Expr.h revision ab3a852ae713189444dcbf75e70accf1e8c2b7f2
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
243  /// write barrier.
244  bool isOBJCGCCandidate() const;
245
246  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
247  ///  its subexpression.  If that subexpression is also a ParenExpr,
248  ///  then this method recursively returns its subexpression, and so forth.
249  ///  Otherwise, the method returns the current Expr.
250  Expr* IgnoreParens();
251
252  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
253  /// or CastExprs, returning their operand.
254  Expr *IgnoreParenCasts();
255
256  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
257  /// value (including ptr->int casts of the same size).  Strip off any
258  /// ParenExpr or CastExprs, returning their operand.
259  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
260
261  const Expr* IgnoreParens() const {
262    return const_cast<Expr*>(this)->IgnoreParens();
263  }
264  const Expr *IgnoreParenCasts() const {
265    return const_cast<Expr*>(this)->IgnoreParenCasts();
266  }
267  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
268    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
269  }
270
271  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
272  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
273
274  static bool classof(const Stmt *T) {
275    return T->getStmtClass() >= firstExprConstant &&
276           T->getStmtClass() <= lastExprConstant;
277  }
278  static bool classof(const Expr *) { return true; }
279
280  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
281    return cast<Expr>(Stmt::Create(D, C));
282  }
283};
284
285
286//===----------------------------------------------------------------------===//
287// Primary Expressions.
288//===----------------------------------------------------------------------===//
289
290/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
291/// enum, etc.
292class DeclRefExpr : public Expr {
293  NamedDecl *D;
294  SourceLocation Loc;
295
296protected:
297  // FIXME: Eventually, this constructor will go away and all subclasses
298  // will have to provide the type- and value-dependent flags.
299  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
300    Expr(SC, t), D(d), Loc(l) {}
301
302  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
303              bool VD) :
304    Expr(SC, t, TD, VD), D(d), Loc(l) {}
305
306public:
307  // FIXME: Eventually, this constructor will go away and all clients
308  // will have to provide the type- and value-dependent flags.
309  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
310    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
311
312  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
313    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
314
315  NamedDecl *getDecl() { return D; }
316  const NamedDecl *getDecl() const { return D; }
317  void setDecl(NamedDecl *NewD) { D = NewD; }
318
319  SourceLocation getLocation() const { return Loc; }
320  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
321
322  static bool classof(const Stmt *T) {
323    return T->getStmtClass() == DeclRefExprClass ||
324           T->getStmtClass() == CXXConditionDeclExprClass ||
325           T->getStmtClass() == QualifiedDeclRefExprClass;
326  }
327  static bool classof(const DeclRefExpr *) { return true; }
328
329  // Iterators
330  virtual child_iterator child_begin();
331  virtual child_iterator child_end();
332
333  virtual void EmitImpl(llvm::Serializer& S) const;
334  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
335};
336
337/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
338class PredefinedExpr : public Expr {
339public:
340  enum IdentType {
341    Func,
342    Function,
343    PrettyFunction
344  };
345
346private:
347  SourceLocation Loc;
348  IdentType Type;
349public:
350  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
351    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
352
353  IdentType getIdentType() const { return Type; }
354
355  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
356
357  static bool classof(const Stmt *T) {
358    return T->getStmtClass() == PredefinedExprClass;
359  }
360  static bool classof(const PredefinedExpr *) { return true; }
361
362  // Iterators
363  virtual child_iterator child_begin();
364  virtual child_iterator child_end();
365
366  virtual void EmitImpl(llvm::Serializer& S) const;
367  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
368};
369
370class IntegerLiteral : public Expr {
371  llvm::APInt Value;
372  SourceLocation Loc;
373public:
374  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
375  // or UnsignedLongLongTy
376  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
377    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
378    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
379  }
380
381  IntegerLiteral* Clone(ASTContext &C) const;
382
383  const llvm::APInt &getValue() const { return Value; }
384  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
385
386  /// \brief Retrieve the location of the literal.
387  SourceLocation getLocation() const { return Loc; }
388
389  static bool classof(const Stmt *T) {
390    return T->getStmtClass() == IntegerLiteralClass;
391  }
392  static bool classof(const IntegerLiteral *) { return true; }
393
394  // Iterators
395  virtual child_iterator child_begin();
396  virtual child_iterator child_end();
397
398  virtual void EmitImpl(llvm::Serializer& S) const;
399  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
400};
401
402class CharacterLiteral : public Expr {
403  unsigned Value;
404  SourceLocation Loc;
405  bool IsWide;
406public:
407  // type should be IntTy
408  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
409    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
410  }
411  SourceLocation getLoc() const { return Loc; }
412  bool isWide() const { return IsWide; }
413
414  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
415
416  unsigned getValue() const { return Value; }
417
418  static bool classof(const Stmt *T) {
419    return T->getStmtClass() == CharacterLiteralClass;
420  }
421  static bool classof(const CharacterLiteral *) { return true; }
422
423  // Iterators
424  virtual child_iterator child_begin();
425  virtual child_iterator child_end();
426
427  virtual void EmitImpl(llvm::Serializer& S) const;
428  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
429};
430
431class FloatingLiteral : public Expr {
432  llvm::APFloat Value;
433  bool IsExact : 1;
434  SourceLocation Loc;
435public:
436  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
437                  QualType Type, SourceLocation L)
438    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
439
440  const llvm::APFloat &getValue() const { return Value; }
441
442  bool isExact() const { return IsExact; }
443
444  /// getValueAsApproximateDouble - This returns the value as an inaccurate
445  /// double.  Note that this may cause loss of precision, but is useful for
446  /// debugging dumps, etc.
447  double getValueAsApproximateDouble() const;
448
449  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
450
451  static bool classof(const Stmt *T) {
452    return T->getStmtClass() == FloatingLiteralClass;
453  }
454  static bool classof(const FloatingLiteral *) { return true; }
455
456  // Iterators
457  virtual child_iterator child_begin();
458  virtual child_iterator child_end();
459
460  virtual void EmitImpl(llvm::Serializer& S) const;
461  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
462};
463
464/// ImaginaryLiteral - We support imaginary integer and floating point literals,
465/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
466/// IntegerLiteral classes.  Instances of this class always have a Complex type
467/// whose element type matches the subexpression.
468///
469class ImaginaryLiteral : public Expr {
470  Stmt *Val;
471public:
472  ImaginaryLiteral(Expr *val, QualType Ty)
473    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
474
475  const Expr *getSubExpr() const { return cast<Expr>(Val); }
476  Expr *getSubExpr() { return cast<Expr>(Val); }
477
478  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
479  static bool classof(const Stmt *T) {
480    return T->getStmtClass() == ImaginaryLiteralClass;
481  }
482  static bool classof(const ImaginaryLiteral *) { return true; }
483
484  // Iterators
485  virtual child_iterator child_begin();
486  virtual child_iterator child_end();
487
488  virtual void EmitImpl(llvm::Serializer& S) const;
489  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
490};
491
492/// StringLiteral - This represents a string literal expression, e.g. "foo"
493/// or L"bar" (wide strings).  The actual string is returned by getStrData()
494/// is NOT null-terminated, and the length of the string is determined by
495/// calling getByteLength().  The C type for a string is always a
496/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
497/// not.
498///
499/// Note that strings in C can be formed by concatenation of multiple string
500/// literal pptokens in translation phase #6.  This keeps track of the locations
501/// of each of these pieces.
502///
503/// Strings in C can also be truncated and extended by assigning into arrays,
504/// e.g. with constructs like:
505///   char X[2] = "foobar";
506/// In this case, getByteLength() will return 6, but the string literal will
507/// have type "char[2]".
508class StringLiteral : public Expr {
509  const char *StrData;
510  unsigned ByteLength;
511  bool IsWide;
512  unsigned NumConcatenated;
513  SourceLocation TokLocs[1];
514
515  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
516public:
517  /// This is the "fully general" constructor that allows representation of
518  /// strings formed from multiple concatenated tokens.
519  static StringLiteral *Create(ASTContext &C, const char *StrData,
520                               unsigned ByteLength, bool Wide, QualType Ty,
521                               const SourceLocation *Loc, unsigned NumStrs);
522
523  /// Simple constructor for string literals made from one token.
524  static StringLiteral *Create(ASTContext &C, const char *StrData,
525                               unsigned ByteLength,
526                               bool Wide, QualType Ty, SourceLocation Loc) {
527    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
528  }
529
530  StringLiteral* Clone(ASTContext &C) const;
531  void Destroy(ASTContext &C);
532
533  const char *getStrData() const { return StrData; }
534  unsigned getByteLength() const { return ByteLength; }
535  bool isWide() const { return IsWide; }
536
537  /// getNumConcatenated - Get the number of string literal tokens that were
538  /// concatenated in translation phase #6 to form this string literal.
539  unsigned getNumConcatenated() const { return NumConcatenated; }
540
541  SourceLocation getStrTokenLoc(unsigned TokNum) const {
542    assert(TokNum < NumConcatenated && "Invalid tok number");
543    return TokLocs[TokNum];
544  }
545
546  typedef const SourceLocation *tokloc_iterator;
547  tokloc_iterator tokloc_begin() const { return TokLocs; }
548  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
549
550  virtual SourceRange getSourceRange() const {
551    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
552  }
553  static bool classof(const Stmt *T) {
554    return T->getStmtClass() == StringLiteralClass;
555  }
556  static bool classof(const StringLiteral *) { return true; }
557
558  // Iterators
559  virtual child_iterator child_begin();
560  virtual child_iterator child_end();
561
562  virtual void EmitImpl(llvm::Serializer& S) const;
563  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
564};
565
566/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
567/// AST node is only formed if full location information is requested.
568class ParenExpr : public Expr {
569  SourceLocation L, R;
570  Stmt *Val;
571public:
572  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
573    : Expr(ParenExprClass, val->getType(),
574           val->isTypeDependent(), val->isValueDependent()),
575      L(l), R(r), Val(val) {}
576
577  const Expr *getSubExpr() const { return cast<Expr>(Val); }
578  Expr *getSubExpr() { return cast<Expr>(Val); }
579  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
580
581  /// \brief Get the location of the left parentheses '('.
582  SourceLocation getLParen() const { return L; }
583
584  /// \brief Get the location of the right parentheses ')'.
585  SourceLocation getRParen() const { return R; }
586
587  static bool classof(const Stmt *T) {
588    return T->getStmtClass() == ParenExprClass;
589  }
590  static bool classof(const ParenExpr *) { return true; }
591
592  // Iterators
593  virtual child_iterator child_begin();
594  virtual child_iterator child_end();
595
596  virtual void EmitImpl(llvm::Serializer& S) const;
597  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
598};
599
600
601/// UnaryOperator - This represents the unary-expression's (except sizeof and
602/// alignof), the postinc/postdec operators from postfix-expression, and various
603/// extensions.
604///
605/// Notes on various nodes:
606///
607/// Real/Imag - These return the real/imag part of a complex operand.  If
608///   applied to a non-complex value, the former returns its operand and the
609///   later returns zero in the type of the operand.
610///
611/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
612///   subexpression is a compound literal with the various MemberExpr and
613///   ArraySubscriptExpr's applied to it.
614///
615class UnaryOperator : public Expr {
616public:
617  // Note that additions to this should also update the StmtVisitor class.
618  enum Opcode {
619    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
620    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
621    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
622    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
623    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
624    Real, Imag,       // "__real expr"/"__imag expr" Extension.
625    Extension,        // __extension__ marker.
626    OffsetOf          // __builtin_offsetof
627  };
628private:
629  Stmt *Val;
630  Opcode Opc;
631  SourceLocation Loc;
632public:
633
634  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
635    : Expr(UnaryOperatorClass, type,
636           input->isTypeDependent() && opc != OffsetOf,
637           input->isValueDependent()),
638      Val(input), Opc(opc), Loc(l) {}
639
640  Opcode getOpcode() const { return Opc; }
641  Expr *getSubExpr() const { return cast<Expr>(Val); }
642
643  /// getOperatorLoc - Return the location of the operator.
644  SourceLocation getOperatorLoc() const { return Loc; }
645
646  /// isPostfix - Return true if this is a postfix operation, like x++.
647  static bool isPostfix(Opcode Op) {
648    return Op == PostInc || Op == PostDec;
649  }
650
651  /// isPostfix - Return true if this is a prefix operation, like --x.
652  static bool isPrefix(Opcode Op) {
653    return Op == PreInc || Op == PreDec;
654  }
655
656  bool isPrefix() const { return isPrefix(Opc); }
657  bool isPostfix() const { return isPostfix(Opc); }
658  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
659  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
660  bool isOffsetOfOp() const { return Opc == OffsetOf; }
661  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
662
663  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
664  /// corresponds to, e.g. "sizeof" or "[pre]++"
665  static const char *getOpcodeStr(Opcode Op);
666
667  /// \brief Retrieve the unary opcode that corresponds to the given
668  /// overloaded operator.
669  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
670
671  /// \brief Retrieve the overloaded operator kind that corresponds to
672  /// the given unary opcode.
673  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
674
675  virtual SourceRange getSourceRange() const {
676    if (isPostfix())
677      return SourceRange(Val->getLocStart(), Loc);
678    else
679      return SourceRange(Loc, Val->getLocEnd());
680  }
681  virtual SourceLocation getExprLoc() const { return Loc; }
682
683  static bool classof(const Stmt *T) {
684    return T->getStmtClass() == UnaryOperatorClass;
685  }
686  static bool classof(const UnaryOperator *) { return true; }
687
688  // Iterators
689  virtual child_iterator child_begin();
690  virtual child_iterator child_end();
691
692  virtual void EmitImpl(llvm::Serializer& S) const;
693  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
694};
695
696/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
697/// types and expressions.
698class SizeOfAlignOfExpr : public Expr {
699  bool isSizeof : 1;  // true if sizeof, false if alignof.
700  bool isType : 1;    // true if operand is a type, false if an expression
701  union {
702    void *Ty;
703    Stmt *Ex;
704  } Argument;
705  SourceLocation OpLoc, RParenLoc;
706public:
707  SizeOfAlignOfExpr(bool issizeof, QualType T,
708                    QualType resultType, SourceLocation op,
709                    SourceLocation rp) :
710      Expr(SizeOfAlignOfExprClass, resultType,
711           false, // Never type-dependent (C++ [temp.dep.expr]p3).
712           // Value-dependent if the argument is type-dependent.
713           T->isDependentType()),
714      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
715    Argument.Ty = T.getAsOpaquePtr();
716  }
717
718  SizeOfAlignOfExpr(bool issizeof, Expr *E,
719                    QualType resultType, SourceLocation op,
720                    SourceLocation rp) :
721      Expr(SizeOfAlignOfExprClass, resultType,
722           false, // Never type-dependent (C++ [temp.dep.expr]p3).
723           // Value-dependent if the argument is type-dependent.
724           E->isTypeDependent()),
725      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
726    Argument.Ex = E;
727  }
728
729  virtual void Destroy(ASTContext& C);
730
731  bool isSizeOf() const { return isSizeof; }
732  bool isArgumentType() const { return isType; }
733  QualType getArgumentType() const {
734    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
735    return QualType::getFromOpaquePtr(Argument.Ty);
736  }
737  Expr *getArgumentExpr() {
738    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
739    return static_cast<Expr*>(Argument.Ex);
740  }
741  const Expr *getArgumentExpr() const {
742    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
743  }
744
745  /// Gets the argument type, or the type of the argument expression, whichever
746  /// is appropriate.
747  QualType getTypeOfArgument() const {
748    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
749  }
750
751  SourceLocation getOperatorLoc() const { return OpLoc; }
752
753  virtual SourceRange getSourceRange() const {
754    return SourceRange(OpLoc, RParenLoc);
755  }
756
757  static bool classof(const Stmt *T) {
758    return T->getStmtClass() == SizeOfAlignOfExprClass;
759  }
760  static bool classof(const SizeOfAlignOfExpr *) { return true; }
761
762  // Iterators
763  virtual child_iterator child_begin();
764  virtual child_iterator child_end();
765
766  virtual void EmitImpl(llvm::Serializer& S) const;
767  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
768};
769
770//===----------------------------------------------------------------------===//
771// Postfix Operators.
772//===----------------------------------------------------------------------===//
773
774/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
775class ArraySubscriptExpr : public Expr {
776  enum { LHS, RHS, END_EXPR=2 };
777  Stmt* SubExprs[END_EXPR];
778  SourceLocation RBracketLoc;
779public:
780  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
781                     SourceLocation rbracketloc)
782  : Expr(ArraySubscriptExprClass, t,
783         lhs->isTypeDependent() || rhs->isTypeDependent(),
784         lhs->isValueDependent() || rhs->isValueDependent()),
785    RBracketLoc(rbracketloc) {
786    SubExprs[LHS] = lhs;
787    SubExprs[RHS] = rhs;
788  }
789
790  /// An array access can be written A[4] or 4[A] (both are equivalent).
791  /// - getBase() and getIdx() always present the normalized view: A[4].
792  ///    In this case getBase() returns "A" and getIdx() returns "4".
793  /// - getLHS() and getRHS() present the syntactic view. e.g. for
794  ///    4[A] getLHS() returns "4".
795  /// Note: Because vector element access is also written A[4] we must
796  /// predicate the format conversion in getBase and getIdx only on the
797  /// the type of the RHS, as it is possible for the LHS to be a vector of
798  /// integer type
799  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
800  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
801
802  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
803  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
804
805  Expr *getBase() {
806    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
807  }
808
809  const Expr *getBase() const {
810    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
811  }
812
813  Expr *getIdx() {
814    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
815  }
816
817  const Expr *getIdx() const {
818    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
819  }
820
821  virtual SourceRange getSourceRange() const {
822    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
823  }
824
825  SourceLocation getRBracketLoc() const { return RBracketLoc; }
826  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
827
828  static bool classof(const Stmt *T) {
829    return T->getStmtClass() == ArraySubscriptExprClass;
830  }
831  static bool classof(const ArraySubscriptExpr *) { return true; }
832
833  // Iterators
834  virtual child_iterator child_begin();
835  virtual child_iterator child_end();
836
837  virtual void EmitImpl(llvm::Serializer& S) const;
838  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
839};
840
841
842/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
843/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
844/// while its subclasses may represent alternative syntax that (semantically)
845/// results in a function call. For example, CXXOperatorCallExpr is
846/// a subclass for overloaded operator calls that use operator syntax, e.g.,
847/// "str1 + str2" to resolve to a function call.
848class CallExpr : public Expr {
849  enum { FN=0, ARGS_START=1 };
850  Stmt **SubExprs;
851  unsigned NumArgs;
852  SourceLocation RParenLoc;
853
854  // This version of the ctor is for deserialization.
855  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
856           SourceLocation rparenloc)
857  : Expr(SC,t), SubExprs(subexprs),
858    NumArgs(numargs), RParenLoc(rparenloc) {}
859
860protected:
861  // This version of the constructor is for derived classes.
862  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
863           QualType t, SourceLocation rparenloc);
864
865public:
866  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
867           SourceLocation rparenloc);
868
869  ~CallExpr() {}
870
871  void Destroy(ASTContext& C);
872
873  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
874  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
875  void setCallee(Expr *F) { SubExprs[FN] = F; }
876
877  /// getNumArgs - Return the number of actual arguments to this call.
878  ///
879  unsigned getNumArgs() const { return NumArgs; }
880
881  /// getArg - Return the specified argument.
882  Expr *getArg(unsigned Arg) {
883    assert(Arg < NumArgs && "Arg access out of range!");
884    return cast<Expr>(SubExprs[Arg+ARGS_START]);
885  }
886  const Expr *getArg(unsigned Arg) const {
887    assert(Arg < NumArgs && "Arg access out of range!");
888    return cast<Expr>(SubExprs[Arg+ARGS_START]);
889  }
890
891  // FIXME: Why is this needed?  Why not just create the CallExpr with the
892  // corect number of arguments?  It makes the ASTs less brittle.
893  /// setArg - Set the specified argument.
894  void setArg(unsigned Arg, Expr *ArgExpr) {
895    assert(Arg < NumArgs && "Arg access out of range!");
896    SubExprs[Arg+ARGS_START] = ArgExpr;
897  }
898
899  // FIXME: It would be great to just get rid of this.  There is only one
900  // callee of this method, and it probably could be refactored to not use
901  // this method and instead just create a CallExpr with the right number of
902  // arguments.
903  /// setNumArgs - This changes the number of arguments present in this call.
904  /// Any orphaned expressions are deleted by this, and any new operands are set
905  /// to null.
906  void setNumArgs(ASTContext& C, unsigned NumArgs);
907
908  typedef ExprIterator arg_iterator;
909  typedef ConstExprIterator const_arg_iterator;
910
911  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
912  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
913  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
914  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
915
916  /// getNumCommas - Return the number of commas that must have been present in
917  /// this function call.
918  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
919
920  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
921  /// not, return 0.
922  unsigned isBuiltinCall(ASTContext &Context) const;
923
924  SourceLocation getRParenLoc() const { return RParenLoc; }
925
926  virtual SourceRange getSourceRange() const {
927    return SourceRange(getCallee()->getLocStart(), RParenLoc);
928  }
929
930  static bool classof(const Stmt *T) {
931    return T->getStmtClass() == CallExprClass ||
932           T->getStmtClass() == CXXOperatorCallExprClass ||
933           T->getStmtClass() == CXXMemberCallExprClass;
934  }
935  static bool classof(const CallExpr *) { return true; }
936  static bool classof(const CXXOperatorCallExpr *) { return true; }
937  static bool classof(const CXXMemberCallExpr *) { return true; }
938
939  // Iterators
940  virtual child_iterator child_begin();
941  virtual child_iterator child_end();
942
943  virtual void EmitImpl(llvm::Serializer& S) const;
944  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
945                              StmtClass SC);
946};
947
948/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
949///
950class MemberExpr : public Expr {
951  /// Base - the expression for the base pointer or structure references.  In
952  /// X.F, this is "X".
953  Stmt *Base;
954
955  /// MemberDecl - This is the decl being referenced by the field/member name.
956  /// In X.F, this is the decl referenced by F.
957  NamedDecl *MemberDecl;
958
959  /// MemberLoc - This is the location of the member name.
960  SourceLocation MemberLoc;
961
962  /// IsArrow - True if this is "X->F", false if this is "X.F".
963  bool IsArrow;
964public:
965  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
966             QualType ty)
967    : Expr(MemberExprClass, ty),
968      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
969
970  void setBase(Expr *E) { Base = E; }
971  Expr *getBase() const { return cast<Expr>(Base); }
972
973  /// \brief Retrieve the member declaration to which this expression refers.
974  ///
975  /// The returned declaration will either be a FieldDecl or (in C++)
976  /// a CXXMethodDecl.
977  NamedDecl *getMemberDecl() const { return MemberDecl; }
978  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
979  bool isArrow() const { return IsArrow; }
980
981  /// getMemberLoc - Return the location of the "member", in X->F, it is the
982  /// location of 'F'.
983  SourceLocation getMemberLoc() const { return MemberLoc; }
984
985  virtual SourceRange getSourceRange() const {
986    return SourceRange(getBase()->getLocStart(), MemberLoc);
987  }
988
989  virtual SourceLocation getExprLoc() const { return MemberLoc; }
990
991  static bool classof(const Stmt *T) {
992    return T->getStmtClass() == MemberExprClass;
993  }
994  static bool classof(const MemberExpr *) { return true; }
995
996  // Iterators
997  virtual child_iterator child_begin();
998  virtual child_iterator child_end();
999
1000  virtual void EmitImpl(llvm::Serializer& S) const;
1001  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1002};
1003
1004/// CompoundLiteralExpr - [C99 6.5.2.5]
1005///
1006class CompoundLiteralExpr : public Expr {
1007  /// LParenLoc - If non-null, this is the location of the left paren in a
1008  /// compound literal like "(int){4}".  This can be null if this is a
1009  /// synthesized compound expression.
1010  SourceLocation LParenLoc;
1011  Stmt *Init;
1012  bool FileScope;
1013public:
1014  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1015                      bool fileScope)
1016    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1017      FileScope(fileScope) {}
1018
1019  const Expr *getInitializer() const { return cast<Expr>(Init); }
1020  Expr *getInitializer() { return cast<Expr>(Init); }
1021
1022  bool isFileScope() const { return FileScope; }
1023
1024  SourceLocation getLParenLoc() const { return LParenLoc; }
1025
1026  virtual SourceRange getSourceRange() const {
1027    // FIXME: Init should never be null.
1028    if (!Init)
1029      return SourceRange();
1030    if (LParenLoc.isInvalid())
1031      return Init->getSourceRange();
1032    return SourceRange(LParenLoc, Init->getLocEnd());
1033  }
1034
1035  static bool classof(const Stmt *T) {
1036    return T->getStmtClass() == CompoundLiteralExprClass;
1037  }
1038  static bool classof(const CompoundLiteralExpr *) { return true; }
1039
1040  // Iterators
1041  virtual child_iterator child_begin();
1042  virtual child_iterator child_end();
1043
1044  virtual void EmitImpl(llvm::Serializer& S) const;
1045  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1046};
1047
1048/// CastExpr - Base class for type casts, including both implicit
1049/// casts (ImplicitCastExpr) and explicit casts that have some
1050/// representation in the source code (ExplicitCastExpr's derived
1051/// classes).
1052class CastExpr : public Expr {
1053  Stmt *Op;
1054protected:
1055  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1056    Expr(SC, ty,
1057         // Cast expressions are type-dependent if the type is
1058         // dependent (C++ [temp.dep.expr]p3).
1059         ty->isDependentType(),
1060         // Cast expressions are value-dependent if the type is
1061         // dependent or if the subexpression is value-dependent.
1062         ty->isDependentType() || (op && op->isValueDependent())),
1063    Op(op) {}
1064
1065public:
1066  Expr *getSubExpr() { return cast<Expr>(Op); }
1067  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1068
1069  static bool classof(const Stmt *T) {
1070    StmtClass SC = T->getStmtClass();
1071    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1072      return true;
1073
1074    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1075      return true;
1076
1077    return false;
1078  }
1079  static bool classof(const CastExpr *) { return true; }
1080
1081  // Iterators
1082  virtual child_iterator child_begin();
1083  virtual child_iterator child_end();
1084};
1085
1086/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1087/// conversions, which have no direct representation in the original
1088/// source code. For example: converting T[]->T*, void f()->void
1089/// (*f)(), float->double, short->int, etc.
1090///
1091/// In C, implicit casts always produce rvalues. However, in C++, an
1092/// implicit cast whose result is being bound to a reference will be
1093/// an lvalue. For example:
1094///
1095/// @code
1096/// class Base { };
1097/// class Derived : public Base { };
1098/// void f(Derived d) {
1099///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1100/// }
1101/// @endcode
1102class ImplicitCastExpr : public CastExpr {
1103  /// LvalueCast - Whether this cast produces an lvalue.
1104  bool LvalueCast;
1105
1106public:
1107  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1108    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1109
1110  virtual SourceRange getSourceRange() const {
1111    return getSubExpr()->getSourceRange();
1112  }
1113
1114  /// isLvalueCast - Whether this cast produces an lvalue.
1115  bool isLvalueCast() const { return LvalueCast; }
1116
1117  /// setLvalueCast - Set whether this cast produces an lvalue.
1118  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1119
1120  static bool classof(const Stmt *T) {
1121    return T->getStmtClass() == ImplicitCastExprClass;
1122  }
1123  static bool classof(const ImplicitCastExpr *) { return true; }
1124
1125  virtual void EmitImpl(llvm::Serializer& S) const;
1126  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1127};
1128
1129/// ExplicitCastExpr - An explicit cast written in the source
1130/// code.
1131///
1132/// This class is effectively an abstract class, because it provides
1133/// the basic representation of an explicitly-written cast without
1134/// specifying which kind of cast (C cast, functional cast, static
1135/// cast, etc.) was written; specific derived classes represent the
1136/// particular style of cast and its location information.
1137///
1138/// Unlike implicit casts, explicit cast nodes have two different
1139/// types: the type that was written into the source code, and the
1140/// actual type of the expression as determined by semantic
1141/// analysis. These types may differ slightly. For example, in C++ one
1142/// can cast to a reference type, which indicates that the resulting
1143/// expression will be an lvalue. The reference type, however, will
1144/// not be used as the type of the expression.
1145class ExplicitCastExpr : public CastExpr {
1146  /// TypeAsWritten - The type that this expression is casting to, as
1147  /// written in the source code.
1148  QualType TypeAsWritten;
1149
1150protected:
1151  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1152    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1153
1154public:
1155  /// getTypeAsWritten - Returns the type that this expression is
1156  /// casting to, as written in the source code.
1157  QualType getTypeAsWritten() const { return TypeAsWritten; }
1158
1159  static bool classof(const Stmt *T) {
1160    StmtClass SC = T->getStmtClass();
1161    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1162      return true;
1163    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1164      return true;
1165
1166    return false;
1167  }
1168  static bool classof(const ExplicitCastExpr *) { return true; }
1169};
1170
1171/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1172/// cast in C++ (C++ [expr.cast]), which uses the syntax
1173/// (Type)expr. For example: @c (int)f.
1174class CStyleCastExpr : public ExplicitCastExpr {
1175  SourceLocation LPLoc; // the location of the left paren
1176  SourceLocation RPLoc; // the location of the right paren
1177public:
1178  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1179                    SourceLocation l, SourceLocation r) :
1180    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1181    LPLoc(l), RPLoc(r) {}
1182
1183  SourceLocation getLParenLoc() const { return LPLoc; }
1184  SourceLocation getRParenLoc() const { return RPLoc; }
1185
1186  virtual SourceRange getSourceRange() const {
1187    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1188  }
1189  static bool classof(const Stmt *T) {
1190    return T->getStmtClass() == CStyleCastExprClass;
1191  }
1192  static bool classof(const CStyleCastExpr *) { return true; }
1193
1194  virtual void EmitImpl(llvm::Serializer& S) const;
1195  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1196};
1197
1198/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1199///
1200/// This expression node kind describes a builtin binary operation,
1201/// such as "x + y" for integer values "x" and "y". The operands will
1202/// already have been converted to appropriate types (e.g., by
1203/// performing promotions or conversions).
1204///
1205/// In C++, where operators may be overloaded, a different kind of
1206/// expression node (CXXOperatorCallExpr) is used to express the
1207/// invocation of an overloaded operator with operator syntax. Within
1208/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1209/// used to store an expression "x + y" depends on the subexpressions
1210/// for x and y. If neither x or y is type-dependent, and the "+"
1211/// operator resolves to a built-in operation, BinaryOperator will be
1212/// used to express the computation (x and y may still be
1213/// value-dependent). If either x or y is type-dependent, or if the
1214/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1215/// be used to express the computation.
1216class BinaryOperator : public Expr {
1217public:
1218  enum Opcode {
1219    // Operators listed in order of precedence.
1220    // Note that additions to this should also update the StmtVisitor class.
1221    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1222    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1223    Add, Sub,         // [C99 6.5.6] Additive operators.
1224    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1225    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1226    EQ, NE,           // [C99 6.5.9] Equality operators.
1227    And,              // [C99 6.5.10] Bitwise AND operator.
1228    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1229    Or,               // [C99 6.5.12] Bitwise OR operator.
1230    LAnd,             // [C99 6.5.13] Logical AND operator.
1231    LOr,              // [C99 6.5.14] Logical OR operator.
1232    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1233    DivAssign, RemAssign,
1234    AddAssign, SubAssign,
1235    ShlAssign, ShrAssign,
1236    AndAssign, XorAssign,
1237    OrAssign,
1238    Comma             // [C99 6.5.17] Comma operator.
1239  };
1240private:
1241  enum { LHS, RHS, END_EXPR };
1242  Stmt* SubExprs[END_EXPR];
1243  Opcode Opc;
1244  SourceLocation OpLoc;
1245public:
1246
1247  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1248                 SourceLocation opLoc)
1249    : Expr(BinaryOperatorClass, ResTy,
1250           lhs->isTypeDependent() || rhs->isTypeDependent(),
1251           lhs->isValueDependent() || rhs->isValueDependent()),
1252      Opc(opc), OpLoc(opLoc) {
1253    SubExprs[LHS] = lhs;
1254    SubExprs[RHS] = rhs;
1255    assert(!isCompoundAssignmentOp() &&
1256           "Use ArithAssignBinaryOperator for compound assignments");
1257  }
1258
1259  SourceLocation getOperatorLoc() const { return OpLoc; }
1260  Opcode getOpcode() const { return Opc; }
1261  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1262  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1263  virtual SourceRange getSourceRange() const {
1264    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1265  }
1266
1267  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1268  /// corresponds to, e.g. "<<=".
1269  static const char *getOpcodeStr(Opcode Op);
1270
1271  /// \brief Retrieve the binary opcode that corresponds to the given
1272  /// overloaded operator.
1273  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1274
1275  /// \brief Retrieve the overloaded operator kind that corresponds to
1276  /// the given binary opcode.
1277  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1278
1279  /// predicates to categorize the respective opcodes.
1280  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1281  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1282  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1283  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1284
1285  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1286  bool isRelationalOp() const { return isRelationalOp(Opc); }
1287
1288  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1289  bool isEqualityOp() const { return isEqualityOp(Opc); }
1290
1291  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1292  bool isLogicalOp() const { return isLogicalOp(Opc); }
1293
1294  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1295  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1296  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1297
1298  static bool classof(const Stmt *S) {
1299    return S->getStmtClass() == BinaryOperatorClass ||
1300           S->getStmtClass() == CompoundAssignOperatorClass;
1301  }
1302  static bool classof(const BinaryOperator *) { return true; }
1303
1304  // Iterators
1305  virtual child_iterator child_begin();
1306  virtual child_iterator child_end();
1307
1308  virtual void EmitImpl(llvm::Serializer& S) const;
1309  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1310
1311protected:
1312  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1313                 SourceLocation oploc, bool dead)
1314    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1315    SubExprs[LHS] = lhs;
1316    SubExprs[RHS] = rhs;
1317  }
1318};
1319
1320/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1321/// track of the type the operation is performed in.  Due to the semantics of
1322/// these operators, the operands are promoted, the aritmetic performed, an
1323/// implicit conversion back to the result type done, then the assignment takes
1324/// place.  This captures the intermediate type which the computation is done
1325/// in.
1326class CompoundAssignOperator : public BinaryOperator {
1327  QualType ComputationLHSType;
1328  QualType ComputationResultType;
1329public:
1330  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1331                         QualType ResType, QualType CompLHSType,
1332                         QualType CompResultType,
1333                         SourceLocation OpLoc)
1334    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1335      ComputationLHSType(CompLHSType),
1336      ComputationResultType(CompResultType) {
1337    assert(isCompoundAssignmentOp() &&
1338           "Only should be used for compound assignments");
1339  }
1340
1341  // The two computation types are the type the LHS is converted
1342  // to for the computation and the type of the result; the two are
1343  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1344  QualType getComputationLHSType() const { return ComputationLHSType; }
1345  QualType getComputationResultType() const { return ComputationResultType; }
1346
1347  static bool classof(const CompoundAssignOperator *) { return true; }
1348  static bool classof(const Stmt *S) {
1349    return S->getStmtClass() == CompoundAssignOperatorClass;
1350  }
1351
1352  virtual void EmitImpl(llvm::Serializer& S) const;
1353  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1354                                            ASTContext& C);
1355};
1356
1357/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1358/// GNU "missing LHS" extension is in use.
1359///
1360class ConditionalOperator : public Expr {
1361  enum { COND, LHS, RHS, END_EXPR };
1362  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1363public:
1364  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1365    : Expr(ConditionalOperatorClass, t,
1366           // FIXME: the type of the conditional operator doesn't
1367           // depend on the type of the conditional, but the standard
1368           // seems to imply that it could. File a bug!
1369           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1370           (cond->isValueDependent() ||
1371            (lhs && lhs->isValueDependent()) ||
1372            (rhs && rhs->isValueDependent()))) {
1373    SubExprs[COND] = cond;
1374    SubExprs[LHS] = lhs;
1375    SubExprs[RHS] = rhs;
1376  }
1377
1378  // getCond - Return the expression representing the condition for
1379  //  the ?: operator.
1380  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1381
1382  // getTrueExpr - Return the subexpression representing the value of the ?:
1383  //  expression if the condition evaluates to true.  In most cases this value
1384  //  will be the same as getLHS() except a GCC extension allows the left
1385  //  subexpression to be omitted, and instead of the condition be returned.
1386  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1387  //  is only evaluated once.
1388  Expr *getTrueExpr() const {
1389    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1390  }
1391
1392  // getTrueExpr - Return the subexpression representing the value of the ?:
1393  // expression if the condition evaluates to false. This is the same as getRHS.
1394  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1395
1396  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1397  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1398
1399  virtual SourceRange getSourceRange() const {
1400    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1401  }
1402  static bool classof(const Stmt *T) {
1403    return T->getStmtClass() == ConditionalOperatorClass;
1404  }
1405  static bool classof(const ConditionalOperator *) { return true; }
1406
1407  // Iterators
1408  virtual child_iterator child_begin();
1409  virtual child_iterator child_end();
1410
1411  virtual void EmitImpl(llvm::Serializer& S) const;
1412  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1413};
1414
1415/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1416class AddrLabelExpr : public Expr {
1417  SourceLocation AmpAmpLoc, LabelLoc;
1418  LabelStmt *Label;
1419public:
1420  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1421                QualType t)
1422    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1423
1424  virtual SourceRange getSourceRange() const {
1425    return SourceRange(AmpAmpLoc, LabelLoc);
1426  }
1427
1428  LabelStmt *getLabel() const { return Label; }
1429
1430  static bool classof(const Stmt *T) {
1431    return T->getStmtClass() == AddrLabelExprClass;
1432  }
1433  static bool classof(const AddrLabelExpr *) { return true; }
1434
1435  // Iterators
1436  virtual child_iterator child_begin();
1437  virtual child_iterator child_end();
1438
1439  virtual void EmitImpl(llvm::Serializer& S) const;
1440  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1441};
1442
1443/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1444/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1445/// takes the value of the last subexpression.
1446class StmtExpr : public Expr {
1447  Stmt *SubStmt;
1448  SourceLocation LParenLoc, RParenLoc;
1449public:
1450  StmtExpr(CompoundStmt *substmt, QualType T,
1451           SourceLocation lp, SourceLocation rp) :
1452    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1453
1454  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1455  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1456
1457  virtual SourceRange getSourceRange() const {
1458    return SourceRange(LParenLoc, RParenLoc);
1459  }
1460
1461  SourceLocation getLParenLoc() const { return LParenLoc; }
1462  SourceLocation getRParenLoc() const { return RParenLoc; }
1463
1464  static bool classof(const Stmt *T) {
1465    return T->getStmtClass() == StmtExprClass;
1466  }
1467  static bool classof(const StmtExpr *) { return true; }
1468
1469  // Iterators
1470  virtual child_iterator child_begin();
1471  virtual child_iterator child_end();
1472
1473  virtual void EmitImpl(llvm::Serializer& S) const;
1474  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1475};
1476
1477/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1478/// This AST node represents a function that returns 1 if two *types* (not
1479/// expressions) are compatible. The result of this built-in function can be
1480/// used in integer constant expressions.
1481class TypesCompatibleExpr : public Expr {
1482  QualType Type1;
1483  QualType Type2;
1484  SourceLocation BuiltinLoc, RParenLoc;
1485public:
1486  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1487                      QualType t1, QualType t2, SourceLocation RP) :
1488    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1489    BuiltinLoc(BLoc), RParenLoc(RP) {}
1490
1491  QualType getArgType1() const { return Type1; }
1492  QualType getArgType2() const { return Type2; }
1493
1494  virtual SourceRange getSourceRange() const {
1495    return SourceRange(BuiltinLoc, RParenLoc);
1496  }
1497  static bool classof(const Stmt *T) {
1498    return T->getStmtClass() == TypesCompatibleExprClass;
1499  }
1500  static bool classof(const TypesCompatibleExpr *) { return true; }
1501
1502  // Iterators
1503  virtual child_iterator child_begin();
1504  virtual child_iterator child_end();
1505
1506  virtual void EmitImpl(llvm::Serializer& S) const;
1507  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1508};
1509
1510/// ShuffleVectorExpr - clang-specific builtin-in function
1511/// __builtin_shufflevector.
1512/// This AST node represents a operator that does a constant
1513/// shuffle, similar to LLVM's shufflevector instruction. It takes
1514/// two vectors and a variable number of constant indices,
1515/// and returns the appropriately shuffled vector.
1516class ShuffleVectorExpr : public Expr {
1517  SourceLocation BuiltinLoc, RParenLoc;
1518
1519  // SubExprs - the list of values passed to the __builtin_shufflevector
1520  // function. The first two are vectors, and the rest are constant
1521  // indices.  The number of values in this list is always
1522  // 2+the number of indices in the vector type.
1523  Stmt **SubExprs;
1524  unsigned NumExprs;
1525
1526public:
1527  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1528                    QualType Type, SourceLocation BLoc,
1529                    SourceLocation RP) :
1530    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1531    RParenLoc(RP), NumExprs(nexpr) {
1532
1533    SubExprs = new Stmt*[nexpr];
1534    for (unsigned i = 0; i < nexpr; i++)
1535      SubExprs[i] = args[i];
1536  }
1537
1538  virtual SourceRange getSourceRange() const {
1539    return SourceRange(BuiltinLoc, RParenLoc);
1540  }
1541  static bool classof(const Stmt *T) {
1542    return T->getStmtClass() == ShuffleVectorExprClass;
1543  }
1544  static bool classof(const ShuffleVectorExpr *) { return true; }
1545
1546  ~ShuffleVectorExpr() {
1547    delete [] SubExprs;
1548  }
1549
1550  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1551  /// constant expression, the actual arguments passed in, and the function
1552  /// pointers.
1553  unsigned getNumSubExprs() const { return NumExprs; }
1554
1555  /// getExpr - Return the Expr at the specified index.
1556  Expr *getExpr(unsigned Index) {
1557    assert((Index < NumExprs) && "Arg access out of range!");
1558    return cast<Expr>(SubExprs[Index]);
1559  }
1560  const Expr *getExpr(unsigned Index) const {
1561    assert((Index < NumExprs) && "Arg access out of range!");
1562    return cast<Expr>(SubExprs[Index]);
1563  }
1564
1565  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1566    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1567    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1568  }
1569
1570  // Iterators
1571  virtual child_iterator child_begin();
1572  virtual child_iterator child_end();
1573
1574  virtual void EmitImpl(llvm::Serializer& S) const;
1575  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1576};
1577
1578/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1579/// This AST node is similar to the conditional operator (?:) in C, with
1580/// the following exceptions:
1581/// - the test expression must be a integer constant expression.
1582/// - the expression returned acts like the chosen subexpression in every
1583///   visible way: the type is the same as that of the chosen subexpression,
1584///   and all predicates (whether it's an l-value, whether it's an integer
1585///   constant expression, etc.) return the same result as for the chosen
1586///   sub-expression.
1587class ChooseExpr : public Expr {
1588  enum { COND, LHS, RHS, END_EXPR };
1589  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1590  SourceLocation BuiltinLoc, RParenLoc;
1591public:
1592  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1593             SourceLocation RP)
1594    : Expr(ChooseExprClass, t),
1595      BuiltinLoc(BLoc), RParenLoc(RP) {
1596      SubExprs[COND] = cond;
1597      SubExprs[LHS] = lhs;
1598      SubExprs[RHS] = rhs;
1599    }
1600
1601  /// isConditionTrue - Return whether the condition is true (i.e. not
1602  /// equal to zero).
1603  bool isConditionTrue(ASTContext &C) const;
1604
1605  /// getChosenSubExpr - Return the subexpression chosen according to the
1606  /// condition.
1607  Expr *getChosenSubExpr(ASTContext &C) const {
1608    return isConditionTrue(C) ? getLHS() : getRHS();
1609  }
1610
1611  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1612  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1613  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1614
1615  virtual SourceRange getSourceRange() const {
1616    return SourceRange(BuiltinLoc, RParenLoc);
1617  }
1618  static bool classof(const Stmt *T) {
1619    return T->getStmtClass() == ChooseExprClass;
1620  }
1621  static bool classof(const ChooseExpr *) { return true; }
1622
1623  // Iterators
1624  virtual child_iterator child_begin();
1625  virtual child_iterator child_end();
1626
1627  virtual void EmitImpl(llvm::Serializer& S) const;
1628  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1629};
1630
1631/// GNUNullExpr - Implements the GNU __null extension, which is a name
1632/// for a null pointer constant that has integral type (e.g., int or
1633/// long) and is the same size and alignment as a pointer. The __null
1634/// extension is typically only used by system headers, which define
1635/// NULL as __null in C++ rather than using 0 (which is an integer
1636/// that may not match the size of a pointer).
1637class GNUNullExpr : public Expr {
1638  /// TokenLoc - The location of the __null keyword.
1639  SourceLocation TokenLoc;
1640
1641public:
1642  GNUNullExpr(QualType Ty, SourceLocation Loc)
1643    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1644
1645  /// getTokenLocation - The location of the __null token.
1646  SourceLocation getTokenLocation() const { return TokenLoc; }
1647
1648  virtual SourceRange getSourceRange() const {
1649    return SourceRange(TokenLoc);
1650  }
1651  static bool classof(const Stmt *T) {
1652    return T->getStmtClass() == GNUNullExprClass;
1653  }
1654  static bool classof(const GNUNullExpr *) { return true; }
1655
1656  // Iterators
1657  virtual child_iterator child_begin();
1658  virtual child_iterator child_end();
1659
1660  virtual void EmitImpl(llvm::Serializer& S) const;
1661  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1662};
1663
1664/// VAArgExpr, used for the builtin function __builtin_va_start.
1665class VAArgExpr : public Expr {
1666  Stmt *Val;
1667  SourceLocation BuiltinLoc, RParenLoc;
1668public:
1669  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1670    : Expr(VAArgExprClass, t),
1671      Val(e),
1672      BuiltinLoc(BLoc),
1673      RParenLoc(RPLoc) { }
1674
1675  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1676  Expr *getSubExpr() { return cast<Expr>(Val); }
1677  virtual SourceRange getSourceRange() const {
1678    return SourceRange(BuiltinLoc, RParenLoc);
1679  }
1680  static bool classof(const Stmt *T) {
1681    return T->getStmtClass() == VAArgExprClass;
1682  }
1683  static bool classof(const VAArgExpr *) { return true; }
1684
1685  // Iterators
1686  virtual child_iterator child_begin();
1687  virtual child_iterator child_end();
1688
1689  virtual void EmitImpl(llvm::Serializer& S) const;
1690  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1691};
1692
1693/// @brief Describes an C or C++ initializer list.
1694///
1695/// InitListExpr describes an initializer list, which can be used to
1696/// initialize objects of different types, including
1697/// struct/class/union types, arrays, and vectors. For example:
1698///
1699/// @code
1700/// struct foo x = { 1, { 2, 3 } };
1701/// @endcode
1702///
1703/// Prior to semantic analysis, an initializer list will represent the
1704/// initializer list as written by the user, but will have the
1705/// placeholder type "void". This initializer list is called the
1706/// syntactic form of the initializer, and may contain C99 designated
1707/// initializers (represented as DesignatedInitExprs), initializations
1708/// of subobject members without explicit braces, and so on. Clients
1709/// interested in the original syntax of the initializer list should
1710/// use the syntactic form of the initializer list.
1711///
1712/// After semantic analysis, the initializer list will represent the
1713/// semantic form of the initializer, where the initializations of all
1714/// subobjects are made explicit with nested InitListExpr nodes and
1715/// C99 designators have been eliminated by placing the designated
1716/// initializations into the subobject they initialize. Additionally,
1717/// any "holes" in the initialization, where no initializer has been
1718/// specified for a particular subobject, will be replaced with
1719/// implicitly-generated ImplicitValueInitExpr expressions that
1720/// value-initialize the subobjects. Note, however, that the
1721/// initializer lists may still have fewer initializers than there are
1722/// elements to initialize within the object.
1723///
1724/// Given the semantic form of the initializer list, one can retrieve
1725/// the original syntactic form of that initializer list (if it
1726/// exists) using getSyntacticForm(). Since many initializer lists
1727/// have the same syntactic and semantic forms, getSyntacticForm() may
1728/// return NULL, indicating that the current initializer list also
1729/// serves as its syntactic form.
1730class InitListExpr : public Expr {
1731  std::vector<Stmt *> InitExprs;
1732  SourceLocation LBraceLoc, RBraceLoc;
1733
1734  /// Contains the initializer list that describes the syntactic form
1735  /// written in the source code.
1736  InitListExpr *SyntacticForm;
1737
1738  /// If this initializer list initializes a union, specifies which
1739  /// field within the union will be initialized.
1740  FieldDecl *UnionFieldInit;
1741
1742  /// Whether this initializer list originally had a GNU array-range
1743  /// designator in it. This is a temporary marker used by CodeGen.
1744  bool HadArrayRangeDesignator;
1745
1746public:
1747  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1748               SourceLocation rbraceloc);
1749
1750  unsigned getNumInits() const { return InitExprs.size(); }
1751
1752  const Expr* getInit(unsigned Init) const {
1753    assert(Init < getNumInits() && "Initializer access out of range!");
1754    return cast_or_null<Expr>(InitExprs[Init]);
1755  }
1756
1757  Expr* getInit(unsigned Init) {
1758    assert(Init < getNumInits() && "Initializer access out of range!");
1759    return cast_or_null<Expr>(InitExprs[Init]);
1760  }
1761
1762  void setInit(unsigned Init, Expr *expr) {
1763    assert(Init < getNumInits() && "Initializer access out of range!");
1764    InitExprs[Init] = expr;
1765  }
1766
1767  /// \brief Reserve space for some number of initializers.
1768  void reserveInits(unsigned NumInits);
1769
1770  /// @brief Specify the number of initializers
1771  ///
1772  /// If there are more than @p NumInits initializers, the remaining
1773  /// initializers will be destroyed. If there are fewer than @p
1774  /// NumInits initializers, NULL expressions will be added for the
1775  /// unknown initializers.
1776  void resizeInits(ASTContext &Context, unsigned NumInits);
1777
1778  /// @brief Updates the initializer at index @p Init with the new
1779  /// expression @p expr, and returns the old expression at that
1780  /// location.
1781  ///
1782  /// When @p Init is out of range for this initializer list, the
1783  /// initializer list will be extended with NULL expressions to
1784  /// accomodate the new entry.
1785  Expr *updateInit(unsigned Init, Expr *expr);
1786
1787  /// \brief If this initializes a union, specifies which field in the
1788  /// union to initialize.
1789  ///
1790  /// Typically, this field is the first named field within the
1791  /// union. However, a designated initializer can specify the
1792  /// initialization of a different field within the union.
1793  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1794  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1795
1796  // Explicit InitListExpr's originate from source code (and have valid source
1797  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1798  bool isExplicit() {
1799    return LBraceLoc.isValid() && RBraceLoc.isValid();
1800  }
1801
1802  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1803
1804  /// @brief Retrieve the initializer list that describes the
1805  /// syntactic form of the initializer.
1806  ///
1807  ///
1808  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1809  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1810
1811  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1812  void sawArrayRangeDesignator() {
1813    HadArrayRangeDesignator = true;
1814  }
1815
1816  virtual SourceRange getSourceRange() const {
1817    return SourceRange(LBraceLoc, RBraceLoc);
1818  }
1819  static bool classof(const Stmt *T) {
1820    return T->getStmtClass() == InitListExprClass;
1821  }
1822  static bool classof(const InitListExpr *) { return true; }
1823
1824  // Iterators
1825  virtual child_iterator child_begin();
1826  virtual child_iterator child_end();
1827
1828  typedef std::vector<Stmt *>::iterator iterator;
1829  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1830
1831  iterator begin() { return InitExprs.begin(); }
1832  iterator end() { return InitExprs.end(); }
1833  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1834  reverse_iterator rend() { return InitExprs.rend(); }
1835
1836  // Serailization.
1837  virtual void EmitImpl(llvm::Serializer& S) const;
1838  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1839
1840private:
1841  // Used by serializer.
1842  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1843};
1844
1845/// @brief Represents a C99 designated initializer expression.
1846///
1847/// A designated initializer expression (C99 6.7.8) contains one or
1848/// more designators (which can be field designators, array
1849/// designators, or GNU array-range designators) followed by an
1850/// expression that initializes the field or element(s) that the
1851/// designators refer to. For example, given:
1852///
1853/// @code
1854/// struct point {
1855///   double x;
1856///   double y;
1857/// };
1858/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1859/// @endcode
1860///
1861/// The InitListExpr contains three DesignatedInitExprs, the first of
1862/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1863/// designators, one array designator for @c [2] followed by one field
1864/// designator for @c .y. The initalization expression will be 1.0.
1865class DesignatedInitExpr : public Expr {
1866  /// The location of the '=' or ':' prior to the actual initializer
1867  /// expression.
1868  SourceLocation EqualOrColonLoc;
1869
1870  /// Whether this designated initializer used the GNU deprecated
1871  /// syntax rather than the C99 '=' syntax.
1872  bool GNUSyntax : 1;
1873
1874  /// The number of designators in this initializer expression.
1875  unsigned NumDesignators : 15;
1876
1877  /// The number of subexpressions of this initializer expression,
1878  /// which contains both the initializer and any additional
1879  /// expressions used by array and array-range designators.
1880  unsigned NumSubExprs : 16;
1881
1882  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1883                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
1884                     unsigned NumSubExprs)
1885    : Expr(DesignatedInitExprClass, Ty),
1886      EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
1887      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1888
1889public:
1890  /// A field designator, e.g., ".x".
1891  struct FieldDesignator {
1892    /// Refers to the field that is being initialized. The low bit
1893    /// of this field determines whether this is actually a pointer
1894    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1895    /// initially constructed, a field designator will store an
1896    /// IdentifierInfo*. After semantic analysis has resolved that
1897    /// name, the field designator will instead store a FieldDecl*.
1898    uintptr_t NameOrField;
1899
1900    /// The location of the '.' in the designated initializer.
1901    unsigned DotLoc;
1902
1903    /// The location of the field name in the designated initializer.
1904    unsigned FieldLoc;
1905  };
1906
1907  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1908  struct ArrayOrRangeDesignator {
1909    /// Location of the first index expression within the designated
1910    /// initializer expression's list of subexpressions.
1911    unsigned Index;
1912    /// The location of the '[' starting the array range designator.
1913    unsigned LBracketLoc;
1914    /// The location of the ellipsis separating the start and end
1915    /// indices. Only valid for GNU array-range designators.
1916    unsigned EllipsisLoc;
1917    /// The location of the ']' terminating the array range designator.
1918    unsigned RBracketLoc;
1919  };
1920
1921  /// @brief Represents a single C99 designator.
1922  ///
1923  /// @todo This class is infuriatingly similar to clang::Designator,
1924  /// but minor differences (storing indices vs. storing pointers)
1925  /// keep us from reusing it. Try harder, later, to rectify these
1926  /// differences.
1927  class Designator {
1928    /// @brief The kind of designator this describes.
1929    enum {
1930      FieldDesignator,
1931      ArrayDesignator,
1932      ArrayRangeDesignator
1933    } Kind;
1934
1935    union {
1936      /// A field designator, e.g., ".x".
1937      struct FieldDesignator Field;
1938      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1939      struct ArrayOrRangeDesignator ArrayOrRange;
1940    };
1941    friend class DesignatedInitExpr;
1942
1943  public:
1944    /// @brief Initializes a field designator.
1945    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1946               SourceLocation FieldLoc)
1947      : Kind(FieldDesignator) {
1948      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1949      Field.DotLoc = DotLoc.getRawEncoding();
1950      Field.FieldLoc = FieldLoc.getRawEncoding();
1951    }
1952
1953    /// @brief Initializes an array designator.
1954    Designator(unsigned Index, SourceLocation LBracketLoc,
1955               SourceLocation RBracketLoc)
1956      : Kind(ArrayDesignator) {
1957      ArrayOrRange.Index = Index;
1958      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1959      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1960      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1961    }
1962
1963    /// @brief Initializes a GNU array-range designator.
1964    Designator(unsigned Index, SourceLocation LBracketLoc,
1965               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1966      : Kind(ArrayRangeDesignator) {
1967      ArrayOrRange.Index = Index;
1968      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1969      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1970      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1971    }
1972
1973    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1974    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1975    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1976
1977    IdentifierInfo * getFieldName();
1978
1979    FieldDecl *getField() {
1980      assert(Kind == FieldDesignator && "Only valid on a field designator");
1981      if (Field.NameOrField & 0x01)
1982        return 0;
1983      else
1984        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1985    }
1986
1987    void setField(FieldDecl *FD) {
1988      assert(Kind == FieldDesignator && "Only valid on a field designator");
1989      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1990    }
1991
1992    SourceLocation getDotLoc() const {
1993      assert(Kind == FieldDesignator && "Only valid on a field designator");
1994      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1995    }
1996
1997    SourceLocation getFieldLoc() const {
1998      assert(Kind == FieldDesignator && "Only valid on a field designator");
1999      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2000    }
2001
2002    SourceLocation getLBracketLoc() const {
2003      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2004             "Only valid on an array or array-range designator");
2005      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2006    }
2007
2008    SourceLocation getRBracketLoc() const {
2009      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2010             "Only valid on an array or array-range designator");
2011      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2012    }
2013
2014    SourceLocation getEllipsisLoc() const {
2015      assert(Kind == ArrayRangeDesignator &&
2016             "Only valid on an array-range designator");
2017      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2018    }
2019
2020    SourceLocation getStartLocation() const {
2021      if (Kind == FieldDesignator)
2022        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2023      else
2024        return getLBracketLoc();
2025    }
2026  };
2027
2028  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2029                                    unsigned NumDesignators,
2030                                    Expr **IndexExprs, unsigned NumIndexExprs,
2031                                    SourceLocation EqualOrColonLoc,
2032                                    bool GNUSyntax, Expr *Init);
2033
2034  /// @brief Returns the number of designators in this initializer.
2035  unsigned size() const { return NumDesignators; }
2036
2037  // Iterator access to the designators.
2038  typedef Designator* designators_iterator;
2039  designators_iterator designators_begin();
2040  designators_iterator designators_end();
2041
2042  Expr *getArrayIndex(const Designator& D);
2043  Expr *getArrayRangeStart(const Designator& D);
2044  Expr *getArrayRangeEnd(const Designator& D);
2045
2046  /// @brief Retrieve the location of the '=' that precedes the
2047  /// initializer value itself, if present.
2048  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2049
2050  /// @brief Determines whether this designated initializer used the
2051  /// deprecated GNU syntax for designated initializers.
2052  bool usesGNUSyntax() const { return GNUSyntax; }
2053
2054  /// @brief Retrieve the initializer value.
2055  Expr *getInit() const {
2056    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2057  }
2058
2059  void setInit(Expr *init) {
2060    *child_begin() = init;
2061  }
2062
2063  virtual SourceRange getSourceRange() const;
2064
2065  static bool classof(const Stmt *T) {
2066    return T->getStmtClass() == DesignatedInitExprClass;
2067  }
2068  static bool classof(const DesignatedInitExpr *) { return true; }
2069
2070  // Iterators
2071  virtual child_iterator child_begin();
2072  virtual child_iterator child_end();
2073};
2074
2075/// \brief Represents an implicitly-generated value initialization of
2076/// an object of a given type.
2077///
2078/// Implicit value initializations occur within semantic initializer
2079/// list expressions (InitListExpr) as placeholders for subobject
2080/// initializations not explicitly specified by the user.
2081///
2082/// \see InitListExpr
2083class ImplicitValueInitExpr : public Expr {
2084public:
2085  explicit ImplicitValueInitExpr(QualType ty)
2086    : Expr(ImplicitValueInitExprClass, ty) { }
2087
2088  static bool classof(const Stmt *T) {
2089    return T->getStmtClass() == ImplicitValueInitExprClass;
2090  }
2091  static bool classof(const ImplicitValueInitExpr *) { return true; }
2092
2093  virtual SourceRange getSourceRange() const {
2094    return SourceRange();
2095  }
2096
2097  // Iterators
2098  virtual child_iterator child_begin();
2099  virtual child_iterator child_end();
2100};
2101
2102//===----------------------------------------------------------------------===//
2103// Clang Extensions
2104//===----------------------------------------------------------------------===//
2105
2106
2107/// ExtVectorElementExpr - This represents access to specific elements of a
2108/// vector, and may occur on the left hand side or right hand side.  For example
2109/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2110///
2111/// Note that the base may have either vector or pointer to vector type, just
2112/// like a struct field reference.
2113///
2114class ExtVectorElementExpr : public Expr {
2115  Stmt *Base;
2116  IdentifierInfo &Accessor;
2117  SourceLocation AccessorLoc;
2118public:
2119  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2120                       SourceLocation loc)
2121    : Expr(ExtVectorElementExprClass, ty),
2122      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2123
2124  const Expr *getBase() const { return cast<Expr>(Base); }
2125  Expr *getBase() { return cast<Expr>(Base); }
2126
2127  IdentifierInfo &getAccessor() const { return Accessor; }
2128
2129  /// getNumElements - Get the number of components being selected.
2130  unsigned getNumElements() const;
2131
2132  /// containsDuplicateElements - Return true if any element access is
2133  /// repeated.
2134  bool containsDuplicateElements() const;
2135
2136  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2137  /// aggregate Constant of ConstantInt(s).
2138  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2139
2140  virtual SourceRange getSourceRange() const {
2141    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2142  }
2143
2144  /// isArrow - Return true if the base expression is a pointer to vector,
2145  /// return false if the base expression is a vector.
2146  bool isArrow() const;
2147
2148  static bool classof(const Stmt *T) {
2149    return T->getStmtClass() == ExtVectorElementExprClass;
2150  }
2151  static bool classof(const ExtVectorElementExpr *) { return true; }
2152
2153  // Iterators
2154  virtual child_iterator child_begin();
2155  virtual child_iterator child_end();
2156
2157  virtual void EmitImpl(llvm::Serializer& S) const;
2158  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2159};
2160
2161
2162/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2163/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2164class BlockExpr : public Expr {
2165protected:
2166  BlockDecl *TheBlock;
2167  bool HasBlockDeclRefExprs;
2168public:
2169  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2170    : Expr(BlockExprClass, ty),
2171      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2172
2173  const BlockDecl *getBlockDecl() const { return TheBlock; }
2174  BlockDecl *getBlockDecl() { return TheBlock; }
2175
2176  // Convenience functions for probing the underlying BlockDecl.
2177  SourceLocation getCaretLocation() const;
2178  const Stmt *getBody() const;
2179  Stmt *getBody();
2180
2181  virtual SourceRange getSourceRange() const {
2182    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2183  }
2184
2185  /// getFunctionType - Return the underlying function type for this block.
2186  const FunctionType *getFunctionType() const;
2187
2188  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2189  /// contained inside.
2190  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2191
2192  static bool classof(const Stmt *T) {
2193    return T->getStmtClass() == BlockExprClass;
2194  }
2195  static bool classof(const BlockExpr *) { return true; }
2196
2197  // Iterators
2198  virtual child_iterator child_begin();
2199  virtual child_iterator child_end();
2200
2201  virtual void EmitImpl(llvm::Serializer& S) const;
2202  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2203};
2204
2205/// BlockDeclRefExpr - A reference to a declared variable, function,
2206/// enum, etc.
2207class BlockDeclRefExpr : public Expr {
2208  ValueDecl *D;
2209  SourceLocation Loc;
2210  bool IsByRef;
2211public:
2212  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2213       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2214
2215  ValueDecl *getDecl() { return D; }
2216  const ValueDecl *getDecl() const { return D; }
2217  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2218
2219  bool isByRef() const { return IsByRef; }
2220
2221  static bool classof(const Stmt *T) {
2222    return T->getStmtClass() == BlockDeclRefExprClass;
2223  }
2224  static bool classof(const BlockDeclRefExpr *) { return true; }
2225
2226  // Iterators
2227  virtual child_iterator child_begin();
2228  virtual child_iterator child_end();
2229
2230  virtual void EmitImpl(llvm::Serializer& S) const;
2231  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2232};
2233
2234}  // end namespace clang
2235
2236#endif
2237