Expr.h revision a18e70b25c85d7e653e642b5e6e58d6063af3d83
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTVector.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Support/Compiler.h"
31#include <cctype>
32
33namespace clang {
34  class APValue;
35  class ASTContext;
36  class BlockDecl;
37  class CXXBaseSpecifier;
38  class CXXMemberCallExpr;
39  class CXXOperatorCallExpr;
40  class CastExpr;
41  class Decl;
42  class IdentifierInfo;
43  class MaterializeTemporaryExpr;
44  class NamedDecl;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47  class ParmVarDecl;
48  class TargetInfo;
49  class ValueDecl;
50
51/// \brief A simple array of base specifiers.
52typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
53
54/// \brief An adjustment to be made to the temporary created when emitting a
55/// reference binding, which accesses a particular subobject of that temporary.
56struct SubobjectAdjustment {
57  enum {
58    DerivedToBaseAdjustment,
59    FieldAdjustment,
60    MemberPointerAdjustment
61  } Kind;
62
63   union {
64    struct {
65      const CastExpr *BasePath;
66      const CXXRecordDecl *DerivedClass;
67    } DerivedToBase;
68
69    FieldDecl *Field;
70
71    struct {
72      const MemberPointerType *MPT;
73      Expr *RHS;
74    } Ptr;
75  };
76
77  SubobjectAdjustment(const CastExpr *BasePath,
78                      const CXXRecordDecl *DerivedClass)
79    : Kind(DerivedToBaseAdjustment) {
80    DerivedToBase.BasePath = BasePath;
81    DerivedToBase.DerivedClass = DerivedClass;
82  }
83
84  SubobjectAdjustment(FieldDecl *Field)
85    : Kind(FieldAdjustment) {
86    this->Field = Field;
87  }
88
89  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
90    : Kind(MemberPointerAdjustment) {
91    this->Ptr.MPT = MPT;
92    this->Ptr.RHS = RHS;
93  }
94};
95
96/// Expr - This represents one expression.  Note that Expr's are subclasses of
97/// Stmt.  This allows an expression to be transparently used any place a Stmt
98/// is required.
99///
100class Expr : public Stmt {
101  QualType TR;
102
103protected:
104  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
105       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
106    : Stmt(SC)
107  {
108    ExprBits.TypeDependent = TD;
109    ExprBits.ValueDependent = VD;
110    ExprBits.InstantiationDependent = ID;
111    ExprBits.ValueKind = VK;
112    ExprBits.ObjectKind = OK;
113    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
114    setType(T);
115  }
116
117  /// \brief Construct an empty expression.
118  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
119
120public:
121  QualType getType() const { return TR; }
122  void setType(QualType t) {
123    // In C++, the type of an expression is always adjusted so that it
124    // will not have reference type an expression will never have
125    // reference type (C++ [expr]p6). Use
126    // QualType::getNonReferenceType() to retrieve the non-reference
127    // type. Additionally, inspect Expr::isLvalue to determine whether
128    // an expression that is adjusted in this manner should be
129    // considered an lvalue.
130    assert((t.isNull() || !t->isReferenceType()) &&
131           "Expressions can't have reference type");
132
133    TR = t;
134  }
135
136  /// isValueDependent - Determines whether this expression is
137  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
138  /// array bound of "Chars" in the following example is
139  /// value-dependent.
140  /// @code
141  /// template<int Size, char (&Chars)[Size]> struct meta_string;
142  /// @endcode
143  bool isValueDependent() const { return ExprBits.ValueDependent; }
144
145  /// \brief Set whether this expression is value-dependent or not.
146  void setValueDependent(bool VD) {
147    ExprBits.ValueDependent = VD;
148    if (VD)
149      ExprBits.InstantiationDependent = true;
150  }
151
152  /// isTypeDependent - Determines whether this expression is
153  /// type-dependent (C++ [temp.dep.expr]), which means that its type
154  /// could change from one template instantiation to the next. For
155  /// example, the expressions "x" and "x + y" are type-dependent in
156  /// the following code, but "y" is not type-dependent:
157  /// @code
158  /// template<typename T>
159  /// void add(T x, int y) {
160  ///   x + y;
161  /// }
162  /// @endcode
163  bool isTypeDependent() const { return ExprBits.TypeDependent; }
164
165  /// \brief Set whether this expression is type-dependent or not.
166  void setTypeDependent(bool TD) {
167    ExprBits.TypeDependent = TD;
168    if (TD)
169      ExprBits.InstantiationDependent = true;
170  }
171
172  /// \brief Whether this expression is instantiation-dependent, meaning that
173  /// it depends in some way on a template parameter, even if neither its type
174  /// nor (constant) value can change due to the template instantiation.
175  ///
176  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
177  /// instantiation-dependent (since it involves a template parameter \c T), but
178  /// is neither type- nor value-dependent, since the type of the inner
179  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
180  /// \c sizeof is known.
181  ///
182  /// \code
183  /// template<typename T>
184  /// void f(T x, T y) {
185  ///   sizeof(sizeof(T() + T());
186  /// }
187  /// \endcode
188  ///
189  bool isInstantiationDependent() const {
190    return ExprBits.InstantiationDependent;
191  }
192
193  /// \brief Set whether this expression is instantiation-dependent or not.
194  void setInstantiationDependent(bool ID) {
195    ExprBits.InstantiationDependent = ID;
196  }
197
198  /// \brief Whether this expression contains an unexpanded parameter
199  /// pack (for C++11 variadic templates).
200  ///
201  /// Given the following function template:
202  ///
203  /// \code
204  /// template<typename F, typename ...Types>
205  /// void forward(const F &f, Types &&...args) {
206  ///   f(static_cast<Types&&>(args)...);
207  /// }
208  /// \endcode
209  ///
210  /// The expressions \c args and \c static_cast<Types&&>(args) both
211  /// contain parameter packs.
212  bool containsUnexpandedParameterPack() const {
213    return ExprBits.ContainsUnexpandedParameterPack;
214  }
215
216  /// \brief Set the bit that describes whether this expression
217  /// contains an unexpanded parameter pack.
218  void setContainsUnexpandedParameterPack(bool PP = true) {
219    ExprBits.ContainsUnexpandedParameterPack = PP;
220  }
221
222  /// getExprLoc - Return the preferred location for the arrow when diagnosing
223  /// a problem with a generic expression.
224  SourceLocation getExprLoc() const LLVM_READONLY;
225
226  /// isUnusedResultAWarning - Return true if this immediate expression should
227  /// be warned about if the result is unused.  If so, fill in expr, location,
228  /// and ranges with expr to warn on and source locations/ranges appropriate
229  /// for a warning.
230  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
231                              SourceRange &R1, SourceRange &R2,
232                              ASTContext &Ctx) const;
233
234  /// isLValue - True if this expression is an "l-value" according to
235  /// the rules of the current language.  C and C++ give somewhat
236  /// different rules for this concept, but in general, the result of
237  /// an l-value expression identifies a specific object whereas the
238  /// result of an r-value expression is a value detached from any
239  /// specific storage.
240  ///
241  /// C++11 divides the concept of "r-value" into pure r-values
242  /// ("pr-values") and so-called expiring values ("x-values"), which
243  /// identify specific objects that can be safely cannibalized for
244  /// their resources.  This is an unfortunate abuse of terminology on
245  /// the part of the C++ committee.  In Clang, when we say "r-value",
246  /// we generally mean a pr-value.
247  bool isLValue() const { return getValueKind() == VK_LValue; }
248  bool isRValue() const { return getValueKind() == VK_RValue; }
249  bool isXValue() const { return getValueKind() == VK_XValue; }
250  bool isGLValue() const { return getValueKind() != VK_RValue; }
251
252  enum LValueClassification {
253    LV_Valid,
254    LV_NotObjectType,
255    LV_IncompleteVoidType,
256    LV_DuplicateVectorComponents,
257    LV_InvalidExpression,
258    LV_InvalidMessageExpression,
259    LV_MemberFunction,
260    LV_SubObjCPropertySetting,
261    LV_ClassTemporary,
262    LV_ArrayTemporary
263  };
264  /// Reasons why an expression might not be an l-value.
265  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
266
267  enum isModifiableLvalueResult {
268    MLV_Valid,
269    MLV_NotObjectType,
270    MLV_IncompleteVoidType,
271    MLV_DuplicateVectorComponents,
272    MLV_InvalidExpression,
273    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
274    MLV_IncompleteType,
275    MLV_ConstQualified,
276    MLV_ArrayType,
277    MLV_ReadonlyProperty,
278    MLV_NoSetterProperty,
279    MLV_MemberFunction,
280    MLV_SubObjCPropertySetting,
281    MLV_InvalidMessageExpression,
282    MLV_ClassTemporary,
283    MLV_ArrayTemporary
284  };
285  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
286  /// does not have an incomplete type, does not have a const-qualified type,
287  /// and if it is a structure or union, does not have any member (including,
288  /// recursively, any member or element of all contained aggregates or unions)
289  /// with a const-qualified type.
290  ///
291  /// \param Loc [in,out] - A source location which *may* be filled
292  /// in with the location of the expression making this a
293  /// non-modifiable lvalue, if specified.
294  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
295                                              SourceLocation *Loc = 0) const;
296
297  /// \brief The return type of classify(). Represents the C++11 expression
298  ///        taxonomy.
299  class Classification {
300  public:
301    /// \brief The various classification results. Most of these mean prvalue.
302    enum Kinds {
303      CL_LValue,
304      CL_XValue,
305      CL_Function, // Functions cannot be lvalues in C.
306      CL_Void, // Void cannot be an lvalue in C.
307      CL_AddressableVoid, // Void expression whose address can be taken in C.
308      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
309      CL_MemberFunction, // An expression referring to a member function
310      CL_SubObjCPropertySetting,
311      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
312      CL_ArrayTemporary, // A temporary of array type.
313      CL_ObjCMessageRValue, // ObjC message is an rvalue
314      CL_PRValue // A prvalue for any other reason, of any other type
315    };
316    /// \brief The results of modification testing.
317    enum ModifiableType {
318      CM_Untested, // testModifiable was false.
319      CM_Modifiable,
320      CM_RValue, // Not modifiable because it's an rvalue
321      CM_Function, // Not modifiable because it's a function; C++ only
322      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
323      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
324      CM_ConstQualified,
325      CM_ArrayType,
326      CM_IncompleteType
327    };
328
329  private:
330    friend class Expr;
331
332    unsigned short Kind;
333    unsigned short Modifiable;
334
335    explicit Classification(Kinds k, ModifiableType m)
336      : Kind(k), Modifiable(m)
337    {}
338
339  public:
340    Classification() {}
341
342    Kinds getKind() const { return static_cast<Kinds>(Kind); }
343    ModifiableType getModifiable() const {
344      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
345      return static_cast<ModifiableType>(Modifiable);
346    }
347    bool isLValue() const { return Kind == CL_LValue; }
348    bool isXValue() const { return Kind == CL_XValue; }
349    bool isGLValue() const { return Kind <= CL_XValue; }
350    bool isPRValue() const { return Kind >= CL_Function; }
351    bool isRValue() const { return Kind >= CL_XValue; }
352    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
353
354    /// \brief Create a simple, modifiably lvalue
355    static Classification makeSimpleLValue() {
356      return Classification(CL_LValue, CM_Modifiable);
357    }
358
359  };
360  /// \brief Classify - Classify this expression according to the C++11
361  ///        expression taxonomy.
362  ///
363  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
364  /// old lvalue vs rvalue. This function determines the type of expression this
365  /// is. There are three expression types:
366  /// - lvalues are classical lvalues as in C++03.
367  /// - prvalues are equivalent to rvalues in C++03.
368  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
369  ///   function returning an rvalue reference.
370  /// lvalues and xvalues are collectively referred to as glvalues, while
371  /// prvalues and xvalues together form rvalues.
372  Classification Classify(ASTContext &Ctx) const {
373    return ClassifyImpl(Ctx, 0);
374  }
375
376  /// \brief ClassifyModifiable - Classify this expression according to the
377  ///        C++11 expression taxonomy, and see if it is valid on the left side
378  ///        of an assignment.
379  ///
380  /// This function extends classify in that it also tests whether the
381  /// expression is modifiable (C99 6.3.2.1p1).
382  /// \param Loc A source location that might be filled with a relevant location
383  ///            if the expression is not modifiable.
384  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
385    return ClassifyImpl(Ctx, &Loc);
386  }
387
388  /// getValueKindForType - Given a formal return or parameter type,
389  /// give its value kind.
390  static ExprValueKind getValueKindForType(QualType T) {
391    if (const ReferenceType *RT = T->getAs<ReferenceType>())
392      return (isa<LValueReferenceType>(RT)
393                ? VK_LValue
394                : (RT->getPointeeType()->isFunctionType()
395                     ? VK_LValue : VK_XValue));
396    return VK_RValue;
397  }
398
399  /// getValueKind - The value kind that this expression produces.
400  ExprValueKind getValueKind() const {
401    return static_cast<ExprValueKind>(ExprBits.ValueKind);
402  }
403
404  /// getObjectKind - The object kind that this expression produces.
405  /// Object kinds are meaningful only for expressions that yield an
406  /// l-value or x-value.
407  ExprObjectKind getObjectKind() const {
408    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
409  }
410
411  bool isOrdinaryOrBitFieldObject() const {
412    ExprObjectKind OK = getObjectKind();
413    return (OK == OK_Ordinary || OK == OK_BitField);
414  }
415
416  /// setValueKind - Set the value kind produced by this expression.
417  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
418
419  /// setObjectKind - Set the object kind produced by this expression.
420  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
421
422private:
423  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
424
425public:
426
427  /// \brief If this expression refers to a bit-field, retrieve the
428  /// declaration of that bit-field.
429  FieldDecl *getBitField();
430
431  const FieldDecl *getBitField() const {
432    return const_cast<Expr*>(this)->getBitField();
433  }
434
435  /// \brief If this expression is an l-value for an Objective C
436  /// property, find the underlying property reference expression.
437  const ObjCPropertyRefExpr *getObjCProperty() const;
438
439  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
440  bool isObjCSelfExpr() const;
441
442  /// \brief Returns whether this expression refers to a vector element.
443  bool refersToVectorElement() const;
444
445  /// \brief Returns whether this expression has a placeholder type.
446  bool hasPlaceholderType() const {
447    return getType()->isPlaceholderType();
448  }
449
450  /// \brief Returns whether this expression has a specific placeholder type.
451  bool hasPlaceholderType(BuiltinType::Kind K) const {
452    assert(BuiltinType::isPlaceholderTypeKind(K));
453    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
454      return BT->getKind() == K;
455    return false;
456  }
457
458  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
459  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
460  /// but also int expressions which are produced by things like comparisons in
461  /// C.
462  bool isKnownToHaveBooleanValue() const;
463
464  /// isIntegerConstantExpr - Return true if this expression is a valid integer
465  /// constant expression, and, if so, return its value in Result.  If not a
466  /// valid i-c-e, return false and fill in Loc (if specified) with the location
467  /// of the invalid expression.
468  ///
469  /// Note: This does not perform the implicit conversions required by C++11
470  /// [expr.const]p5.
471  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
472                             SourceLocation *Loc = 0,
473                             bool isEvaluated = true) const;
474  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
475
476  /// isCXX98IntegralConstantExpr - Return true if this expression is an
477  /// integral constant expression in C++98. Can only be used in C++.
478  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
479
480  /// isCXX11ConstantExpr - Return true if this expression is a constant
481  /// expression in C++11. Can only be used in C++.
482  ///
483  /// Note: This does not perform the implicit conversions required by C++11
484  /// [expr.const]p5.
485  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
486                           SourceLocation *Loc = 0) const;
487
488  /// isPotentialConstantExpr - Return true if this function's definition
489  /// might be usable in a constant expression in C++11, if it were marked
490  /// constexpr. Return false if the function can never produce a constant
491  /// expression, along with diagnostics describing why not.
492  static bool isPotentialConstantExpr(const FunctionDecl *FD,
493                                      llvm::SmallVectorImpl<
494                                        PartialDiagnosticAt> &Diags);
495
496  /// isConstantInitializer - Returns true if this expression can be emitted to
497  /// IR as a constant, and thus can be used as a constant initializer in C.
498  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
499
500  /// EvalStatus is a struct with detailed info about an evaluation in progress.
501  struct EvalStatus {
502    /// HasSideEffects - Whether the evaluated expression has side effects.
503    /// For example, (f() && 0) can be folded, but it still has side effects.
504    bool HasSideEffects;
505
506    /// Diag - If this is non-null, it will be filled in with a stack of notes
507    /// indicating why evaluation failed (or why it failed to produce a constant
508    /// expression).
509    /// If the expression is unfoldable, the notes will indicate why it's not
510    /// foldable. If the expression is foldable, but not a constant expression,
511    /// the notes will describes why it isn't a constant expression. If the
512    /// expression *is* a constant expression, no notes will be produced.
513    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
514
515    EvalStatus() : HasSideEffects(false), Diag(0) {}
516
517    // hasSideEffects - Return true if the evaluated expression has
518    // side effects.
519    bool hasSideEffects() const {
520      return HasSideEffects;
521    }
522  };
523
524  /// EvalResult is a struct with detailed info about an evaluated expression.
525  struct EvalResult : EvalStatus {
526    /// Val - This is the value the expression can be folded to.
527    APValue Val;
528
529    // isGlobalLValue - Return true if the evaluated lvalue expression
530    // is global.
531    bool isGlobalLValue() const;
532  };
533
534  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
535  /// an rvalue using any crazy technique (that has nothing to do with language
536  /// standards) that we want to, even if the expression has side-effects. If
537  /// this function returns true, it returns the folded constant in Result. If
538  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
539  /// applied.
540  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
541
542  /// EvaluateAsBooleanCondition - Return true if this is a constant
543  /// which we we can fold and convert to a boolean condition using
544  /// any crazy technique that we want to, even if the expression has
545  /// side-effects.
546  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
547
548  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
549
550  /// EvaluateAsInt - Return true if this is a constant which we can fold and
551  /// convert to an integer, using any crazy technique that we want to.
552  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
553                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
554
555  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
556  /// constant folded without side-effects, but discard the result.
557  bool isEvaluatable(const ASTContext &Ctx) const;
558
559  /// HasSideEffects - This routine returns true for all those expressions
560  /// which have any effect other than producing a value. Example is a function
561  /// call, volatile variable read, or throwing an exception.
562  bool HasSideEffects(const ASTContext &Ctx) const;
563
564  /// \brief Determine whether this expression involves a call to any function
565  /// that is not trivial.
566  bool hasNonTrivialCall(ASTContext &Ctx);
567
568  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
569  /// integer. This must be called on an expression that constant folds to an
570  /// integer.
571  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
572                  llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag=0) const;
573
574  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
575  /// lvalue with link time known address, with no side-effects.
576  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
577
578  /// EvaluateAsInitializer - Evaluate an expression as if it were the
579  /// initializer of the given declaration. Returns true if the initializer
580  /// can be folded to a constant, and produces any relevant notes. In C++11,
581  /// notes will be produced if the expression is not a constant expression.
582  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
583                             const VarDecl *VD,
584                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
585
586  /// \brief Enumeration used to describe the kind of Null pointer constant
587  /// returned from \c isNullPointerConstant().
588  enum NullPointerConstantKind {
589    /// \brief Expression is not a Null pointer constant.
590    NPCK_NotNull = 0,
591
592    /// \brief Expression is a Null pointer constant built from a zero integer
593    /// expression that is not a simple, possibly parenthesized, zero literal.
594    /// C++ Core Issue 903 will classify these expressions as "not pointers"
595    /// once it is adopted.
596    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
597    NPCK_ZeroExpression,
598
599    /// \brief Expression is a Null pointer constant built from a literal zero.
600    NPCK_ZeroLiteral,
601
602    /// \brief Expression is a C++11 nullptr.
603    NPCK_CXX11_nullptr,
604
605    /// \brief Expression is a GNU-style __null constant.
606    NPCK_GNUNull
607  };
608
609  /// \brief Enumeration used to describe how \c isNullPointerConstant()
610  /// should cope with value-dependent expressions.
611  enum NullPointerConstantValueDependence {
612    /// \brief Specifies that the expression should never be value-dependent.
613    NPC_NeverValueDependent = 0,
614
615    /// \brief Specifies that a value-dependent expression of integral or
616    /// dependent type should be considered a null pointer constant.
617    NPC_ValueDependentIsNull,
618
619    /// \brief Specifies that a value-dependent expression should be considered
620    /// to never be a null pointer constant.
621    NPC_ValueDependentIsNotNull
622  };
623
624  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
625  /// a Null pointer constant. The return value can further distinguish the
626  /// kind of NULL pointer constant that was detected.
627  NullPointerConstantKind isNullPointerConstant(
628      ASTContext &Ctx,
629      NullPointerConstantValueDependence NPC) const;
630
631  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
632  /// write barrier.
633  bool isOBJCGCCandidate(ASTContext &Ctx) const;
634
635  /// \brief Returns true if this expression is a bound member function.
636  bool isBoundMemberFunction(ASTContext &Ctx) const;
637
638  /// \brief Given an expression of bound-member type, find the type
639  /// of the member.  Returns null if this is an *overloaded* bound
640  /// member expression.
641  static QualType findBoundMemberType(const Expr *expr);
642
643  /// IgnoreImpCasts - Skip past any implicit casts which might
644  /// surround this expression.  Only skips ImplicitCastExprs.
645  Expr *IgnoreImpCasts() LLVM_READONLY;
646
647  /// IgnoreImplicit - Skip past any implicit AST nodes which might
648  /// surround this expression.
649  Expr *IgnoreImplicit() LLVM_READONLY {
650    return cast<Expr>(Stmt::IgnoreImplicit());
651  }
652
653  const Expr *IgnoreImplicit() const LLVM_READONLY {
654    return const_cast<Expr*>(this)->IgnoreImplicit();
655  }
656
657  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
658  ///  its subexpression.  If that subexpression is also a ParenExpr,
659  ///  then this method recursively returns its subexpression, and so forth.
660  ///  Otherwise, the method returns the current Expr.
661  Expr *IgnoreParens() LLVM_READONLY;
662
663  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
664  /// or CastExprs, returning their operand.
665  Expr *IgnoreParenCasts() LLVM_READONLY;
666
667  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
668  /// any ParenExpr or ImplicitCastExprs, returning their operand.
669  Expr *IgnoreParenImpCasts() LLVM_READONLY;
670
671  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
672  /// call to a conversion operator, return the argument.
673  Expr *IgnoreConversionOperator() LLVM_READONLY;
674
675  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
676    return const_cast<Expr*>(this)->IgnoreConversionOperator();
677  }
678
679  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
680    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
681  }
682
683  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
684  /// CastExprs that represent lvalue casts, returning their operand.
685  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
686
687  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
688    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
689  }
690
691  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
692  /// value (including ptr->int casts of the same size).  Strip off any
693  /// ParenExpr or CastExprs, returning their operand.
694  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
695
696  /// Ignore parentheses and derived-to-base casts.
697  Expr *ignoreParenBaseCasts() LLVM_READONLY;
698
699  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
700    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
701  }
702
703  /// \brief Determine whether this expression is a default function argument.
704  ///
705  /// Default arguments are implicitly generated in the abstract syntax tree
706  /// by semantic analysis for function calls, object constructions, etc. in
707  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
708  /// this routine also looks through any implicit casts to determine whether
709  /// the expression is a default argument.
710  bool isDefaultArgument() const;
711
712  /// \brief Determine whether the result of this expression is a
713  /// temporary object of the given class type.
714  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
715
716  /// \brief Whether this expression is an implicit reference to 'this' in C++.
717  bool isImplicitCXXThis() const;
718
719  const Expr *IgnoreImpCasts() const LLVM_READONLY {
720    return const_cast<Expr*>(this)->IgnoreImpCasts();
721  }
722  const Expr *IgnoreParens() const LLVM_READONLY {
723    return const_cast<Expr*>(this)->IgnoreParens();
724  }
725  const Expr *IgnoreParenCasts() const LLVM_READONLY {
726    return const_cast<Expr*>(this)->IgnoreParenCasts();
727  }
728  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
729    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
730  }
731
732  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
733
734  /// \brief For an expression of class type or pointer to class type,
735  /// return the most derived class decl the expression is known to refer to.
736  ///
737  /// If this expression is a cast, this method looks through it to find the
738  /// most derived decl that can be inferred from the expression.
739  /// This is valid because derived-to-base conversions have undefined
740  /// behavior if the object isn't dynamically of the derived type.
741  const CXXRecordDecl *getBestDynamicClassType() const;
742
743  /// Walk outwards from an expression we want to bind a reference to and
744  /// find the expression whose lifetime needs to be extended. Record
745  /// the adjustments needed along the path.
746  const Expr *
747  skipRValueSubobjectAdjustments(
748                       SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
749
750  /// Skip irrelevant expressions to find what should be materialize for
751  /// binding with a reference.
752  const Expr *
753  findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const;
754
755  static bool classof(const Stmt *T) {
756    return T->getStmtClass() >= firstExprConstant &&
757           T->getStmtClass() <= lastExprConstant;
758  }
759};
760
761
762//===----------------------------------------------------------------------===//
763// Primary Expressions.
764//===----------------------------------------------------------------------===//
765
766/// OpaqueValueExpr - An expression referring to an opaque object of a
767/// fixed type and value class.  These don't correspond to concrete
768/// syntax; instead they're used to express operations (usually copy
769/// operations) on values whose source is generally obvious from
770/// context.
771class OpaqueValueExpr : public Expr {
772  friend class ASTStmtReader;
773  Expr *SourceExpr;
774  SourceLocation Loc;
775
776public:
777  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
778                  ExprObjectKind OK = OK_Ordinary,
779                  Expr *SourceExpr = 0)
780    : Expr(OpaqueValueExprClass, T, VK, OK,
781           T->isDependentType(),
782           T->isDependentType() ||
783           (SourceExpr && SourceExpr->isValueDependent()),
784           T->isInstantiationDependentType(),
785           false),
786      SourceExpr(SourceExpr), Loc(Loc) {
787  }
788
789  /// Given an expression which invokes a copy constructor --- i.e.  a
790  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
791  /// find the OpaqueValueExpr that's the source of the construction.
792  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
793
794  explicit OpaqueValueExpr(EmptyShell Empty)
795    : Expr(OpaqueValueExprClass, Empty) { }
796
797  /// \brief Retrieve the location of this expression.
798  SourceLocation getLocation() const { return Loc; }
799
800  SourceLocation getLocStart() const LLVM_READONLY {
801    return SourceExpr ? SourceExpr->getLocStart() : Loc;
802  }
803  SourceLocation getLocEnd() const LLVM_READONLY {
804    return SourceExpr ? SourceExpr->getLocEnd() : Loc;
805  }
806  SourceLocation getExprLoc() const LLVM_READONLY {
807    if (SourceExpr) return SourceExpr->getExprLoc();
808    return Loc;
809  }
810
811  child_range children() { return child_range(); }
812
813  /// The source expression of an opaque value expression is the
814  /// expression which originally generated the value.  This is
815  /// provided as a convenience for analyses that don't wish to
816  /// precisely model the execution behavior of the program.
817  ///
818  /// The source expression is typically set when building the
819  /// expression which binds the opaque value expression in the first
820  /// place.
821  Expr *getSourceExpr() const { return SourceExpr; }
822
823  static bool classof(const Stmt *T) {
824    return T->getStmtClass() == OpaqueValueExprClass;
825  }
826};
827
828/// \brief A reference to a declared variable, function, enum, etc.
829/// [C99 6.5.1p2]
830///
831/// This encodes all the information about how a declaration is referenced
832/// within an expression.
833///
834/// There are several optional constructs attached to DeclRefExprs only when
835/// they apply in order to conserve memory. These are laid out past the end of
836/// the object, and flags in the DeclRefExprBitfield track whether they exist:
837///
838///   DeclRefExprBits.HasQualifier:
839///       Specifies when this declaration reference expression has a C++
840///       nested-name-specifier.
841///   DeclRefExprBits.HasFoundDecl:
842///       Specifies when this declaration reference expression has a record of
843///       a NamedDecl (different from the referenced ValueDecl) which was found
844///       during name lookup and/or overload resolution.
845///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
846///       Specifies when this declaration reference expression has an explicit
847///       C++ template keyword and/or template argument list.
848///   DeclRefExprBits.RefersToEnclosingLocal
849///       Specifies when this declaration reference expression (validly)
850///       refers to a local variable from a different function.
851class DeclRefExpr : public Expr {
852  /// \brief The declaration that we are referencing.
853  ValueDecl *D;
854
855  /// \brief The location of the declaration name itself.
856  SourceLocation Loc;
857
858  /// \brief Provides source/type location info for the declaration name
859  /// embedded in D.
860  DeclarationNameLoc DNLoc;
861
862  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
863  NestedNameSpecifierLoc &getInternalQualifierLoc() {
864    assert(hasQualifier());
865    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
866  }
867
868  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
869  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
870    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
871  }
872
873  /// \brief Test whether there is a distinct FoundDecl attached to the end of
874  /// this DRE.
875  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
876
877  /// \brief Helper to retrieve the optional NamedDecl through which this
878  /// reference occured.
879  NamedDecl *&getInternalFoundDecl() {
880    assert(hasFoundDecl());
881    if (hasQualifier())
882      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
883    return *reinterpret_cast<NamedDecl **>(this + 1);
884  }
885
886  /// \brief Helper to retrieve the optional NamedDecl through which this
887  /// reference occured.
888  NamedDecl *getInternalFoundDecl() const {
889    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
890  }
891
892  DeclRefExpr(ASTContext &Ctx,
893              NestedNameSpecifierLoc QualifierLoc,
894              SourceLocation TemplateKWLoc,
895              ValueDecl *D, bool refersToEnclosingLocal,
896              const DeclarationNameInfo &NameInfo,
897              NamedDecl *FoundD,
898              const TemplateArgumentListInfo *TemplateArgs,
899              QualType T, ExprValueKind VK);
900
901  /// \brief Construct an empty declaration reference expression.
902  explicit DeclRefExpr(EmptyShell Empty)
903    : Expr(DeclRefExprClass, Empty) { }
904
905  /// \brief Computes the type- and value-dependence flags for this
906  /// declaration reference expression.
907  void computeDependence(ASTContext &C);
908
909public:
910  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
911              ExprValueKind VK, SourceLocation L,
912              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
913    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
914      D(D), Loc(L), DNLoc(LocInfo) {
915    DeclRefExprBits.HasQualifier = 0;
916    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
917    DeclRefExprBits.HasFoundDecl = 0;
918    DeclRefExprBits.HadMultipleCandidates = 0;
919    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
920    computeDependence(D->getASTContext());
921  }
922
923  static DeclRefExpr *Create(ASTContext &Context,
924                             NestedNameSpecifierLoc QualifierLoc,
925                             SourceLocation TemplateKWLoc,
926                             ValueDecl *D,
927                             bool isEnclosingLocal,
928                             SourceLocation NameLoc,
929                             QualType T, ExprValueKind VK,
930                             NamedDecl *FoundD = 0,
931                             const TemplateArgumentListInfo *TemplateArgs = 0);
932
933  static DeclRefExpr *Create(ASTContext &Context,
934                             NestedNameSpecifierLoc QualifierLoc,
935                             SourceLocation TemplateKWLoc,
936                             ValueDecl *D,
937                             bool isEnclosingLocal,
938                             const DeclarationNameInfo &NameInfo,
939                             QualType T, ExprValueKind VK,
940                             NamedDecl *FoundD = 0,
941                             const TemplateArgumentListInfo *TemplateArgs = 0);
942
943  /// \brief Construct an empty declaration reference expression.
944  static DeclRefExpr *CreateEmpty(ASTContext &Context,
945                                  bool HasQualifier,
946                                  bool HasFoundDecl,
947                                  bool HasTemplateKWAndArgsInfo,
948                                  unsigned NumTemplateArgs);
949
950  ValueDecl *getDecl() { return D; }
951  const ValueDecl *getDecl() const { return D; }
952  void setDecl(ValueDecl *NewD) { D = NewD; }
953
954  DeclarationNameInfo getNameInfo() const {
955    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
956  }
957
958  SourceLocation getLocation() const { return Loc; }
959  void setLocation(SourceLocation L) { Loc = L; }
960  SourceLocation getLocStart() const LLVM_READONLY;
961  SourceLocation getLocEnd() const LLVM_READONLY;
962
963  /// \brief Determine whether this declaration reference was preceded by a
964  /// C++ nested-name-specifier, e.g., \c N::foo.
965  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
966
967  /// \brief If the name was qualified, retrieves the nested-name-specifier
968  /// that precedes the name. Otherwise, returns NULL.
969  NestedNameSpecifier *getQualifier() const {
970    if (!hasQualifier())
971      return 0;
972
973    return getInternalQualifierLoc().getNestedNameSpecifier();
974  }
975
976  /// \brief If the name was qualified, retrieves the nested-name-specifier
977  /// that precedes the name, with source-location information.
978  NestedNameSpecifierLoc getQualifierLoc() const {
979    if (!hasQualifier())
980      return NestedNameSpecifierLoc();
981
982    return getInternalQualifierLoc();
983  }
984
985  /// \brief Get the NamedDecl through which this reference occured.
986  ///
987  /// This Decl may be different from the ValueDecl actually referred to in the
988  /// presence of using declarations, etc. It always returns non-NULL, and may
989  /// simple return the ValueDecl when appropriate.
990  NamedDecl *getFoundDecl() {
991    return hasFoundDecl() ? getInternalFoundDecl() : D;
992  }
993
994  /// \brief Get the NamedDecl through which this reference occurred.
995  /// See non-const variant.
996  const NamedDecl *getFoundDecl() const {
997    return hasFoundDecl() ? getInternalFoundDecl() : D;
998  }
999
1000  bool hasTemplateKWAndArgsInfo() const {
1001    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1002  }
1003
1004  /// \brief Return the optional template keyword and arguments info.
1005  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
1006    if (!hasTemplateKWAndArgsInfo())
1007      return 0;
1008
1009    if (hasFoundDecl())
1010      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1011        &getInternalFoundDecl() + 1);
1012
1013    if (hasQualifier())
1014      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1015        &getInternalQualifierLoc() + 1);
1016
1017    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
1018  }
1019
1020  /// \brief Return the optional template keyword and arguments info.
1021  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
1022    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
1023  }
1024
1025  /// \brief Retrieve the location of the template keyword preceding
1026  /// this name, if any.
1027  SourceLocation getTemplateKeywordLoc() const {
1028    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1029    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
1030  }
1031
1032  /// \brief Retrieve the location of the left angle bracket starting the
1033  /// explicit template argument list following the name, if any.
1034  SourceLocation getLAngleLoc() const {
1035    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1036    return getTemplateKWAndArgsInfo()->LAngleLoc;
1037  }
1038
1039  /// \brief Retrieve the location of the right angle bracket ending the
1040  /// explicit template argument list following the name, if any.
1041  SourceLocation getRAngleLoc() const {
1042    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1043    return getTemplateKWAndArgsInfo()->RAngleLoc;
1044  }
1045
1046  /// \brief Determines whether the name in this declaration reference
1047  /// was preceded by the template keyword.
1048  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1049
1050  /// \brief Determines whether this declaration reference was followed by an
1051  /// explicit template argument list.
1052  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1053
1054  /// \brief Retrieve the explicit template argument list that followed the
1055  /// member template name.
1056  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1057    assert(hasExplicitTemplateArgs());
1058    return *getTemplateKWAndArgsInfo();
1059  }
1060
1061  /// \brief Retrieve the explicit template argument list that followed the
1062  /// member template name.
1063  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1064    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1065  }
1066
1067  /// \brief Retrieves the optional explicit template arguments.
1068  /// This points to the same data as getExplicitTemplateArgs(), but
1069  /// returns null if there are no explicit template arguments.
1070  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1071    if (!hasExplicitTemplateArgs()) return 0;
1072    return &getExplicitTemplateArgs();
1073  }
1074
1075  /// \brief Copies the template arguments (if present) into the given
1076  /// structure.
1077  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1078    if (hasExplicitTemplateArgs())
1079      getExplicitTemplateArgs().copyInto(List);
1080  }
1081
1082  /// \brief Retrieve the template arguments provided as part of this
1083  /// template-id.
1084  const TemplateArgumentLoc *getTemplateArgs() const {
1085    if (!hasExplicitTemplateArgs())
1086      return 0;
1087
1088    return getExplicitTemplateArgs().getTemplateArgs();
1089  }
1090
1091  /// \brief Retrieve the number of template arguments provided as part of this
1092  /// template-id.
1093  unsigned getNumTemplateArgs() const {
1094    if (!hasExplicitTemplateArgs())
1095      return 0;
1096
1097    return getExplicitTemplateArgs().NumTemplateArgs;
1098  }
1099
1100  /// \brief Returns true if this expression refers to a function that
1101  /// was resolved from an overloaded set having size greater than 1.
1102  bool hadMultipleCandidates() const {
1103    return DeclRefExprBits.HadMultipleCandidates;
1104  }
1105  /// \brief Sets the flag telling whether this expression refers to
1106  /// a function that was resolved from an overloaded set having size
1107  /// greater than 1.
1108  void setHadMultipleCandidates(bool V = true) {
1109    DeclRefExprBits.HadMultipleCandidates = V;
1110  }
1111
1112  /// Does this DeclRefExpr refer to a local declaration from an
1113  /// enclosing function scope?
1114  bool refersToEnclosingLocal() const {
1115    return DeclRefExprBits.RefersToEnclosingLocal;
1116  }
1117
1118  static bool classof(const Stmt *T) {
1119    return T->getStmtClass() == DeclRefExprClass;
1120  }
1121
1122  // Iterators
1123  child_range children() { return child_range(); }
1124
1125  friend class ASTStmtReader;
1126  friend class ASTStmtWriter;
1127};
1128
1129/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1130class PredefinedExpr : public Expr {
1131public:
1132  enum IdentType {
1133    Func,
1134    Function,
1135    LFunction,  // Same as Function, but as wide string.
1136    PrettyFunction,
1137    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1138    /// 'virtual' keyword is omitted for virtual member functions.
1139    PrettyFunctionNoVirtual
1140  };
1141
1142private:
1143  SourceLocation Loc;
1144  IdentType Type;
1145public:
1146  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1147    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1148           type->isDependentType(), type->isDependentType(),
1149           type->isInstantiationDependentType(),
1150           /*ContainsUnexpandedParameterPack=*/false),
1151      Loc(l), Type(IT) {}
1152
1153  /// \brief Construct an empty predefined expression.
1154  explicit PredefinedExpr(EmptyShell Empty)
1155    : Expr(PredefinedExprClass, Empty) { }
1156
1157  IdentType getIdentType() const { return Type; }
1158  void setIdentType(IdentType IT) { Type = IT; }
1159
1160  SourceLocation getLocation() const { return Loc; }
1161  void setLocation(SourceLocation L) { Loc = L; }
1162
1163  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1164
1165  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1166  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1167
1168  static bool classof(const Stmt *T) {
1169    return T->getStmtClass() == PredefinedExprClass;
1170  }
1171
1172  // Iterators
1173  child_range children() { return child_range(); }
1174};
1175
1176/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1177/// leaking memory.
1178///
1179/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1180/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1181/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1182/// the APFloat/APInt values will never get freed. APNumericStorage uses
1183/// ASTContext's allocator for memory allocation.
1184class APNumericStorage {
1185  union {
1186    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1187    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1188  };
1189  unsigned BitWidth;
1190
1191  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1192
1193  APNumericStorage(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1194  void operator=(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1195
1196protected:
1197  APNumericStorage() : VAL(0), BitWidth(0) { }
1198
1199  llvm::APInt getIntValue() const {
1200    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1201    if (NumWords > 1)
1202      return llvm::APInt(BitWidth, NumWords, pVal);
1203    else
1204      return llvm::APInt(BitWidth, VAL);
1205  }
1206  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1207};
1208
1209class APIntStorage : private APNumericStorage {
1210public:
1211  llvm::APInt getValue() const { return getIntValue(); }
1212  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1213};
1214
1215class APFloatStorage : private APNumericStorage {
1216public:
1217  llvm::APFloat getValue(bool IsIEEE) const {
1218    return llvm::APFloat(getIntValue(), IsIEEE);
1219  }
1220  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1221    setIntValue(C, Val.bitcastToAPInt());
1222  }
1223};
1224
1225class IntegerLiteral : public Expr, public APIntStorage {
1226  SourceLocation Loc;
1227
1228  /// \brief Construct an empty integer literal.
1229  explicit IntegerLiteral(EmptyShell Empty)
1230    : Expr(IntegerLiteralClass, Empty) { }
1231
1232public:
1233  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1234  // or UnsignedLongLongTy
1235  IntegerLiteral(ASTContext &C, const llvm::APInt &V, QualType type,
1236                 SourceLocation l);
1237
1238  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1239  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1240  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1241  /// \param V - the value that the returned integer literal contains.
1242  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1243                                QualType type, SourceLocation l);
1244  /// \brief Returns a new empty integer literal.
1245  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1246
1247  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1248  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1249
1250  /// \brief Retrieve the location of the literal.
1251  SourceLocation getLocation() const { return Loc; }
1252
1253  void setLocation(SourceLocation Location) { Loc = Location; }
1254
1255  static bool classof(const Stmt *T) {
1256    return T->getStmtClass() == IntegerLiteralClass;
1257  }
1258
1259  // Iterators
1260  child_range children() { return child_range(); }
1261};
1262
1263class CharacterLiteral : public Expr {
1264public:
1265  enum CharacterKind {
1266    Ascii,
1267    Wide,
1268    UTF16,
1269    UTF32
1270  };
1271
1272private:
1273  unsigned Value;
1274  SourceLocation Loc;
1275public:
1276  // type should be IntTy
1277  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1278                   SourceLocation l)
1279    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1280           false, false),
1281      Value(value), Loc(l) {
1282    CharacterLiteralBits.Kind = kind;
1283  }
1284
1285  /// \brief Construct an empty character literal.
1286  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1287
1288  SourceLocation getLocation() const { return Loc; }
1289  CharacterKind getKind() const {
1290    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1291  }
1292
1293  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1294  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1295
1296  unsigned getValue() const { return Value; }
1297
1298  void setLocation(SourceLocation Location) { Loc = Location; }
1299  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1300  void setValue(unsigned Val) { Value = Val; }
1301
1302  static bool classof(const Stmt *T) {
1303    return T->getStmtClass() == CharacterLiteralClass;
1304  }
1305
1306  // Iterators
1307  child_range children() { return child_range(); }
1308};
1309
1310class FloatingLiteral : public Expr, private APFloatStorage {
1311  SourceLocation Loc;
1312
1313  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1314                  QualType Type, SourceLocation L);
1315
1316  /// \brief Construct an empty floating-point literal.
1317  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty);
1318
1319public:
1320  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1321                                 bool isexact, QualType Type, SourceLocation L);
1322  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1323
1324  llvm::APFloat getValue() const {
1325    return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE);
1326  }
1327  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1328    APFloatStorage::setValue(C, Val);
1329  }
1330
1331  bool isExact() const { return FloatingLiteralBits.IsExact; }
1332  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1333
1334  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1335  /// double.  Note that this may cause loss of precision, but is useful for
1336  /// debugging dumps, etc.
1337  double getValueAsApproximateDouble() const;
1338
1339  SourceLocation getLocation() const { return Loc; }
1340  void setLocation(SourceLocation L) { Loc = L; }
1341
1342  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1343  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1344
1345  static bool classof(const Stmt *T) {
1346    return T->getStmtClass() == FloatingLiteralClass;
1347  }
1348
1349  // Iterators
1350  child_range children() { return child_range(); }
1351};
1352
1353/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1354/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1355/// IntegerLiteral classes.  Instances of this class always have a Complex type
1356/// whose element type matches the subexpression.
1357///
1358class ImaginaryLiteral : public Expr {
1359  Stmt *Val;
1360public:
1361  ImaginaryLiteral(Expr *val, QualType Ty)
1362    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1363           false, false),
1364      Val(val) {}
1365
1366  /// \brief Build an empty imaginary literal.
1367  explicit ImaginaryLiteral(EmptyShell Empty)
1368    : Expr(ImaginaryLiteralClass, Empty) { }
1369
1370  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1371  Expr *getSubExpr() { return cast<Expr>(Val); }
1372  void setSubExpr(Expr *E) { Val = E; }
1373
1374  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1375  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1376
1377  static bool classof(const Stmt *T) {
1378    return T->getStmtClass() == ImaginaryLiteralClass;
1379  }
1380
1381  // Iterators
1382  child_range children() { return child_range(&Val, &Val+1); }
1383};
1384
1385/// StringLiteral - This represents a string literal expression, e.g. "foo"
1386/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1387/// is NOT null-terminated, and the length of the string is determined by
1388/// calling getByteLength().  The C type for a string is always a
1389/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1390/// not.
1391///
1392/// Note that strings in C can be formed by concatenation of multiple string
1393/// literal pptokens in translation phase #6.  This keeps track of the locations
1394/// of each of these pieces.
1395///
1396/// Strings in C can also be truncated and extended by assigning into arrays,
1397/// e.g. with constructs like:
1398///   char X[2] = "foobar";
1399/// In this case, getByteLength() will return 6, but the string literal will
1400/// have type "char[2]".
1401class StringLiteral : public Expr {
1402public:
1403  enum StringKind {
1404    Ascii,
1405    Wide,
1406    UTF8,
1407    UTF16,
1408    UTF32
1409  };
1410
1411private:
1412  friend class ASTStmtReader;
1413
1414  union {
1415    const char *asChar;
1416    const uint16_t *asUInt16;
1417    const uint32_t *asUInt32;
1418  } StrData;
1419  unsigned Length;
1420  unsigned CharByteWidth : 4;
1421  unsigned Kind : 3;
1422  unsigned IsPascal : 1;
1423  unsigned NumConcatenated;
1424  SourceLocation TokLocs[1];
1425
1426  StringLiteral(QualType Ty) :
1427    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1428         false) {}
1429
1430  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1431
1432public:
1433  /// This is the "fully general" constructor that allows representation of
1434  /// strings formed from multiple concatenated tokens.
1435  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1436                               bool Pascal, QualType Ty,
1437                               const SourceLocation *Loc, unsigned NumStrs);
1438
1439  /// Simple constructor for string literals made from one token.
1440  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1441                               bool Pascal, QualType Ty,
1442                               SourceLocation Loc) {
1443    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1444  }
1445
1446  /// \brief Construct an empty string literal.
1447  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1448
1449  StringRef getString() const {
1450    assert(CharByteWidth==1
1451           && "This function is used in places that assume strings use char");
1452    return StringRef(StrData.asChar, getByteLength());
1453  }
1454
1455  /// Allow access to clients that need the byte representation, such as
1456  /// ASTWriterStmt::VisitStringLiteral().
1457  StringRef getBytes() const {
1458    // FIXME: StringRef may not be the right type to use as a result for this.
1459    if (CharByteWidth == 1)
1460      return StringRef(StrData.asChar, getByteLength());
1461    if (CharByteWidth == 4)
1462      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1463                       getByteLength());
1464    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1465    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1466                     getByteLength());
1467  }
1468
1469  void outputString(raw_ostream &OS);
1470
1471  uint32_t getCodeUnit(size_t i) const {
1472    assert(i < Length && "out of bounds access");
1473    if (CharByteWidth == 1)
1474      return static_cast<unsigned char>(StrData.asChar[i]);
1475    if (CharByteWidth == 4)
1476      return StrData.asUInt32[i];
1477    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1478    return StrData.asUInt16[i];
1479  }
1480
1481  unsigned getByteLength() const { return CharByteWidth*Length; }
1482  unsigned getLength() const { return Length; }
1483  unsigned getCharByteWidth() const { return CharByteWidth; }
1484
1485  /// \brief Sets the string data to the given string data.
1486  void setString(ASTContext &C, StringRef Str,
1487                 StringKind Kind, bool IsPascal);
1488
1489  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1490
1491
1492  bool isAscii() const { return Kind == Ascii; }
1493  bool isWide() const { return Kind == Wide; }
1494  bool isUTF8() const { return Kind == UTF8; }
1495  bool isUTF16() const { return Kind == UTF16; }
1496  bool isUTF32() const { return Kind == UTF32; }
1497  bool isPascal() const { return IsPascal; }
1498
1499  bool containsNonAsciiOrNull() const {
1500    StringRef Str = getString();
1501    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1502      if (!isascii(Str[i]) || !Str[i])
1503        return true;
1504    return false;
1505  }
1506
1507  /// getNumConcatenated - Get the number of string literal tokens that were
1508  /// concatenated in translation phase #6 to form this string literal.
1509  unsigned getNumConcatenated() const { return NumConcatenated; }
1510
1511  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1512    assert(TokNum < NumConcatenated && "Invalid tok number");
1513    return TokLocs[TokNum];
1514  }
1515  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1516    assert(TokNum < NumConcatenated && "Invalid tok number");
1517    TokLocs[TokNum] = L;
1518  }
1519
1520  /// getLocationOfByte - Return a source location that points to the specified
1521  /// byte of this string literal.
1522  ///
1523  /// Strings are amazingly complex.  They can be formed from multiple tokens
1524  /// and can have escape sequences in them in addition to the usual trigraph
1525  /// and escaped newline business.  This routine handles this complexity.
1526  ///
1527  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1528                                   const LangOptions &Features,
1529                                   const TargetInfo &Target) const;
1530
1531  typedef const SourceLocation *tokloc_iterator;
1532  tokloc_iterator tokloc_begin() const { return TokLocs; }
1533  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1534
1535  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1536  SourceLocation getLocEnd() const LLVM_READONLY {
1537    return TokLocs[NumConcatenated - 1];
1538  }
1539
1540  static bool classof(const Stmt *T) {
1541    return T->getStmtClass() == StringLiteralClass;
1542  }
1543
1544  // Iterators
1545  child_range children() { return child_range(); }
1546};
1547
1548/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1549/// AST node is only formed if full location information is requested.
1550class ParenExpr : public Expr {
1551  SourceLocation L, R;
1552  Stmt *Val;
1553public:
1554  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1555    : Expr(ParenExprClass, val->getType(),
1556           val->getValueKind(), val->getObjectKind(),
1557           val->isTypeDependent(), val->isValueDependent(),
1558           val->isInstantiationDependent(),
1559           val->containsUnexpandedParameterPack()),
1560      L(l), R(r), Val(val) {}
1561
1562  /// \brief Construct an empty parenthesized expression.
1563  explicit ParenExpr(EmptyShell Empty)
1564    : Expr(ParenExprClass, Empty) { }
1565
1566  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1567  Expr *getSubExpr() { return cast<Expr>(Val); }
1568  void setSubExpr(Expr *E) { Val = E; }
1569
1570  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1571  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1572
1573  /// \brief Get the location of the left parentheses '('.
1574  SourceLocation getLParen() const { return L; }
1575  void setLParen(SourceLocation Loc) { L = Loc; }
1576
1577  /// \brief Get the location of the right parentheses ')'.
1578  SourceLocation getRParen() const { return R; }
1579  void setRParen(SourceLocation Loc) { R = Loc; }
1580
1581  static bool classof(const Stmt *T) {
1582    return T->getStmtClass() == ParenExprClass;
1583  }
1584
1585  // Iterators
1586  child_range children() { return child_range(&Val, &Val+1); }
1587};
1588
1589
1590/// UnaryOperator - This represents the unary-expression's (except sizeof and
1591/// alignof), the postinc/postdec operators from postfix-expression, and various
1592/// extensions.
1593///
1594/// Notes on various nodes:
1595///
1596/// Real/Imag - These return the real/imag part of a complex operand.  If
1597///   applied to a non-complex value, the former returns its operand and the
1598///   later returns zero in the type of the operand.
1599///
1600class UnaryOperator : public Expr {
1601public:
1602  typedef UnaryOperatorKind Opcode;
1603
1604private:
1605  unsigned Opc : 5;
1606  SourceLocation Loc;
1607  Stmt *Val;
1608public:
1609
1610  UnaryOperator(Expr *input, Opcode opc, QualType type,
1611                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1612    : Expr(UnaryOperatorClass, type, VK, OK,
1613           input->isTypeDependent() || type->isDependentType(),
1614           input->isValueDependent(),
1615           (input->isInstantiationDependent() ||
1616            type->isInstantiationDependentType()),
1617           input->containsUnexpandedParameterPack()),
1618      Opc(opc), Loc(l), Val(input) {}
1619
1620  /// \brief Build an empty unary operator.
1621  explicit UnaryOperator(EmptyShell Empty)
1622    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1623
1624  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1625  void setOpcode(Opcode O) { Opc = O; }
1626
1627  Expr *getSubExpr() const { return cast<Expr>(Val); }
1628  void setSubExpr(Expr *E) { Val = E; }
1629
1630  /// getOperatorLoc - Return the location of the operator.
1631  SourceLocation getOperatorLoc() const { return Loc; }
1632  void setOperatorLoc(SourceLocation L) { Loc = L; }
1633
1634  /// isPostfix - Return true if this is a postfix operation, like x++.
1635  static bool isPostfix(Opcode Op) {
1636    return Op == UO_PostInc || Op == UO_PostDec;
1637  }
1638
1639  /// isPrefix - Return true if this is a prefix operation, like --x.
1640  static bool isPrefix(Opcode Op) {
1641    return Op == UO_PreInc || Op == UO_PreDec;
1642  }
1643
1644  bool isPrefix() const { return isPrefix(getOpcode()); }
1645  bool isPostfix() const { return isPostfix(getOpcode()); }
1646
1647  static bool isIncrementOp(Opcode Op) {
1648    return Op == UO_PreInc || Op == UO_PostInc;
1649  }
1650  bool isIncrementOp() const {
1651    return isIncrementOp(getOpcode());
1652  }
1653
1654  static bool isDecrementOp(Opcode Op) {
1655    return Op == UO_PreDec || Op == UO_PostDec;
1656  }
1657  bool isDecrementOp() const {
1658    return isDecrementOp(getOpcode());
1659  }
1660
1661  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1662  bool isIncrementDecrementOp() const {
1663    return isIncrementDecrementOp(getOpcode());
1664  }
1665
1666  static bool isArithmeticOp(Opcode Op) {
1667    return Op >= UO_Plus && Op <= UO_LNot;
1668  }
1669  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1670
1671  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1672  /// corresponds to, e.g. "sizeof" or "[pre]++"
1673  static StringRef getOpcodeStr(Opcode Op);
1674
1675  /// \brief Retrieve the unary opcode that corresponds to the given
1676  /// overloaded operator.
1677  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1678
1679  /// \brief Retrieve the overloaded operator kind that corresponds to
1680  /// the given unary opcode.
1681  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1682
1683  SourceLocation getLocStart() const LLVM_READONLY {
1684    return isPostfix() ? Val->getLocStart() : Loc;
1685  }
1686  SourceLocation getLocEnd() const LLVM_READONLY {
1687    return isPostfix() ? Loc : Val->getLocEnd();
1688  }
1689  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1690
1691  static bool classof(const Stmt *T) {
1692    return T->getStmtClass() == UnaryOperatorClass;
1693  }
1694
1695  // Iterators
1696  child_range children() { return child_range(&Val, &Val+1); }
1697};
1698
1699/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1700/// offsetof(record-type, member-designator). For example, given:
1701/// @code
1702/// struct S {
1703///   float f;
1704///   double d;
1705/// };
1706/// struct T {
1707///   int i;
1708///   struct S s[10];
1709/// };
1710/// @endcode
1711/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1712
1713class OffsetOfExpr : public Expr {
1714public:
1715  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1716  class OffsetOfNode {
1717  public:
1718    /// \brief The kind of offsetof node we have.
1719    enum Kind {
1720      /// \brief An index into an array.
1721      Array = 0x00,
1722      /// \brief A field.
1723      Field = 0x01,
1724      /// \brief A field in a dependent type, known only by its name.
1725      Identifier = 0x02,
1726      /// \brief An implicit indirection through a C++ base class, when the
1727      /// field found is in a base class.
1728      Base = 0x03
1729    };
1730
1731  private:
1732    enum { MaskBits = 2, Mask = 0x03 };
1733
1734    /// \brief The source range that covers this part of the designator.
1735    SourceRange Range;
1736
1737    /// \brief The data describing the designator, which comes in three
1738    /// different forms, depending on the lower two bits.
1739    ///   - An unsigned index into the array of Expr*'s stored after this node
1740    ///     in memory, for [constant-expression] designators.
1741    ///   - A FieldDecl*, for references to a known field.
1742    ///   - An IdentifierInfo*, for references to a field with a given name
1743    ///     when the class type is dependent.
1744    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1745    ///     base class.
1746    uintptr_t Data;
1747
1748  public:
1749    /// \brief Create an offsetof node that refers to an array element.
1750    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1751                 SourceLocation RBracketLoc)
1752      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1753
1754    /// \brief Create an offsetof node that refers to a field.
1755    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1756                 SourceLocation NameLoc)
1757      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1758        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1759
1760    /// \brief Create an offsetof node that refers to an identifier.
1761    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1762                 SourceLocation NameLoc)
1763      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1764        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1765
1766    /// \brief Create an offsetof node that refers into a C++ base class.
1767    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1768      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1769
1770    /// \brief Determine what kind of offsetof node this is.
1771    Kind getKind() const {
1772      return static_cast<Kind>(Data & Mask);
1773    }
1774
1775    /// \brief For an array element node, returns the index into the array
1776    /// of expressions.
1777    unsigned getArrayExprIndex() const {
1778      assert(getKind() == Array);
1779      return Data >> 2;
1780    }
1781
1782    /// \brief For a field offsetof node, returns the field.
1783    FieldDecl *getField() const {
1784      assert(getKind() == Field);
1785      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1786    }
1787
1788    /// \brief For a field or identifier offsetof node, returns the name of
1789    /// the field.
1790    IdentifierInfo *getFieldName() const;
1791
1792    /// \brief For a base class node, returns the base specifier.
1793    CXXBaseSpecifier *getBase() const {
1794      assert(getKind() == Base);
1795      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1796    }
1797
1798    /// \brief Retrieve the source range that covers this offsetof node.
1799    ///
1800    /// For an array element node, the source range contains the locations of
1801    /// the square brackets. For a field or identifier node, the source range
1802    /// contains the location of the period (if there is one) and the
1803    /// identifier.
1804    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1805    SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1806    SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1807  };
1808
1809private:
1810
1811  SourceLocation OperatorLoc, RParenLoc;
1812  // Base type;
1813  TypeSourceInfo *TSInfo;
1814  // Number of sub-components (i.e. instances of OffsetOfNode).
1815  unsigned NumComps;
1816  // Number of sub-expressions (i.e. array subscript expressions).
1817  unsigned NumExprs;
1818
1819  OffsetOfExpr(ASTContext &C, QualType type,
1820               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1821               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1822               SourceLocation RParenLoc);
1823
1824  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1825    : Expr(OffsetOfExprClass, EmptyShell()),
1826      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1827
1828public:
1829
1830  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1831                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1832                              ArrayRef<OffsetOfNode> comps,
1833                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1834
1835  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1836                                   unsigned NumComps, unsigned NumExprs);
1837
1838  /// getOperatorLoc - Return the location of the operator.
1839  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1840  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1841
1842  /// \brief Return the location of the right parentheses.
1843  SourceLocation getRParenLoc() const { return RParenLoc; }
1844  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1845
1846  TypeSourceInfo *getTypeSourceInfo() const {
1847    return TSInfo;
1848  }
1849  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1850    TSInfo = tsi;
1851  }
1852
1853  const OffsetOfNode &getComponent(unsigned Idx) const {
1854    assert(Idx < NumComps && "Subscript out of range");
1855    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1856  }
1857
1858  void setComponent(unsigned Idx, OffsetOfNode ON) {
1859    assert(Idx < NumComps && "Subscript out of range");
1860    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1861  }
1862
1863  unsigned getNumComponents() const {
1864    return NumComps;
1865  }
1866
1867  Expr* getIndexExpr(unsigned Idx) {
1868    assert(Idx < NumExprs && "Subscript out of range");
1869    return reinterpret_cast<Expr **>(
1870                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1871  }
1872  const Expr *getIndexExpr(unsigned Idx) const {
1873    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1874  }
1875
1876  void setIndexExpr(unsigned Idx, Expr* E) {
1877    assert(Idx < NumComps && "Subscript out of range");
1878    reinterpret_cast<Expr **>(
1879                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1880  }
1881
1882  unsigned getNumExpressions() const {
1883    return NumExprs;
1884  }
1885
1886  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
1887  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1888
1889  static bool classof(const Stmt *T) {
1890    return T->getStmtClass() == OffsetOfExprClass;
1891  }
1892
1893  // Iterators
1894  child_range children() {
1895    Stmt **begin =
1896      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1897                               + NumComps);
1898    return child_range(begin, begin + NumExprs);
1899  }
1900};
1901
1902/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1903/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1904/// vec_step (OpenCL 1.1 6.11.12).
1905class UnaryExprOrTypeTraitExpr : public Expr {
1906  union {
1907    TypeSourceInfo *Ty;
1908    Stmt *Ex;
1909  } Argument;
1910  SourceLocation OpLoc, RParenLoc;
1911
1912public:
1913  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1914                           QualType resultType, SourceLocation op,
1915                           SourceLocation rp) :
1916      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1917           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1918           // Value-dependent if the argument is type-dependent.
1919           TInfo->getType()->isDependentType(),
1920           TInfo->getType()->isInstantiationDependentType(),
1921           TInfo->getType()->containsUnexpandedParameterPack()),
1922      OpLoc(op), RParenLoc(rp) {
1923    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1924    UnaryExprOrTypeTraitExprBits.IsType = true;
1925    Argument.Ty = TInfo;
1926  }
1927
1928  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1929                           QualType resultType, SourceLocation op,
1930                           SourceLocation rp) :
1931      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1932           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1933           // Value-dependent if the argument is type-dependent.
1934           E->isTypeDependent(),
1935           E->isInstantiationDependent(),
1936           E->containsUnexpandedParameterPack()),
1937      OpLoc(op), RParenLoc(rp) {
1938    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1939    UnaryExprOrTypeTraitExprBits.IsType = false;
1940    Argument.Ex = E;
1941  }
1942
1943  /// \brief Construct an empty sizeof/alignof expression.
1944  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1945    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1946
1947  UnaryExprOrTypeTrait getKind() const {
1948    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1949  }
1950  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1951
1952  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1953  QualType getArgumentType() const {
1954    return getArgumentTypeInfo()->getType();
1955  }
1956  TypeSourceInfo *getArgumentTypeInfo() const {
1957    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1958    return Argument.Ty;
1959  }
1960  Expr *getArgumentExpr() {
1961    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1962    return static_cast<Expr*>(Argument.Ex);
1963  }
1964  const Expr *getArgumentExpr() const {
1965    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1966  }
1967
1968  void setArgument(Expr *E) {
1969    Argument.Ex = E;
1970    UnaryExprOrTypeTraitExprBits.IsType = false;
1971  }
1972  void setArgument(TypeSourceInfo *TInfo) {
1973    Argument.Ty = TInfo;
1974    UnaryExprOrTypeTraitExprBits.IsType = true;
1975  }
1976
1977  /// Gets the argument type, or the type of the argument expression, whichever
1978  /// is appropriate.
1979  QualType getTypeOfArgument() const {
1980    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1981  }
1982
1983  SourceLocation getOperatorLoc() const { return OpLoc; }
1984  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1985
1986  SourceLocation getRParenLoc() const { return RParenLoc; }
1987  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1988
1989  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
1990  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1991
1992  static bool classof(const Stmt *T) {
1993    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1994  }
1995
1996  // Iterators
1997  child_range children();
1998};
1999
2000//===----------------------------------------------------------------------===//
2001// Postfix Operators.
2002//===----------------------------------------------------------------------===//
2003
2004/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2005class ArraySubscriptExpr : public Expr {
2006  enum { LHS, RHS, END_EXPR=2 };
2007  Stmt* SubExprs[END_EXPR];
2008  SourceLocation RBracketLoc;
2009public:
2010  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2011                     ExprValueKind VK, ExprObjectKind OK,
2012                     SourceLocation rbracketloc)
2013  : Expr(ArraySubscriptExprClass, t, VK, OK,
2014         lhs->isTypeDependent() || rhs->isTypeDependent(),
2015         lhs->isValueDependent() || rhs->isValueDependent(),
2016         (lhs->isInstantiationDependent() ||
2017          rhs->isInstantiationDependent()),
2018         (lhs->containsUnexpandedParameterPack() ||
2019          rhs->containsUnexpandedParameterPack())),
2020    RBracketLoc(rbracketloc) {
2021    SubExprs[LHS] = lhs;
2022    SubExprs[RHS] = rhs;
2023  }
2024
2025  /// \brief Create an empty array subscript expression.
2026  explicit ArraySubscriptExpr(EmptyShell Shell)
2027    : Expr(ArraySubscriptExprClass, Shell) { }
2028
2029  /// An array access can be written A[4] or 4[A] (both are equivalent).
2030  /// - getBase() and getIdx() always present the normalized view: A[4].
2031  ///    In this case getBase() returns "A" and getIdx() returns "4".
2032  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2033  ///    4[A] getLHS() returns "4".
2034  /// Note: Because vector element access is also written A[4] we must
2035  /// predicate the format conversion in getBase and getIdx only on the
2036  /// the type of the RHS, as it is possible for the LHS to be a vector of
2037  /// integer type
2038  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2039  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2040  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2041
2042  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2043  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2044  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2045
2046  Expr *getBase() {
2047    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2048  }
2049
2050  const Expr *getBase() const {
2051    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2052  }
2053
2054  Expr *getIdx() {
2055    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2056  }
2057
2058  const Expr *getIdx() const {
2059    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2060  }
2061
2062  SourceLocation getLocStart() const LLVM_READONLY {
2063    return getLHS()->getLocStart();
2064  }
2065  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2066
2067  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2068  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2069
2070  SourceLocation getExprLoc() const LLVM_READONLY {
2071    return getBase()->getExprLoc();
2072  }
2073
2074  static bool classof(const Stmt *T) {
2075    return T->getStmtClass() == ArraySubscriptExprClass;
2076  }
2077
2078  // Iterators
2079  child_range children() {
2080    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2081  }
2082};
2083
2084
2085/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2086/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2087/// while its subclasses may represent alternative syntax that (semantically)
2088/// results in a function call. For example, CXXOperatorCallExpr is
2089/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2090/// "str1 + str2" to resolve to a function call.
2091class CallExpr : public Expr {
2092  enum { FN=0, PREARGS_START=1 };
2093  Stmt **SubExprs;
2094  unsigned NumArgs;
2095  SourceLocation RParenLoc;
2096
2097protected:
2098  // These versions of the constructor are for derived classes.
2099  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2100           ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2101           SourceLocation rparenloc);
2102  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2103
2104  Stmt *getPreArg(unsigned i) {
2105    assert(i < getNumPreArgs() && "Prearg access out of range!");
2106    return SubExprs[PREARGS_START+i];
2107  }
2108  const Stmt *getPreArg(unsigned i) const {
2109    assert(i < getNumPreArgs() && "Prearg access out of range!");
2110    return SubExprs[PREARGS_START+i];
2111  }
2112  void setPreArg(unsigned i, Stmt *PreArg) {
2113    assert(i < getNumPreArgs() && "Prearg access out of range!");
2114    SubExprs[PREARGS_START+i] = PreArg;
2115  }
2116
2117  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2118
2119public:
2120  CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2121           ExprValueKind VK, SourceLocation rparenloc);
2122
2123  /// \brief Build an empty call expression.
2124  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2125
2126  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2127  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2128  void setCallee(Expr *F) { SubExprs[FN] = F; }
2129
2130  Decl *getCalleeDecl();
2131  const Decl *getCalleeDecl() const {
2132    return const_cast<CallExpr*>(this)->getCalleeDecl();
2133  }
2134
2135  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2136  FunctionDecl *getDirectCallee();
2137  const FunctionDecl *getDirectCallee() const {
2138    return const_cast<CallExpr*>(this)->getDirectCallee();
2139  }
2140
2141  /// getNumArgs - Return the number of actual arguments to this call.
2142  ///
2143  unsigned getNumArgs() const { return NumArgs; }
2144
2145  /// \brief Retrieve the call arguments.
2146  Expr **getArgs() {
2147    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2148  }
2149  const Expr *const *getArgs() const {
2150    return const_cast<CallExpr*>(this)->getArgs();
2151  }
2152
2153  /// getArg - Return the specified argument.
2154  Expr *getArg(unsigned Arg) {
2155    assert(Arg < NumArgs && "Arg access out of range!");
2156    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2157  }
2158  const Expr *getArg(unsigned Arg) const {
2159    assert(Arg < NumArgs && "Arg access out of range!");
2160    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2161  }
2162
2163  /// setArg - Set the specified argument.
2164  void setArg(unsigned Arg, Expr *ArgExpr) {
2165    assert(Arg < NumArgs && "Arg access out of range!");
2166    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2167  }
2168
2169  /// setNumArgs - This changes the number of arguments present in this call.
2170  /// Any orphaned expressions are deleted by this, and any new operands are set
2171  /// to null.
2172  void setNumArgs(ASTContext& C, unsigned NumArgs);
2173
2174  typedef ExprIterator arg_iterator;
2175  typedef ConstExprIterator const_arg_iterator;
2176
2177  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2178  arg_iterator arg_end() {
2179    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2180  }
2181  const_arg_iterator arg_begin() const {
2182    return SubExprs+PREARGS_START+getNumPreArgs();
2183  }
2184  const_arg_iterator arg_end() const {
2185    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2186  }
2187
2188  /// getNumCommas - Return the number of commas that must have been present in
2189  /// this function call.
2190  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2191
2192  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2193  /// not, return 0.
2194  unsigned isBuiltinCall() const;
2195
2196  /// getCallReturnType - Get the return type of the call expr. This is not
2197  /// always the type of the expr itself, if the return type is a reference
2198  /// type.
2199  QualType getCallReturnType() const;
2200
2201  SourceLocation getRParenLoc() const { return RParenLoc; }
2202  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2203
2204  SourceLocation getLocStart() const LLVM_READONLY;
2205  SourceLocation getLocEnd() const LLVM_READONLY;
2206
2207  static bool classof(const Stmt *T) {
2208    return T->getStmtClass() >= firstCallExprConstant &&
2209           T->getStmtClass() <= lastCallExprConstant;
2210  }
2211
2212  // Iterators
2213  child_range children() {
2214    return child_range(&SubExprs[0],
2215                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2216  }
2217};
2218
2219/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2220///
2221class MemberExpr : public Expr {
2222  /// Extra data stored in some member expressions.
2223  struct MemberNameQualifier {
2224    /// \brief The nested-name-specifier that qualifies the name, including
2225    /// source-location information.
2226    NestedNameSpecifierLoc QualifierLoc;
2227
2228    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2229    /// name qualifiers.
2230    DeclAccessPair FoundDecl;
2231  };
2232
2233  /// Base - the expression for the base pointer or structure references.  In
2234  /// X.F, this is "X".
2235  Stmt *Base;
2236
2237  /// MemberDecl - This is the decl being referenced by the field/member name.
2238  /// In X.F, this is the decl referenced by F.
2239  ValueDecl *MemberDecl;
2240
2241  /// MemberDNLoc - Provides source/type location info for the
2242  /// declaration name embedded in MemberDecl.
2243  DeclarationNameLoc MemberDNLoc;
2244
2245  /// MemberLoc - This is the location of the member name.
2246  SourceLocation MemberLoc;
2247
2248  /// IsArrow - True if this is "X->F", false if this is "X.F".
2249  bool IsArrow : 1;
2250
2251  /// \brief True if this member expression used a nested-name-specifier to
2252  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2253  /// declaration.  When true, a MemberNameQualifier
2254  /// structure is allocated immediately after the MemberExpr.
2255  bool HasQualifierOrFoundDecl : 1;
2256
2257  /// \brief True if this member expression specified a template keyword
2258  /// and/or a template argument list explicitly, e.g., x->f<int>,
2259  /// x->template f, x->template f<int>.
2260  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2261  /// TemplateArguments (if any) are allocated immediately after
2262  /// the MemberExpr or, if the member expression also has a qualifier,
2263  /// after the MemberNameQualifier structure.
2264  bool HasTemplateKWAndArgsInfo : 1;
2265
2266  /// \brief True if this member expression refers to a method that
2267  /// was resolved from an overloaded set having size greater than 1.
2268  bool HadMultipleCandidates : 1;
2269
2270  /// \brief Retrieve the qualifier that preceded the member name, if any.
2271  MemberNameQualifier *getMemberQualifier() {
2272    assert(HasQualifierOrFoundDecl);
2273    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2274  }
2275
2276  /// \brief Retrieve the qualifier that preceded the member name, if any.
2277  const MemberNameQualifier *getMemberQualifier() const {
2278    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2279  }
2280
2281public:
2282  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2283             const DeclarationNameInfo &NameInfo, QualType ty,
2284             ExprValueKind VK, ExprObjectKind OK)
2285    : Expr(MemberExprClass, ty, VK, OK,
2286           base->isTypeDependent(),
2287           base->isValueDependent(),
2288           base->isInstantiationDependent(),
2289           base->containsUnexpandedParameterPack()),
2290      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2291      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2292      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2293      HadMultipleCandidates(false) {
2294    assert(memberdecl->getDeclName() == NameInfo.getName());
2295  }
2296
2297  // NOTE: this constructor should be used only when it is known that
2298  // the member name can not provide additional syntactic info
2299  // (i.e., source locations for C++ operator names or type source info
2300  // for constructors, destructors and conversion operators).
2301  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2302             SourceLocation l, QualType ty,
2303             ExprValueKind VK, ExprObjectKind OK)
2304    : Expr(MemberExprClass, ty, VK, OK,
2305           base->isTypeDependent(), base->isValueDependent(),
2306           base->isInstantiationDependent(),
2307           base->containsUnexpandedParameterPack()),
2308      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2309      IsArrow(isarrow),
2310      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2311      HadMultipleCandidates(false) {}
2312
2313  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2314                            NestedNameSpecifierLoc QualifierLoc,
2315                            SourceLocation TemplateKWLoc,
2316                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2317                            DeclarationNameInfo MemberNameInfo,
2318                            const TemplateArgumentListInfo *targs,
2319                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2320
2321  void setBase(Expr *E) { Base = E; }
2322  Expr *getBase() const { return cast<Expr>(Base); }
2323
2324  /// \brief Retrieve the member declaration to which this expression refers.
2325  ///
2326  /// The returned declaration will either be a FieldDecl or (in C++)
2327  /// a CXXMethodDecl.
2328  ValueDecl *getMemberDecl() const { return MemberDecl; }
2329  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2330
2331  /// \brief Retrieves the declaration found by lookup.
2332  DeclAccessPair getFoundDecl() const {
2333    if (!HasQualifierOrFoundDecl)
2334      return DeclAccessPair::make(getMemberDecl(),
2335                                  getMemberDecl()->getAccess());
2336    return getMemberQualifier()->FoundDecl;
2337  }
2338
2339  /// \brief Determines whether this member expression actually had
2340  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2341  /// x->Base::foo.
2342  bool hasQualifier() const { return getQualifier() != 0; }
2343
2344  /// \brief If the member name was qualified, retrieves the
2345  /// nested-name-specifier that precedes the member name. Otherwise, returns
2346  /// NULL.
2347  NestedNameSpecifier *getQualifier() const {
2348    if (!HasQualifierOrFoundDecl)
2349      return 0;
2350
2351    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2352  }
2353
2354  /// \brief If the member name was qualified, retrieves the
2355  /// nested-name-specifier that precedes the member name, with source-location
2356  /// information.
2357  NestedNameSpecifierLoc getQualifierLoc() const {
2358    if (!hasQualifier())
2359      return NestedNameSpecifierLoc();
2360
2361    return getMemberQualifier()->QualifierLoc;
2362  }
2363
2364  /// \brief Return the optional template keyword and arguments info.
2365  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2366    if (!HasTemplateKWAndArgsInfo)
2367      return 0;
2368
2369    if (!HasQualifierOrFoundDecl)
2370      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2371
2372    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2373                                                      getMemberQualifier() + 1);
2374  }
2375
2376  /// \brief Return the optional template keyword and arguments info.
2377  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2378    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2379  }
2380
2381  /// \brief Retrieve the location of the template keyword preceding
2382  /// the member name, if any.
2383  SourceLocation getTemplateKeywordLoc() const {
2384    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2385    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2386  }
2387
2388  /// \brief Retrieve the location of the left angle bracket starting the
2389  /// explicit template argument list following the member name, if any.
2390  SourceLocation getLAngleLoc() const {
2391    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2392    return getTemplateKWAndArgsInfo()->LAngleLoc;
2393  }
2394
2395  /// \brief Retrieve the location of the right angle bracket ending the
2396  /// explicit template argument list following the member name, if any.
2397  SourceLocation getRAngleLoc() const {
2398    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2399    return getTemplateKWAndArgsInfo()->RAngleLoc;
2400  }
2401
2402  /// Determines whether the member name was preceded by the template keyword.
2403  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2404
2405  /// \brief Determines whether the member name was followed by an
2406  /// explicit template argument list.
2407  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2408
2409  /// \brief Copies the template arguments (if present) into the given
2410  /// structure.
2411  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2412    if (hasExplicitTemplateArgs())
2413      getExplicitTemplateArgs().copyInto(List);
2414  }
2415
2416  /// \brief Retrieve the explicit template argument list that
2417  /// follow the member template name.  This must only be called on an
2418  /// expression with explicit template arguments.
2419  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2420    assert(hasExplicitTemplateArgs());
2421    return *getTemplateKWAndArgsInfo();
2422  }
2423
2424  /// \brief Retrieve the explicit template argument list that
2425  /// followed the member template name.  This must only be called on
2426  /// an expression with explicit template arguments.
2427  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2428    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2429  }
2430
2431  /// \brief Retrieves the optional explicit template arguments.
2432  /// This points to the same data as getExplicitTemplateArgs(), but
2433  /// returns null if there are no explicit template arguments.
2434  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2435    if (!hasExplicitTemplateArgs()) return 0;
2436    return &getExplicitTemplateArgs();
2437  }
2438
2439  /// \brief Retrieve the template arguments provided as part of this
2440  /// template-id.
2441  const TemplateArgumentLoc *getTemplateArgs() const {
2442    if (!hasExplicitTemplateArgs())
2443      return 0;
2444
2445    return getExplicitTemplateArgs().getTemplateArgs();
2446  }
2447
2448  /// \brief Retrieve the number of template arguments provided as part of this
2449  /// template-id.
2450  unsigned getNumTemplateArgs() const {
2451    if (!hasExplicitTemplateArgs())
2452      return 0;
2453
2454    return getExplicitTemplateArgs().NumTemplateArgs;
2455  }
2456
2457  /// \brief Retrieve the member declaration name info.
2458  DeclarationNameInfo getMemberNameInfo() const {
2459    return DeclarationNameInfo(MemberDecl->getDeclName(),
2460                               MemberLoc, MemberDNLoc);
2461  }
2462
2463  bool isArrow() const { return IsArrow; }
2464  void setArrow(bool A) { IsArrow = A; }
2465
2466  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2467  /// location of 'F'.
2468  SourceLocation getMemberLoc() const { return MemberLoc; }
2469  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2470
2471  SourceLocation getLocStart() const LLVM_READONLY;
2472  SourceLocation getLocEnd() const LLVM_READONLY;
2473
2474  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2475
2476  /// \brief Determine whether the base of this explicit is implicit.
2477  bool isImplicitAccess() const {
2478    return getBase() && getBase()->isImplicitCXXThis();
2479  }
2480
2481  /// \brief Returns true if this member expression refers to a method that
2482  /// was resolved from an overloaded set having size greater than 1.
2483  bool hadMultipleCandidates() const {
2484    return HadMultipleCandidates;
2485  }
2486  /// \brief Sets the flag telling whether this expression refers to
2487  /// a method that was resolved from an overloaded set having size
2488  /// greater than 1.
2489  void setHadMultipleCandidates(bool V = true) {
2490    HadMultipleCandidates = V;
2491  }
2492
2493  static bool classof(const Stmt *T) {
2494    return T->getStmtClass() == MemberExprClass;
2495  }
2496
2497  // Iterators
2498  child_range children() { return child_range(&Base, &Base+1); }
2499
2500  friend class ASTReader;
2501  friend class ASTStmtWriter;
2502};
2503
2504/// CompoundLiteralExpr - [C99 6.5.2.5]
2505///
2506class CompoundLiteralExpr : public Expr {
2507  /// LParenLoc - If non-null, this is the location of the left paren in a
2508  /// compound literal like "(int){4}".  This can be null if this is a
2509  /// synthesized compound expression.
2510  SourceLocation LParenLoc;
2511
2512  /// The type as written.  This can be an incomplete array type, in
2513  /// which case the actual expression type will be different.
2514  /// The int part of the pair stores whether this expr is file scope.
2515  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2516  Stmt *Init;
2517public:
2518  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2519                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2520    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2521           tinfo->getType()->isDependentType(),
2522           init->isValueDependent(),
2523           (init->isInstantiationDependent() ||
2524            tinfo->getType()->isInstantiationDependentType()),
2525           init->containsUnexpandedParameterPack()),
2526      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2527
2528  /// \brief Construct an empty compound literal.
2529  explicit CompoundLiteralExpr(EmptyShell Empty)
2530    : Expr(CompoundLiteralExprClass, Empty) { }
2531
2532  const Expr *getInitializer() const { return cast<Expr>(Init); }
2533  Expr *getInitializer() { return cast<Expr>(Init); }
2534  void setInitializer(Expr *E) { Init = E; }
2535
2536  bool isFileScope() const { return TInfoAndScope.getInt(); }
2537  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2538
2539  SourceLocation getLParenLoc() const { return LParenLoc; }
2540  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2541
2542  TypeSourceInfo *getTypeSourceInfo() const {
2543    return TInfoAndScope.getPointer();
2544  }
2545  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2546    TInfoAndScope.setPointer(tinfo);
2547  }
2548
2549  SourceLocation getLocStart() const LLVM_READONLY {
2550    // FIXME: Init should never be null.
2551    if (!Init)
2552      return SourceLocation();
2553    if (LParenLoc.isInvalid())
2554      return Init->getLocStart();
2555    return LParenLoc;
2556  }
2557  SourceLocation getLocEnd() const LLVM_READONLY {
2558    // FIXME: Init should never be null.
2559    if (!Init)
2560      return SourceLocation();
2561    return Init->getLocEnd();
2562  }
2563
2564  static bool classof(const Stmt *T) {
2565    return T->getStmtClass() == CompoundLiteralExprClass;
2566  }
2567
2568  // Iterators
2569  child_range children() { return child_range(&Init, &Init+1); }
2570};
2571
2572/// CastExpr - Base class for type casts, including both implicit
2573/// casts (ImplicitCastExpr) and explicit casts that have some
2574/// representation in the source code (ExplicitCastExpr's derived
2575/// classes).
2576class CastExpr : public Expr {
2577public:
2578  typedef clang::CastKind CastKind;
2579
2580private:
2581  Stmt *Op;
2582
2583  void CheckCastConsistency() const;
2584
2585  const CXXBaseSpecifier * const *path_buffer() const {
2586    return const_cast<CastExpr*>(this)->path_buffer();
2587  }
2588  CXXBaseSpecifier **path_buffer();
2589
2590  void setBasePathSize(unsigned basePathSize) {
2591    CastExprBits.BasePathSize = basePathSize;
2592    assert(CastExprBits.BasePathSize == basePathSize &&
2593           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2594  }
2595
2596protected:
2597  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2598           const CastKind kind, Expr *op, unsigned BasePathSize) :
2599    Expr(SC, ty, VK, OK_Ordinary,
2600         // Cast expressions are type-dependent if the type is
2601         // dependent (C++ [temp.dep.expr]p3).
2602         ty->isDependentType(),
2603         // Cast expressions are value-dependent if the type is
2604         // dependent or if the subexpression is value-dependent.
2605         ty->isDependentType() || (op && op->isValueDependent()),
2606         (ty->isInstantiationDependentType() ||
2607          (op && op->isInstantiationDependent())),
2608         (ty->containsUnexpandedParameterPack() ||
2609          op->containsUnexpandedParameterPack())),
2610    Op(op) {
2611    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2612    CastExprBits.Kind = kind;
2613    setBasePathSize(BasePathSize);
2614#ifndef NDEBUG
2615    CheckCastConsistency();
2616#endif
2617  }
2618
2619  /// \brief Construct an empty cast.
2620  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2621    : Expr(SC, Empty) {
2622    setBasePathSize(BasePathSize);
2623  }
2624
2625public:
2626  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2627  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2628  const char *getCastKindName() const;
2629
2630  Expr *getSubExpr() { return cast<Expr>(Op); }
2631  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2632  void setSubExpr(Expr *E) { Op = E; }
2633
2634  /// \brief Retrieve the cast subexpression as it was written in the source
2635  /// code, looking through any implicit casts or other intermediate nodes
2636  /// introduced by semantic analysis.
2637  Expr *getSubExprAsWritten();
2638  const Expr *getSubExprAsWritten() const {
2639    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2640  }
2641
2642  typedef CXXBaseSpecifier **path_iterator;
2643  typedef const CXXBaseSpecifier * const *path_const_iterator;
2644  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2645  unsigned path_size() const { return CastExprBits.BasePathSize; }
2646  path_iterator path_begin() { return path_buffer(); }
2647  path_iterator path_end() { return path_buffer() + path_size(); }
2648  path_const_iterator path_begin() const { return path_buffer(); }
2649  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2650
2651  void setCastPath(const CXXCastPath &Path);
2652
2653  static bool classof(const Stmt *T) {
2654    return T->getStmtClass() >= firstCastExprConstant &&
2655           T->getStmtClass() <= lastCastExprConstant;
2656  }
2657
2658  // Iterators
2659  child_range children() { return child_range(&Op, &Op+1); }
2660};
2661
2662/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2663/// conversions, which have no direct representation in the original
2664/// source code. For example: converting T[]->T*, void f()->void
2665/// (*f)(), float->double, short->int, etc.
2666///
2667/// In C, implicit casts always produce rvalues. However, in C++, an
2668/// implicit cast whose result is being bound to a reference will be
2669/// an lvalue or xvalue. For example:
2670///
2671/// @code
2672/// class Base { };
2673/// class Derived : public Base { };
2674/// Derived &&ref();
2675/// void f(Derived d) {
2676///   Base& b = d; // initializer is an ImplicitCastExpr
2677///                // to an lvalue of type Base
2678///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2679///                     // to an xvalue of type Base
2680/// }
2681/// @endcode
2682class ImplicitCastExpr : public CastExpr {
2683private:
2684  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2685                   unsigned BasePathLength, ExprValueKind VK)
2686    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2687  }
2688
2689  /// \brief Construct an empty implicit cast.
2690  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2691    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2692
2693public:
2694  enum OnStack_t { OnStack };
2695  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2696                   ExprValueKind VK)
2697    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2698  }
2699
2700  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2701                                  CastKind Kind, Expr *Operand,
2702                                  const CXXCastPath *BasePath,
2703                                  ExprValueKind Cat);
2704
2705  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2706
2707  SourceLocation getLocStart() const LLVM_READONLY {
2708    return getSubExpr()->getLocStart();
2709  }
2710  SourceLocation getLocEnd() const LLVM_READONLY {
2711    return getSubExpr()->getLocEnd();
2712  }
2713
2714  static bool classof(const Stmt *T) {
2715    return T->getStmtClass() == ImplicitCastExprClass;
2716  }
2717};
2718
2719inline Expr *Expr::IgnoreImpCasts() {
2720  Expr *e = this;
2721  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2722    e = ice->getSubExpr();
2723  return e;
2724}
2725
2726/// ExplicitCastExpr - An explicit cast written in the source
2727/// code.
2728///
2729/// This class is effectively an abstract class, because it provides
2730/// the basic representation of an explicitly-written cast without
2731/// specifying which kind of cast (C cast, functional cast, static
2732/// cast, etc.) was written; specific derived classes represent the
2733/// particular style of cast and its location information.
2734///
2735/// Unlike implicit casts, explicit cast nodes have two different
2736/// types: the type that was written into the source code, and the
2737/// actual type of the expression as determined by semantic
2738/// analysis. These types may differ slightly. For example, in C++ one
2739/// can cast to a reference type, which indicates that the resulting
2740/// expression will be an lvalue or xvalue. The reference type, however,
2741/// will not be used as the type of the expression.
2742class ExplicitCastExpr : public CastExpr {
2743  /// TInfo - Source type info for the (written) type
2744  /// this expression is casting to.
2745  TypeSourceInfo *TInfo;
2746
2747protected:
2748  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2749                   CastKind kind, Expr *op, unsigned PathSize,
2750                   TypeSourceInfo *writtenTy)
2751    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2752
2753  /// \brief Construct an empty explicit cast.
2754  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2755    : CastExpr(SC, Shell, PathSize) { }
2756
2757public:
2758  /// getTypeInfoAsWritten - Returns the type source info for the type
2759  /// that this expression is casting to.
2760  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2761  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2762
2763  /// getTypeAsWritten - Returns the type that this expression is
2764  /// casting to, as written in the source code.
2765  QualType getTypeAsWritten() const { return TInfo->getType(); }
2766
2767  static bool classof(const Stmt *T) {
2768     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2769            T->getStmtClass() <= lastExplicitCastExprConstant;
2770  }
2771};
2772
2773/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2774/// cast in C++ (C++ [expr.cast]), which uses the syntax
2775/// (Type)expr. For example: @c (int)f.
2776class CStyleCastExpr : public ExplicitCastExpr {
2777  SourceLocation LPLoc; // the location of the left paren
2778  SourceLocation RPLoc; // the location of the right paren
2779
2780  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2781                 unsigned PathSize, TypeSourceInfo *writtenTy,
2782                 SourceLocation l, SourceLocation r)
2783    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2784                       writtenTy), LPLoc(l), RPLoc(r) {}
2785
2786  /// \brief Construct an empty C-style explicit cast.
2787  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2788    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2789
2790public:
2791  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2792                                ExprValueKind VK, CastKind K,
2793                                Expr *Op, const CXXCastPath *BasePath,
2794                                TypeSourceInfo *WrittenTy, SourceLocation L,
2795                                SourceLocation R);
2796
2797  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2798
2799  SourceLocation getLParenLoc() const { return LPLoc; }
2800  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2801
2802  SourceLocation getRParenLoc() const { return RPLoc; }
2803  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2804
2805  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2806  SourceLocation getLocEnd() const LLVM_READONLY {
2807    return getSubExpr()->getLocEnd();
2808  }
2809
2810  static bool classof(const Stmt *T) {
2811    return T->getStmtClass() == CStyleCastExprClass;
2812  }
2813};
2814
2815/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2816///
2817/// This expression node kind describes a builtin binary operation,
2818/// such as "x + y" for integer values "x" and "y". The operands will
2819/// already have been converted to appropriate types (e.g., by
2820/// performing promotions or conversions).
2821///
2822/// In C++, where operators may be overloaded, a different kind of
2823/// expression node (CXXOperatorCallExpr) is used to express the
2824/// invocation of an overloaded operator with operator syntax. Within
2825/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2826/// used to store an expression "x + y" depends on the subexpressions
2827/// for x and y. If neither x or y is type-dependent, and the "+"
2828/// operator resolves to a built-in operation, BinaryOperator will be
2829/// used to express the computation (x and y may still be
2830/// value-dependent). If either x or y is type-dependent, or if the
2831/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2832/// be used to express the computation.
2833class BinaryOperator : public Expr {
2834public:
2835  typedef BinaryOperatorKind Opcode;
2836
2837private:
2838  unsigned Opc : 6;
2839
2840  // Records the FP_CONTRACT pragma status at the point that this binary
2841  // operator was parsed. This bit is only meaningful for operations on
2842  // floating point types. For all other types it should default to
2843  // false.
2844  unsigned FPContractable : 1;
2845  SourceLocation OpLoc;
2846
2847  enum { LHS, RHS, END_EXPR };
2848  Stmt* SubExprs[END_EXPR];
2849public:
2850
2851  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2852                 ExprValueKind VK, ExprObjectKind OK,
2853                 SourceLocation opLoc, bool fpContractable)
2854    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2855           lhs->isTypeDependent() || rhs->isTypeDependent(),
2856           lhs->isValueDependent() || rhs->isValueDependent(),
2857           (lhs->isInstantiationDependent() ||
2858            rhs->isInstantiationDependent()),
2859           (lhs->containsUnexpandedParameterPack() ||
2860            rhs->containsUnexpandedParameterPack())),
2861      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2862    SubExprs[LHS] = lhs;
2863    SubExprs[RHS] = rhs;
2864    assert(!isCompoundAssignmentOp() &&
2865           "Use ArithAssignBinaryOperator for compound assignments");
2866  }
2867
2868  /// \brief Construct an empty binary operator.
2869  explicit BinaryOperator(EmptyShell Empty)
2870    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2871
2872  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2873  SourceLocation getOperatorLoc() const { return OpLoc; }
2874  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2875
2876  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2877  void setOpcode(Opcode O) { Opc = O; }
2878
2879  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2880  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2881  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2882  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2883
2884  SourceLocation getLocStart() const LLVM_READONLY {
2885    return getLHS()->getLocStart();
2886  }
2887  SourceLocation getLocEnd() const LLVM_READONLY {
2888    return getRHS()->getLocEnd();
2889  }
2890
2891  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2892  /// corresponds to, e.g. "<<=".
2893  static StringRef getOpcodeStr(Opcode Op);
2894
2895  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2896
2897  /// \brief Retrieve the binary opcode that corresponds to the given
2898  /// overloaded operator.
2899  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2900
2901  /// \brief Retrieve the overloaded operator kind that corresponds to
2902  /// the given binary opcode.
2903  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2904
2905  /// predicates to categorize the respective opcodes.
2906  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2907  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2908  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2909  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2910  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2911  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2912
2913  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2914  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2915
2916  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2917  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2918
2919  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2920  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2921
2922  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2923  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2924
2925  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2926  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2927
2928  static bool isAssignmentOp(Opcode Opc) {
2929    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2930  }
2931  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2932
2933  static bool isCompoundAssignmentOp(Opcode Opc) {
2934    return Opc > BO_Assign && Opc <= BO_OrAssign;
2935  }
2936  bool isCompoundAssignmentOp() const {
2937    return isCompoundAssignmentOp(getOpcode());
2938  }
2939  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2940    assert(isCompoundAssignmentOp(Opc));
2941    if (Opc >= BO_AndAssign)
2942      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2943    else
2944      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2945  }
2946
2947  static bool isShiftAssignOp(Opcode Opc) {
2948    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2949  }
2950  bool isShiftAssignOp() const {
2951    return isShiftAssignOp(getOpcode());
2952  }
2953
2954  static bool classof(const Stmt *S) {
2955    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2956           S->getStmtClass() <= lastBinaryOperatorConstant;
2957  }
2958
2959  // Iterators
2960  child_range children() {
2961    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2962  }
2963
2964  // Set the FP contractability status of this operator. Only meaningful for
2965  // operations on floating point types.
2966  void setFPContractable(bool FPC) { FPContractable = FPC; }
2967
2968  // Get the FP contractability status of this operator. Only meaningful for
2969  // operations on floating point types.
2970  bool isFPContractable() const { return FPContractable; }
2971
2972protected:
2973  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2974                 ExprValueKind VK, ExprObjectKind OK,
2975                 SourceLocation opLoc, bool fpContractable, bool dead2)
2976    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2977           lhs->isTypeDependent() || rhs->isTypeDependent(),
2978           lhs->isValueDependent() || rhs->isValueDependent(),
2979           (lhs->isInstantiationDependent() ||
2980            rhs->isInstantiationDependent()),
2981           (lhs->containsUnexpandedParameterPack() ||
2982            rhs->containsUnexpandedParameterPack())),
2983      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2984    SubExprs[LHS] = lhs;
2985    SubExprs[RHS] = rhs;
2986  }
2987
2988  BinaryOperator(StmtClass SC, EmptyShell Empty)
2989    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2990};
2991
2992/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2993/// track of the type the operation is performed in.  Due to the semantics of
2994/// these operators, the operands are promoted, the arithmetic performed, an
2995/// implicit conversion back to the result type done, then the assignment takes
2996/// place.  This captures the intermediate type which the computation is done
2997/// in.
2998class CompoundAssignOperator : public BinaryOperator {
2999  QualType ComputationLHSType;
3000  QualType ComputationResultType;
3001public:
3002  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3003                         ExprValueKind VK, ExprObjectKind OK,
3004                         QualType CompLHSType, QualType CompResultType,
3005                         SourceLocation OpLoc, bool fpContractable)
3006    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
3007                     true),
3008      ComputationLHSType(CompLHSType),
3009      ComputationResultType(CompResultType) {
3010    assert(isCompoundAssignmentOp() &&
3011           "Only should be used for compound assignments");
3012  }
3013
3014  /// \brief Build an empty compound assignment operator expression.
3015  explicit CompoundAssignOperator(EmptyShell Empty)
3016    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3017
3018  // The two computation types are the type the LHS is converted
3019  // to for the computation and the type of the result; the two are
3020  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3021  QualType getComputationLHSType() const { return ComputationLHSType; }
3022  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3023
3024  QualType getComputationResultType() const { return ComputationResultType; }
3025  void setComputationResultType(QualType T) { ComputationResultType = T; }
3026
3027  static bool classof(const Stmt *S) {
3028    return S->getStmtClass() == CompoundAssignOperatorClass;
3029  }
3030};
3031
3032/// AbstractConditionalOperator - An abstract base class for
3033/// ConditionalOperator and BinaryConditionalOperator.
3034class AbstractConditionalOperator : public Expr {
3035  SourceLocation QuestionLoc, ColonLoc;
3036  friend class ASTStmtReader;
3037
3038protected:
3039  AbstractConditionalOperator(StmtClass SC, QualType T,
3040                              ExprValueKind VK, ExprObjectKind OK,
3041                              bool TD, bool VD, bool ID,
3042                              bool ContainsUnexpandedParameterPack,
3043                              SourceLocation qloc,
3044                              SourceLocation cloc)
3045    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3046      QuestionLoc(qloc), ColonLoc(cloc) {}
3047
3048  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3049    : Expr(SC, Empty) { }
3050
3051public:
3052  // getCond - Return the expression representing the condition for
3053  //   the ?: operator.
3054  Expr *getCond() const;
3055
3056  // getTrueExpr - Return the subexpression representing the value of
3057  //   the expression if the condition evaluates to true.
3058  Expr *getTrueExpr() const;
3059
3060  // getFalseExpr - Return the subexpression representing the value of
3061  //   the expression if the condition evaluates to false.  This is
3062  //   the same as getRHS.
3063  Expr *getFalseExpr() const;
3064
3065  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3066  SourceLocation getColonLoc() const { return ColonLoc; }
3067
3068  static bool classof(const Stmt *T) {
3069    return T->getStmtClass() == ConditionalOperatorClass ||
3070           T->getStmtClass() == BinaryConditionalOperatorClass;
3071  }
3072};
3073
3074/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3075/// middle" extension is a BinaryConditionalOperator.
3076class ConditionalOperator : public AbstractConditionalOperator {
3077  enum { COND, LHS, RHS, END_EXPR };
3078  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3079
3080  friend class ASTStmtReader;
3081public:
3082  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3083                      SourceLocation CLoc, Expr *rhs,
3084                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3085    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3086           // FIXME: the type of the conditional operator doesn't
3087           // depend on the type of the conditional, but the standard
3088           // seems to imply that it could. File a bug!
3089           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3090           (cond->isValueDependent() || lhs->isValueDependent() ||
3091            rhs->isValueDependent()),
3092           (cond->isInstantiationDependent() ||
3093            lhs->isInstantiationDependent() ||
3094            rhs->isInstantiationDependent()),
3095           (cond->containsUnexpandedParameterPack() ||
3096            lhs->containsUnexpandedParameterPack() ||
3097            rhs->containsUnexpandedParameterPack()),
3098                                  QLoc, CLoc) {
3099    SubExprs[COND] = cond;
3100    SubExprs[LHS] = lhs;
3101    SubExprs[RHS] = rhs;
3102  }
3103
3104  /// \brief Build an empty conditional operator.
3105  explicit ConditionalOperator(EmptyShell Empty)
3106    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3107
3108  // getCond - Return the expression representing the condition for
3109  //   the ?: operator.
3110  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3111
3112  // getTrueExpr - Return the subexpression representing the value of
3113  //   the expression if the condition evaluates to true.
3114  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3115
3116  // getFalseExpr - Return the subexpression representing the value of
3117  //   the expression if the condition evaluates to false.  This is
3118  //   the same as getRHS.
3119  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3120
3121  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3122  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3123
3124  SourceLocation getLocStart() const LLVM_READONLY {
3125    return getCond()->getLocStart();
3126  }
3127  SourceLocation getLocEnd() const LLVM_READONLY {
3128    return getRHS()->getLocEnd();
3129  }
3130
3131  static bool classof(const Stmt *T) {
3132    return T->getStmtClass() == ConditionalOperatorClass;
3133  }
3134
3135  // Iterators
3136  child_range children() {
3137    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3138  }
3139};
3140
3141/// BinaryConditionalOperator - The GNU extension to the conditional
3142/// operator which allows the middle operand to be omitted.
3143///
3144/// This is a different expression kind on the assumption that almost
3145/// every client ends up needing to know that these are different.
3146class BinaryConditionalOperator : public AbstractConditionalOperator {
3147  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3148
3149  /// - the common condition/left-hand-side expression, which will be
3150  ///   evaluated as the opaque value
3151  /// - the condition, expressed in terms of the opaque value
3152  /// - the left-hand-side, expressed in terms of the opaque value
3153  /// - the right-hand-side
3154  Stmt *SubExprs[NUM_SUBEXPRS];
3155  OpaqueValueExpr *OpaqueValue;
3156
3157  friend class ASTStmtReader;
3158public:
3159  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3160                            Expr *cond, Expr *lhs, Expr *rhs,
3161                            SourceLocation qloc, SourceLocation cloc,
3162                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3163    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3164           (common->isTypeDependent() || rhs->isTypeDependent()),
3165           (common->isValueDependent() || rhs->isValueDependent()),
3166           (common->isInstantiationDependent() ||
3167            rhs->isInstantiationDependent()),
3168           (common->containsUnexpandedParameterPack() ||
3169            rhs->containsUnexpandedParameterPack()),
3170                                  qloc, cloc),
3171      OpaqueValue(opaqueValue) {
3172    SubExprs[COMMON] = common;
3173    SubExprs[COND] = cond;
3174    SubExprs[LHS] = lhs;
3175    SubExprs[RHS] = rhs;
3176    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3177  }
3178
3179  /// \brief Build an empty conditional operator.
3180  explicit BinaryConditionalOperator(EmptyShell Empty)
3181    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3182
3183  /// \brief getCommon - Return the common expression, written to the
3184  ///   left of the condition.  The opaque value will be bound to the
3185  ///   result of this expression.
3186  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3187
3188  /// \brief getOpaqueValue - Return the opaque value placeholder.
3189  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3190
3191  /// \brief getCond - Return the condition expression; this is defined
3192  ///   in terms of the opaque value.
3193  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3194
3195  /// \brief getTrueExpr - Return the subexpression which will be
3196  ///   evaluated if the condition evaluates to true;  this is defined
3197  ///   in terms of the opaque value.
3198  Expr *getTrueExpr() const {
3199    return cast<Expr>(SubExprs[LHS]);
3200  }
3201
3202  /// \brief getFalseExpr - Return the subexpression which will be
3203  ///   evaluated if the condnition evaluates to false; this is
3204  ///   defined in terms of the opaque value.
3205  Expr *getFalseExpr() const {
3206    return cast<Expr>(SubExprs[RHS]);
3207  }
3208
3209  SourceLocation getLocStart() const LLVM_READONLY {
3210    return getCommon()->getLocStart();
3211  }
3212  SourceLocation getLocEnd() const LLVM_READONLY {
3213    return getFalseExpr()->getLocEnd();
3214  }
3215
3216  static bool classof(const Stmt *T) {
3217    return T->getStmtClass() == BinaryConditionalOperatorClass;
3218  }
3219
3220  // Iterators
3221  child_range children() {
3222    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3223  }
3224};
3225
3226inline Expr *AbstractConditionalOperator::getCond() const {
3227  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3228    return co->getCond();
3229  return cast<BinaryConditionalOperator>(this)->getCond();
3230}
3231
3232inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3233  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3234    return co->getTrueExpr();
3235  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3236}
3237
3238inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3239  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3240    return co->getFalseExpr();
3241  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3242}
3243
3244/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3245class AddrLabelExpr : public Expr {
3246  SourceLocation AmpAmpLoc, LabelLoc;
3247  LabelDecl *Label;
3248public:
3249  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3250                QualType t)
3251    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3252           false),
3253      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3254
3255  /// \brief Build an empty address of a label expression.
3256  explicit AddrLabelExpr(EmptyShell Empty)
3257    : Expr(AddrLabelExprClass, Empty) { }
3258
3259  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3260  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3261  SourceLocation getLabelLoc() const { return LabelLoc; }
3262  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3263
3264  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3265  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3266
3267  LabelDecl *getLabel() const { return Label; }
3268  void setLabel(LabelDecl *L) { Label = L; }
3269
3270  static bool classof(const Stmt *T) {
3271    return T->getStmtClass() == AddrLabelExprClass;
3272  }
3273
3274  // Iterators
3275  child_range children() { return child_range(); }
3276};
3277
3278/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3279/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3280/// takes the value of the last subexpression.
3281///
3282/// A StmtExpr is always an r-value; values "returned" out of a
3283/// StmtExpr will be copied.
3284class StmtExpr : public Expr {
3285  Stmt *SubStmt;
3286  SourceLocation LParenLoc, RParenLoc;
3287public:
3288  // FIXME: Does type-dependence need to be computed differently?
3289  // FIXME: Do we need to compute instantiation instantiation-dependence for
3290  // statements? (ugh!)
3291  StmtExpr(CompoundStmt *substmt, QualType T,
3292           SourceLocation lp, SourceLocation rp) :
3293    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3294         T->isDependentType(), false, false, false),
3295    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3296
3297  /// \brief Build an empty statement expression.
3298  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3299
3300  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3301  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3302  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3303
3304  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3305  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3306
3307  SourceLocation getLParenLoc() const { return LParenLoc; }
3308  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3309  SourceLocation getRParenLoc() const { return RParenLoc; }
3310  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3311
3312  static bool classof(const Stmt *T) {
3313    return T->getStmtClass() == StmtExprClass;
3314  }
3315
3316  // Iterators
3317  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3318};
3319
3320
3321/// ShuffleVectorExpr - clang-specific builtin-in function
3322/// __builtin_shufflevector.
3323/// This AST node represents a operator that does a constant
3324/// shuffle, similar to LLVM's shufflevector instruction. It takes
3325/// two vectors and a variable number of constant indices,
3326/// and returns the appropriately shuffled vector.
3327class ShuffleVectorExpr : public Expr {
3328  SourceLocation BuiltinLoc, RParenLoc;
3329
3330  // SubExprs - the list of values passed to the __builtin_shufflevector
3331  // function. The first two are vectors, and the rest are constant
3332  // indices.  The number of values in this list is always
3333  // 2+the number of indices in the vector type.
3334  Stmt **SubExprs;
3335  unsigned NumExprs;
3336
3337public:
3338  ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3339                    SourceLocation BLoc, SourceLocation RP);
3340
3341  /// \brief Build an empty vector-shuffle expression.
3342  explicit ShuffleVectorExpr(EmptyShell Empty)
3343    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3344
3345  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3346  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3347
3348  SourceLocation getRParenLoc() const { return RParenLoc; }
3349  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3350
3351  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3352  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3353
3354  static bool classof(const Stmt *T) {
3355    return T->getStmtClass() == ShuffleVectorExprClass;
3356  }
3357
3358  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3359  /// constant expression, the actual arguments passed in, and the function
3360  /// pointers.
3361  unsigned getNumSubExprs() const { return NumExprs; }
3362
3363  /// \brief Retrieve the array of expressions.
3364  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3365
3366  /// getExpr - Return the Expr at the specified index.
3367  Expr *getExpr(unsigned Index) {
3368    assert((Index < NumExprs) && "Arg access out of range!");
3369    return cast<Expr>(SubExprs[Index]);
3370  }
3371  const Expr *getExpr(unsigned Index) const {
3372    assert((Index < NumExprs) && "Arg access out of range!");
3373    return cast<Expr>(SubExprs[Index]);
3374  }
3375
3376  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3377
3378  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) const {
3379    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3380    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3381  }
3382
3383  // Iterators
3384  child_range children() {
3385    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3386  }
3387};
3388
3389/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3390/// This AST node is similar to the conditional operator (?:) in C, with
3391/// the following exceptions:
3392/// - the test expression must be a integer constant expression.
3393/// - the expression returned acts like the chosen subexpression in every
3394///   visible way: the type is the same as that of the chosen subexpression,
3395///   and all predicates (whether it's an l-value, whether it's an integer
3396///   constant expression, etc.) return the same result as for the chosen
3397///   sub-expression.
3398class ChooseExpr : public Expr {
3399  enum { COND, LHS, RHS, END_EXPR };
3400  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3401  SourceLocation BuiltinLoc, RParenLoc;
3402public:
3403  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3404             QualType t, ExprValueKind VK, ExprObjectKind OK,
3405             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3406    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3407           (cond->isInstantiationDependent() ||
3408            lhs->isInstantiationDependent() ||
3409            rhs->isInstantiationDependent()),
3410           (cond->containsUnexpandedParameterPack() ||
3411            lhs->containsUnexpandedParameterPack() ||
3412            rhs->containsUnexpandedParameterPack())),
3413      BuiltinLoc(BLoc), RParenLoc(RP) {
3414      SubExprs[COND] = cond;
3415      SubExprs[LHS] = lhs;
3416      SubExprs[RHS] = rhs;
3417    }
3418
3419  /// \brief Build an empty __builtin_choose_expr.
3420  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3421
3422  /// isConditionTrue - Return whether the condition is true (i.e. not
3423  /// equal to zero).
3424  bool isConditionTrue(const ASTContext &C) const;
3425
3426  /// getChosenSubExpr - Return the subexpression chosen according to the
3427  /// condition.
3428  Expr *getChosenSubExpr(const ASTContext &C) const {
3429    return isConditionTrue(C) ? getLHS() : getRHS();
3430  }
3431
3432  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3433  void setCond(Expr *E) { SubExprs[COND] = E; }
3434  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3435  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3436  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3437  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3438
3439  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3440  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3441
3442  SourceLocation getRParenLoc() const { return RParenLoc; }
3443  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3444
3445  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3446  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3447
3448  static bool classof(const Stmt *T) {
3449    return T->getStmtClass() == ChooseExprClass;
3450  }
3451
3452  // Iterators
3453  child_range children() {
3454    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3455  }
3456};
3457
3458/// GNUNullExpr - Implements the GNU __null extension, which is a name
3459/// for a null pointer constant that has integral type (e.g., int or
3460/// long) and is the same size and alignment as a pointer. The __null
3461/// extension is typically only used by system headers, which define
3462/// NULL as __null in C++ rather than using 0 (which is an integer
3463/// that may not match the size of a pointer).
3464class GNUNullExpr : public Expr {
3465  /// TokenLoc - The location of the __null keyword.
3466  SourceLocation TokenLoc;
3467
3468public:
3469  GNUNullExpr(QualType Ty, SourceLocation Loc)
3470    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3471           false),
3472      TokenLoc(Loc) { }
3473
3474  /// \brief Build an empty GNU __null expression.
3475  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3476
3477  /// getTokenLocation - The location of the __null token.
3478  SourceLocation getTokenLocation() const { return TokenLoc; }
3479  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3480
3481  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3482  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3483
3484  static bool classof(const Stmt *T) {
3485    return T->getStmtClass() == GNUNullExprClass;
3486  }
3487
3488  // Iterators
3489  child_range children() { return child_range(); }
3490};
3491
3492/// VAArgExpr, used for the builtin function __builtin_va_arg.
3493class VAArgExpr : public Expr {
3494  Stmt *Val;
3495  TypeSourceInfo *TInfo;
3496  SourceLocation BuiltinLoc, RParenLoc;
3497public:
3498  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3499            SourceLocation RPLoc, QualType t)
3500    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3501           t->isDependentType(), false,
3502           (TInfo->getType()->isInstantiationDependentType() ||
3503            e->isInstantiationDependent()),
3504           (TInfo->getType()->containsUnexpandedParameterPack() ||
3505            e->containsUnexpandedParameterPack())),
3506      Val(e), TInfo(TInfo),
3507      BuiltinLoc(BLoc),
3508      RParenLoc(RPLoc) { }
3509
3510  /// \brief Create an empty __builtin_va_arg expression.
3511  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3512
3513  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3514  Expr *getSubExpr() { return cast<Expr>(Val); }
3515  void setSubExpr(Expr *E) { Val = E; }
3516
3517  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3518  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3519
3520  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3521  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3522
3523  SourceLocation getRParenLoc() const { return RParenLoc; }
3524  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3525
3526  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3527  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3528
3529  static bool classof(const Stmt *T) {
3530    return T->getStmtClass() == VAArgExprClass;
3531  }
3532
3533  // Iterators
3534  child_range children() { return child_range(&Val, &Val+1); }
3535};
3536
3537/// @brief Describes an C or C++ initializer list.
3538///
3539/// InitListExpr describes an initializer list, which can be used to
3540/// initialize objects of different types, including
3541/// struct/class/union types, arrays, and vectors. For example:
3542///
3543/// @code
3544/// struct foo x = { 1, { 2, 3 } };
3545/// @endcode
3546///
3547/// Prior to semantic analysis, an initializer list will represent the
3548/// initializer list as written by the user, but will have the
3549/// placeholder type "void". This initializer list is called the
3550/// syntactic form of the initializer, and may contain C99 designated
3551/// initializers (represented as DesignatedInitExprs), initializations
3552/// of subobject members without explicit braces, and so on. Clients
3553/// interested in the original syntax of the initializer list should
3554/// use the syntactic form of the initializer list.
3555///
3556/// After semantic analysis, the initializer list will represent the
3557/// semantic form of the initializer, where the initializations of all
3558/// subobjects are made explicit with nested InitListExpr nodes and
3559/// C99 designators have been eliminated by placing the designated
3560/// initializations into the subobject they initialize. Additionally,
3561/// any "holes" in the initialization, where no initializer has been
3562/// specified for a particular subobject, will be replaced with
3563/// implicitly-generated ImplicitValueInitExpr expressions that
3564/// value-initialize the subobjects. Note, however, that the
3565/// initializer lists may still have fewer initializers than there are
3566/// elements to initialize within the object.
3567///
3568/// After semantic analysis has completed, given an initializer list,
3569/// method isSemanticForm() returns true if and only if this is the
3570/// semantic form of the initializer list (note: the same AST node
3571/// may at the same time be the syntactic form).
3572/// Given the semantic form of the initializer list, one can retrieve
3573/// the syntactic form of that initializer list (when different)
3574/// using method getSyntacticForm(); the method returns null if applied
3575/// to a initializer list which is already in syntactic form.
3576/// Similarly, given the syntactic form (i.e., an initializer list such
3577/// that isSemanticForm() returns false), one can retrieve the semantic
3578/// form using method getSemanticForm().
3579/// Since many initializer lists have the same syntactic and semantic forms,
3580/// getSyntacticForm() may return NULL, indicating that the current
3581/// semantic initializer list also serves as its syntactic form.
3582class InitListExpr : public Expr {
3583  // FIXME: Eliminate this vector in favor of ASTContext allocation
3584  typedef ASTVector<Stmt *> InitExprsTy;
3585  InitExprsTy InitExprs;
3586  SourceLocation LBraceLoc, RBraceLoc;
3587
3588  /// The alternative form of the initializer list (if it exists).
3589  /// The int part of the pair stores whether this initalizer list is
3590  /// in semantic form. If not null, the pointer points to:
3591  ///   - the syntactic form, if this is in semantic form;
3592  ///   - the semantic form, if this is in syntactic form.
3593  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3594
3595  /// \brief Either:
3596  ///  If this initializer list initializes an array with more elements than
3597  ///  there are initializers in the list, specifies an expression to be used
3598  ///  for value initialization of the rest of the elements.
3599  /// Or
3600  ///  If this initializer list initializes a union, specifies which
3601  ///  field within the union will be initialized.
3602  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3603
3604public:
3605  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3606               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3607
3608  /// \brief Build an empty initializer list.
3609  explicit InitListExpr(EmptyShell Empty)
3610    : Expr(InitListExprClass, Empty) { }
3611
3612  unsigned getNumInits() const { return InitExprs.size(); }
3613
3614  /// \brief Retrieve the set of initializers.
3615  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3616
3617  const Expr *getInit(unsigned Init) const {
3618    assert(Init < getNumInits() && "Initializer access out of range!");
3619    return cast_or_null<Expr>(InitExprs[Init]);
3620  }
3621
3622  Expr *getInit(unsigned Init) {
3623    assert(Init < getNumInits() && "Initializer access out of range!");
3624    return cast_or_null<Expr>(InitExprs[Init]);
3625  }
3626
3627  void setInit(unsigned Init, Expr *expr) {
3628    assert(Init < getNumInits() && "Initializer access out of range!");
3629    InitExprs[Init] = expr;
3630  }
3631
3632  /// \brief Reserve space for some number of initializers.
3633  void reserveInits(ASTContext &C, unsigned NumInits);
3634
3635  /// @brief Specify the number of initializers
3636  ///
3637  /// If there are more than @p NumInits initializers, the remaining
3638  /// initializers will be destroyed. If there are fewer than @p
3639  /// NumInits initializers, NULL expressions will be added for the
3640  /// unknown initializers.
3641  void resizeInits(ASTContext &Context, unsigned NumInits);
3642
3643  /// @brief Updates the initializer at index @p Init with the new
3644  /// expression @p expr, and returns the old expression at that
3645  /// location.
3646  ///
3647  /// When @p Init is out of range for this initializer list, the
3648  /// initializer list will be extended with NULL expressions to
3649  /// accommodate the new entry.
3650  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3651
3652  /// \brief If this initializer list initializes an array with more elements
3653  /// than there are initializers in the list, specifies an expression to be
3654  /// used for value initialization of the rest of the elements.
3655  Expr *getArrayFiller() {
3656    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3657  }
3658  const Expr *getArrayFiller() const {
3659    return const_cast<InitListExpr *>(this)->getArrayFiller();
3660  }
3661  void setArrayFiller(Expr *filler);
3662
3663  /// \brief Return true if this is an array initializer and its array "filler"
3664  /// has been set.
3665  bool hasArrayFiller() const { return getArrayFiller(); }
3666
3667  /// \brief If this initializes a union, specifies which field in the
3668  /// union to initialize.
3669  ///
3670  /// Typically, this field is the first named field within the
3671  /// union. However, a designated initializer can specify the
3672  /// initialization of a different field within the union.
3673  FieldDecl *getInitializedFieldInUnion() {
3674    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3675  }
3676  const FieldDecl *getInitializedFieldInUnion() const {
3677    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3678  }
3679  void setInitializedFieldInUnion(FieldDecl *FD) {
3680    ArrayFillerOrUnionFieldInit = FD;
3681  }
3682
3683  // Explicit InitListExpr's originate from source code (and have valid source
3684  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3685  bool isExplicit() {
3686    return LBraceLoc.isValid() && RBraceLoc.isValid();
3687  }
3688
3689  // Is this an initializer for an array of characters, initialized by a string
3690  // literal or an @encode?
3691  bool isStringLiteralInit() const;
3692
3693  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3694  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3695  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3696  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3697
3698  bool isSemanticForm() const { return AltForm.getInt(); }
3699  InitListExpr *getSemanticForm() const {
3700    return isSemanticForm() ? 0 : AltForm.getPointer();
3701  }
3702  InitListExpr *getSyntacticForm() const {
3703    return isSemanticForm() ? AltForm.getPointer() : 0;
3704  }
3705
3706  void setSyntacticForm(InitListExpr *Init) {
3707    AltForm.setPointer(Init);
3708    AltForm.setInt(true);
3709    Init->AltForm.setPointer(this);
3710    Init->AltForm.setInt(false);
3711  }
3712
3713  bool hadArrayRangeDesignator() const {
3714    return InitListExprBits.HadArrayRangeDesignator != 0;
3715  }
3716  void sawArrayRangeDesignator(bool ARD = true) {
3717    InitListExprBits.HadArrayRangeDesignator = ARD;
3718  }
3719
3720  bool initializesStdInitializerList() const {
3721    return InitListExprBits.InitializesStdInitializerList != 0;
3722  }
3723  void setInitializesStdInitializerList(bool ISIL = true) {
3724    InitListExprBits.InitializesStdInitializerList = ISIL;
3725  }
3726
3727  SourceLocation getLocStart() const LLVM_READONLY;
3728  SourceLocation getLocEnd() const LLVM_READONLY;
3729
3730  static bool classof(const Stmt *T) {
3731    return T->getStmtClass() == InitListExprClass;
3732  }
3733
3734  // Iterators
3735  child_range children() {
3736    if (InitExprs.empty()) return child_range();
3737    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3738  }
3739
3740  typedef InitExprsTy::iterator iterator;
3741  typedef InitExprsTy::const_iterator const_iterator;
3742  typedef InitExprsTy::reverse_iterator reverse_iterator;
3743  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3744
3745  iterator begin() { return InitExprs.begin(); }
3746  const_iterator begin() const { return InitExprs.begin(); }
3747  iterator end() { return InitExprs.end(); }
3748  const_iterator end() const { return InitExprs.end(); }
3749  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3750  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3751  reverse_iterator rend() { return InitExprs.rend(); }
3752  const_reverse_iterator rend() const { return InitExprs.rend(); }
3753
3754  friend class ASTStmtReader;
3755  friend class ASTStmtWriter;
3756};
3757
3758/// @brief Represents a C99 designated initializer expression.
3759///
3760/// A designated initializer expression (C99 6.7.8) contains one or
3761/// more designators (which can be field designators, array
3762/// designators, or GNU array-range designators) followed by an
3763/// expression that initializes the field or element(s) that the
3764/// designators refer to. For example, given:
3765///
3766/// @code
3767/// struct point {
3768///   double x;
3769///   double y;
3770/// };
3771/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3772/// @endcode
3773///
3774/// The InitListExpr contains three DesignatedInitExprs, the first of
3775/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3776/// designators, one array designator for @c [2] followed by one field
3777/// designator for @c .y. The initalization expression will be 1.0.
3778class DesignatedInitExpr : public Expr {
3779public:
3780  /// \brief Forward declaration of the Designator class.
3781  class Designator;
3782
3783private:
3784  /// The location of the '=' or ':' prior to the actual initializer
3785  /// expression.
3786  SourceLocation EqualOrColonLoc;
3787
3788  /// Whether this designated initializer used the GNU deprecated
3789  /// syntax rather than the C99 '=' syntax.
3790  bool GNUSyntax : 1;
3791
3792  /// The number of designators in this initializer expression.
3793  unsigned NumDesignators : 15;
3794
3795  /// The number of subexpressions of this initializer expression,
3796  /// which contains both the initializer and any additional
3797  /// expressions used by array and array-range designators.
3798  unsigned NumSubExprs : 16;
3799
3800  /// \brief The designators in this designated initialization
3801  /// expression.
3802  Designator *Designators;
3803
3804
3805  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3806                     const Designator *Designators,
3807                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3808                     ArrayRef<Expr*> IndexExprs, Expr *Init);
3809
3810  explicit DesignatedInitExpr(unsigned NumSubExprs)
3811    : Expr(DesignatedInitExprClass, EmptyShell()),
3812      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3813
3814public:
3815  /// A field designator, e.g., ".x".
3816  struct FieldDesignator {
3817    /// Refers to the field that is being initialized. The low bit
3818    /// of this field determines whether this is actually a pointer
3819    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3820    /// initially constructed, a field designator will store an
3821    /// IdentifierInfo*. After semantic analysis has resolved that
3822    /// name, the field designator will instead store a FieldDecl*.
3823    uintptr_t NameOrField;
3824
3825    /// The location of the '.' in the designated initializer.
3826    unsigned DotLoc;
3827
3828    /// The location of the field name in the designated initializer.
3829    unsigned FieldLoc;
3830  };
3831
3832  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3833  struct ArrayOrRangeDesignator {
3834    /// Location of the first index expression within the designated
3835    /// initializer expression's list of subexpressions.
3836    unsigned Index;
3837    /// The location of the '[' starting the array range designator.
3838    unsigned LBracketLoc;
3839    /// The location of the ellipsis separating the start and end
3840    /// indices. Only valid for GNU array-range designators.
3841    unsigned EllipsisLoc;
3842    /// The location of the ']' terminating the array range designator.
3843    unsigned RBracketLoc;
3844  };
3845
3846  /// @brief Represents a single C99 designator.
3847  ///
3848  /// @todo This class is infuriatingly similar to clang::Designator,
3849  /// but minor differences (storing indices vs. storing pointers)
3850  /// keep us from reusing it. Try harder, later, to rectify these
3851  /// differences.
3852  class Designator {
3853    /// @brief The kind of designator this describes.
3854    enum {
3855      FieldDesignator,
3856      ArrayDesignator,
3857      ArrayRangeDesignator
3858    } Kind;
3859
3860    union {
3861      /// A field designator, e.g., ".x".
3862      struct FieldDesignator Field;
3863      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3864      struct ArrayOrRangeDesignator ArrayOrRange;
3865    };
3866    friend class DesignatedInitExpr;
3867
3868  public:
3869    Designator() {}
3870
3871    /// @brief Initializes a field designator.
3872    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3873               SourceLocation FieldLoc)
3874      : Kind(FieldDesignator) {
3875      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3876      Field.DotLoc = DotLoc.getRawEncoding();
3877      Field.FieldLoc = FieldLoc.getRawEncoding();
3878    }
3879
3880    /// @brief Initializes an array designator.
3881    Designator(unsigned Index, SourceLocation LBracketLoc,
3882               SourceLocation RBracketLoc)
3883      : Kind(ArrayDesignator) {
3884      ArrayOrRange.Index = Index;
3885      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3886      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3887      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3888    }
3889
3890    /// @brief Initializes a GNU array-range designator.
3891    Designator(unsigned Index, SourceLocation LBracketLoc,
3892               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3893      : Kind(ArrayRangeDesignator) {
3894      ArrayOrRange.Index = Index;
3895      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3896      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3897      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3898    }
3899
3900    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3901    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3902    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3903
3904    IdentifierInfo *getFieldName() const;
3905
3906    FieldDecl *getField() const {
3907      assert(Kind == FieldDesignator && "Only valid on a field designator");
3908      if (Field.NameOrField & 0x01)
3909        return 0;
3910      else
3911        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3912    }
3913
3914    void setField(FieldDecl *FD) {
3915      assert(Kind == FieldDesignator && "Only valid on a field designator");
3916      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3917    }
3918
3919    SourceLocation getDotLoc() const {
3920      assert(Kind == FieldDesignator && "Only valid on a field designator");
3921      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3922    }
3923
3924    SourceLocation getFieldLoc() const {
3925      assert(Kind == FieldDesignator && "Only valid on a field designator");
3926      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3927    }
3928
3929    SourceLocation getLBracketLoc() const {
3930      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3931             "Only valid on an array or array-range designator");
3932      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3933    }
3934
3935    SourceLocation getRBracketLoc() const {
3936      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3937             "Only valid on an array or array-range designator");
3938      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3939    }
3940
3941    SourceLocation getEllipsisLoc() const {
3942      assert(Kind == ArrayRangeDesignator &&
3943             "Only valid on an array-range designator");
3944      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3945    }
3946
3947    unsigned getFirstExprIndex() const {
3948      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3949             "Only valid on an array or array-range designator");
3950      return ArrayOrRange.Index;
3951    }
3952
3953    SourceLocation getLocStart() const LLVM_READONLY {
3954      if (Kind == FieldDesignator)
3955        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3956      else
3957        return getLBracketLoc();
3958    }
3959    SourceLocation getLocEnd() const LLVM_READONLY {
3960      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3961    }
3962    SourceRange getSourceRange() const LLVM_READONLY {
3963      return SourceRange(getLocStart(), getLocEnd());
3964    }
3965  };
3966
3967  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3968                                    unsigned NumDesignators,
3969                                    ArrayRef<Expr*> IndexExprs,
3970                                    SourceLocation EqualOrColonLoc,
3971                                    bool GNUSyntax, Expr *Init);
3972
3973  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3974
3975  /// @brief Returns the number of designators in this initializer.
3976  unsigned size() const { return NumDesignators; }
3977
3978  // Iterator access to the designators.
3979  typedef Designator *designators_iterator;
3980  designators_iterator designators_begin() { return Designators; }
3981  designators_iterator designators_end() {
3982    return Designators + NumDesignators;
3983  }
3984
3985  typedef const Designator *const_designators_iterator;
3986  const_designators_iterator designators_begin() const { return Designators; }
3987  const_designators_iterator designators_end() const {
3988    return Designators + NumDesignators;
3989  }
3990
3991  typedef std::reverse_iterator<designators_iterator>
3992          reverse_designators_iterator;
3993  reverse_designators_iterator designators_rbegin() {
3994    return reverse_designators_iterator(designators_end());
3995  }
3996  reverse_designators_iterator designators_rend() {
3997    return reverse_designators_iterator(designators_begin());
3998  }
3999
4000  typedef std::reverse_iterator<const_designators_iterator>
4001          const_reverse_designators_iterator;
4002  const_reverse_designators_iterator designators_rbegin() const {
4003    return const_reverse_designators_iterator(designators_end());
4004  }
4005  const_reverse_designators_iterator designators_rend() const {
4006    return const_reverse_designators_iterator(designators_begin());
4007  }
4008
4009  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
4010
4011  void setDesignators(ASTContext &C, const Designator *Desigs,
4012                      unsigned NumDesigs);
4013
4014  Expr *getArrayIndex(const Designator& D);
4015  Expr *getArrayRangeStart(const Designator& D);
4016  Expr *getArrayRangeEnd(const Designator& D);
4017
4018  /// @brief Retrieve the location of the '=' that precedes the
4019  /// initializer value itself, if present.
4020  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4021  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4022
4023  /// @brief Determines whether this designated initializer used the
4024  /// deprecated GNU syntax for designated initializers.
4025  bool usesGNUSyntax() const { return GNUSyntax; }
4026  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4027
4028  /// @brief Retrieve the initializer value.
4029  Expr *getInit() const {
4030    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4031  }
4032
4033  void setInit(Expr *init) {
4034    *child_begin() = init;
4035  }
4036
4037  /// \brief Retrieve the total number of subexpressions in this
4038  /// designated initializer expression, including the actual
4039  /// initialized value and any expressions that occur within array
4040  /// and array-range designators.
4041  unsigned getNumSubExprs() const { return NumSubExprs; }
4042
4043  Expr *getSubExpr(unsigned Idx) {
4044    assert(Idx < NumSubExprs && "Subscript out of range");
4045    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4046    Ptr += sizeof(DesignatedInitExpr);
4047    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
4048  }
4049
4050  void setSubExpr(unsigned Idx, Expr *E) {
4051    assert(Idx < NumSubExprs && "Subscript out of range");
4052    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4053    Ptr += sizeof(DesignatedInitExpr);
4054    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
4055  }
4056
4057  /// \brief Replaces the designator at index @p Idx with the series
4058  /// of designators in [First, Last).
4059  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
4060                        const Designator *Last);
4061
4062  SourceRange getDesignatorsSourceRange() const;
4063
4064  SourceLocation getLocStart() const LLVM_READONLY;
4065  SourceLocation getLocEnd() const LLVM_READONLY;
4066
4067  static bool classof(const Stmt *T) {
4068    return T->getStmtClass() == DesignatedInitExprClass;
4069  }
4070
4071  // Iterators
4072  child_range children() {
4073    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
4074    return child_range(begin, begin + NumSubExprs);
4075  }
4076};
4077
4078/// \brief Represents an implicitly-generated value initialization of
4079/// an object of a given type.
4080///
4081/// Implicit value initializations occur within semantic initializer
4082/// list expressions (InitListExpr) as placeholders for subobject
4083/// initializations not explicitly specified by the user.
4084///
4085/// \see InitListExpr
4086class ImplicitValueInitExpr : public Expr {
4087public:
4088  explicit ImplicitValueInitExpr(QualType ty)
4089    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4090           false, false, ty->isInstantiationDependentType(), false) { }
4091
4092  /// \brief Construct an empty implicit value initialization.
4093  explicit ImplicitValueInitExpr(EmptyShell Empty)
4094    : Expr(ImplicitValueInitExprClass, Empty) { }
4095
4096  static bool classof(const Stmt *T) {
4097    return T->getStmtClass() == ImplicitValueInitExprClass;
4098  }
4099
4100  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4101  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4102
4103  // Iterators
4104  child_range children() { return child_range(); }
4105};
4106
4107
4108class ParenListExpr : public Expr {
4109  Stmt **Exprs;
4110  unsigned NumExprs;
4111  SourceLocation LParenLoc, RParenLoc;
4112
4113public:
4114  ParenListExpr(ASTContext& C, SourceLocation lparenloc, ArrayRef<Expr*> exprs,
4115                SourceLocation rparenloc);
4116
4117  /// \brief Build an empty paren list.
4118  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4119
4120  unsigned getNumExprs() const { return NumExprs; }
4121
4122  const Expr* getExpr(unsigned Init) const {
4123    assert(Init < getNumExprs() && "Initializer access out of range!");
4124    return cast_or_null<Expr>(Exprs[Init]);
4125  }
4126
4127  Expr* getExpr(unsigned Init) {
4128    assert(Init < getNumExprs() && "Initializer access out of range!");
4129    return cast_or_null<Expr>(Exprs[Init]);
4130  }
4131
4132  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4133
4134  SourceLocation getLParenLoc() const { return LParenLoc; }
4135  SourceLocation getRParenLoc() const { return RParenLoc; }
4136
4137  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4138  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4139
4140  static bool classof(const Stmt *T) {
4141    return T->getStmtClass() == ParenListExprClass;
4142  }
4143
4144  // Iterators
4145  child_range children() {
4146    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4147  }
4148
4149  friend class ASTStmtReader;
4150  friend class ASTStmtWriter;
4151};
4152
4153
4154/// \brief Represents a C11 generic selection.
4155///
4156/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4157/// expression, followed by one or more generic associations.  Each generic
4158/// association specifies a type name and an expression, or "default" and an
4159/// expression (in which case it is known as a default generic association).
4160/// The type and value of the generic selection are identical to those of its
4161/// result expression, which is defined as the expression in the generic
4162/// association with a type name that is compatible with the type of the
4163/// controlling expression, or the expression in the default generic association
4164/// if no types are compatible.  For example:
4165///
4166/// @code
4167/// _Generic(X, double: 1, float: 2, default: 3)
4168/// @endcode
4169///
4170/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4171/// or 3 if "hello".
4172///
4173/// As an extension, generic selections are allowed in C++, where the following
4174/// additional semantics apply:
4175///
4176/// Any generic selection whose controlling expression is type-dependent or
4177/// which names a dependent type in its association list is result-dependent,
4178/// which means that the choice of result expression is dependent.
4179/// Result-dependent generic associations are both type- and value-dependent.
4180class GenericSelectionExpr : public Expr {
4181  enum { CONTROLLING, END_EXPR };
4182  TypeSourceInfo **AssocTypes;
4183  Stmt **SubExprs;
4184  unsigned NumAssocs, ResultIndex;
4185  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4186
4187public:
4188  GenericSelectionExpr(ASTContext &Context,
4189                       SourceLocation GenericLoc, Expr *ControllingExpr,
4190                       ArrayRef<TypeSourceInfo*> AssocTypes,
4191                       ArrayRef<Expr*> AssocExprs,
4192                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4193                       bool ContainsUnexpandedParameterPack,
4194                       unsigned ResultIndex);
4195
4196  /// This constructor is used in the result-dependent case.
4197  GenericSelectionExpr(ASTContext &Context,
4198                       SourceLocation GenericLoc, Expr *ControllingExpr,
4199                       ArrayRef<TypeSourceInfo*> AssocTypes,
4200                       ArrayRef<Expr*> AssocExprs,
4201                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4202                       bool ContainsUnexpandedParameterPack);
4203
4204  explicit GenericSelectionExpr(EmptyShell Empty)
4205    : Expr(GenericSelectionExprClass, Empty) { }
4206
4207  unsigned getNumAssocs() const { return NumAssocs; }
4208
4209  SourceLocation getGenericLoc() const { return GenericLoc; }
4210  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4211  SourceLocation getRParenLoc() const { return RParenLoc; }
4212
4213  const Expr *getAssocExpr(unsigned i) const {
4214    return cast<Expr>(SubExprs[END_EXPR+i]);
4215  }
4216  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4217
4218  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4219    return AssocTypes[i];
4220  }
4221  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4222
4223  QualType getAssocType(unsigned i) const {
4224    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4225      return TS->getType();
4226    else
4227      return QualType();
4228  }
4229
4230  const Expr *getControllingExpr() const {
4231    return cast<Expr>(SubExprs[CONTROLLING]);
4232  }
4233  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4234
4235  /// Whether this generic selection is result-dependent.
4236  bool isResultDependent() const { return ResultIndex == -1U; }
4237
4238  /// The zero-based index of the result expression's generic association in
4239  /// the generic selection's association list.  Defined only if the
4240  /// generic selection is not result-dependent.
4241  unsigned getResultIndex() const {
4242    assert(!isResultDependent() && "Generic selection is result-dependent");
4243    return ResultIndex;
4244  }
4245
4246  /// The generic selection's result expression.  Defined only if the
4247  /// generic selection is not result-dependent.
4248  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4249  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4250
4251  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4252  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4253
4254  static bool classof(const Stmt *T) {
4255    return T->getStmtClass() == GenericSelectionExprClass;
4256  }
4257
4258  child_range children() {
4259    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4260  }
4261
4262  friend class ASTStmtReader;
4263};
4264
4265//===----------------------------------------------------------------------===//
4266// Clang Extensions
4267//===----------------------------------------------------------------------===//
4268
4269
4270/// ExtVectorElementExpr - This represents access to specific elements of a
4271/// vector, and may occur on the left hand side or right hand side.  For example
4272/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4273///
4274/// Note that the base may have either vector or pointer to vector type, just
4275/// like a struct field reference.
4276///
4277class ExtVectorElementExpr : public Expr {
4278  Stmt *Base;
4279  IdentifierInfo *Accessor;
4280  SourceLocation AccessorLoc;
4281public:
4282  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4283                       IdentifierInfo &accessor, SourceLocation loc)
4284    : Expr(ExtVectorElementExprClass, ty, VK,
4285           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4286           base->isTypeDependent(), base->isValueDependent(),
4287           base->isInstantiationDependent(),
4288           base->containsUnexpandedParameterPack()),
4289      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4290
4291  /// \brief Build an empty vector element expression.
4292  explicit ExtVectorElementExpr(EmptyShell Empty)
4293    : Expr(ExtVectorElementExprClass, Empty) { }
4294
4295  const Expr *getBase() const { return cast<Expr>(Base); }
4296  Expr *getBase() { return cast<Expr>(Base); }
4297  void setBase(Expr *E) { Base = E; }
4298
4299  IdentifierInfo &getAccessor() const { return *Accessor; }
4300  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4301
4302  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4303  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4304
4305  /// getNumElements - Get the number of components being selected.
4306  unsigned getNumElements() const;
4307
4308  /// containsDuplicateElements - Return true if any element access is
4309  /// repeated.
4310  bool containsDuplicateElements() const;
4311
4312  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4313  /// aggregate Constant of ConstantInt(s).
4314  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4315
4316  SourceLocation getLocStart() const LLVM_READONLY {
4317    return getBase()->getLocStart();
4318  }
4319  SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4320
4321  /// isArrow - Return true if the base expression is a pointer to vector,
4322  /// return false if the base expression is a vector.
4323  bool isArrow() const;
4324
4325  static bool classof(const Stmt *T) {
4326    return T->getStmtClass() == ExtVectorElementExprClass;
4327  }
4328
4329  // Iterators
4330  child_range children() { return child_range(&Base, &Base+1); }
4331};
4332
4333
4334/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4335/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4336class BlockExpr : public Expr {
4337protected:
4338  BlockDecl *TheBlock;
4339public:
4340  BlockExpr(BlockDecl *BD, QualType ty)
4341    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4342           ty->isDependentType(), ty->isDependentType(),
4343           ty->isInstantiationDependentType() || BD->isDependentContext(),
4344           false),
4345      TheBlock(BD) {}
4346
4347  /// \brief Build an empty block expression.
4348  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4349
4350  const BlockDecl *getBlockDecl() const { return TheBlock; }
4351  BlockDecl *getBlockDecl() { return TheBlock; }
4352  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4353
4354  // Convenience functions for probing the underlying BlockDecl.
4355  SourceLocation getCaretLocation() const;
4356  const Stmt *getBody() const;
4357  Stmt *getBody();
4358
4359  SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4360  SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4361
4362  /// getFunctionType - Return the underlying function type for this block.
4363  const FunctionProtoType *getFunctionType() const;
4364
4365  static bool classof(const Stmt *T) {
4366    return T->getStmtClass() == BlockExprClass;
4367  }
4368
4369  // Iterators
4370  child_range children() { return child_range(); }
4371};
4372
4373/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4374/// This AST node provides support for reinterpreting a type to another
4375/// type of the same size.
4376class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4377private:
4378  Stmt *SrcExpr;
4379  SourceLocation BuiltinLoc, RParenLoc;
4380
4381  friend class ASTReader;
4382  friend class ASTStmtReader;
4383  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4384
4385public:
4386  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4387             ExprValueKind VK, ExprObjectKind OK,
4388             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4389    : Expr(AsTypeExprClass, DstType, VK, OK,
4390           DstType->isDependentType(),
4391           DstType->isDependentType() || SrcExpr->isValueDependent(),
4392           (DstType->isInstantiationDependentType() ||
4393            SrcExpr->isInstantiationDependent()),
4394           (DstType->containsUnexpandedParameterPack() ||
4395            SrcExpr->containsUnexpandedParameterPack())),
4396  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4397
4398  /// getSrcExpr - Return the Expr to be converted.
4399  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4400
4401  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4402  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4403
4404  /// getRParenLoc - Return the location of final right parenthesis.
4405  SourceLocation getRParenLoc() const { return RParenLoc; }
4406
4407  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4408  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4409
4410  static bool classof(const Stmt *T) {
4411    return T->getStmtClass() == AsTypeExprClass;
4412  }
4413
4414  // Iterators
4415  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4416};
4417
4418/// PseudoObjectExpr - An expression which accesses a pseudo-object
4419/// l-value.  A pseudo-object is an abstract object, accesses to which
4420/// are translated to calls.  The pseudo-object expression has a
4421/// syntactic form, which shows how the expression was actually
4422/// written in the source code, and a semantic form, which is a series
4423/// of expressions to be executed in order which detail how the
4424/// operation is actually evaluated.  Optionally, one of the semantic
4425/// forms may also provide a result value for the expression.
4426///
4427/// If any of the semantic-form expressions is an OpaqueValueExpr,
4428/// that OVE is required to have a source expression, and it is bound
4429/// to the result of that source expression.  Such OVEs may appear
4430/// only in subsequent semantic-form expressions and as
4431/// sub-expressions of the syntactic form.
4432///
4433/// PseudoObjectExpr should be used only when an operation can be
4434/// usefully described in terms of fairly simple rewrite rules on
4435/// objects and functions that are meant to be used by end-developers.
4436/// For example, under the Itanium ABI, dynamic casts are implemented
4437/// as a call to a runtime function called __dynamic_cast; using this
4438/// class to describe that would be inappropriate because that call is
4439/// not really part of the user-visible semantics, and instead the
4440/// cast is properly reflected in the AST and IR-generation has been
4441/// taught to generate the call as necessary.  In contrast, an
4442/// Objective-C property access is semantically defined to be
4443/// equivalent to a particular message send, and this is very much
4444/// part of the user model.  The name of this class encourages this
4445/// modelling design.
4446class PseudoObjectExpr : public Expr {
4447  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4448  // Always at least two, because the first sub-expression is the
4449  // syntactic form.
4450
4451  // PseudoObjectExprBits.ResultIndex - The index of the
4452  // sub-expression holding the result.  0 means the result is void,
4453  // which is unambiguous because it's the index of the syntactic
4454  // form.  Note that this is therefore 1 higher than the value passed
4455  // in to Create, which is an index within the semantic forms.
4456  // Note also that ASTStmtWriter assumes this encoding.
4457
4458  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4459  const Expr * const *getSubExprsBuffer() const {
4460    return reinterpret_cast<const Expr * const *>(this + 1);
4461  }
4462
4463  friend class ASTStmtReader;
4464
4465  PseudoObjectExpr(QualType type, ExprValueKind VK,
4466                   Expr *syntactic, ArrayRef<Expr*> semantic,
4467                   unsigned resultIndex);
4468
4469  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4470
4471  unsigned getNumSubExprs() const {
4472    return PseudoObjectExprBits.NumSubExprs;
4473  }
4474
4475public:
4476  /// NoResult - A value for the result index indicating that there is
4477  /// no semantic result.
4478  enum { NoResult = ~0U };
4479
4480  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4481                                  ArrayRef<Expr*> semantic,
4482                                  unsigned resultIndex);
4483
4484  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4485                                  unsigned numSemanticExprs);
4486
4487  /// Return the syntactic form of this expression, i.e. the
4488  /// expression it actually looks like.  Likely to be expressed in
4489  /// terms of OpaqueValueExprs bound in the semantic form.
4490  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4491  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4492
4493  /// Return the index of the result-bearing expression into the semantics
4494  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4495  unsigned getResultExprIndex() const {
4496    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4497    return PseudoObjectExprBits.ResultIndex - 1;
4498  }
4499
4500  /// Return the result-bearing expression, or null if there is none.
4501  Expr *getResultExpr() {
4502    if (PseudoObjectExprBits.ResultIndex == 0)
4503      return 0;
4504    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4505  }
4506  const Expr *getResultExpr() const {
4507    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4508  }
4509
4510  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4511
4512  typedef Expr * const *semantics_iterator;
4513  typedef const Expr * const *const_semantics_iterator;
4514  semantics_iterator semantics_begin() {
4515    return getSubExprsBuffer() + 1;
4516  }
4517  const_semantics_iterator semantics_begin() const {
4518    return getSubExprsBuffer() + 1;
4519  }
4520  semantics_iterator semantics_end() {
4521    return getSubExprsBuffer() + getNumSubExprs();
4522  }
4523  const_semantics_iterator semantics_end() const {
4524    return getSubExprsBuffer() + getNumSubExprs();
4525  }
4526  Expr *getSemanticExpr(unsigned index) {
4527    assert(index + 1 < getNumSubExprs());
4528    return getSubExprsBuffer()[index + 1];
4529  }
4530  const Expr *getSemanticExpr(unsigned index) const {
4531    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4532  }
4533
4534  SourceLocation getExprLoc() const LLVM_READONLY {
4535    return getSyntacticForm()->getExprLoc();
4536  }
4537
4538  SourceLocation getLocStart() const LLVM_READONLY {
4539    return getSyntacticForm()->getLocStart();
4540  }
4541  SourceLocation getLocEnd() const LLVM_READONLY {
4542    return getSyntacticForm()->getLocEnd();
4543  }
4544
4545  child_range children() {
4546    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4547    return child_range(cs, cs + getNumSubExprs());
4548  }
4549
4550  static bool classof(const Stmt *T) {
4551    return T->getStmtClass() == PseudoObjectExprClass;
4552  }
4553};
4554
4555/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4556/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4557/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4558/// All of these instructions take one primary pointer and at least one memory
4559/// order.
4560class AtomicExpr : public Expr {
4561public:
4562  enum AtomicOp {
4563#define BUILTIN(ID, TYPE, ATTRS)
4564#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4565#include "clang/Basic/Builtins.def"
4566    // Avoid trailing comma
4567    BI_First = 0
4568  };
4569
4570private:
4571  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4572  Stmt* SubExprs[END_EXPR];
4573  unsigned NumSubExprs;
4574  SourceLocation BuiltinLoc, RParenLoc;
4575  AtomicOp Op;
4576
4577  friend class ASTStmtReader;
4578
4579public:
4580  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4581             AtomicOp op, SourceLocation RP);
4582
4583  /// \brief Determine the number of arguments the specified atomic builtin
4584  /// should have.
4585  static unsigned getNumSubExprs(AtomicOp Op);
4586
4587  /// \brief Build an empty AtomicExpr.
4588  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4589
4590  Expr *getPtr() const {
4591    return cast<Expr>(SubExprs[PTR]);
4592  }
4593  Expr *getOrder() const {
4594    return cast<Expr>(SubExprs[ORDER]);
4595  }
4596  Expr *getVal1() const {
4597    if (Op == AO__c11_atomic_init)
4598      return cast<Expr>(SubExprs[ORDER]);
4599    assert(NumSubExprs > VAL1);
4600    return cast<Expr>(SubExprs[VAL1]);
4601  }
4602  Expr *getOrderFail() const {
4603    assert(NumSubExprs > ORDER_FAIL);
4604    return cast<Expr>(SubExprs[ORDER_FAIL]);
4605  }
4606  Expr *getVal2() const {
4607    if (Op == AO__atomic_exchange)
4608      return cast<Expr>(SubExprs[ORDER_FAIL]);
4609    assert(NumSubExprs > VAL2);
4610    return cast<Expr>(SubExprs[VAL2]);
4611  }
4612  Expr *getWeak() const {
4613    assert(NumSubExprs > WEAK);
4614    return cast<Expr>(SubExprs[WEAK]);
4615  }
4616
4617  AtomicOp getOp() const { return Op; }
4618  unsigned getNumSubExprs() { return NumSubExprs; }
4619
4620  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4621
4622  bool isVolatile() const {
4623    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4624  }
4625
4626  bool isCmpXChg() const {
4627    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4628           getOp() == AO__c11_atomic_compare_exchange_weak ||
4629           getOp() == AO__atomic_compare_exchange ||
4630           getOp() == AO__atomic_compare_exchange_n;
4631  }
4632
4633  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4634  SourceLocation getRParenLoc() const { return RParenLoc; }
4635
4636  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4637  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4638
4639  static bool classof(const Stmt *T) {
4640    return T->getStmtClass() == AtomicExprClass;
4641  }
4642
4643  // Iterators
4644  child_range children() {
4645    return child_range(SubExprs, SubExprs+NumSubExprs);
4646  }
4647};
4648}  // end namespace clang
4649
4650#endif
4651