Expr.h revision a1b852f8e1bee5ed3604ee483803cef39ce57a20
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include <cctype>
31
32namespace clang {
33  class ASTContext;
34  class APValue;
35  class Decl;
36  class IdentifierInfo;
37  class ParmVarDecl;
38  class NamedDecl;
39  class ValueDecl;
40  class BlockDecl;
41  class CXXBaseSpecifier;
42  class CXXOperatorCallExpr;
43  class CXXMemberCallExpr;
44  class ObjCPropertyRefExpr;
45  class OpaqueValueExpr;
46
47/// \brief A simple array of base specifiers.
48typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
49
50/// Expr - This represents one expression.  Note that Expr's are subclasses of
51/// Stmt.  This allows an expression to be transparently used any place a Stmt
52/// is required.
53///
54class Expr : public Stmt {
55  QualType TR;
56
57protected:
58  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
59       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
60    : Stmt(SC)
61  {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.InstantiationDependent = ID;
65    ExprBits.ValueKind = VK;
66    ExprBits.ObjectKind = OK;
67    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
68    setType(T);
69  }
70
71  /// \brief Construct an empty expression.
72  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
73
74public:
75  QualType getType() const { return TR; }
76  void setType(QualType t) {
77    // In C++, the type of an expression is always adjusted so that it
78    // will not have reference type an expression will never have
79    // reference type (C++ [expr]p6). Use
80    // QualType::getNonReferenceType() to retrieve the non-reference
81    // type. Additionally, inspect Expr::isLvalue to determine whether
82    // an expression that is adjusted in this manner should be
83    // considered an lvalue.
84    assert((t.isNull() || !t->isReferenceType()) &&
85           "Expressions can't have reference type");
86
87    TR = t;
88  }
89
90  /// isValueDependent - Determines whether this expression is
91  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
92  /// array bound of "Chars" in the following example is
93  /// value-dependent.
94  /// @code
95  /// template<int Size, char (&Chars)[Size]> struct meta_string;
96  /// @endcode
97  bool isValueDependent() const { return ExprBits.ValueDependent; }
98
99  /// \brief Set whether this expression is value-dependent or not.
100  void setValueDependent(bool VD) {
101    ExprBits.ValueDependent = VD;
102    if (VD)
103      ExprBits.InstantiationDependent = true;
104  }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return ExprBits.TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) {
121    ExprBits.TypeDependent = TD;
122    if (TD)
123      ExprBits.InstantiationDependent = true;
124  }
125
126  /// \brief Whether this expression is instantiation-dependent, meaning that
127  /// it depends in some way on a template parameter, even if neither its type
128  /// nor (constant) value can change due to the template instantiation.
129  ///
130  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
131  /// instantiation-dependent (since it involves a template parameter \c T), but
132  /// is neither type- nor value-dependent, since the type of the inner
133  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
134  /// \c sizeof is known.
135  ///
136  /// \code
137  /// template<typename T>
138  /// void f(T x, T y) {
139  ///   sizeof(sizeof(T() + T());
140  /// }
141  /// \endcode
142  ///
143  bool isInstantiationDependent() const {
144    return ExprBits.InstantiationDependent;
145  }
146
147  /// \brief Set whether this expression is instantiation-dependent or not.
148  void setInstantiationDependent(bool ID) {
149    ExprBits.InstantiationDependent = ID;
150  }
151
152  /// \brief Whether this expression contains an unexpanded parameter
153  /// pack (for C++0x variadic templates).
154  ///
155  /// Given the following function template:
156  ///
157  /// \code
158  /// template<typename F, typename ...Types>
159  /// void forward(const F &f, Types &&...args) {
160  ///   f(static_cast<Types&&>(args)...);
161  /// }
162  /// \endcode
163  ///
164  /// The expressions \c args and \c static_cast<Types&&>(args) both
165  /// contain parameter packs.
166  bool containsUnexpandedParameterPack() const {
167    return ExprBits.ContainsUnexpandedParameterPack;
168  }
169
170  /// \brief Set the bit that describes whether this expression
171  /// contains an unexpanded parameter pack.
172  void setContainsUnexpandedParameterPack(bool PP = true) {
173    ExprBits.ContainsUnexpandedParameterPack = PP;
174  }
175
176  /// getExprLoc - Return the preferred location for the arrow when diagnosing
177  /// a problem with a generic expression.
178  SourceLocation getExprLoc() const;
179
180  /// isUnusedResultAWarning - Return true if this immediate expression should
181  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
182  /// with location to warn on and the source range[s] to report with the
183  /// warning.
184  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
185                              SourceRange &R2, ASTContext &Ctx) const;
186
187  /// isLValue - True if this expression is an "l-value" according to
188  /// the rules of the current language.  C and C++ give somewhat
189  /// different rules for this concept, but in general, the result of
190  /// an l-value expression identifies a specific object whereas the
191  /// result of an r-value expression is a value detached from any
192  /// specific storage.
193  ///
194  /// C++0x divides the concept of "r-value" into pure r-values
195  /// ("pr-values") and so-called expiring values ("x-values"), which
196  /// identify specific objects that can be safely cannibalized for
197  /// their resources.  This is an unfortunate abuse of terminology on
198  /// the part of the C++ committee.  In Clang, when we say "r-value",
199  /// we generally mean a pr-value.
200  bool isLValue() const { return getValueKind() == VK_LValue; }
201  bool isRValue() const { return getValueKind() == VK_RValue; }
202  bool isXValue() const { return getValueKind() == VK_XValue; }
203  bool isGLValue() const { return getValueKind() != VK_RValue; }
204
205  enum LValueClassification {
206    LV_Valid,
207    LV_NotObjectType,
208    LV_IncompleteVoidType,
209    LV_DuplicateVectorComponents,
210    LV_InvalidExpression,
211    LV_InvalidMessageExpression,
212    LV_MemberFunction,
213    LV_SubObjCPropertySetting,
214    LV_ClassTemporary
215  };
216  /// Reasons why an expression might not be an l-value.
217  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
218
219  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
220  /// does not have an incomplete type, does not have a const-qualified type,
221  /// and if it is a structure or union, does not have any member (including,
222  /// recursively, any member or element of all contained aggregates or unions)
223  /// with a const-qualified type.
224  ///
225  /// \param Loc [in] [out] - A source location which *may* be filled
226  /// in with the location of the expression making this a
227  /// non-modifiable lvalue, if specified.
228  enum isModifiableLvalueResult {
229    MLV_Valid,
230    MLV_NotObjectType,
231    MLV_IncompleteVoidType,
232    MLV_DuplicateVectorComponents,
233    MLV_InvalidExpression,
234    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
235    MLV_IncompleteType,
236    MLV_ConstQualified,
237    MLV_ArrayType,
238    MLV_NotBlockQualified,
239    MLV_ReadonlyProperty,
240    MLV_NoSetterProperty,
241    MLV_MemberFunction,
242    MLV_SubObjCPropertySetting,
243    MLV_InvalidMessageExpression,
244    MLV_ClassTemporary
245  };
246  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
247                                              SourceLocation *Loc = 0) const;
248
249  /// \brief The return type of classify(). Represents the C++0x expression
250  ///        taxonomy.
251  class Classification {
252  public:
253    /// \brief The various classification results. Most of these mean prvalue.
254    enum Kinds {
255      CL_LValue,
256      CL_XValue,
257      CL_Function, // Functions cannot be lvalues in C.
258      CL_Void, // Void cannot be an lvalue in C.
259      CL_AddressableVoid, // Void expression whose address can be taken in C.
260      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
261      CL_MemberFunction, // An expression referring to a member function
262      CL_SubObjCPropertySetting,
263      CL_ClassTemporary, // A prvalue of class type
264      CL_ObjCMessageRValue, // ObjC message is an rvalue
265      CL_PRValue // A prvalue for any other reason, of any other type
266    };
267    /// \brief The results of modification testing.
268    enum ModifiableType {
269      CM_Untested, // testModifiable was false.
270      CM_Modifiable,
271      CM_RValue, // Not modifiable because it's an rvalue
272      CM_Function, // Not modifiable because it's a function; C++ only
273      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
274      CM_NotBlockQualified, // Not captured in the closure
275      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
276      CM_ConstQualified,
277      CM_ArrayType,
278      CM_IncompleteType
279    };
280
281  private:
282    friend class Expr;
283
284    unsigned short Kind;
285    unsigned short Modifiable;
286
287    explicit Classification(Kinds k, ModifiableType m)
288      : Kind(k), Modifiable(m)
289    {}
290
291  public:
292    Classification() {}
293
294    Kinds getKind() const { return static_cast<Kinds>(Kind); }
295    ModifiableType getModifiable() const {
296      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
297      return static_cast<ModifiableType>(Modifiable);
298    }
299    bool isLValue() const { return Kind == CL_LValue; }
300    bool isXValue() const { return Kind == CL_XValue; }
301    bool isGLValue() const { return Kind <= CL_XValue; }
302    bool isPRValue() const { return Kind >= CL_Function; }
303    bool isRValue() const { return Kind >= CL_XValue; }
304    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
305
306    /// \brief Create a simple, modifiably lvalue
307    static Classification makeSimpleLValue() {
308      return Classification(CL_LValue, CM_Modifiable);
309    }
310
311  };
312  /// \brief Classify - Classify this expression according to the C++0x
313  ///        expression taxonomy.
314  ///
315  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
316  /// old lvalue vs rvalue. This function determines the type of expression this
317  /// is. There are three expression types:
318  /// - lvalues are classical lvalues as in C++03.
319  /// - prvalues are equivalent to rvalues in C++03.
320  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
321  ///   function returning an rvalue reference.
322  /// lvalues and xvalues are collectively referred to as glvalues, while
323  /// prvalues and xvalues together form rvalues.
324  Classification Classify(ASTContext &Ctx) const {
325    return ClassifyImpl(Ctx, 0);
326  }
327
328  /// \brief ClassifyModifiable - Classify this expression according to the
329  ///        C++0x expression taxonomy, and see if it is valid on the left side
330  ///        of an assignment.
331  ///
332  /// This function extends classify in that it also tests whether the
333  /// expression is modifiable (C99 6.3.2.1p1).
334  /// \param Loc A source location that might be filled with a relevant location
335  ///            if the expression is not modifiable.
336  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
337    return ClassifyImpl(Ctx, &Loc);
338  }
339
340  /// getValueKindForType - Given a formal return or parameter type,
341  /// give its value kind.
342  static ExprValueKind getValueKindForType(QualType T) {
343    if (const ReferenceType *RT = T->getAs<ReferenceType>())
344      return (isa<LValueReferenceType>(RT)
345                ? VK_LValue
346                : (RT->getPointeeType()->isFunctionType()
347                     ? VK_LValue : VK_XValue));
348    return VK_RValue;
349  }
350
351  /// getValueKind - The value kind that this expression produces.
352  ExprValueKind getValueKind() const {
353    return static_cast<ExprValueKind>(ExprBits.ValueKind);
354  }
355
356  /// getObjectKind - The object kind that this expression produces.
357  /// Object kinds are meaningful only for expressions that yield an
358  /// l-value or x-value.
359  ExprObjectKind getObjectKind() const {
360    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
361  }
362
363  bool isOrdinaryOrBitFieldObject() const {
364    ExprObjectKind OK = getObjectKind();
365    return (OK == OK_Ordinary || OK == OK_BitField);
366  }
367
368  /// setValueKind - Set the value kind produced by this expression.
369  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
370
371  /// setObjectKind - Set the object kind produced by this expression.
372  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
373
374private:
375  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
376
377public:
378
379  /// \brief If this expression refers to a bit-field, retrieve the
380  /// declaration of that bit-field.
381  FieldDecl *getBitField();
382
383  const FieldDecl *getBitField() const {
384    return const_cast<Expr*>(this)->getBitField();
385  }
386
387  /// \brief If this expression is an l-value for an Objective C
388  /// property, find the underlying property reference expression.
389  const ObjCPropertyRefExpr *getObjCProperty() const;
390
391  /// \brief Returns whether this expression refers to a vector element.
392  bool refersToVectorElement() const;
393
394  /// \brief Returns whether this expression has a placeholder type.
395  bool hasPlaceholderType() const {
396    return getType()->isPlaceholderType();
397  }
398
399  /// \brief Returns whether this expression has a specific placeholder type.
400  bool hasPlaceholderType(BuiltinType::Kind K) const {
401    assert(BuiltinType::isPlaceholderTypeKind(K));
402    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
403      return BT->getKind() == K;
404    return false;
405  }
406
407  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
408  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
409  /// but also int expressions which are produced by things like comparisons in
410  /// C.
411  bool isKnownToHaveBooleanValue() const;
412
413  /// isIntegerConstantExpr - Return true if this expression is a valid integer
414  /// constant expression, and, if so, return its value in Result.  If not a
415  /// valid i-c-e, return false and fill in Loc (if specified) with the location
416  /// of the invalid expression.
417  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
418                             SourceLocation *Loc = 0,
419                             bool isEvaluated = true) const;
420  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
421    llvm::APSInt X;
422    return isIntegerConstantExpr(X, Ctx, Loc);
423  }
424  /// isConstantInitializer - Returns true if this expression is a constant
425  /// initializer, which can be emitted at compile-time.
426  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
427
428  /// EvalStatus is a struct with detailed info about an evaluation in progress.
429  struct EvalStatus {
430    /// HasSideEffects - Whether the evaluated expression has side effects.
431    /// For example, (f() && 0) can be folded, but it still has side effects.
432    bool HasSideEffects;
433
434    /// Diag - If the expression is unfoldable, then Diag contains a note
435    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
436    /// position for the error, and DiagExpr is the expression that caused
437    /// the error.
438    /// If the expression is foldable, but not an integer constant expression,
439    /// Diag contains a note diagnostic that describes why it isn't an integer
440    /// constant expression. If the expression *is* an integer constant
441    /// expression, then Diag will be zero.
442    unsigned Diag;
443    const Expr *DiagExpr;
444    SourceLocation DiagLoc;
445
446    EvalStatus() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
447
448    // hasSideEffects - Return true if the evaluated expression has
449    // side effects.
450    bool hasSideEffects() const {
451      return HasSideEffects;
452    }
453  };
454
455  /// EvalResult is a struct with detailed info about an evaluated expression.
456  struct EvalResult : EvalStatus {
457    /// Val - This is the value the expression can be folded to.
458    APValue Val;
459
460    // isGlobalLValue - Return true if the evaluated lvalue expression
461    // is global.
462    bool isGlobalLValue() const;
463  };
464
465  /// Evaluate - Return true if this is a constant which we can fold using
466  /// any crazy technique (that has nothing to do with language standards) that
467  /// we want to.  If this function returns true, it returns the folded constant
468  /// in Result.
469  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
470
471  /// EvaluateAsBooleanCondition - Return true if this is a constant
472  /// which we we can fold and convert to a boolean condition using
473  /// any crazy technique that we want to, even if the expression has
474  /// side-effects.
475  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
476
477  /// EvaluateAsInt - Return true if this is a constant which we can fold and
478  /// convert to an integer using any crazy technique that we want to.
479  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx) const;
480
481  /// isEvaluatable - Call Evaluate to see if this expression can be constant
482  /// folded, but discard the result.
483  bool isEvaluatable(const ASTContext &Ctx) const;
484
485  /// HasSideEffects - This routine returns true for all those expressions
486  /// which must be evaluated each time and must not be optimized away
487  /// or evaluated at compile time. Example is a function call, volatile
488  /// variable read.
489  bool HasSideEffects(const ASTContext &Ctx) const;
490
491  /// EvaluateKnownConstInt - Call Evaluate and return the folded integer. This
492  /// must be called on an expression that constant folds to an integer.
493  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
494
495  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
496  /// with link time known address.
497  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
498
499  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
500  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
501
502  /// \brief Enumeration used to describe the kind of Null pointer constant
503  /// returned from \c isNullPointerConstant().
504  enum NullPointerConstantKind {
505    /// \brief Expression is not a Null pointer constant.
506    NPCK_NotNull = 0,
507
508    /// \brief Expression is a Null pointer constant built from a zero integer.
509    NPCK_ZeroInteger,
510
511    /// \brief Expression is a C++0X nullptr.
512    NPCK_CXX0X_nullptr,
513
514    /// \brief Expression is a GNU-style __null constant.
515    NPCK_GNUNull
516  };
517
518  /// \brief Enumeration used to describe how \c isNullPointerConstant()
519  /// should cope with value-dependent expressions.
520  enum NullPointerConstantValueDependence {
521    /// \brief Specifies that the expression should never be value-dependent.
522    NPC_NeverValueDependent = 0,
523
524    /// \brief Specifies that a value-dependent expression of integral or
525    /// dependent type should be considered a null pointer constant.
526    NPC_ValueDependentIsNull,
527
528    /// \brief Specifies that a value-dependent expression should be considered
529    /// to never be a null pointer constant.
530    NPC_ValueDependentIsNotNull
531  };
532
533  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
534  /// a Null pointer constant. The return value can further distinguish the
535  /// kind of NULL pointer constant that was detected.
536  NullPointerConstantKind isNullPointerConstant(
537      ASTContext &Ctx,
538      NullPointerConstantValueDependence NPC) const;
539
540  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
541  /// write barrier.
542  bool isOBJCGCCandidate(ASTContext &Ctx) const;
543
544  /// \brief Returns true if this expression is a bound member function.
545  bool isBoundMemberFunction(ASTContext &Ctx) const;
546
547  /// \brief Given an expression of bound-member type, find the type
548  /// of the member.  Returns null if this is an *overloaded* bound
549  /// member expression.
550  static QualType findBoundMemberType(const Expr *expr);
551
552  /// \brief Result type of CanThrow().
553  enum CanThrowResult {
554    CT_Cannot,
555    CT_Dependent,
556    CT_Can
557  };
558  /// \brief Test if this expression, if evaluated, might throw, according to
559  ///        the rules of C++ [expr.unary.noexcept].
560  CanThrowResult CanThrow(ASTContext &C) const;
561
562  /// IgnoreImpCasts - Skip past any implicit casts which might
563  /// surround this expression.  Only skips ImplicitCastExprs.
564  Expr *IgnoreImpCasts();
565
566  /// IgnoreImplicit - Skip past any implicit AST nodes which might
567  /// surround this expression.
568  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
569
570  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
571  ///  its subexpression.  If that subexpression is also a ParenExpr,
572  ///  then this method recursively returns its subexpression, and so forth.
573  ///  Otherwise, the method returns the current Expr.
574  Expr *IgnoreParens();
575
576  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
577  /// or CastExprs, returning their operand.
578  Expr *IgnoreParenCasts();
579
580  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
581  /// ParenExpr or ImplicitCastExprs, returning their operand.
582  Expr *IgnoreParenImpCasts();
583
584  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
585  /// call to a conversion operator, return the argument.
586  Expr *IgnoreConversionOperator();
587
588  const Expr *IgnoreConversionOperator() const {
589    return const_cast<Expr*>(this)->IgnoreConversionOperator();
590  }
591
592  const Expr *IgnoreParenImpCasts() const {
593    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
594  }
595
596  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
597  /// CastExprs that represent lvalue casts, returning their operand.
598  Expr *IgnoreParenLValueCasts();
599
600  const Expr *IgnoreParenLValueCasts() const {
601    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
602  }
603
604  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
605  /// value (including ptr->int casts of the same size).  Strip off any
606  /// ParenExpr or CastExprs, returning their operand.
607  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
608
609  /// \brief Determine whether this expression is a default function argument.
610  ///
611  /// Default arguments are implicitly generated in the abstract syntax tree
612  /// by semantic analysis for function calls, object constructions, etc. in
613  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
614  /// this routine also looks through any implicit casts to determine whether
615  /// the expression is a default argument.
616  bool isDefaultArgument() const;
617
618  /// \brief Determine whether the result of this expression is a
619  /// temporary object of the given class type.
620  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
621
622  /// \brief Whether this expression is an implicit reference to 'this' in C++.
623  bool isImplicitCXXThis() const;
624
625  const Expr *IgnoreImpCasts() const {
626    return const_cast<Expr*>(this)->IgnoreImpCasts();
627  }
628  const Expr *IgnoreParens() const {
629    return const_cast<Expr*>(this)->IgnoreParens();
630  }
631  const Expr *IgnoreParenCasts() const {
632    return const_cast<Expr*>(this)->IgnoreParenCasts();
633  }
634  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
635    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
636  }
637
638  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
639  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
640
641  static bool classof(const Stmt *T) {
642    return T->getStmtClass() >= firstExprConstant &&
643           T->getStmtClass() <= lastExprConstant;
644  }
645  static bool classof(const Expr *) { return true; }
646};
647
648
649//===----------------------------------------------------------------------===//
650// Primary Expressions.
651//===----------------------------------------------------------------------===//
652
653/// OpaqueValueExpr - An expression referring to an opaque object of a
654/// fixed type and value class.  These don't correspond to concrete
655/// syntax; instead they're used to express operations (usually copy
656/// operations) on values whose source is generally obvious from
657/// context.
658class OpaqueValueExpr : public Expr {
659  friend class ASTStmtReader;
660  Expr *SourceExpr;
661  SourceLocation Loc;
662
663public:
664  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
665                  ExprObjectKind OK = OK_Ordinary)
666    : Expr(OpaqueValueExprClass, T, VK, OK,
667           T->isDependentType(), T->isDependentType(),
668           T->isInstantiationDependentType(),
669           false),
670      SourceExpr(0), Loc(Loc) {
671  }
672
673  /// Given an expression which invokes a copy constructor --- i.e.  a
674  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
675  /// find the OpaqueValueExpr that's the source of the construction.
676  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
677
678  explicit OpaqueValueExpr(EmptyShell Empty)
679    : Expr(OpaqueValueExprClass, Empty) { }
680
681  /// \brief Retrieve the location of this expression.
682  SourceLocation getLocation() const { return Loc; }
683
684  SourceRange getSourceRange() const {
685    if (SourceExpr) return SourceExpr->getSourceRange();
686    return Loc;
687  }
688  SourceLocation getExprLoc() const {
689    if (SourceExpr) return SourceExpr->getExprLoc();
690    return Loc;
691  }
692
693  child_range children() { return child_range(); }
694
695  /// The source expression of an opaque value expression is the
696  /// expression which originally generated the value.  This is
697  /// provided as a convenience for analyses that don't wish to
698  /// precisely model the execution behavior of the program.
699  ///
700  /// The source expression is typically set when building the
701  /// expression which binds the opaque value expression in the first
702  /// place.
703  Expr *getSourceExpr() const { return SourceExpr; }
704  void setSourceExpr(Expr *e) { SourceExpr = e; }
705
706  static bool classof(const Stmt *T) {
707    return T->getStmtClass() == OpaqueValueExprClass;
708  }
709  static bool classof(const OpaqueValueExpr *) { return true; }
710};
711
712/// \brief A reference to a declared variable, function, enum, etc.
713/// [C99 6.5.1p2]
714///
715/// This encodes all the information about how a declaration is referenced
716/// within an expression.
717///
718/// There are several optional constructs attached to DeclRefExprs only when
719/// they apply in order to conserve memory. These are laid out past the end of
720/// the object, and flags in the DeclRefExprBitfield track whether they exist:
721///
722///   DeclRefExprBits.HasQualifier:
723///       Specifies when this declaration reference expression has a C++
724///       nested-name-specifier.
725///   DeclRefExprBits.HasFoundDecl:
726///       Specifies when this declaration reference expression has a record of
727///       a NamedDecl (different from the referenced ValueDecl) which was found
728///       during name lookup and/or overload resolution.
729///   DeclRefExprBits.HasExplicitTemplateArgs:
730///       Specifies when this declaration reference expression has an explicit
731///       C++ template argument list.
732class DeclRefExpr : public Expr {
733  /// \brief The declaration that we are referencing.
734  ValueDecl *D;
735
736  /// \brief The location of the declaration name itself.
737  SourceLocation Loc;
738
739  /// \brief Provides source/type location info for the declaration name
740  /// embedded in D.
741  DeclarationNameLoc DNLoc;
742
743  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
744  NestedNameSpecifierLoc &getInternalQualifierLoc() {
745    assert(hasQualifier());
746    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
747  }
748
749  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
750  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
751    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
752  }
753
754  /// \brief Test whether there is a distinct FoundDecl attached to the end of
755  /// this DRE.
756  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
757
758  /// \brief Helper to retrieve the optional NamedDecl through which this
759  /// reference occured.
760  NamedDecl *&getInternalFoundDecl() {
761    assert(hasFoundDecl());
762    if (hasQualifier())
763      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
764    return *reinterpret_cast<NamedDecl **>(this + 1);
765  }
766
767  /// \brief Helper to retrieve the optional NamedDecl through which this
768  /// reference occured.
769  NamedDecl *getInternalFoundDecl() const {
770    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
771  }
772
773  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
774              ValueDecl *D, const DeclarationNameInfo &NameInfo,
775              NamedDecl *FoundD,
776              const TemplateArgumentListInfo *TemplateArgs,
777              QualType T, ExprValueKind VK);
778
779  /// \brief Construct an empty declaration reference expression.
780  explicit DeclRefExpr(EmptyShell Empty)
781    : Expr(DeclRefExprClass, Empty) { }
782
783  /// \brief Computes the type- and value-dependence flags for this
784  /// declaration reference expression.
785  void computeDependence();
786
787public:
788  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
789              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
790    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
791      D(D), Loc(L), DNLoc(LocInfo) {
792    DeclRefExprBits.HasQualifier = 0;
793    DeclRefExprBits.HasExplicitTemplateArgs = 0;
794    DeclRefExprBits.HasFoundDecl = 0;
795    DeclRefExprBits.HadMultipleCandidates = 0;
796    computeDependence();
797  }
798
799  static DeclRefExpr *Create(ASTContext &Context,
800                             NestedNameSpecifierLoc QualifierLoc,
801                             ValueDecl *D,
802                             SourceLocation NameLoc,
803                             QualType T, ExprValueKind VK,
804                             NamedDecl *FoundD = 0,
805                             const TemplateArgumentListInfo *TemplateArgs = 0);
806
807  static DeclRefExpr *Create(ASTContext &Context,
808                             NestedNameSpecifierLoc QualifierLoc,
809                             ValueDecl *D,
810                             const DeclarationNameInfo &NameInfo,
811                             QualType T, ExprValueKind VK,
812                             NamedDecl *FoundD = 0,
813                             const TemplateArgumentListInfo *TemplateArgs = 0);
814
815  /// \brief Construct an empty declaration reference expression.
816  static DeclRefExpr *CreateEmpty(ASTContext &Context,
817                                  bool HasQualifier,
818                                  bool HasFoundDecl,
819                                  bool HasExplicitTemplateArgs,
820                                  unsigned NumTemplateArgs);
821
822  ValueDecl *getDecl() { return D; }
823  const ValueDecl *getDecl() const { return D; }
824  void setDecl(ValueDecl *NewD) { D = NewD; }
825
826  DeclarationNameInfo getNameInfo() const {
827    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
828  }
829
830  SourceLocation getLocation() const { return Loc; }
831  void setLocation(SourceLocation L) { Loc = L; }
832  SourceRange getSourceRange() const;
833
834  /// \brief Determine whether this declaration reference was preceded by a
835  /// C++ nested-name-specifier, e.g., \c N::foo.
836  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
837
838  /// \brief If the name was qualified, retrieves the nested-name-specifier
839  /// that precedes the name. Otherwise, returns NULL.
840  NestedNameSpecifier *getQualifier() const {
841    if (!hasQualifier())
842      return 0;
843
844    return getInternalQualifierLoc().getNestedNameSpecifier();
845  }
846
847  /// \brief If the name was qualified, retrieves the nested-name-specifier
848  /// that precedes the name, with source-location information.
849  NestedNameSpecifierLoc getQualifierLoc() const {
850    if (!hasQualifier())
851      return NestedNameSpecifierLoc();
852
853    return getInternalQualifierLoc();
854  }
855
856  /// \brief Get the NamedDecl through which this reference occured.
857  ///
858  /// This Decl may be different from the ValueDecl actually referred to in the
859  /// presence of using declarations, etc. It always returns non-NULL, and may
860  /// simple return the ValueDecl when appropriate.
861  NamedDecl *getFoundDecl() {
862    return hasFoundDecl() ? getInternalFoundDecl() : D;
863  }
864
865  /// \brief Get the NamedDecl through which this reference occurred.
866  /// See non-const variant.
867  const NamedDecl *getFoundDecl() const {
868    return hasFoundDecl() ? getInternalFoundDecl() : D;
869  }
870
871  /// \brief Determines whether this declaration reference was followed by an
872  /// explict template argument list.
873  bool hasExplicitTemplateArgs() const {
874    return DeclRefExprBits.HasExplicitTemplateArgs;
875  }
876
877  /// \brief Retrieve the explicit template argument list that followed the
878  /// member template name.
879  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
880    assert(hasExplicitTemplateArgs());
881    if (hasFoundDecl())
882      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
883        &getInternalFoundDecl() + 1);
884
885    if (hasQualifier())
886      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
887        &getInternalQualifierLoc() + 1);
888
889    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
890  }
891
892  /// \brief Retrieve the explicit template argument list that followed the
893  /// member template name.
894  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
895    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
896  }
897
898  /// \brief Retrieves the optional explicit template arguments.
899  /// This points to the same data as getExplicitTemplateArgs(), but
900  /// returns null if there are no explicit template arguments.
901  const ASTTemplateArgumentListInfo *getExplicitTemplateArgsOpt() const {
902    if (!hasExplicitTemplateArgs()) return 0;
903    return &getExplicitTemplateArgs();
904  }
905
906  /// \brief Copies the template arguments (if present) into the given
907  /// structure.
908  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
909    if (hasExplicitTemplateArgs())
910      getExplicitTemplateArgs().copyInto(List);
911  }
912
913  /// \brief Retrieve the location of the left angle bracket following the
914  /// member name ('<'), if any.
915  SourceLocation getLAngleLoc() const {
916    if (!hasExplicitTemplateArgs())
917      return SourceLocation();
918
919    return getExplicitTemplateArgs().LAngleLoc;
920  }
921
922  /// \brief Retrieve the template arguments provided as part of this
923  /// template-id.
924  const TemplateArgumentLoc *getTemplateArgs() const {
925    if (!hasExplicitTemplateArgs())
926      return 0;
927
928    return getExplicitTemplateArgs().getTemplateArgs();
929  }
930
931  /// \brief Retrieve the number of template arguments provided as part of this
932  /// template-id.
933  unsigned getNumTemplateArgs() const {
934    if (!hasExplicitTemplateArgs())
935      return 0;
936
937    return getExplicitTemplateArgs().NumTemplateArgs;
938  }
939
940  /// \brief Retrieve the location of the right angle bracket following the
941  /// template arguments ('>').
942  SourceLocation getRAngleLoc() const {
943    if (!hasExplicitTemplateArgs())
944      return SourceLocation();
945
946    return getExplicitTemplateArgs().RAngleLoc;
947  }
948
949  /// \brief Returns true if this expression refers to a function that
950  /// was resolved from an overloaded set having size greater than 1.
951  bool hadMultipleCandidates() const {
952    return DeclRefExprBits.HadMultipleCandidates;
953  }
954  /// \brief Sets the flag telling whether this expression refers to
955  /// a function that was resolved from an overloaded set having size
956  /// greater than 1.
957  void setHadMultipleCandidates(bool V = true) {
958    DeclRefExprBits.HadMultipleCandidates = V;
959  }
960
961  static bool classof(const Stmt *T) {
962    return T->getStmtClass() == DeclRefExprClass;
963  }
964  static bool classof(const DeclRefExpr *) { return true; }
965
966  // Iterators
967  child_range children() { return child_range(); }
968
969  friend class ASTStmtReader;
970  friend class ASTStmtWriter;
971};
972
973/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
974class PredefinedExpr : public Expr {
975public:
976  enum IdentType {
977    Func,
978    Function,
979    PrettyFunction,
980    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
981    /// 'virtual' keyword is omitted for virtual member functions.
982    PrettyFunctionNoVirtual
983  };
984
985private:
986  SourceLocation Loc;
987  IdentType Type;
988public:
989  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
990    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
991           type->isDependentType(), type->isDependentType(),
992           type->isInstantiationDependentType(),
993           /*ContainsUnexpandedParameterPack=*/false),
994      Loc(l), Type(IT) {}
995
996  /// \brief Construct an empty predefined expression.
997  explicit PredefinedExpr(EmptyShell Empty)
998    : Expr(PredefinedExprClass, Empty) { }
999
1000  IdentType getIdentType() const { return Type; }
1001  void setIdentType(IdentType IT) { Type = IT; }
1002
1003  SourceLocation getLocation() const { return Loc; }
1004  void setLocation(SourceLocation L) { Loc = L; }
1005
1006  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1007
1008  SourceRange getSourceRange() const { return SourceRange(Loc); }
1009
1010  static bool classof(const Stmt *T) {
1011    return T->getStmtClass() == PredefinedExprClass;
1012  }
1013  static bool classof(const PredefinedExpr *) { return true; }
1014
1015  // Iterators
1016  child_range children() { return child_range(); }
1017};
1018
1019/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1020/// leaking memory.
1021///
1022/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1023/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1024/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1025/// the APFloat/APInt values will never get freed. APNumericStorage uses
1026/// ASTContext's allocator for memory allocation.
1027class APNumericStorage {
1028  unsigned BitWidth;
1029  union {
1030    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1031    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1032  };
1033
1034  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1035
1036  APNumericStorage(const APNumericStorage&); // do not implement
1037  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1038
1039protected:
1040  APNumericStorage() : BitWidth(0), VAL(0) { }
1041
1042  llvm::APInt getIntValue() const {
1043    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1044    if (NumWords > 1)
1045      return llvm::APInt(BitWidth, NumWords, pVal);
1046    else
1047      return llvm::APInt(BitWidth, VAL);
1048  }
1049  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1050};
1051
1052class APIntStorage : public APNumericStorage {
1053public:
1054  llvm::APInt getValue() const { return getIntValue(); }
1055  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1056};
1057
1058class APFloatStorage : public APNumericStorage {
1059public:
1060  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
1061  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1062    setIntValue(C, Val.bitcastToAPInt());
1063  }
1064};
1065
1066class IntegerLiteral : public Expr {
1067  APIntStorage Num;
1068  SourceLocation Loc;
1069
1070  /// \brief Construct an empty integer literal.
1071  explicit IntegerLiteral(EmptyShell Empty)
1072    : Expr(IntegerLiteralClass, Empty) { }
1073
1074public:
1075  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1076  // or UnsignedLongLongTy
1077  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1078                 QualType type, SourceLocation l)
1079    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1080           false, false),
1081      Loc(l) {
1082    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1083    assert(V.getBitWidth() == C.getIntWidth(type) &&
1084           "Integer type is not the correct size for constant.");
1085    setValue(C, V);
1086  }
1087
1088  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1089  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1090  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1091  /// \param V - the value that the returned integer literal contains.
1092  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1093                                QualType type, SourceLocation l);
1094  /// \brief Returns a new empty integer literal.
1095  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1096
1097  llvm::APInt getValue() const { return Num.getValue(); }
1098  SourceRange getSourceRange() const { return SourceRange(Loc); }
1099
1100  /// \brief Retrieve the location of the literal.
1101  SourceLocation getLocation() const { return Loc; }
1102
1103  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1104  void setLocation(SourceLocation Location) { Loc = Location; }
1105
1106  static bool classof(const Stmt *T) {
1107    return T->getStmtClass() == IntegerLiteralClass;
1108  }
1109  static bool classof(const IntegerLiteral *) { return true; }
1110
1111  // Iterators
1112  child_range children() { return child_range(); }
1113};
1114
1115class CharacterLiteral : public Expr {
1116public:
1117  enum CharacterKind {
1118    Ascii,
1119    Wide,
1120    UTF16,
1121    UTF32
1122  };
1123
1124private:
1125  unsigned Value;
1126  SourceLocation Loc;
1127  unsigned Kind : 2;
1128public:
1129  // type should be IntTy
1130  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1131                   SourceLocation l)
1132    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1133           false, false),
1134      Value(value), Loc(l), Kind(kind) {
1135  }
1136
1137  /// \brief Construct an empty character literal.
1138  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1139
1140  SourceLocation getLocation() const { return Loc; }
1141  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1142
1143  SourceRange getSourceRange() const { return SourceRange(Loc); }
1144
1145  unsigned getValue() const { return Value; }
1146
1147  void setLocation(SourceLocation Location) { Loc = Location; }
1148  void setKind(CharacterKind kind) { Kind = kind; }
1149  void setValue(unsigned Val) { Value = Val; }
1150
1151  static bool classof(const Stmt *T) {
1152    return T->getStmtClass() == CharacterLiteralClass;
1153  }
1154  static bool classof(const CharacterLiteral *) { return true; }
1155
1156  // Iterators
1157  child_range children() { return child_range(); }
1158};
1159
1160class FloatingLiteral : public Expr {
1161  APFloatStorage Num;
1162  bool IsExact : 1;
1163  SourceLocation Loc;
1164
1165  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1166                  QualType Type, SourceLocation L)
1167    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1168           false, false),
1169      IsExact(isexact), Loc(L) {
1170    setValue(C, V);
1171  }
1172
1173  /// \brief Construct an empty floating-point literal.
1174  explicit FloatingLiteral(EmptyShell Empty)
1175    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1176
1177public:
1178  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1179                                 bool isexact, QualType Type, SourceLocation L);
1180  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1181
1182  llvm::APFloat getValue() const { return Num.getValue(); }
1183  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1184    Num.setValue(C, Val);
1185  }
1186
1187  bool isExact() const { return IsExact; }
1188  void setExact(bool E) { IsExact = E; }
1189
1190  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1191  /// double.  Note that this may cause loss of precision, but is useful for
1192  /// debugging dumps, etc.
1193  double getValueAsApproximateDouble() const;
1194
1195  SourceLocation getLocation() const { return Loc; }
1196  void setLocation(SourceLocation L) { Loc = L; }
1197
1198  SourceRange getSourceRange() const { return SourceRange(Loc); }
1199
1200  static bool classof(const Stmt *T) {
1201    return T->getStmtClass() == FloatingLiteralClass;
1202  }
1203  static bool classof(const FloatingLiteral *) { return true; }
1204
1205  // Iterators
1206  child_range children() { return child_range(); }
1207};
1208
1209/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1210/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1211/// IntegerLiteral classes.  Instances of this class always have a Complex type
1212/// whose element type matches the subexpression.
1213///
1214class ImaginaryLiteral : public Expr {
1215  Stmt *Val;
1216public:
1217  ImaginaryLiteral(Expr *val, QualType Ty)
1218    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1219           false, false),
1220      Val(val) {}
1221
1222  /// \brief Build an empty imaginary literal.
1223  explicit ImaginaryLiteral(EmptyShell Empty)
1224    : Expr(ImaginaryLiteralClass, Empty) { }
1225
1226  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1227  Expr *getSubExpr() { return cast<Expr>(Val); }
1228  void setSubExpr(Expr *E) { Val = E; }
1229
1230  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1231  static bool classof(const Stmt *T) {
1232    return T->getStmtClass() == ImaginaryLiteralClass;
1233  }
1234  static bool classof(const ImaginaryLiteral *) { return true; }
1235
1236  // Iterators
1237  child_range children() { return child_range(&Val, &Val+1); }
1238};
1239
1240/// StringLiteral - This represents a string literal expression, e.g. "foo"
1241/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1242/// is NOT null-terminated, and the length of the string is determined by
1243/// calling getByteLength().  The C type for a string is always a
1244/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1245/// not.
1246///
1247/// Note that strings in C can be formed by concatenation of multiple string
1248/// literal pptokens in translation phase #6.  This keeps track of the locations
1249/// of each of these pieces.
1250///
1251/// Strings in C can also be truncated and extended by assigning into arrays,
1252/// e.g. with constructs like:
1253///   char X[2] = "foobar";
1254/// In this case, getByteLength() will return 6, but the string literal will
1255/// have type "char[2]".
1256class StringLiteral : public Expr {
1257public:
1258  enum StringKind {
1259    Ascii,
1260    Wide,
1261    UTF8,
1262    UTF16,
1263    UTF32
1264  };
1265
1266private:
1267  friend class ASTStmtReader;
1268
1269  const char *StrData;
1270  unsigned ByteLength;
1271  unsigned NumConcatenated;
1272  unsigned Kind : 3;
1273  bool IsPascal : 1;
1274  SourceLocation TokLocs[1];
1275
1276  StringLiteral(QualType Ty) :
1277    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1278         false) {}
1279
1280public:
1281  /// This is the "fully general" constructor that allows representation of
1282  /// strings formed from multiple concatenated tokens.
1283  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1284                               bool Pascal, QualType Ty,
1285                               const SourceLocation *Loc, unsigned NumStrs);
1286
1287  /// Simple constructor for string literals made from one token.
1288  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1289                               bool Pascal, QualType Ty,
1290                               SourceLocation Loc) {
1291    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1292  }
1293
1294  /// \brief Construct an empty string literal.
1295  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1296
1297  StringRef getString() const {
1298    return StringRef(StrData, ByteLength);
1299  }
1300
1301  unsigned getByteLength() const { return ByteLength; }
1302
1303  /// \brief Sets the string data to the given string data.
1304  void setString(ASTContext &C, StringRef Str);
1305
1306  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1307  bool isAscii() const { return Kind == Ascii; }
1308  bool isWide() const { return Kind == Wide; }
1309  bool isUTF8() const { return Kind == UTF8; }
1310  bool isUTF16() const { return Kind == UTF16; }
1311  bool isUTF32() const { return Kind == UTF32; }
1312  bool isPascal() const { return IsPascal; }
1313
1314  bool containsNonAsciiOrNull() const {
1315    StringRef Str = getString();
1316    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1317      if (!isascii(Str[i]) || !Str[i])
1318        return true;
1319    return false;
1320  }
1321  /// getNumConcatenated - Get the number of string literal tokens that were
1322  /// concatenated in translation phase #6 to form this string literal.
1323  unsigned getNumConcatenated() const { return NumConcatenated; }
1324
1325  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1326    assert(TokNum < NumConcatenated && "Invalid tok number");
1327    return TokLocs[TokNum];
1328  }
1329  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1330    assert(TokNum < NumConcatenated && "Invalid tok number");
1331    TokLocs[TokNum] = L;
1332  }
1333
1334  /// getLocationOfByte - Return a source location that points to the specified
1335  /// byte of this string literal.
1336  ///
1337  /// Strings are amazingly complex.  They can be formed from multiple tokens
1338  /// and can have escape sequences in them in addition to the usual trigraph
1339  /// and escaped newline business.  This routine handles this complexity.
1340  ///
1341  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1342                                   const LangOptions &Features,
1343                                   const TargetInfo &Target) const;
1344
1345  typedef const SourceLocation *tokloc_iterator;
1346  tokloc_iterator tokloc_begin() const { return TokLocs; }
1347  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1348
1349  SourceRange getSourceRange() const {
1350    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1351  }
1352  static bool classof(const Stmt *T) {
1353    return T->getStmtClass() == StringLiteralClass;
1354  }
1355  static bool classof(const StringLiteral *) { return true; }
1356
1357  // Iterators
1358  child_range children() { return child_range(); }
1359};
1360
1361/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1362/// AST node is only formed if full location information is requested.
1363class ParenExpr : public Expr {
1364  SourceLocation L, R;
1365  Stmt *Val;
1366public:
1367  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1368    : Expr(ParenExprClass, val->getType(),
1369           val->getValueKind(), val->getObjectKind(),
1370           val->isTypeDependent(), val->isValueDependent(),
1371           val->isInstantiationDependent(),
1372           val->containsUnexpandedParameterPack()),
1373      L(l), R(r), Val(val) {}
1374
1375  /// \brief Construct an empty parenthesized expression.
1376  explicit ParenExpr(EmptyShell Empty)
1377    : Expr(ParenExprClass, Empty) { }
1378
1379  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1380  Expr *getSubExpr() { return cast<Expr>(Val); }
1381  void setSubExpr(Expr *E) { Val = E; }
1382
1383  SourceRange getSourceRange() const { return SourceRange(L, R); }
1384
1385  /// \brief Get the location of the left parentheses '('.
1386  SourceLocation getLParen() const { return L; }
1387  void setLParen(SourceLocation Loc) { L = Loc; }
1388
1389  /// \brief Get the location of the right parentheses ')'.
1390  SourceLocation getRParen() const { return R; }
1391  void setRParen(SourceLocation Loc) { R = Loc; }
1392
1393  static bool classof(const Stmt *T) {
1394    return T->getStmtClass() == ParenExprClass;
1395  }
1396  static bool classof(const ParenExpr *) { return true; }
1397
1398  // Iterators
1399  child_range children() { return child_range(&Val, &Val+1); }
1400};
1401
1402
1403/// UnaryOperator - This represents the unary-expression's (except sizeof and
1404/// alignof), the postinc/postdec operators from postfix-expression, and various
1405/// extensions.
1406///
1407/// Notes on various nodes:
1408///
1409/// Real/Imag - These return the real/imag part of a complex operand.  If
1410///   applied to a non-complex value, the former returns its operand and the
1411///   later returns zero in the type of the operand.
1412///
1413class UnaryOperator : public Expr {
1414public:
1415  typedef UnaryOperatorKind Opcode;
1416
1417private:
1418  unsigned Opc : 5;
1419  SourceLocation Loc;
1420  Stmt *Val;
1421public:
1422
1423  UnaryOperator(Expr *input, Opcode opc, QualType type,
1424                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1425    : Expr(UnaryOperatorClass, type, VK, OK,
1426           input->isTypeDependent() || type->isDependentType(),
1427           input->isValueDependent(),
1428           (input->isInstantiationDependent() ||
1429            type->isInstantiationDependentType()),
1430           input->containsUnexpandedParameterPack()),
1431      Opc(opc), Loc(l), Val(input) {}
1432
1433  /// \brief Build an empty unary operator.
1434  explicit UnaryOperator(EmptyShell Empty)
1435    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1436
1437  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1438  void setOpcode(Opcode O) { Opc = O; }
1439
1440  Expr *getSubExpr() const { return cast<Expr>(Val); }
1441  void setSubExpr(Expr *E) { Val = E; }
1442
1443  /// getOperatorLoc - Return the location of the operator.
1444  SourceLocation getOperatorLoc() const { return Loc; }
1445  void setOperatorLoc(SourceLocation L) { Loc = L; }
1446
1447  /// isPostfix - Return true if this is a postfix operation, like x++.
1448  static bool isPostfix(Opcode Op) {
1449    return Op == UO_PostInc || Op == UO_PostDec;
1450  }
1451
1452  /// isPrefix - Return true if this is a prefix operation, like --x.
1453  static bool isPrefix(Opcode Op) {
1454    return Op == UO_PreInc || Op == UO_PreDec;
1455  }
1456
1457  bool isPrefix() const { return isPrefix(getOpcode()); }
1458  bool isPostfix() const { return isPostfix(getOpcode()); }
1459
1460  static bool isIncrementOp(Opcode Op) {
1461    return Op == UO_PreInc || Op == UO_PostInc;
1462  }
1463  bool isIncrementOp() const {
1464    return isIncrementOp(getOpcode());
1465  }
1466
1467  static bool isDecrementOp(Opcode Op) {
1468    return Op == UO_PreDec || Op == UO_PostDec;
1469  }
1470  bool isDecrementOp() const {
1471    return isDecrementOp(getOpcode());
1472  }
1473
1474  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1475  bool isIncrementDecrementOp() const {
1476    return isIncrementDecrementOp(getOpcode());
1477  }
1478
1479  static bool isArithmeticOp(Opcode Op) {
1480    return Op >= UO_Plus && Op <= UO_LNot;
1481  }
1482  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1483
1484  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1485  /// corresponds to, e.g. "sizeof" or "[pre]++"
1486  static const char *getOpcodeStr(Opcode Op);
1487
1488  /// \brief Retrieve the unary opcode that corresponds to the given
1489  /// overloaded operator.
1490  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1491
1492  /// \brief Retrieve the overloaded operator kind that corresponds to
1493  /// the given unary opcode.
1494  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1495
1496  SourceRange getSourceRange() const {
1497    if (isPostfix())
1498      return SourceRange(Val->getLocStart(), Loc);
1499    else
1500      return SourceRange(Loc, Val->getLocEnd());
1501  }
1502  SourceLocation getExprLoc() const { return Loc; }
1503
1504  static bool classof(const Stmt *T) {
1505    return T->getStmtClass() == UnaryOperatorClass;
1506  }
1507  static bool classof(const UnaryOperator *) { return true; }
1508
1509  // Iterators
1510  child_range children() { return child_range(&Val, &Val+1); }
1511};
1512
1513/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1514/// offsetof(record-type, member-designator). For example, given:
1515/// @code
1516/// struct S {
1517///   float f;
1518///   double d;
1519/// };
1520/// struct T {
1521///   int i;
1522///   struct S s[10];
1523/// };
1524/// @endcode
1525/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1526
1527class OffsetOfExpr : public Expr {
1528public:
1529  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1530  class OffsetOfNode {
1531  public:
1532    /// \brief The kind of offsetof node we have.
1533    enum Kind {
1534      /// \brief An index into an array.
1535      Array = 0x00,
1536      /// \brief A field.
1537      Field = 0x01,
1538      /// \brief A field in a dependent type, known only by its name.
1539      Identifier = 0x02,
1540      /// \brief An implicit indirection through a C++ base class, when the
1541      /// field found is in a base class.
1542      Base = 0x03
1543    };
1544
1545  private:
1546    enum { MaskBits = 2, Mask = 0x03 };
1547
1548    /// \brief The source range that covers this part of the designator.
1549    SourceRange Range;
1550
1551    /// \brief The data describing the designator, which comes in three
1552    /// different forms, depending on the lower two bits.
1553    ///   - An unsigned index into the array of Expr*'s stored after this node
1554    ///     in memory, for [constant-expression] designators.
1555    ///   - A FieldDecl*, for references to a known field.
1556    ///   - An IdentifierInfo*, for references to a field with a given name
1557    ///     when the class type is dependent.
1558    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1559    ///     base class.
1560    uintptr_t Data;
1561
1562  public:
1563    /// \brief Create an offsetof node that refers to an array element.
1564    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1565                 SourceLocation RBracketLoc)
1566      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1567
1568    /// \brief Create an offsetof node that refers to a field.
1569    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1570                 SourceLocation NameLoc)
1571      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1572        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1573
1574    /// \brief Create an offsetof node that refers to an identifier.
1575    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1576                 SourceLocation NameLoc)
1577      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1578        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1579
1580    /// \brief Create an offsetof node that refers into a C++ base class.
1581    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1582      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1583
1584    /// \brief Determine what kind of offsetof node this is.
1585    Kind getKind() const {
1586      return static_cast<Kind>(Data & Mask);
1587    }
1588
1589    /// \brief For an array element node, returns the index into the array
1590    /// of expressions.
1591    unsigned getArrayExprIndex() const {
1592      assert(getKind() == Array);
1593      return Data >> 2;
1594    }
1595
1596    /// \brief For a field offsetof node, returns the field.
1597    FieldDecl *getField() const {
1598      assert(getKind() == Field);
1599      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1600    }
1601
1602    /// \brief For a field or identifier offsetof node, returns the name of
1603    /// the field.
1604    IdentifierInfo *getFieldName() const;
1605
1606    /// \brief For a base class node, returns the base specifier.
1607    CXXBaseSpecifier *getBase() const {
1608      assert(getKind() == Base);
1609      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1610    }
1611
1612    /// \brief Retrieve the source range that covers this offsetof node.
1613    ///
1614    /// For an array element node, the source range contains the locations of
1615    /// the square brackets. For a field or identifier node, the source range
1616    /// contains the location of the period (if there is one) and the
1617    /// identifier.
1618    SourceRange getSourceRange() const { return Range; }
1619  };
1620
1621private:
1622
1623  SourceLocation OperatorLoc, RParenLoc;
1624  // Base type;
1625  TypeSourceInfo *TSInfo;
1626  // Number of sub-components (i.e. instances of OffsetOfNode).
1627  unsigned NumComps;
1628  // Number of sub-expressions (i.e. array subscript expressions).
1629  unsigned NumExprs;
1630
1631  OffsetOfExpr(ASTContext &C, QualType type,
1632               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1633               OffsetOfNode* compsPtr, unsigned numComps,
1634               Expr** exprsPtr, unsigned numExprs,
1635               SourceLocation RParenLoc);
1636
1637  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1638    : Expr(OffsetOfExprClass, EmptyShell()),
1639      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1640
1641public:
1642
1643  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1644                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1645                              OffsetOfNode* compsPtr, unsigned numComps,
1646                              Expr** exprsPtr, unsigned numExprs,
1647                              SourceLocation RParenLoc);
1648
1649  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1650                                   unsigned NumComps, unsigned NumExprs);
1651
1652  /// getOperatorLoc - Return the location of the operator.
1653  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1654  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1655
1656  /// \brief Return the location of the right parentheses.
1657  SourceLocation getRParenLoc() const { return RParenLoc; }
1658  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1659
1660  TypeSourceInfo *getTypeSourceInfo() const {
1661    return TSInfo;
1662  }
1663  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1664    TSInfo = tsi;
1665  }
1666
1667  const OffsetOfNode &getComponent(unsigned Idx) const {
1668    assert(Idx < NumComps && "Subscript out of range");
1669    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1670  }
1671
1672  void setComponent(unsigned Idx, OffsetOfNode ON) {
1673    assert(Idx < NumComps && "Subscript out of range");
1674    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1675  }
1676
1677  unsigned getNumComponents() const {
1678    return NumComps;
1679  }
1680
1681  Expr* getIndexExpr(unsigned Idx) {
1682    assert(Idx < NumExprs && "Subscript out of range");
1683    return reinterpret_cast<Expr **>(
1684                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1685  }
1686  const Expr *getIndexExpr(unsigned Idx) const {
1687    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1688  }
1689
1690  void setIndexExpr(unsigned Idx, Expr* E) {
1691    assert(Idx < NumComps && "Subscript out of range");
1692    reinterpret_cast<Expr **>(
1693                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1694  }
1695
1696  unsigned getNumExpressions() const {
1697    return NumExprs;
1698  }
1699
1700  SourceRange getSourceRange() const {
1701    return SourceRange(OperatorLoc, RParenLoc);
1702  }
1703
1704  static bool classof(const Stmt *T) {
1705    return T->getStmtClass() == OffsetOfExprClass;
1706  }
1707
1708  static bool classof(const OffsetOfExpr *) { return true; }
1709
1710  // Iterators
1711  child_range children() {
1712    Stmt **begin =
1713      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1714                               + NumComps);
1715    return child_range(begin, begin + NumExprs);
1716  }
1717};
1718
1719/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1720/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1721/// vec_step (OpenCL 1.1 6.11.12).
1722class UnaryExprOrTypeTraitExpr : public Expr {
1723  unsigned Kind : 2;
1724  bool isType : 1;    // true if operand is a type, false if an expression
1725  union {
1726    TypeSourceInfo *Ty;
1727    Stmt *Ex;
1728  } Argument;
1729  SourceLocation OpLoc, RParenLoc;
1730
1731public:
1732  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1733                           QualType resultType, SourceLocation op,
1734                           SourceLocation rp) :
1735      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1736           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1737           // Value-dependent if the argument is type-dependent.
1738           TInfo->getType()->isDependentType(),
1739           TInfo->getType()->isInstantiationDependentType(),
1740           TInfo->getType()->containsUnexpandedParameterPack()),
1741      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1742    Argument.Ty = TInfo;
1743  }
1744
1745  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1746                           QualType resultType, SourceLocation op,
1747                           SourceLocation rp) :
1748      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1749           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1750           // Value-dependent if the argument is type-dependent.
1751           E->isTypeDependent(),
1752           E->isInstantiationDependent(),
1753           E->containsUnexpandedParameterPack()),
1754      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1755    Argument.Ex = E;
1756  }
1757
1758  /// \brief Construct an empty sizeof/alignof expression.
1759  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1760    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1761
1762  UnaryExprOrTypeTrait getKind() const {
1763    return static_cast<UnaryExprOrTypeTrait>(Kind);
1764  }
1765  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1766
1767  bool isArgumentType() const { return isType; }
1768  QualType getArgumentType() const {
1769    return getArgumentTypeInfo()->getType();
1770  }
1771  TypeSourceInfo *getArgumentTypeInfo() const {
1772    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1773    return Argument.Ty;
1774  }
1775  Expr *getArgumentExpr() {
1776    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1777    return static_cast<Expr*>(Argument.Ex);
1778  }
1779  const Expr *getArgumentExpr() const {
1780    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1781  }
1782
1783  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1784  void setArgument(TypeSourceInfo *TInfo) {
1785    Argument.Ty = TInfo;
1786    isType = true;
1787  }
1788
1789  /// Gets the argument type, or the type of the argument expression, whichever
1790  /// is appropriate.
1791  QualType getTypeOfArgument() const {
1792    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1793  }
1794
1795  SourceLocation getOperatorLoc() const { return OpLoc; }
1796  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1797
1798  SourceLocation getRParenLoc() const { return RParenLoc; }
1799  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1800
1801  SourceRange getSourceRange() const {
1802    return SourceRange(OpLoc, RParenLoc);
1803  }
1804
1805  static bool classof(const Stmt *T) {
1806    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1807  }
1808  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1809
1810  // Iterators
1811  child_range children();
1812};
1813
1814//===----------------------------------------------------------------------===//
1815// Postfix Operators.
1816//===----------------------------------------------------------------------===//
1817
1818/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1819class ArraySubscriptExpr : public Expr {
1820  enum { LHS, RHS, END_EXPR=2 };
1821  Stmt* SubExprs[END_EXPR];
1822  SourceLocation RBracketLoc;
1823public:
1824  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1825                     ExprValueKind VK, ExprObjectKind OK,
1826                     SourceLocation rbracketloc)
1827  : Expr(ArraySubscriptExprClass, t, VK, OK,
1828         lhs->isTypeDependent() || rhs->isTypeDependent(),
1829         lhs->isValueDependent() || rhs->isValueDependent(),
1830         (lhs->isInstantiationDependent() ||
1831          rhs->isInstantiationDependent()),
1832         (lhs->containsUnexpandedParameterPack() ||
1833          rhs->containsUnexpandedParameterPack())),
1834    RBracketLoc(rbracketloc) {
1835    SubExprs[LHS] = lhs;
1836    SubExprs[RHS] = rhs;
1837  }
1838
1839  /// \brief Create an empty array subscript expression.
1840  explicit ArraySubscriptExpr(EmptyShell Shell)
1841    : Expr(ArraySubscriptExprClass, Shell) { }
1842
1843  /// An array access can be written A[4] or 4[A] (both are equivalent).
1844  /// - getBase() and getIdx() always present the normalized view: A[4].
1845  ///    In this case getBase() returns "A" and getIdx() returns "4".
1846  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1847  ///    4[A] getLHS() returns "4".
1848  /// Note: Because vector element access is also written A[4] we must
1849  /// predicate the format conversion in getBase and getIdx only on the
1850  /// the type of the RHS, as it is possible for the LHS to be a vector of
1851  /// integer type
1852  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1853  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1854  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1855
1856  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1857  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1858  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1859
1860  Expr *getBase() {
1861    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1862  }
1863
1864  const Expr *getBase() const {
1865    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1866  }
1867
1868  Expr *getIdx() {
1869    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1870  }
1871
1872  const Expr *getIdx() const {
1873    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1874  }
1875
1876  SourceRange getSourceRange() const {
1877    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1878  }
1879
1880  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1881  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1882
1883  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1884
1885  static bool classof(const Stmt *T) {
1886    return T->getStmtClass() == ArraySubscriptExprClass;
1887  }
1888  static bool classof(const ArraySubscriptExpr *) { return true; }
1889
1890  // Iterators
1891  child_range children() {
1892    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1893  }
1894};
1895
1896
1897/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1898/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1899/// while its subclasses may represent alternative syntax that (semantically)
1900/// results in a function call. For example, CXXOperatorCallExpr is
1901/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1902/// "str1 + str2" to resolve to a function call.
1903class CallExpr : public Expr {
1904  enum { FN=0, PREARGS_START=1 };
1905  Stmt **SubExprs;
1906  unsigned NumArgs;
1907  SourceLocation RParenLoc;
1908
1909protected:
1910  // These versions of the constructor are for derived classes.
1911  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1912           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1913           SourceLocation rparenloc);
1914  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1915
1916  Stmt *getPreArg(unsigned i) {
1917    assert(i < getNumPreArgs() && "Prearg access out of range!");
1918    return SubExprs[PREARGS_START+i];
1919  }
1920  const Stmt *getPreArg(unsigned i) const {
1921    assert(i < getNumPreArgs() && "Prearg access out of range!");
1922    return SubExprs[PREARGS_START+i];
1923  }
1924  void setPreArg(unsigned i, Stmt *PreArg) {
1925    assert(i < getNumPreArgs() && "Prearg access out of range!");
1926    SubExprs[PREARGS_START+i] = PreArg;
1927  }
1928
1929  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1930
1931public:
1932  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1933           ExprValueKind VK, SourceLocation rparenloc);
1934
1935  /// \brief Build an empty call expression.
1936  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1937
1938  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1939  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1940  void setCallee(Expr *F) { SubExprs[FN] = F; }
1941
1942  Decl *getCalleeDecl();
1943  const Decl *getCalleeDecl() const {
1944    return const_cast<CallExpr*>(this)->getCalleeDecl();
1945  }
1946
1947  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1948  FunctionDecl *getDirectCallee();
1949  const FunctionDecl *getDirectCallee() const {
1950    return const_cast<CallExpr*>(this)->getDirectCallee();
1951  }
1952
1953  /// getNumArgs - Return the number of actual arguments to this call.
1954  ///
1955  unsigned getNumArgs() const { return NumArgs; }
1956
1957  /// \brief Retrieve the call arguments.
1958  Expr **getArgs() {
1959    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1960  }
1961
1962  /// getArg - Return the specified argument.
1963  Expr *getArg(unsigned Arg) {
1964    assert(Arg < NumArgs && "Arg access out of range!");
1965    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1966  }
1967  const Expr *getArg(unsigned Arg) const {
1968    assert(Arg < NumArgs && "Arg access out of range!");
1969    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1970  }
1971
1972  /// setArg - Set the specified argument.
1973  void setArg(unsigned Arg, Expr *ArgExpr) {
1974    assert(Arg < NumArgs && "Arg access out of range!");
1975    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1976  }
1977
1978  /// setNumArgs - This changes the number of arguments present in this call.
1979  /// Any orphaned expressions are deleted by this, and any new operands are set
1980  /// to null.
1981  void setNumArgs(ASTContext& C, unsigned NumArgs);
1982
1983  typedef ExprIterator arg_iterator;
1984  typedef ConstExprIterator const_arg_iterator;
1985
1986  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1987  arg_iterator arg_end() {
1988    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1989  }
1990  const_arg_iterator arg_begin() const {
1991    return SubExprs+PREARGS_START+getNumPreArgs();
1992  }
1993  const_arg_iterator arg_end() const {
1994    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1995  }
1996
1997  /// getNumCommas - Return the number of commas that must have been present in
1998  /// this function call.
1999  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2000
2001  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2002  /// not, return 0.
2003  unsigned isBuiltinCall(const ASTContext &Context) const;
2004
2005  /// getCallReturnType - Get the return type of the call expr. This is not
2006  /// always the type of the expr itself, if the return type is a reference
2007  /// type.
2008  QualType getCallReturnType() const;
2009
2010  SourceLocation getRParenLoc() const { return RParenLoc; }
2011  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2012
2013  SourceRange getSourceRange() const;
2014
2015  static bool classof(const Stmt *T) {
2016    return T->getStmtClass() >= firstCallExprConstant &&
2017           T->getStmtClass() <= lastCallExprConstant;
2018  }
2019  static bool classof(const CallExpr *) { return true; }
2020
2021  // Iterators
2022  child_range children() {
2023    return child_range(&SubExprs[0],
2024                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2025  }
2026};
2027
2028/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2029///
2030class MemberExpr : public Expr {
2031  /// Extra data stored in some member expressions.
2032  struct MemberNameQualifier {
2033    /// \brief The nested-name-specifier that qualifies the name, including
2034    /// source-location information.
2035    NestedNameSpecifierLoc QualifierLoc;
2036
2037    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2038    /// name qualifiers.
2039    DeclAccessPair FoundDecl;
2040  };
2041
2042  /// Base - the expression for the base pointer or structure references.  In
2043  /// X.F, this is "X".
2044  Stmt *Base;
2045
2046  /// MemberDecl - This is the decl being referenced by the field/member name.
2047  /// In X.F, this is the decl referenced by F.
2048  ValueDecl *MemberDecl;
2049
2050  /// MemberLoc - This is the location of the member name.
2051  SourceLocation MemberLoc;
2052
2053  /// MemberDNLoc - Provides source/type location info for the
2054  /// declaration name embedded in MemberDecl.
2055  DeclarationNameLoc MemberDNLoc;
2056
2057  /// IsArrow - True if this is "X->F", false if this is "X.F".
2058  bool IsArrow : 1;
2059
2060  /// \brief True if this member expression used a nested-name-specifier to
2061  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2062  /// declaration.  When true, a MemberNameQualifier
2063  /// structure is allocated immediately after the MemberExpr.
2064  bool HasQualifierOrFoundDecl : 1;
2065
2066  /// \brief True if this member expression specified a template argument list
2067  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
2068  /// structure (and its TemplateArguments) are allocated immediately after
2069  /// the MemberExpr or, if the member expression also has a qualifier, after
2070  /// the MemberNameQualifier structure.
2071  bool HasExplicitTemplateArgumentList : 1;
2072
2073  /// \brief True if this member expression refers to a method that
2074  /// was resolved from an overloaded set having size greater than 1.
2075  bool HadMultipleCandidates : 1;
2076
2077  /// \brief Retrieve the qualifier that preceded the member name, if any.
2078  MemberNameQualifier *getMemberQualifier() {
2079    assert(HasQualifierOrFoundDecl);
2080    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2081  }
2082
2083  /// \brief Retrieve the qualifier that preceded the member name, if any.
2084  const MemberNameQualifier *getMemberQualifier() const {
2085    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2086  }
2087
2088public:
2089  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2090             const DeclarationNameInfo &NameInfo, QualType ty,
2091             ExprValueKind VK, ExprObjectKind OK)
2092    : Expr(MemberExprClass, ty, VK, OK,
2093           base->isTypeDependent(),
2094           base->isValueDependent(),
2095           base->isInstantiationDependent(),
2096           base->containsUnexpandedParameterPack()),
2097      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2098      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2099      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2100      HadMultipleCandidates(false) {
2101    assert(memberdecl->getDeclName() == NameInfo.getName());
2102  }
2103
2104  // NOTE: this constructor should be used only when it is known that
2105  // the member name can not provide additional syntactic info
2106  // (i.e., source locations for C++ operator names or type source info
2107  // for constructors, destructors and conversion oeprators).
2108  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2109             SourceLocation l, QualType ty,
2110             ExprValueKind VK, ExprObjectKind OK)
2111    : Expr(MemberExprClass, ty, VK, OK,
2112           base->isTypeDependent(), base->isValueDependent(),
2113           base->isInstantiationDependent(),
2114           base->containsUnexpandedParameterPack()),
2115      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2116      IsArrow(isarrow),
2117      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2118      HadMultipleCandidates(false) {}
2119
2120  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2121                            NestedNameSpecifierLoc QualifierLoc,
2122                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2123                            DeclarationNameInfo MemberNameInfo,
2124                            const TemplateArgumentListInfo *targs,
2125                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2126
2127  void setBase(Expr *E) { Base = E; }
2128  Expr *getBase() const { return cast<Expr>(Base); }
2129
2130  /// \brief Retrieve the member declaration to which this expression refers.
2131  ///
2132  /// The returned declaration will either be a FieldDecl or (in C++)
2133  /// a CXXMethodDecl.
2134  ValueDecl *getMemberDecl() const { return MemberDecl; }
2135  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2136
2137  /// \brief Retrieves the declaration found by lookup.
2138  DeclAccessPair getFoundDecl() const {
2139    if (!HasQualifierOrFoundDecl)
2140      return DeclAccessPair::make(getMemberDecl(),
2141                                  getMemberDecl()->getAccess());
2142    return getMemberQualifier()->FoundDecl;
2143  }
2144
2145  /// \brief Determines whether this member expression actually had
2146  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2147  /// x->Base::foo.
2148  bool hasQualifier() const { return getQualifier() != 0; }
2149
2150  /// \brief If the member name was qualified, retrieves the
2151  /// nested-name-specifier that precedes the member name. Otherwise, returns
2152  /// NULL.
2153  NestedNameSpecifier *getQualifier() const {
2154    if (!HasQualifierOrFoundDecl)
2155      return 0;
2156
2157    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2158  }
2159
2160  /// \brief If the member name was qualified, retrieves the
2161  /// nested-name-specifier that precedes the member name, with source-location
2162  /// information.
2163  NestedNameSpecifierLoc getQualifierLoc() const {
2164    if (!hasQualifier())
2165      return NestedNameSpecifierLoc();
2166
2167    return getMemberQualifier()->QualifierLoc;
2168  }
2169
2170  /// \brief Determines whether this member expression actually had a C++
2171  /// template argument list explicitly specified, e.g., x.f<int>.
2172  bool hasExplicitTemplateArgs() const {
2173    return HasExplicitTemplateArgumentList;
2174  }
2175
2176  /// \brief Copies the template arguments (if present) into the given
2177  /// structure.
2178  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2179    if (hasExplicitTemplateArgs())
2180      getExplicitTemplateArgs().copyInto(List);
2181  }
2182
2183  /// \brief Retrieve the explicit template argument list that
2184  /// follow the member template name.  This must only be called on an
2185  /// expression with explicit template arguments.
2186  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2187    assert(HasExplicitTemplateArgumentList);
2188    if (!HasQualifierOrFoundDecl)
2189      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2190
2191    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
2192                                                      getMemberQualifier() + 1);
2193  }
2194
2195  /// \brief Retrieve the explicit template argument list that
2196  /// followed the member template name.  This must only be called on
2197  /// an expression with explicit template arguments.
2198  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2199    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2200  }
2201
2202  /// \brief Retrieves the optional explicit template arguments.
2203  /// This points to the same data as getExplicitTemplateArgs(), but
2204  /// returns null if there are no explicit template arguments.
2205  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2206    if (!hasExplicitTemplateArgs()) return 0;
2207    return &getExplicitTemplateArgs();
2208  }
2209
2210  /// \brief Retrieve the location of the left angle bracket following the
2211  /// member name ('<'), if any.
2212  SourceLocation getLAngleLoc() const {
2213    if (!HasExplicitTemplateArgumentList)
2214      return SourceLocation();
2215
2216    return getExplicitTemplateArgs().LAngleLoc;
2217  }
2218
2219  /// \brief Retrieve the template arguments provided as part of this
2220  /// template-id.
2221  const TemplateArgumentLoc *getTemplateArgs() const {
2222    if (!HasExplicitTemplateArgumentList)
2223      return 0;
2224
2225    return getExplicitTemplateArgs().getTemplateArgs();
2226  }
2227
2228  /// \brief Retrieve the number of template arguments provided as part of this
2229  /// template-id.
2230  unsigned getNumTemplateArgs() const {
2231    if (!HasExplicitTemplateArgumentList)
2232      return 0;
2233
2234    return getExplicitTemplateArgs().NumTemplateArgs;
2235  }
2236
2237  /// \brief Retrieve the location of the right angle bracket following the
2238  /// template arguments ('>').
2239  SourceLocation getRAngleLoc() const {
2240    if (!HasExplicitTemplateArgumentList)
2241      return SourceLocation();
2242
2243    return getExplicitTemplateArgs().RAngleLoc;
2244  }
2245
2246  /// \brief Retrieve the member declaration name info.
2247  DeclarationNameInfo getMemberNameInfo() const {
2248    return DeclarationNameInfo(MemberDecl->getDeclName(),
2249                               MemberLoc, MemberDNLoc);
2250  }
2251
2252  bool isArrow() const { return IsArrow; }
2253  void setArrow(bool A) { IsArrow = A; }
2254
2255  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2256  /// location of 'F'.
2257  SourceLocation getMemberLoc() const { return MemberLoc; }
2258  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2259
2260  SourceRange getSourceRange() const;
2261
2262  SourceLocation getExprLoc() const { return MemberLoc; }
2263
2264  /// \brief Determine whether the base of this explicit is implicit.
2265  bool isImplicitAccess() const {
2266    return getBase() && getBase()->isImplicitCXXThis();
2267  }
2268
2269  /// \brief Returns true if this member expression refers to a method that
2270  /// was resolved from an overloaded set having size greater than 1.
2271  bool hadMultipleCandidates() const {
2272    return HadMultipleCandidates;
2273  }
2274  /// \brief Sets the flag telling whether this expression refers to
2275  /// a method that was resolved from an overloaded set having size
2276  /// greater than 1.
2277  void setHadMultipleCandidates(bool V = true) {
2278    HadMultipleCandidates = V;
2279  }
2280
2281  static bool classof(const Stmt *T) {
2282    return T->getStmtClass() == MemberExprClass;
2283  }
2284  static bool classof(const MemberExpr *) { return true; }
2285
2286  // Iterators
2287  child_range children() { return child_range(&Base, &Base+1); }
2288
2289  friend class ASTReader;
2290  friend class ASTStmtWriter;
2291};
2292
2293/// CompoundLiteralExpr - [C99 6.5.2.5]
2294///
2295class CompoundLiteralExpr : public Expr {
2296  /// LParenLoc - If non-null, this is the location of the left paren in a
2297  /// compound literal like "(int){4}".  This can be null if this is a
2298  /// synthesized compound expression.
2299  SourceLocation LParenLoc;
2300
2301  /// The type as written.  This can be an incomplete array type, in
2302  /// which case the actual expression type will be different.
2303  TypeSourceInfo *TInfo;
2304  Stmt *Init;
2305  bool FileScope;
2306public:
2307  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2308                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2309    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2310           tinfo->getType()->isDependentType(),
2311           init->isValueDependent(),
2312           (init->isInstantiationDependent() ||
2313            tinfo->getType()->isInstantiationDependentType()),
2314           init->containsUnexpandedParameterPack()),
2315      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2316
2317  /// \brief Construct an empty compound literal.
2318  explicit CompoundLiteralExpr(EmptyShell Empty)
2319    : Expr(CompoundLiteralExprClass, Empty) { }
2320
2321  const Expr *getInitializer() const { return cast<Expr>(Init); }
2322  Expr *getInitializer() { return cast<Expr>(Init); }
2323  void setInitializer(Expr *E) { Init = E; }
2324
2325  bool isFileScope() const { return FileScope; }
2326  void setFileScope(bool FS) { FileScope = FS; }
2327
2328  SourceLocation getLParenLoc() const { return LParenLoc; }
2329  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2330
2331  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2332  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2333
2334  SourceRange getSourceRange() const {
2335    // FIXME: Init should never be null.
2336    if (!Init)
2337      return SourceRange();
2338    if (LParenLoc.isInvalid())
2339      return Init->getSourceRange();
2340    return SourceRange(LParenLoc, Init->getLocEnd());
2341  }
2342
2343  static bool classof(const Stmt *T) {
2344    return T->getStmtClass() == CompoundLiteralExprClass;
2345  }
2346  static bool classof(const CompoundLiteralExpr *) { return true; }
2347
2348  // Iterators
2349  child_range children() { return child_range(&Init, &Init+1); }
2350};
2351
2352/// CastExpr - Base class for type casts, including both implicit
2353/// casts (ImplicitCastExpr) and explicit casts that have some
2354/// representation in the source code (ExplicitCastExpr's derived
2355/// classes).
2356class CastExpr : public Expr {
2357public:
2358  typedef clang::CastKind CastKind;
2359
2360private:
2361  Stmt *Op;
2362
2363  void CheckCastConsistency() const;
2364
2365  const CXXBaseSpecifier * const *path_buffer() const {
2366    return const_cast<CastExpr*>(this)->path_buffer();
2367  }
2368  CXXBaseSpecifier **path_buffer();
2369
2370  void setBasePathSize(unsigned basePathSize) {
2371    CastExprBits.BasePathSize = basePathSize;
2372    assert(CastExprBits.BasePathSize == basePathSize &&
2373           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2374  }
2375
2376protected:
2377  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2378           const CastKind kind, Expr *op, unsigned BasePathSize) :
2379    Expr(SC, ty, VK, OK_Ordinary,
2380         // Cast expressions are type-dependent if the type is
2381         // dependent (C++ [temp.dep.expr]p3).
2382         ty->isDependentType(),
2383         // Cast expressions are value-dependent if the type is
2384         // dependent or if the subexpression is value-dependent.
2385         ty->isDependentType() || (op && op->isValueDependent()),
2386         (ty->isInstantiationDependentType() ||
2387          (op && op->isInstantiationDependent())),
2388         (ty->containsUnexpandedParameterPack() ||
2389          op->containsUnexpandedParameterPack())),
2390    Op(op) {
2391    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2392    CastExprBits.Kind = kind;
2393    setBasePathSize(BasePathSize);
2394#ifndef NDEBUG
2395    CheckCastConsistency();
2396#endif
2397  }
2398
2399  /// \brief Construct an empty cast.
2400  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2401    : Expr(SC, Empty) {
2402    setBasePathSize(BasePathSize);
2403  }
2404
2405public:
2406  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2407  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2408  const char *getCastKindName() const;
2409
2410  Expr *getSubExpr() { return cast<Expr>(Op); }
2411  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2412  void setSubExpr(Expr *E) { Op = E; }
2413
2414  /// \brief Retrieve the cast subexpression as it was written in the source
2415  /// code, looking through any implicit casts or other intermediate nodes
2416  /// introduced by semantic analysis.
2417  Expr *getSubExprAsWritten();
2418  const Expr *getSubExprAsWritten() const {
2419    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2420  }
2421
2422  typedef CXXBaseSpecifier **path_iterator;
2423  typedef const CXXBaseSpecifier * const *path_const_iterator;
2424  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2425  unsigned path_size() const { return CastExprBits.BasePathSize; }
2426  path_iterator path_begin() { return path_buffer(); }
2427  path_iterator path_end() { return path_buffer() + path_size(); }
2428  path_const_iterator path_begin() const { return path_buffer(); }
2429  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2430
2431  void setCastPath(const CXXCastPath &Path);
2432
2433  static bool classof(const Stmt *T) {
2434    return T->getStmtClass() >= firstCastExprConstant &&
2435           T->getStmtClass() <= lastCastExprConstant;
2436  }
2437  static bool classof(const CastExpr *) { return true; }
2438
2439  // Iterators
2440  child_range children() { return child_range(&Op, &Op+1); }
2441};
2442
2443/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2444/// conversions, which have no direct representation in the original
2445/// source code. For example: converting T[]->T*, void f()->void
2446/// (*f)(), float->double, short->int, etc.
2447///
2448/// In C, implicit casts always produce rvalues. However, in C++, an
2449/// implicit cast whose result is being bound to a reference will be
2450/// an lvalue or xvalue. For example:
2451///
2452/// @code
2453/// class Base { };
2454/// class Derived : public Base { };
2455/// Derived &&ref();
2456/// void f(Derived d) {
2457///   Base& b = d; // initializer is an ImplicitCastExpr
2458///                // to an lvalue of type Base
2459///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2460///                     // to an xvalue of type Base
2461/// }
2462/// @endcode
2463class ImplicitCastExpr : public CastExpr {
2464private:
2465  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2466                   unsigned BasePathLength, ExprValueKind VK)
2467    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2468  }
2469
2470  /// \brief Construct an empty implicit cast.
2471  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2472    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2473
2474public:
2475  enum OnStack_t { OnStack };
2476  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2477                   ExprValueKind VK)
2478    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2479  }
2480
2481  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2482                                  CastKind Kind, Expr *Operand,
2483                                  const CXXCastPath *BasePath,
2484                                  ExprValueKind Cat);
2485
2486  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2487
2488  SourceRange getSourceRange() const {
2489    return getSubExpr()->getSourceRange();
2490  }
2491
2492  static bool classof(const Stmt *T) {
2493    return T->getStmtClass() == ImplicitCastExprClass;
2494  }
2495  static bool classof(const ImplicitCastExpr *) { return true; }
2496};
2497
2498inline Expr *Expr::IgnoreImpCasts() {
2499  Expr *e = this;
2500  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2501    e = ice->getSubExpr();
2502  return e;
2503}
2504
2505/// ExplicitCastExpr - An explicit cast written in the source
2506/// code.
2507///
2508/// This class is effectively an abstract class, because it provides
2509/// the basic representation of an explicitly-written cast without
2510/// specifying which kind of cast (C cast, functional cast, static
2511/// cast, etc.) was written; specific derived classes represent the
2512/// particular style of cast and its location information.
2513///
2514/// Unlike implicit casts, explicit cast nodes have two different
2515/// types: the type that was written into the source code, and the
2516/// actual type of the expression as determined by semantic
2517/// analysis. These types may differ slightly. For example, in C++ one
2518/// can cast to a reference type, which indicates that the resulting
2519/// expression will be an lvalue or xvalue. The reference type, however,
2520/// will not be used as the type of the expression.
2521class ExplicitCastExpr : public CastExpr {
2522  /// TInfo - Source type info for the (written) type
2523  /// this expression is casting to.
2524  TypeSourceInfo *TInfo;
2525
2526protected:
2527  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2528                   CastKind kind, Expr *op, unsigned PathSize,
2529                   TypeSourceInfo *writtenTy)
2530    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2531
2532  /// \brief Construct an empty explicit cast.
2533  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2534    : CastExpr(SC, Shell, PathSize) { }
2535
2536public:
2537  /// getTypeInfoAsWritten - Returns the type source info for the type
2538  /// that this expression is casting to.
2539  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2540  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2541
2542  /// getTypeAsWritten - Returns the type that this expression is
2543  /// casting to, as written in the source code.
2544  QualType getTypeAsWritten() const { return TInfo->getType(); }
2545
2546  static bool classof(const Stmt *T) {
2547     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2548            T->getStmtClass() <= lastExplicitCastExprConstant;
2549  }
2550  static bool classof(const ExplicitCastExpr *) { return true; }
2551};
2552
2553/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2554/// cast in C++ (C++ [expr.cast]), which uses the syntax
2555/// (Type)expr. For example: @c (int)f.
2556class CStyleCastExpr : public ExplicitCastExpr {
2557  SourceLocation LPLoc; // the location of the left paren
2558  SourceLocation RPLoc; // the location of the right paren
2559
2560  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2561                 unsigned PathSize, TypeSourceInfo *writtenTy,
2562                 SourceLocation l, SourceLocation r)
2563    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2564                       writtenTy), LPLoc(l), RPLoc(r) {}
2565
2566  /// \brief Construct an empty C-style explicit cast.
2567  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2568    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2569
2570public:
2571  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2572                                ExprValueKind VK, CastKind K,
2573                                Expr *Op, const CXXCastPath *BasePath,
2574                                TypeSourceInfo *WrittenTy, SourceLocation L,
2575                                SourceLocation R);
2576
2577  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2578
2579  SourceLocation getLParenLoc() const { return LPLoc; }
2580  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2581
2582  SourceLocation getRParenLoc() const { return RPLoc; }
2583  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2584
2585  SourceRange getSourceRange() const {
2586    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2587  }
2588  static bool classof(const Stmt *T) {
2589    return T->getStmtClass() == CStyleCastExprClass;
2590  }
2591  static bool classof(const CStyleCastExpr *) { return true; }
2592};
2593
2594/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2595///
2596/// This expression node kind describes a builtin binary operation,
2597/// such as "x + y" for integer values "x" and "y". The operands will
2598/// already have been converted to appropriate types (e.g., by
2599/// performing promotions or conversions).
2600///
2601/// In C++, where operators may be overloaded, a different kind of
2602/// expression node (CXXOperatorCallExpr) is used to express the
2603/// invocation of an overloaded operator with operator syntax. Within
2604/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2605/// used to store an expression "x + y" depends on the subexpressions
2606/// for x and y. If neither x or y is type-dependent, and the "+"
2607/// operator resolves to a built-in operation, BinaryOperator will be
2608/// used to express the computation (x and y may still be
2609/// value-dependent). If either x or y is type-dependent, or if the
2610/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2611/// be used to express the computation.
2612class BinaryOperator : public Expr {
2613public:
2614  typedef BinaryOperatorKind Opcode;
2615
2616private:
2617  unsigned Opc : 6;
2618  SourceLocation OpLoc;
2619
2620  enum { LHS, RHS, END_EXPR };
2621  Stmt* SubExprs[END_EXPR];
2622public:
2623
2624  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2625                 ExprValueKind VK, ExprObjectKind OK,
2626                 SourceLocation opLoc)
2627    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2628           lhs->isTypeDependent() || rhs->isTypeDependent(),
2629           lhs->isValueDependent() || rhs->isValueDependent(),
2630           (lhs->isInstantiationDependent() ||
2631            rhs->isInstantiationDependent()),
2632           (lhs->containsUnexpandedParameterPack() ||
2633            rhs->containsUnexpandedParameterPack())),
2634      Opc(opc), OpLoc(opLoc) {
2635    SubExprs[LHS] = lhs;
2636    SubExprs[RHS] = rhs;
2637    assert(!isCompoundAssignmentOp() &&
2638           "Use ArithAssignBinaryOperator for compound assignments");
2639  }
2640
2641  /// \brief Construct an empty binary operator.
2642  explicit BinaryOperator(EmptyShell Empty)
2643    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2644
2645  SourceLocation getOperatorLoc() const { return OpLoc; }
2646  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2647
2648  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2649  void setOpcode(Opcode O) { Opc = O; }
2650
2651  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2652  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2653  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2654  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2655
2656  SourceRange getSourceRange() const {
2657    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2658  }
2659
2660  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2661  /// corresponds to, e.g. "<<=".
2662  static const char *getOpcodeStr(Opcode Op);
2663
2664  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2665
2666  /// \brief Retrieve the binary opcode that corresponds to the given
2667  /// overloaded operator.
2668  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2669
2670  /// \brief Retrieve the overloaded operator kind that corresponds to
2671  /// the given binary opcode.
2672  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2673
2674  /// predicates to categorize the respective opcodes.
2675  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2676  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2677  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2678  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2679  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2680  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2681
2682  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2683  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2684
2685  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2686  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2687
2688  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2689  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2690
2691  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2692  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2693
2694  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2695  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2696
2697  static bool isAssignmentOp(Opcode Opc) {
2698    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2699  }
2700  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2701
2702  static bool isCompoundAssignmentOp(Opcode Opc) {
2703    return Opc > BO_Assign && Opc <= BO_OrAssign;
2704  }
2705  bool isCompoundAssignmentOp() const {
2706    return isCompoundAssignmentOp(getOpcode());
2707  }
2708
2709  static bool isShiftAssignOp(Opcode Opc) {
2710    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2711  }
2712  bool isShiftAssignOp() const {
2713    return isShiftAssignOp(getOpcode());
2714  }
2715
2716  static bool classof(const Stmt *S) {
2717    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2718           S->getStmtClass() <= lastBinaryOperatorConstant;
2719  }
2720  static bool classof(const BinaryOperator *) { return true; }
2721
2722  // Iterators
2723  child_range children() {
2724    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2725  }
2726
2727protected:
2728  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2729                 ExprValueKind VK, ExprObjectKind OK,
2730                 SourceLocation opLoc, bool dead)
2731    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2732           lhs->isTypeDependent() || rhs->isTypeDependent(),
2733           lhs->isValueDependent() || rhs->isValueDependent(),
2734           (lhs->isInstantiationDependent() ||
2735            rhs->isInstantiationDependent()),
2736           (lhs->containsUnexpandedParameterPack() ||
2737            rhs->containsUnexpandedParameterPack())),
2738      Opc(opc), OpLoc(opLoc) {
2739    SubExprs[LHS] = lhs;
2740    SubExprs[RHS] = rhs;
2741  }
2742
2743  BinaryOperator(StmtClass SC, EmptyShell Empty)
2744    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2745};
2746
2747/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2748/// track of the type the operation is performed in.  Due to the semantics of
2749/// these operators, the operands are promoted, the arithmetic performed, an
2750/// implicit conversion back to the result type done, then the assignment takes
2751/// place.  This captures the intermediate type which the computation is done
2752/// in.
2753class CompoundAssignOperator : public BinaryOperator {
2754  QualType ComputationLHSType;
2755  QualType ComputationResultType;
2756public:
2757  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2758                         ExprValueKind VK, ExprObjectKind OK,
2759                         QualType CompLHSType, QualType CompResultType,
2760                         SourceLocation OpLoc)
2761    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2762      ComputationLHSType(CompLHSType),
2763      ComputationResultType(CompResultType) {
2764    assert(isCompoundAssignmentOp() &&
2765           "Only should be used for compound assignments");
2766  }
2767
2768  /// \brief Build an empty compound assignment operator expression.
2769  explicit CompoundAssignOperator(EmptyShell Empty)
2770    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2771
2772  // The two computation types are the type the LHS is converted
2773  // to for the computation and the type of the result; the two are
2774  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2775  QualType getComputationLHSType() const { return ComputationLHSType; }
2776  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2777
2778  QualType getComputationResultType() const { return ComputationResultType; }
2779  void setComputationResultType(QualType T) { ComputationResultType = T; }
2780
2781  static bool classof(const CompoundAssignOperator *) { return true; }
2782  static bool classof(const Stmt *S) {
2783    return S->getStmtClass() == CompoundAssignOperatorClass;
2784  }
2785};
2786
2787/// AbstractConditionalOperator - An abstract base class for
2788/// ConditionalOperator and BinaryConditionalOperator.
2789class AbstractConditionalOperator : public Expr {
2790  SourceLocation QuestionLoc, ColonLoc;
2791  friend class ASTStmtReader;
2792
2793protected:
2794  AbstractConditionalOperator(StmtClass SC, QualType T,
2795                              ExprValueKind VK, ExprObjectKind OK,
2796                              bool TD, bool VD, bool ID,
2797                              bool ContainsUnexpandedParameterPack,
2798                              SourceLocation qloc,
2799                              SourceLocation cloc)
2800    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2801      QuestionLoc(qloc), ColonLoc(cloc) {}
2802
2803  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2804    : Expr(SC, Empty) { }
2805
2806public:
2807  // getCond - Return the expression representing the condition for
2808  //   the ?: operator.
2809  Expr *getCond() const;
2810
2811  // getTrueExpr - Return the subexpression representing the value of
2812  //   the expression if the condition evaluates to true.
2813  Expr *getTrueExpr() const;
2814
2815  // getFalseExpr - Return the subexpression representing the value of
2816  //   the expression if the condition evaluates to false.  This is
2817  //   the same as getRHS.
2818  Expr *getFalseExpr() const;
2819
2820  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2821  SourceLocation getColonLoc() const { return ColonLoc; }
2822
2823  static bool classof(const Stmt *T) {
2824    return T->getStmtClass() == ConditionalOperatorClass ||
2825           T->getStmtClass() == BinaryConditionalOperatorClass;
2826  }
2827  static bool classof(const AbstractConditionalOperator *) { return true; }
2828};
2829
2830/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2831/// middle" extension is a BinaryConditionalOperator.
2832class ConditionalOperator : public AbstractConditionalOperator {
2833  enum { COND, LHS, RHS, END_EXPR };
2834  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2835
2836  friend class ASTStmtReader;
2837public:
2838  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2839                      SourceLocation CLoc, Expr *rhs,
2840                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2841    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2842           // FIXME: the type of the conditional operator doesn't
2843           // depend on the type of the conditional, but the standard
2844           // seems to imply that it could. File a bug!
2845           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2846           (cond->isValueDependent() || lhs->isValueDependent() ||
2847            rhs->isValueDependent()),
2848           (cond->isInstantiationDependent() ||
2849            lhs->isInstantiationDependent() ||
2850            rhs->isInstantiationDependent()),
2851           (cond->containsUnexpandedParameterPack() ||
2852            lhs->containsUnexpandedParameterPack() ||
2853            rhs->containsUnexpandedParameterPack()),
2854                                  QLoc, CLoc) {
2855    SubExprs[COND] = cond;
2856    SubExprs[LHS] = lhs;
2857    SubExprs[RHS] = rhs;
2858  }
2859
2860  /// \brief Build an empty conditional operator.
2861  explicit ConditionalOperator(EmptyShell Empty)
2862    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2863
2864  // getCond - Return the expression representing the condition for
2865  //   the ?: operator.
2866  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2867
2868  // getTrueExpr - Return the subexpression representing the value of
2869  //   the expression if the condition evaluates to true.
2870  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2871
2872  // getFalseExpr - Return the subexpression representing the value of
2873  //   the expression if the condition evaluates to false.  This is
2874  //   the same as getRHS.
2875  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2876
2877  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2878  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2879
2880  SourceRange getSourceRange() const {
2881    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2882  }
2883  static bool classof(const Stmt *T) {
2884    return T->getStmtClass() == ConditionalOperatorClass;
2885  }
2886  static bool classof(const ConditionalOperator *) { return true; }
2887
2888  // Iterators
2889  child_range children() {
2890    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2891  }
2892};
2893
2894/// BinaryConditionalOperator - The GNU extension to the conditional
2895/// operator which allows the middle operand to be omitted.
2896///
2897/// This is a different expression kind on the assumption that almost
2898/// every client ends up needing to know that these are different.
2899class BinaryConditionalOperator : public AbstractConditionalOperator {
2900  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2901
2902  /// - the common condition/left-hand-side expression, which will be
2903  ///   evaluated as the opaque value
2904  /// - the condition, expressed in terms of the opaque value
2905  /// - the left-hand-side, expressed in terms of the opaque value
2906  /// - the right-hand-side
2907  Stmt *SubExprs[NUM_SUBEXPRS];
2908  OpaqueValueExpr *OpaqueValue;
2909
2910  friend class ASTStmtReader;
2911public:
2912  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2913                            Expr *cond, Expr *lhs, Expr *rhs,
2914                            SourceLocation qloc, SourceLocation cloc,
2915                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2916    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2917           (common->isTypeDependent() || rhs->isTypeDependent()),
2918           (common->isValueDependent() || rhs->isValueDependent()),
2919           (common->isInstantiationDependent() ||
2920            rhs->isInstantiationDependent()),
2921           (common->containsUnexpandedParameterPack() ||
2922            rhs->containsUnexpandedParameterPack()),
2923                                  qloc, cloc),
2924      OpaqueValue(opaqueValue) {
2925    SubExprs[COMMON] = common;
2926    SubExprs[COND] = cond;
2927    SubExprs[LHS] = lhs;
2928    SubExprs[RHS] = rhs;
2929
2930    OpaqueValue->setSourceExpr(common);
2931  }
2932
2933  /// \brief Build an empty conditional operator.
2934  explicit BinaryConditionalOperator(EmptyShell Empty)
2935    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2936
2937  /// \brief getCommon - Return the common expression, written to the
2938  ///   left of the condition.  The opaque value will be bound to the
2939  ///   result of this expression.
2940  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2941
2942  /// \brief getOpaqueValue - Return the opaque value placeholder.
2943  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2944
2945  /// \brief getCond - Return the condition expression; this is defined
2946  ///   in terms of the opaque value.
2947  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2948
2949  /// \brief getTrueExpr - Return the subexpression which will be
2950  ///   evaluated if the condition evaluates to true;  this is defined
2951  ///   in terms of the opaque value.
2952  Expr *getTrueExpr() const {
2953    return cast<Expr>(SubExprs[LHS]);
2954  }
2955
2956  /// \brief getFalseExpr - Return the subexpression which will be
2957  ///   evaluated if the condnition evaluates to false; this is
2958  ///   defined in terms of the opaque value.
2959  Expr *getFalseExpr() const {
2960    return cast<Expr>(SubExprs[RHS]);
2961  }
2962
2963  SourceRange getSourceRange() const {
2964    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2965  }
2966  static bool classof(const Stmt *T) {
2967    return T->getStmtClass() == BinaryConditionalOperatorClass;
2968  }
2969  static bool classof(const BinaryConditionalOperator *) { return true; }
2970
2971  // Iterators
2972  child_range children() {
2973    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2974  }
2975};
2976
2977inline Expr *AbstractConditionalOperator::getCond() const {
2978  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2979    return co->getCond();
2980  return cast<BinaryConditionalOperator>(this)->getCond();
2981}
2982
2983inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2984  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2985    return co->getTrueExpr();
2986  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2987}
2988
2989inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2990  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2991    return co->getFalseExpr();
2992  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2993}
2994
2995/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2996class AddrLabelExpr : public Expr {
2997  SourceLocation AmpAmpLoc, LabelLoc;
2998  LabelDecl *Label;
2999public:
3000  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3001                QualType t)
3002    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3003           false),
3004      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3005
3006  /// \brief Build an empty address of a label expression.
3007  explicit AddrLabelExpr(EmptyShell Empty)
3008    : Expr(AddrLabelExprClass, Empty) { }
3009
3010  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3011  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3012  SourceLocation getLabelLoc() const { return LabelLoc; }
3013  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3014
3015  SourceRange getSourceRange() const {
3016    return SourceRange(AmpAmpLoc, LabelLoc);
3017  }
3018
3019  LabelDecl *getLabel() const { return Label; }
3020  void setLabel(LabelDecl *L) { Label = L; }
3021
3022  static bool classof(const Stmt *T) {
3023    return T->getStmtClass() == AddrLabelExprClass;
3024  }
3025  static bool classof(const AddrLabelExpr *) { return true; }
3026
3027  // Iterators
3028  child_range children() { return child_range(); }
3029};
3030
3031/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3032/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3033/// takes the value of the last subexpression.
3034///
3035/// A StmtExpr is always an r-value; values "returned" out of a
3036/// StmtExpr will be copied.
3037class StmtExpr : public Expr {
3038  Stmt *SubStmt;
3039  SourceLocation LParenLoc, RParenLoc;
3040public:
3041  // FIXME: Does type-dependence need to be computed differently?
3042  // FIXME: Do we need to compute instantiation instantiation-dependence for
3043  // statements? (ugh!)
3044  StmtExpr(CompoundStmt *substmt, QualType T,
3045           SourceLocation lp, SourceLocation rp) :
3046    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3047         T->isDependentType(), false, false, false),
3048    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3049
3050  /// \brief Build an empty statement expression.
3051  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3052
3053  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3054  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3055  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3056
3057  SourceRange getSourceRange() const {
3058    return SourceRange(LParenLoc, RParenLoc);
3059  }
3060
3061  SourceLocation getLParenLoc() const { return LParenLoc; }
3062  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3063  SourceLocation getRParenLoc() const { return RParenLoc; }
3064  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3065
3066  static bool classof(const Stmt *T) {
3067    return T->getStmtClass() == StmtExprClass;
3068  }
3069  static bool classof(const StmtExpr *) { return true; }
3070
3071  // Iterators
3072  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3073};
3074
3075
3076/// ShuffleVectorExpr - clang-specific builtin-in function
3077/// __builtin_shufflevector.
3078/// This AST node represents a operator that does a constant
3079/// shuffle, similar to LLVM's shufflevector instruction. It takes
3080/// two vectors and a variable number of constant indices,
3081/// and returns the appropriately shuffled vector.
3082class ShuffleVectorExpr : public Expr {
3083  SourceLocation BuiltinLoc, RParenLoc;
3084
3085  // SubExprs - the list of values passed to the __builtin_shufflevector
3086  // function. The first two are vectors, and the rest are constant
3087  // indices.  The number of values in this list is always
3088  // 2+the number of indices in the vector type.
3089  Stmt **SubExprs;
3090  unsigned NumExprs;
3091
3092public:
3093  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3094                    QualType Type, SourceLocation BLoc,
3095                    SourceLocation RP);
3096
3097  /// \brief Build an empty vector-shuffle expression.
3098  explicit ShuffleVectorExpr(EmptyShell Empty)
3099    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3100
3101  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3102  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3103
3104  SourceLocation getRParenLoc() const { return RParenLoc; }
3105  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3106
3107  SourceRange getSourceRange() const {
3108    return SourceRange(BuiltinLoc, RParenLoc);
3109  }
3110  static bool classof(const Stmt *T) {
3111    return T->getStmtClass() == ShuffleVectorExprClass;
3112  }
3113  static bool classof(const ShuffleVectorExpr *) { return true; }
3114
3115  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3116  /// constant expression, the actual arguments passed in, and the function
3117  /// pointers.
3118  unsigned getNumSubExprs() const { return NumExprs; }
3119
3120  /// \brief Retrieve the array of expressions.
3121  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3122
3123  /// getExpr - Return the Expr at the specified index.
3124  Expr *getExpr(unsigned Index) {
3125    assert((Index < NumExprs) && "Arg access out of range!");
3126    return cast<Expr>(SubExprs[Index]);
3127  }
3128  const Expr *getExpr(unsigned Index) const {
3129    assert((Index < NumExprs) && "Arg access out of range!");
3130    return cast<Expr>(SubExprs[Index]);
3131  }
3132
3133  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3134
3135  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3136    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3137    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3138  }
3139
3140  // Iterators
3141  child_range children() {
3142    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3143  }
3144};
3145
3146/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3147/// This AST node is similar to the conditional operator (?:) in C, with
3148/// the following exceptions:
3149/// - the test expression must be a integer constant expression.
3150/// - the expression returned acts like the chosen subexpression in every
3151///   visible way: the type is the same as that of the chosen subexpression,
3152///   and all predicates (whether it's an l-value, whether it's an integer
3153///   constant expression, etc.) return the same result as for the chosen
3154///   sub-expression.
3155class ChooseExpr : public Expr {
3156  enum { COND, LHS, RHS, END_EXPR };
3157  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3158  SourceLocation BuiltinLoc, RParenLoc;
3159public:
3160  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3161             QualType t, ExprValueKind VK, ExprObjectKind OK,
3162             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3163    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3164           (cond->isInstantiationDependent() ||
3165            lhs->isInstantiationDependent() ||
3166            rhs->isInstantiationDependent()),
3167           (cond->containsUnexpandedParameterPack() ||
3168            lhs->containsUnexpandedParameterPack() ||
3169            rhs->containsUnexpandedParameterPack())),
3170      BuiltinLoc(BLoc), RParenLoc(RP) {
3171      SubExprs[COND] = cond;
3172      SubExprs[LHS] = lhs;
3173      SubExprs[RHS] = rhs;
3174    }
3175
3176  /// \brief Build an empty __builtin_choose_expr.
3177  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3178
3179  /// isConditionTrue - Return whether the condition is true (i.e. not
3180  /// equal to zero).
3181  bool isConditionTrue(const ASTContext &C) const;
3182
3183  /// getChosenSubExpr - Return the subexpression chosen according to the
3184  /// condition.
3185  Expr *getChosenSubExpr(const ASTContext &C) const {
3186    return isConditionTrue(C) ? getLHS() : getRHS();
3187  }
3188
3189  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3190  void setCond(Expr *E) { SubExprs[COND] = E; }
3191  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3192  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3193  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3194  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3195
3196  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3197  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3198
3199  SourceLocation getRParenLoc() const { return RParenLoc; }
3200  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3201
3202  SourceRange getSourceRange() const {
3203    return SourceRange(BuiltinLoc, RParenLoc);
3204  }
3205  static bool classof(const Stmt *T) {
3206    return T->getStmtClass() == ChooseExprClass;
3207  }
3208  static bool classof(const ChooseExpr *) { return true; }
3209
3210  // Iterators
3211  child_range children() {
3212    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3213  }
3214};
3215
3216/// GNUNullExpr - Implements the GNU __null extension, which is a name
3217/// for a null pointer constant that has integral type (e.g., int or
3218/// long) and is the same size and alignment as a pointer. The __null
3219/// extension is typically only used by system headers, which define
3220/// NULL as __null in C++ rather than using 0 (which is an integer
3221/// that may not match the size of a pointer).
3222class GNUNullExpr : public Expr {
3223  /// TokenLoc - The location of the __null keyword.
3224  SourceLocation TokenLoc;
3225
3226public:
3227  GNUNullExpr(QualType Ty, SourceLocation Loc)
3228    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3229           false),
3230      TokenLoc(Loc) { }
3231
3232  /// \brief Build an empty GNU __null expression.
3233  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3234
3235  /// getTokenLocation - The location of the __null token.
3236  SourceLocation getTokenLocation() const { return TokenLoc; }
3237  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3238
3239  SourceRange getSourceRange() const {
3240    return SourceRange(TokenLoc);
3241  }
3242  static bool classof(const Stmt *T) {
3243    return T->getStmtClass() == GNUNullExprClass;
3244  }
3245  static bool classof(const GNUNullExpr *) { return true; }
3246
3247  // Iterators
3248  child_range children() { return child_range(); }
3249};
3250
3251/// VAArgExpr, used for the builtin function __builtin_va_arg.
3252class VAArgExpr : public Expr {
3253  Stmt *Val;
3254  TypeSourceInfo *TInfo;
3255  SourceLocation BuiltinLoc, RParenLoc;
3256public:
3257  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3258            SourceLocation RPLoc, QualType t)
3259    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3260           t->isDependentType(), false,
3261           (TInfo->getType()->isInstantiationDependentType() ||
3262            e->isInstantiationDependent()),
3263           (TInfo->getType()->containsUnexpandedParameterPack() ||
3264            e->containsUnexpandedParameterPack())),
3265      Val(e), TInfo(TInfo),
3266      BuiltinLoc(BLoc),
3267      RParenLoc(RPLoc) { }
3268
3269  /// \brief Create an empty __builtin_va_arg expression.
3270  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3271
3272  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3273  Expr *getSubExpr() { return cast<Expr>(Val); }
3274  void setSubExpr(Expr *E) { Val = E; }
3275
3276  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3277  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3278
3279  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3280  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3281
3282  SourceLocation getRParenLoc() const { return RParenLoc; }
3283  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3284
3285  SourceRange getSourceRange() const {
3286    return SourceRange(BuiltinLoc, RParenLoc);
3287  }
3288  static bool classof(const Stmt *T) {
3289    return T->getStmtClass() == VAArgExprClass;
3290  }
3291  static bool classof(const VAArgExpr *) { return true; }
3292
3293  // Iterators
3294  child_range children() { return child_range(&Val, &Val+1); }
3295};
3296
3297/// @brief Describes an C or C++ initializer list.
3298///
3299/// InitListExpr describes an initializer list, which can be used to
3300/// initialize objects of different types, including
3301/// struct/class/union types, arrays, and vectors. For example:
3302///
3303/// @code
3304/// struct foo x = { 1, { 2, 3 } };
3305/// @endcode
3306///
3307/// Prior to semantic analysis, an initializer list will represent the
3308/// initializer list as written by the user, but will have the
3309/// placeholder type "void". This initializer list is called the
3310/// syntactic form of the initializer, and may contain C99 designated
3311/// initializers (represented as DesignatedInitExprs), initializations
3312/// of subobject members without explicit braces, and so on. Clients
3313/// interested in the original syntax of the initializer list should
3314/// use the syntactic form of the initializer list.
3315///
3316/// After semantic analysis, the initializer list will represent the
3317/// semantic form of the initializer, where the initializations of all
3318/// subobjects are made explicit with nested InitListExpr nodes and
3319/// C99 designators have been eliminated by placing the designated
3320/// initializations into the subobject they initialize. Additionally,
3321/// any "holes" in the initialization, where no initializer has been
3322/// specified for a particular subobject, will be replaced with
3323/// implicitly-generated ImplicitValueInitExpr expressions that
3324/// value-initialize the subobjects. Note, however, that the
3325/// initializer lists may still have fewer initializers than there are
3326/// elements to initialize within the object.
3327///
3328/// Given the semantic form of the initializer list, one can retrieve
3329/// the original syntactic form of that initializer list (if it
3330/// exists) using getSyntacticForm(). Since many initializer lists
3331/// have the same syntactic and semantic forms, getSyntacticForm() may
3332/// return NULL, indicating that the current initializer list also
3333/// serves as its syntactic form.
3334class InitListExpr : public Expr {
3335  // FIXME: Eliminate this vector in favor of ASTContext allocation
3336  typedef ASTVector<Stmt *> InitExprsTy;
3337  InitExprsTy InitExprs;
3338  SourceLocation LBraceLoc, RBraceLoc;
3339
3340  /// Contains the initializer list that describes the syntactic form
3341  /// written in the source code.
3342  InitListExpr *SyntacticForm;
3343
3344  /// \brief Either:
3345  ///  If this initializer list initializes an array with more elements than
3346  ///  there are initializers in the list, specifies an expression to be used
3347  ///  for value initialization of the rest of the elements.
3348  /// Or
3349  ///  If this initializer list initializes a union, specifies which
3350  ///  field within the union will be initialized.
3351  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3352
3353  /// Whether this initializer list originally had a GNU array-range
3354  /// designator in it. This is a temporary marker used by CodeGen.
3355  bool HadArrayRangeDesignator;
3356
3357public:
3358  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3359               Expr **initexprs, unsigned numinits,
3360               SourceLocation rbraceloc);
3361
3362  /// \brief Build an empty initializer list.
3363  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3364    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3365
3366  unsigned getNumInits() const { return InitExprs.size(); }
3367
3368  /// \brief Retrieve the set of initializers.
3369  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3370
3371  const Expr *getInit(unsigned Init) const {
3372    assert(Init < getNumInits() && "Initializer access out of range!");
3373    return cast_or_null<Expr>(InitExprs[Init]);
3374  }
3375
3376  Expr *getInit(unsigned Init) {
3377    assert(Init < getNumInits() && "Initializer access out of range!");
3378    return cast_or_null<Expr>(InitExprs[Init]);
3379  }
3380
3381  void setInit(unsigned Init, Expr *expr) {
3382    assert(Init < getNumInits() && "Initializer access out of range!");
3383    InitExprs[Init] = expr;
3384  }
3385
3386  /// \brief Reserve space for some number of initializers.
3387  void reserveInits(ASTContext &C, unsigned NumInits);
3388
3389  /// @brief Specify the number of initializers
3390  ///
3391  /// If there are more than @p NumInits initializers, the remaining
3392  /// initializers will be destroyed. If there are fewer than @p
3393  /// NumInits initializers, NULL expressions will be added for the
3394  /// unknown initializers.
3395  void resizeInits(ASTContext &Context, unsigned NumInits);
3396
3397  /// @brief Updates the initializer at index @p Init with the new
3398  /// expression @p expr, and returns the old expression at that
3399  /// location.
3400  ///
3401  /// When @p Init is out of range for this initializer list, the
3402  /// initializer list will be extended with NULL expressions to
3403  /// accommodate the new entry.
3404  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3405
3406  /// \brief If this initializer list initializes an array with more elements
3407  /// than there are initializers in the list, specifies an expression to be
3408  /// used for value initialization of the rest of the elements.
3409  Expr *getArrayFiller() {
3410    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3411  }
3412  const Expr *getArrayFiller() const {
3413    return const_cast<InitListExpr *>(this)->getArrayFiller();
3414  }
3415  void setArrayFiller(Expr *filler);
3416
3417  /// \brief Return true if this is an array initializer and its array "filler"
3418  /// has been set.
3419  bool hasArrayFiller() const { return getArrayFiller(); }
3420
3421  /// \brief If this initializes a union, specifies which field in the
3422  /// union to initialize.
3423  ///
3424  /// Typically, this field is the first named field within the
3425  /// union. However, a designated initializer can specify the
3426  /// initialization of a different field within the union.
3427  FieldDecl *getInitializedFieldInUnion() {
3428    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3429  }
3430  const FieldDecl *getInitializedFieldInUnion() const {
3431    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3432  }
3433  void setInitializedFieldInUnion(FieldDecl *FD) {
3434    ArrayFillerOrUnionFieldInit = FD;
3435  }
3436
3437  // Explicit InitListExpr's originate from source code (and have valid source
3438  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3439  bool isExplicit() {
3440    return LBraceLoc.isValid() && RBraceLoc.isValid();
3441  }
3442
3443  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3444  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3445  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3446  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3447
3448  /// @brief Retrieve the initializer list that describes the
3449  /// syntactic form of the initializer.
3450  ///
3451  ///
3452  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3453  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3454
3455  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3456  void sawArrayRangeDesignator(bool ARD = true) {
3457    HadArrayRangeDesignator = ARD;
3458  }
3459
3460  SourceRange getSourceRange() const;
3461
3462  static bool classof(const Stmt *T) {
3463    return T->getStmtClass() == InitListExprClass;
3464  }
3465  static bool classof(const InitListExpr *) { return true; }
3466
3467  // Iterators
3468  child_range children() {
3469    if (InitExprs.empty()) return child_range();
3470    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3471  }
3472
3473  typedef InitExprsTy::iterator iterator;
3474  typedef InitExprsTy::const_iterator const_iterator;
3475  typedef InitExprsTy::reverse_iterator reverse_iterator;
3476  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3477
3478  iterator begin() { return InitExprs.begin(); }
3479  const_iterator begin() const { return InitExprs.begin(); }
3480  iterator end() { return InitExprs.end(); }
3481  const_iterator end() const { return InitExprs.end(); }
3482  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3483  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3484  reverse_iterator rend() { return InitExprs.rend(); }
3485  const_reverse_iterator rend() const { return InitExprs.rend(); }
3486
3487  friend class ASTStmtReader;
3488  friend class ASTStmtWriter;
3489};
3490
3491/// @brief Represents a C99 designated initializer expression.
3492///
3493/// A designated initializer expression (C99 6.7.8) contains one or
3494/// more designators (which can be field designators, array
3495/// designators, or GNU array-range designators) followed by an
3496/// expression that initializes the field or element(s) that the
3497/// designators refer to. For example, given:
3498///
3499/// @code
3500/// struct point {
3501///   double x;
3502///   double y;
3503/// };
3504/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3505/// @endcode
3506///
3507/// The InitListExpr contains three DesignatedInitExprs, the first of
3508/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3509/// designators, one array designator for @c [2] followed by one field
3510/// designator for @c .y. The initalization expression will be 1.0.
3511class DesignatedInitExpr : public Expr {
3512public:
3513  /// \brief Forward declaration of the Designator class.
3514  class Designator;
3515
3516private:
3517  /// The location of the '=' or ':' prior to the actual initializer
3518  /// expression.
3519  SourceLocation EqualOrColonLoc;
3520
3521  /// Whether this designated initializer used the GNU deprecated
3522  /// syntax rather than the C99 '=' syntax.
3523  bool GNUSyntax : 1;
3524
3525  /// The number of designators in this initializer expression.
3526  unsigned NumDesignators : 15;
3527
3528  /// \brief The designators in this designated initialization
3529  /// expression.
3530  Designator *Designators;
3531
3532  /// The number of subexpressions of this initializer expression,
3533  /// which contains both the initializer and any additional
3534  /// expressions used by array and array-range designators.
3535  unsigned NumSubExprs : 16;
3536
3537
3538  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3539                     const Designator *Designators,
3540                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3541                     Expr **IndexExprs, unsigned NumIndexExprs,
3542                     Expr *Init);
3543
3544  explicit DesignatedInitExpr(unsigned NumSubExprs)
3545    : Expr(DesignatedInitExprClass, EmptyShell()),
3546      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3547
3548public:
3549  /// A field designator, e.g., ".x".
3550  struct FieldDesignator {
3551    /// Refers to the field that is being initialized. The low bit
3552    /// of this field determines whether this is actually a pointer
3553    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3554    /// initially constructed, a field designator will store an
3555    /// IdentifierInfo*. After semantic analysis has resolved that
3556    /// name, the field designator will instead store a FieldDecl*.
3557    uintptr_t NameOrField;
3558
3559    /// The location of the '.' in the designated initializer.
3560    unsigned DotLoc;
3561
3562    /// The location of the field name in the designated initializer.
3563    unsigned FieldLoc;
3564  };
3565
3566  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3567  struct ArrayOrRangeDesignator {
3568    /// Location of the first index expression within the designated
3569    /// initializer expression's list of subexpressions.
3570    unsigned Index;
3571    /// The location of the '[' starting the array range designator.
3572    unsigned LBracketLoc;
3573    /// The location of the ellipsis separating the start and end
3574    /// indices. Only valid for GNU array-range designators.
3575    unsigned EllipsisLoc;
3576    /// The location of the ']' terminating the array range designator.
3577    unsigned RBracketLoc;
3578  };
3579
3580  /// @brief Represents a single C99 designator.
3581  ///
3582  /// @todo This class is infuriatingly similar to clang::Designator,
3583  /// but minor differences (storing indices vs. storing pointers)
3584  /// keep us from reusing it. Try harder, later, to rectify these
3585  /// differences.
3586  class Designator {
3587    /// @brief The kind of designator this describes.
3588    enum {
3589      FieldDesignator,
3590      ArrayDesignator,
3591      ArrayRangeDesignator
3592    } Kind;
3593
3594    union {
3595      /// A field designator, e.g., ".x".
3596      struct FieldDesignator Field;
3597      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3598      struct ArrayOrRangeDesignator ArrayOrRange;
3599    };
3600    friend class DesignatedInitExpr;
3601
3602  public:
3603    Designator() {}
3604
3605    /// @brief Initializes a field designator.
3606    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3607               SourceLocation FieldLoc)
3608      : Kind(FieldDesignator) {
3609      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3610      Field.DotLoc = DotLoc.getRawEncoding();
3611      Field.FieldLoc = FieldLoc.getRawEncoding();
3612    }
3613
3614    /// @brief Initializes an array designator.
3615    Designator(unsigned Index, SourceLocation LBracketLoc,
3616               SourceLocation RBracketLoc)
3617      : Kind(ArrayDesignator) {
3618      ArrayOrRange.Index = Index;
3619      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3620      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3621      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3622    }
3623
3624    /// @brief Initializes a GNU array-range designator.
3625    Designator(unsigned Index, SourceLocation LBracketLoc,
3626               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3627      : Kind(ArrayRangeDesignator) {
3628      ArrayOrRange.Index = Index;
3629      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3630      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3631      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3632    }
3633
3634    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3635    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3636    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3637
3638    IdentifierInfo *getFieldName() const;
3639
3640    FieldDecl *getField() const {
3641      assert(Kind == FieldDesignator && "Only valid on a field designator");
3642      if (Field.NameOrField & 0x01)
3643        return 0;
3644      else
3645        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3646    }
3647
3648    void setField(FieldDecl *FD) {
3649      assert(Kind == FieldDesignator && "Only valid on a field designator");
3650      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3651    }
3652
3653    SourceLocation getDotLoc() const {
3654      assert(Kind == FieldDesignator && "Only valid on a field designator");
3655      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3656    }
3657
3658    SourceLocation getFieldLoc() const {
3659      assert(Kind == FieldDesignator && "Only valid on a field designator");
3660      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3661    }
3662
3663    SourceLocation getLBracketLoc() const {
3664      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3665             "Only valid on an array or array-range designator");
3666      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3667    }
3668
3669    SourceLocation getRBracketLoc() const {
3670      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3671             "Only valid on an array or array-range designator");
3672      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3673    }
3674
3675    SourceLocation getEllipsisLoc() const {
3676      assert(Kind == ArrayRangeDesignator &&
3677             "Only valid on an array-range designator");
3678      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3679    }
3680
3681    unsigned getFirstExprIndex() const {
3682      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3683             "Only valid on an array or array-range designator");
3684      return ArrayOrRange.Index;
3685    }
3686
3687    SourceLocation getStartLocation() const {
3688      if (Kind == FieldDesignator)
3689        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3690      else
3691        return getLBracketLoc();
3692    }
3693    SourceLocation getEndLocation() const {
3694      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3695    }
3696    SourceRange getSourceRange() const {
3697      return SourceRange(getStartLocation(), getEndLocation());
3698    }
3699  };
3700
3701  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3702                                    unsigned NumDesignators,
3703                                    Expr **IndexExprs, unsigned NumIndexExprs,
3704                                    SourceLocation EqualOrColonLoc,
3705                                    bool GNUSyntax, Expr *Init);
3706
3707  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3708
3709  /// @brief Returns the number of designators in this initializer.
3710  unsigned size() const { return NumDesignators; }
3711
3712  // Iterator access to the designators.
3713  typedef Designator *designators_iterator;
3714  designators_iterator designators_begin() { return Designators; }
3715  designators_iterator designators_end() {
3716    return Designators + NumDesignators;
3717  }
3718
3719  typedef const Designator *const_designators_iterator;
3720  const_designators_iterator designators_begin() const { return Designators; }
3721  const_designators_iterator designators_end() const {
3722    return Designators + NumDesignators;
3723  }
3724
3725  typedef std::reverse_iterator<designators_iterator>
3726          reverse_designators_iterator;
3727  reverse_designators_iterator designators_rbegin() {
3728    return reverse_designators_iterator(designators_end());
3729  }
3730  reverse_designators_iterator designators_rend() {
3731    return reverse_designators_iterator(designators_begin());
3732  }
3733
3734  typedef std::reverse_iterator<const_designators_iterator>
3735          const_reverse_designators_iterator;
3736  const_reverse_designators_iterator designators_rbegin() const {
3737    return const_reverse_designators_iterator(designators_end());
3738  }
3739  const_reverse_designators_iterator designators_rend() const {
3740    return const_reverse_designators_iterator(designators_begin());
3741  }
3742
3743  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3744
3745  void setDesignators(ASTContext &C, const Designator *Desigs,
3746                      unsigned NumDesigs);
3747
3748  Expr *getArrayIndex(const Designator& D);
3749  Expr *getArrayRangeStart(const Designator& D);
3750  Expr *getArrayRangeEnd(const Designator& D);
3751
3752  /// @brief Retrieve the location of the '=' that precedes the
3753  /// initializer value itself, if present.
3754  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3755  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3756
3757  /// @brief Determines whether this designated initializer used the
3758  /// deprecated GNU syntax for designated initializers.
3759  bool usesGNUSyntax() const { return GNUSyntax; }
3760  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3761
3762  /// @brief Retrieve the initializer value.
3763  Expr *getInit() const {
3764    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3765  }
3766
3767  void setInit(Expr *init) {
3768    *child_begin() = init;
3769  }
3770
3771  /// \brief Retrieve the total number of subexpressions in this
3772  /// designated initializer expression, including the actual
3773  /// initialized value and any expressions that occur within array
3774  /// and array-range designators.
3775  unsigned getNumSubExprs() const { return NumSubExprs; }
3776
3777  Expr *getSubExpr(unsigned Idx) {
3778    assert(Idx < NumSubExprs && "Subscript out of range");
3779    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3780    Ptr += sizeof(DesignatedInitExpr);
3781    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3782  }
3783
3784  void setSubExpr(unsigned Idx, Expr *E) {
3785    assert(Idx < NumSubExprs && "Subscript out of range");
3786    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3787    Ptr += sizeof(DesignatedInitExpr);
3788    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3789  }
3790
3791  /// \brief Replaces the designator at index @p Idx with the series
3792  /// of designators in [First, Last).
3793  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3794                        const Designator *Last);
3795
3796  SourceRange getDesignatorsSourceRange() const;
3797
3798  SourceRange getSourceRange() const;
3799
3800  static bool classof(const Stmt *T) {
3801    return T->getStmtClass() == DesignatedInitExprClass;
3802  }
3803  static bool classof(const DesignatedInitExpr *) { return true; }
3804
3805  // Iterators
3806  child_range children() {
3807    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3808    return child_range(begin, begin + NumSubExprs);
3809  }
3810};
3811
3812/// \brief Represents an implicitly-generated value initialization of
3813/// an object of a given type.
3814///
3815/// Implicit value initializations occur within semantic initializer
3816/// list expressions (InitListExpr) as placeholders for subobject
3817/// initializations not explicitly specified by the user.
3818///
3819/// \see InitListExpr
3820class ImplicitValueInitExpr : public Expr {
3821public:
3822  explicit ImplicitValueInitExpr(QualType ty)
3823    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3824           false, false, ty->isInstantiationDependentType(), false) { }
3825
3826  /// \brief Construct an empty implicit value initialization.
3827  explicit ImplicitValueInitExpr(EmptyShell Empty)
3828    : Expr(ImplicitValueInitExprClass, Empty) { }
3829
3830  static bool classof(const Stmt *T) {
3831    return T->getStmtClass() == ImplicitValueInitExprClass;
3832  }
3833  static bool classof(const ImplicitValueInitExpr *) { return true; }
3834
3835  SourceRange getSourceRange() const {
3836    return SourceRange();
3837  }
3838
3839  // Iterators
3840  child_range children() { return child_range(); }
3841};
3842
3843
3844class ParenListExpr : public Expr {
3845  Stmt **Exprs;
3846  unsigned NumExprs;
3847  SourceLocation LParenLoc, RParenLoc;
3848
3849public:
3850  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3851                unsigned numexprs, SourceLocation rparenloc, QualType T);
3852
3853  /// \brief Build an empty paren list.
3854  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3855
3856  unsigned getNumExprs() const { return NumExprs; }
3857
3858  const Expr* getExpr(unsigned Init) const {
3859    assert(Init < getNumExprs() && "Initializer access out of range!");
3860    return cast_or_null<Expr>(Exprs[Init]);
3861  }
3862
3863  Expr* getExpr(unsigned Init) {
3864    assert(Init < getNumExprs() && "Initializer access out of range!");
3865    return cast_or_null<Expr>(Exprs[Init]);
3866  }
3867
3868  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3869
3870  SourceLocation getLParenLoc() const { return LParenLoc; }
3871  SourceLocation getRParenLoc() const { return RParenLoc; }
3872
3873  SourceRange getSourceRange() const {
3874    return SourceRange(LParenLoc, RParenLoc);
3875  }
3876  static bool classof(const Stmt *T) {
3877    return T->getStmtClass() == ParenListExprClass;
3878  }
3879  static bool classof(const ParenListExpr *) { return true; }
3880
3881  // Iterators
3882  child_range children() {
3883    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3884  }
3885
3886  friend class ASTStmtReader;
3887  friend class ASTStmtWriter;
3888};
3889
3890
3891/// \brief Represents a C1X generic selection.
3892///
3893/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3894/// expression, followed by one or more generic associations.  Each generic
3895/// association specifies a type name and an expression, or "default" and an
3896/// expression (in which case it is known as a default generic association).
3897/// The type and value of the generic selection are identical to those of its
3898/// result expression, which is defined as the expression in the generic
3899/// association with a type name that is compatible with the type of the
3900/// controlling expression, or the expression in the default generic association
3901/// if no types are compatible.  For example:
3902///
3903/// @code
3904/// _Generic(X, double: 1, float: 2, default: 3)
3905/// @endcode
3906///
3907/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3908/// or 3 if "hello".
3909///
3910/// As an extension, generic selections are allowed in C++, where the following
3911/// additional semantics apply:
3912///
3913/// Any generic selection whose controlling expression is type-dependent or
3914/// which names a dependent type in its association list is result-dependent,
3915/// which means that the choice of result expression is dependent.
3916/// Result-dependent generic associations are both type- and value-dependent.
3917class GenericSelectionExpr : public Expr {
3918  enum { CONTROLLING, END_EXPR };
3919  TypeSourceInfo **AssocTypes;
3920  Stmt **SubExprs;
3921  unsigned NumAssocs, ResultIndex;
3922  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3923
3924public:
3925  GenericSelectionExpr(ASTContext &Context,
3926                       SourceLocation GenericLoc, Expr *ControllingExpr,
3927                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3928                       unsigned NumAssocs, SourceLocation DefaultLoc,
3929                       SourceLocation RParenLoc,
3930                       bool ContainsUnexpandedParameterPack,
3931                       unsigned ResultIndex);
3932
3933  /// This constructor is used in the result-dependent case.
3934  GenericSelectionExpr(ASTContext &Context,
3935                       SourceLocation GenericLoc, Expr *ControllingExpr,
3936                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3937                       unsigned NumAssocs, SourceLocation DefaultLoc,
3938                       SourceLocation RParenLoc,
3939                       bool ContainsUnexpandedParameterPack);
3940
3941  explicit GenericSelectionExpr(EmptyShell Empty)
3942    : Expr(GenericSelectionExprClass, Empty) { }
3943
3944  unsigned getNumAssocs() const { return NumAssocs; }
3945
3946  SourceLocation getGenericLoc() const { return GenericLoc; }
3947  SourceLocation getDefaultLoc() const { return DefaultLoc; }
3948  SourceLocation getRParenLoc() const { return RParenLoc; }
3949
3950  const Expr *getAssocExpr(unsigned i) const {
3951    return cast<Expr>(SubExprs[END_EXPR+i]);
3952  }
3953  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
3954
3955  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
3956    return AssocTypes[i];
3957  }
3958  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
3959
3960  QualType getAssocType(unsigned i) const {
3961    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
3962      return TS->getType();
3963    else
3964      return QualType();
3965  }
3966
3967  const Expr *getControllingExpr() const {
3968    return cast<Expr>(SubExprs[CONTROLLING]);
3969  }
3970  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
3971
3972  /// Whether this generic selection is result-dependent.
3973  bool isResultDependent() const { return ResultIndex == -1U; }
3974
3975  /// The zero-based index of the result expression's generic association in
3976  /// the generic selection's association list.  Defined only if the
3977  /// generic selection is not result-dependent.
3978  unsigned getResultIndex() const {
3979    assert(!isResultDependent() && "Generic selection is result-dependent");
3980    return ResultIndex;
3981  }
3982
3983  /// The generic selection's result expression.  Defined only if the
3984  /// generic selection is not result-dependent.
3985  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
3986  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
3987
3988  SourceRange getSourceRange() const {
3989    return SourceRange(GenericLoc, RParenLoc);
3990  }
3991  static bool classof(const Stmt *T) {
3992    return T->getStmtClass() == GenericSelectionExprClass;
3993  }
3994  static bool classof(const GenericSelectionExpr *) { return true; }
3995
3996  child_range children() {
3997    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
3998  }
3999
4000  friend class ASTStmtReader;
4001};
4002
4003//===----------------------------------------------------------------------===//
4004// Clang Extensions
4005//===----------------------------------------------------------------------===//
4006
4007
4008/// ExtVectorElementExpr - This represents access to specific elements of a
4009/// vector, and may occur on the left hand side or right hand side.  For example
4010/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4011///
4012/// Note that the base may have either vector or pointer to vector type, just
4013/// like a struct field reference.
4014///
4015class ExtVectorElementExpr : public Expr {
4016  Stmt *Base;
4017  IdentifierInfo *Accessor;
4018  SourceLocation AccessorLoc;
4019public:
4020  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4021                       IdentifierInfo &accessor, SourceLocation loc)
4022    : Expr(ExtVectorElementExprClass, ty, VK,
4023           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4024           base->isTypeDependent(), base->isValueDependent(),
4025           base->isInstantiationDependent(),
4026           base->containsUnexpandedParameterPack()),
4027      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4028
4029  /// \brief Build an empty vector element expression.
4030  explicit ExtVectorElementExpr(EmptyShell Empty)
4031    : Expr(ExtVectorElementExprClass, Empty) { }
4032
4033  const Expr *getBase() const { return cast<Expr>(Base); }
4034  Expr *getBase() { return cast<Expr>(Base); }
4035  void setBase(Expr *E) { Base = E; }
4036
4037  IdentifierInfo &getAccessor() const { return *Accessor; }
4038  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4039
4040  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4041  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4042
4043  /// getNumElements - Get the number of components being selected.
4044  unsigned getNumElements() const;
4045
4046  /// containsDuplicateElements - Return true if any element access is
4047  /// repeated.
4048  bool containsDuplicateElements() const;
4049
4050  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4051  /// aggregate Constant of ConstantInt(s).
4052  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4053
4054  SourceRange getSourceRange() const {
4055    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4056  }
4057
4058  /// isArrow - Return true if the base expression is a pointer to vector,
4059  /// return false if the base expression is a vector.
4060  bool isArrow() const;
4061
4062  static bool classof(const Stmt *T) {
4063    return T->getStmtClass() == ExtVectorElementExprClass;
4064  }
4065  static bool classof(const ExtVectorElementExpr *) { return true; }
4066
4067  // Iterators
4068  child_range children() { return child_range(&Base, &Base+1); }
4069};
4070
4071
4072/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4073/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4074class BlockExpr : public Expr {
4075protected:
4076  BlockDecl *TheBlock;
4077public:
4078  BlockExpr(BlockDecl *BD, QualType ty)
4079    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4080           ty->isDependentType(), false,
4081           // FIXME: Check for instantiate-dependence in the statement?
4082           ty->isInstantiationDependentType(),
4083           false),
4084      TheBlock(BD) {}
4085
4086  /// \brief Build an empty block expression.
4087  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4088
4089  const BlockDecl *getBlockDecl() const { return TheBlock; }
4090  BlockDecl *getBlockDecl() { return TheBlock; }
4091  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4092
4093  // Convenience functions for probing the underlying BlockDecl.
4094  SourceLocation getCaretLocation() const;
4095  const Stmt *getBody() const;
4096  Stmt *getBody();
4097
4098  SourceRange getSourceRange() const {
4099    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4100  }
4101
4102  /// getFunctionType - Return the underlying function type for this block.
4103  const FunctionType *getFunctionType() const;
4104
4105  static bool classof(const Stmt *T) {
4106    return T->getStmtClass() == BlockExprClass;
4107  }
4108  static bool classof(const BlockExpr *) { return true; }
4109
4110  // Iterators
4111  child_range children() { return child_range(); }
4112};
4113
4114/// BlockDeclRefExpr - A reference to a local variable declared in an
4115/// enclosing scope.
4116class BlockDeclRefExpr : public Expr {
4117  VarDecl *D;
4118  SourceLocation Loc;
4119  bool IsByRef : 1;
4120  bool ConstQualAdded : 1;
4121public:
4122  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4123                   SourceLocation l, bool ByRef, bool constAdded = false);
4124
4125  // \brief Build an empty reference to a declared variable in a
4126  // block.
4127  explicit BlockDeclRefExpr(EmptyShell Empty)
4128    : Expr(BlockDeclRefExprClass, Empty) { }
4129
4130  VarDecl *getDecl() { return D; }
4131  const VarDecl *getDecl() const { return D; }
4132  void setDecl(VarDecl *VD) { D = VD; }
4133
4134  SourceLocation getLocation() const { return Loc; }
4135  void setLocation(SourceLocation L) { Loc = L; }
4136
4137  SourceRange getSourceRange() const { return SourceRange(Loc); }
4138
4139  bool isByRef() const { return IsByRef; }
4140  void setByRef(bool BR) { IsByRef = BR; }
4141
4142  bool isConstQualAdded() const { return ConstQualAdded; }
4143  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4144
4145  static bool classof(const Stmt *T) {
4146    return T->getStmtClass() == BlockDeclRefExprClass;
4147  }
4148  static bool classof(const BlockDeclRefExpr *) { return true; }
4149
4150  // Iterators
4151  child_range children() { return child_range(); }
4152};
4153
4154/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4155/// This AST node provides support for reinterpreting a type to another
4156/// type of the same size.
4157class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4158private:
4159  Stmt *SrcExpr;
4160  SourceLocation BuiltinLoc, RParenLoc;
4161
4162  friend class ASTReader;
4163  friend class ASTStmtReader;
4164  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4165
4166public:
4167  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4168             ExprValueKind VK, ExprObjectKind OK,
4169             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4170    : Expr(AsTypeExprClass, DstType, VK, OK,
4171           DstType->isDependentType(),
4172           DstType->isDependentType() || SrcExpr->isValueDependent(),
4173           (DstType->isInstantiationDependentType() ||
4174            SrcExpr->isInstantiationDependent()),
4175           (DstType->containsUnexpandedParameterPack() ||
4176            SrcExpr->containsUnexpandedParameterPack())),
4177  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4178
4179  /// getSrcExpr - Return the Expr to be converted.
4180  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4181
4182  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4183  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4184
4185  /// getRParenLoc - Return the location of final right parenthesis.
4186  SourceLocation getRParenLoc() const { return RParenLoc; }
4187
4188  SourceRange getSourceRange() const {
4189    return SourceRange(BuiltinLoc, RParenLoc);
4190  }
4191
4192  static bool classof(const Stmt *T) {
4193    return T->getStmtClass() == AsTypeExprClass;
4194  }
4195  static bool classof(const AsTypeExpr *) { return true; }
4196
4197  // Iterators
4198  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4199};
4200
4201/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4202/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4203/// similarly-named C++0x instructions.  All of these instructions take one
4204/// primary pointer and at least one memory order.
4205class AtomicExpr : public Expr {
4206public:
4207  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4208                  Add, Sub, And, Or, Xor };
4209private:
4210  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4211  Stmt* SubExprs[END_EXPR];
4212  unsigned NumSubExprs;
4213  SourceLocation BuiltinLoc, RParenLoc;
4214  AtomicOp Op;
4215
4216public:
4217  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4218             AtomicOp op, SourceLocation RP);
4219
4220  /// \brief Build an empty AtomicExpr.
4221  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4222
4223  Expr *getPtr() const {
4224    return cast<Expr>(SubExprs[PTR]);
4225  }
4226  void setPtr(Expr *E) {
4227    SubExprs[PTR] = E;
4228  }
4229  Expr *getOrder() const {
4230    return cast<Expr>(SubExprs[ORDER]);
4231  }
4232  void setOrder(Expr *E) {
4233    SubExprs[ORDER] = E;
4234  }
4235  Expr *getVal1() const {
4236    assert(NumSubExprs >= 3);
4237    return cast<Expr>(SubExprs[VAL1]);
4238  }
4239  void setVal1(Expr *E) {
4240    assert(NumSubExprs >= 3);
4241    SubExprs[VAL1] = E;
4242  }
4243  Expr *getOrderFail() const {
4244    assert(NumSubExprs == 5);
4245    return cast<Expr>(SubExprs[ORDER_FAIL]);
4246  }
4247  void setOrderFail(Expr *E) {
4248    assert(NumSubExprs == 5);
4249    SubExprs[ORDER_FAIL] = E;
4250  }
4251  Expr *getVal2() const {
4252    assert(NumSubExprs == 5);
4253    return cast<Expr>(SubExprs[VAL2]);
4254  }
4255  void setVal2(Expr *E) {
4256    assert(NumSubExprs == 5);
4257    SubExprs[VAL2] = E;
4258  }
4259
4260  AtomicOp getOp() const { return Op; }
4261  void setOp(AtomicOp op) { Op = op; }
4262  unsigned getNumSubExprs() { return NumSubExprs; }
4263  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4264
4265  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4266
4267  bool isVolatile() const {
4268    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4269  }
4270
4271  bool isCmpXChg() const {
4272    return getOp() == AtomicExpr::CmpXchgStrong ||
4273           getOp() == AtomicExpr::CmpXchgWeak;
4274  }
4275
4276  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4277  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4278
4279  SourceLocation getRParenLoc() const { return RParenLoc; }
4280  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4281
4282  SourceRange getSourceRange() const {
4283    return SourceRange(BuiltinLoc, RParenLoc);
4284  }
4285  static bool classof(const Stmt *T) {
4286    return T->getStmtClass() == AtomicExprClass;
4287  }
4288  static bool classof(const AtomicExpr *) { return true; }
4289
4290  // Iterators
4291  child_range children() {
4292    return child_range(SubExprs, SubExprs+NumSubExprs);
4293  }
4294};
4295}  // end namespace clang
4296
4297#endif
4298