Expr.h revision 9ec55f24b8f848bb37a9971100cf2fca379d5572
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTVector.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Support/Compiler.h"
31#include <cctype>
32
33namespace clang {
34  class APValue;
35  class ASTContext;
36  class BlockDecl;
37  class CXXBaseSpecifier;
38  class CXXMemberCallExpr;
39  class CXXOperatorCallExpr;
40  class CastExpr;
41  class Decl;
42  class IdentifierInfo;
43  class MaterializeTemporaryExpr;
44  class NamedDecl;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47  class ParmVarDecl;
48  class TargetInfo;
49  class ValueDecl;
50
51/// \brief A simple array of base specifiers.
52typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
53
54/// \brief An adjustment to be made to the temporary created when emitting a
55/// reference binding, which accesses a particular subobject of that temporary.
56struct SubobjectAdjustment {
57  enum {
58    DerivedToBaseAdjustment,
59    FieldAdjustment,
60    MemberPointerAdjustment
61  } Kind;
62
63   union {
64    struct {
65      const CastExpr *BasePath;
66      const CXXRecordDecl *DerivedClass;
67    } DerivedToBase;
68
69    FieldDecl *Field;
70
71    struct {
72      const MemberPointerType *MPT;
73      Expr *RHS;
74    } Ptr;
75  };
76
77  SubobjectAdjustment(const CastExpr *BasePath,
78                      const CXXRecordDecl *DerivedClass)
79    : Kind(DerivedToBaseAdjustment) {
80    DerivedToBase.BasePath = BasePath;
81    DerivedToBase.DerivedClass = DerivedClass;
82  }
83
84  SubobjectAdjustment(FieldDecl *Field)
85    : Kind(FieldAdjustment) {
86    this->Field = Field;
87  }
88
89  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
90    : Kind(MemberPointerAdjustment) {
91    this->Ptr.MPT = MPT;
92    this->Ptr.RHS = RHS;
93  }
94};
95
96/// Expr - This represents one expression.  Note that Expr's are subclasses of
97/// Stmt.  This allows an expression to be transparently used any place a Stmt
98/// is required.
99///
100class Expr : public Stmt {
101  QualType TR;
102
103protected:
104  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
105       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
106    : Stmt(SC)
107  {
108    ExprBits.TypeDependent = TD;
109    ExprBits.ValueDependent = VD;
110    ExprBits.InstantiationDependent = ID;
111    ExprBits.ValueKind = VK;
112    ExprBits.ObjectKind = OK;
113    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
114    setType(T);
115  }
116
117  /// \brief Construct an empty expression.
118  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
119
120public:
121  QualType getType() const { return TR; }
122  void setType(QualType t) {
123    // In C++, the type of an expression is always adjusted so that it
124    // will not have reference type an expression will never have
125    // reference type (C++ [expr]p6). Use
126    // QualType::getNonReferenceType() to retrieve the non-reference
127    // type. Additionally, inspect Expr::isLvalue to determine whether
128    // an expression that is adjusted in this manner should be
129    // considered an lvalue.
130    assert((t.isNull() || !t->isReferenceType()) &&
131           "Expressions can't have reference type");
132
133    TR = t;
134  }
135
136  /// isValueDependent - Determines whether this expression is
137  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
138  /// array bound of "Chars" in the following example is
139  /// value-dependent.
140  /// @code
141  /// template<int Size, char (&Chars)[Size]> struct meta_string;
142  /// @endcode
143  bool isValueDependent() const { return ExprBits.ValueDependent; }
144
145  /// \brief Set whether this expression is value-dependent or not.
146  void setValueDependent(bool VD) {
147    ExprBits.ValueDependent = VD;
148    if (VD)
149      ExprBits.InstantiationDependent = true;
150  }
151
152  /// isTypeDependent - Determines whether this expression is
153  /// type-dependent (C++ [temp.dep.expr]), which means that its type
154  /// could change from one template instantiation to the next. For
155  /// example, the expressions "x" and "x + y" are type-dependent in
156  /// the following code, but "y" is not type-dependent:
157  /// @code
158  /// template<typename T>
159  /// void add(T x, int y) {
160  ///   x + y;
161  /// }
162  /// @endcode
163  bool isTypeDependent() const { return ExprBits.TypeDependent; }
164
165  /// \brief Set whether this expression is type-dependent or not.
166  void setTypeDependent(bool TD) {
167    ExprBits.TypeDependent = TD;
168    if (TD)
169      ExprBits.InstantiationDependent = true;
170  }
171
172  /// \brief Whether this expression is instantiation-dependent, meaning that
173  /// it depends in some way on a template parameter, even if neither its type
174  /// nor (constant) value can change due to the template instantiation.
175  ///
176  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
177  /// instantiation-dependent (since it involves a template parameter \c T), but
178  /// is neither type- nor value-dependent, since the type of the inner
179  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
180  /// \c sizeof is known.
181  ///
182  /// \code
183  /// template<typename T>
184  /// void f(T x, T y) {
185  ///   sizeof(sizeof(T() + T());
186  /// }
187  /// \endcode
188  ///
189  bool isInstantiationDependent() const {
190    return ExprBits.InstantiationDependent;
191  }
192
193  /// \brief Set whether this expression is instantiation-dependent or not.
194  void setInstantiationDependent(bool ID) {
195    ExprBits.InstantiationDependent = ID;
196  }
197
198  /// \brief Whether this expression contains an unexpanded parameter
199  /// pack (for C++11 variadic templates).
200  ///
201  /// Given the following function template:
202  ///
203  /// \code
204  /// template<typename F, typename ...Types>
205  /// void forward(const F &f, Types &&...args) {
206  ///   f(static_cast<Types&&>(args)...);
207  /// }
208  /// \endcode
209  ///
210  /// The expressions \c args and \c static_cast<Types&&>(args) both
211  /// contain parameter packs.
212  bool containsUnexpandedParameterPack() const {
213    return ExprBits.ContainsUnexpandedParameterPack;
214  }
215
216  /// \brief Set the bit that describes whether this expression
217  /// contains an unexpanded parameter pack.
218  void setContainsUnexpandedParameterPack(bool PP = true) {
219    ExprBits.ContainsUnexpandedParameterPack = PP;
220  }
221
222  /// getExprLoc - Return the preferred location for the arrow when diagnosing
223  /// a problem with a generic expression.
224  SourceLocation getExprLoc() const LLVM_READONLY;
225
226  /// isUnusedResultAWarning - Return true if this immediate expression should
227  /// be warned about if the result is unused.  If so, fill in expr, location,
228  /// and ranges with expr to warn on and source locations/ranges appropriate
229  /// for a warning.
230  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
231                              SourceRange &R1, SourceRange &R2,
232                              ASTContext &Ctx) const;
233
234  /// isLValue - True if this expression is an "l-value" according to
235  /// the rules of the current language.  C and C++ give somewhat
236  /// different rules for this concept, but in general, the result of
237  /// an l-value expression identifies a specific object whereas the
238  /// result of an r-value expression is a value detached from any
239  /// specific storage.
240  ///
241  /// C++11 divides the concept of "r-value" into pure r-values
242  /// ("pr-values") and so-called expiring values ("x-values"), which
243  /// identify specific objects that can be safely cannibalized for
244  /// their resources.  This is an unfortunate abuse of terminology on
245  /// the part of the C++ committee.  In Clang, when we say "r-value",
246  /// we generally mean a pr-value.
247  bool isLValue() const { return getValueKind() == VK_LValue; }
248  bool isRValue() const { return getValueKind() == VK_RValue; }
249  bool isXValue() const { return getValueKind() == VK_XValue; }
250  bool isGLValue() const { return getValueKind() != VK_RValue; }
251
252  enum LValueClassification {
253    LV_Valid,
254    LV_NotObjectType,
255    LV_IncompleteVoidType,
256    LV_DuplicateVectorComponents,
257    LV_InvalidExpression,
258    LV_InvalidMessageExpression,
259    LV_MemberFunction,
260    LV_SubObjCPropertySetting,
261    LV_ClassTemporary,
262    LV_ArrayTemporary
263  };
264  /// Reasons why an expression might not be an l-value.
265  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
266
267  enum isModifiableLvalueResult {
268    MLV_Valid,
269    MLV_NotObjectType,
270    MLV_IncompleteVoidType,
271    MLV_DuplicateVectorComponents,
272    MLV_InvalidExpression,
273    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
274    MLV_IncompleteType,
275    MLV_ConstQualified,
276    MLV_ArrayType,
277    MLV_ReadonlyProperty,
278    MLV_NoSetterProperty,
279    MLV_MemberFunction,
280    MLV_SubObjCPropertySetting,
281    MLV_InvalidMessageExpression,
282    MLV_ClassTemporary,
283    MLV_ArrayTemporary
284  };
285  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
286  /// does not have an incomplete type, does not have a const-qualified type,
287  /// and if it is a structure or union, does not have any member (including,
288  /// recursively, any member or element of all contained aggregates or unions)
289  /// with a const-qualified type.
290  ///
291  /// \param Loc [in,out] - A source location which *may* be filled
292  /// in with the location of the expression making this a
293  /// non-modifiable lvalue, if specified.
294  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
295                                              SourceLocation *Loc = 0) const;
296
297  /// \brief The return type of classify(). Represents the C++11 expression
298  ///        taxonomy.
299  class Classification {
300  public:
301    /// \brief The various classification results. Most of these mean prvalue.
302    enum Kinds {
303      CL_LValue,
304      CL_XValue,
305      CL_Function, // Functions cannot be lvalues in C.
306      CL_Void, // Void cannot be an lvalue in C.
307      CL_AddressableVoid, // Void expression whose address can be taken in C.
308      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
309      CL_MemberFunction, // An expression referring to a member function
310      CL_SubObjCPropertySetting,
311      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
312      CL_ArrayTemporary, // A temporary of array type.
313      CL_ObjCMessageRValue, // ObjC message is an rvalue
314      CL_PRValue // A prvalue for any other reason, of any other type
315    };
316    /// \brief The results of modification testing.
317    enum ModifiableType {
318      CM_Untested, // testModifiable was false.
319      CM_Modifiable,
320      CM_RValue, // Not modifiable because it's an rvalue
321      CM_Function, // Not modifiable because it's a function; C++ only
322      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
323      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
324      CM_ConstQualified,
325      CM_ArrayType,
326      CM_IncompleteType
327    };
328
329  private:
330    friend class Expr;
331
332    unsigned short Kind;
333    unsigned short Modifiable;
334
335    explicit Classification(Kinds k, ModifiableType m)
336      : Kind(k), Modifiable(m)
337    {}
338
339  public:
340    Classification() {}
341
342    Kinds getKind() const { return static_cast<Kinds>(Kind); }
343    ModifiableType getModifiable() const {
344      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
345      return static_cast<ModifiableType>(Modifiable);
346    }
347    bool isLValue() const { return Kind == CL_LValue; }
348    bool isXValue() const { return Kind == CL_XValue; }
349    bool isGLValue() const { return Kind <= CL_XValue; }
350    bool isPRValue() const { return Kind >= CL_Function; }
351    bool isRValue() const { return Kind >= CL_XValue; }
352    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
353
354    /// \brief Create a simple, modifiably lvalue
355    static Classification makeSimpleLValue() {
356      return Classification(CL_LValue, CM_Modifiable);
357    }
358
359  };
360  /// \brief Classify - Classify this expression according to the C++11
361  ///        expression taxonomy.
362  ///
363  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
364  /// old lvalue vs rvalue. This function determines the type of expression this
365  /// is. There are three expression types:
366  /// - lvalues are classical lvalues as in C++03.
367  /// - prvalues are equivalent to rvalues in C++03.
368  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
369  ///   function returning an rvalue reference.
370  /// lvalues and xvalues are collectively referred to as glvalues, while
371  /// prvalues and xvalues together form rvalues.
372  Classification Classify(ASTContext &Ctx) const {
373    return ClassifyImpl(Ctx, 0);
374  }
375
376  /// \brief ClassifyModifiable - Classify this expression according to the
377  ///        C++11 expression taxonomy, and see if it is valid on the left side
378  ///        of an assignment.
379  ///
380  /// This function extends classify in that it also tests whether the
381  /// expression is modifiable (C99 6.3.2.1p1).
382  /// \param Loc A source location that might be filled with a relevant location
383  ///            if the expression is not modifiable.
384  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
385    return ClassifyImpl(Ctx, &Loc);
386  }
387
388  /// getValueKindForType - Given a formal return or parameter type,
389  /// give its value kind.
390  static ExprValueKind getValueKindForType(QualType T) {
391    if (const ReferenceType *RT = T->getAs<ReferenceType>())
392      return (isa<LValueReferenceType>(RT)
393                ? VK_LValue
394                : (RT->getPointeeType()->isFunctionType()
395                     ? VK_LValue : VK_XValue));
396    return VK_RValue;
397  }
398
399  /// getValueKind - The value kind that this expression produces.
400  ExprValueKind getValueKind() const {
401    return static_cast<ExprValueKind>(ExprBits.ValueKind);
402  }
403
404  /// getObjectKind - The object kind that this expression produces.
405  /// Object kinds are meaningful only for expressions that yield an
406  /// l-value or x-value.
407  ExprObjectKind getObjectKind() const {
408    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
409  }
410
411  bool isOrdinaryOrBitFieldObject() const {
412    ExprObjectKind OK = getObjectKind();
413    return (OK == OK_Ordinary || OK == OK_BitField);
414  }
415
416  /// setValueKind - Set the value kind produced by this expression.
417  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
418
419  /// setObjectKind - Set the object kind produced by this expression.
420  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
421
422private:
423  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
424
425public:
426
427  /// \brief If this expression refers to a bit-field, retrieve the
428  /// declaration of that bit-field.
429  FieldDecl *getBitField();
430
431  const FieldDecl *getBitField() const {
432    return const_cast<Expr*>(this)->getBitField();
433  }
434
435  /// \brief If this expression is an l-value for an Objective C
436  /// property, find the underlying property reference expression.
437  const ObjCPropertyRefExpr *getObjCProperty() const;
438
439  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
440  bool isObjCSelfExpr() const;
441
442  /// \brief Returns whether this expression refers to a vector element.
443  bool refersToVectorElement() const;
444
445  /// \brief Returns whether this expression has a placeholder type.
446  bool hasPlaceholderType() const {
447    return getType()->isPlaceholderType();
448  }
449
450  /// \brief Returns whether this expression has a specific placeholder type.
451  bool hasPlaceholderType(BuiltinType::Kind K) const {
452    assert(BuiltinType::isPlaceholderTypeKind(K));
453    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
454      return BT->getKind() == K;
455    return false;
456  }
457
458  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
459  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
460  /// but also int expressions which are produced by things like comparisons in
461  /// C.
462  bool isKnownToHaveBooleanValue() const;
463
464  /// isIntegerConstantExpr - Return true if this expression is a valid integer
465  /// constant expression, and, if so, return its value in Result.  If not a
466  /// valid i-c-e, return false and fill in Loc (if specified) with the location
467  /// of the invalid expression.
468  ///
469  /// Note: This does not perform the implicit conversions required by C++11
470  /// [expr.const]p5.
471  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
472                             SourceLocation *Loc = 0,
473                             bool isEvaluated = true) const;
474  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
475
476  /// isCXX98IntegralConstantExpr - Return true if this expression is an
477  /// integral constant expression in C++98. Can only be used in C++.
478  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
479
480  /// isCXX11ConstantExpr - Return true if this expression is a constant
481  /// expression in C++11. Can only be used in C++.
482  ///
483  /// Note: This does not perform the implicit conversions required by C++11
484  /// [expr.const]p5.
485  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
486                           SourceLocation *Loc = 0) const;
487
488  /// isPotentialConstantExpr - Return true if this function's definition
489  /// might be usable in a constant expression in C++11, if it were marked
490  /// constexpr. Return false if the function can never produce a constant
491  /// expression, along with diagnostics describing why not.
492  static bool isPotentialConstantExpr(const FunctionDecl *FD,
493                                      SmallVectorImpl<
494                                        PartialDiagnosticAt> &Diags);
495
496  /// isConstantInitializer - Returns true if this expression can be emitted to
497  /// IR as a constant, and thus can be used as a constant initializer in C.
498  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
499
500  /// EvalStatus is a struct with detailed info about an evaluation in progress.
501  struct EvalStatus {
502    /// HasSideEffects - Whether the evaluated expression has side effects.
503    /// For example, (f() && 0) can be folded, but it still has side effects.
504    bool HasSideEffects;
505
506    /// Diag - If this is non-null, it will be filled in with a stack of notes
507    /// indicating why evaluation failed (or why it failed to produce a constant
508    /// expression).
509    /// If the expression is unfoldable, the notes will indicate why it's not
510    /// foldable. If the expression is foldable, but not a constant expression,
511    /// the notes will describes why it isn't a constant expression. If the
512    /// expression *is* a constant expression, no notes will be produced.
513    SmallVectorImpl<PartialDiagnosticAt> *Diag;
514
515    EvalStatus() : HasSideEffects(false), Diag(0) {}
516
517    // hasSideEffects - Return true if the evaluated expression has
518    // side effects.
519    bool hasSideEffects() const {
520      return HasSideEffects;
521    }
522  };
523
524  /// EvalResult is a struct with detailed info about an evaluated expression.
525  struct EvalResult : EvalStatus {
526    /// Val - This is the value the expression can be folded to.
527    APValue Val;
528
529    // isGlobalLValue - Return true if the evaluated lvalue expression
530    // is global.
531    bool isGlobalLValue() const;
532  };
533
534  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
535  /// an rvalue using any crazy technique (that has nothing to do with language
536  /// standards) that we want to, even if the expression has side-effects. If
537  /// this function returns true, it returns the folded constant in Result. If
538  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
539  /// applied.
540  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
541
542  /// EvaluateAsBooleanCondition - Return true if this is a constant
543  /// which we we can fold and convert to a boolean condition using
544  /// any crazy technique that we want to, even if the expression has
545  /// side-effects.
546  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
547
548  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
549
550  /// EvaluateAsInt - Return true if this is a constant which we can fold and
551  /// convert to an integer, using any crazy technique that we want to.
552  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
553                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
554
555  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
556  /// constant folded without side-effects, but discard the result.
557  bool isEvaluatable(const ASTContext &Ctx) const;
558
559  /// HasSideEffects - This routine returns true for all those expressions
560  /// which have any effect other than producing a value. Example is a function
561  /// call, volatile variable read, or throwing an exception.
562  bool HasSideEffects(const ASTContext &Ctx) const;
563
564  /// \brief Determine whether this expression involves a call to any function
565  /// that is not trivial.
566  bool hasNonTrivialCall(ASTContext &Ctx);
567
568  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
569  /// integer. This must be called on an expression that constant folds to an
570  /// integer.
571  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
572                          SmallVectorImpl<PartialDiagnosticAt> *Diag=0) const;
573
574  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
575  /// lvalue with link time known address, with no side-effects.
576  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
577
578  /// EvaluateAsInitializer - Evaluate an expression as if it were the
579  /// initializer of the given declaration. Returns true if the initializer
580  /// can be folded to a constant, and produces any relevant notes. In C++11,
581  /// notes will be produced if the expression is not a constant expression.
582  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
583                             const VarDecl *VD,
584                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
585
586  /// \brief Enumeration used to describe the kind of Null pointer constant
587  /// returned from \c isNullPointerConstant().
588  enum NullPointerConstantKind {
589    /// \brief Expression is not a Null pointer constant.
590    NPCK_NotNull = 0,
591
592    /// \brief Expression is a Null pointer constant built from a zero integer
593    /// expression that is not a simple, possibly parenthesized, zero literal.
594    /// C++ Core Issue 903 will classify these expressions as "not pointers"
595    /// once it is adopted.
596    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
597    NPCK_ZeroExpression,
598
599    /// \brief Expression is a Null pointer constant built from a literal zero.
600    NPCK_ZeroLiteral,
601
602    /// \brief Expression is a C++11 nullptr.
603    NPCK_CXX11_nullptr,
604
605    /// \brief Expression is a GNU-style __null constant.
606    NPCK_GNUNull
607  };
608
609  /// \brief Enumeration used to describe how \c isNullPointerConstant()
610  /// should cope with value-dependent expressions.
611  enum NullPointerConstantValueDependence {
612    /// \brief Specifies that the expression should never be value-dependent.
613    NPC_NeverValueDependent = 0,
614
615    /// \brief Specifies that a value-dependent expression of integral or
616    /// dependent type should be considered a null pointer constant.
617    NPC_ValueDependentIsNull,
618
619    /// \brief Specifies that a value-dependent expression should be considered
620    /// to never be a null pointer constant.
621    NPC_ValueDependentIsNotNull
622  };
623
624  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
625  /// a Null pointer constant. The return value can further distinguish the
626  /// kind of NULL pointer constant that was detected.
627  NullPointerConstantKind isNullPointerConstant(
628      ASTContext &Ctx,
629      NullPointerConstantValueDependence NPC) const;
630
631  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
632  /// write barrier.
633  bool isOBJCGCCandidate(ASTContext &Ctx) const;
634
635  /// \brief Returns true if this expression is a bound member function.
636  bool isBoundMemberFunction(ASTContext &Ctx) const;
637
638  /// \brief Given an expression of bound-member type, find the type
639  /// of the member.  Returns null if this is an *overloaded* bound
640  /// member expression.
641  static QualType findBoundMemberType(const Expr *expr);
642
643  /// IgnoreImpCasts - Skip past any implicit casts which might
644  /// surround this expression.  Only skips ImplicitCastExprs.
645  Expr *IgnoreImpCasts() LLVM_READONLY;
646
647  /// IgnoreImplicit - Skip past any implicit AST nodes which might
648  /// surround this expression.
649  Expr *IgnoreImplicit() LLVM_READONLY {
650    return cast<Expr>(Stmt::IgnoreImplicit());
651  }
652
653  const Expr *IgnoreImplicit() const LLVM_READONLY {
654    return const_cast<Expr*>(this)->IgnoreImplicit();
655  }
656
657  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
658  ///  its subexpression.  If that subexpression is also a ParenExpr,
659  ///  then this method recursively returns its subexpression, and so forth.
660  ///  Otherwise, the method returns the current Expr.
661  Expr *IgnoreParens() LLVM_READONLY;
662
663  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
664  /// or CastExprs, returning their operand.
665  Expr *IgnoreParenCasts() LLVM_READONLY;
666
667  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
668  /// any ParenExpr or ImplicitCastExprs, returning their operand.
669  Expr *IgnoreParenImpCasts() LLVM_READONLY;
670
671  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
672  /// call to a conversion operator, return the argument.
673  Expr *IgnoreConversionOperator() LLVM_READONLY;
674
675  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
676    return const_cast<Expr*>(this)->IgnoreConversionOperator();
677  }
678
679  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
680    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
681  }
682
683  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
684  /// CastExprs that represent lvalue casts, returning their operand.
685  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
686
687  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
688    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
689  }
690
691  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
692  /// value (including ptr->int casts of the same size).  Strip off any
693  /// ParenExpr or CastExprs, returning their operand.
694  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
695
696  /// Ignore parentheses and derived-to-base casts.
697  Expr *ignoreParenBaseCasts() LLVM_READONLY;
698
699  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
700    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
701  }
702
703  /// \brief Determine whether this expression is a default function argument.
704  ///
705  /// Default arguments are implicitly generated in the abstract syntax tree
706  /// by semantic analysis for function calls, object constructions, etc. in
707  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
708  /// this routine also looks through any implicit casts to determine whether
709  /// the expression is a default argument.
710  bool isDefaultArgument() const;
711
712  /// \brief Determine whether the result of this expression is a
713  /// temporary object of the given class type.
714  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
715
716  /// \brief Whether this expression is an implicit reference to 'this' in C++.
717  bool isImplicitCXXThis() const;
718
719  const Expr *IgnoreImpCasts() const LLVM_READONLY {
720    return const_cast<Expr*>(this)->IgnoreImpCasts();
721  }
722  const Expr *IgnoreParens() const LLVM_READONLY {
723    return const_cast<Expr*>(this)->IgnoreParens();
724  }
725  const Expr *IgnoreParenCasts() const LLVM_READONLY {
726    return const_cast<Expr*>(this)->IgnoreParenCasts();
727  }
728  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
729    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
730  }
731
732  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
733
734  /// \brief For an expression of class type or pointer to class type,
735  /// return the most derived class decl the expression is known to refer to.
736  ///
737  /// If this expression is a cast, this method looks through it to find the
738  /// most derived decl that can be inferred from the expression.
739  /// This is valid because derived-to-base conversions have undefined
740  /// behavior if the object isn't dynamically of the derived type.
741  const CXXRecordDecl *getBestDynamicClassType() const;
742
743  /// Walk outwards from an expression we want to bind a reference to and
744  /// find the expression whose lifetime needs to be extended. Record
745  /// the adjustments needed along the path.
746  const Expr *
747  skipRValueSubobjectAdjustments(
748                       SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
749
750  /// Skip irrelevant expressions to find what should be materialize for
751  /// binding with a reference.
752  const Expr *
753  findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const;
754
755  static bool classof(const Stmt *T) {
756    return T->getStmtClass() >= firstExprConstant &&
757           T->getStmtClass() <= lastExprConstant;
758  }
759};
760
761
762//===----------------------------------------------------------------------===//
763// Primary Expressions.
764//===----------------------------------------------------------------------===//
765
766/// OpaqueValueExpr - An expression referring to an opaque object of a
767/// fixed type and value class.  These don't correspond to concrete
768/// syntax; instead they're used to express operations (usually copy
769/// operations) on values whose source is generally obvious from
770/// context.
771class OpaqueValueExpr : public Expr {
772  friend class ASTStmtReader;
773  Expr *SourceExpr;
774  SourceLocation Loc;
775
776public:
777  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
778                  ExprObjectKind OK = OK_Ordinary,
779                  Expr *SourceExpr = 0)
780    : Expr(OpaqueValueExprClass, T, VK, OK,
781           T->isDependentType(),
782           T->isDependentType() ||
783           (SourceExpr && SourceExpr->isValueDependent()),
784           T->isInstantiationDependentType(),
785           false),
786      SourceExpr(SourceExpr), Loc(Loc) {
787  }
788
789  /// Given an expression which invokes a copy constructor --- i.e.  a
790  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
791  /// find the OpaqueValueExpr that's the source of the construction.
792  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
793
794  explicit OpaqueValueExpr(EmptyShell Empty)
795    : Expr(OpaqueValueExprClass, Empty) { }
796
797  /// \brief Retrieve the location of this expression.
798  SourceLocation getLocation() const { return Loc; }
799
800  SourceLocation getLocStart() const LLVM_READONLY {
801    return SourceExpr ? SourceExpr->getLocStart() : Loc;
802  }
803  SourceLocation getLocEnd() const LLVM_READONLY {
804    return SourceExpr ? SourceExpr->getLocEnd() : Loc;
805  }
806  SourceLocation getExprLoc() const LLVM_READONLY {
807    if (SourceExpr) return SourceExpr->getExprLoc();
808    return Loc;
809  }
810
811  child_range children() { return child_range(); }
812
813  /// The source expression of an opaque value expression is the
814  /// expression which originally generated the value.  This is
815  /// provided as a convenience for analyses that don't wish to
816  /// precisely model the execution behavior of the program.
817  ///
818  /// The source expression is typically set when building the
819  /// expression which binds the opaque value expression in the first
820  /// place.
821  Expr *getSourceExpr() const { return SourceExpr; }
822
823  static bool classof(const Stmt *T) {
824    return T->getStmtClass() == OpaqueValueExprClass;
825  }
826};
827
828/// \brief A reference to a declared variable, function, enum, etc.
829/// [C99 6.5.1p2]
830///
831/// This encodes all the information about how a declaration is referenced
832/// within an expression.
833///
834/// There are several optional constructs attached to DeclRefExprs only when
835/// they apply in order to conserve memory. These are laid out past the end of
836/// the object, and flags in the DeclRefExprBitfield track whether they exist:
837///
838///   DeclRefExprBits.HasQualifier:
839///       Specifies when this declaration reference expression has a C++
840///       nested-name-specifier.
841///   DeclRefExprBits.HasFoundDecl:
842///       Specifies when this declaration reference expression has a record of
843///       a NamedDecl (different from the referenced ValueDecl) which was found
844///       during name lookup and/or overload resolution.
845///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
846///       Specifies when this declaration reference expression has an explicit
847///       C++ template keyword and/or template argument list.
848///   DeclRefExprBits.RefersToEnclosingLocal
849///       Specifies when this declaration reference expression (validly)
850///       refers to a local variable from a different function.
851class DeclRefExpr : public Expr {
852  /// \brief The declaration that we are referencing.
853  ValueDecl *D;
854
855  /// \brief The location of the declaration name itself.
856  SourceLocation Loc;
857
858  /// \brief Provides source/type location info for the declaration name
859  /// embedded in D.
860  DeclarationNameLoc DNLoc;
861
862  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
863  NestedNameSpecifierLoc &getInternalQualifierLoc() {
864    assert(hasQualifier());
865    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
866  }
867
868  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
869  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
870    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
871  }
872
873  /// \brief Test whether there is a distinct FoundDecl attached to the end of
874  /// this DRE.
875  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
876
877  /// \brief Helper to retrieve the optional NamedDecl through which this
878  /// reference occured.
879  NamedDecl *&getInternalFoundDecl() {
880    assert(hasFoundDecl());
881    if (hasQualifier())
882      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
883    return *reinterpret_cast<NamedDecl **>(this + 1);
884  }
885
886  /// \brief Helper to retrieve the optional NamedDecl through which this
887  /// reference occured.
888  NamedDecl *getInternalFoundDecl() const {
889    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
890  }
891
892  DeclRefExpr(ASTContext &Ctx,
893              NestedNameSpecifierLoc QualifierLoc,
894              SourceLocation TemplateKWLoc,
895              ValueDecl *D, bool refersToEnclosingLocal,
896              const DeclarationNameInfo &NameInfo,
897              NamedDecl *FoundD,
898              const TemplateArgumentListInfo *TemplateArgs,
899              QualType T, ExprValueKind VK);
900
901  /// \brief Construct an empty declaration reference expression.
902  explicit DeclRefExpr(EmptyShell Empty)
903    : Expr(DeclRefExprClass, Empty) { }
904
905  /// \brief Computes the type- and value-dependence flags for this
906  /// declaration reference expression.
907  void computeDependence(ASTContext &C);
908
909public:
910  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
911              ExprValueKind VK, SourceLocation L,
912              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
913    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
914      D(D), Loc(L), DNLoc(LocInfo) {
915    DeclRefExprBits.HasQualifier = 0;
916    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
917    DeclRefExprBits.HasFoundDecl = 0;
918    DeclRefExprBits.HadMultipleCandidates = 0;
919    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
920    computeDependence(D->getASTContext());
921  }
922
923  static DeclRefExpr *Create(ASTContext &Context,
924                             NestedNameSpecifierLoc QualifierLoc,
925                             SourceLocation TemplateKWLoc,
926                             ValueDecl *D,
927                             bool isEnclosingLocal,
928                             SourceLocation NameLoc,
929                             QualType T, ExprValueKind VK,
930                             NamedDecl *FoundD = 0,
931                             const TemplateArgumentListInfo *TemplateArgs = 0);
932
933  static DeclRefExpr *Create(ASTContext &Context,
934                             NestedNameSpecifierLoc QualifierLoc,
935                             SourceLocation TemplateKWLoc,
936                             ValueDecl *D,
937                             bool isEnclosingLocal,
938                             const DeclarationNameInfo &NameInfo,
939                             QualType T, ExprValueKind VK,
940                             NamedDecl *FoundD = 0,
941                             const TemplateArgumentListInfo *TemplateArgs = 0);
942
943  /// \brief Construct an empty declaration reference expression.
944  static DeclRefExpr *CreateEmpty(ASTContext &Context,
945                                  bool HasQualifier,
946                                  bool HasFoundDecl,
947                                  bool HasTemplateKWAndArgsInfo,
948                                  unsigned NumTemplateArgs);
949
950  ValueDecl *getDecl() { return D; }
951  const ValueDecl *getDecl() const { return D; }
952  void setDecl(ValueDecl *NewD) { D = NewD; }
953
954  DeclarationNameInfo getNameInfo() const {
955    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
956  }
957
958  SourceLocation getLocation() const { return Loc; }
959  void setLocation(SourceLocation L) { Loc = L; }
960  SourceLocation getLocStart() const LLVM_READONLY;
961  SourceLocation getLocEnd() const LLVM_READONLY;
962
963  /// \brief Determine whether this declaration reference was preceded by a
964  /// C++ nested-name-specifier, e.g., \c N::foo.
965  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
966
967  /// \brief If the name was qualified, retrieves the nested-name-specifier
968  /// that precedes the name. Otherwise, returns NULL.
969  NestedNameSpecifier *getQualifier() const {
970    if (!hasQualifier())
971      return 0;
972
973    return getInternalQualifierLoc().getNestedNameSpecifier();
974  }
975
976  /// \brief If the name was qualified, retrieves the nested-name-specifier
977  /// that precedes the name, with source-location information.
978  NestedNameSpecifierLoc getQualifierLoc() const {
979    if (!hasQualifier())
980      return NestedNameSpecifierLoc();
981
982    return getInternalQualifierLoc();
983  }
984
985  /// \brief Get the NamedDecl through which this reference occured.
986  ///
987  /// This Decl may be different from the ValueDecl actually referred to in the
988  /// presence of using declarations, etc. It always returns non-NULL, and may
989  /// simple return the ValueDecl when appropriate.
990  NamedDecl *getFoundDecl() {
991    return hasFoundDecl() ? getInternalFoundDecl() : D;
992  }
993
994  /// \brief Get the NamedDecl through which this reference occurred.
995  /// See non-const variant.
996  const NamedDecl *getFoundDecl() const {
997    return hasFoundDecl() ? getInternalFoundDecl() : D;
998  }
999
1000  bool hasTemplateKWAndArgsInfo() const {
1001    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1002  }
1003
1004  /// \brief Return the optional template keyword and arguments info.
1005  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
1006    if (!hasTemplateKWAndArgsInfo())
1007      return 0;
1008
1009    if (hasFoundDecl())
1010      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1011        &getInternalFoundDecl() + 1);
1012
1013    if (hasQualifier())
1014      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1015        &getInternalQualifierLoc() + 1);
1016
1017    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
1018  }
1019
1020  /// \brief Return the optional template keyword and arguments info.
1021  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
1022    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
1023  }
1024
1025  /// \brief Retrieve the location of the template keyword preceding
1026  /// this name, if any.
1027  SourceLocation getTemplateKeywordLoc() const {
1028    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1029    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
1030  }
1031
1032  /// \brief Retrieve the location of the left angle bracket starting the
1033  /// explicit template argument list following the name, if any.
1034  SourceLocation getLAngleLoc() const {
1035    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1036    return getTemplateKWAndArgsInfo()->LAngleLoc;
1037  }
1038
1039  /// \brief Retrieve the location of the right angle bracket ending the
1040  /// explicit template argument list following the name, if any.
1041  SourceLocation getRAngleLoc() const {
1042    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1043    return getTemplateKWAndArgsInfo()->RAngleLoc;
1044  }
1045
1046  /// \brief Determines whether the name in this declaration reference
1047  /// was preceded by the template keyword.
1048  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1049
1050  /// \brief Determines whether this declaration reference was followed by an
1051  /// explicit template argument list.
1052  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1053
1054  /// \brief Retrieve the explicit template argument list that followed the
1055  /// member template name.
1056  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1057    assert(hasExplicitTemplateArgs());
1058    return *getTemplateKWAndArgsInfo();
1059  }
1060
1061  /// \brief Retrieve the explicit template argument list that followed the
1062  /// member template name.
1063  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1064    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1065  }
1066
1067  /// \brief Retrieves the optional explicit template arguments.
1068  /// This points to the same data as getExplicitTemplateArgs(), but
1069  /// returns null if there are no explicit template arguments.
1070  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1071    if (!hasExplicitTemplateArgs()) return 0;
1072    return &getExplicitTemplateArgs();
1073  }
1074
1075  /// \brief Copies the template arguments (if present) into the given
1076  /// structure.
1077  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1078    if (hasExplicitTemplateArgs())
1079      getExplicitTemplateArgs().copyInto(List);
1080  }
1081
1082  /// \brief Retrieve the template arguments provided as part of this
1083  /// template-id.
1084  const TemplateArgumentLoc *getTemplateArgs() const {
1085    if (!hasExplicitTemplateArgs())
1086      return 0;
1087
1088    return getExplicitTemplateArgs().getTemplateArgs();
1089  }
1090
1091  /// \brief Retrieve the number of template arguments provided as part of this
1092  /// template-id.
1093  unsigned getNumTemplateArgs() const {
1094    if (!hasExplicitTemplateArgs())
1095      return 0;
1096
1097    return getExplicitTemplateArgs().NumTemplateArgs;
1098  }
1099
1100  /// \brief Returns true if this expression refers to a function that
1101  /// was resolved from an overloaded set having size greater than 1.
1102  bool hadMultipleCandidates() const {
1103    return DeclRefExprBits.HadMultipleCandidates;
1104  }
1105  /// \brief Sets the flag telling whether this expression refers to
1106  /// a function that was resolved from an overloaded set having size
1107  /// greater than 1.
1108  void setHadMultipleCandidates(bool V = true) {
1109    DeclRefExprBits.HadMultipleCandidates = V;
1110  }
1111
1112  /// Does this DeclRefExpr refer to a local declaration from an
1113  /// enclosing function scope?
1114  bool refersToEnclosingLocal() const {
1115    return DeclRefExprBits.RefersToEnclosingLocal;
1116  }
1117
1118  static bool classof(const Stmt *T) {
1119    return T->getStmtClass() == DeclRefExprClass;
1120  }
1121
1122  // Iterators
1123  child_range children() { return child_range(); }
1124
1125  friend class ASTStmtReader;
1126  friend class ASTStmtWriter;
1127};
1128
1129/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1130class PredefinedExpr : public Expr {
1131public:
1132  enum IdentType {
1133    Func,
1134    Function,
1135    LFunction,  // Same as Function, but as wide string.
1136    PrettyFunction,
1137    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1138    /// 'virtual' keyword is omitted for virtual member functions.
1139    PrettyFunctionNoVirtual
1140  };
1141
1142private:
1143  SourceLocation Loc;
1144  IdentType Type;
1145public:
1146  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1147    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1148           type->isDependentType(), type->isDependentType(),
1149           type->isInstantiationDependentType(),
1150           /*ContainsUnexpandedParameterPack=*/false),
1151      Loc(l), Type(IT) {}
1152
1153  /// \brief Construct an empty predefined expression.
1154  explicit PredefinedExpr(EmptyShell Empty)
1155    : Expr(PredefinedExprClass, Empty) { }
1156
1157  IdentType getIdentType() const { return Type; }
1158  void setIdentType(IdentType IT) { Type = IT; }
1159
1160  SourceLocation getLocation() const { return Loc; }
1161  void setLocation(SourceLocation L) { Loc = L; }
1162
1163  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1164
1165  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1166  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1167
1168  static bool classof(const Stmt *T) {
1169    return T->getStmtClass() == PredefinedExprClass;
1170  }
1171
1172  // Iterators
1173  child_range children() { return child_range(); }
1174};
1175
1176/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1177/// leaking memory.
1178///
1179/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1180/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1181/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1182/// the APFloat/APInt values will never get freed. APNumericStorage uses
1183/// ASTContext's allocator for memory allocation.
1184class APNumericStorage {
1185  union {
1186    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1187    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1188  };
1189  unsigned BitWidth;
1190
1191  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1192
1193  APNumericStorage(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1194  void operator=(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1195
1196protected:
1197  APNumericStorage() : VAL(0), BitWidth(0) { }
1198
1199  llvm::APInt getIntValue() const {
1200    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1201    if (NumWords > 1)
1202      return llvm::APInt(BitWidth, NumWords, pVal);
1203    else
1204      return llvm::APInt(BitWidth, VAL);
1205  }
1206  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1207};
1208
1209class APIntStorage : private APNumericStorage {
1210public:
1211  llvm::APInt getValue() const { return getIntValue(); }
1212  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1213};
1214
1215class APFloatStorage : private APNumericStorage {
1216public:
1217  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1218    return llvm::APFloat(Semantics, getIntValue());
1219  }
1220  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1221    setIntValue(C, Val.bitcastToAPInt());
1222  }
1223};
1224
1225class IntegerLiteral : public Expr, public APIntStorage {
1226  SourceLocation Loc;
1227
1228  /// \brief Construct an empty integer literal.
1229  explicit IntegerLiteral(EmptyShell Empty)
1230    : Expr(IntegerLiteralClass, Empty) { }
1231
1232public:
1233  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1234  // or UnsignedLongLongTy
1235  IntegerLiteral(ASTContext &C, const llvm::APInt &V, QualType type,
1236                 SourceLocation l);
1237
1238  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1239  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1240  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1241  /// \param V - the value that the returned integer literal contains.
1242  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1243                                QualType type, SourceLocation l);
1244  /// \brief Returns a new empty integer literal.
1245  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1246
1247  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1248  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1249
1250  /// \brief Retrieve the location of the literal.
1251  SourceLocation getLocation() const { return Loc; }
1252
1253  void setLocation(SourceLocation Location) { Loc = Location; }
1254
1255  static bool classof(const Stmt *T) {
1256    return T->getStmtClass() == IntegerLiteralClass;
1257  }
1258
1259  // Iterators
1260  child_range children() { return child_range(); }
1261};
1262
1263class CharacterLiteral : public Expr {
1264public:
1265  enum CharacterKind {
1266    Ascii,
1267    Wide,
1268    UTF16,
1269    UTF32
1270  };
1271
1272private:
1273  unsigned Value;
1274  SourceLocation Loc;
1275public:
1276  // type should be IntTy
1277  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1278                   SourceLocation l)
1279    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1280           false, false),
1281      Value(value), Loc(l) {
1282    CharacterLiteralBits.Kind = kind;
1283  }
1284
1285  /// \brief Construct an empty character literal.
1286  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1287
1288  SourceLocation getLocation() const { return Loc; }
1289  CharacterKind getKind() const {
1290    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1291  }
1292
1293  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1294  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1295
1296  unsigned getValue() const { return Value; }
1297
1298  void setLocation(SourceLocation Location) { Loc = Location; }
1299  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1300  void setValue(unsigned Val) { Value = Val; }
1301
1302  static bool classof(const Stmt *T) {
1303    return T->getStmtClass() == CharacterLiteralClass;
1304  }
1305
1306  // Iterators
1307  child_range children() { return child_range(); }
1308};
1309
1310class FloatingLiteral : public Expr, private APFloatStorage {
1311  SourceLocation Loc;
1312
1313  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1314                  QualType Type, SourceLocation L);
1315
1316  /// \brief Construct an empty floating-point literal.
1317  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty);
1318
1319public:
1320  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1321                                 bool isexact, QualType Type, SourceLocation L);
1322  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1323
1324  llvm::APFloat getValue() const {
1325    return APFloatStorage::getValue(getSemantics());
1326  }
1327  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1328    assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1329    APFloatStorage::setValue(C, Val);
1330  }
1331
1332  /// Get a raw enumeration value representing the floating-point semantics of
1333  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1334  APFloatSemantics getRawSemantics() const {
1335    return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1336  }
1337
1338  /// Set the raw enumeration value representing the floating-point semantics of
1339  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1340  void setRawSemantics(APFloatSemantics Sem) {
1341    FloatingLiteralBits.Semantics = Sem;
1342  }
1343
1344  /// Return the APFloat semantics this literal uses.
1345  const llvm::fltSemantics &getSemantics() const;
1346
1347  /// Set the APFloat semantics this literal uses.
1348  void setSemantics(const llvm::fltSemantics &Sem);
1349
1350  bool isExact() const { return FloatingLiteralBits.IsExact; }
1351  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1352
1353  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1354  /// double.  Note that this may cause loss of precision, but is useful for
1355  /// debugging dumps, etc.
1356  double getValueAsApproximateDouble() const;
1357
1358  SourceLocation getLocation() const { return Loc; }
1359  void setLocation(SourceLocation L) { Loc = L; }
1360
1361  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1362  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1363
1364  static bool classof(const Stmt *T) {
1365    return T->getStmtClass() == FloatingLiteralClass;
1366  }
1367
1368  // Iterators
1369  child_range children() { return child_range(); }
1370};
1371
1372/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1373/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1374/// IntegerLiteral classes.  Instances of this class always have a Complex type
1375/// whose element type matches the subexpression.
1376///
1377class ImaginaryLiteral : public Expr {
1378  Stmt *Val;
1379public:
1380  ImaginaryLiteral(Expr *val, QualType Ty)
1381    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1382           false, false),
1383      Val(val) {}
1384
1385  /// \brief Build an empty imaginary literal.
1386  explicit ImaginaryLiteral(EmptyShell Empty)
1387    : Expr(ImaginaryLiteralClass, Empty) { }
1388
1389  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1390  Expr *getSubExpr() { return cast<Expr>(Val); }
1391  void setSubExpr(Expr *E) { Val = E; }
1392
1393  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1394  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1395
1396  static bool classof(const Stmt *T) {
1397    return T->getStmtClass() == ImaginaryLiteralClass;
1398  }
1399
1400  // Iterators
1401  child_range children() { return child_range(&Val, &Val+1); }
1402};
1403
1404/// StringLiteral - This represents a string literal expression, e.g. "foo"
1405/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1406/// is NOT null-terminated, and the length of the string is determined by
1407/// calling getByteLength().  The C type for a string is always a
1408/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1409/// not.
1410///
1411/// Note that strings in C can be formed by concatenation of multiple string
1412/// literal pptokens in translation phase #6.  This keeps track of the locations
1413/// of each of these pieces.
1414///
1415/// Strings in C can also be truncated and extended by assigning into arrays,
1416/// e.g. with constructs like:
1417///   char X[2] = "foobar";
1418/// In this case, getByteLength() will return 6, but the string literal will
1419/// have type "char[2]".
1420class StringLiteral : public Expr {
1421public:
1422  enum StringKind {
1423    Ascii,
1424    Wide,
1425    UTF8,
1426    UTF16,
1427    UTF32
1428  };
1429
1430private:
1431  friend class ASTStmtReader;
1432
1433  union {
1434    const char *asChar;
1435    const uint16_t *asUInt16;
1436    const uint32_t *asUInt32;
1437  } StrData;
1438  unsigned Length;
1439  unsigned CharByteWidth : 4;
1440  unsigned Kind : 3;
1441  unsigned IsPascal : 1;
1442  unsigned NumConcatenated;
1443  SourceLocation TokLocs[1];
1444
1445  StringLiteral(QualType Ty) :
1446    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1447         false) {}
1448
1449  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1450
1451public:
1452  /// This is the "fully general" constructor that allows representation of
1453  /// strings formed from multiple concatenated tokens.
1454  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1455                               bool Pascal, QualType Ty,
1456                               const SourceLocation *Loc, unsigned NumStrs);
1457
1458  /// Simple constructor for string literals made from one token.
1459  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1460                               bool Pascal, QualType Ty,
1461                               SourceLocation Loc) {
1462    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1463  }
1464
1465  /// \brief Construct an empty string literal.
1466  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1467
1468  StringRef getString() const {
1469    assert(CharByteWidth==1
1470           && "This function is used in places that assume strings use char");
1471    return StringRef(StrData.asChar, getByteLength());
1472  }
1473
1474  /// Allow access to clients that need the byte representation, such as
1475  /// ASTWriterStmt::VisitStringLiteral().
1476  StringRef getBytes() const {
1477    // FIXME: StringRef may not be the right type to use as a result for this.
1478    if (CharByteWidth == 1)
1479      return StringRef(StrData.asChar, getByteLength());
1480    if (CharByteWidth == 4)
1481      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1482                       getByteLength());
1483    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1484    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1485                     getByteLength());
1486  }
1487
1488  void outputString(raw_ostream &OS);
1489
1490  uint32_t getCodeUnit(size_t i) const {
1491    assert(i < Length && "out of bounds access");
1492    if (CharByteWidth == 1)
1493      return static_cast<unsigned char>(StrData.asChar[i]);
1494    if (CharByteWidth == 4)
1495      return StrData.asUInt32[i];
1496    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1497    return StrData.asUInt16[i];
1498  }
1499
1500  unsigned getByteLength() const { return CharByteWidth*Length; }
1501  unsigned getLength() const { return Length; }
1502  unsigned getCharByteWidth() const { return CharByteWidth; }
1503
1504  /// \brief Sets the string data to the given string data.
1505  void setString(ASTContext &C, StringRef Str,
1506                 StringKind Kind, bool IsPascal);
1507
1508  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1509
1510
1511  bool isAscii() const { return Kind == Ascii; }
1512  bool isWide() const { return Kind == Wide; }
1513  bool isUTF8() const { return Kind == UTF8; }
1514  bool isUTF16() const { return Kind == UTF16; }
1515  bool isUTF32() const { return Kind == UTF32; }
1516  bool isPascal() const { return IsPascal; }
1517
1518  bool containsNonAsciiOrNull() const {
1519    StringRef Str = getString();
1520    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1521      if (!isascii(Str[i]) || !Str[i])
1522        return true;
1523    return false;
1524  }
1525
1526  /// getNumConcatenated - Get the number of string literal tokens that were
1527  /// concatenated in translation phase #6 to form this string literal.
1528  unsigned getNumConcatenated() const { return NumConcatenated; }
1529
1530  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1531    assert(TokNum < NumConcatenated && "Invalid tok number");
1532    return TokLocs[TokNum];
1533  }
1534  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1535    assert(TokNum < NumConcatenated && "Invalid tok number");
1536    TokLocs[TokNum] = L;
1537  }
1538
1539  /// getLocationOfByte - Return a source location that points to the specified
1540  /// byte of this string literal.
1541  ///
1542  /// Strings are amazingly complex.  They can be formed from multiple tokens
1543  /// and can have escape sequences in them in addition to the usual trigraph
1544  /// and escaped newline business.  This routine handles this complexity.
1545  ///
1546  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1547                                   const LangOptions &Features,
1548                                   const TargetInfo &Target) const;
1549
1550  typedef const SourceLocation *tokloc_iterator;
1551  tokloc_iterator tokloc_begin() const { return TokLocs; }
1552  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1553
1554  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1555  SourceLocation getLocEnd() const LLVM_READONLY {
1556    return TokLocs[NumConcatenated - 1];
1557  }
1558
1559  static bool classof(const Stmt *T) {
1560    return T->getStmtClass() == StringLiteralClass;
1561  }
1562
1563  // Iterators
1564  child_range children() { return child_range(); }
1565};
1566
1567/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1568/// AST node is only formed if full location information is requested.
1569class ParenExpr : public Expr {
1570  SourceLocation L, R;
1571  Stmt *Val;
1572public:
1573  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1574    : Expr(ParenExprClass, val->getType(),
1575           val->getValueKind(), val->getObjectKind(),
1576           val->isTypeDependent(), val->isValueDependent(),
1577           val->isInstantiationDependent(),
1578           val->containsUnexpandedParameterPack()),
1579      L(l), R(r), Val(val) {}
1580
1581  /// \brief Construct an empty parenthesized expression.
1582  explicit ParenExpr(EmptyShell Empty)
1583    : Expr(ParenExprClass, Empty) { }
1584
1585  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1586  Expr *getSubExpr() { return cast<Expr>(Val); }
1587  void setSubExpr(Expr *E) { Val = E; }
1588
1589  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1590  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1591
1592  /// \brief Get the location of the left parentheses '('.
1593  SourceLocation getLParen() const { return L; }
1594  void setLParen(SourceLocation Loc) { L = Loc; }
1595
1596  /// \brief Get the location of the right parentheses ')'.
1597  SourceLocation getRParen() const { return R; }
1598  void setRParen(SourceLocation Loc) { R = Loc; }
1599
1600  static bool classof(const Stmt *T) {
1601    return T->getStmtClass() == ParenExprClass;
1602  }
1603
1604  // Iterators
1605  child_range children() { return child_range(&Val, &Val+1); }
1606};
1607
1608
1609/// UnaryOperator - This represents the unary-expression's (except sizeof and
1610/// alignof), the postinc/postdec operators from postfix-expression, and various
1611/// extensions.
1612///
1613/// Notes on various nodes:
1614///
1615/// Real/Imag - These return the real/imag part of a complex operand.  If
1616///   applied to a non-complex value, the former returns its operand and the
1617///   later returns zero in the type of the operand.
1618///
1619class UnaryOperator : public Expr {
1620public:
1621  typedef UnaryOperatorKind Opcode;
1622
1623private:
1624  unsigned Opc : 5;
1625  SourceLocation Loc;
1626  Stmt *Val;
1627public:
1628
1629  UnaryOperator(Expr *input, Opcode opc, QualType type,
1630                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1631    : Expr(UnaryOperatorClass, type, VK, OK,
1632           input->isTypeDependent() || type->isDependentType(),
1633           input->isValueDependent(),
1634           (input->isInstantiationDependent() ||
1635            type->isInstantiationDependentType()),
1636           input->containsUnexpandedParameterPack()),
1637      Opc(opc), Loc(l), Val(input) {}
1638
1639  /// \brief Build an empty unary operator.
1640  explicit UnaryOperator(EmptyShell Empty)
1641    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1642
1643  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1644  void setOpcode(Opcode O) { Opc = O; }
1645
1646  Expr *getSubExpr() const { return cast<Expr>(Val); }
1647  void setSubExpr(Expr *E) { Val = E; }
1648
1649  /// getOperatorLoc - Return the location of the operator.
1650  SourceLocation getOperatorLoc() const { return Loc; }
1651  void setOperatorLoc(SourceLocation L) { Loc = L; }
1652
1653  /// isPostfix - Return true if this is a postfix operation, like x++.
1654  static bool isPostfix(Opcode Op) {
1655    return Op == UO_PostInc || Op == UO_PostDec;
1656  }
1657
1658  /// isPrefix - Return true if this is a prefix operation, like --x.
1659  static bool isPrefix(Opcode Op) {
1660    return Op == UO_PreInc || Op == UO_PreDec;
1661  }
1662
1663  bool isPrefix() const { return isPrefix(getOpcode()); }
1664  bool isPostfix() const { return isPostfix(getOpcode()); }
1665
1666  static bool isIncrementOp(Opcode Op) {
1667    return Op == UO_PreInc || Op == UO_PostInc;
1668  }
1669  bool isIncrementOp() const {
1670    return isIncrementOp(getOpcode());
1671  }
1672
1673  static bool isDecrementOp(Opcode Op) {
1674    return Op == UO_PreDec || Op == UO_PostDec;
1675  }
1676  bool isDecrementOp() const {
1677    return isDecrementOp(getOpcode());
1678  }
1679
1680  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1681  bool isIncrementDecrementOp() const {
1682    return isIncrementDecrementOp(getOpcode());
1683  }
1684
1685  static bool isArithmeticOp(Opcode Op) {
1686    return Op >= UO_Plus && Op <= UO_LNot;
1687  }
1688  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1689
1690  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1691  /// corresponds to, e.g. "sizeof" or "[pre]++"
1692  static StringRef getOpcodeStr(Opcode Op);
1693
1694  /// \brief Retrieve the unary opcode that corresponds to the given
1695  /// overloaded operator.
1696  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1697
1698  /// \brief Retrieve the overloaded operator kind that corresponds to
1699  /// the given unary opcode.
1700  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1701
1702  SourceLocation getLocStart() const LLVM_READONLY {
1703    return isPostfix() ? Val->getLocStart() : Loc;
1704  }
1705  SourceLocation getLocEnd() const LLVM_READONLY {
1706    return isPostfix() ? Loc : Val->getLocEnd();
1707  }
1708  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1709
1710  static bool classof(const Stmt *T) {
1711    return T->getStmtClass() == UnaryOperatorClass;
1712  }
1713
1714  // Iterators
1715  child_range children() { return child_range(&Val, &Val+1); }
1716};
1717
1718/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1719/// offsetof(record-type, member-designator). For example, given:
1720/// @code
1721/// struct S {
1722///   float f;
1723///   double d;
1724/// };
1725/// struct T {
1726///   int i;
1727///   struct S s[10];
1728/// };
1729/// @endcode
1730/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1731
1732class OffsetOfExpr : public Expr {
1733public:
1734  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1735  class OffsetOfNode {
1736  public:
1737    /// \brief The kind of offsetof node we have.
1738    enum Kind {
1739      /// \brief An index into an array.
1740      Array = 0x00,
1741      /// \brief A field.
1742      Field = 0x01,
1743      /// \brief A field in a dependent type, known only by its name.
1744      Identifier = 0x02,
1745      /// \brief An implicit indirection through a C++ base class, when the
1746      /// field found is in a base class.
1747      Base = 0x03
1748    };
1749
1750  private:
1751    enum { MaskBits = 2, Mask = 0x03 };
1752
1753    /// \brief The source range that covers this part of the designator.
1754    SourceRange Range;
1755
1756    /// \brief The data describing the designator, which comes in three
1757    /// different forms, depending on the lower two bits.
1758    ///   - An unsigned index into the array of Expr*'s stored after this node
1759    ///     in memory, for [constant-expression] designators.
1760    ///   - A FieldDecl*, for references to a known field.
1761    ///   - An IdentifierInfo*, for references to a field with a given name
1762    ///     when the class type is dependent.
1763    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1764    ///     base class.
1765    uintptr_t Data;
1766
1767  public:
1768    /// \brief Create an offsetof node that refers to an array element.
1769    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1770                 SourceLocation RBracketLoc)
1771      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1772
1773    /// \brief Create an offsetof node that refers to a field.
1774    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1775                 SourceLocation NameLoc)
1776      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1777        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1778
1779    /// \brief Create an offsetof node that refers to an identifier.
1780    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1781                 SourceLocation NameLoc)
1782      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1783        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1784
1785    /// \brief Create an offsetof node that refers into a C++ base class.
1786    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1787      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1788
1789    /// \brief Determine what kind of offsetof node this is.
1790    Kind getKind() const {
1791      return static_cast<Kind>(Data & Mask);
1792    }
1793
1794    /// \brief For an array element node, returns the index into the array
1795    /// of expressions.
1796    unsigned getArrayExprIndex() const {
1797      assert(getKind() == Array);
1798      return Data >> 2;
1799    }
1800
1801    /// \brief For a field offsetof node, returns the field.
1802    FieldDecl *getField() const {
1803      assert(getKind() == Field);
1804      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1805    }
1806
1807    /// \brief For a field or identifier offsetof node, returns the name of
1808    /// the field.
1809    IdentifierInfo *getFieldName() const;
1810
1811    /// \brief For a base class node, returns the base specifier.
1812    CXXBaseSpecifier *getBase() const {
1813      assert(getKind() == Base);
1814      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1815    }
1816
1817    /// \brief Retrieve the source range that covers this offsetof node.
1818    ///
1819    /// For an array element node, the source range contains the locations of
1820    /// the square brackets. For a field or identifier node, the source range
1821    /// contains the location of the period (if there is one) and the
1822    /// identifier.
1823    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1824    SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1825    SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1826  };
1827
1828private:
1829
1830  SourceLocation OperatorLoc, RParenLoc;
1831  // Base type;
1832  TypeSourceInfo *TSInfo;
1833  // Number of sub-components (i.e. instances of OffsetOfNode).
1834  unsigned NumComps;
1835  // Number of sub-expressions (i.e. array subscript expressions).
1836  unsigned NumExprs;
1837
1838  OffsetOfExpr(ASTContext &C, QualType type,
1839               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1840               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1841               SourceLocation RParenLoc);
1842
1843  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1844    : Expr(OffsetOfExprClass, EmptyShell()),
1845      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1846
1847public:
1848
1849  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1850                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1851                              ArrayRef<OffsetOfNode> comps,
1852                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1853
1854  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1855                                   unsigned NumComps, unsigned NumExprs);
1856
1857  /// getOperatorLoc - Return the location of the operator.
1858  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1859  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1860
1861  /// \brief Return the location of the right parentheses.
1862  SourceLocation getRParenLoc() const { return RParenLoc; }
1863  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1864
1865  TypeSourceInfo *getTypeSourceInfo() const {
1866    return TSInfo;
1867  }
1868  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1869    TSInfo = tsi;
1870  }
1871
1872  const OffsetOfNode &getComponent(unsigned Idx) const {
1873    assert(Idx < NumComps && "Subscript out of range");
1874    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1875  }
1876
1877  void setComponent(unsigned Idx, OffsetOfNode ON) {
1878    assert(Idx < NumComps && "Subscript out of range");
1879    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1880  }
1881
1882  unsigned getNumComponents() const {
1883    return NumComps;
1884  }
1885
1886  Expr* getIndexExpr(unsigned Idx) {
1887    assert(Idx < NumExprs && "Subscript out of range");
1888    return reinterpret_cast<Expr **>(
1889                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1890  }
1891  const Expr *getIndexExpr(unsigned Idx) const {
1892    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1893  }
1894
1895  void setIndexExpr(unsigned Idx, Expr* E) {
1896    assert(Idx < NumComps && "Subscript out of range");
1897    reinterpret_cast<Expr **>(
1898                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1899  }
1900
1901  unsigned getNumExpressions() const {
1902    return NumExprs;
1903  }
1904
1905  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
1906  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1907
1908  static bool classof(const Stmt *T) {
1909    return T->getStmtClass() == OffsetOfExprClass;
1910  }
1911
1912  // Iterators
1913  child_range children() {
1914    Stmt **begin =
1915      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1916                               + NumComps);
1917    return child_range(begin, begin + NumExprs);
1918  }
1919};
1920
1921/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1922/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1923/// vec_step (OpenCL 1.1 6.11.12).
1924class UnaryExprOrTypeTraitExpr : public Expr {
1925  union {
1926    TypeSourceInfo *Ty;
1927    Stmt *Ex;
1928  } Argument;
1929  SourceLocation OpLoc, RParenLoc;
1930
1931public:
1932  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1933                           QualType resultType, SourceLocation op,
1934                           SourceLocation rp) :
1935      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1936           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1937           // Value-dependent if the argument is type-dependent.
1938           TInfo->getType()->isDependentType(),
1939           TInfo->getType()->isInstantiationDependentType(),
1940           TInfo->getType()->containsUnexpandedParameterPack()),
1941      OpLoc(op), RParenLoc(rp) {
1942    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1943    UnaryExprOrTypeTraitExprBits.IsType = true;
1944    Argument.Ty = TInfo;
1945  }
1946
1947  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1948                           QualType resultType, SourceLocation op,
1949                           SourceLocation rp) :
1950      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1951           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1952           // Value-dependent if the argument is type-dependent.
1953           E->isTypeDependent(),
1954           E->isInstantiationDependent(),
1955           E->containsUnexpandedParameterPack()),
1956      OpLoc(op), RParenLoc(rp) {
1957    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1958    UnaryExprOrTypeTraitExprBits.IsType = false;
1959    Argument.Ex = E;
1960  }
1961
1962  /// \brief Construct an empty sizeof/alignof expression.
1963  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1964    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1965
1966  UnaryExprOrTypeTrait getKind() const {
1967    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1968  }
1969  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1970
1971  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1972  QualType getArgumentType() const {
1973    return getArgumentTypeInfo()->getType();
1974  }
1975  TypeSourceInfo *getArgumentTypeInfo() const {
1976    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1977    return Argument.Ty;
1978  }
1979  Expr *getArgumentExpr() {
1980    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1981    return static_cast<Expr*>(Argument.Ex);
1982  }
1983  const Expr *getArgumentExpr() const {
1984    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1985  }
1986
1987  void setArgument(Expr *E) {
1988    Argument.Ex = E;
1989    UnaryExprOrTypeTraitExprBits.IsType = false;
1990  }
1991  void setArgument(TypeSourceInfo *TInfo) {
1992    Argument.Ty = TInfo;
1993    UnaryExprOrTypeTraitExprBits.IsType = true;
1994  }
1995
1996  /// Gets the argument type, or the type of the argument expression, whichever
1997  /// is appropriate.
1998  QualType getTypeOfArgument() const {
1999    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2000  }
2001
2002  SourceLocation getOperatorLoc() const { return OpLoc; }
2003  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2004
2005  SourceLocation getRParenLoc() const { return RParenLoc; }
2006  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2007
2008  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2009  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2010
2011  static bool classof(const Stmt *T) {
2012    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2013  }
2014
2015  // Iterators
2016  child_range children();
2017};
2018
2019//===----------------------------------------------------------------------===//
2020// Postfix Operators.
2021//===----------------------------------------------------------------------===//
2022
2023/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2024class ArraySubscriptExpr : public Expr {
2025  enum { LHS, RHS, END_EXPR=2 };
2026  Stmt* SubExprs[END_EXPR];
2027  SourceLocation RBracketLoc;
2028public:
2029  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2030                     ExprValueKind VK, ExprObjectKind OK,
2031                     SourceLocation rbracketloc)
2032  : Expr(ArraySubscriptExprClass, t, VK, OK,
2033         lhs->isTypeDependent() || rhs->isTypeDependent(),
2034         lhs->isValueDependent() || rhs->isValueDependent(),
2035         (lhs->isInstantiationDependent() ||
2036          rhs->isInstantiationDependent()),
2037         (lhs->containsUnexpandedParameterPack() ||
2038          rhs->containsUnexpandedParameterPack())),
2039    RBracketLoc(rbracketloc) {
2040    SubExprs[LHS] = lhs;
2041    SubExprs[RHS] = rhs;
2042  }
2043
2044  /// \brief Create an empty array subscript expression.
2045  explicit ArraySubscriptExpr(EmptyShell Shell)
2046    : Expr(ArraySubscriptExprClass, Shell) { }
2047
2048  /// An array access can be written A[4] or 4[A] (both are equivalent).
2049  /// - getBase() and getIdx() always present the normalized view: A[4].
2050  ///    In this case getBase() returns "A" and getIdx() returns "4".
2051  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2052  ///    4[A] getLHS() returns "4".
2053  /// Note: Because vector element access is also written A[4] we must
2054  /// predicate the format conversion in getBase and getIdx only on the
2055  /// the type of the RHS, as it is possible for the LHS to be a vector of
2056  /// integer type
2057  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2058  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2059  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2060
2061  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2062  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2063  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2064
2065  Expr *getBase() {
2066    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2067  }
2068
2069  const Expr *getBase() const {
2070    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2071  }
2072
2073  Expr *getIdx() {
2074    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2075  }
2076
2077  const Expr *getIdx() const {
2078    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2079  }
2080
2081  SourceLocation getLocStart() const LLVM_READONLY {
2082    return getLHS()->getLocStart();
2083  }
2084  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2085
2086  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2087  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2088
2089  SourceLocation getExprLoc() const LLVM_READONLY {
2090    return getBase()->getExprLoc();
2091  }
2092
2093  static bool classof(const Stmt *T) {
2094    return T->getStmtClass() == ArraySubscriptExprClass;
2095  }
2096
2097  // Iterators
2098  child_range children() {
2099    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2100  }
2101};
2102
2103
2104/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2105/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2106/// while its subclasses may represent alternative syntax that (semantically)
2107/// results in a function call. For example, CXXOperatorCallExpr is
2108/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2109/// "str1 + str2" to resolve to a function call.
2110class CallExpr : public Expr {
2111  enum { FN=0, PREARGS_START=1 };
2112  Stmt **SubExprs;
2113  unsigned NumArgs;
2114  SourceLocation RParenLoc;
2115
2116protected:
2117  // These versions of the constructor are for derived classes.
2118  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2119           ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2120           SourceLocation rparenloc);
2121  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2122
2123  Stmt *getPreArg(unsigned i) {
2124    assert(i < getNumPreArgs() && "Prearg access out of range!");
2125    return SubExprs[PREARGS_START+i];
2126  }
2127  const Stmt *getPreArg(unsigned i) const {
2128    assert(i < getNumPreArgs() && "Prearg access out of range!");
2129    return SubExprs[PREARGS_START+i];
2130  }
2131  void setPreArg(unsigned i, Stmt *PreArg) {
2132    assert(i < getNumPreArgs() && "Prearg access out of range!");
2133    SubExprs[PREARGS_START+i] = PreArg;
2134  }
2135
2136  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2137
2138public:
2139  CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2140           ExprValueKind VK, SourceLocation rparenloc);
2141
2142  /// \brief Build an empty call expression.
2143  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2144
2145  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2146  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2147  void setCallee(Expr *F) { SubExprs[FN] = F; }
2148
2149  Decl *getCalleeDecl();
2150  const Decl *getCalleeDecl() const {
2151    return const_cast<CallExpr*>(this)->getCalleeDecl();
2152  }
2153
2154  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2155  FunctionDecl *getDirectCallee();
2156  const FunctionDecl *getDirectCallee() const {
2157    return const_cast<CallExpr*>(this)->getDirectCallee();
2158  }
2159
2160  /// getNumArgs - Return the number of actual arguments to this call.
2161  ///
2162  unsigned getNumArgs() const { return NumArgs; }
2163
2164  /// \brief Retrieve the call arguments.
2165  Expr **getArgs() {
2166    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2167  }
2168  const Expr *const *getArgs() const {
2169    return const_cast<CallExpr*>(this)->getArgs();
2170  }
2171
2172  /// getArg - Return the specified argument.
2173  Expr *getArg(unsigned Arg) {
2174    assert(Arg < NumArgs && "Arg access out of range!");
2175    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2176  }
2177  const Expr *getArg(unsigned Arg) const {
2178    assert(Arg < NumArgs && "Arg access out of range!");
2179    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2180  }
2181
2182  /// setArg - Set the specified argument.
2183  void setArg(unsigned Arg, Expr *ArgExpr) {
2184    assert(Arg < NumArgs && "Arg access out of range!");
2185    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2186  }
2187
2188  /// setNumArgs - This changes the number of arguments present in this call.
2189  /// Any orphaned expressions are deleted by this, and any new operands are set
2190  /// to null.
2191  void setNumArgs(ASTContext& C, unsigned NumArgs);
2192
2193  typedef ExprIterator arg_iterator;
2194  typedef ConstExprIterator const_arg_iterator;
2195
2196  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2197  arg_iterator arg_end() {
2198    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2199  }
2200  const_arg_iterator arg_begin() const {
2201    return SubExprs+PREARGS_START+getNumPreArgs();
2202  }
2203  const_arg_iterator arg_end() const {
2204    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2205  }
2206
2207  /// getNumCommas - Return the number of commas that must have been present in
2208  /// this function call.
2209  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2210
2211  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2212  /// not, return 0.
2213  unsigned isBuiltinCall() const;
2214
2215  /// \brief Returns \c true if this is a call to a builtin which does not
2216  /// evaluate side-effects within its arguments.
2217  bool isUnevaluatedBuiltinCall(ASTContext &Ctx) const;
2218
2219  /// getCallReturnType - Get the return type of the call expr. This is not
2220  /// always the type of the expr itself, if the return type is a reference
2221  /// type.
2222  QualType getCallReturnType() const;
2223
2224  SourceLocation getRParenLoc() const { return RParenLoc; }
2225  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2226
2227  SourceLocation getLocStart() const LLVM_READONLY;
2228  SourceLocation getLocEnd() const LLVM_READONLY;
2229
2230  static bool classof(const Stmt *T) {
2231    return T->getStmtClass() >= firstCallExprConstant &&
2232           T->getStmtClass() <= lastCallExprConstant;
2233  }
2234
2235  // Iterators
2236  child_range children() {
2237    return child_range(&SubExprs[0],
2238                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2239  }
2240};
2241
2242/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2243///
2244class MemberExpr : public Expr {
2245  /// Extra data stored in some member expressions.
2246  struct MemberNameQualifier {
2247    /// \brief The nested-name-specifier that qualifies the name, including
2248    /// source-location information.
2249    NestedNameSpecifierLoc QualifierLoc;
2250
2251    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2252    /// name qualifiers.
2253    DeclAccessPair FoundDecl;
2254  };
2255
2256  /// Base - the expression for the base pointer or structure references.  In
2257  /// X.F, this is "X".
2258  Stmt *Base;
2259
2260  /// MemberDecl - This is the decl being referenced by the field/member name.
2261  /// In X.F, this is the decl referenced by F.
2262  ValueDecl *MemberDecl;
2263
2264  /// MemberDNLoc - Provides source/type location info for the
2265  /// declaration name embedded in MemberDecl.
2266  DeclarationNameLoc MemberDNLoc;
2267
2268  /// MemberLoc - This is the location of the member name.
2269  SourceLocation MemberLoc;
2270
2271  /// IsArrow - True if this is "X->F", false if this is "X.F".
2272  bool IsArrow : 1;
2273
2274  /// \brief True if this member expression used a nested-name-specifier to
2275  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2276  /// declaration.  When true, a MemberNameQualifier
2277  /// structure is allocated immediately after the MemberExpr.
2278  bool HasQualifierOrFoundDecl : 1;
2279
2280  /// \brief True if this member expression specified a template keyword
2281  /// and/or a template argument list explicitly, e.g., x->f<int>,
2282  /// x->template f, x->template f<int>.
2283  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2284  /// TemplateArguments (if any) are allocated immediately after
2285  /// the MemberExpr or, if the member expression also has a qualifier,
2286  /// after the MemberNameQualifier structure.
2287  bool HasTemplateKWAndArgsInfo : 1;
2288
2289  /// \brief True if this member expression refers to a method that
2290  /// was resolved from an overloaded set having size greater than 1.
2291  bool HadMultipleCandidates : 1;
2292
2293  /// \brief Retrieve the qualifier that preceded the member name, if any.
2294  MemberNameQualifier *getMemberQualifier() {
2295    assert(HasQualifierOrFoundDecl);
2296    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2297  }
2298
2299  /// \brief Retrieve the qualifier that preceded the member name, if any.
2300  const MemberNameQualifier *getMemberQualifier() const {
2301    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2302  }
2303
2304public:
2305  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2306             const DeclarationNameInfo &NameInfo, QualType ty,
2307             ExprValueKind VK, ExprObjectKind OK)
2308    : Expr(MemberExprClass, ty, VK, OK,
2309           base->isTypeDependent(),
2310           base->isValueDependent(),
2311           base->isInstantiationDependent(),
2312           base->containsUnexpandedParameterPack()),
2313      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2314      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2315      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2316      HadMultipleCandidates(false) {
2317    assert(memberdecl->getDeclName() == NameInfo.getName());
2318  }
2319
2320  // NOTE: this constructor should be used only when it is known that
2321  // the member name can not provide additional syntactic info
2322  // (i.e., source locations for C++ operator names or type source info
2323  // for constructors, destructors and conversion operators).
2324  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2325             SourceLocation l, QualType ty,
2326             ExprValueKind VK, ExprObjectKind OK)
2327    : Expr(MemberExprClass, ty, VK, OK,
2328           base->isTypeDependent(), base->isValueDependent(),
2329           base->isInstantiationDependent(),
2330           base->containsUnexpandedParameterPack()),
2331      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2332      IsArrow(isarrow),
2333      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2334      HadMultipleCandidates(false) {}
2335
2336  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2337                            NestedNameSpecifierLoc QualifierLoc,
2338                            SourceLocation TemplateKWLoc,
2339                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2340                            DeclarationNameInfo MemberNameInfo,
2341                            const TemplateArgumentListInfo *targs,
2342                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2343
2344  void setBase(Expr *E) { Base = E; }
2345  Expr *getBase() const { return cast<Expr>(Base); }
2346
2347  /// \brief Retrieve the member declaration to which this expression refers.
2348  ///
2349  /// The returned declaration will either be a FieldDecl or (in C++)
2350  /// a CXXMethodDecl.
2351  ValueDecl *getMemberDecl() const { return MemberDecl; }
2352  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2353
2354  /// \brief Retrieves the declaration found by lookup.
2355  DeclAccessPair getFoundDecl() const {
2356    if (!HasQualifierOrFoundDecl)
2357      return DeclAccessPair::make(getMemberDecl(),
2358                                  getMemberDecl()->getAccess());
2359    return getMemberQualifier()->FoundDecl;
2360  }
2361
2362  /// \brief Determines whether this member expression actually had
2363  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2364  /// x->Base::foo.
2365  bool hasQualifier() const { return getQualifier() != 0; }
2366
2367  /// \brief If the member name was qualified, retrieves the
2368  /// nested-name-specifier that precedes the member name. Otherwise, returns
2369  /// NULL.
2370  NestedNameSpecifier *getQualifier() const {
2371    if (!HasQualifierOrFoundDecl)
2372      return 0;
2373
2374    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2375  }
2376
2377  /// \brief If the member name was qualified, retrieves the
2378  /// nested-name-specifier that precedes the member name, with source-location
2379  /// information.
2380  NestedNameSpecifierLoc getQualifierLoc() const {
2381    if (!hasQualifier())
2382      return NestedNameSpecifierLoc();
2383
2384    return getMemberQualifier()->QualifierLoc;
2385  }
2386
2387  /// \brief Return the optional template keyword and arguments info.
2388  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2389    if (!HasTemplateKWAndArgsInfo)
2390      return 0;
2391
2392    if (!HasQualifierOrFoundDecl)
2393      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2394
2395    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2396                                                      getMemberQualifier() + 1);
2397  }
2398
2399  /// \brief Return the optional template keyword and arguments info.
2400  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2401    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2402  }
2403
2404  /// \brief Retrieve the location of the template keyword preceding
2405  /// the member name, if any.
2406  SourceLocation getTemplateKeywordLoc() const {
2407    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2408    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2409  }
2410
2411  /// \brief Retrieve the location of the left angle bracket starting the
2412  /// explicit template argument list following the member name, if any.
2413  SourceLocation getLAngleLoc() const {
2414    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2415    return getTemplateKWAndArgsInfo()->LAngleLoc;
2416  }
2417
2418  /// \brief Retrieve the location of the right angle bracket ending the
2419  /// explicit template argument list following the member name, if any.
2420  SourceLocation getRAngleLoc() const {
2421    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2422    return getTemplateKWAndArgsInfo()->RAngleLoc;
2423  }
2424
2425  /// Determines whether the member name was preceded by the template keyword.
2426  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2427
2428  /// \brief Determines whether the member name was followed by an
2429  /// explicit template argument list.
2430  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2431
2432  /// \brief Copies the template arguments (if present) into the given
2433  /// structure.
2434  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2435    if (hasExplicitTemplateArgs())
2436      getExplicitTemplateArgs().copyInto(List);
2437  }
2438
2439  /// \brief Retrieve the explicit template argument list that
2440  /// follow the member template name.  This must only be called on an
2441  /// expression with explicit template arguments.
2442  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2443    assert(hasExplicitTemplateArgs());
2444    return *getTemplateKWAndArgsInfo();
2445  }
2446
2447  /// \brief Retrieve the explicit template argument list that
2448  /// followed the member template name.  This must only be called on
2449  /// an expression with explicit template arguments.
2450  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2451    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2452  }
2453
2454  /// \brief Retrieves the optional explicit template arguments.
2455  /// This points to the same data as getExplicitTemplateArgs(), but
2456  /// returns null if there are no explicit template arguments.
2457  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2458    if (!hasExplicitTemplateArgs()) return 0;
2459    return &getExplicitTemplateArgs();
2460  }
2461
2462  /// \brief Retrieve the template arguments provided as part of this
2463  /// template-id.
2464  const TemplateArgumentLoc *getTemplateArgs() const {
2465    if (!hasExplicitTemplateArgs())
2466      return 0;
2467
2468    return getExplicitTemplateArgs().getTemplateArgs();
2469  }
2470
2471  /// \brief Retrieve the number of template arguments provided as part of this
2472  /// template-id.
2473  unsigned getNumTemplateArgs() const {
2474    if (!hasExplicitTemplateArgs())
2475      return 0;
2476
2477    return getExplicitTemplateArgs().NumTemplateArgs;
2478  }
2479
2480  /// \brief Retrieve the member declaration name info.
2481  DeclarationNameInfo getMemberNameInfo() const {
2482    return DeclarationNameInfo(MemberDecl->getDeclName(),
2483                               MemberLoc, MemberDNLoc);
2484  }
2485
2486  bool isArrow() const { return IsArrow; }
2487  void setArrow(bool A) { IsArrow = A; }
2488
2489  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2490  /// location of 'F'.
2491  SourceLocation getMemberLoc() const { return MemberLoc; }
2492  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2493
2494  SourceLocation getLocStart() const LLVM_READONLY;
2495  SourceLocation getLocEnd() const LLVM_READONLY;
2496
2497  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2498
2499  /// \brief Determine whether the base of this explicit is implicit.
2500  bool isImplicitAccess() const {
2501    return getBase() && getBase()->isImplicitCXXThis();
2502  }
2503
2504  /// \brief Returns true if this member expression refers to a method that
2505  /// was resolved from an overloaded set having size greater than 1.
2506  bool hadMultipleCandidates() const {
2507    return HadMultipleCandidates;
2508  }
2509  /// \brief Sets the flag telling whether this expression refers to
2510  /// a method that was resolved from an overloaded set having size
2511  /// greater than 1.
2512  void setHadMultipleCandidates(bool V = true) {
2513    HadMultipleCandidates = V;
2514  }
2515
2516  static bool classof(const Stmt *T) {
2517    return T->getStmtClass() == MemberExprClass;
2518  }
2519
2520  // Iterators
2521  child_range children() { return child_range(&Base, &Base+1); }
2522
2523  friend class ASTReader;
2524  friend class ASTStmtWriter;
2525};
2526
2527/// CompoundLiteralExpr - [C99 6.5.2.5]
2528///
2529class CompoundLiteralExpr : public Expr {
2530  /// LParenLoc - If non-null, this is the location of the left paren in a
2531  /// compound literal like "(int){4}".  This can be null if this is a
2532  /// synthesized compound expression.
2533  SourceLocation LParenLoc;
2534
2535  /// The type as written.  This can be an incomplete array type, in
2536  /// which case the actual expression type will be different.
2537  /// The int part of the pair stores whether this expr is file scope.
2538  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2539  Stmt *Init;
2540public:
2541  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2542                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2543    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2544           tinfo->getType()->isDependentType(),
2545           init->isValueDependent(),
2546           (init->isInstantiationDependent() ||
2547            tinfo->getType()->isInstantiationDependentType()),
2548           init->containsUnexpandedParameterPack()),
2549      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2550
2551  /// \brief Construct an empty compound literal.
2552  explicit CompoundLiteralExpr(EmptyShell Empty)
2553    : Expr(CompoundLiteralExprClass, Empty) { }
2554
2555  const Expr *getInitializer() const { return cast<Expr>(Init); }
2556  Expr *getInitializer() { return cast<Expr>(Init); }
2557  void setInitializer(Expr *E) { Init = E; }
2558
2559  bool isFileScope() const { return TInfoAndScope.getInt(); }
2560  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2561
2562  SourceLocation getLParenLoc() const { return LParenLoc; }
2563  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2564
2565  TypeSourceInfo *getTypeSourceInfo() const {
2566    return TInfoAndScope.getPointer();
2567  }
2568  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2569    TInfoAndScope.setPointer(tinfo);
2570  }
2571
2572  SourceLocation getLocStart() const LLVM_READONLY {
2573    // FIXME: Init should never be null.
2574    if (!Init)
2575      return SourceLocation();
2576    if (LParenLoc.isInvalid())
2577      return Init->getLocStart();
2578    return LParenLoc;
2579  }
2580  SourceLocation getLocEnd() const LLVM_READONLY {
2581    // FIXME: Init should never be null.
2582    if (!Init)
2583      return SourceLocation();
2584    return Init->getLocEnd();
2585  }
2586
2587  static bool classof(const Stmt *T) {
2588    return T->getStmtClass() == CompoundLiteralExprClass;
2589  }
2590
2591  // Iterators
2592  child_range children() { return child_range(&Init, &Init+1); }
2593};
2594
2595/// CastExpr - Base class for type casts, including both implicit
2596/// casts (ImplicitCastExpr) and explicit casts that have some
2597/// representation in the source code (ExplicitCastExpr's derived
2598/// classes).
2599class CastExpr : public Expr {
2600public:
2601  typedef clang::CastKind CastKind;
2602
2603private:
2604  Stmt *Op;
2605
2606  void CheckCastConsistency() const;
2607
2608  const CXXBaseSpecifier * const *path_buffer() const {
2609    return const_cast<CastExpr*>(this)->path_buffer();
2610  }
2611  CXXBaseSpecifier **path_buffer();
2612
2613  void setBasePathSize(unsigned basePathSize) {
2614    CastExprBits.BasePathSize = basePathSize;
2615    assert(CastExprBits.BasePathSize == basePathSize &&
2616           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2617  }
2618
2619protected:
2620  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2621           const CastKind kind, Expr *op, unsigned BasePathSize) :
2622    Expr(SC, ty, VK, OK_Ordinary,
2623         // Cast expressions are type-dependent if the type is
2624         // dependent (C++ [temp.dep.expr]p3).
2625         ty->isDependentType(),
2626         // Cast expressions are value-dependent if the type is
2627         // dependent or if the subexpression is value-dependent.
2628         ty->isDependentType() || (op && op->isValueDependent()),
2629         (ty->isInstantiationDependentType() ||
2630          (op && op->isInstantiationDependent())),
2631         (ty->containsUnexpandedParameterPack() ||
2632          op->containsUnexpandedParameterPack())),
2633    Op(op) {
2634    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2635    CastExprBits.Kind = kind;
2636    setBasePathSize(BasePathSize);
2637#ifndef NDEBUG
2638    CheckCastConsistency();
2639#endif
2640  }
2641
2642  /// \brief Construct an empty cast.
2643  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2644    : Expr(SC, Empty) {
2645    setBasePathSize(BasePathSize);
2646  }
2647
2648public:
2649  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2650  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2651  const char *getCastKindName() const;
2652
2653  Expr *getSubExpr() { return cast<Expr>(Op); }
2654  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2655  void setSubExpr(Expr *E) { Op = E; }
2656
2657  /// \brief Retrieve the cast subexpression as it was written in the source
2658  /// code, looking through any implicit casts or other intermediate nodes
2659  /// introduced by semantic analysis.
2660  Expr *getSubExprAsWritten();
2661  const Expr *getSubExprAsWritten() const {
2662    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2663  }
2664
2665  typedef CXXBaseSpecifier **path_iterator;
2666  typedef const CXXBaseSpecifier * const *path_const_iterator;
2667  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2668  unsigned path_size() const { return CastExprBits.BasePathSize; }
2669  path_iterator path_begin() { return path_buffer(); }
2670  path_iterator path_end() { return path_buffer() + path_size(); }
2671  path_const_iterator path_begin() const { return path_buffer(); }
2672  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2673
2674  void setCastPath(const CXXCastPath &Path);
2675
2676  static bool classof(const Stmt *T) {
2677    return T->getStmtClass() >= firstCastExprConstant &&
2678           T->getStmtClass() <= lastCastExprConstant;
2679  }
2680
2681  // Iterators
2682  child_range children() { return child_range(&Op, &Op+1); }
2683};
2684
2685/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2686/// conversions, which have no direct representation in the original
2687/// source code. For example: converting T[]->T*, void f()->void
2688/// (*f)(), float->double, short->int, etc.
2689///
2690/// In C, implicit casts always produce rvalues. However, in C++, an
2691/// implicit cast whose result is being bound to a reference will be
2692/// an lvalue or xvalue. For example:
2693///
2694/// @code
2695/// class Base { };
2696/// class Derived : public Base { };
2697/// Derived &&ref();
2698/// void f(Derived d) {
2699///   Base& b = d; // initializer is an ImplicitCastExpr
2700///                // to an lvalue of type Base
2701///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2702///                     // to an xvalue of type Base
2703/// }
2704/// @endcode
2705class ImplicitCastExpr : public CastExpr {
2706private:
2707  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2708                   unsigned BasePathLength, ExprValueKind VK)
2709    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2710  }
2711
2712  /// \brief Construct an empty implicit cast.
2713  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2714    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2715
2716public:
2717  enum OnStack_t { OnStack };
2718  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2719                   ExprValueKind VK)
2720    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2721  }
2722
2723  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2724                                  CastKind Kind, Expr *Operand,
2725                                  const CXXCastPath *BasePath,
2726                                  ExprValueKind Cat);
2727
2728  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2729
2730  SourceLocation getLocStart() const LLVM_READONLY {
2731    return getSubExpr()->getLocStart();
2732  }
2733  SourceLocation getLocEnd() const LLVM_READONLY {
2734    return getSubExpr()->getLocEnd();
2735  }
2736
2737  static bool classof(const Stmt *T) {
2738    return T->getStmtClass() == ImplicitCastExprClass;
2739  }
2740};
2741
2742inline Expr *Expr::IgnoreImpCasts() {
2743  Expr *e = this;
2744  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2745    e = ice->getSubExpr();
2746  return e;
2747}
2748
2749/// ExplicitCastExpr - An explicit cast written in the source
2750/// code.
2751///
2752/// This class is effectively an abstract class, because it provides
2753/// the basic representation of an explicitly-written cast without
2754/// specifying which kind of cast (C cast, functional cast, static
2755/// cast, etc.) was written; specific derived classes represent the
2756/// particular style of cast and its location information.
2757///
2758/// Unlike implicit casts, explicit cast nodes have two different
2759/// types: the type that was written into the source code, and the
2760/// actual type of the expression as determined by semantic
2761/// analysis. These types may differ slightly. For example, in C++ one
2762/// can cast to a reference type, which indicates that the resulting
2763/// expression will be an lvalue or xvalue. The reference type, however,
2764/// will not be used as the type of the expression.
2765class ExplicitCastExpr : public CastExpr {
2766  /// TInfo - Source type info for the (written) type
2767  /// this expression is casting to.
2768  TypeSourceInfo *TInfo;
2769
2770protected:
2771  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2772                   CastKind kind, Expr *op, unsigned PathSize,
2773                   TypeSourceInfo *writtenTy)
2774    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2775
2776  /// \brief Construct an empty explicit cast.
2777  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2778    : CastExpr(SC, Shell, PathSize) { }
2779
2780public:
2781  /// getTypeInfoAsWritten - Returns the type source info for the type
2782  /// that this expression is casting to.
2783  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2784  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2785
2786  /// getTypeAsWritten - Returns the type that this expression is
2787  /// casting to, as written in the source code.
2788  QualType getTypeAsWritten() const { return TInfo->getType(); }
2789
2790  static bool classof(const Stmt *T) {
2791     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2792            T->getStmtClass() <= lastExplicitCastExprConstant;
2793  }
2794};
2795
2796/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2797/// cast in C++ (C++ [expr.cast]), which uses the syntax
2798/// (Type)expr. For example: @c (int)f.
2799class CStyleCastExpr : public ExplicitCastExpr {
2800  SourceLocation LPLoc; // the location of the left paren
2801  SourceLocation RPLoc; // the location of the right paren
2802
2803  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2804                 unsigned PathSize, TypeSourceInfo *writtenTy,
2805                 SourceLocation l, SourceLocation r)
2806    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2807                       writtenTy), LPLoc(l), RPLoc(r) {}
2808
2809  /// \brief Construct an empty C-style explicit cast.
2810  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2811    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2812
2813public:
2814  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2815                                ExprValueKind VK, CastKind K,
2816                                Expr *Op, const CXXCastPath *BasePath,
2817                                TypeSourceInfo *WrittenTy, SourceLocation L,
2818                                SourceLocation R);
2819
2820  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2821
2822  SourceLocation getLParenLoc() const { return LPLoc; }
2823  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2824
2825  SourceLocation getRParenLoc() const { return RPLoc; }
2826  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2827
2828  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2829  SourceLocation getLocEnd() const LLVM_READONLY {
2830    return getSubExpr()->getLocEnd();
2831  }
2832
2833  static bool classof(const Stmt *T) {
2834    return T->getStmtClass() == CStyleCastExprClass;
2835  }
2836};
2837
2838/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2839///
2840/// This expression node kind describes a builtin binary operation,
2841/// such as "x + y" for integer values "x" and "y". The operands will
2842/// already have been converted to appropriate types (e.g., by
2843/// performing promotions or conversions).
2844///
2845/// In C++, where operators may be overloaded, a different kind of
2846/// expression node (CXXOperatorCallExpr) is used to express the
2847/// invocation of an overloaded operator with operator syntax. Within
2848/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2849/// used to store an expression "x + y" depends on the subexpressions
2850/// for x and y. If neither x or y is type-dependent, and the "+"
2851/// operator resolves to a built-in operation, BinaryOperator will be
2852/// used to express the computation (x and y may still be
2853/// value-dependent). If either x or y is type-dependent, or if the
2854/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2855/// be used to express the computation.
2856class BinaryOperator : public Expr {
2857public:
2858  typedef BinaryOperatorKind Opcode;
2859
2860private:
2861  unsigned Opc : 6;
2862
2863  // Records the FP_CONTRACT pragma status at the point that this binary
2864  // operator was parsed. This bit is only meaningful for operations on
2865  // floating point types. For all other types it should default to
2866  // false.
2867  unsigned FPContractable : 1;
2868  SourceLocation OpLoc;
2869
2870  enum { LHS, RHS, END_EXPR };
2871  Stmt* SubExprs[END_EXPR];
2872public:
2873
2874  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2875                 ExprValueKind VK, ExprObjectKind OK,
2876                 SourceLocation opLoc, bool fpContractable)
2877    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2878           lhs->isTypeDependent() || rhs->isTypeDependent(),
2879           lhs->isValueDependent() || rhs->isValueDependent(),
2880           (lhs->isInstantiationDependent() ||
2881            rhs->isInstantiationDependent()),
2882           (lhs->containsUnexpandedParameterPack() ||
2883            rhs->containsUnexpandedParameterPack())),
2884      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2885    SubExprs[LHS] = lhs;
2886    SubExprs[RHS] = rhs;
2887    assert(!isCompoundAssignmentOp() &&
2888           "Use ArithAssignBinaryOperator for compound assignments");
2889  }
2890
2891  /// \brief Construct an empty binary operator.
2892  explicit BinaryOperator(EmptyShell Empty)
2893    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2894
2895  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2896  SourceLocation getOperatorLoc() const { return OpLoc; }
2897  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2898
2899  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2900  void setOpcode(Opcode O) { Opc = O; }
2901
2902  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2903  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2904  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2905  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2906
2907  SourceLocation getLocStart() const LLVM_READONLY {
2908    return getLHS()->getLocStart();
2909  }
2910  SourceLocation getLocEnd() const LLVM_READONLY {
2911    return getRHS()->getLocEnd();
2912  }
2913
2914  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2915  /// corresponds to, e.g. "<<=".
2916  static StringRef getOpcodeStr(Opcode Op);
2917
2918  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2919
2920  /// \brief Retrieve the binary opcode that corresponds to the given
2921  /// overloaded operator.
2922  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2923
2924  /// \brief Retrieve the overloaded operator kind that corresponds to
2925  /// the given binary opcode.
2926  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2927
2928  /// predicates to categorize the respective opcodes.
2929  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2930  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2931  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2932  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2933  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2934  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2935
2936  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2937  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2938
2939  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2940  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2941
2942  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2943  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2944
2945  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2946  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2947
2948  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2949  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2950
2951  static bool isAssignmentOp(Opcode Opc) {
2952    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2953  }
2954  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2955
2956  static bool isCompoundAssignmentOp(Opcode Opc) {
2957    return Opc > BO_Assign && Opc <= BO_OrAssign;
2958  }
2959  bool isCompoundAssignmentOp() const {
2960    return isCompoundAssignmentOp(getOpcode());
2961  }
2962  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2963    assert(isCompoundAssignmentOp(Opc));
2964    if (Opc >= BO_AndAssign)
2965      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2966    else
2967      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2968  }
2969
2970  static bool isShiftAssignOp(Opcode Opc) {
2971    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2972  }
2973  bool isShiftAssignOp() const {
2974    return isShiftAssignOp(getOpcode());
2975  }
2976
2977  static bool classof(const Stmt *S) {
2978    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2979           S->getStmtClass() <= lastBinaryOperatorConstant;
2980  }
2981
2982  // Iterators
2983  child_range children() {
2984    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2985  }
2986
2987  // Set the FP contractability status of this operator. Only meaningful for
2988  // operations on floating point types.
2989  void setFPContractable(bool FPC) { FPContractable = FPC; }
2990
2991  // Get the FP contractability status of this operator. Only meaningful for
2992  // operations on floating point types.
2993  bool isFPContractable() const { return FPContractable; }
2994
2995protected:
2996  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2997                 ExprValueKind VK, ExprObjectKind OK,
2998                 SourceLocation opLoc, bool fpContractable, bool dead2)
2999    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3000           lhs->isTypeDependent() || rhs->isTypeDependent(),
3001           lhs->isValueDependent() || rhs->isValueDependent(),
3002           (lhs->isInstantiationDependent() ||
3003            rhs->isInstantiationDependent()),
3004           (lhs->containsUnexpandedParameterPack() ||
3005            rhs->containsUnexpandedParameterPack())),
3006      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
3007    SubExprs[LHS] = lhs;
3008    SubExprs[RHS] = rhs;
3009  }
3010
3011  BinaryOperator(StmtClass SC, EmptyShell Empty)
3012    : Expr(SC, Empty), Opc(BO_MulAssign) { }
3013};
3014
3015/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3016/// track of the type the operation is performed in.  Due to the semantics of
3017/// these operators, the operands are promoted, the arithmetic performed, an
3018/// implicit conversion back to the result type done, then the assignment takes
3019/// place.  This captures the intermediate type which the computation is done
3020/// in.
3021class CompoundAssignOperator : public BinaryOperator {
3022  QualType ComputationLHSType;
3023  QualType ComputationResultType;
3024public:
3025  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3026                         ExprValueKind VK, ExprObjectKind OK,
3027                         QualType CompLHSType, QualType CompResultType,
3028                         SourceLocation OpLoc, bool fpContractable)
3029    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
3030                     true),
3031      ComputationLHSType(CompLHSType),
3032      ComputationResultType(CompResultType) {
3033    assert(isCompoundAssignmentOp() &&
3034           "Only should be used for compound assignments");
3035  }
3036
3037  /// \brief Build an empty compound assignment operator expression.
3038  explicit CompoundAssignOperator(EmptyShell Empty)
3039    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3040
3041  // The two computation types are the type the LHS is converted
3042  // to for the computation and the type of the result; the two are
3043  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3044  QualType getComputationLHSType() const { return ComputationLHSType; }
3045  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3046
3047  QualType getComputationResultType() const { return ComputationResultType; }
3048  void setComputationResultType(QualType T) { ComputationResultType = T; }
3049
3050  static bool classof(const Stmt *S) {
3051    return S->getStmtClass() == CompoundAssignOperatorClass;
3052  }
3053};
3054
3055/// AbstractConditionalOperator - An abstract base class for
3056/// ConditionalOperator and BinaryConditionalOperator.
3057class AbstractConditionalOperator : public Expr {
3058  SourceLocation QuestionLoc, ColonLoc;
3059  friend class ASTStmtReader;
3060
3061protected:
3062  AbstractConditionalOperator(StmtClass SC, QualType T,
3063                              ExprValueKind VK, ExprObjectKind OK,
3064                              bool TD, bool VD, bool ID,
3065                              bool ContainsUnexpandedParameterPack,
3066                              SourceLocation qloc,
3067                              SourceLocation cloc)
3068    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3069      QuestionLoc(qloc), ColonLoc(cloc) {}
3070
3071  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3072    : Expr(SC, Empty) { }
3073
3074public:
3075  // getCond - Return the expression representing the condition for
3076  //   the ?: operator.
3077  Expr *getCond() const;
3078
3079  // getTrueExpr - Return the subexpression representing the value of
3080  //   the expression if the condition evaluates to true.
3081  Expr *getTrueExpr() const;
3082
3083  // getFalseExpr - Return the subexpression representing the value of
3084  //   the expression if the condition evaluates to false.  This is
3085  //   the same as getRHS.
3086  Expr *getFalseExpr() const;
3087
3088  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3089  SourceLocation getColonLoc() const { return ColonLoc; }
3090
3091  static bool classof(const Stmt *T) {
3092    return T->getStmtClass() == ConditionalOperatorClass ||
3093           T->getStmtClass() == BinaryConditionalOperatorClass;
3094  }
3095};
3096
3097/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3098/// middle" extension is a BinaryConditionalOperator.
3099class ConditionalOperator : public AbstractConditionalOperator {
3100  enum { COND, LHS, RHS, END_EXPR };
3101  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3102
3103  friend class ASTStmtReader;
3104public:
3105  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3106                      SourceLocation CLoc, Expr *rhs,
3107                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3108    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3109           // FIXME: the type of the conditional operator doesn't
3110           // depend on the type of the conditional, but the standard
3111           // seems to imply that it could. File a bug!
3112           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3113           (cond->isValueDependent() || lhs->isValueDependent() ||
3114            rhs->isValueDependent()),
3115           (cond->isInstantiationDependent() ||
3116            lhs->isInstantiationDependent() ||
3117            rhs->isInstantiationDependent()),
3118           (cond->containsUnexpandedParameterPack() ||
3119            lhs->containsUnexpandedParameterPack() ||
3120            rhs->containsUnexpandedParameterPack()),
3121                                  QLoc, CLoc) {
3122    SubExprs[COND] = cond;
3123    SubExprs[LHS] = lhs;
3124    SubExprs[RHS] = rhs;
3125  }
3126
3127  /// \brief Build an empty conditional operator.
3128  explicit ConditionalOperator(EmptyShell Empty)
3129    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3130
3131  // getCond - Return the expression representing the condition for
3132  //   the ?: operator.
3133  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3134
3135  // getTrueExpr - Return the subexpression representing the value of
3136  //   the expression if the condition evaluates to true.
3137  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3138
3139  // getFalseExpr - Return the subexpression representing the value of
3140  //   the expression if the condition evaluates to false.  This is
3141  //   the same as getRHS.
3142  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3143
3144  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3145  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3146
3147  SourceLocation getLocStart() const LLVM_READONLY {
3148    return getCond()->getLocStart();
3149  }
3150  SourceLocation getLocEnd() const LLVM_READONLY {
3151    return getRHS()->getLocEnd();
3152  }
3153
3154  static bool classof(const Stmt *T) {
3155    return T->getStmtClass() == ConditionalOperatorClass;
3156  }
3157
3158  // Iterators
3159  child_range children() {
3160    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3161  }
3162};
3163
3164/// BinaryConditionalOperator - The GNU extension to the conditional
3165/// operator which allows the middle operand to be omitted.
3166///
3167/// This is a different expression kind on the assumption that almost
3168/// every client ends up needing to know that these are different.
3169class BinaryConditionalOperator : public AbstractConditionalOperator {
3170  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3171
3172  /// - the common condition/left-hand-side expression, which will be
3173  ///   evaluated as the opaque value
3174  /// - the condition, expressed in terms of the opaque value
3175  /// - the left-hand-side, expressed in terms of the opaque value
3176  /// - the right-hand-side
3177  Stmt *SubExprs[NUM_SUBEXPRS];
3178  OpaqueValueExpr *OpaqueValue;
3179
3180  friend class ASTStmtReader;
3181public:
3182  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3183                            Expr *cond, Expr *lhs, Expr *rhs,
3184                            SourceLocation qloc, SourceLocation cloc,
3185                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3186    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3187           (common->isTypeDependent() || rhs->isTypeDependent()),
3188           (common->isValueDependent() || rhs->isValueDependent()),
3189           (common->isInstantiationDependent() ||
3190            rhs->isInstantiationDependent()),
3191           (common->containsUnexpandedParameterPack() ||
3192            rhs->containsUnexpandedParameterPack()),
3193                                  qloc, cloc),
3194      OpaqueValue(opaqueValue) {
3195    SubExprs[COMMON] = common;
3196    SubExprs[COND] = cond;
3197    SubExprs[LHS] = lhs;
3198    SubExprs[RHS] = rhs;
3199    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3200  }
3201
3202  /// \brief Build an empty conditional operator.
3203  explicit BinaryConditionalOperator(EmptyShell Empty)
3204    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3205
3206  /// \brief getCommon - Return the common expression, written to the
3207  ///   left of the condition.  The opaque value will be bound to the
3208  ///   result of this expression.
3209  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3210
3211  /// \brief getOpaqueValue - Return the opaque value placeholder.
3212  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3213
3214  /// \brief getCond - Return the condition expression; this is defined
3215  ///   in terms of the opaque value.
3216  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3217
3218  /// \brief getTrueExpr - Return the subexpression which will be
3219  ///   evaluated if the condition evaluates to true;  this is defined
3220  ///   in terms of the opaque value.
3221  Expr *getTrueExpr() const {
3222    return cast<Expr>(SubExprs[LHS]);
3223  }
3224
3225  /// \brief getFalseExpr - Return the subexpression which will be
3226  ///   evaluated if the condnition evaluates to false; this is
3227  ///   defined in terms of the opaque value.
3228  Expr *getFalseExpr() const {
3229    return cast<Expr>(SubExprs[RHS]);
3230  }
3231
3232  SourceLocation getLocStart() const LLVM_READONLY {
3233    return getCommon()->getLocStart();
3234  }
3235  SourceLocation getLocEnd() const LLVM_READONLY {
3236    return getFalseExpr()->getLocEnd();
3237  }
3238
3239  static bool classof(const Stmt *T) {
3240    return T->getStmtClass() == BinaryConditionalOperatorClass;
3241  }
3242
3243  // Iterators
3244  child_range children() {
3245    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3246  }
3247};
3248
3249inline Expr *AbstractConditionalOperator::getCond() const {
3250  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3251    return co->getCond();
3252  return cast<BinaryConditionalOperator>(this)->getCond();
3253}
3254
3255inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3256  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3257    return co->getTrueExpr();
3258  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3259}
3260
3261inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3262  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3263    return co->getFalseExpr();
3264  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3265}
3266
3267/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3268class AddrLabelExpr : public Expr {
3269  SourceLocation AmpAmpLoc, LabelLoc;
3270  LabelDecl *Label;
3271public:
3272  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3273                QualType t)
3274    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3275           false),
3276      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3277
3278  /// \brief Build an empty address of a label expression.
3279  explicit AddrLabelExpr(EmptyShell Empty)
3280    : Expr(AddrLabelExprClass, Empty) { }
3281
3282  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3283  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3284  SourceLocation getLabelLoc() const { return LabelLoc; }
3285  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3286
3287  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3288  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3289
3290  LabelDecl *getLabel() const { return Label; }
3291  void setLabel(LabelDecl *L) { Label = L; }
3292
3293  static bool classof(const Stmt *T) {
3294    return T->getStmtClass() == AddrLabelExprClass;
3295  }
3296
3297  // Iterators
3298  child_range children() { return child_range(); }
3299};
3300
3301/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3302/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3303/// takes the value of the last subexpression.
3304///
3305/// A StmtExpr is always an r-value; values "returned" out of a
3306/// StmtExpr will be copied.
3307class StmtExpr : public Expr {
3308  Stmt *SubStmt;
3309  SourceLocation LParenLoc, RParenLoc;
3310public:
3311  // FIXME: Does type-dependence need to be computed differently?
3312  // FIXME: Do we need to compute instantiation instantiation-dependence for
3313  // statements? (ugh!)
3314  StmtExpr(CompoundStmt *substmt, QualType T,
3315           SourceLocation lp, SourceLocation rp) :
3316    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3317         T->isDependentType(), false, false, false),
3318    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3319
3320  /// \brief Build an empty statement expression.
3321  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3322
3323  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3324  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3325  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3326
3327  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3328  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3329
3330  SourceLocation getLParenLoc() const { return LParenLoc; }
3331  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3332  SourceLocation getRParenLoc() const { return RParenLoc; }
3333  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3334
3335  static bool classof(const Stmt *T) {
3336    return T->getStmtClass() == StmtExprClass;
3337  }
3338
3339  // Iterators
3340  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3341};
3342
3343
3344/// ShuffleVectorExpr - clang-specific builtin-in function
3345/// __builtin_shufflevector.
3346/// This AST node represents a operator that does a constant
3347/// shuffle, similar to LLVM's shufflevector instruction. It takes
3348/// two vectors and a variable number of constant indices,
3349/// and returns the appropriately shuffled vector.
3350class ShuffleVectorExpr : public Expr {
3351  SourceLocation BuiltinLoc, RParenLoc;
3352
3353  // SubExprs - the list of values passed to the __builtin_shufflevector
3354  // function. The first two are vectors, and the rest are constant
3355  // indices.  The number of values in this list is always
3356  // 2+the number of indices in the vector type.
3357  Stmt **SubExprs;
3358  unsigned NumExprs;
3359
3360public:
3361  ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3362                    SourceLocation BLoc, SourceLocation RP);
3363
3364  /// \brief Build an empty vector-shuffle expression.
3365  explicit ShuffleVectorExpr(EmptyShell Empty)
3366    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3367
3368  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3369  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3370
3371  SourceLocation getRParenLoc() const { return RParenLoc; }
3372  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3373
3374  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3375  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3376
3377  static bool classof(const Stmt *T) {
3378    return T->getStmtClass() == ShuffleVectorExprClass;
3379  }
3380
3381  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3382  /// constant expression, the actual arguments passed in, and the function
3383  /// pointers.
3384  unsigned getNumSubExprs() const { return NumExprs; }
3385
3386  /// \brief Retrieve the array of expressions.
3387  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3388
3389  /// getExpr - Return the Expr at the specified index.
3390  Expr *getExpr(unsigned Index) {
3391    assert((Index < NumExprs) && "Arg access out of range!");
3392    return cast<Expr>(SubExprs[Index]);
3393  }
3394  const Expr *getExpr(unsigned Index) const {
3395    assert((Index < NumExprs) && "Arg access out of range!");
3396    return cast<Expr>(SubExprs[Index]);
3397  }
3398
3399  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3400
3401  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) const {
3402    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3403    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3404  }
3405
3406  // Iterators
3407  child_range children() {
3408    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3409  }
3410};
3411
3412/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3413/// This AST node is similar to the conditional operator (?:) in C, with
3414/// the following exceptions:
3415/// - the test expression must be a integer constant expression.
3416/// - the expression returned acts like the chosen subexpression in every
3417///   visible way: the type is the same as that of the chosen subexpression,
3418///   and all predicates (whether it's an l-value, whether it's an integer
3419///   constant expression, etc.) return the same result as for the chosen
3420///   sub-expression.
3421class ChooseExpr : public Expr {
3422  enum { COND, LHS, RHS, END_EXPR };
3423  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3424  SourceLocation BuiltinLoc, RParenLoc;
3425public:
3426  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3427             QualType t, ExprValueKind VK, ExprObjectKind OK,
3428             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3429    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3430           (cond->isInstantiationDependent() ||
3431            lhs->isInstantiationDependent() ||
3432            rhs->isInstantiationDependent()),
3433           (cond->containsUnexpandedParameterPack() ||
3434            lhs->containsUnexpandedParameterPack() ||
3435            rhs->containsUnexpandedParameterPack())),
3436      BuiltinLoc(BLoc), RParenLoc(RP) {
3437      SubExprs[COND] = cond;
3438      SubExprs[LHS] = lhs;
3439      SubExprs[RHS] = rhs;
3440    }
3441
3442  /// \brief Build an empty __builtin_choose_expr.
3443  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3444
3445  /// isConditionTrue - Return whether the condition is true (i.e. not
3446  /// equal to zero).
3447  bool isConditionTrue(const ASTContext &C) const;
3448
3449  /// getChosenSubExpr - Return the subexpression chosen according to the
3450  /// condition.
3451  Expr *getChosenSubExpr(const ASTContext &C) const {
3452    return isConditionTrue(C) ? getLHS() : getRHS();
3453  }
3454
3455  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3456  void setCond(Expr *E) { SubExprs[COND] = E; }
3457  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3458  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3459  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3460  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3461
3462  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3463  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3464
3465  SourceLocation getRParenLoc() const { return RParenLoc; }
3466  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3467
3468  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3469  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3470
3471  static bool classof(const Stmt *T) {
3472    return T->getStmtClass() == ChooseExprClass;
3473  }
3474
3475  // Iterators
3476  child_range children() {
3477    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3478  }
3479};
3480
3481/// GNUNullExpr - Implements the GNU __null extension, which is a name
3482/// for a null pointer constant that has integral type (e.g., int or
3483/// long) and is the same size and alignment as a pointer. The __null
3484/// extension is typically only used by system headers, which define
3485/// NULL as __null in C++ rather than using 0 (which is an integer
3486/// that may not match the size of a pointer).
3487class GNUNullExpr : public Expr {
3488  /// TokenLoc - The location of the __null keyword.
3489  SourceLocation TokenLoc;
3490
3491public:
3492  GNUNullExpr(QualType Ty, SourceLocation Loc)
3493    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3494           false),
3495      TokenLoc(Loc) { }
3496
3497  /// \brief Build an empty GNU __null expression.
3498  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3499
3500  /// getTokenLocation - The location of the __null token.
3501  SourceLocation getTokenLocation() const { return TokenLoc; }
3502  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3503
3504  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3505  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3506
3507  static bool classof(const Stmt *T) {
3508    return T->getStmtClass() == GNUNullExprClass;
3509  }
3510
3511  // Iterators
3512  child_range children() { return child_range(); }
3513};
3514
3515/// VAArgExpr, used for the builtin function __builtin_va_arg.
3516class VAArgExpr : public Expr {
3517  Stmt *Val;
3518  TypeSourceInfo *TInfo;
3519  SourceLocation BuiltinLoc, RParenLoc;
3520public:
3521  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3522            SourceLocation RPLoc, QualType t)
3523    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3524           t->isDependentType(), false,
3525           (TInfo->getType()->isInstantiationDependentType() ||
3526            e->isInstantiationDependent()),
3527           (TInfo->getType()->containsUnexpandedParameterPack() ||
3528            e->containsUnexpandedParameterPack())),
3529      Val(e), TInfo(TInfo),
3530      BuiltinLoc(BLoc),
3531      RParenLoc(RPLoc) { }
3532
3533  /// \brief Create an empty __builtin_va_arg expression.
3534  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3535
3536  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3537  Expr *getSubExpr() { return cast<Expr>(Val); }
3538  void setSubExpr(Expr *E) { Val = E; }
3539
3540  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3541  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3542
3543  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3544  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3545
3546  SourceLocation getRParenLoc() const { return RParenLoc; }
3547  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3548
3549  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3550  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3551
3552  static bool classof(const Stmt *T) {
3553    return T->getStmtClass() == VAArgExprClass;
3554  }
3555
3556  // Iterators
3557  child_range children() { return child_range(&Val, &Val+1); }
3558};
3559
3560/// @brief Describes an C or C++ initializer list.
3561///
3562/// InitListExpr describes an initializer list, which can be used to
3563/// initialize objects of different types, including
3564/// struct/class/union types, arrays, and vectors. For example:
3565///
3566/// @code
3567/// struct foo x = { 1, { 2, 3 } };
3568/// @endcode
3569///
3570/// Prior to semantic analysis, an initializer list will represent the
3571/// initializer list as written by the user, but will have the
3572/// placeholder type "void". This initializer list is called the
3573/// syntactic form of the initializer, and may contain C99 designated
3574/// initializers (represented as DesignatedInitExprs), initializations
3575/// of subobject members without explicit braces, and so on. Clients
3576/// interested in the original syntax of the initializer list should
3577/// use the syntactic form of the initializer list.
3578///
3579/// After semantic analysis, the initializer list will represent the
3580/// semantic form of the initializer, where the initializations of all
3581/// subobjects are made explicit with nested InitListExpr nodes and
3582/// C99 designators have been eliminated by placing the designated
3583/// initializations into the subobject they initialize. Additionally,
3584/// any "holes" in the initialization, where no initializer has been
3585/// specified for a particular subobject, will be replaced with
3586/// implicitly-generated ImplicitValueInitExpr expressions that
3587/// value-initialize the subobjects. Note, however, that the
3588/// initializer lists may still have fewer initializers than there are
3589/// elements to initialize within the object.
3590///
3591/// After semantic analysis has completed, given an initializer list,
3592/// method isSemanticForm() returns true if and only if this is the
3593/// semantic form of the initializer list (note: the same AST node
3594/// may at the same time be the syntactic form).
3595/// Given the semantic form of the initializer list, one can retrieve
3596/// the syntactic form of that initializer list (when different)
3597/// using method getSyntacticForm(); the method returns null if applied
3598/// to a initializer list which is already in syntactic form.
3599/// Similarly, given the syntactic form (i.e., an initializer list such
3600/// that isSemanticForm() returns false), one can retrieve the semantic
3601/// form using method getSemanticForm().
3602/// Since many initializer lists have the same syntactic and semantic forms,
3603/// getSyntacticForm() may return NULL, indicating that the current
3604/// semantic initializer list also serves as its syntactic form.
3605class InitListExpr : public Expr {
3606  // FIXME: Eliminate this vector in favor of ASTContext allocation
3607  typedef ASTVector<Stmt *> InitExprsTy;
3608  InitExprsTy InitExprs;
3609  SourceLocation LBraceLoc, RBraceLoc;
3610
3611  /// The alternative form of the initializer list (if it exists).
3612  /// The int part of the pair stores whether this initalizer list is
3613  /// in semantic form. If not null, the pointer points to:
3614  ///   - the syntactic form, if this is in semantic form;
3615  ///   - the semantic form, if this is in syntactic form.
3616  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3617
3618  /// \brief Either:
3619  ///  If this initializer list initializes an array with more elements than
3620  ///  there are initializers in the list, specifies an expression to be used
3621  ///  for value initialization of the rest of the elements.
3622  /// Or
3623  ///  If this initializer list initializes a union, specifies which
3624  ///  field within the union will be initialized.
3625  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3626
3627public:
3628  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3629               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3630
3631  /// \brief Build an empty initializer list.
3632  explicit InitListExpr(EmptyShell Empty)
3633    : Expr(InitListExprClass, Empty) { }
3634
3635  unsigned getNumInits() const { return InitExprs.size(); }
3636
3637  /// \brief Retrieve the set of initializers.
3638  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3639
3640  const Expr *getInit(unsigned Init) const {
3641    assert(Init < getNumInits() && "Initializer access out of range!");
3642    return cast_or_null<Expr>(InitExprs[Init]);
3643  }
3644
3645  Expr *getInit(unsigned Init) {
3646    assert(Init < getNumInits() && "Initializer access out of range!");
3647    return cast_or_null<Expr>(InitExprs[Init]);
3648  }
3649
3650  void setInit(unsigned Init, Expr *expr) {
3651    assert(Init < getNumInits() && "Initializer access out of range!");
3652    InitExprs[Init] = expr;
3653  }
3654
3655  /// \brief Reserve space for some number of initializers.
3656  void reserveInits(ASTContext &C, unsigned NumInits);
3657
3658  /// @brief Specify the number of initializers
3659  ///
3660  /// If there are more than @p NumInits initializers, the remaining
3661  /// initializers will be destroyed. If there are fewer than @p
3662  /// NumInits initializers, NULL expressions will be added for the
3663  /// unknown initializers.
3664  void resizeInits(ASTContext &Context, unsigned NumInits);
3665
3666  /// @brief Updates the initializer at index @p Init with the new
3667  /// expression @p expr, and returns the old expression at that
3668  /// location.
3669  ///
3670  /// When @p Init is out of range for this initializer list, the
3671  /// initializer list will be extended with NULL expressions to
3672  /// accommodate the new entry.
3673  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3674
3675  /// \brief If this initializer list initializes an array with more elements
3676  /// than there are initializers in the list, specifies an expression to be
3677  /// used for value initialization of the rest of the elements.
3678  Expr *getArrayFiller() {
3679    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3680  }
3681  const Expr *getArrayFiller() const {
3682    return const_cast<InitListExpr *>(this)->getArrayFiller();
3683  }
3684  void setArrayFiller(Expr *filler);
3685
3686  /// \brief Return true if this is an array initializer and its array "filler"
3687  /// has been set.
3688  bool hasArrayFiller() const { return getArrayFiller(); }
3689
3690  /// \brief If this initializes a union, specifies which field in the
3691  /// union to initialize.
3692  ///
3693  /// Typically, this field is the first named field within the
3694  /// union. However, a designated initializer can specify the
3695  /// initialization of a different field within the union.
3696  FieldDecl *getInitializedFieldInUnion() {
3697    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3698  }
3699  const FieldDecl *getInitializedFieldInUnion() const {
3700    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3701  }
3702  void setInitializedFieldInUnion(FieldDecl *FD) {
3703    ArrayFillerOrUnionFieldInit = FD;
3704  }
3705
3706  // Explicit InitListExpr's originate from source code (and have valid source
3707  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3708  bool isExplicit() {
3709    return LBraceLoc.isValid() && RBraceLoc.isValid();
3710  }
3711
3712  // Is this an initializer for an array of characters, initialized by a string
3713  // literal or an @encode?
3714  bool isStringLiteralInit() const;
3715
3716  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3717  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3718  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3719  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3720
3721  bool isSemanticForm() const { return AltForm.getInt(); }
3722  InitListExpr *getSemanticForm() const {
3723    return isSemanticForm() ? 0 : AltForm.getPointer();
3724  }
3725  InitListExpr *getSyntacticForm() const {
3726    return isSemanticForm() ? AltForm.getPointer() : 0;
3727  }
3728
3729  void setSyntacticForm(InitListExpr *Init) {
3730    AltForm.setPointer(Init);
3731    AltForm.setInt(true);
3732    Init->AltForm.setPointer(this);
3733    Init->AltForm.setInt(false);
3734  }
3735
3736  bool hadArrayRangeDesignator() const {
3737    return InitListExprBits.HadArrayRangeDesignator != 0;
3738  }
3739  void sawArrayRangeDesignator(bool ARD = true) {
3740    InitListExprBits.HadArrayRangeDesignator = ARD;
3741  }
3742
3743  bool initializesStdInitializerList() const {
3744    return InitListExprBits.InitializesStdInitializerList != 0;
3745  }
3746  void setInitializesStdInitializerList(bool ISIL = true) {
3747    InitListExprBits.InitializesStdInitializerList = ISIL;
3748  }
3749
3750  SourceLocation getLocStart() const LLVM_READONLY;
3751  SourceLocation getLocEnd() const LLVM_READONLY;
3752
3753  static bool classof(const Stmt *T) {
3754    return T->getStmtClass() == InitListExprClass;
3755  }
3756
3757  // Iterators
3758  child_range children() {
3759    if (InitExprs.empty()) return child_range();
3760    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3761  }
3762
3763  typedef InitExprsTy::iterator iterator;
3764  typedef InitExprsTy::const_iterator const_iterator;
3765  typedef InitExprsTy::reverse_iterator reverse_iterator;
3766  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3767
3768  iterator begin() { return InitExprs.begin(); }
3769  const_iterator begin() const { return InitExprs.begin(); }
3770  iterator end() { return InitExprs.end(); }
3771  const_iterator end() const { return InitExprs.end(); }
3772  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3773  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3774  reverse_iterator rend() { return InitExprs.rend(); }
3775  const_reverse_iterator rend() const { return InitExprs.rend(); }
3776
3777  friend class ASTStmtReader;
3778  friend class ASTStmtWriter;
3779};
3780
3781/// @brief Represents a C99 designated initializer expression.
3782///
3783/// A designated initializer expression (C99 6.7.8) contains one or
3784/// more designators (which can be field designators, array
3785/// designators, or GNU array-range designators) followed by an
3786/// expression that initializes the field or element(s) that the
3787/// designators refer to. For example, given:
3788///
3789/// @code
3790/// struct point {
3791///   double x;
3792///   double y;
3793/// };
3794/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3795/// @endcode
3796///
3797/// The InitListExpr contains three DesignatedInitExprs, the first of
3798/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3799/// designators, one array designator for @c [2] followed by one field
3800/// designator for @c .y. The initalization expression will be 1.0.
3801class DesignatedInitExpr : public Expr {
3802public:
3803  /// \brief Forward declaration of the Designator class.
3804  class Designator;
3805
3806private:
3807  /// The location of the '=' or ':' prior to the actual initializer
3808  /// expression.
3809  SourceLocation EqualOrColonLoc;
3810
3811  /// Whether this designated initializer used the GNU deprecated
3812  /// syntax rather than the C99 '=' syntax.
3813  bool GNUSyntax : 1;
3814
3815  /// The number of designators in this initializer expression.
3816  unsigned NumDesignators : 15;
3817
3818  /// The number of subexpressions of this initializer expression,
3819  /// which contains both the initializer and any additional
3820  /// expressions used by array and array-range designators.
3821  unsigned NumSubExprs : 16;
3822
3823  /// \brief The designators in this designated initialization
3824  /// expression.
3825  Designator *Designators;
3826
3827
3828  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3829                     const Designator *Designators,
3830                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3831                     ArrayRef<Expr*> IndexExprs, Expr *Init);
3832
3833  explicit DesignatedInitExpr(unsigned NumSubExprs)
3834    : Expr(DesignatedInitExprClass, EmptyShell()),
3835      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3836
3837public:
3838  /// A field designator, e.g., ".x".
3839  struct FieldDesignator {
3840    /// Refers to the field that is being initialized. The low bit
3841    /// of this field determines whether this is actually a pointer
3842    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3843    /// initially constructed, a field designator will store an
3844    /// IdentifierInfo*. After semantic analysis has resolved that
3845    /// name, the field designator will instead store a FieldDecl*.
3846    uintptr_t NameOrField;
3847
3848    /// The location of the '.' in the designated initializer.
3849    unsigned DotLoc;
3850
3851    /// The location of the field name in the designated initializer.
3852    unsigned FieldLoc;
3853  };
3854
3855  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3856  struct ArrayOrRangeDesignator {
3857    /// Location of the first index expression within the designated
3858    /// initializer expression's list of subexpressions.
3859    unsigned Index;
3860    /// The location of the '[' starting the array range designator.
3861    unsigned LBracketLoc;
3862    /// The location of the ellipsis separating the start and end
3863    /// indices. Only valid for GNU array-range designators.
3864    unsigned EllipsisLoc;
3865    /// The location of the ']' terminating the array range designator.
3866    unsigned RBracketLoc;
3867  };
3868
3869  /// @brief Represents a single C99 designator.
3870  ///
3871  /// @todo This class is infuriatingly similar to clang::Designator,
3872  /// but minor differences (storing indices vs. storing pointers)
3873  /// keep us from reusing it. Try harder, later, to rectify these
3874  /// differences.
3875  class Designator {
3876    /// @brief The kind of designator this describes.
3877    enum {
3878      FieldDesignator,
3879      ArrayDesignator,
3880      ArrayRangeDesignator
3881    } Kind;
3882
3883    union {
3884      /// A field designator, e.g., ".x".
3885      struct FieldDesignator Field;
3886      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3887      struct ArrayOrRangeDesignator ArrayOrRange;
3888    };
3889    friend class DesignatedInitExpr;
3890
3891  public:
3892    Designator() {}
3893
3894    /// @brief Initializes a field designator.
3895    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3896               SourceLocation FieldLoc)
3897      : Kind(FieldDesignator) {
3898      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3899      Field.DotLoc = DotLoc.getRawEncoding();
3900      Field.FieldLoc = FieldLoc.getRawEncoding();
3901    }
3902
3903    /// @brief Initializes an array designator.
3904    Designator(unsigned Index, SourceLocation LBracketLoc,
3905               SourceLocation RBracketLoc)
3906      : Kind(ArrayDesignator) {
3907      ArrayOrRange.Index = Index;
3908      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3909      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3910      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3911    }
3912
3913    /// @brief Initializes a GNU array-range designator.
3914    Designator(unsigned Index, SourceLocation LBracketLoc,
3915               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3916      : Kind(ArrayRangeDesignator) {
3917      ArrayOrRange.Index = Index;
3918      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3919      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3920      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3921    }
3922
3923    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3924    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3925    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3926
3927    IdentifierInfo *getFieldName() const;
3928
3929    FieldDecl *getField() const {
3930      assert(Kind == FieldDesignator && "Only valid on a field designator");
3931      if (Field.NameOrField & 0x01)
3932        return 0;
3933      else
3934        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3935    }
3936
3937    void setField(FieldDecl *FD) {
3938      assert(Kind == FieldDesignator && "Only valid on a field designator");
3939      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3940    }
3941
3942    SourceLocation getDotLoc() const {
3943      assert(Kind == FieldDesignator && "Only valid on a field designator");
3944      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3945    }
3946
3947    SourceLocation getFieldLoc() const {
3948      assert(Kind == FieldDesignator && "Only valid on a field designator");
3949      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3950    }
3951
3952    SourceLocation getLBracketLoc() const {
3953      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3954             "Only valid on an array or array-range designator");
3955      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3956    }
3957
3958    SourceLocation getRBracketLoc() const {
3959      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3960             "Only valid on an array or array-range designator");
3961      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3962    }
3963
3964    SourceLocation getEllipsisLoc() const {
3965      assert(Kind == ArrayRangeDesignator &&
3966             "Only valid on an array-range designator");
3967      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3968    }
3969
3970    unsigned getFirstExprIndex() const {
3971      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3972             "Only valid on an array or array-range designator");
3973      return ArrayOrRange.Index;
3974    }
3975
3976    SourceLocation getLocStart() const LLVM_READONLY {
3977      if (Kind == FieldDesignator)
3978        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3979      else
3980        return getLBracketLoc();
3981    }
3982    SourceLocation getLocEnd() const LLVM_READONLY {
3983      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3984    }
3985    SourceRange getSourceRange() const LLVM_READONLY {
3986      return SourceRange(getLocStart(), getLocEnd());
3987    }
3988  };
3989
3990  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3991                                    unsigned NumDesignators,
3992                                    ArrayRef<Expr*> IndexExprs,
3993                                    SourceLocation EqualOrColonLoc,
3994                                    bool GNUSyntax, Expr *Init);
3995
3996  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3997
3998  /// @brief Returns the number of designators in this initializer.
3999  unsigned size() const { return NumDesignators; }
4000
4001  // Iterator access to the designators.
4002  typedef Designator *designators_iterator;
4003  designators_iterator designators_begin() { return Designators; }
4004  designators_iterator designators_end() {
4005    return Designators + NumDesignators;
4006  }
4007
4008  typedef const Designator *const_designators_iterator;
4009  const_designators_iterator designators_begin() const { return Designators; }
4010  const_designators_iterator designators_end() const {
4011    return Designators + NumDesignators;
4012  }
4013
4014  typedef std::reverse_iterator<designators_iterator>
4015          reverse_designators_iterator;
4016  reverse_designators_iterator designators_rbegin() {
4017    return reverse_designators_iterator(designators_end());
4018  }
4019  reverse_designators_iterator designators_rend() {
4020    return reverse_designators_iterator(designators_begin());
4021  }
4022
4023  typedef std::reverse_iterator<const_designators_iterator>
4024          const_reverse_designators_iterator;
4025  const_reverse_designators_iterator designators_rbegin() const {
4026    return const_reverse_designators_iterator(designators_end());
4027  }
4028  const_reverse_designators_iterator designators_rend() const {
4029    return const_reverse_designators_iterator(designators_begin());
4030  }
4031
4032  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
4033
4034  void setDesignators(ASTContext &C, const Designator *Desigs,
4035                      unsigned NumDesigs);
4036
4037  Expr *getArrayIndex(const Designator& D);
4038  Expr *getArrayRangeStart(const Designator& D);
4039  Expr *getArrayRangeEnd(const Designator& D);
4040
4041  /// @brief Retrieve the location of the '=' that precedes the
4042  /// initializer value itself, if present.
4043  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4044  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4045
4046  /// @brief Determines whether this designated initializer used the
4047  /// deprecated GNU syntax for designated initializers.
4048  bool usesGNUSyntax() const { return GNUSyntax; }
4049  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4050
4051  /// @brief Retrieve the initializer value.
4052  Expr *getInit() const {
4053    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4054  }
4055
4056  void setInit(Expr *init) {
4057    *child_begin() = init;
4058  }
4059
4060  /// \brief Retrieve the total number of subexpressions in this
4061  /// designated initializer expression, including the actual
4062  /// initialized value and any expressions that occur within array
4063  /// and array-range designators.
4064  unsigned getNumSubExprs() const { return NumSubExprs; }
4065
4066  Expr *getSubExpr(unsigned Idx) {
4067    assert(Idx < NumSubExprs && "Subscript out of range");
4068    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4069    Ptr += sizeof(DesignatedInitExpr);
4070    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
4071  }
4072
4073  void setSubExpr(unsigned Idx, Expr *E) {
4074    assert(Idx < NumSubExprs && "Subscript out of range");
4075    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4076    Ptr += sizeof(DesignatedInitExpr);
4077    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
4078  }
4079
4080  /// \brief Replaces the designator at index @p Idx with the series
4081  /// of designators in [First, Last).
4082  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
4083                        const Designator *Last);
4084
4085  SourceRange getDesignatorsSourceRange() const;
4086
4087  SourceLocation getLocStart() const LLVM_READONLY;
4088  SourceLocation getLocEnd() const LLVM_READONLY;
4089
4090  static bool classof(const Stmt *T) {
4091    return T->getStmtClass() == DesignatedInitExprClass;
4092  }
4093
4094  // Iterators
4095  child_range children() {
4096    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
4097    return child_range(begin, begin + NumSubExprs);
4098  }
4099};
4100
4101/// \brief Represents an implicitly-generated value initialization of
4102/// an object of a given type.
4103///
4104/// Implicit value initializations occur within semantic initializer
4105/// list expressions (InitListExpr) as placeholders for subobject
4106/// initializations not explicitly specified by the user.
4107///
4108/// \see InitListExpr
4109class ImplicitValueInitExpr : public Expr {
4110public:
4111  explicit ImplicitValueInitExpr(QualType ty)
4112    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4113           false, false, ty->isInstantiationDependentType(), false) { }
4114
4115  /// \brief Construct an empty implicit value initialization.
4116  explicit ImplicitValueInitExpr(EmptyShell Empty)
4117    : Expr(ImplicitValueInitExprClass, Empty) { }
4118
4119  static bool classof(const Stmt *T) {
4120    return T->getStmtClass() == ImplicitValueInitExprClass;
4121  }
4122
4123  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4124  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4125
4126  // Iterators
4127  child_range children() { return child_range(); }
4128};
4129
4130
4131class ParenListExpr : public Expr {
4132  Stmt **Exprs;
4133  unsigned NumExprs;
4134  SourceLocation LParenLoc, RParenLoc;
4135
4136public:
4137  ParenListExpr(ASTContext& C, SourceLocation lparenloc, ArrayRef<Expr*> exprs,
4138                SourceLocation rparenloc);
4139
4140  /// \brief Build an empty paren list.
4141  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4142
4143  unsigned getNumExprs() const { return NumExprs; }
4144
4145  const Expr* getExpr(unsigned Init) const {
4146    assert(Init < getNumExprs() && "Initializer access out of range!");
4147    return cast_or_null<Expr>(Exprs[Init]);
4148  }
4149
4150  Expr* getExpr(unsigned Init) {
4151    assert(Init < getNumExprs() && "Initializer access out of range!");
4152    return cast_or_null<Expr>(Exprs[Init]);
4153  }
4154
4155  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4156
4157  SourceLocation getLParenLoc() const { return LParenLoc; }
4158  SourceLocation getRParenLoc() const { return RParenLoc; }
4159
4160  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4161  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4162
4163  static bool classof(const Stmt *T) {
4164    return T->getStmtClass() == ParenListExprClass;
4165  }
4166
4167  // Iterators
4168  child_range children() {
4169    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4170  }
4171
4172  friend class ASTStmtReader;
4173  friend class ASTStmtWriter;
4174};
4175
4176
4177/// \brief Represents a C11 generic selection.
4178///
4179/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4180/// expression, followed by one or more generic associations.  Each generic
4181/// association specifies a type name and an expression, or "default" and an
4182/// expression (in which case it is known as a default generic association).
4183/// The type and value of the generic selection are identical to those of its
4184/// result expression, which is defined as the expression in the generic
4185/// association with a type name that is compatible with the type of the
4186/// controlling expression, or the expression in the default generic association
4187/// if no types are compatible.  For example:
4188///
4189/// @code
4190/// _Generic(X, double: 1, float: 2, default: 3)
4191/// @endcode
4192///
4193/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4194/// or 3 if "hello".
4195///
4196/// As an extension, generic selections are allowed in C++, where the following
4197/// additional semantics apply:
4198///
4199/// Any generic selection whose controlling expression is type-dependent or
4200/// which names a dependent type in its association list is result-dependent,
4201/// which means that the choice of result expression is dependent.
4202/// Result-dependent generic associations are both type- and value-dependent.
4203class GenericSelectionExpr : public Expr {
4204  enum { CONTROLLING, END_EXPR };
4205  TypeSourceInfo **AssocTypes;
4206  Stmt **SubExprs;
4207  unsigned NumAssocs, ResultIndex;
4208  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4209
4210public:
4211  GenericSelectionExpr(ASTContext &Context,
4212                       SourceLocation GenericLoc, Expr *ControllingExpr,
4213                       ArrayRef<TypeSourceInfo*> AssocTypes,
4214                       ArrayRef<Expr*> AssocExprs,
4215                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4216                       bool ContainsUnexpandedParameterPack,
4217                       unsigned ResultIndex);
4218
4219  /// This constructor is used in the result-dependent case.
4220  GenericSelectionExpr(ASTContext &Context,
4221                       SourceLocation GenericLoc, Expr *ControllingExpr,
4222                       ArrayRef<TypeSourceInfo*> AssocTypes,
4223                       ArrayRef<Expr*> AssocExprs,
4224                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4225                       bool ContainsUnexpandedParameterPack);
4226
4227  explicit GenericSelectionExpr(EmptyShell Empty)
4228    : Expr(GenericSelectionExprClass, Empty) { }
4229
4230  unsigned getNumAssocs() const { return NumAssocs; }
4231
4232  SourceLocation getGenericLoc() const { return GenericLoc; }
4233  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4234  SourceLocation getRParenLoc() const { return RParenLoc; }
4235
4236  const Expr *getAssocExpr(unsigned i) const {
4237    return cast<Expr>(SubExprs[END_EXPR+i]);
4238  }
4239  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4240
4241  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4242    return AssocTypes[i];
4243  }
4244  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4245
4246  QualType getAssocType(unsigned i) const {
4247    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4248      return TS->getType();
4249    else
4250      return QualType();
4251  }
4252
4253  const Expr *getControllingExpr() const {
4254    return cast<Expr>(SubExprs[CONTROLLING]);
4255  }
4256  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4257
4258  /// Whether this generic selection is result-dependent.
4259  bool isResultDependent() const { return ResultIndex == -1U; }
4260
4261  /// The zero-based index of the result expression's generic association in
4262  /// the generic selection's association list.  Defined only if the
4263  /// generic selection is not result-dependent.
4264  unsigned getResultIndex() const {
4265    assert(!isResultDependent() && "Generic selection is result-dependent");
4266    return ResultIndex;
4267  }
4268
4269  /// The generic selection's result expression.  Defined only if the
4270  /// generic selection is not result-dependent.
4271  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4272  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4273
4274  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4275  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4276
4277  static bool classof(const Stmt *T) {
4278    return T->getStmtClass() == GenericSelectionExprClass;
4279  }
4280
4281  child_range children() {
4282    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4283  }
4284
4285  friend class ASTStmtReader;
4286};
4287
4288//===----------------------------------------------------------------------===//
4289// Clang Extensions
4290//===----------------------------------------------------------------------===//
4291
4292
4293/// ExtVectorElementExpr - This represents access to specific elements of a
4294/// vector, and may occur on the left hand side or right hand side.  For example
4295/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4296///
4297/// Note that the base may have either vector or pointer to vector type, just
4298/// like a struct field reference.
4299///
4300class ExtVectorElementExpr : public Expr {
4301  Stmt *Base;
4302  IdentifierInfo *Accessor;
4303  SourceLocation AccessorLoc;
4304public:
4305  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4306                       IdentifierInfo &accessor, SourceLocation loc)
4307    : Expr(ExtVectorElementExprClass, ty, VK,
4308           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4309           base->isTypeDependent(), base->isValueDependent(),
4310           base->isInstantiationDependent(),
4311           base->containsUnexpandedParameterPack()),
4312      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4313
4314  /// \brief Build an empty vector element expression.
4315  explicit ExtVectorElementExpr(EmptyShell Empty)
4316    : Expr(ExtVectorElementExprClass, Empty) { }
4317
4318  const Expr *getBase() const { return cast<Expr>(Base); }
4319  Expr *getBase() { return cast<Expr>(Base); }
4320  void setBase(Expr *E) { Base = E; }
4321
4322  IdentifierInfo &getAccessor() const { return *Accessor; }
4323  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4324
4325  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4326  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4327
4328  /// getNumElements - Get the number of components being selected.
4329  unsigned getNumElements() const;
4330
4331  /// containsDuplicateElements - Return true if any element access is
4332  /// repeated.
4333  bool containsDuplicateElements() const;
4334
4335  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4336  /// aggregate Constant of ConstantInt(s).
4337  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4338
4339  SourceLocation getLocStart() const LLVM_READONLY {
4340    return getBase()->getLocStart();
4341  }
4342  SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4343
4344  /// isArrow - Return true if the base expression is a pointer to vector,
4345  /// return false if the base expression is a vector.
4346  bool isArrow() const;
4347
4348  static bool classof(const Stmt *T) {
4349    return T->getStmtClass() == ExtVectorElementExprClass;
4350  }
4351
4352  // Iterators
4353  child_range children() { return child_range(&Base, &Base+1); }
4354};
4355
4356
4357/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4358/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4359class BlockExpr : public Expr {
4360protected:
4361  BlockDecl *TheBlock;
4362public:
4363  BlockExpr(BlockDecl *BD, QualType ty)
4364    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4365           ty->isDependentType(), ty->isDependentType(),
4366           ty->isInstantiationDependentType() || BD->isDependentContext(),
4367           false),
4368      TheBlock(BD) {}
4369
4370  /// \brief Build an empty block expression.
4371  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4372
4373  const BlockDecl *getBlockDecl() const { return TheBlock; }
4374  BlockDecl *getBlockDecl() { return TheBlock; }
4375  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4376
4377  // Convenience functions for probing the underlying BlockDecl.
4378  SourceLocation getCaretLocation() const;
4379  const Stmt *getBody() const;
4380  Stmt *getBody();
4381
4382  SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4383  SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4384
4385  /// getFunctionType - Return the underlying function type for this block.
4386  const FunctionProtoType *getFunctionType() const;
4387
4388  static bool classof(const Stmt *T) {
4389    return T->getStmtClass() == BlockExprClass;
4390  }
4391
4392  // Iterators
4393  child_range children() { return child_range(); }
4394};
4395
4396/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4397/// This AST node provides support for reinterpreting a type to another
4398/// type of the same size.
4399class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4400private:
4401  Stmt *SrcExpr;
4402  SourceLocation BuiltinLoc, RParenLoc;
4403
4404  friend class ASTReader;
4405  friend class ASTStmtReader;
4406  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4407
4408public:
4409  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4410             ExprValueKind VK, ExprObjectKind OK,
4411             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4412    : Expr(AsTypeExprClass, DstType, VK, OK,
4413           DstType->isDependentType(),
4414           DstType->isDependentType() || SrcExpr->isValueDependent(),
4415           (DstType->isInstantiationDependentType() ||
4416            SrcExpr->isInstantiationDependent()),
4417           (DstType->containsUnexpandedParameterPack() ||
4418            SrcExpr->containsUnexpandedParameterPack())),
4419  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4420
4421  /// getSrcExpr - Return the Expr to be converted.
4422  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4423
4424  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4425  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4426
4427  /// getRParenLoc - Return the location of final right parenthesis.
4428  SourceLocation getRParenLoc() const { return RParenLoc; }
4429
4430  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4431  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4432
4433  static bool classof(const Stmt *T) {
4434    return T->getStmtClass() == AsTypeExprClass;
4435  }
4436
4437  // Iterators
4438  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4439};
4440
4441/// PseudoObjectExpr - An expression which accesses a pseudo-object
4442/// l-value.  A pseudo-object is an abstract object, accesses to which
4443/// are translated to calls.  The pseudo-object expression has a
4444/// syntactic form, which shows how the expression was actually
4445/// written in the source code, and a semantic form, which is a series
4446/// of expressions to be executed in order which detail how the
4447/// operation is actually evaluated.  Optionally, one of the semantic
4448/// forms may also provide a result value for the expression.
4449///
4450/// If any of the semantic-form expressions is an OpaqueValueExpr,
4451/// that OVE is required to have a source expression, and it is bound
4452/// to the result of that source expression.  Such OVEs may appear
4453/// only in subsequent semantic-form expressions and as
4454/// sub-expressions of the syntactic form.
4455///
4456/// PseudoObjectExpr should be used only when an operation can be
4457/// usefully described in terms of fairly simple rewrite rules on
4458/// objects and functions that are meant to be used by end-developers.
4459/// For example, under the Itanium ABI, dynamic casts are implemented
4460/// as a call to a runtime function called __dynamic_cast; using this
4461/// class to describe that would be inappropriate because that call is
4462/// not really part of the user-visible semantics, and instead the
4463/// cast is properly reflected in the AST and IR-generation has been
4464/// taught to generate the call as necessary.  In contrast, an
4465/// Objective-C property access is semantically defined to be
4466/// equivalent to a particular message send, and this is very much
4467/// part of the user model.  The name of this class encourages this
4468/// modelling design.
4469class PseudoObjectExpr : public Expr {
4470  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4471  // Always at least two, because the first sub-expression is the
4472  // syntactic form.
4473
4474  // PseudoObjectExprBits.ResultIndex - The index of the
4475  // sub-expression holding the result.  0 means the result is void,
4476  // which is unambiguous because it's the index of the syntactic
4477  // form.  Note that this is therefore 1 higher than the value passed
4478  // in to Create, which is an index within the semantic forms.
4479  // Note also that ASTStmtWriter assumes this encoding.
4480
4481  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4482  const Expr * const *getSubExprsBuffer() const {
4483    return reinterpret_cast<const Expr * const *>(this + 1);
4484  }
4485
4486  friend class ASTStmtReader;
4487
4488  PseudoObjectExpr(QualType type, ExprValueKind VK,
4489                   Expr *syntactic, ArrayRef<Expr*> semantic,
4490                   unsigned resultIndex);
4491
4492  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4493
4494  unsigned getNumSubExprs() const {
4495    return PseudoObjectExprBits.NumSubExprs;
4496  }
4497
4498public:
4499  /// NoResult - A value for the result index indicating that there is
4500  /// no semantic result.
4501  enum { NoResult = ~0U };
4502
4503  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4504                                  ArrayRef<Expr*> semantic,
4505                                  unsigned resultIndex);
4506
4507  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4508                                  unsigned numSemanticExprs);
4509
4510  /// Return the syntactic form of this expression, i.e. the
4511  /// expression it actually looks like.  Likely to be expressed in
4512  /// terms of OpaqueValueExprs bound in the semantic form.
4513  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4514  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4515
4516  /// Return the index of the result-bearing expression into the semantics
4517  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4518  unsigned getResultExprIndex() const {
4519    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4520    return PseudoObjectExprBits.ResultIndex - 1;
4521  }
4522
4523  /// Return the result-bearing expression, or null if there is none.
4524  Expr *getResultExpr() {
4525    if (PseudoObjectExprBits.ResultIndex == 0)
4526      return 0;
4527    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4528  }
4529  const Expr *getResultExpr() const {
4530    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4531  }
4532
4533  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4534
4535  typedef Expr * const *semantics_iterator;
4536  typedef const Expr * const *const_semantics_iterator;
4537  semantics_iterator semantics_begin() {
4538    return getSubExprsBuffer() + 1;
4539  }
4540  const_semantics_iterator semantics_begin() const {
4541    return getSubExprsBuffer() + 1;
4542  }
4543  semantics_iterator semantics_end() {
4544    return getSubExprsBuffer() + getNumSubExprs();
4545  }
4546  const_semantics_iterator semantics_end() const {
4547    return getSubExprsBuffer() + getNumSubExprs();
4548  }
4549  Expr *getSemanticExpr(unsigned index) {
4550    assert(index + 1 < getNumSubExprs());
4551    return getSubExprsBuffer()[index + 1];
4552  }
4553  const Expr *getSemanticExpr(unsigned index) const {
4554    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4555  }
4556
4557  SourceLocation getExprLoc() const LLVM_READONLY {
4558    return getSyntacticForm()->getExprLoc();
4559  }
4560
4561  SourceLocation getLocStart() const LLVM_READONLY {
4562    return getSyntacticForm()->getLocStart();
4563  }
4564  SourceLocation getLocEnd() const LLVM_READONLY {
4565    return getSyntacticForm()->getLocEnd();
4566  }
4567
4568  child_range children() {
4569    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4570    return child_range(cs, cs + getNumSubExprs());
4571  }
4572
4573  static bool classof(const Stmt *T) {
4574    return T->getStmtClass() == PseudoObjectExprClass;
4575  }
4576};
4577
4578/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4579/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4580/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4581/// All of these instructions take one primary pointer and at least one memory
4582/// order.
4583class AtomicExpr : public Expr {
4584public:
4585  enum AtomicOp {
4586#define BUILTIN(ID, TYPE, ATTRS)
4587#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4588#include "clang/Basic/Builtins.def"
4589    // Avoid trailing comma
4590    BI_First = 0
4591  };
4592
4593private:
4594  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4595  Stmt* SubExprs[END_EXPR];
4596  unsigned NumSubExprs;
4597  SourceLocation BuiltinLoc, RParenLoc;
4598  AtomicOp Op;
4599
4600  friend class ASTStmtReader;
4601
4602public:
4603  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4604             AtomicOp op, SourceLocation RP);
4605
4606  /// \brief Determine the number of arguments the specified atomic builtin
4607  /// should have.
4608  static unsigned getNumSubExprs(AtomicOp Op);
4609
4610  /// \brief Build an empty AtomicExpr.
4611  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4612
4613  Expr *getPtr() const {
4614    return cast<Expr>(SubExprs[PTR]);
4615  }
4616  Expr *getOrder() const {
4617    return cast<Expr>(SubExprs[ORDER]);
4618  }
4619  Expr *getVal1() const {
4620    if (Op == AO__c11_atomic_init)
4621      return cast<Expr>(SubExprs[ORDER]);
4622    assert(NumSubExprs > VAL1);
4623    return cast<Expr>(SubExprs[VAL1]);
4624  }
4625  Expr *getOrderFail() const {
4626    assert(NumSubExprs > ORDER_FAIL);
4627    return cast<Expr>(SubExprs[ORDER_FAIL]);
4628  }
4629  Expr *getVal2() const {
4630    if (Op == AO__atomic_exchange)
4631      return cast<Expr>(SubExprs[ORDER_FAIL]);
4632    assert(NumSubExprs > VAL2);
4633    return cast<Expr>(SubExprs[VAL2]);
4634  }
4635  Expr *getWeak() const {
4636    assert(NumSubExprs > WEAK);
4637    return cast<Expr>(SubExprs[WEAK]);
4638  }
4639
4640  AtomicOp getOp() const { return Op; }
4641  unsigned getNumSubExprs() { return NumSubExprs; }
4642
4643  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4644
4645  bool isVolatile() const {
4646    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4647  }
4648
4649  bool isCmpXChg() const {
4650    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4651           getOp() == AO__c11_atomic_compare_exchange_weak ||
4652           getOp() == AO__atomic_compare_exchange ||
4653           getOp() == AO__atomic_compare_exchange_n;
4654  }
4655
4656  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4657  SourceLocation getRParenLoc() const { return RParenLoc; }
4658
4659  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4660  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4661
4662  static bool classof(const Stmt *T) {
4663    return T->getStmtClass() == AtomicExprClass;
4664  }
4665
4666  // Iterators
4667  child_range children() {
4668    return child_range(SubExprs, SubExprs+NumSubExprs);
4669  }
4670};
4671}  // end namespace clang
4672
4673#endif
4674