Base to derived class casts.
1769    CK_BaseToDerived,
1770
1771    /// CK_DerivedToBase - Derived to base class casts.
1772    CK_DerivedToBase,
1773
1774    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1775    /// assume that the derived pointer is not null.
1776    CK_UncheckedDerivedToBase,
1777
1778    /// CK_Dynamic - Dynamic cast.
1779    CK_Dynamic,
1780
1781    /// CK_ToUnion - Cast to union (GCC extension).
1782    CK_ToUnion,
1783
1784    /// CK_ArrayToPointerDecay - Array to pointer decay.
1785    CK_ArrayToPointerDecay,
1786
1787    // CK_FunctionToPointerDecay - Function to pointer decay.
1788    CK_FunctionToPointerDecay,
1789
1790    /// CK_NullToMemberPointer - Null pointer to member pointer.
1791    CK_NullToMemberPointer,
1792
1793    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1794    /// member pointer in derived class.
1795    CK_BaseToDerivedMemberPointer,
1796
1797    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1798    /// member pointer in base class.
1799    CK_DerivedToBaseMemberPointer,
1800
1801    /// CK_UserDefinedConversion - Conversion using a user defined type
1802    /// conversion function.
1803    CK_UserDefinedConversion,
1804
1805    /// CK_ConstructorConversion - Conversion by constructor
1806    CK_ConstructorConversion,
1807
1808    /// CK_IntegralToPointer - Integral to pointer
1809    CK_IntegralToPointer,
1810
1811    /// CK_PointerToIntegral - Pointer to integral
1812    CK_PointerToIntegral,
1813
1814    /// CK_ToVoid - Cast to void.
1815    CK_ToVoid,
1816
1817    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1818    /// vector type with the same element type as the src type. Splats the
1819    /// src expression into the destination expression.
1820    CK_VectorSplat,
1821
1822    /// CK_IntegralCast - Casting between integral types of different size.
1823    CK_IntegralCast,
1824
1825    /// CK_IntegralToFloating - Integral to floating point.
1826    CK_IntegralToFloating,
1827
1828    /// CK_FloatingToIntegral - Floating point to integral.
1829    CK_FloatingToIntegral,
1830
1831    /// CK_FloatingCast - Casting between floating types of different size.
1832    CK_FloatingCast,
1833
1834    /// CK_MemberPointerToBoolean - Member pointer to boolean
1835    CK_MemberPointerToBoolean,
1836
1837    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1838    /// pointer
1839    CK_AnyPointerToObjCPointerCast,
1840    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1841    /// pointer
1842    CK_AnyPointerToBlockPointerCast
1843
1844  };
1845
1846private:
1847  CastKind Kind;
1848  Stmt *Op;
1849
1850  /// BasePath - For derived-to-base and base-to-derived casts, the base array
1851  /// contains the inheritance path.
1852  CXXBaseSpecifierArray BasePath;
1853
1854  void CheckBasePath() const {
1855#ifndef NDEBUG
1856    switch (getCastKind()) {
1857    case CK_DerivedToBase:
1858    case CK_UncheckedDerivedToBase:
1859    case CK_DerivedToBaseMemberPointer:
1860    case CK_BaseToDerived:
1861    case CK_BaseToDerivedMemberPointer:
1862      assert(!BasePath.empty() && "Cast kind should have a base path!");
1863      break;
1864
1865    // These should not have an inheritance path.
1866    case CK_Unknown:
1867    case CK_BitCast:
1868    case CK_NoOp:
1869    case CK_Dynamic:
1870    case CK_ToUnion:
1871    case CK_ArrayToPointerDecay:
1872    case CK_FunctionToPointerDecay:
1873    case CK_NullToMemberPointer:
1874    case CK_UserDefinedConversion:
1875    case CK_ConstructorConversion:
1876    case CK_IntegralToPointer:
1877    case CK_PointerToIntegral:
1878    case CK_ToVoid:
1879    case CK_VectorSplat:
1880    case CK_IntegralCast:
1881    case CK_IntegralToFloating:
1882    case CK_FloatingToIntegral:
1883    case CK_FloatingCast:
1884    case CK_MemberPointerToBoolean:
1885    case CK_AnyPointerToObjCPointerCast:
1886    case CK_AnyPointerToBlockPointerCast:
1887      assert(BasePath.empty() && "Cast kind should not have a base path!");
1888      break;
1889    }
1890#endif
1891  }
1892
1893protected:
1894  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
1895           CXXBaseSpecifierArray BasePath) :
1896    Expr(SC, ty,
1897         // Cast expressions are type-dependent if the type is
1898         // dependent (C++ [temp.dep.expr]p3).
1899         ty->isDependentType(),
1900         // Cast expressions are value-dependent if the type is
1901         // dependent or if the subexpression is value-dependent.
1902         ty->isDependentType() || (op && op->isValueDependent())),
1903    Kind(kind), Op(op), BasePath(BasePath) {
1904      CheckBasePath();
1905    }
1906
1907  /// \brief Construct an empty cast.
1908  CastExpr(StmtClass SC, EmptyShell Empty)
1909    : Expr(SC, Empty) { }
1910
1911  virtual void DoDestroy(ASTContext &C);
1912
1913public:
1914  CastKind getCastKind() const { return Kind; }
1915  void setCastKind(CastKind K) { Kind = K; }
1916  const char *getCastKindName() const;
1917
1918  Expr *getSubExpr() { return cast<Expr>(Op); }
1919  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1920  void setSubExpr(Expr *E) { Op = E; }
1921
1922  /// \brief Retrieve the cast subexpression as it was written in the source
1923  /// code, looking through any implicit casts or other intermediate nodes
1924  /// introduced by semantic analysis.
1925  Expr *getSubExprAsWritten();
1926  const Expr *getSubExprAsWritten() const {
1927    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
1928  }
1929
1930  const CXXBaseSpecifierArray& getBasePath() const { return BasePath; }
1931
1932  static bool classof(const Stmt *T) {
1933    return T->getStmtClass() >= firstCastExprConstant &&
1934           T->getStmtClass() <= lastCastExprConstant;
1935  }
1936  static bool classof(const CastExpr *) { return true; }
1937
1938  // Iterators
1939  virtual child_iterator child_begin();
1940  virtual child_iterator child_end();
1941};
1942
1943/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1944/// conversions, which have no direct representation in the original
1945/// source code. For example: converting T[]->T*, void f()->void
1946/// (*f)(), float->double, short->int, etc.
1947///
1948/// In C, implicit casts always produce rvalues. However, in C++, an
1949/// implicit cast whose result is being bound to a reference will be
1950/// an lvalue. For example:
1951///
1952/// @code
1953/// class Base { };
1954/// class Derived : public Base { };
1955/// void f(Derived d) {
1956///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1957/// }
1958/// @endcode
1959class ImplicitCastExpr : public CastExpr {
1960  /// LvalueCast - Whether this cast produces an lvalue.
1961  bool LvalueCast;
1962
1963public:
1964  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
1965                   CXXBaseSpecifierArray BasePath, bool Lvalue)
1966    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePath),
1967    LvalueCast(Lvalue) { }
1968
1969  /// \brief Construct an empty implicit cast.
1970  explicit ImplicitCastExpr(EmptyShell Shell)
1971    : CastExpr(ImplicitCastExprClass, Shell) { }
1972
1973  virtual SourceRange getSourceRange() const {
1974    return getSubExpr()->getSourceRange();
1975  }
1976
1977  /// isLvalueCast - Whether this cast produces an lvalue.
1978  bool isLvalueCast() const { return LvalueCast; }
1979
1980  /// setLvalueCast - Set whether this cast produces an lvalue.
1981  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1982
1983  static bool classof(const Stmt *T) {
1984    return T->getStmtClass() == ImplicitCastExprClass;
1985  }
1986  static bool classof(const ImplicitCastExpr *) { return true; }
1987};
1988
1989/// ExplicitCastExpr - An explicit cast written in the source
1990/// code.
1991///
1992/// This class is effectively an abstract class, because it provides
1993/// the basic representation of an explicitly-written cast without
1994/// specifying which kind of cast (C cast, functional cast, static
1995/// cast, etc.) was written; specific derived classes represent the
1996/// particular style of cast and its location information.
1997///
1998/// Unlike implicit casts, explicit cast nodes have two different
1999/// types: the type that was written into the source code, and the
2000/// actual type of the expression as determined by semantic
2001/// analysis. These types may differ slightly. For example, in C++ one
2002/// can cast to a reference type, which indicates that the resulting
2003/// expression will be an lvalue. The reference type, however, will
2004/// not be used as the type of the expression.
2005class ExplicitCastExpr : public CastExpr {
2006  /// TInfo - Source type info for the (written) type
2007  /// this expression is casting to.
2008  TypeSourceInfo *TInfo;
2009
2010protected:
2011  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2012                   Expr *op, CXXBaseSpecifierArray BasePath,
2013                   TypeSourceInfo *writtenTy)
2014    : CastExpr(SC, exprTy, kind, op, BasePath), TInfo(writtenTy) {}
2015
2016  /// \brief Construct an empty explicit cast.
2017  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
2018    : CastExpr(SC, Shell) { }
2019
2020public:
2021  /// getTypeInfoAsWritten - Returns the type source info for the type
2022  /// that this expression is casting to.
2023  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2024  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2025
2026  /// getTypeAsWritten - Returns the type that this expression is
2027  /// casting to, as written in the source code.
2028  QualType getTypeAsWritten() const { return TInfo->getType(); }
2029
2030  static bool classof(const Stmt *T) {
2031     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2032            T->getStmtClass() <= lastExplicitCastExprConstant;
2033  }
2034  static bool classof(const ExplicitCastExpr *) { return true; }
2035};
2036
2037/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2038/// cast in C++ (C++ [expr.cast]), which uses the syntax
2039/// (Type)expr. For example: @c (int)f.
2040class CStyleCastExpr : public ExplicitCastExpr {
2041  SourceLocation LPLoc; // the location of the left paren
2042  SourceLocation RPLoc; // the location of the right paren
2043public:
2044  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2045                 CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
2046                 SourceLocation l, SourceLocation r)
2047    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, BasePath,
2048                       writtenTy), LPLoc(l), RPLoc(r) {}
2049
2050  /// \brief Construct an empty C-style explicit cast.
2051  explicit CStyleCastExpr(EmptyShell Shell)
2052    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
2053
2054  SourceLocation getLParenLoc() const { return LPLoc; }
2055  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2056
2057  SourceLocation getRParenLoc() const { return RPLoc; }
2058  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2059
2060  virtual SourceRange getSourceRange() const {
2061    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2062  }
2063  static bool classof(const Stmt *T) {
2064    return T->getStmtClass() == CStyleCastExprClass;
2065  }
2066  static bool classof(const CStyleCastExpr *) { return true; }
2067};
2068
2069/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2070///
2071/// This expression node kind describes a builtin binary operation,
2072/// such as "x + y" for integer values "x" and "y". The operands will
2073/// already have been converted to appropriate types (e.g., by
2074/// performing promotions or conversions).
2075///
2076/// In C++, where operators may be overloaded, a different kind of
2077/// expression node (CXXOperatorCallExpr) is used to express the
2078/// invocation of an overloaded operator with operator syntax. Within
2079/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2080/// used to store an expression "x + y" depends on the subexpressions
2081/// for x and y. If neither x or y is type-dependent, and the "+"
2082/// operator resolves to a built-in operation, BinaryOperator will be
2083/// used to express the computation (x and y may still be
2084/// value-dependent). If either x or y is type-dependent, or if the
2085/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2086/// be used to express the computation.
2087class BinaryOperator : public Expr {
2088public:
2089  enum Opcode {
2090    // Operators listed in order of precedence.
2091    // Note that additions to this should also update the StmtVisitor class.
2092    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2093    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2094    Add, Sub,         // [C99 6.5.6] Additive operators.
2095    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2096    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2097    EQ, NE,           // [C99 6.5.9] Equality operators.
2098    And,              // [C99 6.5.10] Bitwise AND operator.
2099    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2100    Or,               // [C99 6.5.12] Bitwise OR operator.
2101    LAnd,             // [C99 6.5.13] Logical AND operator.
2102    LOr,              // [C99 6.5.14] Logical OR operator.
2103    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2104    DivAssign, RemAssign,
2105    AddAssign, SubAssign,
2106    ShlAssign, ShrAssign,
2107    AndAssign, XorAssign,
2108    OrAssign,
2109    Comma             // [C99 6.5.17] Comma operator.
2110  };
2111private:
2112  enum { LHS, RHS, END_EXPR };
2113  Stmt* SubExprs[END_EXPR];
2114  Opcode Opc;
2115  SourceLocation OpLoc;
2116public:
2117
2118  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2119                 SourceLocation opLoc)
2120    : Expr(BinaryOperatorClass, ResTy,
2121           lhs->isTypeDependent() || rhs->isTypeDependent(),
2122           lhs->isValueDependent() || rhs->isValueDependent()),
2123      Opc(opc), OpLoc(opLoc) {
2124    SubExprs[LHS] = lhs;
2125    SubExprs[RHS] = rhs;
2126    assert(!isCompoundAssignmentOp() &&
2127           "Use ArithAssignBinaryOperator for compound assignments");
2128  }
2129
2130  /// \brief Construct an empty binary operator.
2131  explicit BinaryOperator(EmptyShell Empty)
2132    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2133
2134  SourceLocation getOperatorLoc() const { return OpLoc; }
2135  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2136
2137  Opcode getOpcode() const { return Opc; }
2138  void setOpcode(Opcode O) { Opc = O; }
2139
2140  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2141  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2142  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2143  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2144
2145  virtual SourceRange getSourceRange() const {
2146    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2147  }
2148
2149  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2150  /// corresponds to, e.g. "<<=".
2151  static const char *getOpcodeStr(Opcode Op);
2152
2153  /// \brief Retrieve the binary opcode that corresponds to the given
2154  /// overloaded operator.
2155  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2156
2157  /// \brief Retrieve the overloaded operator kind that corresponds to
2158  /// the given binary opcode.
2159  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2160
2161  /// predicates to categorize the respective opcodes.
2162  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2163  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
2164  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2165  bool isShiftOp() const { return isShiftOp(Opc); }
2166
2167  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2168  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2169
2170  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2171  bool isRelationalOp() const { return isRelationalOp(Opc); }
2172
2173  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2174  bool isEqualityOp() const { return isEqualityOp(Opc); }
2175
2176  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2177  bool isComparisonOp() const { return isComparisonOp(Opc); }
2178
2179  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2180  bool isLogicalOp() const { return isLogicalOp(Opc); }
2181
2182  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2183  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2184  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2185
2186  static bool classof(const Stmt *S) {
2187    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2188           S->getStmtClass() <= lastBinaryOperatorConstant;
2189  }
2190  static bool classof(const BinaryOperator *) { return true; }
2191
2192  // Iterators
2193  virtual child_iterator child_begin();
2194  virtual child_iterator child_end();
2195
2196protected:
2197  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2198                 SourceLocation opLoc, bool dead)
2199    : Expr(CompoundAssignOperatorClass, ResTy,
2200           lhs->isTypeDependent() || rhs->isTypeDependent(),
2201           lhs->isValueDependent() || rhs->isValueDependent()),
2202      Opc(opc), OpLoc(opLoc) {
2203    SubExprs[LHS] = lhs;
2204    SubExprs[RHS] = rhs;
2205  }
2206
2207  BinaryOperator(StmtClass SC, EmptyShell Empty)
2208    : Expr(SC, Empty), Opc(MulAssign) { }
2209};
2210
2211/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2212/// track of the type the operation is performed in.  Due to the semantics of
2213/// these operators, the operands are promoted, the aritmetic performed, an
2214/// implicit conversion back to the result type done, then the assignment takes
2215/// place.  This captures the intermediate type which the computation is done
2216/// in.
2217class CompoundAssignOperator : public BinaryOperator {
2218  QualType ComputationLHSType;
2219  QualType ComputationResultType;
2220public:
2221  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2222                         QualType ResType, QualType CompLHSType,
2223                         QualType CompResultType,
2224                         SourceLocation OpLoc)
2225    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2226      ComputationLHSType(CompLHSType),
2227      ComputationResultType(CompResultType) {
2228    assert(isCompoundAssignmentOp() &&
2229           "Only should be used for compound assignments");
2230  }
2231
2232  /// \brief Build an empty compound assignment operator expression.
2233  explicit CompoundAssignOperator(EmptyShell Empty)
2234    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2235
2236  // The two computation types are the type the LHS is converted
2237  // to for the computation and the type of the result; the two are
2238  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2239  QualType getComputationLHSType() const { return ComputationLHSType; }
2240  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2241
2242  QualType getComputationResultType() const { return ComputationResultType; }
2243  void setComputationResultType(QualType T) { ComputationResultType = T; }
2244
2245  static bool classof(const CompoundAssignOperator *) { return true; }
2246  static bool classof(const Stmt *S) {
2247    return S->getStmtClass() == CompoundAssignOperatorClass;
2248  }
2249};
2250
2251/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2252/// GNU "missing LHS" extension is in use.
2253///
2254class ConditionalOperator : public Expr {
2255  enum { COND, LHS, RHS, END_EXPR };
2256  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2257  SourceLocation QuestionLoc, ColonLoc;
2258public:
2259  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2260                      SourceLocation CLoc, Expr *rhs, QualType t)
2261    : Expr(ConditionalOperatorClass, t,
2262           // FIXME: the type of the conditional operator doesn't
2263           // depend on the type of the conditional, but the standard
2264           // seems to imply that it could. File a bug!
2265           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2266           (cond->isValueDependent() ||
2267            (lhs && lhs->isValueDependent()) ||
2268            (rhs && rhs->isValueDependent()))),
2269      QuestionLoc(QLoc),
2270      ColonLoc(CLoc) {
2271    SubExprs[COND] = cond;
2272    SubExprs[LHS] = lhs;
2273    SubExprs[RHS] = rhs;
2274  }
2275
2276  /// \brief Build an empty conditional operator.
2277  explicit ConditionalOperator(EmptyShell Empty)
2278    : Expr(ConditionalOperatorClass, Empty) { }
2279
2280  // getCond - Return the expression representing the condition for
2281  //  the ?: operator.
2282  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2283  void setCond(Expr *E) { SubExprs[COND] = E; }
2284
2285  // getTrueExpr - Return the subexpression representing the value of the ?:
2286  //  expression if the condition evaluates to true.  In most cases this value
2287  //  will be the same as getLHS() except a GCC extension allows the left
2288  //  subexpression to be omitted, and instead of the condition be returned.
2289  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2290  //  is only evaluated once.
2291  Expr *getTrueExpr() const {
2292    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2293  }
2294
2295  // getTrueExpr - Return the subexpression representing the value of the ?:
2296  // expression if the condition evaluates to false. This is the same as getRHS.
2297  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2298
2299  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2300  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2301
2302  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2303  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2304
2305  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2306  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2307
2308  SourceLocation getColonLoc() const { return ColonLoc; }
2309  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2310
2311  virtual SourceRange getSourceRange() const {
2312    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2313  }
2314  static bool classof(const Stmt *T) {
2315    return T->getStmtClass() == ConditionalOperatorClass;
2316  }
2317  static bool classof(const ConditionalOperator *) { return true; }
2318
2319  // Iterators
2320  virtual child_iterator child_begin();
2321  virtual child_iterator child_end();
2322};
2323
2324/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2325class AddrLabelExpr : public Expr {
2326  SourceLocation AmpAmpLoc, LabelLoc;
2327  LabelStmt *Label;
2328public:
2329  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2330                QualType t)
2331    : Expr(AddrLabelExprClass, t, false, false),
2332      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2333
2334  /// \brief Build an empty address of a label expression.
2335  explicit AddrLabelExpr(EmptyShell Empty)
2336    : Expr(AddrLabelExprClass, Empty) { }
2337
2338  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2339  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2340  SourceLocation getLabelLoc() const { return LabelLoc; }
2341  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2342
2343  virtual SourceRange getSourceRange() const {
2344    return SourceRange(AmpAmpLoc, LabelLoc);
2345  }
2346
2347  LabelStmt *getLabel() const { return Label; }
2348  void setLabel(LabelStmt *S) { Label = S; }
2349
2350  static bool classof(const Stmt *T) {
2351    return T->getStmtClass() == AddrLabelExprClass;
2352  }
2353  static bool classof(const AddrLabelExpr *) { return true; }
2354
2355  // Iterators
2356  virtual child_iterator child_begin();
2357  virtual child_iterator child_end();
2358};
2359
2360/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2361/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2362/// takes the value of the last subexpression.
2363class StmtExpr : public Expr {
2364  Stmt *SubStmt;
2365  SourceLocation LParenLoc, RParenLoc;
2366public:
2367  // FIXME: Does type-dependence need to be computed differently?
2368  StmtExpr(CompoundStmt *substmt, QualType T,
2369           SourceLocation lp, SourceLocation rp) :
2370    Expr(StmtExprClass, T, T->isDependentType(), false),
2371    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2372
2373  /// \brief Build an empty statement expression.
2374  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2375
2376  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2377  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2378  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2379
2380  virtual SourceRange getSourceRange() const {
2381    return SourceRange(LParenLoc, RParenLoc);
2382  }
2383
2384  SourceLocation getLParenLoc() const { return LParenLoc; }
2385  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2386  SourceLocation getRParenLoc() const { return RParenLoc; }
2387  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2388
2389  static bool classof(const Stmt *T) {
2390    return T->getStmtClass() == StmtExprClass;
2391  }
2392  static bool classof(const StmtExpr *) { return true; }
2393
2394  // Iterators
2395  virtual child_iterator child_begin();
2396  virtual child_iterator child_end();
2397};
2398
2399/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2400/// This AST node represents a function that returns 1 if two *types* (not
2401/// expressions) are compatible. The result of this built-in function can be
2402/// used in integer constant expressions.
2403class TypesCompatibleExpr : public Expr {
2404  QualType Type1;
2405  QualType Type2;
2406  SourceLocation BuiltinLoc, RParenLoc;
2407public:
2408  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2409                      QualType t1, QualType t2, SourceLocation RP) :
2410    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2411    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2412
2413  /// \brief Build an empty __builtin_type_compatible_p expression.
2414  explicit TypesCompatibleExpr(EmptyShell Empty)
2415    : Expr(TypesCompatibleExprClass, Empty) { }
2416
2417  QualType getArgType1() const { return Type1; }
2418  void setArgType1(QualType T) { Type1 = T; }
2419  QualType getArgType2() const { return Type2; }
2420  void setArgType2(QualType T) { Type2 = T; }
2421
2422  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2423  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2424
2425  SourceLocation getRParenLoc() const { return RParenLoc; }
2426  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2427
2428  virtual SourceRange getSourceRange() const {
2429    return SourceRange(BuiltinLoc, RParenLoc);
2430  }
2431  static bool classof(const Stmt *T) {
2432    return T->getStmtClass() == TypesCompatibleExprClass;
2433  }
2434  static bool classof(const TypesCompatibleExpr *) { return true; }
2435
2436  // Iterators
2437  virtual child_iterator child_begin();
2438  virtual child_iterator child_end();
2439};
2440
2441/// ShuffleVectorExpr - clang-specific builtin-in function
2442/// __builtin_shufflevector.
2443/// This AST node represents a operator that does a constant
2444/// shuffle, similar to LLVM's shufflevector instruction. It takes
2445/// two vectors and a variable number of constant indices,
2446/// and returns the appropriately shuffled vector.
2447class ShuffleVectorExpr : public Expr {
2448  SourceLocation BuiltinLoc, RParenLoc;
2449
2450  // SubExprs - the list of values passed to the __builtin_shufflevector
2451  // function. The first two are vectors, and the rest are constant
2452  // indices.  The number of values in this list is always
2453  // 2+the number of indices in the vector type.
2454  Stmt **SubExprs;
2455  unsigned NumExprs;
2456
2457protected:
2458  virtual void DoDestroy(ASTContext &C);
2459
2460public:
2461  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2462  // to be computed differently?
2463  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2464                    QualType Type, SourceLocation BLoc,
2465                    SourceLocation RP) :
2466    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2467    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2468
2469    SubExprs = new (C) Stmt*[nexpr];
2470    for (unsigned i = 0; i < nexpr; i++)
2471      SubExprs[i] = args[i];
2472  }
2473
2474  /// \brief Build an empty vector-shuffle expression.
2475  explicit ShuffleVectorExpr(EmptyShell Empty)
2476    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2477
2478  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2479  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2480
2481  SourceLocation getRParenLoc() const { return RParenLoc; }
2482  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2483
2484  virtual SourceRange getSourceRange() const {
2485    return SourceRange(BuiltinLoc, RParenLoc);
2486  }
2487  static bool classof(const Stmt *T) {
2488    return T->getStmtClass() == ShuffleVectorExprClass;
2489  }
2490  static bool classof(const ShuffleVectorExpr *) { return true; }
2491
2492  ~ShuffleVectorExpr() {}
2493
2494  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2495  /// constant expression, the actual arguments passed in, and the function
2496  /// pointers.
2497  unsigned getNumSubExprs() const { return NumExprs; }
2498
2499  /// getExpr - Return the Expr at the specified index.
2500  Expr *getExpr(unsigned Index) {
2501    assert((Index < NumExprs) && "Arg access out of range!");
2502    return cast<Expr>(SubExprs[Index]);
2503  }
2504  const Expr *getExpr(unsigned Index) const {
2505    assert((Index < NumExprs) && "Arg access out of range!");
2506    return cast<Expr>(SubExprs[Index]);
2507  }
2508
2509  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2510
2511  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2512    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2513    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2514  }
2515
2516  // Iterators
2517  virtual child_iterator child_begin();
2518  virtual child_iterator child_end();
2519};
2520
2521/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2522/// This AST node is similar to the conditional operator (?:) in C, with
2523/// the following exceptions:
2524/// - the test expression must be a integer constant expression.
2525/// - the expression returned acts like the chosen subexpression in every
2526///   visible way: the type is the same as that of the chosen subexpression,
2527///   and all predicates (whether it's an l-value, whether it's an integer
2528///   constant expression, etc.) return the same result as for the chosen
2529///   sub-expression.
2530class ChooseExpr : public Expr {
2531  enum { COND, LHS, RHS, END_EXPR };
2532  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2533  SourceLocation BuiltinLoc, RParenLoc;
2534public:
2535  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2536             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2537    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2538      BuiltinLoc(BLoc), RParenLoc(RP) {
2539      SubExprs[COND] = cond;
2540      SubExprs[LHS] = lhs;
2541      SubExprs[RHS] = rhs;
2542    }
2543
2544  /// \brief Build an empty __builtin_choose_expr.
2545  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2546
2547  /// isConditionTrue - Return whether the condition is true (i.e. not
2548  /// equal to zero).
2549  bool isConditionTrue(ASTContext &C) const;
2550
2551  /// getChosenSubExpr - Return the subexpression chosen according to the
2552  /// condition.
2553  Expr *getChosenSubExpr(ASTContext &C) const {
2554    return isConditionTrue(C) ? getLHS() : getRHS();
2555  }
2556
2557  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2558  void setCond(Expr *E) { SubExprs[COND] = E; }
2559  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2560  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2561  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2562  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2563
2564  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2565  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2566
2567  SourceLocation getRParenLoc() const { return RParenLoc; }
2568  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2569
2570  virtual SourceRange getSourceRange() const {
2571    return SourceRange(BuiltinLoc, RParenLoc);
2572  }
2573  static bool classof(const Stmt *T) {
2574    return T->getStmtClass() == ChooseExprClass;
2575  }
2576  static bool classof(const ChooseExpr *) { return true; }
2577
2578  // Iterators
2579  virtual child_iterator child_begin();
2580  virtual child_iterator child_end();
2581};
2582
2583/// GNUNullExpr - Implements the GNU __null extension, which is a name
2584/// for a null pointer constant that has integral type (e.g., int or
2585/// long) and is the same size and alignment as a pointer. The __null
2586/// extension is typically only used by system headers, which define
2587/// NULL as __null in C++ rather than using 0 (which is an integer
2588/// that may not match the size of a pointer).
2589class GNUNullExpr : public Expr {
2590  /// TokenLoc - The location of the __null keyword.
2591  SourceLocation TokenLoc;
2592
2593public:
2594  GNUNullExpr(QualType Ty, SourceLocation Loc)
2595    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2596
2597  /// \brief Build an empty GNU __null expression.
2598  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2599
2600  /// getTokenLocation - The location of the __null token.
2601  SourceLocation getTokenLocation() const { return TokenLoc; }
2602  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2603
2604  virtual SourceRange getSourceRange() const {
2605    return SourceRange(TokenLoc);
2606  }
2607  static bool classof(const Stmt *T) {
2608    return T->getStmtClass() == GNUNullExprClass;
2609  }
2610  static bool classof(const GNUNullExpr *) { return true; }
2611
2612  // Iterators
2613  virtual child_iterator child_begin();
2614  virtual child_iterator child_end();
2615};
2616
2617/// VAArgExpr, used for the builtin function __builtin_va_arg.
2618class VAArgExpr : public Expr {
2619  Stmt *Val;
2620  SourceLocation BuiltinLoc, RParenLoc;
2621public:
2622  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2623    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2624      Val(e),
2625      BuiltinLoc(BLoc),
2626      RParenLoc(RPLoc) { }
2627
2628  /// \brief Create an empty __builtin_va_arg expression.
2629  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2630
2631  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2632  Expr *getSubExpr() { return cast<Expr>(Val); }
2633  void setSubExpr(Expr *E) { Val = E; }
2634
2635  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2636  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2637
2638  SourceLocation getRParenLoc() const { return RParenLoc; }
2639  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2640
2641  virtual SourceRange getSourceRange() const {
2642    return SourceRange(BuiltinLoc, RParenLoc);
2643  }
2644  static bool classof(const Stmt *T) {
2645    return T->getStmtClass() == VAArgExprClass;
2646  }
2647  static bool classof(const VAArgExpr *) { return true; }
2648
2649  // Iterators
2650  virtual child_iterator child_begin();
2651  virtual child_iterator child_end();
2652};
2653
2654/// @brief Describes an C or C++ initializer list.
2655///
2656/// InitListExpr describes an initializer list, which can be used to
2657/// initialize objects of different types, including
2658/// struct/class/union types, arrays, and vectors. For example:
2659///
2660/// @code
2661/// struct foo x = { 1, { 2, 3 } };
2662/// @endcode
2663///
2664/// Prior to semantic analysis, an initializer list will represent the
2665/// initializer list as written by the user, but will have the
2666/// placeholder type "void". This initializer list is called the
2667/// syntactic form of the initializer, and may contain C99 designated
2668/// initializers (represented as DesignatedInitExprs), initializations
2669/// of subobject members without explicit braces, and so on. Clients
2670/// interested in the original syntax of the initializer list should
2671/// use the syntactic form of the initializer list.
2672///
2673/// After semantic analysis, the initializer list will represent the
2674/// semantic form of the initializer, where the initializations of all
2675/// subobjects are made explicit with nested InitListExpr nodes and
2676/// C99 designators have been eliminated by placing the designated
2677/// initializations into the subobject they initialize. Additionally,
2678/// any "holes" in the initialization, where no initializer has been
2679/// specified for a particular subobject, will be replaced with
2680/// implicitly-generated ImplicitValueInitExpr expressions that
2681/// value-initialize the subobjects. Note, however, that the
2682/// initializer lists may still have fewer initializers than there are
2683/// elements to initialize within the object.
2684///
2685/// Given the semantic form of the initializer list, one can retrieve
2686/// the original syntactic form of that initializer list (if it
2687/// exists) using getSyntacticForm(). Since many initializer lists
2688/// have the same syntactic and semantic forms, getSyntacticForm() may
2689/// return NULL, indicating that the current initializer list also
2690/// serves as its syntactic form.
2691class InitListExpr : public Expr {
2692  // FIXME: Eliminate this vector in favor of ASTContext allocation
2693  typedef ASTVector<Stmt *> InitExprsTy;
2694  InitExprsTy InitExprs;
2695  SourceLocation LBraceLoc, RBraceLoc;
2696
2697  /// Contains the initializer list that describes the syntactic form
2698  /// written in the source code.
2699  InitListExpr *SyntacticForm;
2700
2701  /// If this initializer list initializes a union, specifies which
2702  /// field within the union will be initialized.
2703  FieldDecl *UnionFieldInit;
2704
2705  /// Whether this initializer list originally had a GNU array-range
2706  /// designator in it. This is a temporary marker used by CodeGen.
2707  bool HadArrayRangeDesignator;
2708
2709public:
2710  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2711               Expr **initexprs, unsigned numinits,
2712               SourceLocation rbraceloc);
2713
2714  /// \brief Build an empty initializer list.
2715  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2716    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2717
2718  unsigned getNumInits() const { return InitExprs.size(); }
2719
2720  const Expr* getInit(unsigned Init) const {
2721    assert(Init < getNumInits() && "Initializer access out of range!");
2722    return cast_or_null<Expr>(InitExprs[Init]);
2723  }
2724
2725  Expr* getInit(unsigned Init) {
2726    assert(Init < getNumInits() && "Initializer access out of range!");
2727    return cast_or_null<Expr>(InitExprs[Init]);
2728  }
2729
2730  void setInit(unsigned Init, Expr *expr) {
2731    assert(Init < getNumInits() && "Initializer access out of range!");
2732    InitExprs[Init] = expr;
2733  }
2734
2735  /// \brief Reserve space for some number of initializers.
2736  void reserveInits(ASTContext &C, unsigned NumInits);
2737
2738  /// @brief Specify the number of initializers
2739  ///
2740  /// If there are more than @p NumInits initializers, the remaining
2741  /// initializers will be destroyed. If there are fewer than @p
2742  /// NumInits initializers, NULL expressions will be added for the
2743  /// unknown initializers.
2744  void resizeInits(ASTContext &Context, unsigned NumInits);
2745
2746  /// @brief Updates the initializer at index @p Init with the new
2747  /// expression @p expr, and returns the old expression at that
2748  /// location.
2749  ///
2750  /// When @p Init is out of range for this initializer list, the
2751  /// initializer list will be extended with NULL expressions to
2752  /// accomodate the new entry.
2753  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2754
2755  /// \brief If this initializes a union, specifies which field in the
2756  /// union to initialize.
2757  ///
2758  /// Typically, this field is the first named field within the
2759  /// union. However, a designated initializer can specify the
2760  /// initialization of a different field within the union.
2761  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2762  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2763
2764  // Explicit InitListExpr's originate from source code (and have valid source
2765  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2766  bool isExplicit() {
2767    return LBraceLoc.isValid() && RBraceLoc.isValid();
2768  }
2769
2770  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2771  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2772  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2773  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2774
2775  /// @brief Retrieve the initializer list that describes the
2776  /// syntactic form of the initializer.
2777  ///
2778  ///
2779  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2780  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2781
2782  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2783  void sawArrayRangeDesignator(bool ARD = true) {
2784    HadArrayRangeDesignator = ARD;
2785  }
2786
2787  virtual SourceRange getSourceRange() const {
2788    return SourceRange(LBraceLoc, RBraceLoc);
2789  }
2790  static bool classof(const Stmt *T) {
2791    return T->getStmtClass() == InitListExprClass;
2792  }
2793  static bool classof(const InitListExpr *) { return true; }
2794
2795  // Iterators
2796  virtual child_iterator child_begin();
2797  virtual child_iterator child_end();
2798
2799  typedef InitExprsTy::iterator iterator;
2800  typedef InitExprsTy::reverse_iterator reverse_iterator;
2801
2802  iterator begin() { return InitExprs.begin(); }
2803  iterator end() { return InitExprs.end(); }
2804  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2805  reverse_iterator rend() { return InitExprs.rend(); }
2806};
2807
2808/// @brief Represents a C99 designated initializer expression.
2809///
2810/// A designated initializer expression (C99 6.7.8) contains one or
2811/// more designators (which can be field designators, array
2812/// designators, or GNU array-range designators) followed by an
2813/// expression that initializes the field or element(s) that the
2814/// designators refer to. For example, given:
2815///
2816/// @code
2817/// struct point {
2818///   double x;
2819///   double y;
2820/// };
2821/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2822/// @endcode
2823///
2824/// The InitListExpr contains three DesignatedInitExprs, the first of
2825/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2826/// designators, one array designator for @c [2] followed by one field
2827/// designator for @c .y. The initalization expression will be 1.0.
2828class DesignatedInitExpr : public Expr {
2829public:
2830  /// \brief Forward declaration of the Designator class.
2831  class Designator;
2832
2833private:
2834  /// The location of the '=' or ':' prior to the actual initializer
2835  /// expression.
2836  SourceLocation EqualOrColonLoc;
2837
2838  /// Whether this designated initializer used the GNU deprecated
2839  /// syntax rather than the C99 '=' syntax.
2840  bool GNUSyntax : 1;
2841
2842  /// The number of designators in this initializer expression.
2843  unsigned NumDesignators : 15;
2844
2845  /// \brief The designators in this designated initialization
2846  /// expression.
2847  Designator *Designators;
2848
2849  /// The number of subexpressions of this initializer expression,
2850  /// which contains both the initializer and any additional
2851  /// expressions used by array and array-range designators.
2852  unsigned NumSubExprs : 16;
2853
2854
2855  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2856                     const Designator *Designators,
2857                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2858                     Expr **IndexExprs, unsigned NumIndexExprs,
2859                     Expr *Init);
2860
2861  explicit DesignatedInitExpr(unsigned NumSubExprs)
2862    : Expr(DesignatedInitExprClass, EmptyShell()),
2863      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2864
2865protected:
2866  virtual void DoDestroy(ASTContext &C);
2867
2868  void DestroyDesignators(ASTContext &C);
2869
2870public:
2871  /// A field designator, e.g., ".x".
2872  struct FieldDesignator {
2873    /// Refers to the field that is being initialized. The low bit
2874    /// of this field determines whether this is actually a pointer
2875    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2876    /// initially constructed, a field designator will store an
2877    /// IdentifierInfo*. After semantic analysis has resolved that
2878    /// name, the field designator will instead store a FieldDecl*.
2879    uintptr_t NameOrField;
2880
2881    /// The location of the '.' in the designated initializer.
2882    unsigned DotLoc;
2883
2884    /// The location of the field name in the designated initializer.
2885    unsigned FieldLoc;
2886  };
2887
2888  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2889  struct ArrayOrRangeDesignator {
2890    /// Location of the first index expression within the designated
2891    /// initializer expression's list of subexpressions.
2892    unsigned Index;
2893    /// The location of the '[' starting the array range designator.
2894    unsigned LBracketLoc;
2895    /// The location of the ellipsis separating the start and end
2896    /// indices. Only valid for GNU array-range designators.
2897    unsigned EllipsisLoc;
2898    /// The location of the ']' terminating the array range designator.
2899    unsigned RBracketLoc;
2900  };
2901
2902  /// @brief Represents a single C99 designator.
2903  ///
2904  /// @todo This class is infuriatingly similar to clang::Designator,
2905  /// but minor differences (storing indices vs. storing pointers)
2906  /// keep us from reusing it. Try harder, later, to rectify these
2907  /// differences.
2908  class Designator {
2909    /// @brief The kind of designator this describes.
2910    enum {
2911      FieldDesignator,
2912      ArrayDesignator,
2913      ArrayRangeDesignator
2914    } Kind;
2915
2916    union {
2917      /// A field designator, e.g., ".x".
2918      struct FieldDesignator Field;
2919      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2920      struct ArrayOrRangeDesignator ArrayOrRange;
2921    };
2922    friend class DesignatedInitExpr;
2923
2924  public:
2925    Designator() {}
2926
2927    /// @brief Initializes a field designator.
2928    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2929               SourceLocation FieldLoc)
2930      : Kind(FieldDesignator) {
2931      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2932      Field.DotLoc = DotLoc.getRawEncoding();
2933      Field.FieldLoc = FieldLoc.getRawEncoding();
2934    }
2935
2936    /// @brief Initializes an array designator.
2937    Designator(unsigned Index, SourceLocation LBracketLoc,
2938               SourceLocation RBracketLoc)
2939      : Kind(ArrayDesignator) {
2940      ArrayOrRange.Index = Index;
2941      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2942      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2943      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2944    }
2945
2946    /// @brief Initializes a GNU array-range designator.
2947    Designator(unsigned Index, SourceLocation LBracketLoc,
2948               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2949      : Kind(ArrayRangeDesignator) {
2950      ArrayOrRange.Index = Index;
2951      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2952      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2953      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2954    }
2955
2956    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2957    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2958    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2959
2960    IdentifierInfo * getFieldName();
2961
2962    FieldDecl *getField() {
2963      assert(Kind == FieldDesignator && "Only valid on a field designator");
2964      if (Field.NameOrField & 0x01)
2965        return 0;
2966      else
2967        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2968    }
2969
2970    void setField(FieldDecl *FD) {
2971      assert(Kind == FieldDesignator && "Only valid on a field designator");
2972      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2973    }
2974
2975    SourceLocation getDotLoc() const {
2976      assert(Kind == FieldDesignator && "Only valid on a field designator");
2977      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2978    }
2979
2980    SourceLocation getFieldLoc() const {
2981      assert(Kind == FieldDesignator && "Only valid on a field designator");
2982      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2983    }
2984
2985    SourceLocation getLBracketLoc() const {
2986      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2987             "Only valid on an array or array-range designator");
2988      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2989    }
2990
2991    SourceLocation getRBracketLoc() const {
2992      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2993             "Only valid on an array or array-range designator");
2994      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2995    }
2996
2997    SourceLocation getEllipsisLoc() const {
2998      assert(Kind == ArrayRangeDesignator &&
2999             "Only valid on an array-range designator");
3000      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3001    }
3002
3003    unsigned getFirstExprIndex() const {
3004      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3005             "Only valid on an array or array-range designator");
3006      return ArrayOrRange.Index;
3007    }
3008
3009    SourceLocation getStartLocation() const {
3010      if (Kind == FieldDesignator)
3011        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3012      else
3013        return getLBracketLoc();
3014    }
3015  };
3016
3017  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3018                                    unsigned NumDesignators,
3019                                    Expr **IndexExprs, unsigned NumIndexExprs,
3020                                    SourceLocation EqualOrColonLoc,
3021                                    bool GNUSyntax, Expr *Init);
3022
3023  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3024
3025  /// @brief Returns the number of designators in this initializer.
3026  unsigned size() const { return NumDesignators; }
3027
3028  // Iterator access to the designators.
3029  typedef Designator* designators_iterator;
3030  designators_iterator designators_begin() { return Designators; }
3031  designators_iterator designators_end() {
3032    return Designators + NumDesignators;
3033  }
3034
3035  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3036
3037  void setDesignators(ASTContext &C, const Designator *Desigs,
3038                      unsigned NumDesigs);
3039
3040  Expr *getArrayIndex(const Designator& D);
3041  Expr *getArrayRangeStart(const Designator& D);
3042  Expr *getArrayRangeEnd(const Designator& D);
3043
3044  /// @brief Retrieve the location of the '=' that precedes the
3045  /// initializer value itself, if present.
3046  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3047  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3048
3049  /// @brief Determines whether this designated initializer used the
3050  /// deprecated GNU syntax for designated initializers.
3051  bool usesGNUSyntax() const { return GNUSyntax; }
3052  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3053
3054  /// @brief Retrieve the initializer value.
3055  Expr *getInit() const {
3056    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3057  }
3058
3059  void setInit(Expr *init) {
3060    *child_begin() = init;
3061  }
3062
3063  /// \brief Retrieve the total number of subexpressions in this
3064  /// designated initializer expression, including the actual
3065  /// initialized value and any expressions that occur within array
3066  /// and array-range designators.
3067  unsigned getNumSubExprs() const { return NumSubExprs; }
3068
3069  Expr *getSubExpr(unsigned Idx) {
3070    assert(Idx < NumSubExprs && "Subscript out of range");
3071    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3072    Ptr += sizeof(DesignatedInitExpr);
3073    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3074  }
3075
3076  void setSubExpr(unsigned Idx, Expr *E) {
3077    assert(Idx < NumSubExprs && "Subscript out of range");
3078    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3079    Ptr += sizeof(DesignatedInitExpr);
3080    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3081  }
3082
3083  /// \brief Replaces the designator at index @p Idx with the series
3084  /// of designators in [First, Last).
3085  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3086                        const Designator *Last);
3087
3088  virtual SourceRange getSourceRange() const;
3089
3090  static bool classof(const Stmt *T) {
3091    return T->getStmtClass() == DesignatedInitExprClass;
3092  }
3093  static bool classof(const DesignatedInitExpr *) { return true; }
3094
3095  // Iterators
3096  virtual child_iterator child_begin();
3097  virtual child_iterator child_end();
3098};
3099
3100/// \brief Represents an implicitly-generated value initialization of
3101/// an object of a given type.
3102///
3103/// Implicit value initializations occur within semantic initializer
3104/// list expressions (InitListExpr) as placeholders for subobject
3105/// initializations not explicitly specified by the user.
3106///
3107/// \see InitListExpr
3108class ImplicitValueInitExpr : public Expr {
3109public:
3110  explicit ImplicitValueInitExpr(QualType ty)
3111    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3112
3113  /// \brief Construct an empty implicit value initialization.
3114  explicit ImplicitValueInitExpr(EmptyShell Empty)
3115    : Expr(ImplicitValueInitExprClass, Empty) { }
3116
3117  static bool classof(const Stmt *T) {
3118    return T->getStmtClass() == ImplicitValueInitExprClass;
3119  }
3120  static bool classof(const ImplicitValueInitExpr *) { return true; }
3121
3122  virtual SourceRange getSourceRange() const {
3123    return SourceRange();
3124  }
3125
3126  // Iterators
3127  virtual child_iterator child_begin();
3128  virtual child_iterator child_end();
3129};
3130
3131
3132class ParenListExpr : public Expr {
3133  Stmt **Exprs;
3134  unsigned NumExprs;
3135  SourceLocation LParenLoc, RParenLoc;
3136
3137protected:
3138  virtual void DoDestroy(ASTContext& C);
3139
3140public:
3141  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3142                unsigned numexprs, SourceLocation rparenloc);
3143
3144  ~ParenListExpr() {}
3145
3146  /// \brief Build an empty paren list.
3147  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3148
3149  unsigned getNumExprs() const { return NumExprs; }
3150
3151  const Expr* getExpr(unsigned Init) const {
3152    assert(Init < getNumExprs() && "Initializer access out of range!");
3153    return cast_or_null<Expr>(Exprs[Init]);
3154  }
3155
3156  Expr* getExpr(unsigned Init) {
3157    assert(Init < getNumExprs() && "Initializer access out of range!");
3158    return cast_or_null<Expr>(Exprs[Init]);
3159  }
3160
3161  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3162
3163  SourceLocation getLParenLoc() const { return LParenLoc; }
3164  SourceLocation getRParenLoc() const { return RParenLoc; }
3165
3166  virtual SourceRange getSourceRange() const {
3167    return SourceRange(LParenLoc, RParenLoc);
3168  }
3169  static bool classof(const Stmt *T) {
3170    return T->getStmtClass() == ParenListExprClass;
3171  }
3172  static bool classof(const ParenListExpr *) { return true; }
3173
3174  // Iterators
3175  virtual child_iterator child_begin();
3176  virtual child_iterator child_end();
3177};
3178
3179
3180//===----------------------------------------------------------------------===//
3181// Clang Extensions
3182//===----------------------------------------------------------------------===//
3183
3184
3185/// ExtVectorElementExpr - This represents access to specific elements of a
3186/// vector, and may occur on the left hand side or right hand side.  For example
3187/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3188///
3189/// Note that the base may have either vector or pointer to vector type, just
3190/// like a struct field reference.
3191///
3192class ExtVectorElementExpr : public Expr {
3193  Stmt *Base;
3194  IdentifierInfo *Accessor;
3195  SourceLocation AccessorLoc;
3196public:
3197  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3198                       SourceLocation loc)
3199    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3200           base->isValueDependent()),
3201      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3202
3203  /// \brief Build an empty vector element expression.
3204  explicit ExtVectorElementExpr(EmptyShell Empty)
3205    : Expr(ExtVectorElementExprClass, Empty) { }
3206
3207  const Expr *getBase() const { return cast<Expr>(Base); }
3208  Expr *getBase() { return cast<Expr>(Base); }
3209  void setBase(Expr *E) { Base = E; }
3210
3211  IdentifierInfo &getAccessor() const { return *Accessor; }
3212  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3213
3214  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3215  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3216
3217  /// getNumElements - Get the number of components being selected.
3218  unsigned getNumElements() const;
3219
3220  /// containsDuplicateElements - Return true if any element access is
3221  /// repeated.
3222  bool containsDuplicateElements() const;
3223
3224  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3225  /// aggregate Constant of ConstantInt(s).
3226  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3227
3228  virtual SourceRange getSourceRange() const {
3229    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3230  }
3231
3232  /// isArrow - Return true if the base expression is a pointer to vector,
3233  /// return false if the base expression is a vector.
3234  bool isArrow() const;
3235
3236  static bool classof(const Stmt *T) {
3237    return T->getStmtClass() == ExtVectorElementExprClass;
3238  }
3239  static bool classof(const ExtVectorElementExpr *) { return true; }
3240
3241  // Iterators
3242  virtual child_iterator child_begin();
3243  virtual child_iterator child_end();
3244};
3245
3246
3247/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3248/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3249class BlockExpr : public Expr {
3250protected:
3251  BlockDecl *TheBlock;
3252  bool HasBlockDeclRefExprs;
3253public:
3254  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3255    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3256      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3257
3258  /// \brief Build an empty block expression.
3259  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3260
3261  const BlockDecl *getBlockDecl() const { return TheBlock; }
3262  BlockDecl *getBlockDecl() { return TheBlock; }
3263  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3264
3265  // Convenience functions for probing the underlying BlockDecl.
3266  SourceLocation getCaretLocation() const;
3267  const Stmt *getBody() const;
3268  Stmt *getBody();
3269
3270  virtual SourceRange getSourceRange() const {
3271    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3272  }
3273
3274  /// getFunctionType - Return the underlying function type for this block.
3275  const FunctionType *getFunctionType() const;
3276
3277  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3278  /// inside of the block that reference values outside the block.
3279  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3280  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3281
3282  static bool classof(const Stmt *T) {
3283    return T->getStmtClass() == BlockExprClass;
3284  }
3285  static bool classof(const BlockExpr *) { return true; }
3286
3287  // Iterators
3288  virtual child_iterator child_begin();
3289  virtual child_iterator child_end();
3290};
3291
3292/// BlockDeclRefExpr - A reference to a declared variable, function,
3293/// enum, etc.
3294class BlockDeclRefExpr : public Expr {
3295  ValueDecl *D;
3296  SourceLocation Loc;
3297  bool IsByRef : 1;
3298  bool ConstQualAdded : 1;
3299public:
3300  // FIXME: Fix type/value dependence!
3301  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3302                   bool constAdded = false)
3303  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3304    ConstQualAdded(constAdded) {}
3305
3306  // \brief Build an empty reference to a declared variable in a
3307  // block.
3308  explicit BlockDeclRefExpr(EmptyShell Empty)
3309    : Expr(BlockDeclRefExprClass, Empty) { }
3310
3311  ValueDecl *getDecl() { return D; }
3312  const ValueDecl *getDecl() const { return D; }
3313  void setDecl(ValueDecl *VD) { D = VD; }
3314
3315  SourceLocation getLocation() const { return Loc; }
3316  void setLocation(SourceLocation L) { Loc = L; }
3317
3318  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3319
3320  bool isByRef() const { return IsByRef; }
3321  void setByRef(bool BR) { IsByRef = BR; }
3322
3323  bool isConstQualAdded() const { return ConstQualAdded; }
3324  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3325
3326  static bool classof(const Stmt *T) {
3327    return T->getStmtClass() == BlockDeclRefExprClass;
3328  }
3329  static bool classof(const BlockDeclRefExpr *) { return true; }
3330
3331  // Iterators
3332  virtual child_iterator child_begin();
3333  virtual child_iterator child_end();
3334};
3335
3336}  // end namespace clang
3337
3338#endif
3339